201
|
Chung J, Das A, Sun X, Sobreira DR, Leung YY, Igartua C, Mozaffari S, Chou YF, Thiagalingam S, Mez J, Zhang X, Jun GR, Stein TD, Kunkle BW, Martin ER, Pericak-Vance MA, Mayeux R, Haines JL, Schellenberg GD, Nobrega MA, Lunetta KL, Pinto JM, Wang LS, Ober C, Farrer LA. Genome-wide association and multi-omics studies identify MGMT as a novel risk gene for Alzheimer's disease among women. Alzheimers Dement 2023; 19:896-908. [PMID: 35770850 PMCID: PMC9800643 DOI: 10.1002/alz.12719] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Variants in the tau gene (MAPT) region are associated with breast cancer in women and Alzheimer's disease (AD) among persons lacking apolipoprotein E ε4 (ε4-). METHODS To identify novel genes associated with tau-related pathology, we conducted two genome-wide association studies (GWAS) for AD, one among 10,340 ε4- women in the Alzheimer's Disease Genetics Consortium (ADGC) and another in 31 members (22 women) of a consanguineous Hutterite kindred. RESULTS We identified novel associations of AD with MGMT variants in the ADGC (rs12775171, odds ratio [OR] = 1.4, P = 4.9 × 10-8) and Hutterite (rs12256016 and rs2803456, OR = 2.0, P = 1.9 × 10-14) datasets. Multi-omics analyses showed that the most significant and largest number of associations among the single nucleotide polymorphisms (SNPs), DNA-methylated CpGs, MGMT expression, and AD-related neuropathological traits were observed among women. Furthermore, promoter capture Hi-C analyses revealed long-range interactions of the MGMT promoter with MGMT SNPs and CpG sites. DISCUSSION These findings suggest that epigenetically regulated MGMT expression is involved in AD pathogenesis, especially in women.
Collapse
Affiliation(s)
- Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, USA
| | - Anjali Das
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Xinyu Sun
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, USA
| | - Débora R Sobreira
- Department of Surgery/Section of Otolaryngology-Head and Neck Surgery, The University of Chicago, Chicago, Illinois, USA
| | - Yuk Yee Leung
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Catherine Igartua
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Sahar Mozaffari
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Yi-Fan Chou
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gyungah R Jun
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Thor D Stein
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Brian W Kunkle
- Dr. John T. Macdonald Foundation of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Eden R Martin
- Dr. John T. Macdonald Foundation of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Margaret A Pericak-Vance
- Dr. John T. Macdonald Foundation of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences and Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gerard D Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marcelo A Nobrega
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jayant M Pinto
- Department of Surgery/Section of Otolaryngology-Head and Neck Surgery, The University of Chicago, Chicago, Illinois, USA
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carole Ober
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
202
|
Russ BE, Tsyganov K, Quon S, Yu B, Li J, Lee JKC, Olshansky M, He Z, Harrison PF, Barugahare A, See M, Nussing S, Morey AE, Udupa VA, Bennett T.J, Kallies A, Murre C, Collas P, Powell D, Goldrath AW, Turner SJ. Active maintenance of CD8 + T cell naïvety through regulation of global genome architecture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530139. [PMID: 36909629 PMCID: PMC10002700 DOI: 10.1101/2023.02.26.530139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The differentiation of naïve CD8+ cytotoxic T lymphocytes (CTLs) into effector and memory states results in large scale changes in transcriptional and phenotypic profiles. Little is known about how large-scale changes in genome organisation reflect or underpin these transcriptional programs. We utilised Hi-C to map changes in the spatial organisation of long-range genome contacts within naïve, effector and memory virus-specific CD8+ T cells. We observed that the architecture of the naive CD8+ T cell genome was distinct from effector and memory genome configurations with extensive changes within discrete functional chromatin domains. However, deletion of the BACH2 or SATB1 transcription factors was sufficient to remodel the naïve chromatin architecture and engage transcriptional programs characteristic of differentiated cells. This suggests that the chromatin architecture within naïve CD8+ T cells is preconfigured to undergo autonomous remodelling upon activation, with key transcription factors restraining differentiation by actively enforcing the unique naïve chromatin state.
Collapse
Affiliation(s)
- Brendan E. Russ
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Kirril Tsyganov
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Sara Quon
- Department of Biological Sciences, University of California, San Diego, USA
| | - Bingfei Yu
- Department of Biological Sciences, University of California, San Diego, USA
| | - Jasmine Li
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
- Department of Molecular Biology, University of California, San Diego, USA
| | - Jason K. C. Lee
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Moshe Olshansky
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Zhaohren He
- Department of Molecular Biology, University of California, San Diego, USA
| | - Paul F. Harrison
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Adele Barugahare
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Michael See
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | | | - Alison E. Morey
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Vibha A. Udupa
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Taylah .J Bennett
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, USA
| | - Phillipe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - David Powell
- Bioinformatics platform, Biomedical Discovery Institute, Monash University, Australia
| | - Ananda W. Goldrath
- Department of Biological Sciences, University of California, San Diego, USA
| | - Stephen J. Turner
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University
| |
Collapse
|
203
|
Fan C, Kim D, An H, Park Y. Identifying an oligodendrocyte enhancer that regulates Olig2 expression. Hum Mol Genet 2023; 32:835-846. [PMID: 36193754 PMCID: PMC9941837 DOI: 10.1093/hmg/ddac249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/14/2022] Open
Abstract
Olig2 is a basic helix-loop-helix transcription factor that plays a critical role in the central nervous system. It directs the specification of motor neurons and oligodendrocyte precursor cells (OPCs) from neural progenitors and the subsequent maturation of OPCs into myelin-forming oligodendrocytes (OLs). It is also required for the development of astrocytes. Despite a decade-long search, enhancers that regulate the expression of Olig2 remain elusive. We have recently developed an innovative method that maps promoter-distal enhancers to genes in a principled manner. Here, we applied it to Olig2 in the context of OL lineage cells, uncovering an OL enhancer for it (termed Olig2-E1). Silencing Olig2-E1 by CRISPRi epigenome editing significantly downregulated Olig2 expression. Luciferase assay and ATAC-seq and ChIP-seq data show that Olig2-E1 is an OL-specific enhancer that is conserved across human, mouse and rat. Hi-C data reveal that Olig2-E1 physically interacts with OLIG2 and suggest that this interaction is specific to OL lineage cells. In sum, Olig2-E1 is an evolutionarily conserved OL-specific enhancer that drives the expression of Olig2.
Collapse
Affiliation(s)
- Chuandong Fan
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Dongkyeong Kim
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Yungki Park
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
204
|
Abstract
The three-dimensional (3D) genome structure of human malaria parasite Plasmodium falciparum is highly organized and plays important roles in regulating coordinated expression patterns of specific genes such as virulence genes which are involved in antigenic variation and immune escape. However, the molecular mechanisms that control 3D genome of the parasite remain elusive. Here, by analyzing genome organization of P. falciparum, we identify high-interacting regions (HIRs) with strong chromatin interactions at telomeres and virulence genes loci. Specifically, HIRs are highly enriched with repressive histone marks (H3K36me3 and H3K9me3) and form the transcriptional repressive center. Deletion of PfSET2, which controls H3K36me3 level, results in marked reduction of both intrachromosomal and interchromosomal interactions for HIRs. Importantly, such chromatin reorganization coordinates with dynamic changes in epigenetic feature in HIRs and transcriptional activation of var genes. Additionally, different cluster of var genes based on the pattern of chromatin interactions show distinct transcriptional activation potential after deletion of PfSET2. Our results uncover a fundamental mechanism that the epigenetic factor PfSET2 controls the 3D organization of heterochromatin to regulate the transcription activities of var genes family in P. falciparum. IMPORTANCE PfSET2 has been reported to play key role in silencing var genes in Plasmodium falciparum, while the underlying molecular mechanisms remain unclear. Here, we provide evidence that PfSET2 is essential to maintain 3D genome organization of heterochromatin region to keep var genes in transcription repressive state. These findings can contribute better understanding of the regulation of high-order chromatin structure in P. falciparum.
Collapse
|
205
|
Maslova A, Plotnikov V, Nuriddinov M, Gridina M, Fishman V, Krasikova A. Hi-C analysis of genomic contacts revealed karyotype abnormalities in chicken HD3 cell line. BMC Genomics 2023; 24:66. [PMID: 36750787 PMCID: PMC9906895 DOI: 10.1186/s12864-023-09158-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Karyotype abnormalities are frequent in immortalized continuous cell lines either transformed or derived from primary tumors. Chromosomal rearrangements can cause dramatic changes in gene expression and affect cellular phenotype and behavior during in vitro culture. Structural variations of chromosomes in many continuous mammalian cell lines are well documented, but chromosome aberrations in cell lines from other vertebrate models often remain understudied. The chicken LSCC-HD3 cell line (HD3), generated from erythroid precursors, was used as an avian model for erythroid differentiation and lineage-specific gene expression. However, karyotype abnormalities in the HD3 cell line were not assessed. In the present study, we applied high-throughput chromosome conformation capture to analyze 3D genome organization and to detect chromosome rearrangements in the HD3 cell line. RESULTS We obtained Hi-C maps of genomic interactions for the HD3 cell line and compared A/B compartments and topologically associating domains between HD3 and several other cell types. By analysis of contact patterns in the Hi-C maps of HD3 cells, we identified more than 25 interchromosomal translocations of regions ≥ 200 kb on both micro- and macrochromosomes. We classified most of the observed translocations as unbalanced, leading to the formation of heteromorphic chromosomes. In many cases of microchromosome rearrangements, an entire microchromosome together with other macro- and microchromosomes participated in the emergence of a derivative chromosome, resembling "chromosomal fusions'' between acrocentric microchromosomes. Intrachromosomal inversions, deletions and duplications were also detected in HD3 cells. Several of the identified simple and complex chromosomal rearrangements, such as between GGA2 and GGA1qter; GGA5, GGA4p and GGA7p; GGA4q, GGA6 and GGA19; and duplication of the sex chromosome GGAW, were confirmed by FISH. CONCLUSIONS In the erythroid progenitor HD3 cell line, in contrast to mature and immature erythrocytes, the genome is organized into distinct topologically associating domains. The HD3 cell line has a severely rearranged karyotype with most of the chromosomes engaged in translocations and can be used in studies of genome structure-function relationships. Hi-C proved to be a reliable tool for simultaneous assessment of the spatial genome organization and chromosomal aberrations in karyotypes of birds with a large number of microchromosomes.
Collapse
Affiliation(s)
- A. Maslova
- grid.15447.330000 0001 2289 6897Saint Petersburg State University, Saint Petersburg, Russia
| | - V. Plotnikov
- grid.15447.330000 0001 2289 6897Saint Petersburg State University, Saint Petersburg, Russia
| | - M. Nuriddinov
- grid.418953.2Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - M. Gridina
- grid.418953.2Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - V. Fishman
- grid.418953.2Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - A. Krasikova
- grid.15447.330000 0001 2289 6897Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
206
|
Mätlik K, Govek EE, Paul MR, Allis CD, Hatten ME. Histone bivalency regulates the timing of cerebellar granule cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526881. [PMID: 36778390 PMCID: PMC9915618 DOI: 10.1101/2023.02.02.526881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Developing neurons undergo a progression of morphological and gene expression changes as they transition from neuronal progenitors to mature, multipolar neurons. Here we use RNA-seq and H3K4me3 and H3K27me3 ChIP-seq to analyze how chromatin modifications control gene expression in a specific type of CNS neuron, the mouse cerebellar granule cell (GC). We find that in proliferating GC progenitors (GCPs), H3K4me3/H3K27me3 bivalency is common at neuronal genes and undergoes dynamic changes that correlate with gene expression during migration and circuit formation. Expressing a fluorescent sensor for bivalent H3K4me3 and H3K27me3 domains revealed subnuclear bivalent foci in proliferating GCPs. Inhibiting H3K27 methyltransferases EZH1 and EZH2 in vitro and in organotypic cerebellar slices dramatically altered the expression of bivalent genes and induced the downregulation of migration-related genes and upregulation of synaptic genes, inhibited glial-guided migration, and accelerated terminal differentiation. Thus, histone bivalency is required to regulate the timing of the progression from progenitor cells to mature neurons.
Collapse
Affiliation(s)
- Kärt Mätlik
- Laboratory of Developmental Neurobiology, Rockefeller University, 10065, New York, NY, USA
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, Rockefeller University, 10065, New York, NY, USA
| | - Matthew R. Paul
- Bioinformatics Resource Center, Rockefeller University, 10065, New York, NY, USA
| | - C. David Allis
- Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, 10065, New York, NY, USA
| | - Mary E. Hatten
- Laboratory of Developmental Neurobiology, Rockefeller University, 10065, New York, NY, USA
| |
Collapse
|
207
|
Francisco Junior RDS, Temerozo JR, Ferreira CDS, Martins Y, Souza TML, Medina-Acosta E, de Vasconcelos ATR. Differential haplotype expression in class I MHC genes during SARS-CoV-2 infection of human lung cell lines. Front Immunol 2023; 13:1101526. [PMID: 36818472 PMCID: PMC9929942 DOI: 10.3389/fimmu.2022.1101526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Cell entry of SARS-CoV-2 causes genome-wide disruption of the transcriptional profiles of genes and biological pathways involved in the pathogenesis of COVID-19. Expression allelic imbalance is characterized by a deviation from the Mendelian expected 1:1 expression ratio and is an important source of allele-specific heterogeneity. Expression allelic imbalance can be measured by allele-specific expression analysis (ASE) across heterozygous informative expressed single nucleotide variants (eSNVs). ASE reflects many regulatory biological phenomena that can be assessed by combining genome and transcriptome information. ASE contributes to the interindividual variability associated with the disease. We aim to estimate the transcriptome-wide impact of SARS-CoV-2 infection by analyzing eSNVs. Methods We compared ASE profiles in the human lung cell lines Calu-3, A459, and H522 before and after infection with SARS-CoV-2 using RNA-Seq experiments. Results We identified 34 differential ASE (DASE) sites in 13 genes (HLA-A, HLA-B, HLA-C, BRD2, EHD2, GFM2, GSPT1, HAVCR1, MAT2A, NQO2, SUPT6H, TNFRSF11A, UMPS), all of which are enriched in protein binding functions and play a role in COVID-19. Most DASE sites were assigned to the MHC class I locus and were predominantly upregulated upon infection. DASE sites in the MHC class I locus also occur in iPSC-derived airway epithelium basal cells infected with SARS-CoV-2. Using an RNA-Seq haplotype reconstruction approach, we found DASE sites and adjacent eSNVs in phase (i.e., predicted on the same DNA strand), demonstrating differential haplotype expression upon infection. We found a bias towards the expression of the HLA alleles with a higher binding affinity to SARS-CoV-2 epitopes. Discussion Independent of gene expression compensation, SARS-CoV-2 infection of human lung cell lines induces transcriptional allelic switching at the MHC loci. This suggests a response mechanism to SARS-CoV-2 infection that swaps HLA alleles with poor epitope binding affinity, an expectation supported by publicly available proteome data.
Collapse
Affiliation(s)
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Cristina dos Santos Ferreira
- Bioinformatics Laboratory (LABINFO), National Laboratory of Scientific Computation (LNCC/MCTIC), Petrópolis, Brazil
| | - Yasmmin Martins
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA), Buenos Aires, Argentina
| | - Thiago Moreno L. Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Center for Technological Development in Health (CDTS), National Institute for Science and Technology on Innovation on Neglected Diseases Neglected Populations (INCT/IDNP), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Enrique Medina-Acosta
- Molecular Identification and Diagnostics Unit (NUDIM), Laboratory of Biotechnology, Center for Biosciences and Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | | |
Collapse
|
208
|
Wang J, Xue Y, He Y, Quan H, Zhang J, Gao YQ. Characterization of network hierarchy reflects cell state specificity in genome organization. Genome Res 2023; 33:247-260. [PMID: 36828586 PMCID: PMC10069467 DOI: 10.1101/gr.277206.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
Dynamic chromatin structure acts as the regulator of transcription program in crucial processes including cancer and cell development, but a unified framework for characterizing chromatin structural evolution remains to be established. Here, we performed graph inferences on Hi-C data sets and derived the chromatin contact networks. We discovered significant decreases in information transmission efficiencies in chromatin of colorectal cancer (CRC) and T-cell acute lymphoblastic leukemia (T-ALL) compared to corresponding normal controls through graph statistics. Using network embedding in the Poincaré disk, the hierarchy depths of chromatin from CRC and T-ALL patients were found to be significantly shallower compared to their normal controls. A reverse trend of change in chromatin structure was observed during early embryo development. We found tissue-specific conservation of hierarchy order in chromatin contact networks. Our findings reveal the top-down hierarchy of chromatin organization, which is significantly attenuated in cancer.
Collapse
Affiliation(s)
- Jingyao Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yueying He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hui Quan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jun Zhang
- Changping Laboratory, Beijing, 102206, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; .,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.,Changping Laboratory, Beijing, 102206, China
| |
Collapse
|
209
|
Barajas-Mora EM, Lee L, Lu H, Valderrama JA, Bjanes E, Nizet V, Feeney AJ, Hu M, Murre C. Enhancer-instructed epigenetic landscape and chromatin compartmentalization dictate a primary antibody repertoire protective against specific bacterial pathogens. Nat Immunol 2023; 24:320-336. [PMID: 36717722 PMCID: PMC10917333 DOI: 10.1038/s41590-022-01402-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/06/2022] [Indexed: 01/31/2023]
Abstract
Antigen receptor loci are organized into variable (V), diversity (D) and joining (J) gene segments that rearrange to generate antigen receptor repertoires. Here, we identified an enhancer (E34) in the murine immunoglobulin kappa (Igk) locus that instructed rearrangement of Vκ genes located in a sub-topologically associating domain, including a Vκ gene encoding for antibodies targeting bacterial phosphorylcholine. We show that E34 instructs the nuclear repositioning of the E34 sub-topologically associating domain from a recombination-repressive compartment to a recombination-permissive compartment that is marked by equivalent activating histone modifications. Finally, we found that E34-instructed Vκ-Jκ rearrangement was essential to combat Streptococcus pneumoniae but not methicillin-resistant Staphylococcus aureus or influenza infections. We propose that the merging of Vκ genes with Jκ elements is instructed by one-dimensional epigenetic information imposed by enhancers across Vκ and Jκ genomic regions. The data also reveal how enhancers generate distinct antibody repertoires that provide protection against lethal bacterial infection.
Collapse
Affiliation(s)
| | - Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hanbin Lu
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - J Andrés Valderrama
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Elisabet Bjanes
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
210
|
Liu H, Liu Y, Jin SG, Johnson J, Xuan H, Lu D, Li J, Zhai L, Li X, Zhao Y, Liu M, Craig SEL, Floramo JS, Molchanov V, Li J, Li JD, Krawczyk C, Shi X, Pfeifer GP, Yang T. TRIM28 secures skeletal stem cell fate during skeletogenesis by silencing neural gene expression and repressing GREM1/AKT/mTOR signaling axis. Cell Rep 2023; 42:112012. [PMID: 36680774 PMCID: PMC11339952 DOI: 10.1016/j.celrep.2023.112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/16/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Long bones are generated by mesoderm-derived skeletal progenitor/stem cells (SSCs) through endochondral ossification, a process of sequential chondrogenic and osteogenic differentiation tightly controlled by the synergy between intrinsic and microenvironment cues. Here, we report that loss of TRIM28, a transcriptional corepressor, in mesoderm-derived cells expands the SSC pool, weakens SSC osteochondrogenic potential, and endows SSCs with properties of ectoderm-derived neural crest cells (NCCs), leading to severe defects of skeletogenesis. TRIM28 preferentially enhances H3K9 trimethylation and DNA methylation on chromatin regions more accessible in NCCs; loss of this silencing upregulates neural gene expression and enhances neurogenic potential. Moreover, TRIM28 loss causes hyperexpression of GREM1, which is an extracellular signaling factor promoting SSC self-renewal and SSC neurogenic potential by activating AKT/mTORC1 signaling. Our results suggest that TRIM28-mediated chromatin silencing establishes a barrier for maintaining the SSC lineage trajectory and preventing a transition to ectodermal fate by regulating both intrinsic and microenvironment cues.
Collapse
Affiliation(s)
- Huadie Liu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ye Liu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jennifer Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Di Lu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jianshuang Li
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lukai Zhai
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Xianfeng Li
- Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Yaguang Zhao
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA; Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Minmin Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Joseph S Floramo
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Vladimir Molchanov
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jie Li
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jia-Da Li
- Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Connie Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Tao Yang
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
211
|
Kravitz SN, Ferris E, Love MI, Thomas A, Quinlan AR, Gregg C. Random allelic expression in the adult human body. Cell Rep 2023; 42:111945. [PMID: 36640362 PMCID: PMC10484211 DOI: 10.1016/j.celrep.2022.111945] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Genes are typically assumed to express both parental alleles similarly, yet cell lines show random allelic expression (RAE) for many autosomal genes that could shape genetic effects. Thus, understanding RAE in human tissues could improve our understanding of phenotypic variation. Here, we develop a methodology to perform genome-wide profiling of RAE and biallelic expression in GTEx datasets for 832 people and 54 tissues. We report 2,762 autosomal genes with some RAE properties similar to randomly inactivated X-linked genes. We found that RAE is associated with rapidly evolving regions in the human genome, adaptive signaling processes, and genes linked to age-related diseases such as neurodegeneration and cancer. We define putative mechanistic subtypes of RAE distinguished by gene overlaps on sense and antisense DNA strands, aggregation in clusters near telomeres, and increased regulatory complexity and inputs compared with biallelic genes. We provide foundations to study RAE in human phenotypes, evolution, and disease.
Collapse
Affiliation(s)
- Stephanie N Kravitz
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Elliott Ferris
- Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Michael I Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alun Thomas
- Department of Internal Medicine, Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Christopher Gregg
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
212
|
Teng Z, Zhu Y, Lin D, Hao Q, Yue Q, Yu X, Sun S, Jiang L, Lu S. Deciphering the chromatin spatial organization landscapes during BMMSC differentiation. J Genet Genomics 2023; 50:264-275. [PMID: 36720443 DOI: 10.1016/j.jgg.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
The differentiation imbalance in bone marrow mesenchymal stem cells (BMMSCs) is critical for the development of bone density diseases as the population ages. BMMSCs are precursor cells for osteoblasts and adipocytes; however, the chromatin organization landscapes during BMMSC differentiation remain elusive. In this study, we systematically delineate the four-dimensional (4D) genome and dynamic epigenetic atlas of BMMSCs by RNA sequencing (RNA-seq), assay for transposase-accessible chromatin sequencing (ATAC-seq), and high-throughput chromosome conformation capture (Hi-C). The structure analyses reveal 17.5% common and 28.5%-30% specific loops among BMMSCs, osteoblasts, and adipocytes. The subsequent correlation of genome-wide association studies (GWAS) and expression quantitative trait locus (eQTL) data with multi-omics analysis reveal 274 genes and 3634 single nucleotide polymorphisms (SNPs) associated with bone degeneration and osteoporosis (OP). We hypothesize that SNP mutations affect transcription factor (TF) binding sites, thereby affecting changes in gene expression. Furthermore, 26 motifs, 260 TFs, and 291 SNPs are identified to affect the eQTL. Among these genes, DAAM2, TIMP2, and TMEM241 were found to be essential for diseases such as bone degeneration and OP and may serve as potential drug targets.
Collapse
Affiliation(s)
- Zhaowei Teng
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China; Key Laboratory of Yunnan Provincial Innovative Application of Traditional Chinese Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China; Clinical Medical Research Center, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Yun Zhu
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653100, China
| | - Da Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qinggang Hao
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650504, China
| | - Qiaoning Yue
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653100, China
| | - Xiaochao Yu
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653100, China
| | - Shuo Sun
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653100, China
| | - Lihong Jiang
- Key Laboratory of Yunnan Provincial Innovative Application of Traditional Chinese Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Sheng Lu
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China.
| |
Collapse
|
213
|
Mahmood SR, Said NHE, Gunsalus KC, Percipalle P. β-actin mediated H3K27ac changes demonstrate the link between compartment switching and enhancer-dependent transcriptional regulation. Genome Biol 2023; 24:18. [PMID: 36698204 PMCID: PMC9875490 DOI: 10.1186/s13059-023-02853-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Recent work has demonstrated that three-dimensional genome organization is directly affected by changes in the levels of nuclear cytoskeletal proteins such as β-actin. The mechanisms which translate changes in 3D genome structure into changes in transcription, however, are not fully understood. Here, we use a comprehensive genomic analysis of cells lacking nuclear β-actin to investigate the mechanistic links between compartment organization, enhancer activity, and gene expression. RESULTS Using HiC-Seq, ATAC-Seq, and RNA-Seq, we first demonstrate that transcriptional and chromatin accessibility changes observed upon β-actin loss are highly enriched in compartment-switching regions. Accessibility changes within compartment switching genes, however, are mainly observed in non-promoter regions which potentially represent distal regulatory elements. Our results also show that β-actin loss induces widespread accumulation of the enhancer-specific epigenetic mark H3K27ac. Using the ABC model of enhancer annotation, we then establish that these epigenetic changes have a direct impact on enhancer activity and underlie transcriptional changes observed upon compartment switching. A complementary analysis of fibroblasts undergoing reprogramming into pluripotent stem cells further confirms that this relationship between compartment switching and enhancer-dependent transcriptional change is not specific to β-actin knockout cells but represents a general mechanism linking compartment-level genome organization to gene expression. CONCLUSIONS We demonstrate that enhancer-dependent transcriptional regulation plays a crucial role in driving gene expression changes observed upon compartment-switching. Our results also reveal a novel function of nuclear β-actin in regulating enhancer function by influencing H3K27 acetylation levels.
Collapse
Affiliation(s)
- Syed Raza Mahmood
- grid.440573.10000 0004 1755 5934Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates ,grid.137628.90000 0004 1936 8753Department of Biology, New York University, New York, NY 10003 USA
| | - Nadine Hosny El Said
- grid.440573.10000 0004 1755 5934Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Kristin C. Gunsalus
- grid.440573.10000 0004 1755 5934Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates ,grid.137628.90000 0004 1936 8753Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003 USA
| | - Piergiorgio Percipalle
- grid.440573.10000 0004 1755 5934Center for Genomics and Systems Biology, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates ,grid.440573.10000 0004 1755 5934Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates ,grid.10548.380000 0004 1936 9377Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
214
|
Madrigal P, Deng S, Feng Y, Militi S, Goh KJ, Nibhani R, Grandy R, Osnato A, Ortmann D, Brown S, Pauklin S. Epigenetic and transcriptional regulations prime cell fate before division during human pluripotent stem cell differentiation. Nat Commun 2023; 14:405. [PMID: 36697417 PMCID: PMC9876972 DOI: 10.1038/s41467-023-36116-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Stem cells undergo cellular division during their differentiation to produce daughter cells with a new cellular identity. However, the epigenetic events and molecular mechanisms occurring between consecutive cell divisions have been insufficiently studied due to technical limitations. Here, using the FUCCI reporter we developed a cell-cycle synchronised human pluripotent stem cell (hPSC) differentiation system for uncovering epigenome and transcriptome dynamics during the first two divisions leading to definitive endoderm. We observed that transcription of key differentiation markers occurs before cell division, while chromatin accessibility analyses revealed the early inhibition of alternative cell fates. We found that Activator protein-1 members controlled by p38/MAPK signalling are necessary for inducing endoderm while blocking cell fate shifting toward mesoderm, and that enhancers are rapidly established and decommissioned between different cell divisions. Our study has practical biomedical utility for producing hPSC-derived patient-specific cell types since p38/MAPK induction increased the differentiation efficiency of insulin-producing pancreatic beta-cells.
Collapse
Affiliation(s)
- Pedro Madrigal
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Siwei Deng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Kim Jee Goh
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Rodrigo Grandy
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anna Osnato
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Daniel Ortmann
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephanie Brown
- Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
215
|
Chromosome territory reorganization through artificial chromosome fusion is compatible with cell fate determination and mouse development. Cell Discov 2023; 9:11. [PMID: 36693846 PMCID: PMC9873915 DOI: 10.1038/s41421-022-00511-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/18/2022] [Indexed: 01/26/2023] Open
Abstract
Chromosomes occupy discrete spaces in the interphase cell nucleus, called chromosome territory. The structural and functional relevance of chromosome territory remains elusive. We fused chromosome 15 and 17 in mouse haploid embryonic stem cells (haESCs), resulting in distinct changes of territories in the cognate chromosomes, but with little effect on gene expression, pluripotency and gamete functions of haESCs. The karyotype-engineered haESCs were successfully implemented in generating heterozygous (2n = 39) and homozygous (2n = 38) mouse models. Mice containing the fusion chromosome are fertile, and their representative tissues and organs display no phenotypic abnormalities, suggesting unscathed development. These results indicate that the mammalian chromosome architectures are highly resilient, and reorganization of chromosome territories can be readily tolerated during cell differentiation and mouse development.
Collapse
|
216
|
Santosa EK, Lau CM, Sahin M, Leslie CS, Sun JC. 3D Chromatin Dynamics during Innate and Adaptive Immune Memory Acquisition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524322. [PMID: 36711541 PMCID: PMC9882143 DOI: 10.1101/2023.01.16.524322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Immune cells responding to pathogens undergo molecular changes that are intimately linked to genome organization. Recent work has demonstrated that natural killer (NK) and CD8 + T cells experience substantial transcriptomic and epigenetic rewiring during their differentiation from naïve to effector to memory cells. Whether these molecular adaptations are accompanied by changes in three-dimensional (3D) chromatin architecture is unknown. In this study, we combine histone profiling, ATAC-seq, RNA-seq and high-throughput chromatin capture (HiC) assay to investigate the dynamics of one-dimensional (1D) and 3D chromatin during the differentiation of innate and adaptive lymphocytes. To this end, we discovered a coordinated 1D and 3D epigenetic remodeling during innate immune memory differentiation, and demonstrate that effector CD8 + T cells adopt an NK-like architectural program that is maintained in memory cells. Altogether, our study reveals the dynamic nature of the 1D and 3D genome during the formation of innate and adaptive immunological memory.
Collapse
|
217
|
Ni L, Liu Y, Ma X, Liu T, Yang X, Wang Z, Liang Q, Liu S, Zhang M, Wang Z, Shen Y, Tian Z. Pan-3D genome analysis reveals structural and functional differentiation of soybean genomes. Genome Biol 2023; 24:12. [PMID: 36658660 PMCID: PMC9850592 DOI: 10.1186/s13059-023-02854-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND High-order chromatin structure plays important roles in gene regulation. However, the diversity of the three-dimensional (3D) genome across plant accessions are seldom reported. RESULTS Here, we perform the pan-3D genome analysis using Hi-C sequencing data from 27 soybean accessions and comprehensively investigate the relationships between 3D genomic variations and structural variations (SVs) as well as gene expression. We find that intersection regions between A/B compartments largely contribute to compartment divergence. Topologically associating domain (TAD) boundaries in A compartments exhibit significantly higher density compared to those in B compartments. Pan-3D genome analysis shows that core TAD boundaries have the highest transcription start site (TSS) density and lowest GC content and repeat percentage. Further investigation shows that non-long terminal repeat (non-LTR) retrotransposons play important roles in maintaining TAD boundaries, while Gypsy elements and satellite repeats are associated with private TAD boundaries. Moreover, presence and absence variation (PAV) is found to be the major contributor to 3D genome variations. Nevertheless, approximately 55% of 3D genome variations are not associated with obvious genetic variations, and half of them affect the flanking gene expression. In addition, we find that the 3D genome may also undergo selection during soybean domestication. CONCLUSION Our study sheds light on the role of 3D genomes in plant genetic diversity and provides a valuable resource for studying gene regulation and genome evolution.
Collapse
Affiliation(s)
- Lingbin Ni
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tengfei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyue Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Min Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng Wang
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
218
|
Alavattam KG, Mitzelfelt KA, Bonora G, Fields PA, Yang X, Chiu HS, Pabon L, Bertero A, Palpant NJ, Noble WS, Murry CE. Dynamic chromatin organization and regulatory interactions in human endothelial cell differentiation. Stem Cell Reports 2023; 18:159-174. [PMID: 36493778 PMCID: PMC9860068 DOI: 10.1016/j.stemcr.2022.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 12/10/2022] Open
Abstract
Vascular endothelial cells are a mesoderm-derived lineage with many essential functions, including angiogenesis and coagulation. The gene-regulatory mechanisms underpinning endothelial specialization are largely unknown, as are the roles of chromatin organization in regulating endothelial cell transcription. To investigate the relationships between chromatin organization and gene expression, we induced endothelial cell differentiation from human pluripotent stem cells and performed Hi-C and RNA-sequencing assays at specific time points. Long-range intrachromosomal contacts increase over the course of differentiation, accompanied by widespread heteroeuchromatic compartment transitions that are tightly associated with transcription. Dynamic topologically associating domain boundaries strengthen and converge on an endothelial cell state, and function to regulate gene expression. Chromatin pairwise point interactions (DNA loops) increase in frequency during differentiation and are linked to the expression of genes essential to vascular biology. Chromatin dynamics guide transcription in endothelial cell development and promote the divergence of endothelial cells from cardiomyocytes.
Collapse
Affiliation(s)
- Kris G Alavattam
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Avenue NE, Seattle, WA 98195, USA
| | - Katie A Mitzelfelt
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Giancarlo Bonora
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Avenue NE, Seattle, WA 98195, USA
| | - Paul A Fields
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Xiulan Yang
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Han Sheng Chiu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Centre for Cardiac and Vascular Biology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lil Pabon
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Alessandro Bertero
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Centre for Cardiac and Vascular Biology, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - William S Noble
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Avenue NE, Seattle, WA 98195, USA; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Charles E Murry
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA; Sana Biotechnology, Seattle, WA 98102, USA; Department of Medicine/Cardiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
219
|
Rosen J, Lee L, Abnousi A, Chen J, Wen J, Hu M, Li Y. HPTAD: A computational method to identify topologically associating domains from HiChIP and PLAC-seq datasets. Comput Struct Biotechnol J 2023; 21:931-939. [PMID: 38213897 PMCID: PMC10782010 DOI: 10.1016/j.csbj.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
High-throughput chromatin conformation capture technologies, such as Hi-C and Micro-C, have enabled genome-wide view of chromatin spatial organization. Most recently, Hi-C-derived enrichment-based technologies, including HiChIP and PLAC-seq, offer attractive alternatives due to their high signal-to-noise ratio and low cost. While a series of computational tools have been developed for Hi-C data, methods tailored for HiChIP and PLAC-seq data are still under development. Here we present HPTAD, a computational method to identify topologically associating domains (TADs) from HiChIP and PLAC-seq data. We performed comprehensive benchmark analysis to demonstrate its superior performance over existing TAD callers designed for Hi-C data. HPTAD is freely available at https://github.com/yunliUNC/HPTAD.
Collapse
Affiliation(s)
- Jonathan Rosen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Armen Abnousi
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Jia Wen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
220
|
Аpplication of massive parallel reporter analysis in biotechnology and medicine. КЛИНИЧЕСКАЯ ПРАКТИКА 2023. [DOI: 10.17816/clinpract115063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development and functioning of an organism relies on tissue-specific gene programs. Genome regulatory elements play a key role in the regulation of such programs, and disruptions in their function can lead to the development of various pathologies, including cancers, malformations and autoimmune diseases. The emergence of high-throughput genomic studies has led to massively parallel reporter analysis (MPRA) methods, which allow the functional verification and identification of regulatory elements on a genome-wide scale. Initially MPRA was used as a tool to investigate fundamental aspects of epigenetics, but the approach also has great potential for clinical and practical biotechnology. Currently, MPRA is used for validation of clinically significant mutations, identification of tissue-specific regulatory elements, search for the most promising loci for transgene integration, and is an indispensable tool for creating highly efficient expression systems, the range of application of which extends from approaches for protein development and design of next-generation therapeutic antibody superproducers to gene therapy. In this review, the main principles and areas of practical application of high-throughput reporter assays will be discussed.
Collapse
|
221
|
Liu K, Li HD, Li Y, Wang J, Wang J. A Comparison of Topologically Associating Domain Callers Based on Hi-C Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:15-29. [PMID: 35104223 DOI: 10.1109/tcbb.2022.3147805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Topologically associating domains (TADs) are local chromatin interaction domains, which have been shown to play an important role in gene expression regulation. TADs were originally discovered in the investigation of 3D genome organization based on High-throughput Chromosome Conformation Capture (Hi-C) data. Continuous considerable efforts have been dedicated to developing methods for detecting TADs from Hi-C data. Different computational methods for TADs identification vary in their assumptions and criteria in calling TADs. As a consequence, the TADs called by these methods differ in their similarities and biological features they are enriched in. In this work, we performed a systematic comparison of twenty-six TAD callers. We first compared the TADs and gaps between adjacent TADs across different methods, resolutions, and sequencing depths. We then assessed the quality of TADs and TAD boundaries according to three criteria: the decay of contact frequencies over the genomic distance, enrichment and depletion of regulatory elements around TAD boundaries, and reproducibility of TADs and TAD boundaries in replicate samples. Last, due to the lack of a gold standard of TADs, we also evaluated the performance of the methods on synthetic datasets. We discussed the key principles of TAD callers, and pinpointed current situation in the detection of TADs. We provide a concise, comprehensive, and systematic framework for evaluating the performance of TAD callers, and expect our work will provide useful guidance in choosing suitable approaches for the detection and evaluation of TADs.
Collapse
|
222
|
Li S. Inferring the Cancer Cellular Epigenome Heterogeneity via DNA Methylation Patterns. Cancer Treat Res 2023; 190:375-393. [PMID: 38113008 DOI: 10.1007/978-3-031-45654-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Tumor cells evolve through space and time, generating genetically and phenotypically diverse cancer cell populations that are continually subjected to the selection pressures of their microenvironment and cancer treatment.
Collapse
Affiliation(s)
- Sheng Li
- The Jackson Laboratory for Genomic Medicine and Cancer Center, Farmington, USA.
| |
Collapse
|
223
|
Ayala-Guerrero L, Claudio-Galeana S, Furlan-Magaril M, Castro-Obregón S. Chromatin Structure from Development to Ageing. Subcell Biochem 2023; 102:7-51. [PMID: 36600128 DOI: 10.1007/978-3-031-21410-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nuclear structure influences genome architecture, which contributes to determine patterns of gene expression. Global changes in chromatin dynamics are essential during development and differentiation, and are one of the hallmarks of ageing. This chapter describes the molecular dynamics of chromatin structure that occur during development and ageing. In the first part, we introduce general information about the nuclear lamina, the chromatin structure, and the 3D organization of the genome. Next, we detail the molecular hallmarks found during development and ageing, including the role of DNA and histone modifications, 3D genome dynamics, and changes in the nuclear lamina. Within the chapter we discuss the implications that genome structure has on the mechanisms that drive development and ageing, and the physiological consequences when these mechanisms fail.
Collapse
Affiliation(s)
- Lorelei Ayala-Guerrero
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Sherlyn Claudio-Galeana
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Mayra Furlan-Magaril
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.
| |
Collapse
|
224
|
Michieletto MF, Tello-Cajiao JJ, Mowel WK, Chandra A, Yoon S, Joannas L, Clark ML, Jimenez MT, Wright JM, Lundgren P, Williams A, Thaiss CA, Vahedi G, Henao-Mejia J. Multiscale 3D genome organization underlies ILC2 ontogenesis and allergic airway inflammation. Nat Immunol 2023; 24:42-54. [PMID: 36050414 PMCID: PMC10134076 DOI: 10.1038/s41590-022-01295-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/18/2022] [Indexed: 01/06/2023]
Abstract
Innate lymphoid cells (ILCs) are well-characterized immune cells that play key roles in host defense and tissue homeostasis. Yet, how the three-dimensional (3D) genome organization underlies the development and functions of ILCs is unknown. Herein, we carried out an integrative analysis of the 3D genome structure, chromatin accessibility and gene expression in mature ILCs. Our results revealed that the local 3D configuration of the genome is rewired specifically at loci associated with ILC biology to promote their development and functional differentiation. Importantly, we demonstrated that the ontogenesis of ILC2s and the progression of allergic airway inflammation are determined by a unique local 3D configuration of the region containing the ILC-lineage-defining factor Id2, which is characterized by multiple interactions between the Id2 promoter and distal regulatory elements bound by the transcription factors GATA-3 and RORα, unveiling the mechanism whereby the Id2 expression is specifically controlled in group 2 ILCs.
Collapse
Affiliation(s)
- Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John J Tello-Cajiao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter K Mowel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aditi Chandra
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sora Yoon
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonel Joannas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan L Clark
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica T Jimenez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jasmine M Wright
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Lundgren
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Williams
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christoph A Thaiss
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Golnaz Vahedi
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
225
|
A Novel Frameshift CHD4 Variant Leading to Sifrim-Hitz-Weiss Syndrome in a Proband with a Subclinical Familial t(17;19) and a Large dup(2)(q14.3q21.1). Biomedicines 2022; 11:biomedicines11010012. [PMID: 36672520 PMCID: PMC9855399 DOI: 10.3390/biomedicines11010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The genetic complexity of neurodevelopmental disorders (NDD), combined with a heterogeneous clinical presentation, makes accurate assessment of their molecular bases and pathogenic mechanisms challenging. Our purpose is to reveal the pathogenic variant underlying a complex NDD through identification of the "full" spectrum of structural genomic and genetic variants. Therefore, clinical phenotyping and identification of variants by genome and exome sequencing, together with comprehensive assessment of these and affected candidate genes, were carried out. A maternally-inherited familial translocation [t(17;19)(p13.1;p13.3)mat] disrupting the GSG1 like 2 gene (GSG1L2), a 3.2 Mb dup(2)(q14.3q21.1) encompassing the autosomal dominant OMIM phenotype-associated PROC and HS6ST1 gene, and a novel frameshift c.4442del, p.(Gly1481Valfs*21) variant within exon 30 of the Chromodomain helicase DNA binding protein 4 (CHD4) have been identified. Considering the pathogenic potential of each variant and the proband's phenotype, we conclude that this case basically fits the Sifrim-Hitz-Weiss syndrome or CHD4-associated neurodevelopmental phenotype. Finally, our data highlight the need for identification of the "full" spectrum of structural genomic and genetic variants and of reverse comparative phenotyping, including unrelated patients with variants in same genes, for improved genomic healthcare of patients with NDD.
Collapse
|
226
|
Ling X, Liu X, Jiang S, Fan L, Ding J. The dynamics of three-dimensional chromatin organization and phase separation in cell fate transitions and diseases. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:42. [PMID: 36539553 PMCID: PMC9768101 DOI: 10.1186/s13619-022-00145-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022]
Abstract
Cell fate transition is a fascinating process involving complex dynamics of three-dimensional (3D) chromatin organization and phase separation, which play an essential role in cell fate decision by regulating gene expression. Phase separation is increasingly being considered a driving force of chromatin folding. In this review, we have summarized the dynamic features of 3D chromatin and phase separation during physiological and pathological cell fate transitions and systematically analyzed recent evidence of phase separation facilitating the chromatin structure. In addition, we discuss current advances in understanding how phase separation contributes to physical and functional enhancer-promoter contacts. We highlight the functional roles of 3D chromatin organization and phase separation in cell fate transitions, and more explorations are required to study the regulatory relationship between 3D chromatin organization and phase separation. 3D chromatin organization (shown by Hi-C contact map) and phase separation are highly dynamic and play functional roles during early embryonic development, cell differentiation, somatic reprogramming, cell transdifferentiation and pathogenetic process. Phase separation can regulate 3D chromatin organization directly, but whether 3D chromatin organization regulates phase separation remains unclear.
Collapse
Affiliation(s)
- Xiaoru Ling
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Xinyi Liu
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Shaoshuai Jiang
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Lili Fan
- grid.258164.c0000 0004 1790 3548Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong China
| | - Junjun Ding
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.410737.60000 0000 8653 1072Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 China ,grid.13291.380000 0001 0807 1581West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
227
|
Shao D, Yang Y, Shi S, Tong H. Three-Dimensional Organization of Chicken Genome Provides Insights into Genetic Adaptation to Extreme Environments. Genes (Basel) 2022; 13:genes13122317. [PMID: 36553584 PMCID: PMC9778438 DOI: 10.3390/genes13122317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The high-throughput chromosome conformation capture (Hi-C) technique is widely used to study the functional roles of the three-dimensional (3D) architecture of genomes. However, the knowledge of the 3D genome structure and its dynamics during extreme environmental adaptations remains poor. Here, we characterized 3D genome architectures using the Hi-C technique for chicken liver cells. Upon comparing Lindian chicken (LDC) liver cells with Wenchang chicken (WCC) liver cells, we discovered that environmental adaptation contributed to the switching of A/B compartments, the reorganization of topologically associated domains (TADs), and TAD boundaries in both liver cells. In addition, the analysis of the switching of A/B compartments revealed that the switched compartmental genes (SCGs) were strongly associated with extreme environment adaption-related pathways, including tight junction, notch signaling pathway, vascular smooth muscle contraction, and the RIG-I-like receptor signaling pathway. The findings of this study advanced our understanding of the evolutionary role of chicken 3D genome architecture and its significance in genome activity and transcriptional regulation.
Collapse
Affiliation(s)
- Dan Shao
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Yu Yang
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence: (Y.Y.); (S.S.)
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
- Correspondence: (Y.Y.); (S.S.)
| | - Haibing Tong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| |
Collapse
|
228
|
Dutrow EV, Serpell JA, Ostrander EA. Domestic dog lineages reveal genetic drivers of behavioral diversification. Cell 2022; 185:4737-4755.e18. [PMID: 36493753 PMCID: PMC10478034 DOI: 10.1016/j.cell.2022.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022]
Abstract
Selective breeding of domestic dogs has generated diverse breeds often optimized for performing specialized tasks. Despite the heritability of breed-typical behavioral traits, identification of causal loci has proven challenging due to the complexity of canine population structure. We overcome longstanding difficulties in identifying genetic drivers of canine behavior by developing a framework for understanding relationships between breeds and the behaviors that define them, utilizing genetic data for over 4,000 domestic, semi-feral, and wild canids and behavioral survey data for over 46,000 dogs. We identify ten major canine genetic lineages and their behavioral correlates and show that breed diversification is predominantly driven by non-coding regulatory variation. We determine that lineage-associated genes converge in neurodevelopmental co-expression networks, identifying a sheepdog-associated enrichment for interrelated axon guidance functions. This work presents a scaffold for canine diversification that positions the domestic dog as an unparalleled system for revealing the genetic origins of behavioral diversity.
Collapse
Affiliation(s)
- Emily V Dutrow
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James A Serpell
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
229
|
Burramsetty AK, Nishimura K, Kishimoto T, Hamzah M, Kuno A, Fukuda A, Hisatake K. Locus-Specific Isolation of the Nanog Chromatin Identifies Regulators Relevant to Pluripotency of Mouse Embryonic Stem Cells and Reprogramming of Somatic Cells. Int J Mol Sci 2022; 23:ijms232315242. [PMID: 36499566 PMCID: PMC9740452 DOI: 10.3390/ijms232315242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Pluripotency is a crucial feature of pluripotent stem cells, which are regulated by the core pluripotency network consisting of key transcription factors and signaling molecules. However, relatively less is known about the molecular mechanisms that modify the core pluripotency network. Here we used the CAPTURE (CRISPR Affinity Purification in situ of Regulatory Elements) to unbiasedly isolate proteins assembled on the Nanog promoter in mouse embryonic stem cells (mESCs), and then tested their functional relevance to the maintenance of mESCs and reprogramming of somatic cells. Gene ontology analysis revealed that the identified proteins, including many RNA-binding proteins (RBPs), are enriched in RNA-related functions and gene expression. ChIP-qPCR experiments confirmed that BCLAF1, FUBP1, MSH6, PARK7, PSIP1, and THRAP3 occupy the Nanog promoter region in mESCs. Knockdown experiments of these factors show that they play varying roles in self-renewal, pluripotency gene expression, and differentiation of mESCs as well as in the reprogramming of somatic cells. Our results show the utility of unbiased identification of chromatin-associated proteins on a pluripotency gene in mESCs and reveal the functional relevance of RBPs in ESC differentiation and somatic cell reprogramming.
Collapse
Affiliation(s)
- Arun Kumar Burramsetty
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
- Correspondence: (K.N.); (K.H.)
| | - Takumi Kishimoto
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Muhammad Hamzah
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Akihiro Kuno
- Laboratory of Animal Resource Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Aya Fukuda
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Koji Hisatake
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
- Correspondence: (K.N.); (K.H.)
| |
Collapse
|
230
|
DNA methyltransferases 3A and 3B target specific sequences during mouse gastrulation. Nat Struct Mol Biol 2022; 29:1252-1265. [PMID: 36510023 DOI: 10.1038/s41594-022-00885-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/02/2022] [Indexed: 12/14/2022]
Abstract
In mammalian embryos, DNA methylation is initialized to maximum levels in the epiblast by the de novo DNA methyltransferases DNMT3A and DNMT3B before gastrulation diversifies it across regulatory regions. Here we show that DNMT3A and DNMT3B are differentially regulated during endoderm and mesoderm bifurcation and study the implications in vivo and in meso-endoderm embryoid bodies. Loss of both Dnmt3a and Dnmt3b impairs exit from the epiblast state. More subtly, independent loss of Dnmt3a or Dnmt3b leads to small biases in mesoderm-endoderm bifurcation and transcriptional deregulation. Epigenetically, DNMT3A and DNMT3B drive distinct methylation kinetics in the epiblast, as can be predicted from their strand-specific sequence preferences. The enzymes compensate for each other in the epiblast, but can later facilitate lineage-specific methylation kinetics as their expression diverges. Single-cell analysis shows that differential activity of DNMT3A and DNMT3B combines with replication-linked methylation turnover to increase epigenetic plasticity in gastrulation. Together, these findings outline a dynamic model for the use of DNMT3A and DNMT3B sequence specificity during gastrulation.
Collapse
|
231
|
Chu X, Wang J. Insights into the cell fate decision-making processes from chromosome structural reorganizations. BIOPHYSICS REVIEWS 2022; 3:041402. [PMID: 38505520 PMCID: PMC10914134 DOI: 10.1063/5.0107663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/25/2022] [Indexed: 03/21/2024]
Abstract
The cell fate decision-making process, which provides the capability of a cell transition to a new cell type, involves the reorganizations of 3D genome structures. Currently, the high temporal resolution picture of how the chromosome structural rearrangements occur and further influence the gene activities during the cell-state transition is still challenging to acquire. Here, we study the chromosome structural reorganizations during the cell-state transitions among the pluripotent embryonic stem cell, the terminally differentiated normal cell, and the cancer cell using a nonequilibrium landscape-switching model implemented in the molecular dynamics simulation. We quantify the chromosome (de)compaction pathways during the cell-state transitions and find that the two pathways having the same destinations can merge prior to reaching the final states. The chromosomes at the merging states have similar structural geometries but can differ in long-range compartment segregation and spatial distribution of the chromosomal loci and genes, leading to cell-type-specific transition mechanisms. We identify the irreversible pathways of chromosome structural rearrangements during the forward and reverse transitions connecting the same pair of cell states, underscoring the critical roles of nonequilibrium dynamics in the cell-state transitions. Our results contribute to the understanding of the cell fate decision-making processes from the chromosome structural perspective.
Collapse
Affiliation(s)
- Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong 511400, China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| |
Collapse
|
232
|
Xu Z, Lee DS, Chandran S, Le VT, Bump R, Yasis J, Dallarda S, Marcotte S, Clock B, Haghani N, Cho CY, Akdemir KC, Tyndale S, Futreal PA, McVicker G, Wahl GM, Dixon JR. Structural variants drive context-dependent oncogene activation in cancer. Nature 2022; 612:564-572. [PMID: 36477537 PMCID: PMC9810360 DOI: 10.1038/s41586-022-05504-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Higher-order chromatin structure is important for the regulation of genes by distal regulatory sequences1,2. Structural variants (SVs) that alter three-dimensional (3D) genome organization can lead to enhancer-promoter rewiring and human disease, particularly in the context of cancer3. However, only a small minority of SVs are associated with altered gene expression4,5, and it remains unclear why certain SVs lead to changes in distal gene expression and others do not. To address these questions, we used a combination of genomic profiling and genome engineering to identify sites of recurrent changes in 3D genome structure in cancer and determine the effects of specific rearrangements on oncogene activation. By analysing Hi-C data from 92 cancer cell lines and patient samples, we identified loci affected by recurrent alterations to 3D genome structure, including oncogenes such as MYC, TERT and CCND1. By using CRISPR-Cas9 genome engineering to generate de novo SVs, we show that oncogene activity can be predicted by using 'activity-by-contact' models that consider partner region chromatin contacts and enhancer activity. However, activity-by-contact models are only predictive of specific subsets of genes in the genome, suggesting that different classes of genes engage in distinct modes of regulation by distal regulatory elements. These results indicate that SVs that alter 3D genome organization are widespread in cancer genomes and begin to illustrate predictive rules for the consequences of SVs on oncogene activation.
Collapse
Affiliation(s)
- Zhichao Xu
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dong-Sung Lee
- Department of Life Sciences, University of Seoul, Seoul, South Korea
| | - Sahaana Chandran
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Victoria T Le
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rosalind Bump
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jean Yasis
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sofia Dallarda
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Samantha Marcotte
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Benjamin Clock
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicholas Haghani
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Chae Yun Cho
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kadir C Akdemir
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, UT MD Anderson Cancer Center, TX, Houston, USA
| | - Selene Tyndale
- Integrative Biology Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Graham McVicker
- Integrative Biology Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jesse R Dixon
- Gene Expression Laboratory; Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
233
|
Goronzy IN, Quinodoz SA, Jachowicz JW, Ollikainen N, Bhat P, Guttman M. Simultaneous mapping of 3D structure and nascent RNAs argues against nuclear compartments that preclude transcription. Cell Rep 2022; 41:111730. [PMID: 36450242 PMCID: PMC9793828 DOI: 10.1016/j.celrep.2022.111730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/14/2022] [Accepted: 11/04/2022] [Indexed: 12/02/2022] Open
Abstract
Mammalian genomes are organized into three-dimensional DNA structures called A/B compartments that are associated with transcriptional activity/inactivity. However, whether these structures are simply correlated with gene expression or are permissive/impermissible to transcription has remained largely unknown because we lack methods to measure DNA organization and transcription simultaneously. Recently, we developed RNA & DNA (RD)-SPRITE, which enables genome-wide measurements of the spatial organization of RNA and DNA. Here we show that RD-SPRITE measures genomic structure surrounding nascent pre-mRNAs and maps their spatial contacts. We find that transcription occurs within B compartments-with multiple active genes simultaneously colocalizing within the same B compartment-and at genes proximal to nucleoli. These results suggest that localization near or within nuclear structures thought to be inactive does not preclude transcription and that active transcription can occur throughout the nucleus. In general, we anticipate RD-SPRITE will be a powerful tool for exploring relationships between genome structure and transcription.
Collapse
Affiliation(s)
- Isabel N Goronzy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sofia A Quinodoz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Joanna W Jachowicz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Noah Ollikainen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
234
|
Gridina M, Fishman V. Multilevel view on chromatin architecture alterations in cancer. Front Genet 2022; 13:1059617. [PMID: 36468037 PMCID: PMC9715599 DOI: 10.3389/fgene.2022.1059617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 12/25/2023] Open
Abstract
Chromosomes inside the nucleus are not located in the form of linear molecules. Instead, there is a complex multilevel genome folding that includes nucleosomes packaging, formation of chromatin loops, domains, compartments, and finally, chromosomal territories. Proper spatial organization play an essential role for the correct functioning of the genome, and is therefore dynamically changed during development or disease. Here we discuss how the organization of the cancer cell genome differs from the healthy genome at various levels. A better understanding of how malignization affects genome organization and long-range gene regulation will help to reveal the molecular mechanisms underlying cancer development and evolution.
Collapse
Affiliation(s)
- Maria Gridina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
235
|
Chakraborty A, Wang JG, Ay F. dcHiC detects differential compartments across multiple Hi-C datasets. Nat Commun 2022; 13:6827. [PMID: 36369226 PMCID: PMC9652325 DOI: 10.1038/s41467-022-34626-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
The compartmental organization of mammalian genomes and its changes play important roles in distinct biological processes. Here, we introduce dcHiC, which utilizes a multivariate distance measure to identify significant changes in compartmentalization among multiple contact maps. Evaluating dcHiC on four collections of bulk and single-cell contact maps from in vitro mouse neural differentiation (n = 3), mouse hematopoiesis (n = 10), human LCLs (n = 20) and post-natal mouse brain development (n = 3 stages), we show its effectiveness and sensitivity in detecting biologically relevant changes, including those orthogonally validated. dcHiC reported regions with dynamically regulated genes associated with cell identity, along with correlated changes in chromatin states, subcompartments, replication timing and lamin association. With its efficient implementation, dcHiC enables high-resolution compartment analysis as well as standalone browser visualization, differential interaction identification and time-series clustering. dcHiC is an essential addition to the Hi-C analysis toolbox for the ever-growing number of bulk and single-cell contact maps. Available at: https://github.com/ay-lab/dcHiC .
Collapse
Affiliation(s)
- Abhijit Chakraborty
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
| | - Jeffrey G Wang
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- The Bishop's School, La Jolla, CA, 92037, USA
- Harvard College, Cambridge, MA, 02138, USA
| | - Ferhat Ay
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
236
|
Petrova V, Song R, DEEP Consortium, Nordström KJV, Walter J, Wong JJL, Armstrong N, Rasko JEJ, Schmitz U. Increased chromatin accessibility facilitates intron retention in specific cell differentiation states. Nucleic Acids Res 2022; 50:11563-11579. [PMID: 36354002 PMCID: PMC9723627 DOI: 10.1093/nar/gkac994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Dynamic intron retention (IR) in vertebrate cells is of widespread biological importance. Aberrant IR is associated with numerous human diseases including several cancers. Despite consistent reports demonstrating that intrinsic sequence features can help introns evade splicing, conflicting findings about cell type- or condition-specific IR regulation by trans-regulatory and epigenetic mechanisms demand an unbiased and systematic analysis of IR in a controlled experimental setting. We integrated matched mRNA sequencing (mRNA-Seq), whole-genome bisulfite sequencing (WGBS), nucleosome occupancy methylome sequencing (NOMe-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) data from primary human myeloid and lymphoid cells. Using these multi-omics data and machine learning, we trained two complementary models to determine the role of epigenetic factors in the regulation of IR in cells of the innate immune system. We show that increased chromatin accessibility, as revealed by nucleosome-free regions, contributes substantially to the retention of introns in a cell-specific manner. We also confirm that intrinsic characteristics of introns are key for them to evade splicing. This study suggests an important role for chromatin architecture in IR regulation. With an increasing appreciation that pathogenic alterations are linked to RNA processing, our findings may provide useful insights for the development of novel therapeutic approaches that target aberrant splicing.
Collapse
Affiliation(s)
- Veronika Petrova
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown 2050, Australia,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | | | - Karl J V Nordström
- Laboratory of EpiGenetics, Saarland University, Campus A2 4, D-66123 Saarbrücken, Germany
| | - Jörn Walter
- Laboratory of EpiGenetics, Saarland University, Campus A2 4, D-66123 Saarbrücken, Germany
| | - Justin J L Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Nicola J Armstrong
- Mathematics and Statistics, Curtin University, Bentley, WA 6102, Australia
| | | | | |
Collapse
|
237
|
Higgins S, Akpokiro V, Westcott A, Oluwadare O. TADMaster: a comprehensive web-based tool for the analysis of topologically associated domains. BMC Bioinformatics 2022; 23:463. [PMID: 36333787 PMCID: PMC9636664 DOI: 10.1186/s12859-022-05020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Background Chromosome conformation capture and its derivatives have provided substantial genetic data for understanding how chromatin self-organizes. These techniques have identified regions of high intrasequence interactions called topologically associated domains (TADs). TADs are structural and functional units that shape chromosomes and influence genomic expression. Many of these domains differ across cell development and can be impacted by diseases. Thus, analysis of the identified domains can provide insight into genome regulation. Hence, there are many approaches to identifying such domains across many cell lines. Despite the availability of multiple tools for TAD detection, TAD callers' speed, flexibility, result inconsistency, and reproducibility remain challenges in this research area. Results In this work, we developed a computational webserver called TADMaster that provides an analysis suite to directly evaluate the concordance level and robustness of two or more TAD data on any given genome region. The suite provides multiple visual and quantitative metrics to compare the identified domains' number, size, and various comparisons of shared domains, domain boundaries, and domain overlap. Conclusions TADMaster is an efficient and easy-to-use web application that provides a set of consensus and unique TADs to inform the choice of TADs. It can be accessed at http://tadmaster.io and is also available as a containerized application that can be deployed and run locally on any platform or operating system. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-05020-2.
Collapse
|
238
|
Lamin A/C-dependent chromatin architecture safeguards naïve pluripotency to prevent aberrant cardiovascular cell fate and function. Nat Commun 2022; 13:6663. [PMID: 36333314 PMCID: PMC9636150 DOI: 10.1038/s41467-022-34366-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Tight control of cell fate choices is crucial for normal development. Here we show that lamin A/C plays a key role in chromatin organization in embryonic stem cells (ESCs), which safeguards naïve pluripotency and ensures proper cell fate choices during cardiogenesis. We report changes in chromatin compaction and localization of cardiac genes in Lmna-/- ESCs resulting in precocious activation of a transcriptional program promoting cardiomyocyte versus endothelial cell fate. This is accompanied by premature cardiomyocyte differentiation, cell cycle withdrawal and abnormal contractility. Gata4 is activated by lamin A/C loss and Gata4 silencing or haploinsufficiency rescues the aberrant cardiovascular cell fate choices induced by lamin A/C deficiency. We uncover divergent functions of lamin A/C in naïve pluripotent stem cells and cardiomyocytes, which have distinct contributions to the transcriptional alterations of patients with LMNA-associated cardiomyopathy. We conclude that disruption of lamin A/C-dependent chromatin architecture in ESCs is a primary event in LMNA loss-of-function cardiomyopathy.
Collapse
|
239
|
Liu R, Li X, Zhang X, Ren R, Sun Y, Tian X, Zhang Q, Zhao S, Yu M, Cao J. Long-range interaction within the chromatin domain determines regulatory patterns in porcine skeletal muscle. Genomics 2022; 114:110482. [PMID: 36113676 DOI: 10.1016/j.ygeno.2022.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 01/14/2023]
Abstract
Spatial chromatin structure is crucial for understanding the early growth and development of porcine skeletal muscle. However, its characteristic of 3D architecture and elaborate regulation of gene transcription remains unclear. In this study, ChIA-PET method is used to study the changes of early chromatin three-dimensional structure in skeletal muscle of lean type Yorkshire pig and fat type Meishan pig. Integrating the in situ Hi-C data revealed the 3D architecture and long-range interaction of the porcine muscle. The results showed the CTCF/RNAPII mediated long-range interaction shapes the different chromatin architecture and dominates the unique regulation of enhancers. In addition, the results revealed that key myogenic genes like ssc-mir-1 had a unique enhancer regulation function in myogenesis. Interestingly, the FGF6 gene is of breed-specific regulation, implying the difference between two breeds in skeletal muscle development. Our research thus may provide a clue for the porcine genetic improvement of skeletal muscle.
Collapse
Affiliation(s)
- Ru Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolong Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruimin Ren
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohuan Tian
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhua Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China; 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
240
|
Tomikawa J, Miyamoto K. Structural alteration of the nucleus for the reprogramming of gene expression. FEBS J 2022; 289:7221-7233. [PMID: 33891358 DOI: 10.1111/febs.15894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 01/13/2023]
Abstract
The regulation of gene expression is a critical process for establishing and maintaining cellular identity. Gene expression is controlled through a chromatin-based mechanism in the nucleus of eukaryotic cells. Recent studies suggest that chromatin accessibility and the higher-order structure of chromatin affect transcriptional outcome. This is especially evident when cells change their fate during development and nuclear reprogramming. Furthermore, non-chromosomal contents of the cell nucleus, namely nucleoskeleton proteins, can also affect chromatin and nuclear structures, resulting in transcriptional alterations. Here, we review our current mechanistic understanding about how chromatin and nuclear structures impact transcription in the course of embryonic development, cellular differentiation and nuclear reprogramming, and also discuss unresolved questions that remain to be addressed in the field.
Collapse
Affiliation(s)
- Junko Tomikawa
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Kei Miyamoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| |
Collapse
|
241
|
Lacombe J, Zenhausern F. Effect of mechanical forces on cellular response to radiation. Radiother Oncol 2022; 176:187-198. [PMID: 36228760 DOI: 10.1016/j.radonc.2022.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/08/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
While the cellular interactions and biochemical signaling has been investigated for long and showed to play a major role in the cell's fate, it is now also evident that mechanical forces continuously applied to the cells in their microenvironment are as important for tissue homeostasis. Mechanical cues are emerging as key regulators of cellular drug response and we aimed to demonstrate in this review that such effects should also be considered vital for the cellular response to radiation. In order to explore the mechanobiology of the radiation response, we reviewed the main mechanoreceptors and transducers, including integrin-mediated adhesion, YAP/TAZ pathways, Wnt/β-catenin signaling, ion channels and G protein-coupled receptors and showed their implication in the modulation of cellular radiosensitivity. We then discussed the current studies that investigated a direct effect of mechanical stress, including extracellular matrix stiffness, shear stress and mechanical strain, on radiation response of cancer and normal cells and showed through preliminary results that such stress effectively can alter cell response after irradiation. However, we also highlighted the limitations of these studies and emphasized some of the contradictory data, demonstrating that the effect of mechanical cues could involve complex interactions and potential crosstalk with numerous cellular processes also affected by irradiation. Overall, mechanical forces alter radiation response and although additional studies are required to deeply understand the underlying mechanisms, these effects should not be neglected in radiation research as they could reveal new fundamental knowledge for predicting radiosensitivity or understanding resistance to radiotherapy.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St, Phoenix, AZ 85004, USA.
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St, Phoenix, AZ 85004, USA; Department of Biomedical Engineering, College of Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ 85721, USA.
| |
Collapse
|
242
|
Xu J, Song F, Lyu H, Kobayashi M, Zhang B, Zhao Z, Hou Y, Wang X, Luan Y, Jia B, Stasiak L, Wong JHY, Wang Q, Jin Q, Jin Q, Fu Y, Yang H, Hardison RC, Dovat S, Platanias LC, Diao Y, Yang Y, Yamada T, Viny AD, Levine RL, Claxton D, Broach JR, Zheng H, Yue F. Subtype-specific 3D genome alteration in acute myeloid leukaemia. Nature 2022; 611:387-398. [PMID: 36289338 PMCID: PMC10060167 DOI: 10.1038/s41586-022-05365-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Acute myeloid leukaemia (AML) represents a set of heterogeneous myeloid malignancies, and hallmarks include mutations in epigenetic modifiers, transcription factors and kinases1-5. The extent to which mutations in AML drive alterations in chromatin 3D structure and contribute to myeloid transformation is unclear. Here we use Hi-C and whole-genome sequencing to analyse 25 samples from patients with AML and 7 samples from healthy donors. Recurrent and subtype-specific alterations in A/B compartments, topologically associating domains and chromatin loops were identified. RNA sequencing, ATAC with sequencing and CUT&Tag for CTCF, H3K27ac and H3K27me3 in the same AML samples also revealed extensive and recurrent AML-specific promoter-enhancer and promoter-silencer loops. We validated the role of repressive loops on their target genes by CRISPR deletion and interference. Structural variation-induced enhancer-hijacking and silencer-hijacking events were further identified in AML samples. Hijacked enhancers play a part in AML cell growth, as demonstrated by CRISPR screening, whereas hijacked silencers have a downregulating role, as evidenced by CRISPR-interference-mediated de-repression. Finally, whole-genome bisulfite sequencing of 20 AML and normal samples revealed the delicate relationship between DNA methylation, CTCF binding and 3D genome structure. Treatment of AML cells with a DNA hypomethylating agent and triple knockdown of DNMT1, DNMT3A and DNMT3B enabled the manipulation of DNA methylation to revert 3D genome organization and gene expression. Overall, this study provides a resource for leukaemia studies and highlights the role of repressive loops and hijacked cis elements in human diseases.
Collapse
Affiliation(s)
- Jie Xu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Penn State University, Hershey, PA, USA
| | - Fan Song
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Bioinformatics and Genomics Graduate Program, Huck Institutes of Life Sciences, Penn State University, State College, PA, USA
| | - Huijue Lyu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mikoto Kobayashi
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Baozhen Zhang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ziyu Zhao
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xiaotao Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bei Jia
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, Penn State University, Hershey, PA, USA
| | - Lena Stasiak
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Josiah Hiu-Yuen Wong
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Qi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yihao Fu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Huck Institutes of Life Sciences, Penn State University, State College, PA, USA
| | - Sinisa Dovat
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, Penn State University, Hershey, PA, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yue Yang
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tomoko Yamada
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Aaron D Viny
- Division of Hematology/Oncology and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Ross L Levine
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Claxton
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, Penn State University, Hershey, PA, USA
| | - James R Broach
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Penn State University, Hershey, PA, USA
| | - Hong Zheng
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, Penn State University, Hershey, PA, USA.
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
243
|
Izuegbuna OO. Polyphenols: Chemoprevention and therapeutic potentials in hematological malignancies. Front Nutr 2022; 9:1008893. [PMID: 36386899 PMCID: PMC9643866 DOI: 10.3389/fnut.2022.1008893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2024] Open
Abstract
Polyphenols are one of the largest plant-derived natural product and they play an important role in plants' defense as well as in human health and disease. A number of them are pleiotropic molecules and have been shown to regulate signaling pathways, immune response and cell growth and proliferation which all play a role in cancer development. Hematological malignancies on the other hand, are cancers of the blood. While current therapies are efficacious, they are usually expensive and with unwanted side effects. Thus, the search for newer less toxic agents. Polyphenols have been reported to possess antineoplastic properties which include cell cycle arrest, and apoptosis via multiple mechanisms. They also have immunomodulatory activities where they enhance T cell activation and suppress regulatory T cells. They carry out these actions through such pathways as PI3K/Akt/mTOR and the kynurenine. They can also reverse cancer resistance to chemotherapy agents. In this review, i look at some of the molecular mechanism of action of polyphenols and their potential roles as therapeutic agents in hematological malignancies. Here i discuss their anti-proliferative and anti-neoplastic activities especially their abilities modulate signaling pathways as well as immune response in hematological malignancies. I also looked at clinical studies done mainly in the last 10-15 years on various polyphenol combination and how they enhance synergism. I recommend that further preclinical and clinical studies be carried out to ensure safety and efficacy before polyphenol therapies be officially moved to the clinics.
Collapse
Affiliation(s)
- Ogochukwu O. Izuegbuna
- Department of Haematology, Ladoke Akintola University of Technology (LAUTECH) Teaching Hospital, Ogbomoso, Nigeria
| |
Collapse
|
244
|
Dannappel MV, Zhu D, Sun X, Chua HK, Poppelaars M, Suehiro M, Khadka S, Lim Kam Sian TC, Sooraj D, Loi M, Gao H, Croagh D, Daly RJ, Faridi P, Boyer TG, Firestein R. CDK8 and CDK19 regulate intestinal differentiation and homeostasis via the chromatin remodeling complex SWI/SNF. J Clin Invest 2022; 132:158593. [PMID: 36006697 PMCID: PMC9566890 DOI: 10.1172/jci158593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Initiation and maintenance of transcriptional states are critical for controlling normal tissue homeostasis and differentiation. The cyclin dependent kinases CDK8 and CDK19 (Mediator kinases) are regulatory components of Mediator, a highly conserved complex that orchestrates enhancer-mediated transcriptional output. While Mediator kinases have been implicated in the transcription of genes necessary for development and growth, its function in mammals has not been well defined. Using genetically defined models and pharmacological inhibitors, we showed that CDK8 and CDK19 function in a redundant manner to regulate intestinal lineage specification in humans and mice. The Mediator kinase module bound and phosphorylated key components of the chromatin remodeling complex switch/sucrose non-fermentable (SWI/SNF) in intestinal epithelial cells. Concomitantly, SWI/SNF and MED12-Mediator colocalized at distinct lineage-specifying enhancers in a CDK8/19-dependent manner. Thus, these studies reveal a transcriptional mechanism of intestinal cell specification, coordinated by the interaction between the chromatin remodeling complex SWI/SNF and Mediator kinase.
Collapse
Affiliation(s)
- Marius V Dannappel
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Danxi Zhu
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Xin Sun
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Hui Kheng Chua
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Marle Poppelaars
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Monica Suehiro
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Subash Khadka
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Terry Cc Lim Kam Sian
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology
| | - Dhanya Sooraj
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Melissa Loi
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| | - Hugh Gao
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | | | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology
| | - Pouya Faridi
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Thomas G Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science and
| |
Collapse
|
245
|
DLoopCaller: A deep learning approach for predicting genome-wide chromatin loops by integrating accessible chromatin landscapes. PLoS Comput Biol 2022; 18:e1010572. [PMID: 36206320 PMCID: PMC9581407 DOI: 10.1371/journal.pcbi.1010572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/19/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
In recent years, major advances have been made in various chromosome conformation capture technologies to further satisfy the needs of researchers for high-quality, high-resolution contact interactions. Discriminating the loops from genome-wide contact interactions is crucial for dissecting three-dimensional(3D) genome structure and function. Here, we present a deep learning method to predict genome-wide chromatin loops, called DLoopCaller, by combining accessible chromatin landscapes and raw Hi-C contact maps. Some available orthogonal data ChIA-PET/HiChIP and Capture Hi-C were used to generate positive samples with a wider contact matrix which provides the possibility to find more potential genome-wide chromatin loops. The experimental results demonstrate that DLoopCaller effectively improves the accuracy of predicting genome-wide chromatin loops compared to the state-of-the-art method Peakachu. Moreover, compared to two of most popular loop callers, such as HiCCUPS and Fit-Hi-C, DLoopCaller identifies some unique interactions. We conclude that a combination of chromatin landscapes on the one-dimensional genome contributes to understanding the 3D genome organization, and the identified chromatin loops reveal cell-type specificity and transcription factor motif co-enrichment across different cell lines and species.
Collapse
|
246
|
Marchal C, Singh N, Batz Z, Advani J, Jaeger C, Corso-Díaz X, Swaroop A. High-resolution genome topology of human retina uncovers super enhancer-promoter interactions at tissue-specific and multifactorial disease loci. Nat Commun 2022; 13:5827. [PMID: 36207300 PMCID: PMC9547065 DOI: 10.1038/s41467-022-33427-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
Chromatin organization and enhancer-promoter contacts establish unique spatiotemporal gene expression patterns in distinct cell types. Non-coding genetic variants can influence cellular phenotypes by modifying higher-order transcriptional hubs and consequently gene expression. To elucidate genomic regulation in human retina, we mapped chromatin contacts at high resolution and integrated with super-enhancers (SEs), histone marks, binding of CTCF and select transcription factors. We show that topologically associated domains (TADs) with central SEs exhibit stronger insulation and augmented contact with retinal genes relative to TADs with edge SEs. Merging genome-wide expression quantitative trait loci (eQTLs) with topology map reveals physical links between 100 eQTLs and corresponding eGenes associated with retinal neurodegeneration. Additionally, we uncover candidate genes for susceptibility variants linked to age-related macular degeneration and glaucoma. Our study of high-resolution genomic architecture of human retina provides insights into genetic control of tissue-specific functions, suggests paradigms for missing heritability, and enables the dissection of common blinding disease phenotypes.
Collapse
Affiliation(s)
- Claire Marchal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD, 20892, USA
- In silichrom Ltd, First Floor, Angel Court, 81 St Clements St, Oxford, OX4 1AW, UK
| | - Nivedita Singh
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD, 20892, USA
| | - Zachary Batz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD, 20892, USA
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD, 20892, USA
| | - Catherine Jaeger
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD, 20892, USA
| | - Ximena Corso-Díaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
247
|
Chen Q, Zhao L, Soman A, Arkhipova AY, Li J, Li H, Chen Y, Shi X, Nordenskiöld L. Chromatin Liquid-Liquid Phase Separation (LLPS) Is Regulated by Ionic Conditions and Fiber Length. Cells 2022; 11:cells11193145. [PMID: 36231107 PMCID: PMC9564186 DOI: 10.3390/cells11193145] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
The dynamic regulation of the physical states of chromatin in the cell nucleus is crucial for maintaining cellular homeostasis. Chromatin can exist in solid- or liquid-like forms depending on the surrounding ions, binding proteins, post-translational modifications and many other factors. Several recent studies suggested that chromatin undergoes liquid-liquid phase separation (LLPS) in vitro and also in vivo; yet, controversial conclusions about the nature of chromatin LLPS were also observed from the in vitro studies. These inconsistencies are partially due to deviations in the in vitro buffer conditions that induce the condensation/aggregation of chromatin as well as to differences in chromatin (nucleosome array) constructs used in the studies. In this work, we present a detailed characterization of the effects of K+, Mg2+ and nucleosome fiber length on the physical state and property of reconstituted nucleosome arrays. LLPS was generally observed for shorter nucleosome arrays (15-197-601, reconstituted from 15 repeats of the Widom 601 DNA with 197 bp nucleosome repeat length) at physiological ion concentrations. In contrast, gel- or solid-like condensates were detected for the considerably longer 62-202-601 and lambda DNA (~48.5 kbp) nucleosome arrays under the same conditions. In addition, we demonstrated that the presence of reduced BSA and acetate buffer is not essential for the chromatin LLPS process. Overall, this study provides a comprehensive understanding of several factors regarding chromatin physical states and sheds light on the mechanism and biological relevance of chromatin phase separation in vivo.
Collapse
Affiliation(s)
- Qinming Chen
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (Q.C.); (A.S.)
| | - Lei Zhao
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
| | - Aghil Soman
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (Q.C.); (A.S.)
| | - Anastasia Yu Arkhipova
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
- Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Jindi Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
| | - Hao Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
- Correspondence: (X.S.); (L.N.)
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (Q.C.); (A.S.)
- Correspondence: (X.S.); (L.N.)
| |
Collapse
|
248
|
Wang Q, Li M, Wu T, Zhan L, Li L, Chen M, Xie W, Xie Z, Hu E, Xu S, Yu G. Exploring Epigenomic Datasets by ChIPseeker. Curr Protoc 2022; 2:e585. [PMID: 36286622 DOI: 10.1002/cpz1.585] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In many aspects of life, epigenetics, or the altering of phenotype without changes in sequences, play an essential role in biological function. A vast number of epigenomic datasets are emerging as a result of the advent of next-generation sequencing. Annotation, comparison, visualization, and interpretation of epigenomic datasets remain key aspects of computational biology. ChIPseeker is a Bioconductor package for performing these analyses among variable epigenomic datasets. The fundamental functions of ChIPseeker, including data preparation, annotation, comparison, and visualization, are explained in this article. ChIPseeker is a freely available open-source package that may be found at https://www.bioconductor.org/packages/ChIPseeker. © 2022 Wiley Periodicals LLC. Basic Protocol 1: ChIPseeker and epigenomic dataset preparation Basic Protocol 2: Annotation of epigenomic datasets Basic Protocol 3: Comparison of epigenomic datasets Basic Protocol 4: Visualization of annotated results Basic Protocol 5: Functional analysis of epigenomic datasets Basic Protocol 6: Genome-wide and locus-specific distribution of epigenomic datasets Basic Protocol 7: Heatmaps and metaplots of epigenomic datasets.
Collapse
Affiliation(s)
- Qianwen Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ming Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tianzhi Wu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Zhan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meijun Chen
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenqin Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zijing Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Erqiang Hu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuangbin Xu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
249
|
Finn EH, Misteli T. Nuclear position modulates long-range chromatin interactions. PLoS Genet 2022; 18:e1010451. [PMID: 36206323 PMCID: PMC9581366 DOI: 10.1371/journal.pgen.1010451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/19/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022] Open
Abstract
The human genome is non-randomly organized within the cell nucleus. Spatial mapping of genome folding by biochemical methods and imaging has revealed extensive variation in locus interaction frequencies between cells in a population and between homologs within an individual cell. Commonly used mapping approaches typically examine either the relative position of genomic sites to each other or the position of individual loci relative to nuclear landmarks. Whether the frequency of specific chromatin-chromatin interactions is affected by where in the nuclear space a locus is located is unknown. Here, we have simultaneously mapped at the single cell level the interaction frequencies and radial position of more than a hundred locus pairs using high-throughput imaging to ask whether the location within the nucleus affects interaction frequency. We find strong enrichment of many interactions at specific radial positions. Position-dependency of interactions was cell-type specific, correlated with local chromatin type, and cell-type-specific enriched associations were marked by increased variability, sometimes without a significant decrease in mean spatial distance. These observations demonstrate that the folding of the chromatin fiber, which brings genomically distant loci into proximity, and the position of that chromatin fiber relative to nuclear landmarks, are closely linked.
Collapse
Affiliation(s)
- Elizabeth H. Finn
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
250
|
Belyaeva EO, Lebedev IN. Interloci CNV Interactions in Variability of the Phenotypes of Neurodevelopmental Disorders. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|