201
|
Gao C, Song S, Lv Y, Huang J, Zhang Z. Recent Development of Conductive Hydrogels for Tissue Engineering: Review and Perspective. Macromol Biosci 2022; 22:e2200051. [PMID: 35472125 DOI: 10.1002/mabi.202200051] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/29/2022] [Indexed: 11/11/2022]
Abstract
In recent years, tissue engineering techniques have been rapidly developed and offer a new therapeutic approach to organ or tissue damage repair. However, most of tissue engineering scaffolds are nonconductive and cannot establish effective electrical coupling with tissue for the electroactive tissues. Electroconductive hydrogels (ECHs) have received increasing attention in tissue engineering owing to their electroconductivity, biocompatibility and high water content. In vitro, ECHs can not only promote the communication of electrical signals between cells, but also mediate the adhesion, proliferation, migration, and differentiation of different kinds of cells. In vivo, ECHs can transmit the electric signal to electroactive tissues and activate bioelectrical signaling pathways to promote tissue repair. As a result, implanting ECHs into damaged tissues can effectively reconstruct physiological functions related to electrical conduction. In this review, we first present an overview about the classifications and the fabrication methods of ECHs. And then, the applications of ECHs in tissue engineering, including cardiac, nerve, skin and skeletal muscle tissue, are highlighted. At last, we provide some rational guidelines for designing ECHs towards clinical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chen Gao
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| | - Shaoshuai Song
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China
| | - Yinjuan Lv
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| | - Jie Huang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China
| | - Zhijun Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, People's Republic of China
| |
Collapse
|
202
|
Crosby CO, Stern B, Kalkunte N, Pedahzur S, Ramesh S, Zoldan J. Interpenetrating polymer network hydrogels as bioactive scaffolds for tissue engineering. REV CHEM ENG 2022; 38:347-361. [PMID: 35400772 PMCID: PMC8993131 DOI: 10.1515/revce-2020-0039] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Tissue engineering, after decades of exciting progress and monumental breakthroughs, has yet to make a significant impact on patient health. It has become apparent that a dearth of biomaterial scaffolds that possess the material properties of human tissue while remaining bioactive and cytocompatible has been partly responsible for this lack of clinical translation. Herein, we propose the development of interpenetrating polymer network hydrogels as materials that can provide cells with an adhesive extracellular matrix-like 3D microenvironment while possessing the mechanical integrity to withstand physiological forces. These hydrogels can be synthesized from biologically-derived or synthetic polymers, the former polymer offering preservation of adhesion, degradability, and microstructure and the latter polymer offering tunability and superior mechanical properties. We review critical advances in the enhancement of mechanical strength, substrate-scale stiffness, electrical conductivity, and degradation in IPN hydrogels intended as bioactive scaffolds in the past five years. We also highlight the exciting incorporation of IPN hydrogels into state-of-the-art tissue engineering technologies, such as organ-on-a-chip and bioprinting platforms. These materials will be critical in the engineering of functional tissue for transplant, disease modeling, and drug screening.
Collapse
Affiliation(s)
- Cody O. Crosby
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| | - Brett Stern
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| | - Nikhith Kalkunte
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| | - Shahar Pedahzur
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| | - Shreya Ramesh
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| | - Janet Zoldan
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| |
Collapse
|
203
|
Yosefi G, Bitton R. Hierarchical Membranes Self‐Assembled at the Interface between Peptides and Polymer Aqueous Solutions. Isr J Chem 2022. [DOI: 10.1002/ijch.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gal Yosefi
- Department of Chemical Engineering Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Ronit Bitton
- Department of Chemical Engineering Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI) Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| |
Collapse
|
204
|
Rommel D, Mork M, Vedaraman S, Bastard C, Guerzoni LPB, Kittel Y, Vinokur R, Born N, Haraszti T, De Laporte L. Functionalized Microgel Rods Interlinked into Soft Macroporous Structures for 3D Cell Culture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103554. [PMID: 35032119 PMCID: PMC8981485 DOI: 10.1002/advs.202103554] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/12/2021] [Indexed: 05/11/2023]
Abstract
In this work, a two component microgel assembly using soft anisometric microgels that interlink to create a 3D macroporous construct for cell growth is reported. Reactive microgel rods with variable aspect ratio are produced via microfluidics in a continuous plug-flow on-chip gelation method by photoinitiated free-radical polymerization of star-polyethylene glycol-acrylate with glycidyl methacrylate or 2-aminoethyl methacrylate comonomers. The resulting complementary epoxy- and amine-functionalized microgels assemble and interlink with each other via a ring opening reaction, resulting in macroporous constructs with pores up to several hundreds of micrometers. The level of crosslinking depends on the functionalization degree of the microgels, which also affects the stiffness and cell adhesiveness of the microgels when modified with the cell-adhesive GRGDS-PC peptide. Therefore, 3D spreading and growth of cells inside the macroporous structure is influenced not only by the presence of macropores but also by the mechanical and biochemical properties of the individual microgels.
Collapse
Affiliation(s)
- Dirk Rommel
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
| | - Matthias Mork
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
| | - Sitara Vedaraman
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
| | - Céline Bastard
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
| | - Luis P. B. Guerzoni
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
| | - Yonca Kittel
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
| | | | | | - Tamás Haraszti
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
| | - Laura De Laporte
- DWI – Leibniz Institute for Interactive MaterialsAachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen52074Germany
- Institute of Applied Medical EngineeringDepartment of Advanced Materials for BiomedicineRWTH Aachen UniversityAachen52074Germany
| |
Collapse
|
205
|
Chen Y, Chen Y, Xiong X, Cui R, Zhang G, Wang C, Xiao D, Qu S, Weng J. Hybridizing gellan/alginate and thixotropic magnesium phosphate-based hydrogel scaffolds for enhanced osteochondral repair. Mater Today Bio 2022; 14:100261. [PMID: 35494405 PMCID: PMC9046447 DOI: 10.1016/j.mtbio.2022.100261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/26/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022]
Abstract
Osteochondral defects include the damage of cartilage and subchondral bone, which are still clinical challenges. The general replacements are difficult to simultaneously repair cartilage and subchondral bone due to their various requirements. Moreover, appropriate printable bioactive materials were needed for 3D bioprinting personalized scaffolds for osteochondral repairing. Herein, the novel hydrogel was developed by hybridizing the alginate sodium (SA) and gellan gum (GG) with the inorganic thixotropic magnesium phosphate-based gel (TMP-BG) in the pre-crosslinking of Mg2+ to enhance osteochondral repairing. SA-GG/TMP-BG hybrid hydrogels possessed controllable rheological, injectable, mechanical properties and porosities by tuning their ratio. The shear-thinning of SA-GG/TMP-BG was responsible for its excellent injectability. SA-GG/TMP-BG hybrid hydrogels displayed good cell compatibility, on which MG-63 and BMSCs cells attached and spread well with the high proliferation and up-regulated osteogenic genes. In addition, the inorganic TMP-BG gel hybridized with SA-GG hydrogel released Mg2+ was conducive to recruiting BMSCs and promoting the osteogenic and chondrogenic differentiation of BMSCs. Histological results confirmed that SA-GG/TMP6040 significantly promoted the osteogenesis of subchondral bone and then further facilitated the cartilage repairing after being implanted in osteochondral defects of rabbits for 6 and 12 weeks. Our finding revealed that the inorganic TMP-BG endowed the excellent osteogenic activity of the hybrid hydrogels, which played a key role in successful osteochondral repairing. The newly SA-GG/TMP-BG hybrid hydrogels appeared to be promising materials for osteochondral repairing and the further 3D bioprinting.
Collapse
|
206
|
Long H, Vos BE, Betz T, Baker BM, Trappmann B. Nonswelling and Hydrolytically Stable Hydrogels Uncover Cellular Mechanosensing in 3D. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105325. [PMID: 35187856 PMCID: PMC9036035 DOI: 10.1002/advs.202105325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
While matrix stiffness regulates cell behavior on 2D substrates, recent studies using synthetic hydrogels have suggested that in 3D environments, cell behavior is primarily impacted by matrix degradability, independent of stiffness. However, these studies did not consider the potential impact of other confounding matrix parameters that typically covary with changes in stiffness, particularly, hydrogel swelling and hydrolytic stability, which may explain the previously observed distinctions in cell response in 2D versus 3D settings. To investigate how cells sense matrix stiffness in 3D environments, a nonswelling, hydrolytically stable, linearly elastic synthetic hydrogel model is developed in which matrix stiffness and degradability can be tuned independently. It is found that matrix degradability regulates cell spreading kinetics, while matrix stiffness dictates the final spread area once cells achieve equilibrium spreading. Importantly, the differentiation of human mesenchymal stromal cells toward adipocytes or osteoblasts is regulated by the spread state of progenitor cells upon initiating differentiation. These studies uncover matrix stiffness as a major regulator of cell function not just in 2D, but also in 3D environments, and identify matrix degradability as a critical microenvironmental feature in 3D that in conjunction with matrix stiffness dictates cell spreading, cytoskeletal state, and stem cell differentiation outcomes.
Collapse
Affiliation(s)
- Hongyan Long
- Bioactive Materials LaboratoryMax Planck Institute for Molecular BiomedicineRöntgenstraße 20Münster48149Germany
| | - Bart E. Vos
- Third Institute of Physics – BiophysicsGeorg August University GöttingenGöttingen37077Germany
| | - Timo Betz
- Third Institute of Physics – BiophysicsGeorg August University GöttingenGöttingen37077Germany
| | - Brendon M. Baker
- Engineered Microenvironments and Mechanobiology LabDepartment of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Britta Trappmann
- Bioactive Materials LaboratoryMax Planck Institute for Molecular BiomedicineRöntgenstraße 20Münster48149Germany
| |
Collapse
|
207
|
Baker MB, Bosman T, Cox MAJ, Dankers P, Dias A, Jonkheijm P, Kieltyka R. Supramolecular Biomaterials in the Netherlands. Tissue Eng Part A 2022; 28:511-524. [PMID: 35316128 DOI: 10.1089/ten.tea.2022.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Synthetically designed biomaterials strive to recapitulate and mimic the complex environment of natural systems. Using natural materials as a guide, the ability to create high performance biomaterials that control cell fate, and support the next generation of cell and tissue-based therapeutics, is starting to emerge. Supramolecular chemistry takes inspiration from the wealth of non-covalent interactions found in natural materials that are inherently complex, and using the skills of synthetic and polymer chemistry, recreates simple systems to imitate their features. Within the past decade, supramolecular biomaterials have shown utility in tissue engineering and the progress predicts a bright future. On this 30th anniversary of the Netherlands Biomaterials and Tissue Engineering society, we will briefly recount the state of supramolecular biomaterials in the Dutch academic and industrial research and development context. This review will provide the background, recent advances, industrial successes and challenges, as well as future directions of the field, as we see it. Throughout this work, we notice the intricate interplay between simplicity and complexity in creating more advanced solutions. We hope that the interplay and juxtaposition between these two forces can propel the field forward.
Collapse
Affiliation(s)
- Matthew B Baker
- Maastricht University, 5211, Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, 6211LK, Limburg, Netherlands.,Maastricht University, 5211, MERLN/CTR, Maastricht, Limburg, Netherlands;
| | | | - Martijn A J Cox
- Xeltis BV, Lismortel 31, PO Box 80, Eindhoven, Netherlands, 5600AB;
| | - Patricia Dankers
- Eindhoven University of Technology, 3169, Department of Pathology, Eindhoven, Noord-Brabant, Netherlands;
| | | | - Pascal Jonkheijm
- MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente , Molecular Nanofabrication group, Enschede, Netherlands;
| | | |
Collapse
|
208
|
Mi X, Su Z, Fu Y, Li S, Mo A. 3D printing of Ti 3C 2-MXene-incorporated composite scaffolds for accelerated bone regeneration. Biomed Mater 2022; 17. [PMID: 35316803 DOI: 10.1088/1748-605x/ac5ffe] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/22/2022] [Indexed: 02/08/2023]
Abstract
Grafting of bone-substitute biomaterials plays a vital role in the reconstruction of bone defects. However, the design of bioscaffolds with osteoinductive agents and biomimetic structures for regeneration of critical-sized bone defects is difficult. Ti3C2 MXene-belonging to a new class of two-dimensional (2D) nanomaterials-exhibits excellent biocompatibility, and antibacterial properties, and promotes osteogenesis. However, its application in preparing 3D-printed tissue-engineered bone scaffolds for repairing bone defects has not been explored. In this work, Ti3C2 MXene was incorporated into composite scaffolds composed of hydroxyapatite (HA) and sodium alginate (SA) via extrusion-based 3D printing to evaluate its potential in bone regeneration. MXene composite scaffolds were fabricated and characterized by SEM, XPS, mechanical properties and porosity. The biocompatibility and osteoinductivity of MXene composite scaffolds were evaluated by cell adhesion, CCK-8 test, qRT-PCR, ALP activity and ARS tests of BMSCs. A rat calvarial defect model was performed to explore the osteogenic activity of the MXene composite scaffolds in vivo. The results showed the obtained scaffold had a uniform structure, macropore morphology, and high mechanical strength. In vitro experimental results revealed that the scaffold exhibited excellent biocompatibility with bone mesenchymal stem cells, promoted cell proliferation, upregulated osteogenic gene expression, enhanced alkaline phosphatase activity, and promoted mineralized-nodule formation. The experimental results confirmed that the scaffold effectively promoted bone regeneration in a model of critical-sized calvarial- bone-defect in vivo and promoted bone healing to a significantly greater degree than scaffolds without added Ti3C2 MXene did. Conclusively, the Ti3C2 MXene composite 3D-printed scaffolds are promising for clinical bone defect treatment, and the results of this study provide a theoretical basis for the development of practical applications for tissue-engineered bone scaffolds.
Collapse
Affiliation(s)
- Xue Mi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology., Sichuan University West China Hospital of Stomatology, No.14,3Rd Section Of Ren Min Nan Rd. ChengDu, SiChuan 610041,China., Chengdu, Sichuan, 610041, CHINA
| | - Zhenya Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology., Sichuan University West China Hospital of Stomatology, No.14,3Rd Section Of Ren Min Nan Rd. ChengDu, SiChuan 610041,China., Chengdu, Sichuan, 610041, CHINA
| | - Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology., Sichuan University West China Hospital of Stomatology, No.14,3Rd Section Of Ren Min Nan Rd. ChengDu, SiChuan 610041,China., Chengdu, Sichuan, 610041, CHINA
| | - Shiqi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology., Sichuan University West China Hospital of Stomatology, No.14,3Rd Section Of Ren Min Nan Rd. ChengDu, SiChuan 610041,China., Chengdu, Sichuan, 610041, CHINA
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology., Sichuan University West China College of Stomatology, No.14,3Rd Section Of Ren Min Nan Rd. ChengDu, SiChuan 610041,China., Chengdu, 610041, CHINA
| |
Collapse
|
209
|
Biomimetic hydrogel supports initiation and growth of patient-derived breast tumor organoids. Nat Commun 2022; 13:1466. [PMID: 35304464 PMCID: PMC8933543 DOI: 10.1038/s41467-022-28788-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Patient-derived tumor organoids (PDOs) are a highly promising preclinical model that recapitulates the histology, gene expression, and drug response of the donor patient tumor. Currently, PDO culture relies on basement-membrane extract (BME), which suffers from batch-to-batch variability, the presence of xenogeneic compounds and residual growth factors, and poor control of mechanical properties. Additionally, for the development of new organoid lines from patient-derived xenografts, contamination of murine host cells poses a problem. We propose a nanofibrillar hydrogel (EKGel) for the initiation and growth of breast cancer PDOs. PDOs grown in EKGel have histopathologic features, gene expression, and drug response that are similar to those of their parental tumors and PDOs in BME. In addition, EKGel offers reduced batch-to-batch variability, a range of mechanical properties, and suppressed contamination from murine cells. These results show that EKGel is an improved alternative to BME matrices for the initiation, growth, and maintenance of breast cancer PDOs. Patient-derived tumour organoids are important preclinical models but suffer from variability from the use of basement-membrane extract and cell contamination. Here, the authors report on the development of mimetic nanofibrilar hydrogel which supports tumour organoid growth with reduced batch variability and cell contamination.
Collapse
|
210
|
Soars SM, Kirkpatrick BE, Fairbanks BD, Kamps JT, Anseth KS, Bowman CN. Synthesis, Selective Decoration, and Photocrosslinking of
Self‐Immolative
Poly(Thioester)‐
PEG
Hydrogels. POLYM INT 2022. [DOI: 10.1002/pi.6388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shafer M. Soars
- Department of Chemistry University of Colorado Boulder Boulder Colorado 80303 United States
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering University of Colorado Boulder Boulder Colorado 80303 United States
- The BioFrontiers Institute University of Colorado Boulder Boulder Colorado 80303 United States
- Medical Scientist Training Program, School of Medicine University of Colorado Aurora Colorado 80045 United States
| | - Benjamin D. Fairbanks
- Department of Chemical and Biological Engineering University of Colorado Boulder Boulder Colorado 80303 United States
| | - Joshua T. Kamps
- Department of Chemistry University of Colorado Boulder Boulder Colorado 80303 United States
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering University of Colorado Boulder Boulder Colorado 80303 United States
- The BioFrontiers Institute University of Colorado Boulder Boulder Colorado 80303 United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering University of Colorado Boulder Boulder Colorado 80303 United States
| |
Collapse
|
211
|
Sarangthem V, Sharma H, Goel R, Ghose S, Park RW, Mohanty S, Chaudhuri TK, Dinda AK, Singh TD. Application of elastin-like polypeptide (ELP) containing extra-cellular matrix (ECM) binding ligands in regenerative medicine. Int J Biol Macromol 2022; 207:443-453. [PMID: 35276294 DOI: 10.1016/j.ijbiomac.2022.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 12/26/2022]
Abstract
Extracellular matrix (ECM) molecules play an important role in regulating molecular signaling associated with proliferation, migration, differentiation, and tissue repair. The identification of new kinds of ECM mimic biomaterials to recapitulate critical functions of biological systems are important for various applications in tissue engineering and regenerative medicine. The use of human elastin derived materials with controlled biological properties and other functionalities to improve their cell-response was proposed. Herein, we reported genetic encoded synthesis of ELP (elastin-like polypeptide) containing ECM domains like RGD (integrin binding ligand) and YIGSR (laminin-selective receptor binding ligand) to regulate cell behaviour in more complex ways, and also better model natural matrices. Thermal responsiveness of the ELPs and structural conformation were determined to confirm its phase transition behaviour. The fusion ELPs derivatives were analysed for mechanical involvement of growth mechanism, regenerative, and healing processes. The designed fusion ELPs promoted fast and strong attachment of fibroblast cells. The fusion ELP derivatives enhanced the migration of keratinocyte cells which of crucial for wound healing. Together it provides a profound matrix for endothelial cells and significantly enhanced tube formation of HUVEC cells. Thus, strategy of using cell adhesive ELP biopolymer emphasizing the role of bioactive ELPs as next generation skin substitutes for regenerative medicine.
Collapse
Affiliation(s)
- Vijaya Sarangthem
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Harshita Sharma
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ridhima Goel
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sampa Ghose
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, Kyungpook National University, School of Medicine, Daegu 41944, Republic of Korea
| | - Sujata Mohanty
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tapan Kumar Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Thoudam Debraj Singh
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
212
|
Sultana Shuborna N, Khoo LK, Bhattarai BP, Chaiyasamut T, Kiattavorncharoen S, Pairuchvej V, Wongsirichat N. Intra-socket application of Hyaluronic acid reduces pain and swelling following wisdom teeth removal. JOURNAL OF ORAL MEDICINE AND ORAL SURGERY 2022. [DOI: 10.1051/mbcb/2021038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background: Hyaluronic acid (HA) has the potential to promote wound healing. Pain and swelling with trismus are common sequalae post wisdom teeth removal. This study aims to investigate the effectiveness of intra-socket HA solution to reduce these uncomfortable post-operative events. Materials and methods: 30 patients underwent bilateral extractions of mandibular wisdom teeth for this study. Intra-socket application of 0.7 ml 20 mg/2 ml HA solution (Hyalgun) with Gel foam as a scaffold in study site versus Gel foam only on control site was conducted via a split mouth study design. Data collection of five facial reference points for swelling and maximum mouth opening was recorded during the pre-operative period and post-operative 2nd and 7th day. The VAS pain score at post-op 1st, 2nd and 3rd day and the number of analgesics for the 7-day post-operative duration were evaluated. Results: The HA group demonstrated statistically significant less swelling, trismus and analgesia consumption on the 2 and 7 days after surgery. VAS scores on day 1, 2 and 3 after surgery (P = 0.05) were significantly less in the HA group compared to the control group. Conclusion: The application of intra-socket HA has a positive effect for reducing postoperative pain and swelling with trismus after the lower third molar intervention (LTMI).
Collapse
|
213
|
β-Sheet to Random Coil Transition in Self-Assembling Peptide Scaffolds Promotes Proteolytic Degradation. Biomolecules 2022; 12:biom12030411. [PMID: 35327603 PMCID: PMC8945919 DOI: 10.3390/biom12030411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 12/20/2022] Open
Abstract
One of the most desirable properties that biomaterials designed for tissue engineering or drug delivery applications should fulfill is biodegradation and resorption without toxicity. Therefore, there is an increasing interest in the development of biomaterials able to be enzymatically degraded once implanted at the injury site or once delivered to the target organ. In this paper, we demonstrate the protease sensitivity of self-assembling amphiphilic peptides, in particular, RAD16-I (AcN-RADARADARADARADA-CONH2), which contains four potential cleavage sites for trypsin. We detected that when subjected to thermal denaturation, the peptide secondary structure suffers a transition from β-sheet to random coil. We also used Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) to detect the proteolytic breakdown products of samples subjected to incubation with trypsin as well as atomic force microscopy (AFM) to visualize the effect of the degradation on the nanofiber scaffold. Interestingly, thermally treated samples had a higher extent of degradation than non-denatured samples, suggesting that the transition from β-sheet to random coil leaves the cleavage sites accessible and susceptible to protease degradation. These results indicate that the self-assembling peptide can be reduced to short peptide sequences and, subsequently, degraded to single amino acids, constituting a group of naturally biodegradable materials optimal for their application in tissue engineering and regenerative medicine.
Collapse
|
214
|
Mutepfa AR, Hardy JG, Adams CF. Electroactive Scaffolds to Improve Neural Stem Cell Therapy for Spinal Cord Injury. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:693438. [PMID: 35274106 PMCID: PMC8902299 DOI: 10.3389/fmedt.2022.693438] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a serious condition caused by damage to the spinal cord through trauma or disease, often with permanent debilitating effects. Globally, the prevalence of SCI is estimated between 40 to 80 cases per million people per year. Patients with SCI can experience devastating health and socioeconomic consequences from paralysis, which is a loss of motor, sensory and autonomic nerve function below the level of the injury that often accompanies SCI. SCI carries a high mortality and increased risk of premature death due to secondary complications. The health, social and economic consequences of SCI are significant, and therefore elucidation of the complex molecular processes that occur in SCI and development of novel effective treatments is critical. Despite advances in medicine for the SCI patient such as surgery and anaesthesiology, imaging, rehabilitation and drug discovery, there have been no definitive findings toward complete functional neurologic recovery. However, the advent of neural stem cell therapy and the engineering of functionalized biomaterials to facilitate cell transplantation and promote regeneration of damaged spinal cord tissue presents a potential avenue to advance SCI research. This review will explore this emerging field and identify new lines of research.
Collapse
Affiliation(s)
- Anthea R. Mutepfa
- Neural Tissue Engineering Keele, School of Life Sciences, Keele University, Keele, United Kingdom
| | - John G. Hardy
- Department of Chemistry, Lancaster University, Lancaster, United Kingdom
- Materials Science Institute, Lancaster University, Lancaster, United Kingdom
| | - Christopher F. Adams
- Neural Tissue Engineering Keele, School of Life Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
215
|
Pätzold F, Stamm N, Kamps D, Specht M, Bolduan P, Dehmelt L, Weberskirch R. Synthesis and Characterization of Cationic Hydrogels from Thiolated Copolymers for Independent Manipulation of Mechanical and Chemical Properties of Cell Substrates. Macromol Biosci 2022; 22:e2100453. [DOI: 10.1002/mabi.202100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/17/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Florian Pätzold
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Nils Stamm
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Dominic Kamps
- Max‐Planck‐Institute of Molecular Physiology Otto‐Hahn‐Str. 11 Dortmund D‐44227 Germany
| | - Maria Specht
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Patrick Bolduan
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| | - Leif Dehmelt
- Max‐Planck‐Institute of Molecular Physiology Otto‐Hahn‐Str. 11 Dortmund D‐44227 Germany
| | - Ralf Weberskirch
- Faculty of Chemistry and Chemical Biology Otto‐Hahn‐Str. 6 TU Dortmund University Dortmund D‐44227 Germany
| |
Collapse
|
216
|
Gokce C, Gurcan C, Delogu LG, Yilmazer A. 2D Materials for Cardiac Tissue Repair and Regeneration. Front Cardiovasc Med 2022; 9:802551. [PMID: 35224044 PMCID: PMC8873146 DOI: 10.3389/fcvm.2022.802551] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) have a massive impact on human health. Due to the limited regeneration capacity of adult heart tissue, CVDs are the leading cause of death and disability worldwide. Even though there are surgical and pharmacological treatments for CVDs, regenerative strategies are the most promising approaches and have the potential to benefit millions of people. As in any other tissue engineering approach, the repair and regeneration of damaged cardiac tissues generally involve scaffolds made up of biodegradable and biocompatible materials, cellular components such as stem cells, and growth factors. This review provides an overview of biomaterial-based tissue engineering approaches for CVDs with a specific focus on the potential of 2D materials. It is essential to consider both physicochemical and immunomodulatory properties for evaluating the applicability of 2D materials in cardiac tissue repair and regeneration. As new members of the 2D materials will be explored, they will quickly become part of cardiac tissue engineering technologies.
Collapse
Affiliation(s)
- Cemile Gokce
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
| | - Cansu Gurcan
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | | | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
- *Correspondence: Acelya Yilmazer
| |
Collapse
|
217
|
Pereira AR, Trivanović D, Stahlhut P, Rudert M, Groll J, Herrmann M. Preservation of the naïve features of mesenchymal stromal cells in vitro: Comparison of cell- and bone-derived decellularized extracellular matrix. J Tissue Eng 2022; 13:20417314221074453. [PMID: 35154631 PMCID: PMC8829705 DOI: 10.1177/20417314221074453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
The fate and behavior of bone marrow mesenchymal stem/stromal cells (BM-MSC) is bidirectionally influenced by their microenvironment, the stem cell niche, where a magnitude of biochemical and physical cues communicate in an extremely orchestrated way. It is known that simplified 2D in vitro systems for BM-MSC culture do not represent their naïve physiological environment. Here, we developed four different 2D cell-based decellularized matrices (dECM) and a 3D decellularized human trabecular-bone scaffold (dBone) to evaluate BM-MSC behavior. The obtained cell-derived matrices provided a reliable tool for cell shape-based analyses of typical features associated with osteogenic differentiation at high-throughput level. On the other hand, exploratory proteomics analysis identified native bone-specific proteins selectively expressed in dBone but not in dECM models. Together with its architectural complexity, the physico-chemical properties of dBone triggered the upregulation of stemness associated genes and niche-related protein expression, proving in vitro conservation of the naïve features of BM-MSC.
Collapse
Affiliation(s)
- Ana Rita Pereira
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, Wuerzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany
| | - Drenka Trivanović
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, Wuerzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany
| | - Philipp Stahlhut
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Maximilian Rudert
- Department of Orthopedic Surgery, Koenig-Ludwig-Haus, University of Wuerzburg, Wuerzburg, Germany
| | - Jürgen Groll
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Marietta Herrmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, Wuerzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
218
|
Beeghly GF, Amofa KY, Fischbach C, Kumar S. Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer. Annu Rev Biomed Eng 2022; 24:29-59. [PMID: 35119915 DOI: 10.1146/annurev-bioeng-110220-115419] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The success of anticancer therapies is often limited by heterogeneity within and between tumors. While much attention has been devoted to understanding the intrinsic molecular diversity of tumor cells, the surrounding tissue microenvironment is also highly complex and coevolves with tumor cells to drive clinical outcomes. Here, we propose that diverse types of solid tumors share common physical motifs that change in time and space, serving as universal regulators of malignancy. We use breast cancer and glioblastoma as instructive examples and highlight how invasion in both diseases is driven by the appropriation of structural guidance cues, contact-dependent heterotypic interactions with stromal cells, and elevated interstitial fluid pressure and flow. We discuss how engineering strategies show increasing value for measuring and modeling these physical properties for mechanistic studies. Moreover, engineered systems offer great promise for developing and testing novel therapies that improve patient prognosis by normalizing the physical tumor microenvironment. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Garrett F Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Kwasi Y Amofa
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA; .,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, USA
| | - Sanjay Kumar
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
219
|
Michalak AL, Trieger GW, Trieger KA, Godula K. Stem Cell Microarrays for Assessing Growth Factor Signaling in Engineered Glycan Microenvironments. Adv Healthc Mater 2022; 11:e2101232. [PMID: 34541824 PMCID: PMC8854331 DOI: 10.1002/adhm.202101232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Indexed: 02/03/2023]
Abstract
Extracellular glycans, such as glycosaminoglycans (GAGs), provide an essential regulatory component during the development and maintenance of tissues. GAGs, which harbor binding sites for a range of growth factors (GFs) and other morphogens, help establish gradients of these molecules in the extracellular matrix (ECM) and promote the formation of active signaling complexes when presented at the cell surface. As such, GAGs have been pursued as biologically active components for the development of biomaterials for cell-based regenerative therapies. However, their structural complexity and compositional heterogeneity make establishing structure-function relationships for this class of glycans difficult. Here, a stem cell array platform is described, in which chemically modified heparan sulfate (HS) GAG polysaccharides are conjugated to a gelatin matrix and introduced into a polyacrylamide hydrogel network. This array allowed for direct analysis of HS contributions to the signaling via the FGF2-dependent mitogen activated protein kinase (MAPK) pathway in mouse embryonic stem cells. With the recent emergence of powerful synthetic and recombinant technologies to produce well-defined GAG structures, a platform for analyzing both growth factor binding and signaling in response to the presence of these biomolecules will provide a powerful tool for integrating glycans into biomaterials to advance their biological properties and applications.
Collapse
Affiliation(s)
- Austen L. Michalak
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Greg W. Trieger
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Kelsey A. Trieger
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Kamil Godula
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA,Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| |
Collapse
|
220
|
Modified halloysite nanotubes with Chitosan incorporated PVA/PVP bionanocomposite films: Thermal, mechanical properties and biocompatibility for tissue engineering. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
221
|
Matsushige C, Xu X, Miyagi M, Zuo YY, Yamazaki Y. RGD-modified dextran hydrogel promotes follicle growth in three-dimensional ovarian tissue culture in mice. Theriogenology 2022; 183:120-131. [PMID: 35247849 PMCID: PMC9005264 DOI: 10.1016/j.theriogenology.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
In vitro follicle growth is a promising technology to preserve fertility for cancer patients. We previously developed a three-dimensional (3-D) ovarian tissue culture system supported by mouse tumor cell-derived Matrigel. When murine ovarian tissues at 14 days old were cultured in Matrigel drops, antrum formation and oocyte competence were significantly enhanced compared with those cultured without Matrigel. In this study, we tested whether nonanimal-derived dextran hydrogels can support a 3-D ovarian tissue culture. We employed chemically defined dextran hydrogels consisting of dextran polymers crosslinked with polyethylene glycol (PEG)-based cell-degradable crosslinker. To determine the optimal gel elasticity for the 3-D tissue culture, we measured Young's modulus of dextran hydrogels at four concentrations (1.75, 2.25, 2.75, and 3.25 mmol/L), and cultured ovarian tissues in these gels for 7 days. As a result, 2.25 mmol/L dextran hydrogel with Young's modulus of 224 Pa was appropriate to provide physical support as well as to promote follicle expansion in the 3-D system. To mimic the natural extracellular matrix (ECM) environment, we modified the dextran hydrogels with two bioactive factors: ECM-derived Arg-Gly-Asp (RGD) peptides as a cell-adhesive factor, and activin A. The ovarian tissues were cultured in 2.25 mmol/L dextran hydrogels under four different conditions: Activin-/RGD- (A-R-), A + R-, A-R+, and A + R+. On Day 7 of culture, follicle and oocyte sizes were significantly increased in the RGD-modified conditions compared with those without RGD. The RGD-modified hydrogels also promoted mRNA levels of steroidogenic-related genes and estradiol production in the 3-D ovarian tissue culture. In vitro maturation and developmental competence of follicular oocytes were remarkably improved in the presence of RGD. In particular, blastocyst embryos were obtained only from A-R+ or A+R+ conditions after in vitro fertilization. We also determined synergistic effects of the RGD peptides and activin A on follicle growth and oocyte development in the 3-D tissue culture. In conclusion, our results suggest that RGD-modified dextran hydrogels provide an ECM-mimetic bioactive environment to support folliculogenesis in a 3-D ovarian tissue culture system.
Collapse
|
222
|
Li D, Shi S, Zhao D, Rong Y, Zhou Y, Ding J, He C, Chen X. Effect of Polymer Topology and Residue Chirality on Biodegradability of Polypeptide Hydrogels. ACS Biomater Sci Eng 2022; 8:626-637. [PMID: 35090109 DOI: 10.1021/acsbiomaterials.1c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polypeptide-based injectable hydrogels have attracted the attention of biomedical researchers due to their unique biocompatibility and biodegradability, tunable residue chirality, and secondary conformation of polypeptide chains. In the present study, four types of poly(ethylene glycol)-block-poly(glutamic acid)s with different topological structures and residue chirality of polypeptide segments were developed, which were grafted with tyramine side groups for further cross-linking. The results demonstrated that the covalent conjugation between the tyramine groups in the presence of horseradish peroxidase and hydrogen peroxide could form porous hydrogels rapidly. Additionally, the gelation time and mechanical strength of the hydrogels were measured. All the polymer precursors and hydrogels exhibited good cytocompatibility in vitro. Further assessment of the enzymatic degradability of the hydrogels and copolymers in vitro revealed that the degradation rate was influenced by the adjustment of polymer topology or residue chirality of polypeptide copolymers. Subsequently, the effect of copolymer topology and polypeptide chirality on in vivo biodegradability and biocompatibility was assessed. This study will provide insights into the relationship between copolymer structures and hydrogel properties and benefit future polypeptide-based hydrogel studies in biomedical applications.
Collapse
Affiliation(s)
- Dong Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China
| | - Shun Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 Sichuan, P. R. China
| | - Dan Zhao
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China
| | - Yan Rong
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, P. R. China
| | - Yuhao Zhou
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China
| | - Junfeng Ding
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China
| |
Collapse
|
223
|
Missirlis D, Baños M, Lussier F, Spatz JP. Facile and Versatile Method for Micropatterning Poly(acrylamide) Hydrogels Using Photocleavable Comonomers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3643-3652. [PMID: 35006666 PMCID: PMC8796170 DOI: 10.1021/acsami.1c17901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We here present a micropatterning strategy to introduce small molecules and ligands on patterns of arbitrary shapes on the surface of poly(acrylamide)-based hydrogels. The main advantages of the presented approach are the ease of use, the lack of need to prefabricate photomasks, the use of mild UV light and biocompatible bioconjugation chemistries, and the capacity to pattern low-molecular-weight ligands, such as peptides, peptidomimetics, or DNA fragments. To achieve the above, a monomer containing a caged amine (NVOC group) was co-polymerized in the hydrogel network; upon UV light illumination using a commercially available setup, primary amines were locally deprotected and served as reactive groups for further functionalization. Cell patterning on various cell adhesive ligands was demonstrated, with cells responding to a combination of pattern shape and substrate elasticity. The approach is compatible with standard traction force microscopy (TFM) experimentation and can further be extended to reference-free TFM.
Collapse
Affiliation(s)
- Dimitris Missirlis
- Department
of Cellular Biophysics, Max-Planck-Institute
for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany
- . Tel: +49 6221 486430
| | - Miguel Baños
- Department
of Cellular Biophysics, Max-Planck-Institute
for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany
| | - Felix Lussier
- Department
of Cellular Biophysics, Max-Planck-Institute
for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max-Planck-Institute
for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany
- Department
of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University, INF-253, Heidelberg 69120, Germany
| |
Collapse
|
224
|
Bashiri Z, Zahiri M, Allahyari H, Esmaeilzade B. Proliferation of human spermatogonial stem cells on optimized PCL/Gelatin nanofibrous scaffolds. Andrologia 2022; 54:e14380. [PMID: 35083770 DOI: 10.1111/and.14380] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
Improvement of culture system and increasing the proliferation of spermatogonia stem cells under in vitro condition are the essential treatment options for infertility before autologous transplantation. Therefore, the present study aimed to evaluate the proliferation of human spermatogonia stem cells on the electrospun polycaprolactone/gelatin nanocomposite. Therefore, for this purpose, nanofiber porous scaffolds were prepared using the electrospinning method and their structures were then confirmed by SEM. After performing swelling, biodegradability and cell adhesion tests, human spermatogonia stem cells were cultured on scaffolds. In addition, both cell viability and proliferation were assessed using immunocytochemistry, flow cytometry and real-time PCR techniques in culturing during a 3-week period. SEM images indicated the presence of fibres with suitable diameters and arrangement as well as a sufficient porosity in nanocomposite scaffolds, showing good biocompatibility and biodegradability. The results show a significant increase in the number of spermatogonia stem cells in the cultured group on scaffold compared with the control group (p ≤ 0.05). As well, the results show that the expressions of integrin ɑ6 and β1 and Plzf genes estimated using real-time PCR in nanofiber scaffolds were significantly higher than those of the control group (p ≤ 0.05). However, the expression of c-Kit gene in the 3D group showed a significant decrease compared with the 2D group. Flow cytometry analysis also showed that the number of Plzf-positive cells was significantly higher in nanofiber porous scaffolds compared with the control group (p ≤ 0.05). Additionally, immunocytochemistry findings confirmed the presence of human spermatogonia stem cell colonies. In general, it seems that the designed nanocomposite scaffold could provide a suitable capacity for self-renewal of human spermatogonia stem cells, which can have a good application potential in research and reconstructive medicine related to the field of male infertility.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, School of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Zahiri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamed Allahyari
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Banafshe Esmaeilzade
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
225
|
Ullah A, Lim SI. Bioinspired tunable hydrogels: An update on methods of preparation, classification, and biomedical and therapeutic applications. Int J Pharm 2022; 612:121368. [PMID: 34896566 DOI: 10.1016/j.ijpharm.2021.121368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Hydrogels exhibit water-insoluble three-dimensional polymeric networks capable of absorbing large amounts of biological fluids. Both natural and synthetic polymers are used for the preparation of hydrogel networks. Such polymeric networks are fabricated through chemical or physical mechanisms of crosslinking. Chemical crosslinking is accomplished mainly through covalent bonding, while physical crosslinking involves self-healing secondary forces like H-bonding, host-guest interactions, and antigen-antibody interactions. The building blocks of the hydrogels play an important role in determining the mechanical, biological, and physicochemical properties. Hydrogels are used in a variety of biomedical applications like diagnostics (biodetection and bioimaging), delivery of therapeutics (drugs, immunotherapeutics, and vaccines), wound dressing and skin materials, cardiac complications, contact lenses, tissue engineering, and cell culture because of the inherent characteristics like enhanced water uptake and structural similarity with the extracellular matrix (ECM). This review highlights the recent trends and advances in the roles of hydrogels in biomedical and therapeutic applications. We also discuss the classification and methods of hydrogels preparation. A brief outlook on the future directions of hydrogels is also presented.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
226
|
Li Y, Fraser D, Mereness J, Van Hove A, Basu S, Newman M, Benoit DSW. Tissue Engineered Neurovascularization Strategies for Craniofacial Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:20-39. [PMID: 35014834 PMCID: PMC9016342 DOI: 10.1021/acsabm.1c00979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within craniofacial tissues and act synergistically during tissue regeneration. Therefore, the success of craniofacial regenerative approaches is predicated on successful recruitment, regeneration, or integration of both vascularization and innervation. Tissue engineering strategies have been widely used to encourage vascularization and, more recently, to improve innervation through host tissue recruitment or prevascularization/innervation of engineered tissues. However, current scaffold designs and cell or growth factor delivery approaches often fail to synergistically coordinate both vascularization and innervation to orchestrate successful tissue regeneration. Additionally, tissue engineering approaches are typically investigated separately for vascularization and innervation. Since both tissues act in concert to improve craniofacial tissue regeneration outcomes, a revised approach for development of engineered materials is required. This review aims to provide an overview of neurovascularization in craniofacial tissues and strategies to target either process thus far. Finally, key design principles are described for engineering approaches that will support both vascularization and innervation for successful craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David Fraser
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Amy Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Sayantani Basu
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
227
|
Kim HY, Kim BH, Kim MS. Amine Plasma-Polymerization of 3D Polycaprolactone/β-Tricalcium Phosphate Scaffold to Improving Osteogenic Differentiation In Vitro. MATERIALS 2022; 15:ma15010366. [PMID: 35009509 PMCID: PMC8745968 DOI: 10.3390/ma15010366] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 01/19/2023]
Abstract
This study aims to investigate the surface characterization and pre-osteoblast biological behaviors on the three-dimensional (3D) poly(ε-caprolactone)/β-tricalcium phosphate (β-TCP) scaffold modified by amine plasma-polymerization. The 3D PCL scaffolds were fabricated using fused deposition modeling (FDM) 3D printing. To improve the pre-osteoblast bioactivity, the 3D PCL scaffold was modified by adding β-TCP nanoparticles, and then scaffold surfaces were modified by amine plasma-polymerization using monomer allylamine (AA) and 1,2-diaminocyclohexane (DACH). After the plasma-polymerization of PCL/β-TCP, surface characterizations such as contact angle, AFM, XRD, and FTIR were evaluated. In addition, mechanical strength was measured by UTM. The pre-osteoblast bioactivities were evaluated by focal adhesion and cell proliferation. Osteogenic differentiation was investigated by ALP activity, Alizarin red staining, and Western blot. Plasma-polymerization induced the increase in hydrophilicity of the surface of the 3D PCL/β-TCP scaffold due to the deposition of amine polymeric thin film on the scaffold surface. Focal adhesion and proliferation of pre-osteoblast improved, and osteogenic differentiation was increased. These results indicated that 3D PCL/β-TCP scaffolds treated with DACH plasma-polymerization showed the highest bioactivity compared to the other samples. We suggest that 3D PCL/β-TCP scaffolds treated with DACH and AA plasma-polymerization can be used as a promising candidate for osteoblast differentiation of pre-osteoblast.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea;
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
| | - Byung-Hoon Kim
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
- Correspondence: (B.-H.K.); (M.-S.K.); Tel.: +82-62-230-6447 (B.-H.K.); +82-62-227-1640 (M.-S.K.)
| | - Myung-Sun Kim
- Department of Orthopaedic Surgery, College of Medicine, Chonnam National University, Gwangju 61469, Korea
- Correspondence: (B.-H.K.); (M.-S.K.); Tel.: +82-62-230-6447 (B.-H.K.); +82-62-227-1640 (M.-S.K.)
| |
Collapse
|
228
|
Avilla-Royo E, Ochsenbein-Kölble N, Vonzun L, Ehrbar M. Biomaterial-based treatments for the prevention of preterm birth after iatrogenic rupture of the fetal membranes. Biomater Sci 2022; 10:3695-3715. [DOI: 10.1039/d2bm00401a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Minimally invasive interventions to ameliorate or correct fetal abnormalities are becoming a clinical reality. However, the iatrogenic premature preterm rupture of the fetal membranes (FMs) (iPPROM), which may result in...
Collapse
|
229
|
Gu Y, Forget A, Shastri VP. Biobridge: An Outlook on Translational Bioinks for 3D Bioprinting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103469. [PMID: 34862764 PMCID: PMC8787414 DOI: 10.1002/advs.202103469] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/20/2021] [Indexed: 05/30/2023]
Abstract
3D-bioprinting (3DBP) possesses several elements necessary to overcome the deficiencies of conventional tissue engineering, such as defining tissue shape a priori, and serves as a bridge to clinical translation. This transformative potential of 3DBP hinges on the development of the next generation of bioinks that possess attributes for clinical use. Toward this end, in addition to physicochemical characteristics essential for printing, bioinks need to possess proregenerative attributes, while enabling printing of stable structures with a defined biological function that survives implantation and evolves in vivo into functional tissue. With a focus on bioinks for extrusion-based bioprinting, this perspective review advocates a rigorous biology-based approach to engineering bioinks, emphasizing efficiency, reproducibility, and a streamlined translation process that places the clinical endpoint front and center. A blueprint for engineering the next generation of bioinks that satisfy the aforementioned performance criteria for various translational levels (TRL1-5) and a characterization tool kit is presented.
Collapse
Affiliation(s)
- Yawei Gu
- Institute for Macromolecular ChemistryUniversity of FreiburgFreiburg79104Germany
| | - Aurelien Forget
- Institute for Macromolecular ChemistryUniversity of FreiburgFreiburg79104Germany
| | - V. Prasad Shastri
- Institute for Macromolecular ChemistryUniversity of FreiburgFreiburg79104Germany
- Bioss‐Centre for Biological Signalling StudiesUniversity of FreiburgBreisgau79104Germany
| |
Collapse
|
230
|
|
231
|
Hu X, Xia Z, Cai K. Recent advances of 3D hydrogel culture systems for mesenchymal stem cell-based therapy and cell behavior regulation. J Mater Chem B 2022; 10:1486-1507. [DOI: 10.1039/d1tb02537f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesenchymal stem cells (MSCs) have been increasingly recognized as resources for disease treatments and regenerative medicine. Meanwhile, the unique chemical and physical properties of hydrogels provide innate advantages to achieve...
Collapse
|
232
|
Iwata K, Kawarabayashi K, Yoshizaki K, Tian T, Saito K, Sugimoto A, Kurogoushi R, Yamada A, Yamamoto A, Kudo Y, Ishimaru N, Fukumoto S, Iwamoto T. von Willebrand factor D and EGF domains regulate ameloblast differentiation and enamel formation. J Cell Physiol 2021; 237:1964-1979. [DOI: 10.1002/jcp.30667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Kokoro Iwata
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University Tokyo Japan
| | - Keita Kawarabayashi
- Department of Pediatric Dentistry, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| | - Keigo Yoshizaki
- Orthodontics and Dentofacial Orthopedics Section, Division of Oral Health, Growth and Development Kyushu University Faculty of Dental Science Fukuoka Japan
| | - Tian Tian
- Orthodontics and Dentofacial Orthopedics Section, Division of Oral Health, Growth and Development Kyushu University Faculty of Dental Science Fukuoka Japan
| | - Kan Saito
- Department of Oral Health and Development Sciences, Pediatric Dentistry Division Tohoku University Graduate School of Dentistry Sendai Japan
| | - Asuna Sugimoto
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University Tokyo Japan
| | - Rika Kurogoushi
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University Tokyo Japan
| | - Aya Yamada
- Department of Oral Health and Development Sciences, Pediatric Dentistry Division Tohoku University Graduate School of Dentistry Sendai Japan
| | - Akihito Yamamoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| | - Yasuei Kudo
- Department of Oral Bioscience, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima Japan
| | - Satoshi Fukumoto
- Department of Oral Health and Development Sciences, Pediatric Dentistry Division Tohoku University Graduate School of Dentistry Sendai Japan
- Pediatric Dentistry Section, Division of Oral Health, Growth and Development Kyushu University Faculty of Dental Science Fukuoka Japan
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University Tokyo Japan
| |
Collapse
|
233
|
Li S, Huan Y, Zhu B, Chen H, Tang M, Yan Y, Wang C, Ouyang Z, Li X, Xue J, Wang W. Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 33:2. [PMID: 34940930 PMCID: PMC8702412 DOI: 10.1007/s10856-021-06609-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 10/06/2021] [Indexed: 05/26/2023]
Abstract
Anterior spine decompression and reconstruction with bone grafts and fusion is a routine spinal surgery. The intervertebral fusion cage can maintain intervertebral height and provide a bone graft window. Titanium fusion cages are the most widely used metal material in spinal clinical applications. However, there is a certain incidence of complications in clinical follow-ups, such as pseudoarticulation formation and implant displacement due to nonfusion of bone grafts in the cage. With the deepening research on metal materials, the properties of these materials have been developed from being biologically inert to having biological activity and biological functionalization, promoting adhesion, cell differentiation, and bone fusion. In addition, 3D printing, thin-film, active biological material, and 4D bioprinting technology are also being used in the biofunctionalization and intelligent advanced manufacturing processes of implant devices in the spine. This review focuses on the biofunctionalization of implant materials in 3D printed intervertebral fusion cages. The surface modifications of implant materials in metal endoscopy, material biocompatibility, and bioactive functionalizationare summarized. Furthermore, the prospects and challenges of the biofunctionalization of implant materials in spinal surgery are discussed. Fig.a.b.c.d.e.f.g As a pre-selected image for the cover, I really look forward to being selected. Special thanks to you for your comments.
Collapse
Affiliation(s)
- Shan Li
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
- Plastic and Cosmetic Surgery, Hunan Want Want Hospital, Changsha, China
| | - Yifan Huan
- R&D Department, Hunan Yuanpin Cell Biotechnology Co. Ltd., Changsha, China
| | - Bin Zhu
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Haoxiang Chen
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Ming Tang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Yiguo Yan
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Zhihua Ouyang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Xuelin Li
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China
| | - Jingbo Xue
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China.
| | - Wenjun Wang
- Department of Spine Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, 69 Chuanshan Road, Hengyang, Hunan, 421001, China.
| |
Collapse
|
234
|
Chen C, Qian J, Chen H, Zhang H, Yang L, Jiang X, Zhang X, Li X, Ma J, Sun D. Molecular Origin of the Biologically Accelerated Mineralization of Hydroxyapatite on Bacterial Cellulose for More Robust Nanocomposites. NANO LETTERS 2021; 21:10292-10300. [PMID: 34846904 DOI: 10.1021/acs.nanolett.1c03411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomineralization generates hierarchically structured minerals with vital biological functions in organisms. This strategy has been adopted to construct complex architectures to achieve similar functionalities, mostly under chemical environments mimicking biological components. The molecular origin of the biofacilitated mineralization process is elusive. Herein, we describe the mineralization of hydroxyapatite (HAp) accompanying the biological secretion of nanocellulose by Acetobacter xylinum. In comparison with mature cellulose, the newly biosynthesized cellulose molecules greatly accelerate the nucleation rate and facilitate the uniform distribution of HAp crystals, thereby generating composites with a higher Young modulus. Both simulations and experiments indicate that the biological metabolism condition allows the easier capture of calcium ions by the more abundant hydroxyl groups on the glucan chain before the formation of hydrogen bonding, for the subsequent growth of HAp crystals. Our work provides more insights into the biologically accelerated mineralization process and presents a different methodology for the generation of biomimetic nanocomposites.
Collapse
Affiliation(s)
- Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People's Republic of China
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People's Republic of China
| | - Hongwei Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, 163 Xianlin Road, Nanjing 210023, People's Republic of China
| | - Heng Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People's Republic of China
| | - Lei Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People's Republic of China
| | - Xiaohong Jiang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People's Republic of China
| | - Xuan Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People's Republic of China
| | - Xiaoyu Li
- Department of Polymer Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, 163 Xianlin Road, Nanjing 210023, People's Republic of China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, People's Republic of China
| |
Collapse
|
235
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
236
|
Wang W, Shen J, Meng Y, Ye M, Lin S, Zhao Q, Wang L, Cheung KM, Wu S, Zheng Y, Liu X, Chu PK, Yeung KW, Zhang ZY. Magnesium cationic cue enriched interfacial tissue microenvironment nurtures the osseointegration of gamma-irradiated allograft bone. Bioact Mater 2021; 10:32-47. [PMID: 34901527 PMCID: PMC8637003 DOI: 10.1016/j.bioactmat.2021.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/07/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023] Open
Abstract
Regardless of the advancement of synthetic bone substitutes, allograft-derived bone substitutes still dominate in the orthopaedic circle in the treatments of bone diseases. Nevertheless, the stringent devitalization process jeopardizes their osseointegration with host bone and therefore prone to long-term failure. Hence, improving osseointegration and transplantation efficiency remains important. The alteration of bone tissue microenvironment (TME) to facilitate osseointegration has been generally recognized. However, the concept of exerting metal ionic cue in bone TME without compromising the mechanical properties of bone allograft is challenging. To address this concern, an interfacial tissue microenvironment with magnesium cationc cue was tailored onto the gamma-irradiated allograft bone using a customized magnesium-plasma surface treatment. The formation of the Mg cationic cue enriched interfacial tissue microenvironment on allograft bone was verified by the scanning ion-selective electrode technique. The cellular activities of human TERT-immortalized mesenchymal stem cells on the Mg-enriched grafts were notably upregulated. In the animal test, superior osseointegration between Mg-enriched graft and host bone was found, whereas poor integration was observed in the gamma-irradiated controls at 28 days post-operation. Furthermore, the bony in-growth appeared on magnesium-enriched allograft bone was significant higher. The mechanism possibly correlates to the up-regulation of integrin receptors in mesenchymal stem cells under modified bone TME that directly orchestrate the initial cell attachment and osteogenic differentiation of mesenchymal stem cells. Lastly, our findings demonstrate the significance of magnesium cation modified bone allograft that can potentially translate to various orthopaedic procedures requiring bone augmentation. A modified interfacial Mg TME was tailored onto the GI allograft bone matrix without compromising the mechanical properties. The SIET were applied to recognize the Mg2+-cue enriched interfacial TME on the surface of the Mg-treated bone allograft. The rodent model that is analogous to the clinical use of allograft bone were applied to charaterize the osseointegration. The boundary of the Mg-enriched allograft bone was already unable to be identified and become homogeneous at D28 post-op. The Mg2+-cue enriched interfacial TME is able to convince the upregulation of several integrin receptors of MSCs.
Collapse
Affiliation(s)
- Wenhao Wang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, 999077, PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518053, PR China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Jie Shen
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, 999077, PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518053, PR China
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Yuan Meng
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Miaoman Ye
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Shaozhang Lin
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Qi Zhao
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Le Wang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
| | - Kenneth M.C. Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, 999077, PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Shuilin Wu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials & Engineering, Hubei University, Wuhan, 430062, PR China
- Ministry of Education Key Laboratory for Advanced Ceramics and Machining Technology, School of Materials Science & Engineering, Tianjin University, Tianjin, 300352, PR China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System, Department of Materials Science and Engineering, Collage of Engineering, Peking University, Beijing, 100871, PR China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Paul K. Chu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, PR China
| | - Kelvin W.K. Yeung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, 999077, PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518053, PR China
- Corresponding author. Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, 999077, PR China.
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, PR China
- Corresponding author. Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University Guangzhou, 510150, PR China.
| |
Collapse
|
237
|
Xie Y, Yao J, Jin W, Ren L, Li X. Induction and Maturation of Hepatocyte-Like Cells In Vitro: Focus on Technological Advances and Challenges. Front Cell Dev Biol 2021; 9:765980. [PMID: 34901010 PMCID: PMC8662991 DOI: 10.3389/fcell.2021.765980] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Limited by the poor proliferation and restricted sources of adult hepatocytes, there is an urgent need to find substitutes for proliferation and cultivation of mature hepatocytes in vitro for use in disease treatment, drug approval, and toxicity testing. Hepatocyte-like cells (HLCs), which originate from undifferentiated stem cells or modified adult cells, are considered good candidates because of their advantages in terms of cell source and in vitro expansion ability. However, the majority of induced HLCs are in an immature state, and their degree of differentiation is heterogeneous, diminishing their usability in basic research and limiting their clinical application. Therefore, various methods have been developed to promote the maturation of HLCs, including chemical approaches, alteration of cell culture systems, and genetic manipulation, to meet the needs of in vivo transplantation and in vitro model establishment. This review proposes different cell types for the induction of HLCs, and provide a comprehensive overview of various techniques to promote the generation and maturation of HLCs in vitro.
Collapse
Affiliation(s)
- Ye Xie
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Weilin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Institute of Cancer Neuroscience, The First Hospital of Lanzhou University, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Longfei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, China
| |
Collapse
|
238
|
Abstract
Organoids-cellular aggregates derived from stem or progenitor cells that recapitulate organ function in miniature-are of growing interest in developmental biology and medicine. Organoids have been developed for organs and tissues such as the liver, gut, brain, and pancreas; they are used as organ surrogates to study a wide range of questions in basic and developmental biology, genetic disorders, and therapies. However, many organoids reported to date have been cultured in Matrigel, which is prepared from the secretion of Engelbreth-Holm-Swarm mouse sarcoma cells; Matrigel is complex and poorly defined. This complexity makes it difficult to elucidate Matrigel-specific factors governing organoid development. In this review, we discuss promising Matrigel-free methods for the generation and maintenance of organoids that use decellularized extracellular matrix (ECM), synthetic hydrogels, or gel-forming recombinant proteins.
Collapse
Affiliation(s)
- Mark T Kozlowski
- DEVCOM US Army Research Laboratory, Weapons and Materials Research Directorate, Science of Extreme Materials Division, Polymers Branch, 6300 Rodman Rd. Building 4600, Aberdeen Proving Ground, Aberdeen, MD, 21005, USA.
| | - Christiana J Crook
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 Duarte Rd., Duarte, CA, 91010, USA
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 Duarte Rd., Duarte, CA, 91010, USA
| |
Collapse
|
239
|
Guided Self-Assembly of ES-Derived Lung Progenitors into Biomimetic Tube Structures That Impact Cell Differentiation. Bioengineering (Basel) 2021; 8:bioengineering8120209. [PMID: 34940362 PMCID: PMC8698605 DOI: 10.3390/bioengineering8120209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022] Open
Abstract
Chemically directed differentiation of pluripotent stem cells (PSCs) into defined cell types is a potent strategy for creating regenerative tissue models and cell therapies. In vitro observations suggest that physical cues can augment directed differentiation. We recently demonstrated that confining human PSC-derived lung progenitor cells in a tube with a diameter that mimics those observed during lung development results in the alteration of cell differentiation towards SOX2−SOX9+ lung cells. Here we set out to assess the robustness of this geometric confinement effect with respect to different culture parameters in order to explore the corresponding changes in cell morphometry and determine the feasibility of using such an approach to enhance directed differentiation protocols. Culture of progenitor cells in polydimethylsiloxane (PDMS) tubes reliably induced self-organization into tube structures and was insensitive to a variety of extracellular matrix coatings. Cellular morphology and differentiation status were found to be sensitive to the diameter of tube cells that were cultured within but not to seeding density. These data suggest that geometric cues impose constraints on cells, homogenize cellular morphology, and influence fate status.
Collapse
|
240
|
Sonnleitner D, Sommer C, Scheibel T, Lang G. Approaches to inhibit biofilm formation applying natural and artificial silk-based materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112458. [PMID: 34857315 DOI: 10.1016/j.msec.2021.112458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
The discovery of penicillin started a new era of health care since it allowed the effective treatment of formerly deadly infections. As a drawback, its overuse led to a growing number of multi-drug resistant pathogens. Challenging this arising threat, material research focuses on the development of microbe-killing or microbe repellent agents implementing such functions directly into materials. Due to their biocompatibility, non-immunogenicity and mechanical strength, silk-based materials are attractive candidates for applications in the biomedical field. Furthermore, it has been observed that silks display high persistency in their natural environment giving reason to suspect that they might be attractive candidates to prevent microbial infestation. The current review describes the process of biofilm formation on medical devices and the most common strategies to prevent it, divided into effects of surface topography, material modification and integrated additives. In this context, recent state of the art developments in the field of natural and artificial silk-based materials with microbe-repellant or antimicrobial properties are addressed. These silk properties are controversially discussed and conclusions are drawn as to which parameters will be decisive for the successful design of new bio-functional materials based on the blueprint of silk proteins.
Collapse
Affiliation(s)
- David Sonnleitner
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Christoph Sommer
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Germany
| | - Gregor Lang
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Germany.
| |
Collapse
|
241
|
Asghari Niari S, Rahbarghazi R, Salehi R, Kazemi L, Fathi Karkan S, Karimipour M. Fabrication, characterization and evaluation of the effect of PLGA and PLGA-PEG biomaterials on the proliferation and neurogenesis potential of human neural SH-SY5Y cells. Microsc Res Tech 2021; 85:1433-1443. [PMID: 34859937 DOI: 10.1002/jemt.24006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022]
Abstract
In recent years with regard to the development of nanotechnology and neural stem cell discovery, the combinatorial therapeutic strategies of neural progenitor cells and appropriate biomaterials have raised the hope for brain regeneration following neurological disorders. This study aimed to explore the proliferation and neurogenic effect of PLGA and PLGA-PEG nanofibers on human SH-SY5Y cells in in vitro condition. Nanofibers of PLGA and PLGA-PEG biomaterials were synthesized and fabricated using electrospinning method. Physicochemical features were examined using HNMR, FT-IR, and water contact angle assays. Ultrastructural morphology, the orientation of nanofibers, cell distribution and attachment were visualized by SEM imaging. Cell survival and proliferation rate were measured. Differentiation capacity was monitored by immunofluorescence staining of Map-2. HNMR, FT-IR assays confirmed the integration of PEG to PLGA backbone. Water contact angel assay showed increasing surface hydrophilicity in PLGA-PEG biomaterial compared to the PLGA substrate. SEM analysis revealed the reduction of PLGA-PEG nanofibers' diameter compared to the PLGA group. Cell attachment was observed in both groups while PLGA-PEG had a superior effect in the promotion of survival rate compared to other groups (p < .05). Compared to the PLGA group, PLGA-PEG increased the number of Ki67+ cells (p < .01). PLGA-PEG biomaterial induced neural maturation by increasing protein Map-2 compared to the PLGA scaffold in a three-dimensional culture system. According to our data, structural modification of PLGA with PEG could enhance orientated differentiation and the dynamic growth of neural cells.
Collapse
Affiliation(s)
- Shabnam Asghari Niari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Kazemi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
242
|
Vasu S, Zhou J, Chen J, Johnston PV, Kim DH. Biomaterials-based Approaches for Cardiac Regeneration. Korean Circ J 2021; 51:943-960. [PMID: 34854577 PMCID: PMC8636758 DOI: 10.4070/kcj.2021.0291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular disease is a prevalent cause of mortality and morbidity, largely due to the limited ability of cardiomyocytes to proliferate. Existing therapies for cardiac regeneration include cell-based therapies and bioactive molecules. However, delivery remains one of the major challenges impeding such therapies from having significant clinical impact. Recent advancements in biomaterials-based approaches for cardiac regeneration have shown promise in improving cardiac function, promoting angiogenesis, and reducing adverse immune response in both human clinical trials and animal studies. These advances in therapeutic delivery via extracellular vesicles, cardiac patches, and hydrogels have the potential to enable clinical impact of cardiac regeneration therapies. The limited ability of cardiomyocytes to proliferate is a major cause of mortality and morbidity in cardiovascular diseases. There exist therapies for cardiac regeneration that are cell-based as well as that involve bioactive molecules. However, delivery remains one of the major challenges impeding such therapies from having clinical impact. Recent advancements in biomaterials-based approaches for cardiac regeneration have shown promise in clinical trials and animal studies in improving cardiac function, promoting angiogenesis, and reducing adverse immune response. This review will focus on current clinical studies of three contemporary biomaterials-based approaches for cardiac regeneration (extracellular vesicles, injectable hydrogels, and cardiac patches), remaining challenges and shortcomings to be overcome, and future directions for the use of biomaterials to promote cardiac regeneration.
Collapse
Affiliation(s)
- Samhita Vasu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Justin Zhou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter V Johnston
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.,Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
243
|
Ozpinar EW, Frey AL, Cruse G, Freytes DO. Mast Cell-Biomaterial Interactions and Tissue Repair. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:590-603. [PMID: 33164714 PMCID: PMC8739845 DOI: 10.1089/ten.teb.2020.0275] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Tissue engineers often use biomaterials to provide structural support along with mechanical and chemical signals to modulate the wound healing process. Biomaterials that are implanted into the body interact with a heterogeneous and dynamic inflammatory environment that is present at the site of injury. Whether synthetically derived, naturally derived, or a combination of both, it is important to assess biomaterials for their ability to modulate inflammation to understand their potential clinical use. One important, but underexplored cell in the context of biomaterials is the mast cell (MC). MCs are granulocytic leukocytes that engage in a variety of events in both the innate and adaptive immune systems. Although highly recognized for their roles in allergic reactions, MCs play an important role in wound healing by recognizing antigens through pattern recognition receptors and the high-affinity immunoglobulin E receptor (FceRI) and releasing granules that affect cell recruitment, fibrosis, extracellular matrix deposition, angiogenesis, and vasculogenesis. MCs also mediate the foreign body response, contributing to the incorporation or rejection of implants. Studies of MC-biomaterial interactions can aid in the elucidation of MC roles during the host tissue response and tissue repair. This review is designed for those in the tissue engineering and biomaterial fields who are interested in exploring the role MCs may play in wound-biomaterial interactions and wound healing. With this review, we hope to inspire more research in the MC-biomaterial space to accelerate the design and construction of optimized implants. Impact statement Mast cells (MCs) are highly specialized inflammatory cells that have crucial, but not fully understood, roles in wound healing and tissue repair. Upon stimulation, they recognize foreign antigens and release granules that help orchestrate the inflammatory response after tissue damage or biomaterial implantation. This review summarizes the current use of MCs in biomaterial research along with literature from the past decade focusing on MC interactions with materials used for tissue repair and regeneration. Studying MC-biomaterial interactions will help (i) further understand the process of inflammation and (ii) design biomaterials and tissue-engineered constructs for optimal repair and regeneration.
Collapse
Affiliation(s)
- Emily W Ozpinar
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Ariana L Frey
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
| | - Glenn Cruse
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Donald O Freytes
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
244
|
Jeon O, Kim TH, Alsberg E. Reversible dynamic mechanics of hydrogels for regulation of cellular behavior. Acta Biomater 2021; 136:88-98. [PMID: 34563721 DOI: 10.1016/j.actbio.2021.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/06/2023]
Abstract
The mechanical properties of the native extracellular matrix play a key role in regulating cell behavior during developmental, healing and homeostatic processes. Since these properties change over time, it may be valuable to have the capacity to dynamically vary the mechanical properties of engineered hydrogels used in tissue engineering strategies to better mimic the dynamic mechanical behavior of native extracellular matrix. However, in situ repeatedly reversible dynamic tuning of hydrogel mechanics is still limited. In this study, we have engineered a hydrogel system with reversible dynamic mechanics using a dual-crosslinkable alginate hydrogel. The effect of reversible mechanical signals on encapsulated stem cells in dynamically tunable hydrogels has been demonstrated. In situ stiffening of hydrogels decreases cell spreading and proliferation, and subsequent softening of hydrogels gives way to an increase in cell spreading and proliferation. The hydrogel stiffening and softening, and resulting cellular responses are repeatedly reversible. This hydrogel system provides a promising platform for investigating the effect of repeatedly reversible changes in extracellular matrix mechanics on cell behaviors. STATEMENT OF SIGNIFICANCE: Since the mechanical properties of native extracellular matrix (ECM) change over time during development, healing and homeostatic processes, it may be valuable to have the capacity to dynamically control the mechanics of biomaterials used in tissue engineering and regenerative medicine applications to better mimic this behavior. Unlike previously reported biomaterials whose mechanical properties can be changed by the user only a limited number of times, this system provides the capacity to induce unlimited alterations to the mechanical properties of an engineered ECM for 3D cell culture. This study presents a strategy for on-demand dynamic and reversible control of materials' mechanics by single and dual-crosslinking mechanisms using oxidized and methacrylated alginates. By demonstrating direct changes in encapsulated human mesenchymal stem cell morphology, proliferation and chondrogenic differentiation in response to multiple different dynamic changes in hydrogel mechanics, we have established a repeatedly reversible 3D cellular mechanosensing system. This system provides a powerful platform tool with a wide range of stiffness tunability to investigate the role of dynamic mechanics on cellular mechanosensing and behavioral responses.
Collapse
|
245
|
Shi A, Villarreal TA, Singh A, Hayes TR, Davis TC, Brooks JT, Claridge SA. Plenty of Room at the Top: A Multi‐Scale Understanding of nm‐Resolution Polymer Patterning on 2D Materials. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anni Shi
- Department of Chemistry Purdue University West Lafayette IN USA
| | | | - Anamika Singh
- Department of Chemistry Purdue University West Lafayette IN USA
| | - Tyler R. Hayes
- Department of Chemistry Purdue University West Lafayette IN USA
| | - Tyson C. Davis
- Department of Chemistry Purdue University West Lafayette IN USA
| | - Jacob T. Brooks
- Department of Chemistry Purdue University West Lafayette IN USA
| | - Shelley A. Claridge
- Department of Chemistry Purdue University West Lafayette IN USA
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN USA
| |
Collapse
|
246
|
Shi A, Villarreal TA, Singh A, Hayes TR, Davis TC, Brooks JT, Claridge SA. Plenty of Room at the Top: A Multi-Scale Understanding of nm-Resolution Polymer Patterning on 2D Materials. Angew Chem Int Ed Engl 2021; 60:25436-25444. [PMID: 34549520 DOI: 10.1002/anie.202110517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/19/2021] [Indexed: 11/06/2022]
Abstract
Lamellar phases of alkyldiacetylenes in which the alkyl chains lie parallel to the substrate represent a straightforward means for scalable 1-nm-resolution interfacial patterning. This capability has the potential for substantial impacts in nanoscale electronics, energy conversion, and biomaterials design. Polymerization is required to set the 1-nm functional patterns embedded in the monolayer, making it important to understand structure-function relationships for these on-surface reactions. Polymerization can be observed for certain monomers at the single-polymer scale using scanning probe microscopy. However, substantial restrictions on the systems that can be effectively characterized have limited utility. Here, using a new multi-scale approach, we identify a large, previously unreported difference in polymerization efficiency between the two most widely used commercial diynoic acids. We further identify a core design principle for maximizing polymerization efficiency in these on-surface reactions, generating a new monomer that also exhibits enhanced polymerization efficiency.
Collapse
Affiliation(s)
- Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Anamika Singh
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Tyler R Hayes
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Tyson C Davis
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Jacob T Brooks
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
247
|
Yaguchi A, Oshikawa M, Watanabe G, Hiramatsu H, Uchida N, Hara C, Kaneko N, Sawamoto K, Muraoka T, Ajioka I. Efficient protein incorporation and release by a jigsaw-shaped self-assembling peptide hydrogel for injured brain regeneration. Nat Commun 2021; 12:6623. [PMID: 34799548 PMCID: PMC8604910 DOI: 10.1038/s41467-021-26896-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
During injured tissue regeneration, the extracellular matrix plays a key role in controlling and coordinating various cellular events by binding and releasing secreted proteins in addition to promoting cell adhesion. Herein, we develop a cell-adhesive fiber-forming peptide that mimics the jigsaw-shaped hydrophobic surface in the dovetail-packing motif of glycophorin A as an artificial extracellular matrix for regenerative therapy. We show that the jigsaw-shaped self-assembling peptide forms several-micrometer-long supramolecular nanofibers through a helix-to-strand transition to afford a hydrogel under physiological conditions and disperses homogeneously in the hydrogel. The molecular- and macro-scale supramolecular properties of the jigsaw-shaped self-assembling peptide hydrogel allow efficient incorporation and sustained release of vascular endothelial growth factor, and demonstrate cell transplantation-free regenerative therapeutic effects in a subacute-chronic phase mouse stroke model. This research highlights a therapeutic strategy for injured tissue regeneration using the jigsaw-shaped self-assembling peptide supramolecular hydrogel. The extracellular matrix contributes to tissue regeneration by binding and releasing growth factors. Here the authors present the jigsaw-shaped self-assembling peptide JigSAP as an artificial ECM and show that VEGF-JigSAP has therapeutic effects on the subacute-chronic phase of brain stroke.
Collapse
Affiliation(s)
- Atsuya Yaguchi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Mio Oshikawa
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.,Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan
| | - Go Watanabe
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan.,Department of Physics, School of Science, Kitasato University, Kanagawa, 252-0373, Japan
| | - Hirotsugu Hiramatsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Noriyuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Chikako Hara
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.,Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601, Japan.,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Aichi, 444-8585, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan. .,Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan.
| | - Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan. .,Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan.
| |
Collapse
|
248
|
Saggioro M, D'Agostino S, Gallo A, Crotti S, D'Aronco S, Corallo D, Veltri G, Martinez G, Grigoletto A, Tolomeo AM, Tafuro G, Agostini M, Aveic S, Serafin V, Semenzato A, Pasut G, Pozzobon M. A rhabdomyosarcoma hydrogel model to unveil cell-extracellular matrix interactions. Biomater Sci 2021; 10:124-137. [PMID: 34796888 DOI: 10.1039/d1bm00929j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) culture systems have progressively attracted attention given their potential to overcome limitations of classical 2D in vitro systems. Among different supports for 3D cell culture, hydrogels (HGs) offer important advantages such as tunable mechanical and biological properties. Here, a biocompatible hyaluronic acid-polyethylene glycol HG was developed to explore the pro-migratory behavior of alveolar rhabdomyosarcoma (ARMS) cells. Proteomic analysis of ARMS xenografts unveiled the composition of the extracellular matrix (ECM) elucidating the most representative proteins. In parallel, HGs were obtained by the combination of a thiol-containing hyaluronic acid derivative and different polyethylene glycol (PEG) dimaleimide polymers. The selection of the optimal HG for ARMS cell growth was made based on degradation time, swelling, and cell distribution. Rheology measures and mechanical properties were assessed in the presence or absence of ECM proteins (collagen type I and fibronectin), as well as viability tests and cell distribution analysis. The role of ITGA5, the receptor of fibronectin, in determining ARMS cell migration was validated in vitro upon ITGA5 silencing. In vivo, cell dissemination and the capacity for engrafting were validated after injecting ARMS cell populations enriched for the level of ITGA5 in zebrafish embryos. To study the interactions with ARMS-specific ECM proteins (HG + P), the key players from the Rho and heat-shock pathways were investigated by reverse phase protein array (RPPA). Our data suggest that the developed 3D ARMS model is useful for identifying potential physical hallmarks that allow cancer cells to resist therapy, escape from the immune-system and increase dissemination.
Collapse
Affiliation(s)
- Mattia Saggioro
- Stem Cells and Regenerative Medicine Lab, Institute of Pediatric Research Città della Speranza, 35129 Padova, Italy. .,Department of Women and Children Health, University of Padova, 35127 Padova, Italy
| | - Stefania D'Agostino
- Stem Cells and Regenerative Medicine Lab, Institute of Pediatric Research Città della Speranza, 35129 Padova, Italy. .,Department of Women and Children Health, University of Padova, 35127 Padova, Italy
| | - Anna Gallo
- Stem Cells and Regenerative Medicine Lab, Institute of Pediatric Research Città della Speranza, 35129 Padova, Italy. .,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| | - Sara Crotti
- NIB Lab Institute of Pediatric Research Città della Speranza, 35129 Padova, Italy
| | - Sara D'Aronco
- NIB Lab Institute of Pediatric Research Città della Speranza, 35129 Padova, Italy
| | - Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Institute of Pediatric Research Città della Speranza, 35129 Padova, Italy
| | - Giulia Veltri
- Department of Women and Children Health, University of Padova, 35127 Padova, Italy.,Oncohematology Laboratory, Institute of Pediatric Research Città della Speranza, 35129 Padova, Italy
| | - Gabriele Martinez
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| | - Anna Maria Tolomeo
- Department of Women and Children Health, University of Padova, 35127 Padova, Italy.,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), 35129 Padova, Italy
| | - Giovanni Tafuro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| | - Marco Agostini
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, Padova University, 35128 Padova, Italy.,NIB Lab Institute of Pediatric Research Città della Speranza, 35129 Padova, Italy.,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), 35129 Padova, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Institute of Pediatric Research Città della Speranza, 35129 Padova, Italy.,Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Valentina Serafin
- Department of Women and Children Health, University of Padova, 35127 Padova, Italy.,Oncohematology Laboratory, Institute of Pediatric Research Città della Speranza, 35129 Padova, Italy
| | - Alessandra Semenzato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy.
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Institute of Pediatric Research Città della Speranza, 35129 Padova, Italy. .,Department of Women and Children Health, University of Padova, 35127 Padova, Italy
| |
Collapse
|
249
|
Kong Y, Duan J, Liu F, Han L, Li G, Sun C, Sang Y, Wang S, Yi F, Liu H. Regulation of stem cell fate using nanostructure-mediated physical signals. Chem Soc Rev 2021; 50:12828-12872. [PMID: 34661592 DOI: 10.1039/d1cs00572c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the major issues in tissue engineering is regulation of stem cell differentiation toward specific lineages. Unlike biological and chemical signals, physical signals with adjustable properties can be applied to stem cells in a timely and localized manner, thus making them a hot topic for research in the fields of biomaterials, tissue engineering, and cell biology. According to the signals sensed by cells, physical signals used for regulating stem cell fate can be classified into six categories: mechanical, light, thermal, electrical, acoustic, and magnetic. In most cases, external macroscopic physical fields cannot be used to modulate stem cell fate, as only the localized physical signals accepted by the surface receptors can regulate stem cell differentiation via nanoscale fibrin polysaccharide fibers. However, surface receptors related to certain kinds of physical signals are still unknown. Recently, significant progress has been made in the development of functional materials for energy conversion. Consequently, localized physical fields can be produced by absorbing energy from an external physical field and subsequently releasing another type of localized energy through functional nanostructures. Based on the above concepts, we propose a methodology that can be utilized for stem cell engineering and for the regulation of stem cell fate via nanostructure-mediated physical signals. In this review, the combined effect of various approaches and mechanisms of physical signals provides a perspective on stem cell fate promotion by nanostructure-mediated physical signals. We expect that this review will aid the development of remote-controlled and wireless platforms to physically guide stem cell differentiation both in vitro and in vivo, using optimized stimulation parameters and mechanistic investigations while driving the progress of research in the fields of materials science, cell biology, and clinical research.
Collapse
Affiliation(s)
- Ying Kong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Feng Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266200, China.
| | - Gang Li
- Neurological Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Shuhua Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China.
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan, 250012, China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China. .,Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| |
Collapse
|
250
|
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. Int J Mol Sci 2021; 22:12200. [PMID: 34830082 PMCID: PMC8618305 DOI: 10.3390/ijms222212200] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 01/09/2023] Open
Abstract
The traditional two-dimensional (2D) in vitro cell culture system (on a flat support) has long been used in cancer research. However, this system cannot be fully translated into clinical trials to ideally represent physiological conditions. This culture cannot mimic the natural tumor microenvironment due to the lack of cellular communication (cell-cell) and interaction (cell-cell and cell-matrix). To overcome these limitations, three-dimensional (3D) culture systems are increasingly developed in research and have become essential for tumor research, tissue engineering, and basic biology research. 3D culture has received much attention in the field of biomedicine due to its ability to mimic tissue structure and function. The 3D matrix presents a highly dynamic framework where its components are deposited, degraded, or modified to delineate functions and provide a platform where cells attach to perform their specific functions, including adhesion, proliferation, communication, and apoptosis. So far, various types of models belong to this culture: either the culture based on natural or synthetic adherent matrices used to design 3D scaffolds as biomaterials to form a 3D matrix or based on non-adherent and/or matrix-free matrices to form the spheroids. In this review, we first summarize a comparison between 2D and 3D cultures. Then, we focus on the different components of the natural extracellular matrix that can be used as supports in 3D culture. Then we detail different types of natural supports such as matrigel, hydrogels, hard supports, and different synthetic strategies of 3D matrices such as lyophilization, electrospiding, stereolithography, microfluid by citing the advantages and disadvantages of each of them. Finally, we summarize the different methods of generating normal and tumor spheroids, citing their respective advantages and disadvantages in order to obtain an ideal 3D model (matrix) that retains the following characteristics: better biocompatibility, good mechanical properties corresponding to the tumor tissue, degradability, controllable microstructure and chemical components like the tumor tissue, favorable nutrient exchange and easy separation of the cells from the matrix.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie Moléculaire et Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Liban;
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| |
Collapse
|