201
|
Tesarova L, Simara P, Stejskal S, Koutna I. Hematopoietic Developmental Potential of Human Pluripotent Stem Cell Lines Is Accompanied by the Morphology of Embryoid Bodies and the Expression of Endodermal and Hematopoietic Markers. Cell Reprogram 2017. [PMID: 28632430 DOI: 10.1089/cell.2016.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The potential clinical applications of hematopoietic stem cells (HSCs) derived from human pluripotent stem cells (hPSCs) are limited by the difficulty of recapitulating embryoid hematopoiesis and by the unknown differentiation potential of hPSC lines. To evaluate their hematopoietic developmental potential, available hPSC lines were differentiated by an embryoid body (EB) suspension culture in serum-free medium supplemented with three different cytokine mixes (CMs). The hPSC differentiation status was investigated by the flow cytometry expression profiles of cell surface molecules, and the gene expression of pluripotency and differentiation markers over time was evaluated by real-time reverse transcription polymerase chain reaction (qRT-PCR). hPSC lines differed in several aspects of the differentiation process, including the absolute yield of hematopoietic progenitors, the proportion of hematopoietic progenitor populations, and the effect of various CMs. The ability to generate hematopoietic progenitors was then associated with the morphology of the developing EBs, the expression of the endodermal markers AFP and SOX17, and the hematopoietic transcription factor RUNX1. These findings deepen the knowledge about the hematopoietic propensity of hPSCs and identify its variability as an aspect that must be taken into account before the usage of hPSC-derived HSCs in downstream applications.
Collapse
Affiliation(s)
- Lenka Tesarova
- 1 Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University , Brno, Czech Republic .,2 International Clinical Research Center, St. Anne's University Hospital Brno , Brno, Czech Republic
| | - Pavel Simara
- 1 Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University , Brno, Czech Republic .,2 International Clinical Research Center, St. Anne's University Hospital Brno , Brno, Czech Republic
| | - Stanislav Stejskal
- 1 Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University , Brno, Czech Republic
| | - Irena Koutna
- 1 Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University , Brno, Czech Republic .,2 International Clinical Research Center, St. Anne's University Hospital Brno , Brno, Czech Republic
| |
Collapse
|
202
|
Ye J, Bates N, Soteriou D, Grady L, Edmond C, Ross A, Kerby A, Lewis PA, Adeniyi T, Wright R, Poulton KV, Lowe M, Kimber SJ, Brison DR. High quality clinical grade human embryonic stem cell lines derived from fresh discarded embryos. Stem Cell Res Ther 2017; 8:128. [PMID: 28583200 PMCID: PMC5460457 DOI: 10.1186/s13287-017-0561-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human embryonic stem cells (hESCs) hold tremendous promise for cell replacement therapies for a range of degenerative diseases. In order to provide cost-effective treatments affordable by public health systems, HLA-matched allogeneic tissue banks of the highest quality clinical-grade hESCs will be required. However only a small number of existing hESC lines are suitable for clinical use; they are limited by moral and ethical concerns and none of them apply Good Manufacturing Practice (GMP) standards to the earliest and critical stages of gamete and embryo procurement. We thus aimed to derive new clinical grade hESC lines of highest quality from fresh surplus GMP grade human embryos. METHODS A comprehensive screen was performed for suitable combinations of culture media with supporting feeder cells or feeder-free matrix, at different stages, to support expansion of the inner cell mass and to establish new hESC lines. RESULTS We developed a novel two-step and sequential media system of clinical-grade hESC derivation and successfully generated seven new hESC lines of widely varying HLA type, carefully screened for genetic health, from human embryos donated under the highest ethical and moral standards under an integrated GMP system which extends from hESC banking all the way back to gamete and embryo procurement. CONCLUSIONS The present study, for the first time, reports the successful derivation of highest-quality clinical-grade hESC lines from fresh poor-quality surplus human embryos generated in a GMP-grade IVF laboratory. The availability of hESC lines of this status represents an important step towards more widespread application of regenerative medicine therapies.
Collapse
Affiliation(s)
- Jinpei Ye
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
- Present Address: Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Nicola Bates
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Despina Soteriou
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Lisa Grady
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Clare Edmond
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Alex Ross
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9PW UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Alan Kerby
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
| | - Philip A. Lewis
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
| | - Tope Adeniyi
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9PW UK
| | - Ronnie Wright
- Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Saint Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Rd, Manchester, M13 9WL UK
| | - Kay V. Poulton
- Transplantation Laboratory, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
| | - Marcus Lowe
- Transplantation Laboratory, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| | - Daniel R. Brison
- Department of Reproductive Medicine, Old St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, M13 9PW UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 46 Grafton Street, Manchester, M13 9NT UK
- North West Embryonic Stem Cell Centre, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Oxford Road, Manchester, M13 9WL UK
| |
Collapse
|
203
|
Palakkan AA, Nanda J, Ross JA. Pluripotent stem cells to hepatocytes, the journey so far. Biomed Rep 2017; 6:367-373. [PMID: 28413633 DOI: 10.3892/br.2017.867] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/15/2017] [Indexed: 12/22/2022] Open
Abstract
Over the past several years, there has been substantial progress in the field of regenerative medicine, which has enabled new possibilities for research and clinical application. For example, there are ongoing efforts directed at generating functional hepatocytes from adult-derived pluripotent cells for toxicity screening, generating disease models or, in the longer term, for the treatment of liver failure. In the present review, the authors summarise recent developments in regenerative medicine and pluripotent stem cells, the methods and tissues used for reprogramming and the differentiation of induced pluripotent stem cells (iPSCs) into hepatocyte-like cells. In addition, the hepatic disease models developed using iPSC technologies are discussed, as well as the potential for gene editing.
Collapse
Affiliation(s)
- Anwar A Palakkan
- Tissue Injury and Repair Group, Clinical Sciences, Edinburgh Medical School, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Jyoti Nanda
- Tissue Injury and Repair Group, Clinical Sciences, Edinburgh Medical School, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - James A Ross
- Tissue Injury and Repair Group, Clinical Sciences, Edinburgh Medical School, University of Edinburgh, EH16 4SB Edinburgh, UK
| |
Collapse
|
204
|
Lukovic D, Diez Lloret A, Stojkovic P, Rodríguez-Martínez D, Perez Arago MA, Rodriguez-Jimenez FJ, González-Rodríguez P, López-Barneo J, Sykova E, Jendelova P, Kostic J, Moreno-Manzano V, Stojkovic M, Bhattacharya SS, Erceg S. Highly Efficient Neural Conversion of Human Pluripotent Stem Cells in Adherent and Animal-Free Conditions. Stem Cells Transl Med 2017; 6:1217-1226. [PMID: 28213969 PMCID: PMC5442830 DOI: 10.1002/sctm.16-0371] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/20/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022] Open
Abstract
Neural differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can produce a valuable and robust source of human neural cell subtypes, holding great promise for the study of neurogenesis and development, and for treating neurological diseases. However, current hESCs and hiPSCs neural differentiation protocols require either animal factors or embryoid body formation, which decreases efficiency and yield, and strongly limits medical applications. Here we develop a simple, animal-free protocol for neural conversion of both hESCs and hiPSCs in adherent culture conditions. A simple medium formula including insulin induces the direct conversion of >98% of hESCs and hiPSCs into expandable, transplantable, and functional neural progenitors with neural rosette characteristics. Further differentiation of neural progenitors into dopaminergic and spinal motoneurons as well as astrocytes and oligodendrocytes indicates that these neural progenitors retain responsiveness to instructive cues revealing the robust applicability of the protocol in the treatment of different neurodegenerative diseases. The fact that this protocol includes animal-free medium and human extracellular matrix components avoiding embryoid bodies makes this protocol suitable for the use in clinic. Stem Cells Translational Medicine 2017;6:1217-1226.
Collapse
Affiliation(s)
- Dunja Lukovic
- Stem Cells Therapies in Neurodegenerative Diseases Lab.,National Stem Cell Bank-Valencia Node, Biomolecular and Bioinformatics Resources Platform PRB2,ISCIII
| | - Andrea Diez Lloret
- CABIMER (Centro Andaluz de Biología Molecular y Medicina Regenerativa), Avda. Americo Vespucio s/n, Parque Científico y Tecnológico Cartuja, Sevilla, Spain
| | | | - Daniel Rodríguez-Martínez
- CABIMER (Centro Andaluz de Biología Molecular y Medicina Regenerativa), Avda. Americo Vespucio s/n, Parque Científico y Tecnológico Cartuja, Sevilla, Spain
| | | | | | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS) and Departamento de Fisiología Médica y Biofísica, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS) and Departamento de Fisiología Médica y Biofísica, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - Pavla Jendelova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - Jelena Kostic
- Stem Cells Therapies in Neurodegenerative Diseases Lab
| | | | - Miodrag Stojkovic
- Spebo Medical, Leskovac, Serbia.,Faculty of Medical Sciences, Human Genetics Department, University of Kragujevac, Serbia
| | - Shomi S Bhattacharya
- CABIMER (Centro Andaluz de Biología Molecular y Medicina Regenerativa), Avda. Americo Vespucio s/n, Parque Científico y Tecnológico Cartuja, Sevilla, Spain
| | - Slaven Erceg
- Stem Cells Therapies in Neurodegenerative Diseases Lab.,National Stem Cell Bank-Valencia Node, Biomolecular and Bioinformatics Resources Platform PRB2,ISCIII.,Department of Neuroscience, Institute of Experimental Medicine, Academy of Science of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
205
|
Hung SSC, Khan S, Lo CY, Hewitt AW, Wong RCB. Drug discovery using induced pluripotent stem cell models of neurodegenerative and ocular diseases. Pharmacol Ther 2017; 177:32-43. [PMID: 28223228 DOI: 10.1016/j.pharmthera.2017.02.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The revolution of induced pluripotent stem cell (iPSC) technology provides a platform for development of cell therapy, disease modeling and drug discovery. Recent technological advances now allow us to reprogram a patient's somatic cells into induced pluripotent stem cells (iPSCs). Together with methods to differentiate these iPSCs into disease-relevant cell types, we are now able to model disease in vitro using iPSCs. Importantly, this represents a robust in vitro platform using patient-specific cells, providing opportunity for personalized precision medicine. Here we provide a review of advances using iPSC for drug development, and discuss the potential and limitations of iPSCs for drug discovery in neurodegenerative and ocular diseases. Emerging technologies that can facilitate the search for new drugs by assessment using in vitro disease models will also be discussed, including organoid differentiation, organ-on-chip, direct reprogramming and humanized animal models.
Collapse
Affiliation(s)
- Sandy S C Hung
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia
| | - Shahnaz Khan
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia
| | - Camden Y Lo
- Monash Micro Imaging, Monash University, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia; Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Australia
| | - Raymond C B Wong
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia.
| |
Collapse
|
206
|
Yabe SG, Fukuda S, Takeda F, Nashiro K, Shimoda M, Okochi H. Efficient generation of functional pancreatic β-cells from human induced pluripotent stem cells. J Diabetes 2017; 9:168-179. [PMID: 27038181 DOI: 10.1111/1753-0407.12400] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/13/2016] [Accepted: 03/25/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Insulin-secreting cells have been generated from human embryonic or induced pluripotent stem cells (iPSCs) by mimicking developmental processes. However, these cells do not always secrete glucose-responsive insulin, one of the most important characteristics of pancreatic β-cells. We focused on the importance of endodermal differentiation from human iPSCs in order to obtain functional pancreatic β-cells. METHODS A six-stage protocol was established for the differentiation of human iPSCs to pancreatic β-cells using defined culture media without feeders or serum. The effects of CHIR99021, a selective glycogen synthase kinase-3β inhibitor, were examined in the presence of fibroblast growth factor 2, activin, and bone morphogenetic protein 4 (FAB) during definitive endodermal induction by immunostaining for SRY (sex determining region Y)-box 17 (SOX17) and Forkhead box protein A2 (FOXA2). Insulin secretion was compared between the last stage of monolayer culture and spheroid culture conditions. Cultured cells were transplanted under kidney capsules of streptozotocin-diabetic non-obese diabetic-severe combined immunodeficiency mice, and blood glucose levels were measured once a week. Immunohistochemical analyses were performed 4 and 12 weeks after transplantation. RESULTS Addition of CHIR99021 (3 μmol/L) in the presence of FAB for 2 days improved endodermal cell viability, maintaining the high SOX17-positive rate. Spheroid formation after the endocrine progenitor stage showed more efficient insulin secretion than did monolayer culture. After cell transplantation, diabetic mice had lower blood glucose levels, and islet-like structures were detected in vivo. CONCLUSION Functional pancreatic β-cells were generated from human iPSCs. Induction of definitive endoderm and spheroid formation may be key steps for producing these cells.
Collapse
MESH Headings
- Activins/pharmacology
- Animals
- Bone Morphogenetic Protein 4/pharmacology
- Cell Culture Techniques/methods
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cells, Cultured
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/therapy
- Endoderm/cytology
- Endoderm/drug effects
- Endoderm/metabolism
- Fibroblast Growth Factor 2/pharmacology
- Gene Expression/drug effects
- Hepatocyte Nuclear Factor 3-beta/genetics
- Hepatocyte Nuclear Factor 3-beta/metabolism
- Humans
- Immunohistochemistry
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/transplantation
- Insulin/genetics
- Insulin/metabolism
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Male
- Mice, Inbred NOD
- Mice, SCID
- Pyridines/pharmacology
- Pyrimidines/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- SOXF Transcription Factors/genetics
- SOXF Transcription Factors/metabolism
- Spheroids, Cellular/cytology
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Stem Cell Transplantation/methods
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Shigeharu G Yabe
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Satsuki Fukuda
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Fujie Takeda
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyoko Nashiro
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Pancreatic Islet Transplantation Project, Department of Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
207
|
Blair NF, Frith TJR, Barbaric I. Regenerative Medicine: Advances from Developmental to Degenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:225-239. [PMID: 28840560 DOI: 10.1007/978-3-319-60733-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic tissue and organ failure caused by an injury, disease, ageing or congenital defects represents some of the most complex therapeutic challenges and poses a significant financial healthcare burden. Regenerative medicine strategies aim to fulfil the unmet clinical need by restoring the normal tissue function either through stimulating the endogenous tissue repair or by using transplantation strategies to replace the missing or defective cells. Stem cells represent an essential pillar of regenerative medicine efforts as they provide a source of progenitors or differentiated cells for use in cell replacement therapies. Whilst significant leaps have been made in controlling the stem cell fates and differentiating them to cell types of interest, transitioning bespoke cellular products from an academic environment to off-the-shelf clinical treatments brings about a whole new set of challenges which encompass manufacturing, regulatory and funding issues. Notwithstanding the need to resolve such issues before cell replacement therapies can benefit global healthcare, mounting progress in the field has highlighted regenerative medicine as a realistic prospect for treating some of the previously incurable conditions.
Collapse
Affiliation(s)
- Nicholas F Blair
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Thomas J R Frith
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
208
|
Yedid N, Kalma Y, Malcov M, Amit A, Kariv R, Caspi M, Rosin-Arbesfeld R, Ben-Yosef D. The effect of a germline mutation in the APC gene on β-catenin in human embryonic stem cells. BMC Cancer 2016; 16:952. [PMID: 28010732 PMCID: PMC5180406 DOI: 10.1186/s12885-016-2809-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
Background Most cases of colorectal cancer (CRC) are initiated by inactivation mutations in the APC gene, which is a negative regulator of the Wnt-β-catenin pathway. Patients with familial adenomatous polyposis (FAP) inherit a germline mutation in one APC allele, and loss of the second allele leads to the development of polyps that will turn malignant if not removed. It is not fully understood which molecular mechanisms are activated by APC loss and when the loss of the second APC allele occurs. Methods Two FAP human embryonic stem cell (hESCs) lines were derived from APC mutated embryos following pre-implantation genetic diagnosis (PGD) for FAP. These FAP-hESCs were cultured in vitro and following extended culture: 1) β-catenin expression was analyzed by Western blot analysis; 2) Wnt-β-catenin/TCF-mediated transcription luciferase assay was performed; 3) cellular localization of β-catenin was evaluated by immunoflorecence confocal microscopy; and 4) DNA sequencing of the APC gene was performed. Results We have established a novel human in-vitro model for studying malignant transformation, using hESCs that carry a germline mutation in the APC gene following PGD for FAP. Extended culturing of FAP1 hESCs led to activation of the Wnt signaling pathway, as demonstrated by enhanced β-catenin/TCF-mediated activity. Additionally, β-catenin showed a distinct perinuclear distribution in most (91 %) of the FAP1 hESCs high passage colonies. DNA sequencing of the whole gene detected several polymorphisms in FAP1 hESCs, however, no somatic mutations were discovered in the APC gene. On the other hand, no changes in β-catenin were detected in the FAP2 hESCs, demonstrating the natural diversity of the human FAP population. Conclusions Our results describe the establishment of novel hESC lines from FAP patients with a predisposition for cancer mutation. These cells can be maintained in culture for long periods of time and may serve as a platform for studying the initial molecular and cellular changes that occur during early stages of malignant transformation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2809-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nofar Yedid
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yael Kalma
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mira Malcov
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ami Amit
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Revital Kariv
- Departmant of Gastroenterology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Tel-Aviv University, Tel Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Tel-Aviv University, Tel Aviv, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel. .,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
209
|
Morizane R, Bonventre JV. Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells. Nat Protoc 2016; 12:195-207. [PMID: 28005067 DOI: 10.1038/nprot.2016.170] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A variety of protocols have been developed that demonstrate the capability to differentiate human pluripotent stem cells (hPSCs) into kidney structures. Our goal was to develop a high-efficiency protocol to generate nephron progenitor cells (NPCs) and kidney organoids to facilitate applications for tissue engineering, disease modeling and chemical screening. Here, we describe a detailed protocol resulting in high-efficiency production (80-90%) of NPCs from hPSCs within 9 d of differentiation. Kidney organoids were generated from NPCs within 12 d with high reproducibility using 96-well plates suitable for chemical screening. The protocol requires skills for culturing hPSCs and careful attention to morphological changes indicative of differentiation. This kidney organoid system provides a platform for studies of human kidney development, modeling of kidney diseases, nephrotoxicity and kidney regeneration. The system provides a model for in vitro study of kidney intracellular and intercompartmental interactions using differentiated human cells in an appropriate nephron and stromal context.
Collapse
Affiliation(s)
- Ryuji Morizane
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
210
|
Zhao Z, Ma Y, Chen Z, Liu Q, Li Q, Kong D, Yuan K, Hu L, Wang T, Chen X, Peng Y, Jiang W, Yu Y, Liu X. Effects of Feeder Cells on Dopaminergic Differentiation of Human Embryonic Stem Cells. Front Cell Neurosci 2016; 10:291. [PMID: 28066186 PMCID: PMC5168467 DOI: 10.3389/fncel.2016.00291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/05/2016] [Indexed: 01/30/2023] Open
Abstract
Mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (HFFs) are used for the culture of human embryonic stem cells (hESCs). MEFs and HFFs differed in their capacity to support the proliferation and pluripotency of hESCs and could affect cardiac differentiation potential of hESCs. The aim of this study was to evaluate the effect of MEFs and HFFs feeders on dopaminergic differentiation of hESCs lines. To minimize the impact of culture condition variation, two hESCs lines were cultured on mixed feeder cells (MFCs, MEFs: HFFs = 1:1) and HFFs feeder, respectively, and then were differentiated into dopaminergic (DA) neurons under the identical protocol. Dopaminergic differentiation was evaluated by immunocytochemistry, quantitative fluorescent real-time PCR, transmission and scanning electron microscopy, and patch clamp. Our results demonstrated that these hESCs-derived neurons were genuine and functional DA neurons. However, compared to hESCs line on MFCs feeder, hESCs line on HFFs feeder had a higher proportion of tyrosine hydroxylase (TH) positive cells and expressed higher levels of FOXA2, PITX3, NURR1, and TH genes. In addition, the values of threshold intensity and threshold membrane potential of DA neurons from hESCs line on HFFs feeder were lower than those of DA neurons from hESCs line on the MFCs feeder. In conclusion, HFFs feeder not only facilitated the differentiation of hESCs cells into dopaminergic neurons, but also induced hESCs-derived DA neurons to express higher electrophysiological excitability. Therefore, feeder cells could affect not only dopaminergic differentiation potential of different hESCs lines, but also electrophysiological properties of hESCs-derived DA neurons.
Collapse
Affiliation(s)
- Zhenqiang Zhao
- Department of Neurology, Jinling Hospital, Southern Medical UniversityNanjing, China; Department of Neurology, First Affiliated Hospital, Hainan Medical UniversityHaikou, China
| | - Yanlin Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China; Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, First Affiliated Hospital, Hainan Medical UniversityHaikou, China
| | - Zhibin Chen
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Southern Medical University Nanjing, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Deyan Kong
- Department of Neurology, Jinling Hospital, Southern Medical UniversityNanjing, China; Department of Neurology, Affiliated Ruikang Hospital, Guangxi Traditional Chinese Medical UniversityNanning, China
| | - Kunxiong Yuan
- Department of Neurology, Jinling Hospital, Southern Medical UniversityNanjing, China; Department of Neurology, Central HospitalShenzhen, China
| | - Lan Hu
- Department of Laboratory Medicines, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Tan Wang
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Xiaowu Chen
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Yanan Peng
- Department of Neurology, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Weimin Jiang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Reproductive Medical Center, First Affiliated Hospital, Hainan Medical University Haikou, China
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University Guangzhou, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Southern Medical University Nanjing, China
| |
Collapse
|
211
|
Myszczynska M, Ferraiuolo L. New In Vitro Models to Study Amyotrophic Lateral Sclerosis. Brain Pathol 2016; 26:258-65. [PMID: 26780562 DOI: 10.1111/bpa.12353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/14/2016] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex multifactorial disorder, characterized by motor neuron loss with involvement of several other cell types, including astrocytes, oligodendrocytes and microglia. Studies in vivo and in in vitro models have highlighted that the contribution of non-neuronal cells to the disease is a primary event and ALS pathogenesis is driven by both cell-autonomous and non-cell autonomous mechanisms. The advancements in genetics and in vitro modeling of the past 10 years have dramatically changed the way we investigate the pathogenic mechanisms involved in ALS. The identification of mutations in transactive response DNA-binding protein gene (TARDBP), fused in sarcoma (FUS) and, more recently, a GGGGCC-hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9ORF72) and their link with familial ALS have provided new avenues of investigation and hypotheses on the pathophysiology of this devastating disease. In the same years, from 2007 to present, in vitro technologies to model neurological disorders have also undergone impressive developments. The advent of induced pluripotent stem cells (iPSCs) gave the field of ALS the opportunity to finally model in vitro not only familial, but also the larger part of ALS cases affected by sporadic disease. Since 2008, when the first human iPS-derived motor neurons from patients were cultured in a petri dish, several different techniques have been developed to produce iPSC lines through genetic reprogramming and multiple direct conversion methods have been optimised. In this review, we will give an overview of how human in vitro models have been used so far, what discoveries they have led to since 2007, and how the recent advances in technology combined with the genetic discoveries, have tremendously widened the horizon of ALS research.
Collapse
Affiliation(s)
- Monika Myszczynska
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, UK
| | - Laura Ferraiuolo
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, UK
| |
Collapse
|
212
|
One Standardized Differentiation Procedure Robustly Generates Homogenous Hepatocyte Cultures Displaying Metabolic Diversity from a Large Panel of Human Pluripotent Stem Cells. Stem Cell Rev Rep 2016; 12:90-104. [PMID: 26385115 DOI: 10.1007/s12015-015-9621-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human hepatocytes display substantial functional inter-individual variation regarding drug metabolizing functions. In order to investigate if this diversity is mirrored in hepatocytes derived from different human pluripotent stem cell (hPSC) lines, we evaluated 25 hPSC lines originating from 24 different donors for hepatic differentiation and functionality. Homogenous hepatocyte cultures could be derived from all hPSC lines using one standardized differentiation procedure. To the best of our knowledge this is the first report of a standardized hepatic differentiation procedure that is generally applicable across a large panel of hPSC lines without any adaptations to individual lines. Importantly, with regard to functional aspects, such as Cytochrome P450 activities, we observed that hepatocytes derived from different hPSC lines displayed inter-individual variation characteristic for primary hepatocytes obtained from different donors, while these activities were highly reproducible between repeated experiments using the same line. Taken together, these data demonstrate the emerging possibility to compile panels of hPSC-derived hepatocytes of particular phenotypes/genotypes relevant for drug metabolism and toxicity studies. Moreover, these findings are of significance for applications within the regenerative medicine field, since our stringent differentiation procedure allows the derivation of homogenous hepatocyte cultures from multiple donors which is a prerequisite for the realization of future personalized stem cell based therapies.
Collapse
|
213
|
Bian Q, Cahan P. Computational Tools for Stem Cell Biology. Trends Biotechnol 2016; 34:993-1009. [PMID: 27318512 PMCID: PMC5116400 DOI: 10.1016/j.tibtech.2016.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/30/2022]
Abstract
For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate.
Collapse
Affiliation(s)
- Qin Bian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrick Cahan
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
214
|
Development of a rapid screen for the endodermal differentiation potential of human pluripotent stem cell lines. Sci Rep 2016; 6:37178. [PMID: 27872482 PMCID: PMC5118706 DOI: 10.1038/srep37178] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/26/2016] [Indexed: 02/07/2023] Open
Abstract
A challenge facing the human pluripotent stem cell (hPSC) field is the variability observed in differentiation potential of hPSCs. Variability can lead to time consuming and costly optimisation to yield the cell type of interest. This is especially relevant for the differentiation of hPSCs towards the endodermal lineages. Endodermal cells have the potential to yield promising new knowledge and therapies for diseases affecting multiple organ systems, including lung, thymus, intestine, pancreas and liver, as well as applications in regenerative medicine and toxicology. Providing a means to rapidly, cheaply and efficiently assess the differentiation potential of multiple hPSCs is of great interest. To this end, we have developed a rapid small molecule based screen to assess the endodermal potential (EP) of hPSCs, based solely on definitive endoderm (DE) morphology. This drastically reduces the cost and time to identify lines suitable for use in deriving endodermal lineages. We demonstrate the efficacy of this screen using 10 different hPSCs, including 4 human embryonic stem cell lines (hESCs) and 6 human induced pluripotent stem cell lines (hiPSCs). The screen clearly revealed lines amenable to endodermal differentiation, and only lines that passed our morphological assessment were capable of further differentiation to hepatocyte like cells (HLCs).
Collapse
|
215
|
Yanagihara K, Liu Y, Kanie K, Takayama K, Kokunugi M, Hirata M, Fukuda T, Suga M, Nikawa H, Mizuguchi H, Kato R, Furue MK. Prediction of Differentiation Tendency Toward Hepatocytes from Gene Expression in Undifferentiated Human Pluripotent Stem Cells. Stem Cells Dev 2016; 25:1884-1897. [PMID: 27733097 PMCID: PMC5165660 DOI: 10.1089/scd.2016.0099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Functional hepatocytes derived from human pluripotent stem cells (hPSCs) have potential as tools for predicting drug-induced hepatotoxicity in the early phases of drug development. However, the propensity of hPSC lines to differentiate into specific lineages is reported to differ. The ability to predict low propensity of hPSCs to differentiate into hepatocytes would facilitate the selection of useful hPSC clones and substantially accelerate development of hPSC-derived hepatocytes for pharmaceutical research. In this study, we compared the expression of genes associated with hepatic differentiation in five hPSC lines including human ES cell line, H9, which is known to differentiate into hepatocytes, and an hPSC line reported with a poor propensity for hepatic differentiation. Genes distinguishing between undifferentiated hPSCs, hPSC-derived hepatoblast-like differentiated cells, and primary human hepatocytes were drawn by two-way cluster analysis. The order of expression levels of genes in undifferentiated hPSCs was compared with that in hPSC-derived hepatoblast-like cells. Three genes were selected as predictors of low propensity for hepatic differentiation. Expression of these genes was investigated in 23 hPSC clones. Review of representative cells by induction of hepatic differentiation suggested that low prediction scores were linked with low hepatic differentiation. Thus, our model using gene expression ranking and bioinformatic analysis could reasonably predict poor differentiation propensity of hPSC lines.
Collapse
Affiliation(s)
- Kana Yanagihara
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Yujung Liu
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Kei Kanie
- 2 Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| | - Kazuo Takayama
- 3 Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan .,4 The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University , Kyoto, Japan .,5 Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Minako Kokunugi
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan .,6 Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Mitsuhi Hirata
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Takayuki Fukuda
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Mika Suga
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| | - Hiroki Nikawa
- 6 Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Hiroyuki Mizuguchi
- 3 Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan .,5 Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan .,7 Global Center for Medical Engineering and Informatics, Osaka University , Osaka, Japan
| | - Ryuji Kato
- 2 Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University , Nagoya, Japan
| | - Miho K Furue
- 1 Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation , Health and Nutrition, Osaka, Japan
| |
Collapse
|
216
|
Yamashita-Sugahara Y, Matsumoto M, Ohtaka M, Nishimura K, Nakanishi M, Mitani K, Okazaki Y. An inhibitor of fibroblast growth factor receptor-1 (FGFR1) promotes late-stage terminal differentiation from NGN3+ pancreatic endocrine progenitors. Sci Rep 2016; 6:35908. [PMID: 27786288 PMCID: PMC5081516 DOI: 10.1038/srep35908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) provide a potential resource for regenerative medicine. To identify the signalling pathway(s) contributing to the development of functional β cells, we established a tracing model consisting of dual knock-in hiPSCs (INS-Venus/NGN3-mCherry) (hIveNry) expressing the fluorescent proteins Venus and mCherry under the control of intrinsic insulin (INS) and neurogenin 3 (NGN3) promoters, respectively. hIveNry iPSCs differentiated into NGN3- and mCherry-positive endocrine progenitors and then into Venus-positive β cells expressing INS, PDX1, NKX6.1, and glucokinase (GCK). Using these cells, we conducted high-throughput screening of chemicals and identified a specific kinase inhibitor of fibroblast growth factor receptor 1 (FGFR1) that acted in a stage-dependent manner to promote the terminal differentiation of pancreatic endocrine cells, including β cells, from the intermediate stage of pancreatic endocrine progenitors while blocking the early development of pancreatic progenitors. This FGFR1 inhibitor augmented the expression of functional β cell markers (SLC30A8 and ABCC8) and improved glucose-stimulated INS secretion. Our findings indicate that the hIveNry model could provide further insights into the mechanisms of hiPS-derived β cell differentiation controlled by FGFR1-mediated regulatory pathways in a temporal-dependent fashion.
Collapse
Affiliation(s)
- Yzumi Yamashita-Sugahara
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Masahito Matsumoto
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Manami Ohtaka
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Kohnosuke Mitani
- Division of Gene Therapy, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Yasushi Okazaki
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
217
|
Wu J, Platero Luengo A, Gil MA, Suzuki K, Cuello C, Morales Valencia M, Parrilla I, Martinez CA, Nohalez A, Roca J, Martinez EA, Izpisua Belmonte JC. Generation of human organs in pigs via interspecies blastocyst complementation. Reprod Domest Anim 2016; 51 Suppl 2:18-24. [DOI: 10.1111/rda.12796] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- J Wu
- Salk Institute for Biological Studies; La Jolla CA USA
| | | | - MA Gil
- Department of Animal Medicine and Surgery; University of Murcia; Murcia Spain
| | - K Suzuki
- Salk Institute for Biological Studies; La Jolla CA USA
| | - C Cuello
- Department of Animal Medicine and Surgery; University of Murcia; Murcia Spain
| | | | - I Parrilla
- Department of Animal Medicine and Surgery; University of Murcia; Murcia Spain
| | - CA Martinez
- Department of Animal Medicine and Surgery; University of Murcia; Murcia Spain
| | - A Nohalez
- Department of Animal Medicine and Surgery; University of Murcia; Murcia Spain
| | - J Roca
- Department of Animal Medicine and Surgery; University of Murcia; Murcia Spain
| | - EA Martinez
- Department of Animal Medicine and Surgery; University of Murcia; Murcia Spain
| | | |
Collapse
|
218
|
Zhu L, Gomez-Duran A, Saretzki G, Jin S, Tilgner K, Melguizo-Sanchis D, Anyfantis G, Al-Aama J, Vallier L, Chinnery P, Lako M, Armstrong L. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol 2016; 215:187-202. [PMID: 27810911 PMCID: PMC5084643 DOI: 10.1083/jcb.201601061] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/19/2016] [Indexed: 01/09/2023] Open
Abstract
Human induced pluripotent stem cell (hiPSC) utility is limited by variations in the ability of these cells to undergo lineage-specific differentiation. We have undertaken a transcriptional comparison of human embryonic stem cell (hESC) lines and hiPSC lines and have shown that hiPSCs are inferior in their ability to undergo neuroectodermal differentiation. Among the differentially expressed candidates between hESCs and hiPSCs, we identified a mitochondrial protein, CHCHD2, whose expression seems to correlate with neuroectodermal differentiation potential of pluripotent stem cells. We provide evidence that hiPSC variability with respect to CHCHD2 expression and differentiation potential is caused by clonal variation during the reprogramming process and that CHCHD2 primes neuroectodermal differentiation of hESCs and hiPSCs by binding and sequestering SMAD4 to the mitochondria, resulting in suppression of the activity of the TGFβ signaling pathway. Using CHCHD2 as a marker for assessing and comparing the hiPSC clonal and/or line differentiation potential provides a tool for large scale differentiation and hiPSC banking studies.
Collapse
Affiliation(s)
- Lili Zhu
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Aurora Gomez-Duran
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Gabriele Saretzki
- Institute for Ageing and Health, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Shibo Jin
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Katarzyna Tilgner
- Wellcome Trust-Medical Research Council Stem Cell Institute, Hinxton, Cambridge CB10 1SA, England, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, England, UK
| | | | - Georgios Anyfantis
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Jumana Al-Aama
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Stem Cell Institute, Hinxton, Cambridge CB10 1SA, England, UK
| | - Patrick Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, England, UK
| |
Collapse
|
219
|
Pellegrini S, Cantarelli E, Sordi V, Nano R, Piemonti L. The state of the art of islet transplantation and cell therapy in type 1 diabetes. Acta Diabetol 2016; 53:683-91. [PMID: 26923700 DOI: 10.1007/s00592-016-0847-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/06/2016] [Indexed: 12/17/2022]
Abstract
In patients with type 1 diabetes (T1D), pancreatic β cells are destroyed by a selective autoimmune attack and their replacement with functional insulin-producing cells is the only possible cure for this disease. The field of islet transplantation has evolved significantly from the breakthrough of the Edmonton Protocol in 2000, since significant advances in islet isolation and engraftment, together with improved immunosuppressive strategies, have been reported. The main limitations, however, remain the insufficient supply of human tissue and the need for lifelong immunosuppression therapy. Great effort is then invested in finding innovative sources of insulin-producing β cells. One old alternative with new recent perspectives is the use of non-human donor cells, in particular porcine β cells. Also the field of preexisting β cell expansion has advanced, with the development of new human β cell lines. Yet, large-scale production of human insulin-producing cells from stem cells is the most recent and promising alternative. In particular, the optimization of in vitro strategies to differentiate human embryonic stem cells into mature insulin-secreting β cells has made considerable progress and recently led to the first clinical trial of stem cell treatment for T1D. Finally, the discovery that it is possible to derive human induced pluripotent stem cells from somatic cells has raised the possibility that a sufficient amount of patient-specific β cells can be derived from patients through cell reprogramming and differentiation, suggesting that in the future there might be a cell therapy without immunosuppression.
Collapse
Affiliation(s)
- Silvia Pellegrini
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Cantarelli
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rita Nano
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
220
|
Saitoh I, Sato M, Soda M, Inada E, Iwase Y, Murakami T, Ohshima H, Hayasaki H, Noguchi H. Tissue-Specific Stem Cells Obtained by Reprogramming of Non-Obese Diabetic (NOD) Mouse-Derived Pancreatic Cells Confer Insulin Production in Response to Glucose. PLoS One 2016; 11:e0163580. [PMID: 27662374 PMCID: PMC5035045 DOI: 10.1371/journal.pone.0163580] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 09/12/2016] [Indexed: 12/31/2022] Open
Abstract
Type 1 diabetes occurs due to the autoimmune destruction of pancreatic β-cells in islets. Transplantation of islets is a promising option for the treatment of patients with type 1 diabetes that experience hypoglycemic unawareness despite maximal care, but the present shortage of donor islets hampers such transplantation. Transplantation of insulin-producing cells derived from the patients themselves would be one of the most promising approaches to cure type 1 diabetes. Previously, we demonstrated that insulin-producing cells could be produced by transfecting murine pancreatic cells with Yamanaka’s reprogramming factors. Non-obese diabetic (NOD) mice are naturally occurring mutant mice defective in insulin production due to autoimmune ablation of pancreatic β-cells. In this study, we showed that glucose-sensitive insulin-producing cells are successfully generated by transfecting primary pancreatic cells from NOD mice (aged 6 months old) with a plasmid harboring the cDNAs for Oct-3/4, Sox2, Klf4, and c-Myc. Transfection was repeated 4 times in a 2 day-interval. Sixty-five days after final transfection, cobblestone-like colonies appeared. They proliferated in vitro and expressed pluripotency-related genes as well as Pdx1, a transcription factor specific to tissue-specific stem cells for the β-cell lineage. Transplantation of these cells into nude mice failed to produce teratoma unlike induced pluripotent stem cells (iPSCs). Induction of these cells to the pancreatic β-cell lineage demonstrated their capability to produce insulin in response to glucose. These findings suggest that functional pancreatic β-cells can be produced from patients with type 1 diabetes. We call these resultant cells as “induced tissue-specific stem cells from the pancreas” (iTS-P) that could be valuable sources of safe and effective materials for cell-based therapy in type 1 diabetes.
Collapse
Affiliation(s)
- Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951–8514, Japan
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, 890–0065, Japan
| | - Miki Soda
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951–8514, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890–8544, Japan
| | - Yoko Iwase
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951–8514, Japan
| | - Tomoya Murakami
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951–8514, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951–8514, Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951–8514, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyu, Okinawa, 903–0215, Japan
- * E-mail:
| |
Collapse
|
221
|
Zimmerlin L, Park TS, Huo JS, Verma K, Pather SR, Talbot CC, Agarwal J, Steppan D, Zhang YW, Considine M, Guo H, Zhong X, Gutierrez C, Cope L, Canto-Soler MV, Friedman AD, Baylin SB, Zambidis ET. Tankyrase inhibition promotes a stable human naïve pluripotent state with improved functionality. Development 2016; 143:4368-4380. [PMID: 27660325 DOI: 10.1242/dev.138982] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/11/2016] [Indexed: 01/04/2023]
Abstract
The derivation and maintenance of human pluripotent stem cells (hPSCs) in stable naïve pluripotent states has a wide impact in human developmental biology. However, hPSCs are unstable in classical naïve mouse embryonic stem cell (ESC) WNT and MEK/ERK signal inhibition (2i) culture. We show that a broad repertoire of conventional hESC and transgene-independent human induced pluripotent stem cell (hiPSC) lines could be reverted to stable human preimplantation inner cell mass (ICM)-like naïve states with only WNT, MEK/ERK, and tankyrase inhibition (LIF-3i). LIF-3i-reverted hPSCs retained normal karyotypes and genomic imprints, and attained defining mouse ESC-like functional features, including high clonal self-renewal, independence from MEK/ERK signaling, dependence on JAK/STAT3 and BMP4 signaling, and naïve-specific transcriptional and epigenetic configurations. Tankyrase inhibition promoted a stable acquisition of a human preimplantation ICM-like ground state via modulation of WNT signaling, and was most efficacious in efficiently reprogrammed conventional hiPSCs. Importantly, naïve reversion of a broad repertoire of conventional hiPSCs reduced lineage-primed gene expression and significantly improved their multilineage differentiation capacities. Stable naïve hPSCs with reduced genetic variability and improved functional pluripotency will have great utility in regenerative medicine and human disease modeling.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - Tea Soon Park
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - Jeffrey S Huo
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - Karan Verma
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - Sarshan R Pather
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences at Johns Hopkins, Baltimore, MD 21205, USA
| | - Jasmin Agarwal
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - Diana Steppan
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - Yang W Zhang
- Division of Cancer Biology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Michael Considine
- Division of Cancer Biology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Hong Guo
- Division of Pediatric Oncology, Baltimore, MD 21205, USA
| | - Xiufeng Zhong
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christian Gutierrez
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Leslie Cope
- Division of Cancer Biology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - M Valeria Canto-Soler
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Stephen B Baylin
- Division of Cancer Biology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Elias T Zambidis
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Division of Pediatric Oncology, Baltimore, MD 21205, USA
| |
Collapse
|
222
|
Glycolytic Metabolism Plays a Functional Role in Regulating Human Pluripotent Stem Cell State. Cell Stem Cell 2016; 19:476-490. [PMID: 27618217 DOI: 10.1016/j.stem.2016.08.008] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 04/25/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
The rate of glycolytic metabolism changes during differentiation of human embryonic stem cells (hESCs) and reprogramming of somatic cells to pluripotency. However, the functional contribution of glycolytic metabolism to the pluripotent state is unclear. Here we show that naive hESCs exhibit increased glycolytic flux, MYC transcriptional activity, and nuclear N-MYC localization relative to primed hESCs. This status is consistent with the inner cell mass of human blastocysts, where MYC transcriptional activity is higher than in primed hESCs and nuclear N-MYC levels are elevated. Reduction of glycolysis decreases self-renewal of naive hESCs and feeder-free primed hESCs, but not primed hESCs grown in feeder-supported conditions. Reduction of glycolysis in feeder-free primed hESCs also enhances neural specification. These findings reveal associations between glycolytic metabolism and human naive pluripotency and differences in the metabolism of feeder-/feeder-free cultured hESCs. They may also suggest methods for regulating self-renewal and initial cell fate specification of hESCs.
Collapse
|
223
|
Abstract
Embryonic pluripotency can be recapitulated in vitro by a spectrum of pluripotent stem cell states stabilized with different culture conditions. Their distinct spatiotemporal characteristics provide an unprecedented tool for the study of early human development. The newly unveiled ability of some stem cell types for crossing xeno-barriers will facilitate the generation of interspecies chimeric embryos from distant species, including humans. When combined with efficient zygote genome editing technologies, xenogeneic human pluripotent stem cells may also open new frontiers for regenerative medicine applications, including the possibility of generating human organs in animals via interspecies chimeric complementation.
Collapse
|
224
|
Abstract
The human kidney develops from four progenitor populations-nephron progenitors, ureteric epithelial progenitors, renal interstitial progenitors and endothelial progenitors-resulting in the formation of maximally 2 million nephrons. Until recently, the reported methods differentiated human pluripotent stem cells (hPSCs) into either nephron progenitor or ureteric epithelial progenitor cells, consequently forming only nephrons or collecting ducts, respectively. Here we detail a protocol that simultaneously induces all four progenitors to generate kidney organoids within which segmented nephrons are connected to collecting ducts and surrounded by renal interstitial cells and an endothelial network. As evidence of functional maturity, proximal tubules within organoids display megalin-mediated and cubilin-mediated endocytosis, and they respond to a nephrotoxicant to undergo apoptosis. This protocol consists of 7 d of monolayer culture for intermediate mesoderm induction, followed by 18 d of 3D culture to facilitate self-organizing renogenic events leading to organoid formation. Personnel experienced in culturing hPSCs are required to conduct this protocol.
Collapse
|
225
|
Spitalieri P, Talarico RV, Botta A, Murdocca M, D'Apice MR, Orlandi A, Giardina E, Santoro M, Brancati F, Novelli G, Sangiuolo F. Generation of Human Induced Pluripotent Stem Cells from Extraembryonic Tissues of Fetuses Affected by Monogenic Diseases. Cell Reprogram 2016; 17:275-87. [PMID: 26474030 DOI: 10.1089/cell.2015.0003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The generation of human induced pluripotent stem cells (hiPSCs) derived from an autologous extraembryonic fetal source is an innovative personalized regenerative technology that can transform own-self cells into embryonic stem-like ones. These cells are regarded as a promising candidate for cell-based therapy, as well as an ideal target for disease modeling and drug discovery. Thus, hiPSCs enable researchers to undertake studies for treating diseases or for future applications of in utero therapy. We used a polycistronic lentiviral vector (hSTEMCCA-loxP) encoding OCT4, SOX2, KLF4, and cMYC genes and containing loxP sites, excisible by Cre recombinase, to reprogram patient-specific fetal cells derived from prenatal diagnosis for several genetic disorders, such as myotonic dystrophy type 1 (DM1), β-thalassemia (β-Thal), lymphedema-distichiasis syndrome (LDS), spinal muscular atrophy (SMA), cystic fibrosis (CF), as well as from wild-type (WT) fetal cells. Because cell types tested to create hiPSCs influence both the reprogramming process efficiency and the kinetics, we used chorionic villus (CV) and amniotic fluid (AF) cells, demonstrating how they represent an ideal cell resource for a more efficient generation of hiPSCs. The successful reprogramming of both CV and AF cells into hiPSCs was confirmed by specific morphological, molecular, and immunocytochemical markers and also by their teratogenic potential when inoculated in vivo. We further demonstrated the stability of reprogrammed cells over 10 and more passages and their capability to differentiate into the three embryonic germ layers, as well as into neural cells. These data suggest that hiPSCs-CV/AF can be considered a valid cellular model to accomplish pathogenesis studies and therapeutic applications.
Collapse
Affiliation(s)
- Paola Spitalieri
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Rosa V Talarico
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Annalisa Botta
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Michela Murdocca
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | | | - Augusto Orlandi
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy
| | - Emiliano Giardina
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy .,3 Molecular Genetics Laboratory UILDM , Santa Lucia Foundation, Rome, 00142, Italy
| | | | - Francesco Brancati
- 2 Department of Laboratory Medicine, Policlinic of Tor Vergata , Rome, 00133, Italy
| | - Giuseppe Novelli
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy .,2 Department of Laboratory Medicine, Policlinic of Tor Vergata , Rome, 00133, Italy
| | - Federica Sangiuolo
- 1 Department of Biomedicine and Prevention, Tor Vergata University of Rome , Rome, 00133, Italy .,2 Department of Laboratory Medicine, Policlinic of Tor Vergata , Rome, 00133, Italy
| |
Collapse
|
226
|
Abstract
The ability to reprogram somatic cells into induced pluripotent stem cells (iPSCs) using defined factors provides new tools for biomedical research. However, some iPSC clones display tumorigenic and immunogenic potential, thus raising concerns about their utility and safety in the clinical setting. Furthermore, variability in iPSC differentiation potential has also been described. Here we discuss whether these therapeutic obstacles are specific to transcription-factor-mediated reprogramming or inherent to every cellular reprogramming method. Finally, we address whether a better understanding of the mechanism underlying the reprogramming process might improve the fidelity of reprogramming and, therefore, the iPSC quality.
Collapse
Affiliation(s)
- Natalia Tapia
- Institute of Biomedicine of Valencia, Spanish National Research Council, Jaime Roig 11, 46010 Valencia, Spain.
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany; Medical Faculty, University of Münster, Domagkstraße 3, 48149 Münster, Germany.
| |
Collapse
|
227
|
Ilic D, Ogilvie C. Concise Review: Human Embryonic Stem Cells-What Have We Done? What Are We Doing? Where Are We Going? Stem Cells 2016; 35:17-25. [DOI: 10.1002/stem.2450] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Dusko Ilic
- Division of Women's Health, Faculty of Life Sciences and Medicine; King's College London; London United Kingdom
- Assisted Conception Unit; London United Kingdom
| | | |
Collapse
|
228
|
Ohnuki M, Takahashi K. Present and future challenges of induced pluripotent stem cells. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140367. [PMID: 26416678 DOI: 10.1098/rstb.2014.0367] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Growing old is our destiny. However, the mature differentiated cells making up our body can be rejuvenated to an embryo-like fate called pluripotency which is an ability to differentiate into all cell types by enforced expression of defined transcription factors. The discovery of this induced pluripotent stem cell (iPSC) technology has opened up unprecedented opportunities in regenerative medicine, disease modelling and drug discovery. In this review, we introduce the applications and future perspectives of human iPSCs and we also show how iPSC technology has evolved along the way.
Collapse
Affiliation(s)
- Mari Ohnuki
- Department Biology II, Ludwig Maximilians University Munich, 82152 Martinsried Planegg, Germany
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| |
Collapse
|
229
|
Aoi T. 10th anniversary of iPS cells: the challenges that lie ahead. J Biochem 2016; 160:121-9. [PMID: 27387749 DOI: 10.1093/jb/mvw044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/16/2016] [Indexed: 12/31/2022] Open
Abstract
In 2006, induced pluripotent stem (iPS) cells were generated by Yamanaka and Takahashi for the first time from a mouse fibroblast culture by introducing four factors. In the 10 years since then, this breakthrough discovery has been making waves in the fields of biology and medical science. For example, various technologies for generating iPS cells have been developed, and we have cultivated a better understanding of the mechanisms involved in reprogramming. In addition, many researchers have explored the applications of iPS cells, such as drug discovery, the study of disease mechanisms and regenerative medicine, and the development of advanced technologies for the differentiation and qualification of the cells. Furthermore, the concept of iPS cell generation has inspired a number of studies that do not use iPS cells. We herein review and discuss the past, present and future of iPS cells and their related issues.
Collapse
Affiliation(s)
- Takashi Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Japan Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan
| |
Collapse
|
230
|
Ramachandra CJA, Mehta A, Lua CH, Chitre A, Ja KPMM, Shim W. ErbB Receptor Tyrosine Kinase: A Molecular Switch Between Cardiac and Neuroectoderm Specification in Human Pluripotent Stem Cells. Stem Cells 2016; 34:2461-2470. [PMID: 27324647 DOI: 10.1002/stem.2420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 04/18/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
Abstract
Mechanisms determining intrinsic differentiation bias inherent to human pluripotent stem cells (hPSCs) toward cardiogenic fate remain elusive. We evaluated the interplay between ErbB4 and Epidemal growth factor receptor (EGFR or ErbB1) in determining cardiac differentiation in vitro as these receptor tyrosine kinases are key to heart and brain development in vivo. Our results demonstrate that during cardiac differentiation, cell fate biases exist in hPSCs due to cardiac/neuroectoderm divergence post cardiac mesoderm stage. Stage-specific up-regulation of EGFR in concert with persistent Wnt3a signaling post cardiac mesoderm favors commitment toward neural progenitor cells (NPCs). Inhibition of EGFR abrogates these effects with enhanced (>twofold) cardiac differentiation efficiencies by increasing proliferation of Nkx2-5 expressing cardiac progenitors while reducing proliferation of Sox2 expressing NPCs. Forced overexpression of ErbB4 rescued cardiac commitment by augmenting Wnt11 signaling. Convergence between EGFR/ErbB4 and canonical/noncanonical Wnt signaling determines cardiogenic fate in hPSCs. Stem Cells 2016;34:2461-2470.
Collapse
Affiliation(s)
| | - Ashish Mehta
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore. .,Cardiovascular Academic Clinical Program.
| | - Chong Hui Lua
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Anuja Chitre
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - K P Myu Mai Ja
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Winston Shim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore. .,Cardiovascular and Metabolic Disorders Program, DUKE-NUS Graduate Medical School, Singapore.
| |
Collapse
|
231
|
Kramer N, Rosner M, Kovacic B, Hengstschläger M. Full biological characterization of human pluripotent stem cells will open the door to translational research. Arch Toxicol 2016; 90:2173-2186. [PMID: 27325309 DOI: 10.1007/s00204-016-1763-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022]
Abstract
Since the discovery of human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC), great hopes were held for their therapeutic application including disease modeling, drug discovery screenings, toxicological screenings and regenerative therapy. hESC and hiPSC have the advantage of indefinite self-renewal, thereby generating an inexhaustible pool of cells with, e.g., specific genotype for developing putative treatments; they can differentiate into derivatives of all three germ layers enabling autologous transplantation, and via donor-selection they can express various genotypes of interest for better disease modeling. Furthermore, drug screenings and toxicological screenings in hESC and hiPSC are more pertinent to identify drugs or chemical compounds that are harmful for human, than a mouse model could predict. Despite continuing research in the wide field of therapeutic applications, further understanding of the underlying basic mechanisms of stem cell function is necessary. Here, we summarize current knowledge concerning pluripotency, self-renewal, apoptosis, motility, epithelial-to-mesenchymal transition and differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
- Nina Kramer
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria
| | - Margit Rosner
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria
| | - Boris Kovacic
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Währingerstrasse 10, 1090, Vienna, Austria.
| |
Collapse
|
232
|
Shaer A, Azarpira N, Karimi MH, Soleimani M, Dehghan S. Differentiation of Human-Induced Pluripotent Stem Cells Into Insulin-Producing Clusters by MicroRNA-7. EXP CLIN TRANSPLANT 2016; 14:555-563. [PMID: 26103160 DOI: 10.6002/ect.2014.0144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Diabetes results from inadequate insulin production from pancreatic β-cells. Islet cell replacement is an effective approach for diabetes treatment; however, it is not sufficient for all diabetic patients. Thus, finding a new source with effective maturation of β-cells is the major goal of many studies. MicroRNAs are a class of small noncoding ribonucleic acid that regulate gene expression through posttranscriptional mechanisms. MicroRNA-7 has high expression level during pancreatic islet development in humans, thereby playing a critical role in pancreatic β-cell function. We study aimed to develop a protocol to differentiate human-induced pluripotent stem cells efficiently into isletlike cell clusters in vitro by using microRNA-7. MATERIALS AND METHODS Human-induced pluripotent stem cell colonies were transfected with hsa-microRNA-7 by using siPORT NeoFX transfection agent. Total ribonucleic acid was extracted 24 and 48 hours after transfection. The expression of transcription factors which were important during pancreases development was also performed. On the third day, the potency of the clusters was assessed in response to high glucose levels. Diphenylthiocarbazone was used to identify the existence of the β-cells. The presence of insulin and Neurogenin-3 proteins was investigated by immunocytochemistry. RESULTS Morphologic changes were observed on the first day after chemical transfection, and cell clusters were formed on the third day. The expression of pancreatic specific transcription factors was increased on the first day and significantly increased on the second day. The isletlike cell clusters were positive for insulin and Neurogenin-3 proteins in immunocytochemistry. The clusters were stained with Diphenylthiocarbazone and secreted insulin in a glucose challenge test. CONCLUSIONS MicroRNA-7 transcription factor network is important in pancreatic endocrine differentiation. Chemical transfection with microRNA-7 can differentiate human induced pluripotent stem cells into functional isletlike cell clusters in a short time.
Collapse
Affiliation(s)
- Anahita Shaer
- From the Department of Genetics, Zarghan Branch, Islamic Azad University, Fars, Iran; and Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | |
Collapse
|
233
|
Woolnough JL, Atwood BL, Liu Z, Zhao R, Giles KE. The Regulation of rRNA Gene Transcription during Directed Differentiation of Human Embryonic Stem Cells. PLoS One 2016; 11:e0157276. [PMID: 27299313 PMCID: PMC4907514 DOI: 10.1371/journal.pone.0157276] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 05/26/2016] [Indexed: 11/18/2022] Open
Abstract
It has become increasingly clear that proper cellular control of pluripotency and differentiation is related to the regulation of rRNA synthesis. To further our understanding of the role that the regulation of rRNA synthesis has in pluripotency we monitored rRNA synthesis during the directed differentiation of human embryonic stem cells (hESCs). We discovered that the rRNA synthesis rate is reduced ~50% within 6 hours of ACTIVIN A treatment. This precedes reductions in expression of specific stem cell markers and increases in expression of specific germ layer markers. The reduction in rRNA synthesis is concomitant with dissociation of the Pol I transcription factor, UBTF, from the rRNA gene promoter and precedes any increase to heterochromatin throughout the rRNA gene. To directly investigate the role of rRNA synthesis in pluripotency, hESCs were treated with the Pol I inhibitor, CX-5461. The direct reduction of rRNA synthesis by CX-5461 induces the expression of markers for all three germ layers, reduces the expression of pluripotency markers, and is overall similar to the ACTIVIN A induced changes. This work indicates that the dissociation of UBTF from the rRNA gene, and corresponding reduction in transcription, represent early regulatory events during the directed differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
- Jessica L Woolnough
- UAB Stem Cell Institute, Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States of America
| | - Blake L Atwood
- UAB Stem Cell Institute, Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States of America
| | - Zhong Liu
- UAB Stem Cell Institute, Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States of America
| | - Rui Zhao
- UAB Stem Cell Institute, Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States of America
| | - Keith E Giles
- UAB Stem Cell Institute, Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States of America
| |
Collapse
|
234
|
Sansac C, Assou S, Bouckenheimer J, Lemaître JM, De Vos J. [Induced pluripotent stem cells: a new paradigm to study human tissues]. Biol Aujourdhui 2016; 210:1-8. [PMID: 27286575 DOI: 10.1051/jbio/2016013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Indexed: 11/15/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are obtained by reprogramming differentiated cells through forced expression of four embryonic transcription factors. The discovery of this technology, able to transform a differentiated cell into a pluripotent cell, has profoundly shifted the paradigm of the concept of cell identity, since it is now possible to obtain in vitro any cell type from an initial sample of skin or blood cells from a healthy volunteer or patient. Applications of iPSCs are exceedingly large, and comprise the in vitro modeling of normal or pathological tissues, including for massive drug screening. They also open new therapeutic avenues in the field of regenerative medicine.
Collapse
Affiliation(s)
- Caroline Sansac
- CHU Montpellier, Institut de Recherche de Médecine Régénératrice et de Biothérapies, Hôpital Saint-Éloi, 80 avenue Augustin Fliche, 34295 Montpellier Cedex 5, France - INSERM, U1183, 34000 Montpellier, France - Université de Montpellier, UFR de Pharmacie, 34000 Montpellier, France
| | - Said Assou
- CHU Montpellier, Institut de Recherche de Médecine Régénératrice et de Biothérapies, Hôpital Saint-Éloi, 80 avenue Augustin Fliche, 34295 Montpellier Cedex 5, France - INSERM, U1183, 34000 Montpellier, France - Université de Montpellier, UFR de Médecine, 34000 Montpellier, France
| | - Julien Bouckenheimer
- CHU Montpellier, Institut de Recherche de Médecine Régénératrice et de Biothérapies, Hôpital Saint-Éloi, 80 avenue Augustin Fliche, 34295 Montpellier Cedex 5, France - INSERM, U1183, 34000 Montpellier, France - Université de Montpellier, UFR de Pharmacie, 34000 Montpellier, France
| | - Jean-Marc Lemaître
- CHU Montpellier, Institut de Recherche de Médecine Régénératrice et de Biothérapies, Hôpital Saint-Éloi, 80 avenue Augustin Fliche, 34295 Montpellier Cedex 5, France - INSERM, U1183, 34000 Montpellier, France - CHU Montpellier, Plateforme iPSCs SAFE-IPS, Institut de Recherche de Médecine Régénératrice et de Biothérapies, 34000 Montpellier, France
| | - John De Vos
- CHU Montpellier, Institut de Recherche de Médecine Régénératrice et de Biothérapies, Hôpital Saint-Éloi, 80 avenue Augustin Fliche, 34295 Montpellier Cedex 5, France - INSERM, U1183, 34000 Montpellier, France - Université de Montpellier, UFR de Médecine, 34000 Montpellier, France - CHU Montpellier, Plateforme iPSCs SAFE-IPS, Institut de Recherche de Médecine Régénératrice et de Biothérapies, 34000 Montpellier, France - Institut de Biologie Computationnelle, 34000 Montpellier, France - CHU Montpellier, Département d'Ingénierie Cellulaire et Tissulaire, Hôpital Saint-Éloi, 34000 Montpellier, France
| |
Collapse
|
235
|
Zhu Z, Li QV, Lee K, Rosen BP, González F, Soh CL, Huangfu D. Genome Editing of Lineage Determinants in Human Pluripotent Stem Cells Reveals Mechanisms of Pancreatic Development and Diabetes. Cell Stem Cell 2016; 18:755-768. [PMID: 27133796 PMCID: PMC4892994 DOI: 10.1016/j.stem.2016.03.015] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 02/11/2016] [Accepted: 03/23/2016] [Indexed: 01/12/2023]
Abstract
Directed differentiation of human pluripotent stem cells (hPSCs) into somatic counterparts is a valuable tool for studying disease. However, examination of developmental mechanisms in hPSCs remains challenging given complex multi-factorial actions at different stages. Here, we used TALEN and CRISPR/Cas-mediated gene editing and hPSC-directed differentiation for a systematic analysis of the roles of eight pancreatic transcription factors (PDX1, RFX6, PTF1A, GLIS3, MNX1, NGN3, HES1, and ARX). Our analysis not only verified conserved gene requirements between mice and humans but also revealed a number of previously unsuspected developmental mechanisms with implications for type 2 diabetes. These include a role of RFX6 in regulating the number of pancreatic progenitors, a haploinsufficient requirement for PDX1 in pancreatic β cell differentiation, and a potentially divergent role of NGN3 in humans and mice. Our findings support use of systematic genome editing in hPSCs as a strategy for understanding mechanisms underlying congenital disorders.
Collapse
Affiliation(s)
- Zengrong Zhu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Qing V Li
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kihyun Lee
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Bess P Rosen
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Federico González
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Chew-Li Soh
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
236
|
Nunes SS, Feric N, Pahnke A, Miklas JW, Li M, Coles J, Gagliardi M, Keller G, Radisic M. Human Stem Cell-Derived Cardiac Model of Chronic Drug Exposure. ACS Biomater Sci Eng 2016; 3:1911-1921. [DOI: 10.1021/acsbiomaterials.5b00496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sara S. Nunes
- Toronto
General Research Institute, University Health Network, 101 College
Street Toronto, Ontario, Canada M5G 1L7
- Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, 101 College Street, MaRS Third Floor, Room 902, Toronto, Ontario, Canada M5G 1L7
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St, RS 407, Toronto, Ontario, Canada M5S 3G9
| | - Nicole Feric
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St, RS 407, Toronto, Ontario, Canada M5S 3G9
| | - Aric Pahnke
- Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, 101 College Street, MaRS Third Floor, Room 902, Toronto, Ontario, Canada M5G 1L7
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 1A1
| | - Jason W. Miklas
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St, RS 407, Toronto, Ontario, Canada M5S 3G9
| | - Mark Li
- Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, 101 College Street, MaRS Third Floor, Room 902, Toronto, Ontario, Canada M5G 1L7
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St, RS 407, Toronto, Ontario, Canada M5S 3G9
| | - John Coles
- Hospital of Sick Children, 555
University Avenue, Toronto, Ontario, Canada M5G 1X8
| | - Mark Gagliardi
- McEwen
Centre for Regenerative Medicine, University Health Network, MaRS
Centre, Toronto Medical Discovery Tower, 101 College Street, eighth
floor, room 701 Toronto, Ontario, Canada M5G 1L7
| | - Gordon Keller
- McEwen
Centre for Regenerative Medicine, University Health Network, MaRS
Centre, Toronto Medical Discovery Tower, 101 College Street, eighth
floor, room 701 Toronto, Ontario, Canada M5G 1L7
| | - Milica Radisic
- Toronto
General Research Institute, University Health Network, 101 College
Street Toronto, Ontario, Canada M5G 1L7
- Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, 101 College Street, MaRS Third Floor, Room 902, Toronto, Ontario, Canada M5G 1L7
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St, RS 407, Toronto, Ontario, Canada M5S 3G9
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 1A1
| |
Collapse
|
237
|
Ávila-González D, García-López G, García-Castro IL, Flores-Herrera H, Molina-Hernández A, Portillo W, Díaz NF. Capturing the ephemeral human pluripotent state. Dev Dyn 2016; 245:762-73. [PMID: 27004967 DOI: 10.1002/dvdy.24405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/22/2022] Open
Abstract
During human development, pluripotency is present only in early stages of development. This ephemeral cell potential can be captured in vitro by obtaining pluripotent stem cells (PSC) with self-renewal properties, the human embryonic stem cells (hESC). However, diverse studies suggest the existence of a plethora of human PSC (hPSC) that can be derived from both embryonic and somatic sources, depending on defined culture conditions, their spatial origin, and the genetic engineering used for reprogramming. This review will focus on hPSC, covering the conventional primed hESC, naïve-like hPSC that resemble the ground-state of development, region-selective PSC, and human induced PSC (hiPSC). We will analyze differences and similarities in their differentiation potential as well as in the molecular circuitry of pluripotency. Finally, we describe the need for human feeder cells to derive and maintain hPSC, because they could emulate the interaction of in vivo pluripotent cells with extraembryonic structures that support development. Developmental Dynamics 245:762-773, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Departamento de Biología Celular, Instituto Nacional de Perinatología, México D.F., México
| | - Guadalupe García-López
- Departamento de Biología Celular, Instituto Nacional de Perinatología, México D.F., México
| | | | - Héctor Flores-Herrera
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Lomas Virreyes, México D.F., México
| | | | - Wendy Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Néstor Fabián Díaz
- Departamento de Biología Celular, Instituto Nacional de Perinatología, México D.F., México
| |
Collapse
|
238
|
Abstract
Islet transplantation has set the ground for diabetes cell therapy and is still undergoing various developments that might improve clinical outcomes. Alternative sources for β-cell replacement strategies are now led by human pluripotent stem cells that demonstrate near-normal β-cell features after in vitro differentiation and which can reverse diabetes in mice. Yet, their propensity for tumor formation is still unresolved. The adult pancreas is suggested as a reservoir of facultative progenitors that could represent adequate candidates for β-cell engineering, either in vivo through pharmacological treatment or after expansion in culture. This review focuses on the latest developments in protocols aiming at de novo production of functional β cells.
Collapse
Affiliation(s)
- Philippe A Lysy
- Laboratoire de pédiatrie, institut de recherche expérimentale et clinique, université catholique de Louvain, 1000 Bruxelles, Belgique - Unité d'endocrinologie pédiatrique, cliniques universitaires Saint Luc, université catholique de Louvain, 1000 Bruxelles, Belgique
| |
Collapse
|
239
|
Abstract
Since insulin discovery, islet transplantation was the first protocol to show the possibility to cure patients with type 1 diabetes using low-risk procedures. The scarcity of pancreas donors triggered a burst of studies focused on the production of new β cells in vitro. These were rapidly dominated by pluripotent stem cells (PSCs) demonstrating diabetes-reversal potential in diabetic mice. Subsequent enthusiasm fostered a clinical trial with immunoisolated embryonic-derived pancreatic progenitors. Yet safety is the Achilles' heel of PSCs, and a whole branch of β cell engineering medicine focuses on transdifferentiation of adult pancreatic cells. New data showed the possibility to chemically stimulate acinar or α cells to undergo β cell neogenesis and provide opportunities to intervene in situ without the need for a transplant, at least after weighing benefits against systemic adverse effects. The current studies suggested the pancreas as a reservoir of facultative progenitors (e.g., in the duct lining) could be exploited ex vivo for expansion and β cell differentiation in timely fashion and without the hurdles of PSC use. Diabetes cell therapy is thus a growing field not only with great potential but also with many pitfalls to overcome for becoming fully envisioned as a competitor to the current treatment standards.
Collapse
Affiliation(s)
- Philippe A Lysy
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium.
- Pediatric Endocrinology Unit, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium.
| | - Elisa Corritore
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | - Etienne M Sokal
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
240
|
Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins. Stem Cells Int 2016; 2016:7235757. [PMID: 27212953 PMCID: PMC4861799 DOI: 10.1155/2016/7235757] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/28/2016] [Indexed: 11/17/2022] Open
Abstract
Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.
Collapse
|
241
|
Smith AST, Davis J, Lee G, Mack DL, Kim DH. Muscular dystrophy in a dish: engineered human skeletal muscle mimetics for disease modeling and drug discovery. Drug Discov Today 2016; 21:1387-1398. [PMID: 27109386 DOI: 10.1016/j.drudis.2016.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/24/2016] [Accepted: 04/15/2016] [Indexed: 01/16/2023]
Abstract
Engineered in vitro models using human cells, particularly patient-derived induced pluripotent stem cells (iPSCs), offer a potential solution to issues associated with the use of animals for studying disease pathology and drug efficacy. Given the prevalence of muscle diseases in human populations, an engineered tissue model of human skeletal muscle could provide a biologically accurate platform to study basic muscle physiology, disease progression, and drug efficacy and/or toxicity. Such platforms could be used as phenotypic drug screens to identify compounds capable of alleviating or reversing congenital myopathies, such as Duchene muscular dystrophy (DMD). Here, we review current skeletal muscle modeling technologies with a specific focus on efforts to generate biomimetic systems for investigating the pathophysiology of dystrophic muscle.
Collapse
Affiliation(s)
- Alec S T Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Department of Neurology, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David L Mack
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
242
|
Kadari A, Mekala S, Wagner N, Malan D, Köth J, Doll K, Stappert L, Eckert D, Peitz M, Matthes J, Sasse P, Herzig S, Brüstle O, Ergün S, Edenhofer F. Robust Generation of Cardiomyocytes from Human iPS Cells Requires Precise Modulation of BMP and WNT Signaling. Stem Cell Rev Rep 2016; 11:560-9. [PMID: 25392050 PMCID: PMC4493626 DOI: 10.1007/s12015-014-9564-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Various strategies have been published enabling cardiomyocyte differentiation of human induced pluripotent stem (iPS) cells. However the complex nature of signaling pathways involved as well as line-to-line variability compromises the application of a particular protocol to robustly obtain cardiomyocytes from multiple iPS lines. Hence it is necessary to identify optimized protocols with alternative combinations of specific growth factors and small molecules to enhance the robustness of cardiac differentiation. Here we focus on systematic modulation of BMP and WNT signaling to enhance cardiac differentiation. Moreover, we improve the efficacy of cardiac differentiation by enrichment via lactate. Using our protocol we show efficient derivation of cardiomyocytes from multiple human iPS lines. In particular we demonstrate cardiomyocyte differentiation within 15 days with an efficiency of up to 95 % as judged by flow cytometry staining against cardiac troponin T. Cardiomyocytes derived were functionally validated by alpha-actinin staining, transmission electron microscopy as well as electrophysiological analysis. We expect our protocol to provide a robust basis for scale-up production of functional iPS cell-derived cardiomyocytes that can be used for cell replacement therapy and disease modeling.
Collapse
Affiliation(s)
- Asifiqbal Kadari
- Stem Cell and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, University of Würzburg, 97070, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
He P, Fu J, Wang DA. Murine pluripotent stem cells derived scaffold-free cartilage grafts from a micro-cavitary hydrogel platform. Acta Biomater 2016; 35:87-97. [PMID: 26911880 DOI: 10.1016/j.actbio.2016.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/18/2016] [Accepted: 02/18/2016] [Indexed: 12/31/2022]
Abstract
By means of appropriate cell type and scaffold, tissue-engineering approaches aim to construct grafts for cartilage repair. Pluripotent stem cells especially induced pluripotent stem cells (iPSCs) are of promising cell candidates due to the pluripotent plasticity and abundant cell source. We explored three dimensional (3D) culture and chondrogenesis of murine iPSCs (miPSCs) on an alginate-based micro-cavity hydrogel (MCG) platform in pursuit of fabricating synthetic-scaffold-free cartilage grafts. Murine embryonic stem cells (mESCs) were employed in parallel as the control. Chondrogenesis was fulfilled using a consecutive protocol via mesoderm differentiation followed by chondrogenic differentiation; subsequently, miPSC and mESC-seeded constructs were further respectively cultured in chondrocyte culture (CC) medium. Alginate phase in the constructs was then removed to generate a graft only comprised of induced chondrocytic cells and cartilaginous extracellular matrix (ECMs). We found that from the mESC-seeded constructs, formation of intact grafts could be achieved in greater sizes with relatively fewer chondrocytic cells and abundant ECMs; from miPSC-seeded constructs, relatively smaller sized cartilaginous grafts could be formed by cells with chondrocytic phenotype wrapped by abundant and better assembled collagen type II. This study demonstrated successful creation of pluripotent stem cells-derived cartilage/chondroid graft from a 3D MCG interim platform. By the support of materials and methodologies established from this study, particularly given the autologous availability of iPSCs, engineered autologous cartilage engraftment may be potentially fulfilled without relying on the limited and invasive autologous chondrocytes acquisition. STATEMENT OF SIGNIFICANCE In this study, we explored chondrogenic differentiation of pluripotent stem cells on a 3D micro-cavitary hydrogel interim platform and creation of pluripotent stem cells-derived cartilage/chondroid graft via a consecutive procedure. Our results demonstrated chondrogenic differentiation could be realized on the platform via mesoderm differentiation. The mESCs/miPSCs derived chondrocytic cells were further cultured to finally generate a pluripotent stem cells-derived scaffold-free construct based on the micro-cavitary hydrogel platform, in which alginate hydrogel could be removed finally. Our results showed that miPSC-derived graft could be formed by cells with chondrocytic phenotype wrapped by abundant and assembled collagen type II. To our knowledge, this study is the first study that initials from pluripotent stem cell seeding on 3D scaffold environment and ends with a scaffold-free chondrogenic micro-tissue. By the support of materials and methodologies established from this study, engineered autologous iPSC-derived cartilage engraftment may be potentially developed instead of autologous chondrocytes grafts that have limited source.
Collapse
|
244
|
Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol 2016; 33:1193-200. [PMID: 26458176 PMCID: PMC4747858 DOI: 10.1038/nbt.3392] [Citation(s) in RCA: 656] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/06/2015] [Indexed: 12/23/2022]
Abstract
Kidney cells and tissues derived from human pluripotent stem cells (hPSCs) would enable organ regeneration, disease modeling, and drug screening in vitro. We established an efficient, chemically defined protocol for differentiating hPSCs into multipotent nephron progenitor cells (NPCs) that can form nephron-like structures. By recapitulating metanephric kidney development in vitro, we generate SIX2+SALL1+WT1+PAX2+ NPCs with 90% efficiency within 9 days of differentiation. The NPCs possess the developmental potential of their in vivo counterparts and form PAX8+LHX1+ renal vesicles that self-pattern into nephron structures. In both 2D and 3D culture, NPCs form kidney organoids containing epithelial nephron-like structures expressing markers of podocytes, proximal tubules, loops of Henle, and distal tubules in an organized, continuous arrangement that resembles the nephron in vivo. We also show that this organoid culture system can be used to study mechanisms of human kidney development and toxicity.
Collapse
|
245
|
Coyle R, Jia J, Mei Y. Polymer microarray technology for stem cell engineering. Acta Biomater 2016; 34:60-72. [PMID: 26497624 PMCID: PMC4811723 DOI: 10.1016/j.actbio.2015.10.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/10/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
Abstract
Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. During the past decade, significant progress has been made in developing soluble factors (e.g., small molecules and growth factors) to direct stem cells into a desired phenotype. However, the current lack of suitable synthetic materials to regulate stem cell activity has limited the realization of the enormous potential of stem cells. This can be attributed to a large number of materials properties (e.g., chemical structures and physical properties of materials) that can affect stem cell fate. This makes it challenging to design biomaterials to direct stem cell behavior. To address this, polymer microarray technology has been developed to rapidly identify materials for a variety of stem cell applications. In this article, we summarize recent developments in polymer array technology and their applications in stem cell engineering. STATEMENT OF SIGNIFICANCE Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. In the last decade, significant progress has been made in developing chemically defined media to direct stem cells into a desired phenotype. However, the current lack of the suitable synthetic materials to regulate stem cell activities has been limiting the realization of the potential of stem cells. This can be attributed to the number of variables in material properties (e.g., chemical structures and physical properties) that can affect stem cells. Polymer microarray technology has shown to be a powerful tool to rapidly identify materials for a variety of stem cell applications. Here we summarize recent developments in polymer array technology and their applications in stem cell engineering.
Collapse
Affiliation(s)
- Robert Coyle
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
246
|
TeratoScore: Assessing the Differentiation Potential of Human Pluripotent Stem Cells by Quantitative Expression Analysis of Teratomas. Stem Cell Reports 2016; 4:967-74. [PMID: 26070610 PMCID: PMC4471824 DOI: 10.1016/j.stemcr.2015.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 12/22/2022] Open
Abstract
Teratoma formation is the gold standard assay for testing the capacity of human pluripotent stem cells to differentiate into all embryonic germ layers. Although widely used, little effort has been made to transform this qualitative assay into a quantitative one. Using gene expression data from a wide variety of cells, we created a scorecard representing tissues from all germ layers and extraembryonic tissues. TeratoScore, an online, open-source platform based on this scorecard, distinguishes pluripotent stem cell-derived teratomas from malignant tumors, translating cell potency into a quantitative measure (http://benvenisty.huji.ac.il/teratoscore.php). The teratomas used for the algorithm also allowed us to examine gene expression differences between tumors with a diploid karyotype and those initiated by aneuploid cells. Chromosomally aberrant teratomas show a significantly different gene expression signature from that of teratomas originating from diploid cells, particularly in central nervous system-specific genes, congruent with human chromosomal syndromes. A gene scorecard representing human tissues from all germ layers was created A quantitative pluripotency test named TeratoScore was based on this scorecard TeratoScore distinguishes pluripotent stem cell-derived teratomas from other tumors Teratomas derived from aneuploid cells show aberrant tissue expression distribution
Collapse
|
247
|
Donor Dependent Variations in Hematopoietic Differentiation among Embryonic and Induced Pluripotent Stem Cell Lines. PLoS One 2016; 11:e0149291. [PMID: 26938212 PMCID: PMC4777368 DOI: 10.1371/journal.pone.0149291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/29/2015] [Indexed: 12/15/2022] Open
Abstract
Hematopoiesis generated from human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC) reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process.
Collapse
|
248
|
Nishio M, Nakahara M, Yuo A, Saeki K. Human pluripotent stem cells: Towards therapeutic development for the treatment of lifestyle diseases. World J Stem Cells 2016; 8:56-61. [PMID: 26981171 PMCID: PMC4766251 DOI: 10.4252/wjsc.v8.i2.56] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/09/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
There are two types of human pluripotent stem cells: Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), both of which launched themselves on clinical trials after having taken measures to overcome problems: Blocking rejections by immunosuppressants regarding ESCs and minimizing the risk of tumorigenicity by depleting exogenous gene components regarding iPSCs. It is generally assumed that clinical applications of human pluripotent stem cells should be limited to those cases where there are no alternative measures for treatments because of the risk in transplanting those cells to living bodies. Regarding lifestyle diseases, we have already several therapeutic options, and thus, development of human pluripotent stem cell-based therapeutics tends to be avoided. Nevertheless, human pluripotent stem cells can contribute to the development of new therapeutics in this field. As we will show, there is a case where only a short-term presence of human pluripotent stem-derived cells can exert long-term therapeutic effects even after they are rejected. In those cases, immunologically rejections of ESC- or allogenic iPSC-derived cells may produce beneficial outcomes by nullifying the risk of tumorigenesis without deterioration of therapeutic effects. Another utility of human pluripotent stem cells is the provision of an innovative tool for drug discovery that are otherwise unavailable. For example, clinical specimens of human classical brown adipocytes (BAs), which has been attracting a great deal of attention as a new target of drug discovery for the treatment of metabolic disorders, are unobtainable from living individuals due to scarcity, fragility and ethical problems. However, BA can easily be produced from human pluripotent stem cells. In this review, we will contemplate potential contribution of human pluripotent stem cells to therapeutic development for lifestyle diseases.
Collapse
|
249
|
Abstract
The past 10 years have seen great advances in our ability to manipulate cell fate, including the induction of pluripotency in vitro to generate induced pluripotent stem cells (iPSCs). This process proved to be remarkably simple from a technical perspective, only needing the host cell and a defined cocktail of transcription factors, with four factors - octamer-binding protein 3/4 (OCT3/4), SOX2, Krüppel-like factor 4 (KLF4) and MYC (collectively referred to as OSKM) - initially used. The mechanisms underlying transcription factor-mediated reprogramming are still poorly understood; however, several mechanistic insights have recently been obtained. Recent years have also brought significant progress in increasing the efficiency of this technique, making it more amenable to applications in the fields of regenerative medicine, disease modelling and drug discovery.
Collapse
|
250
|
Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 2016; 17:155-69. [PMID: 26860365 DOI: 10.1038/nrm.2015.28] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms and signalling pathways that regulate the in vitro preservation of distinct pluripotent stem cell configurations, and their induction in somatic cells by direct reprogramming, constitute a highly exciting area of research. In this Review, we integrate recent discoveries related to isolating unique naive and primed pluripotent stem cell states with altered functional and molecular characteristics, and from different species. We provide an overview of the pathways underlying pluripotent state transitions and interconversion in vitro and in vivo. We conclude by highlighting unresolved key questions, future directions and potential novel applications of such dynamic pluripotent cell states.
Collapse
|