201
|
Intraperitoneal delivery of a novel drug-like compound improves disease severity in severe and intermediate mouse models of Spinal Muscular Atrophy. Sci Rep 2019; 9:1633. [PMID: 30733501 PMCID: PMC6367425 DOI: 10.1038/s41598-018-38208-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder that causes progressive muscle weakness and is the leading genetic cause of infant mortality worldwide. SMA is caused by the loss of survival motor neuron 1 (SMN1). In humans, a nearly identical copy gene is present, called SMN2. Although SMN2 maintains the same coding sequence, this gene cannot compensate for the loss of SMN1 because of a single silent nucleotide difference in SMN2 exon 7. SMN2 primarily produces an alternatively spliced isoform lacking exon 7, which is critical for protein function. SMN2 is an important disease modifier that makes for an excellent target for therapeutic intervention because all SMA patients retain SMN2. Therefore, compounds and small molecules that can increase SMN2 exon 7 inclusion, transcription and SMN protein stability have great potential for SMA therapeutics. Previously, we performed a high throughput screen and established a class of compounds that increase SMN protein in various cellular contexts. In this study, a novel compound was identified that increased SMN protein levels in vivo and ameliorated the disease phenotype in severe and intermediate mouse models of SMA.
Collapse
|
202
|
Ratni H, Mueller L, Ebeling M. Rewriting the (tran)script: Application to spinal muscular atrophy. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:119-156. [PMID: 30879473 DOI: 10.1016/bs.pmch.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Targeting RNA drastically expands our target space to therapeutically modulate numerous cellular processes implicated in human diseases. Of particular interest, drugging pre-mRNA splicing appears a very viable strategy; to control levels of splicing product by promoting the inclusion or exclusion of exons. After describing the concept of "splicing modulation", this chapter will cover the outstanding progress achieved in this field, by highlighting the breakthrough accomplished recently for the treatment of spinal muscular atrophy using two therapeutic modalities: splice switching oligonucleotides and small molecules. This review discusses the vital but feasible requirement for such drugs to deliver selectivity, and critical safety aspects are highlighted. Transformational medicines such as those developed to treat SMA are likely just the beginning of this story.
Collapse
Affiliation(s)
- Hasane Ratni
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| | - Lutz Mueller
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Martin Ebeling
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
203
|
Wang AC, Pham HT, Lipps JM, Brittain SM, Harrington E, Wang Y, King FJ, Russ C, Pan X, Hoepfner D, Tallarico J, Feng Y, Jain RK, Schirle M, Thomas JR. Previously Uncharacterized Vacuolar-type ATPase Binding Site Discovered from Structurally Similar Compounds with Distinct Mechanisms of Action. ACS Chem Biol 2019; 14:20-26. [PMID: 30461263 DOI: 10.1021/acschembio.8b00656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using a comprehensive chemical genetics approach, we identified a member of the lignan natural product family, HTP-013, which exhibited significant cytotoxicity across various cancer cell lines. Correlation of compound activity across a panel of reporter gene assays suggested the vacuolar-type ATPase (v-ATPase) as a potential target for this compound. Additional cellular studies and a yeast haploinsufficiency screen strongly supported this finding. Competitive photoaffinity labeling experiments demonstrated that the ATP6V0A2 subunit of the v-ATPase complex binds directly to HTP-013, and further mutagenesis library screening identified resistance-conferring mutations in ATP6V0A2. The positions of these mutations suggest the molecule binds a novel pocket within the domain of the v-ATPase complex responsible for proton translocation. While other mechanisms of v-ATPase regulation have been described, such as dissociation of the complex or inhibition by natural products including bafilomycin A1 and concanamycin, this work provides detailed insight into a distinct binding pocket within the v-ATPase complex.
Collapse
Affiliation(s)
- Andrew C. Wang
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Helen T. Pham
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jennifer M. Lipps
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Scott M. Brittain
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Edmund Harrington
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yuan Wang
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Fred J. King
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Carsten Russ
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xuewen Pan
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056 Basel, Switzerland
| | - John Tallarico
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yan Feng
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rishi K. Jain
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Markus Schirle
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jason R. Thomas
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
204
|
Nolin E, Gans S, Llamas L, Bandyopadhyay S, Brittain SM, Bernasconi-Elias P, Carter KP, Loureiro JJ, Thomas JR, Schirle M, Yang Y, Guo N, Roma G, Schuierer S, Beibel M, Lindeman A, Sigoillot F, Chen A, Xie KX, Ho S, Reece-Hoyes J, Weihofen WA, Tyskiewicz K, Hoepfner D, McDonald RI, Guthrie N, Dogra A, Guo H, Shao J, Ding J, Canham SM, Boynton G, George EL, Kang ZB, Antczak C, Porter JA, Wallace O, Tallarico JA, Palmer AE, Jenkins JL, Jain RK, Bushell SM, Fryer CJ. Discovery of a ZIP7 inhibitor from a Notch pathway screen. Nat Chem Biol 2019; 15:179-188. [PMID: 30643281 DOI: 10.1038/s41589-018-0200-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022]
Abstract
The identification of activating mutations in NOTCH1 in 50% of T cell acute lymphoblastic leukemia has generated interest in elucidating how these mutations contribute to oncogenic transformation and in targeting the pathway. A phenotypic screen identified compounds that interfere with trafficking of Notch and induce apoptosis via an endoplasmic reticulum (ER) stress mechanism. Target identification approaches revealed a role for SLC39A7 (ZIP7), a zinc transport family member, in governing Notch trafficking and signaling. Generation and sequencing of a compound-resistant cell line identified a V430E mutation in ZIP7 that confers transferable resistance to the compound NVS-ZP7-4. NVS-ZP7-4 altered zinc in the ER, and an analog of the compound photoaffinity labeled ZIP7 in cells, suggesting a direct interaction between the compound and ZIP7. NVS-ZP7-4 is the first reported chemical tool to probe the impact of modulating ER zinc levels and investigate ZIP7 as a novel druggable node in the Notch pathway.
Collapse
Affiliation(s)
- Erin Nolin
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Sara Gans
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Luis Llamas
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | | | - Kyle P Carter
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | | | - Jason R Thomas
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Markus Schirle
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Yi Yang
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Ning Guo
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sven Schuierer
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Martin Beibel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alicia Lindeman
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Amy Chen
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Kevin X Xie
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Samuel Ho
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | | | | | | | | | - Abhishek Dogra
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Haibing Guo
- Novartis Institutes for Biomedical Research, Shanghai, China
| | - Jian Shao
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Jian Ding
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Geoff Boynton
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Zhao B Kang
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | - Owen Wallace
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Amy E Palmer
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | | | - Rishi K Jain
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Simon M Bushell
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| | - Christy J Fryer
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
205
|
Garner AL, Lorenz DA, Gallagher EE. A click chemistry assay to identify natural product ligands for pre-microRNAs. Methods Enzymol 2019; 623:85-99. [PMID: 31239059 PMCID: PMC6631307 DOI: 10.1016/bs.mie.2019.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the great diversity of structure and function and relevance to human health, RNA remains an underexploited area of drug discovery. A major bottleneck toward this goal has been the identification of probes and drug leads that are specific for select RNAs and methods that will facilitate such discovery efforts. Our laboratory has recently developed an innovative approach for assaying RNA-small molecule interactions, catalytic enzyme-linked click chemistry assay or cat-ELCCA, which is a functional assay that takes advantage of the power of catalytic signal amplification combined with the selectivity and bioorthogonality of click chemistry. Importantly, through application of this platform assay technology to the challenging problem of identifying selective inhibitors of pre-microRNA maturation, we identified natural products as a potential source of such compounds. Herein we describe this methodology in addition to the downstream pipeline toward the discovery of natural product ligands for pre-microRNAs. Through cat-ELCCA, our goal is to discover novel ligands to facilitate our investigation of RNA recognition by small molecules.
Collapse
Affiliation(s)
- Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States; Program in Chemical Biology, University of Michigan, Ann Arbor, MI, United States.
| | - Daniel A Lorenz
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, United States
| | - Erin E Gallagher
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
206
|
Cheung AK, Hurley B, Kerrigan R, Shu L, Chin DN, Shen Y, O'Brien G, Sung MJ, Hou Y, Axford J, Cody E, Sun R, Fazal A, Fridrich C, Sanchez CC, Tomlinson RC, Jain M, Deng L, Hoffmaster K, Song C, Van Hoosear M, Shin Y, Servais R, Towler C, Hild M, Curtis D, Dietrich WF, Hamann LG, Briner K, Chen KS, Kobayashi D, Sivasankaran R, Dales NA. Discovery of Small Molecule Splicing Modulators of Survival Motor Neuron-2 (SMN2) for the Treatment of Spinal Muscular Atrophy (SMA). J Med Chem 2018; 61:11021-11036. [PMID: 30407821 DOI: 10.1021/acs.jmedchem.8b01291] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinal muscular atrophy (SMA), a rare neuromuscular disorder, is the leading genetic cause of death in infants and toddlers. SMA is caused by the deletion or a loss of function mutation of the survival motor neuron 1 (SMN1) gene. In humans, a second closely related gene SMN2 exists; however it codes for a less stable SMN protein. In recent years, significant progress has been made toward disease modifying treatments for SMA by modulating SMN2 pre-mRNA splicing. Herein, we describe the discovery of LMI070/branaplam, a small molecule that stabilizes the interaction between the spliceosome and SMN2 pre-mRNA. Branaplam (1) originated from a high-throughput phenotypic screening hit, pyridazine 2, and evolved via multiparameter lead optimization. In a severe mouse SMA model, branaplam treatment increased full-length SMN RNA and protein levels, and extended survival. Currently, branaplam is in clinical studies for SMA.
Collapse
Affiliation(s)
- Atwood K Cheung
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Brian Hurley
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Ryan Kerrigan
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lei Shu
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Donovan N Chin
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Yiping Shen
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Gary O'Brien
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Moo Je Sung
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Ying Hou
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Jake Axford
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Emma Cody
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Robert Sun
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Aleem Fazal
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Cary Fridrich
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Carina C Sanchez
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Ronald C Tomlinson
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Monish Jain
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lin Deng
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Keith Hoffmaster
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Cheng Song
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Mailin Van Hoosear
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Youngah Shin
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Rebecca Servais
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Christopher Towler
- Novartis Pharmaceuticals , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Marc Hild
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Daniel Curtis
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - William F Dietrich
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lawrence G Hamann
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Karin Briner
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Karen S Chen
- SMA Foundation , 888 Seventh Avenue, Suite 400 , New York , New York 10019 , United States
| | - Dione Kobayashi
- SMA Foundation , 888 Seventh Avenue, Suite 400 , New York , New York 10019 , United States
| | - Rajeev Sivasankaran
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Natalie A Dales
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
207
|
Li Y, Disney MD. Precise Small Molecule Degradation of a Noncoding RNA Identifies Cellular Binding Sites and Modulates an Oncogenic Phenotype. ACS Chem Biol 2018; 13:3065-3071. [PMID: 30375843 DOI: 10.1021/acschembio.8b00827] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe the precise cellular destruction of an oncogenic noncoding RNA with a small molecule-bleomycin A5 conjugate, affording reversal of phenotype and a facile method to map the cellular binding sites of a small molecule. In particular, bleomycin A5 was coupled to a small molecule that selectively binds the microRNA-96 hairpin precursor (pri-miR-96). By coupling of bleomycin A5's free amine to the RNA binder, its affinity for binding to pri-miR-96 is >100-fold stronger than to DNA and the compound selectively cleaves pri-miR-96 in triple negative breast cancer (TNBC) cells. Indeed, selective cleavage of pri-miR-96 enhanced expression of FOXO1 protein, a pro-apoptotic transcription factor that miR-96 silences, and triggered apoptosis in TNBC cells. No effects were observed in healthy breast epithelial cells. Thus, conjugation of a small molecule to bleomycin A5's free amine may provide programmable control over its cellular targets. Few approaches are available to define the binding sites of small molecules within cellular RNAs. Our targeted cleavage method provides such an approach that is straightforward to implement. That is, we determined experimentally the site cleaved within pri-miR-96 in vitro and in cells; these studies revealed that the site of cleavage is the precise site for which the small molecule cleaver was designed and in agreement with modeling. These studies demonstrate the potential of sequence-based design to provide bioactive compounds that precisely recognize and cleave RNA in cells.
Collapse
Affiliation(s)
- Yue Li
- The Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- The Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
208
|
Abstract
Although we live in the remnants of an RNA world, the world of drug discovery and chemical probes is firmly protein-centric. Developing highly selective small molecules targeting RNA is often considered to be an insurmountable challenge. Our goal is to demystify the design of such compounds. In this review, we describe various approaches to design small molecules that target RNA from sequence and the application of these compounds in RNA biology, with a focus on inhibition of human RNA-protein complexes. We have developed a library-versus-library screening approach to define selective RNA-small-molecule binding partners and applied them to disease-causing RNAs, in particular noncoding oncogenic RNAs and expanded RNA repeats, to modulate their biology in cells and animals. We also describe the design of new types of small-molecule probes that could broadly decipher the mysteries of RNA in cells.
Collapse
Affiliation(s)
- Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458
| | - Brendan G Dwyer
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458
| | | |
Collapse
|
209
|
Kletzl H, Marquet A, Günther A, Tang W, Heuberger J, Groeneveld GJ, Birkhoff W, Mercuri E, Lochmüller H, Wood C, Fischer D, Gerlach I, Heinig K, Bugawan T, Dziadek S, Kinch R, Czech C, Khwaja O. The oral splicing modifier RG7800 increases full length survival of motor neuron 2 mRNA and survival of motor neuron protein: Results from trials in healthy adults and patients with spinal muscular atrophy. Neuromuscul Disord 2018; 29:21-29. [PMID: 30553700 DOI: 10.1016/j.nmd.2018.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 11/15/2022]
Abstract
Spinal muscular atrophy (SMA) is a rare genetic and progressively debilitating neuromuscular disease. It is the leading genetic cause of death among infants. In SMA, low levels of survival of motor neuron (SMN) protein lead to motor neuron death and muscle atrophy as the SMN protein is critical to motor neuron survival. SMA is caused by mutations in, or deletion of, the SMN1 gene. A second SMN gene, SMN2, produces only low levels of functional SMN protein due to alternative splicing which excludes exon 7 from most transcripts, generating truncated, rapidly degraded SMN protein. Patients with SMA rely on limited expression of functional SMN full-length protein from the SMN2 gene, but insufficient levels are generated. RG7800 is an oral, selective SMN2 splicing modifier designed to modulate alternative splicing of SMN2 to increase the levels of functional SMN protein. In two trials, oral administration of RG7800 increased in blood full-length SMN2 mRNA expression in healthy adults and SMN protein levels in SMA patients by up to two-fold, which is expected to provide clinical benefit.
Collapse
Affiliation(s)
- Heidemarie Kletzl
- Roche Innovation Center, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland.
| | - Anne Marquet
- Roche Innovation Center, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Andreas Günther
- Roche Innovation Center, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Wakana Tang
- Research, Genomics & Oncology, Roche Molecular Systems, Inc., Pleasanton, USA
| | | | | | | | | | - Hanns Lochmüller
- Medical Center-University of Freiburg, Freiburg, Germany; Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Claire Wood
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Dirk Fischer
- Universitäts-Kinderspital beider Basel, Basel, Switzerland; University Clinic of Internal Medicine, Kantonsspital Baselland, Bruderholz, Switzerland
| | - Irene Gerlach
- Roche Innovation Center, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Katja Heinig
- Roche Innovation Center, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Teodorica Bugawan
- Research, Genomics & Oncology, Roche Molecular Systems, Inc., Pleasanton, USA
| | - Sebastian Dziadek
- Roche Innovation Center, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Russell Kinch
- Roche Innovation Center, Hoffmann-La Roche Ltd., Welwyn, UK
| | - Christian Czech
- Roche Innovation Center, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Omar Khwaja
- Roche Innovation Center, Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| |
Collapse
|
210
|
Reed UC, Zanoteli E. Therapeutic advances in 5q-linked spinal muscular atrophy. ARQUIVOS DE NEURO-PSIQUIATRIA 2018; 76:265-272. [PMID: 29742241 DOI: 10.1590/0004-282x20180011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022]
Abstract
Spinal muscular atrophy (SMA) is a severe and clinically-heterogeneous motor neuron disease caused, in most cases, by a homozygous mutation in the SMN1 gene. Regarding the age of onset and motor involvement, at least four distinct clinical phenotypes have been recognized. This clinical variability is, in part, related to the SMN2 copy number. By now, only supportive therapies have been available. However, promising specific therapies are currently being developed based on different mechanisms to increase the level of SMN protein; in particular, intrathecal antisense oligonucleotides that prevent the skipping of exon 7 during SMN2 transcription, and intravenous SMN1 insertion using viral vector. These therapeutic perspectives open a new era in the natural history of the disease. In this review, we intend to discuss the most recent and promising therapeutic strategies, with special consideration to the pathogenesis of the disease and the mechanisms of action of such therapies.
Collapse
Affiliation(s)
- Umbertina Conti Reed
- Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Edmar Zanoteli
- Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
211
|
Dorval T, Chanrion B, Cattin ME, Stephan JP. Filling the drug discovery gap: is high-content screening the missing link? Curr Opin Pharmacol 2018; 42:40-45. [DOI: 10.1016/j.coph.2018.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/01/2018] [Indexed: 11/29/2022]
|
212
|
Granatosky EA, DiPrimio N, Pickering JR, Stevens DC, Perlstein EO, Taylor RE. GEX1A, a Polyketide from Streptomyces chromofuscus, Corrects the Cellular Defects Associated with Niemann-Pick Type C1 in Human Fibroblasts. JOURNAL OF NATURAL PRODUCTS 2018; 81:2018-2025. [PMID: 30188717 PMCID: PMC6868502 DOI: 10.1021/acs.jnatprod.8b00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report the first evidence of GEX1A, a polyketide known to modulate alternative pre-mRNA splicing, as a potential treatment for Niemann-Pick type C disease. GEX1A was isolated from its producing organism, Streptomyces chromofuscus, and screened in NPC1 mutant cells alongside several semisynthetic analogues. We found that GEX1A and analogues are capable of restoring cholesterol trafficking in NPC1 mutant fibroblasts, as well as altering the expression of NPC1 isoforms detected by Western blot. These results, along with the compound's favorable pharmacokinetic properties, highlight the potential of spliceosome-targeting scaffolds such as GEX1A for the treatment of genetic diseases.
Collapse
Affiliation(s)
- Eve A. Granatosky
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | | | - Jarred R.E. Pickering
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - D. Cole Stevens
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | | | - Richard E. Taylor
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
213
|
Neueder A, Dumas AA, Benjamin AC, Bates GP. Regulatory mechanisms of incomplete huntingtin mRNA splicing. Nat Commun 2018; 9:3955. [PMID: 30262848 PMCID: PMC6160442 DOI: 10.1038/s41467-018-06281-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/13/2018] [Indexed: 11/09/2022] Open
Abstract
Huntington’s disease is caused by a CAG repeat expansion in exon 1 of the HTT gene. We have previously shown that exon 1 HTT does not always splice to exon 2 producing a small transcript (HTTexon1) that encodes the highly pathogenic exon 1 HTT protein. The mechanisms by which this incomplete splicing occurs are unknown. Here, we have generated a minigene system that recapitulates the CAG repeat-length dependence of HTTexon1 production, and has allowed us to define the regions of intron 1 necessary for incomplete splicing. We show that manipulation of the expression levels of the splicing factor SRSF6, predicted to bind CAG repeats, modulates this aberrant splicing event and also demonstrate that RNA polymerase II transcription speed regulates the levels of HTTexon1 production. Understanding the mechanisms by which this pathogenic exon 1 HTT is generated may provide the basis for the development of strategies to prevent its production. Incomplete splicing of HTT results in the production of the highly pathogenic exon 1 HTT protein. Here the authors identify the necessary intronic regions and the underlying mechanisms that contribute to this process.
Collapse
Affiliation(s)
- Andreas Neueder
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease and Dementia Research Institute, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK. .,Department of Neurology, Ulm University, Ulm, 89081, Germany.
| | - Anaelle A Dumas
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease and Dementia Research Institute, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Agnesska C Benjamin
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease and Dementia Research Institute, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Gillian P Bates
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease and Dementia Research Institute, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
214
|
Zhang L, Peng D, Sood AK, Dang CV, Zhong X. Shedding Light on the Dark Cancer Genomes: Long Noncoding RNAs as Novel Biomarkers and Potential Therapeutic Targets for Cancer. Mol Cancer Ther 2018; 17:1816-1823. [PMID: 30181330 PMCID: PMC6127856 DOI: 10.1158/1535-7163.mct-18-0124] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/09/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
Abstract
Recently there have been explosive discoveries of new long noncoding RNAs (lncRNA) obtained by progress in the technology of second-generation sequencing. Genome scale analysis of transcriptome, in conjunction with studies on chromatin modifications at the epigenetic level, identified lncRNAs as a novel type of noncoding transcripts whose length is longer than 200 nucleotides. These transcripts are later found as major participants in various physiologic processes and diseases, especially in human cancers. LncRNAs have been found to function as novel types of oncogenes and tumor suppressors during cancer progression through various mechanisms, which endow them with the potential of serving as reliable biomarkers and novel therapeutic targets for cancers. Mol Cancer Ther; 17(9); 1816-23. ©2018 AACR.
Collapse
Affiliation(s)
- Lin Zhang
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania.
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dan Peng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Anil K Sood
- Center for RNA Interference and Non-coding RNA, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chi V Dang
- Wistar Institute, Philadelphia, Pennsylvania
- Ludwig Institute for Cancer Research, New York City, New York
| | - Xiaomin Zhong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
215
|
Wong MS, Kinney JB, Krainer AR. Quantitative Activity Profile and Context Dependence of All Human 5' Splice Sites. Mol Cell 2018; 71:1012-1026.e3. [PMID: 30174293 DOI: 10.1016/j.molcel.2018.07.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/18/2018] [Accepted: 07/23/2018] [Indexed: 02/02/2023]
Abstract
Pre-mRNA splicing is an essential step in the expression of most human genes. Mutations at the 5' splice site (5'ss) frequently cause defective splicing and disease due to interference with the initial recognition of the exon-intron boundary by U1 small nuclear ribonucleoprotein (snRNP), a component of the spliceosome. Here, we use a massively parallel splicing assay (MPSA) in human cells to quantify the activity of all 32,768 unique 5'ss sequences (NNN/GYNNNN) in three different gene contexts. Our results reveal that although splicing efficiency is mostly governed by the 5'ss sequence, there are substantial differences in this efficiency across gene contexts. Among other uses, these MPSA measurements facilitate the prediction of 5'ss sequence variants that are likely to cause aberrant splicing. This approach provides a framework to assess potential pathogenic variants in the human genome and streamline the development of splicing-corrective therapies.
Collapse
Affiliation(s)
- Mandy S Wong
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Justin B Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
216
|
Abstract
Autosomal-recessive proximal spinal muscular atrophy (Werdnig-Hoffmann, Kugelberg-Welander) is caused by mutation of the SMN1 gene, and the clinical severity correlates with the number of copies of a nearly identical gene, SMN2. The SMN protein plays a critical role in spliceosome assembly and may have other cellular functions, such as mRNA transport. Cell culture and animal models have helped to define the disease mechanism and to identify targets for therapeutic intervention. The main focus for developing treatment has been to increase SMN levels, and accomplishing this with small molecules, oligonucleotides, and gene replacement has been quite. An oligonucleotide, nusinersen, was recently approved for treatment in patients, and confirmatory studies of other agents are now under way.
Collapse
Affiliation(s)
- Eveline S Arnold
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
217
|
Salani M, Urbina F, Brenner A, Morini E, Shetty R, Gallagher CS, Law EA, Sunshine S, Finneran DJ, Johnson G, Minor L, Slaugenhaupt SA. Development of a Screening Platform to Identify Small Molecules That Modify ELP1 Pre-mRNA Splicing in Familial Dysautonomia. SLAS DISCOVERY 2018; 24:57-67. [PMID: 30085848 DOI: 10.1177/2472555218792264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Familial dysautonomia (FD) is an autonomic and sensory neuropathy caused by a mutation in the splice donor site of intron 20 of the ELP1 gene. Variable skipping of exon 20 leads to a tissue-specific reduction in the level of ELP1 protein. We have shown that the plant cytokinin kinetin is able to increase cellular ELP1 protein levels in vivo and in vitro through correction of ELP1 splicing. Studies in FD patients determined that kinetin is not a practical therapy due to low potency and rapid elimination. To identify molecules with improved potency and efficacy, we developed a cell-based luciferase splicing assay by inserting renilla (Rluc) and firefly (Fluc) luciferase reporters into our previously well-characterized ELP1 minigene construct. Evaluation of the Fluc/Rluc signal ratio enables a fast and accurate way to measure exon 20 inclusion. Further, we developed a secondary assay that measures ELP1 splicing in FD patient-derived fibroblasts. Here we demonstrate the quality and reproducibility of our screening method. Development and implementation of this screening platform has allowed us to efficiently screen for new compounds that robustly and specifically enhance ELP1 pre-mRNA splicing.
Collapse
Affiliation(s)
- Monica Salani
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Fabio Urbina
- 2 Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony Brenner
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Elisabetta Morini
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA.,3 Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Ranjit Shetty
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - C Scott Gallagher
- 3 Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Emily A Law
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Sara Sunshine
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Dylan J Finneran
- 4 Byrd Alzheimer's Institute College of Medicine Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, USA
| | | | - Lisa Minor
- 6 In Vitro Strategies LLC, Flemington, NJ, USA
| | - Susan A Slaugenhaupt
- 1 Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA.,3 Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
218
|
Ratni H, Ebeling M, Baird J, Bendels S, Bylund J, Chen KS, Denk N, Feng Z, Green L, Guerard M, Jablonski P, Jacobsen B, Khwaja O, Kletzl H, Ko CP, Kustermann S, Marquet A, Metzger F, Mueller B, Naryshkin NA, Paushkin SV, Pinard E, Poirier A, Reutlinger M, Weetall M, Zeller A, Zhao X, Mueller L. Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 ( SMN2) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA). J Med Chem 2018; 61:6501-6517. [PMID: 30044619 DOI: 10.1021/acs.jmedchem.8b00741] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SMA is an inherited disease that leads to loss of motor function and ambulation and a reduced life expectancy. We have been working to develop orally administrated, systemically distributed small molecules to increase levels of functional SMN protein. Compound 2 was the first SMN2 splicing modifier tested in clinical trials in healthy volunteers and SMA patients. It was safe and well tolerated and increased SMN protein levels up to 2-fold in patients. Nevertheless, its development was stopped as a precautionary measure because retinal toxicity was observed in cynomolgus monkeys after chronic daily oral dosing (39 weeks) at exposures in excess of those investigated in patients. Herein, we describe the discovery of 1 (risdiplam, RG7916, RO7034067) that focused on thorough pharmacology, DMPK and safety characterization and optimization. This compound is undergoing pivotal clinical trials and is a promising medicine for the treatment of patients in all ages and stages with SMA.
Collapse
Affiliation(s)
- Hasane Ratni
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Martin Ebeling
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - John Baird
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Stefanie Bendels
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Johan Bylund
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Karen S Chen
- SMA Foundation , 888 Seventh Avenue, Suite 400 , New York , New York 10019 , United States
| | - Nora Denk
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences , University of Southern California , Los Angeles , California 90089 , United States
| | - Luke Green
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Melanie Guerard
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Philippe Jablonski
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Bjoern Jacobsen
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Omar Khwaja
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Heidemarie Kletzl
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences , University of Southern California , Los Angeles , California 90089 , United States
| | - Stefan Kustermann
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Anne Marquet
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Friedrich Metzger
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Barbara Mueller
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Nikolai A Naryshkin
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Sergey V Paushkin
- SMA Foundation , 888 Seventh Avenue, Suite 400 , New York , New York 10019 , United States
| | - Emmanuel Pinard
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Agnès Poirier
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Michael Reutlinger
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Marla Weetall
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Andreas Zeller
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Xin Zhao
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Lutz Mueller
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| |
Collapse
|
219
|
Sumner CJ, Crawford TO. Two breakthrough gene-targeted treatments for spinal muscular atrophy: challenges remain. J Clin Invest 2018; 128:3219-3227. [PMID: 29985170 DOI: 10.1172/jci121658] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The motor neuron disease spinal muscular atrophy (SMA) is caused by recessive, loss-of-function mutations of the survival motor neuron 1 gene (SMN1). Alone, such mutations are embryonically lethal, but SMA patients retain a paralog gene, SMN2, that undergoes alternative pre-mRNA splicing, producing low levels of SMN protein. By mechanisms that are not well understood, reduced expression of the ubiquitously expressed SMN protein causes an early-onset motor neuron disease that often results in infantile or childhood mortality. Recently, striking clinical improvements have resulted from two novel treatment strategies to increase SMN protein by (a) modulating the splicing of existing SMN2 pre-mRNAs using antisense oligonucleotides, and (b) transducing motor neurons with self-complementary adeno-associated virus 9 (scAAV9) expressing exogenous SMN1 cDNA. We review the recently published clinical trial results and discuss the differing administration, tissue targeting, and potential toxicities of these two therapies. We also focus on the challenges that remain, emphasizing the many clinical and biologic questions that remain open. Answers to these questions will enable further optimization of these remarkable SMA treatments as well as provide insights that may well be useful in application of these therapeutic platforms to other diseases.
Collapse
Affiliation(s)
| | - Thomas O Crawford
- Department of Neurology.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
220
|
Warner KD, Hajdin CE, Weeks KM. Principles for targeting RNA with drug-like small molecules. Nat Rev Drug Discov 2018; 17:547-558. [PMID: 29977051 PMCID: PMC6420209 DOI: 10.1038/nrd.2018.93] [Citation(s) in RCA: 431] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies have indicated the potential to develop small-molecule drugs that act on RNA targets, leading to burgeoning interest in the field. This article discusses general principles for discovering small-molecule drugs that target RNA and argues that the overarching challenge is to identify appropriate target structures in disease-causing RNAs that have high information content and, consequently, appropriate ligand-binding pockets. RNA molecules are essential for cellular information transfer and gene regulation, and RNAs have been implicated in many human diseases. Messenger and non-coding RNAs contain highly structured elements, and evidence suggests that many of these structures are important for function. Targeting these RNAs with small molecules offers opportunities to therapeutically modulate numerous cellular processes, including those linked to 'undruggable' protein targets. Despite this promise, there is currently only a single class of human-designed small molecules that target RNA used clinically — the linezolid antibiotics. However, a growing number of small-molecule RNA ligands are being identified, leading to burgeoning interest in the field. Here, we discuss principles for discovering small-molecule drugs that target RNA and argue that the overarching challenge is to identify appropriate target structures — namely, in disease-causing RNAs that have high information content and, consequently, appropriate ligand-binding pockets. If focus is placed on such druggable binding sites in RNA, extensive knowledge of the typical physicochemical properties of drug-like small molecules could then enable small-molecule drug discovery for RNA targets to become (only) roughly as difficult as for protein targets.
Collapse
Affiliation(s)
| | | | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
221
|
Ramalho TC, de Castro AA, Tavares TS, Silva MC, Silva DR, Cesar PH, Santos LA, da Cunha EFF, Nepovimova E, Kuca K. Insights into the pharmaceuticals and mechanisms of neurological orphan diseases: Current Status and future expectations. Prog Neurobiol 2018; 169:135-157. [PMID: 29981392 DOI: 10.1016/j.pneurobio.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 06/30/2018] [Indexed: 12/20/2022]
Abstract
Several rare or orphan diseases have been characterized that singly affect low numbers of people, but cumulatively reach ∼6%-10% of the population in Europe and in the United States. Human genetics has shown to be broadly effective when evaluating subjacent genetic defects such as orphan genetic diseases, but on the other hand, a modest progress has been achieved toward comprehending the molecular pathologies and designing new therapies. Chemical genetics, placed at the interface of chemistry and genetics, could be employed to understand the molecular mechanisms of subjacent illnesses and for the discovery of new remediation processes. This review debates current progress in chemical genetics, and how a variety of compounds and reaction mechanisms can be used to study and ultimately treat rare genetic diseases. We focus here on a study involving Amyotrophic lateral sclerosis (ALS), Duchenne Muscular Dystrophy (DMD), Spinal muscular atrophy (SMA) and Familial Amyloid Polyneuropathy (FAP), approaching different treatment methods and the reaction mechanisms of several compounds, trying to elucidate new routes capable of assisting in the treatment profile.
Collapse
Affiliation(s)
- Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | | | - Tássia S Tavares
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Maria C Silva
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Daniela R Silva
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Pedro H Cesar
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Lucas A Santos
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Elaine F F da Cunha
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
222
|
Donlic A, Hargrove AE. Targeting RNA in mammalian systems with small molecules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1477. [PMID: 29726113 PMCID: PMC6002909 DOI: 10.1002/wrna.1477] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/18/2022]
Abstract
The recognition of RNA functions beyond canonical protein synthesis has challenged the central dogma of molecular biology. Indeed, RNA is now known to directly regulate many important cellular processes, including transcription, splicing, translation, and epigenetic modifications. The misregulation of these processes in disease has led to an appreciation of RNA as a therapeutic target. This potential was first recognized in bacteria and viruses, but discoveries of new RNA classes following the sequencing of the human genome have invigorated exploration of its disease-related functions in mammals. As stable structure formation is evolving as a hallmark of mammalian RNAs, the prospect of utilizing small molecules to specifically probe the function of RNA structural domains and their interactions is gaining increased recognition. To date, researchers have discovered bioactive small molecules that modulate phenotypes by binding to expanded repeats, microRNAs, G-quadruplex structures, and RNA splice sites in neurological disorders, cancers, and other diseases. The lessons learned from achieving these successes both call for additional studies and encourage exploration of the plethora of mammalian RNAs whose precise mechanisms of action remain to be elucidated. Efforts toward understanding fundamental principles of small molecule-RNA recognition combined with advances in methodology development should pave the way toward targeting emerging RNA classes such as long noncoding RNAs. Together, these endeavors can unlock the full potential of small molecule-based probing of RNA-regulated processes and enable us to discover new biology and underexplored avenues for therapeutic intervention in human disease. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anita Donlic
- Department of Chemistry, Duke University, Durham, North Carolina
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
223
|
Velagapudi SP, Costales MG, Vummidi BR, Nakai Y, Angelbello AJ, Tran T, Haniff HS, Matsumoto Y, Wang ZF, Chatterjee AK, Childs-Disney JL, Disney MD. Approved Anti-cancer Drugs Target Oncogenic Non-coding RNAs. Cell Chem Biol 2018; 25:1086-1094.e7. [PMID: 30251629 DOI: 10.1016/j.chembiol.2018.05.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/03/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022]
Abstract
Potential RNA drug targets for small molecules are found throughout the human transcriptome, yet small molecules known to elicit a pharmacological response by directly targeting RNA are limited to antibacterials. Herein, we describe AbsorbArray, a small molecule microarray-based approach that allows for unmodified compounds, including FDA-approved drugs, to be probed for binding to RNA motif libraries in a massively parallel format. Several drug classes bind RNA including kinase and topoisomerase inhibitors. The latter avidly bound the motif found in the Dicer site of oncogenic microRNA (miR)-21 and inhibited its processing both in vitro and in cells. The most potent compound de-repressed a downstream protein target and inhibited a miR-21-mediated invasive phenotype. The compound's activity was ablated upon overexpression of pre-miR-21. Target validation via chemical crosslinking and isolation by pull-down showed direct engagement of pre-miR-21 by the small molecule in cells, demonstrating that RNAs should indeed be considered druggable.
Collapse
Affiliation(s)
- Sai Pradeep Velagapudi
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew G Costales
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Balayeshwanth R Vummidi
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yoshio Nakai
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Alicia J Angelbello
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Tuan Tran
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Hafeez S Haniff
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yasumasa Matsumoto
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Zi Fu Wang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Arnab K Chatterjee
- California Institute for Biomedical Research (CALIBR), 11119 North Torrey Pines Road, Suite 100, La Jolla, CA 92037, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
224
|
Scoto M, Finkel R, Mercuri E, Muntoni F. Genetic therapies for inherited neuromuscular disorders. THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:600-609. [PMID: 30119719 DOI: 10.1016/s2352-4642(18)30140-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
Abstract
Inherited neuromuscular disorders encompass a broad group of genetic conditions, and the discovery of these underlying genes has expanded greatly in the past three decades. The discovery of such genes has enabled more precise diagnosis of these disorders and the development of specific therapeutic approaches that target the genetic basis and pathophysiological pathways. Such translational research has led to the approval of two genetic therapies by the US Food and Drug Administration: eteplirsen for Duchenne muscular dystrophy and nusinersen for spinal muscular atrophy, which are both antisense oligonucleotides that modify pre-mRNA splicing. In this Review we aim to discuss new genetic therapies and ongoing clinical trials for Duchenne muscular dystrophy, spinal muscular atrophy, and other less common childhood neuromuscular disorders.
Collapse
Affiliation(s)
- Mariacristina Scoto
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Richard Finkel
- Division of Pediatric Neurology, Nemours Children's Hospital, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Eugenio Mercuri
- Pediatric Neurology and Centro Nemo, IRCSS Fondazione Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
225
|
Valeur E, Jimonet P. New Modalities, Technologies, and Partnerships in Probe and Lead Generation: Enabling a Mode-of-Action Centric Paradigm. J Med Chem 2018; 61:9004-9029. [DOI: 10.1021/acs.jmedchem.8b00378] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Eric Valeur
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Patrick Jimonet
- External Innovation Drug Discovery, Global Business Development & Licensing, Sanofi, 13 quai Jules Guesde, 94400 Vitry-sur-Seine, France
| |
Collapse
|
226
|
Targeting RNA structure in SMN2 reverses spinal muscular atrophy molecular phenotypes. Nat Commun 2018; 9:2032. [PMID: 29795225 PMCID: PMC5966403 DOI: 10.1038/s41467-018-04110-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/04/2018] [Indexed: 01/04/2023] Open
Abstract
Modification of SMN2 exon 7 (E7) splicing is a validated therapeutic strategy against spinal muscular atrophy (SMA). However, a target-based approach to identify small-molecule E7 splicing modifiers has not been attempted, which could reveal novel therapies with improved mechanistic insight. Here, we chose as a target the stem-loop RNA structure TSL2, which overlaps with the 5' splicing site of E7. A small-molecule TSL2-binding compound, homocarbonyltopsentin (PK4C9), was identified that increases E7 splicing to therapeutic levels and rescues downstream molecular alterations in SMA cells. High-resolution NMR combined with molecular modelling revealed that PK4C9 binds to pentaloop conformations of TSL2 and promotes a shift to triloop conformations that display enhanced E7 splicing. Collectively, our study validates TSL2 as a target for small-molecule drug discovery in SMA, identifies a novel mechanism of action for an E7 splicing modifier, and sets a precedent for other splicing-mediated diseases where RNA structure could be similarly targeted.
Collapse
|
227
|
Markossian S, Ang KK, Wilson CG, Arkin MR. Small-Molecule Screening for Genetic Diseases. Annu Rev Genomics Hum Genet 2018; 19:263-288. [PMID: 29799800 DOI: 10.1146/annurev-genom-083117-021452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic determinants of many diseases, including monogenic diseases and cancers, have been identified; nevertheless, targeted therapy remains elusive for most. High-throughput screening (HTS) of small molecules, including high-content analysis (HCA), has been an important technology for the discovery of molecular tools and new therapeutics. HTS can be based on modulation of a known disease target (called reverse chemical genetics) or modulation of a disease-associated mechanism or phenotype (forward chemical genetics). Prominent target-based successes include modulators of transthyretin, used to treat transthyretin amyloidoses, and the BCR-ABL kinase inhibitor Gleevec, used to treat chronic myelogenous leukemia. Phenotypic screening successes include modulators of cystic fibrosis transmembrane conductance regulator, splicing correctors for spinal muscular atrophy, and histone deacetylase inhibitors for cancer. Synthetic lethal screening, in which chemotherapeutics are screened for efficacy against specific genetic backgrounds, is a promising approach that merges phenotype and target. In this article, we introduce HTS technology and highlight its contributions to the discovery of drugs and probes for monogenic diseases and cancer.
Collapse
Affiliation(s)
- Sarine Markossian
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| | - Kenny K Ang
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| | - Christopher G Wilson
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| | - Michelle R Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| |
Collapse
|
228
|
Shimo T, Tachibana K, Obika S. Construction of a tri-chromatic reporter cell line for the rapid and simple screening of splice-switching oligonucleotides targeting DMD exon 51 using high content screening. PLoS One 2018; 13:e0197373. [PMID: 29768479 PMCID: PMC5955590 DOI: 10.1371/journal.pone.0197373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/01/2018] [Indexed: 01/13/2023] Open
Abstract
Splice-switching oligonucleotides (SSOs) that can modulate RNA splicing are used for the treatment of many genetic disorders. To enhance the efficacy of modulating splicing, it is important to optimize SSOs with regard to target sites, GC content, melting temperature (Tm value), chemistries, and lengths. Thus, in vitro assay systems that allow for the rapid and simple screening of SSOs are essential for optimizing SSO design. In this study, we established a novel tri-chromatic reporter cell line for SSO screening. This reporter cell line is designed to express three different fluorescent proteins (blue, green, and red) and was employed for high content screening (HCS, also known as high content analysis; HCA) for the evaluation of SSO-induced exon skipping by analyzing the expression levels of fluorescent proteins. The blue fluorescent protein is stably expressed throughout the cell and is useful for data normalization using cell numbers. Furthermore, both the green and red fluorescent proteins were used for monitoring the splicing patterns of target genes. Indeed, we demonstrated that this novel reporter cell line involving HCS leads to a more rapid and simple approach for the evaluation of exon skipping than widely used methods, such as RT-PCR, western blotting, and quantitative RT-PCR. Additionally, a brief screening of Locked nucleic acids (LNA)-based SSOs targeting exon 51 in DMD was performed using the reporter cell line. The LNA-based SSO cocktail shows high exon 51 skipping in a dose-dependent manner. Furthermore, the LNA-based SSO cocktails display high exon 51 skipping activities on endogenous DMD mRNA in human rhabdomyosarcoma cells.
Collapse
Affiliation(s)
- Takenori Shimo
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
229
|
Wang J, Schultz PG, Johnson KA. Mechanistic studies of a small-molecule modulator of SMN2 splicing. Proc Natl Acad Sci U S A 2018; 115:E4604-E4612. [PMID: 29712837 PMCID: PMC5960314 DOI: 10.1073/pnas.1800260115] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RG-7916 is a first-in-class drug candidate for the treatment of spinal muscular atrophy (SMA) that functions by modulating pre-mRNA splicing of the SMN2 gene, resulting in a 2.5-fold increase in survival of motor neuron (SMN) protein level, a key protein lacking in SMA patients. RG-7916 is currently in three interventional phase 2 clinical trials for various types of SMA. In this report, we show that SMN-C2 and -C3, close analogs of RG-7916, act as selective RNA-binding ligands that modulate pre-mRNA splicing. Chemical proteomic and genomic techniques reveal that SMN-C2 directly binds to the AGGAAG motif on exon 7 of the SMN2 pre-mRNA, and promotes a conformational change in two to three unpaired nucleotides at the junction of intron 6 and exon 7 in both in vitro and in-cell models. This change creates a new functional binding surface that increases binding of the splicing modulators, far upstream element binding protein 1 (FUBP1) and its homolog, KH-type splicing regulatory protein (KHSRP), to the SMN-C2/C3-SMN2 pre-mRNA complex and enhances SMN2 splicing. These findings underscore the potential of small-molecule drugs to selectively bind RNA and modulate pre-mRNA splicing as an approach to the treatment of human disease.
Collapse
Affiliation(s)
- Jingxin Wang
- California Institute for Biomedical Research, La Jolla, CA 92037
| | - Peter G Schultz
- California Institute for Biomedical Research, La Jolla, CA 92037;
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | | |
Collapse
|
230
|
Schneider-Poetsch T, Yoshida M. Along the Central Dogma-Controlling Gene Expression with Small Molecules. Annu Rev Biochem 2018; 87:391-420. [PMID: 29727582 DOI: 10.1146/annurev-biochem-060614-033923] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The central dogma of molecular biology, that DNA is transcribed into RNA and RNA translated into protein, was coined in the early days of modern biology. Back in the 1950s and 1960s, bacterial genetics first opened the way toward understanding life as the genetically encoded interaction of macromolecules. As molecular biology progressed and our knowledge of gene control deepened, it became increasingly clear that expression relied on many more levels of regulation. In the process of dissecting mechanisms of gene expression, specific small-molecule inhibitors played an important role and became valuable tools of investigation. Small molecules offer significant advantages over genetic tools, as they allow inhibiting a process at any desired time point, whereas mutating or altering the gene of an important regulator would likely result in a dead organism. With the advent of modern sequencing technology, it has become possible to monitor global cellular effects of small-molecule treatment and thereby overcome the limitations of classical biochemistry, which usually looks at a biological system in isolation. This review focuses on several molecules, especially natural products, that have played an important role in dissecting gene expression and have opened up new fields of investigation as well as clinical venues for disease treatment.
Collapse
Affiliation(s)
- Tilman Schneider-Poetsch
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan;
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan; .,Department of Biotechnology, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
231
|
Yanaizu M, Sakai K, Tosaki Y, Kino Y, Satoh JI. Small nuclear RNA-mediated modulation of splicing reveals a therapeutic strategy for a TREM2 mutation and its post-transcriptional regulation. Sci Rep 2018; 8:6937. [PMID: 29720600 PMCID: PMC5931963 DOI: 10.1038/s41598-018-25204-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022] Open
Abstract
Loss-of-function mutations in TREM2 cause Nasu-Hakola disease (NHD), a rare genetic disease characterized by early-onset dementia with leukoencephalopathy and bone cysts. An NHD-associated mutation, c.482 + 2 T > C, disrupts the splice donor site of intron 3 and causes aberrant skipping of exon 3, resulting in the loss of full-length TREM2 protein. Here, we examined the efficacy of artificial U1 and U7 small nuclear RNAs (snRNAs) designed to enhance exon 3 inclusion. Using mutant TREM2 minigenes, we found that some modified U1, but not U7, snRNAs enhanced exon 3 inclusion and restored TREM2 protein expression. Unexpectedly, we found that exon 3 of wild-type TREM2 is an alternative exon, whose skipping leads to reduced expression of the full-length protein. Indeed, TREM2 protein levels were modulated by modified snRNAs that either promoted or repressed exon 3 inclusion. The splice donor site flanking exon 3 was predicted to be weak, which may explain both the alternative splicing of exon 3 under normal conditions and complete exon skipping when the c.482 + 2 T > C mutation was present. Collectively, our snRNA-based approaches provide a potential therapeutic strategy for NHD-associated mis-splicing and novel insights into the post-transcriptional regulation of TREM2.
Collapse
Affiliation(s)
- Motoaki Yanaizu
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Kenji Sakai
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Youhei Tosaki
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| | - Jun-Ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| |
Collapse
|
232
|
Comess KM, McLoughlin SM, Oyer JA, Richardson PL, Stöckmann H, Vasudevan A, Warder SE. Emerging Approaches for the Identification of Protein Targets of Small Molecules - A Practitioners’ Perspective. J Med Chem 2018; 61:8504-8535. [DOI: 10.1021/acs.jmedchem.7b01921] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kenneth M. Comess
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Shaun M. McLoughlin
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Jon A. Oyer
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Paul L. Richardson
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Henning Stöckmann
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Anil Vasudevan
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Scott E. Warder
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| |
Collapse
|
233
|
Dowling JJ, D. Gonorazky H, Cohn RD, Campbell C. Treating pediatric neuromuscular disorders: The future is now. Am J Med Genet A 2018; 176:804-841. [PMID: 28889642 PMCID: PMC5900978 DOI: 10.1002/ajmg.a.38418] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Pediatric neuromuscular diseases encompass all disorders with onset in childhood and where the primary area of pathology is in the peripheral nervous system. These conditions are largely genetic in etiology, and only those with a genetic underpinning will be presented in this review. This includes disorders of the anterior horn cell (e.g., spinal muscular atrophy), peripheral nerve (e.g., Charcot-Marie-Tooth disease), the neuromuscular junction (e.g., congenital myasthenic syndrome), and the muscle (myopathies and muscular dystrophies). Historically, pediatric neuromuscular disorders have uniformly been considered to be without treatment possibilities and to have dire prognoses. This perception has gradually changed, starting in part with the discovery and widespread application of corticosteroids for Duchenne muscular dystrophy. At present, several exciting therapeutic avenues are under investigation for a range of conditions, offering the potential for significant improvements in patient morbidities and mortality and, in some cases, curative intervention. In this review, we will present the current state of treatment for the most common pediatric neuromuscular conditions, and detail the treatment strategies with the greatest potential for helping with these devastating diseases.
Collapse
Affiliation(s)
- James J. Dowling
- Division of NeurologyHospital for Sick ChildrenTorontoOntarioCanada
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | | | - Ronald D. Cohn
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoOntarioCanada
- Departments of Paediatrics and Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Craig Campbell
- Department of PediatricsClinical Neurological SciencesEpidemiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
234
|
Rizvi NF, Howe JA, Nahvi A, Klein DJ, Fischmann TO, Kim HY, McCoy MA, Walker SS, Hruza A, Richards MP, Chamberlin C, Saradjian P, Butko MT, Mercado G, Burchard J, Strickland C, Dandliker PJ, Smith GF, Nickbarg EB. Discovery of Selective RNA-Binding Small Molecules by Affinity-Selection Mass Spectrometry. ACS Chem Biol 2018; 13:820-831. [PMID: 29412640 DOI: 10.1021/acschembio.7b01013] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in understanding the relevance of noncoding RNA (ncRNA) to disease have increased interest in drugging ncRNA with small molecules. The recent discovery of ribocil, a structurally distinct synthetic mimic of the natural ligand of the flavin mononucleotide (FMN) riboswitch, has revealed the potential chemical diversity of small molecules that target ncRNA. Affinity-selection mass spectrometry (AS-MS) is theoretically applicable to high-throughput screening (HTS) of small molecules binding to ncRNA. Here, we report the first application of the Automated Ligand Detection System (ALIS), an indirect AS-MS technique, for the selective detection of small molecule-ncRNA interactions, high-throughput screening against large unbiased small-molecule libraries, and identification and characterization of novel compounds (structurally distinct from both FMN and ribocil) that target the FMN riboswitch. Crystal structures reveal that different compounds induce various conformations of the FMN riboswitch, leading to different activity profiles. Our findings validate the ALIS platform for HTS screening for RNA-binding small molecules and further demonstrate that ncRNA can be broadly targeted by chemically diverse yet selective small molecules as therapeutics.
Collapse
Affiliation(s)
- Noreen F. Rizvi
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - John A. Howe
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ali Nahvi
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Daniel J. Klein
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Hai-Young Kim
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Mark A. McCoy
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Scott S. Walker
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Alan Hruza
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Chad Chamberlin
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Peter Saradjian
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Gabriel Mercado
- Biodesy, Inc., South San Francisco, California 94080, United States
| | - Julja Burchard
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | | | - Graham F. Smith
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | |
Collapse
|
235
|
Abou-Hamdan H, Désaubry L. Scalable 9-Step Synthesis of the Splicing Modulator NVS-SM2. J Org Chem 2018; 83:2954-2958. [PMID: 29417806 DOI: 10.1021/acs.joc.7b03009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NVS-SM2, the first activator of pre-mRNA splicing, displays remarkable pharmacological in vivo activities in models of spinal muscular atrophy. Herein we describe an improved approach to the synthesis of this compound, which features a convenient introduction of sterically encumbered amine moiety onto a fluoropyridazine intermediate.
Collapse
Affiliation(s)
- Hussein Abou-Hamdan
- Laboratory of Therapeutic Innovation (UMR 7200), University of Strasbourg-CNRS, Faculty of Pharmacy , 67401 Illkirch, France.,Laboratory of Biomolecules (UMR7203), Sorbonne University-CNRS , 4 place Jussieu, 75005 Paris, France
| | - Laurent Désaubry
- Laboratory of Therapeutic Innovation (UMR 7200), University of Strasbourg-CNRS, Faculty of Pharmacy , 67401 Illkirch, France.,Laboratory of Biomolecules (UMR7203), Sorbonne University-CNRS , 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
236
|
Gómez-Gaviro MV, Desco M. The Paracrine Neural Stem Cell Niche: New Actors in the Play. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0112-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
237
|
Parente V, Corti S. Advances in spinal muscular atrophy therapeutics. Ther Adv Neurol Disord 2018; 11:1756285618754501. [PMID: 29434670 PMCID: PMC5802612 DOI: 10.1177/1756285618754501] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 10/24/2017] [Indexed: 11/17/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive, recessively inherited neuromuscular disease, characterized by the degeneration of lower motor neurons in the spinal cord and brainstem, which leads to weakness and muscle atrophy. SMA currently represents the most common genetic cause of infant death. SMA is caused by the lack of survival motor neuron (SMN) protein due to mutations, which are often deletions, in the SMN1 gene. In the absence of treatments able to modify the disease course, a considerable burden falls on patients and their families. Greater knowledge of the molecular basis of SMA pathogenesis has fuelled the development of potential therapeutic approaches, which are illustrated here. Nusinersen, a modified antisense oligonucleotide that modulates the splicing of the SMN2 mRNA transcript, is the first approved drug for all types of SMA. Moreover, the first gene therapy clinical trial using adeno-associated virus (AAV) vectors encoding SMN reported positive results in survival and motor milestones achievement. In addition, other strategies are in the pipeline, including modulation of SMN2 transcripts, neuroprotection, and targeting an increasing number of other peripheral targets, including the skeletal muscle. Based on this premise, it is reasonable to expect that therapeutic approaches aimed at treating SMA will soon be changed, and improved, in a meaningful way. We discuss the challenges with regard to the development of novel treatments for patients with SMA, and depict the current and future scenarios as the field enters into a new era of promising effective treatments.
Collapse
Affiliation(s)
- Valeria Parente
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|
238
|
Chakradhar S. Splicing solutions: Companies explore new techniques to fix splicing errors. Nat Med 2018; 22:967-9. [PMID: 27603128 DOI: 10.1038/nm0916-967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
239
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
240
|
Abstract
PURPOSE OF REVIEW Spinal muscular atrophy (SMA) is an inherited childhood neurodegenerative disorder caused by ubiquitous deficiency of the survival motor neuron (SMN) protein - the hallmarks of which are the selective loss of motor neurons and skeletal muscle atrophy. Here, we highlight recent progress in the understanding of SMA pathology and in the development of therapeutic approaches for its treatment. RECENT FINDINGS Phenotypic characterization of mouse models of the disease, combined with analysis of SMN restoration or depletion in a spatially and temporally controlled manner, has yielded key insights into the normal requirement of SMN and SMA pathophysiology. Increasing evidence indicates a higher demand for SMN during neuromuscular development and extends the pathogenic effects of SMN deficiency beyond motor neurons to include additional cells both within and outside the nervous system. These findings have been paralleled by preclinical development of powerful approaches for increasing SMN expression through gene therapy or splicing modulation that are now in human trials. SUMMARY Along with the availability of SMN-upregulating drugs, identification of the specific cell types in which SMN deficiency induces the disease and delineation of the window of opportunity for effective treatment are key advances in the ongoing path to SMA therapy.
Collapse
|
241
|
Abstract
Following the elucidation of the human genome, chemogenomics emerged in the beginning of the twenty-first century as an interdisciplinary research field with the aim to accelerate target and drug discovery by making best usage of the genomic data and the data linkable to it. What started as a systematization approach within protein target families now encompasses all types of chemical compounds and gene products. A key objective of chemogenomics is the establishment, extension, analysis, and prediction of a comprehensive SAR matrix which by application will enable further systematization in drug discovery. Herein we outline future perspectives of chemogenomics including the extension to new molecular modalities, or the potential extension beyond the pharma to the agro and nutrition sectors, and the importance for environmental protection. The focus is on computational sciences with potential applications for compound library design, virtual screening, hit assessment, analysis of phenotypic screens, lead finding and optimization, and systems biology-based prediction of toxicology and translational research.
Collapse
Affiliation(s)
- Edgar Jacoby
- Janssen Research & Development, Beerse, Belgium.
| | - J B Brown
- Life Science Informatics Research Unit, Laboratory of Molecular Biosciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
242
|
Molecular basis of differential 3' splice site sensitivity to anti-tumor drugs targeting U2 snRNP. Nat Commun 2017; 8:2100. [PMID: 29235465 PMCID: PMC5727392 DOI: 10.1038/s41467-017-02007-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023] Open
Abstract
Several splicing-modulating compounds, including Sudemycins and Spliceostatin A, display anti-tumor properties. Combining transcriptome, bioinformatic and mutagenesis analyses, we delineate sequence determinants of the differential sensitivity of 3′ splice sites to these drugs. Sequences 5′ from the branch point (BP) region strongly influence drug sensitivity, with additional functional BPs reducing, and BP-like sequences allowing, drug responses. Drug-induced retained introns are typically shorter, displaying higher GC content and weaker polypyrimidine-tracts and BPs. Drug-induced exon skipping preferentially affects shorter alternatively spliced regions with weaker BPs. Remarkably, structurally similar drugs display both common and differential effects on splicing regulation, SSA generally displaying stronger effects on intron retention, and Sudemycins more acute effects on exon skipping. Collectively, our results illustrate how splicing modulation is exquisitely sensitive to the sequence context of 3′ splice sites and to small structural differences between drugs. Several families of natural compounds target core components of the pre-mRNA splicing machinery and display anti-tumor activity. Here the authors show that particular sequence features can be linked to drug response, and that drugs with very similar chemical structures display substantially different effects on splicing regulation.
Collapse
|
243
|
Choi S, Calder AN, Miller EH, Anderson KP, Fiejtek DK, Rietz A, Li H, Cherry JJ, Quist KM, Xing X, Glicksman MA, Cuny GD, Lorson CL, Androphy EA, Hodgetts KJ. Optimization of a series of heterocycles as survival motor neuron gene transcription enhancers. Bioorg Med Chem Lett 2017; 27:5144-5148. [PMID: 29103974 PMCID: PMC5701662 DOI: 10.1016/j.bmcl.2017.10.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 12/24/2022]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder that results from mutations in the SMN1 gene, leading to survival motor neuron (SMN) protein deficiency. One therapeutic strategy for SMA is to identify compounds that enhance the expression of the SMN2 gene, which normally only is a minor contributor to functional SMN protein production, but which is unaffected in SMA. A recent high-throughput screening campaign identified a 3,4-dihydro-4-phenyl-2(1H)-quinolinone derivative (2) that increases the expression of SMN2 by 2-fold with an EC50 = 8.3 µM. A structure-activity relationship (SAR) study revealed that the array of tolerated substituents, on either the benzo portion of the quinolinone or the 4-phenyl, was very narrow. However, the lactam ring of the quinolinone was more amenable to modifications. For example, the quinazolinone (9a) and the benzoxazepin-2(3H)-one (19) demonstrated improved potency and efficacy for increase in SMN2 expression as compared to 2.
Collapse
Affiliation(s)
- Sungwoon Choi
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, USA
| | - Alyssa N Calder
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, USA
| | - Eliza H Miller
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, USA
| | - Kierstyn P Anderson
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, USA
| | - Dawid K Fiejtek
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, USA
| | - Anne Rietz
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hongxia Li
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan J Cherry
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin M Quist
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xuechao Xing
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, USA
| | - Marcie A Glicksman
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, USA
| | - Gregory D Cuny
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Elliot A Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin J Hodgetts
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, USA.
| |
Collapse
|
244
|
Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat Commun 2017; 8:1476. [PMID: 29133793 PMCID: PMC5684323 DOI: 10.1038/s41467-017-01559-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 09/27/2017] [Indexed: 01/28/2023] Open
Abstract
Small molecule splicing modifiers have been previously described that target the general splicing machinery and thus have low specificity for individual genes. Several potent molecules correcting the splicing deficit of the SMN2 (survival of motor neuron 2) gene have been identified and these molecules are moving towards a potential therapy for spinal muscular atrophy (SMA). Here by using a combination of RNA splicing, transcription, and protein chemistry techniques, we show that these molecules directly bind to two distinct sites of the SMN2 pre-mRNA, thereby stabilizing a yet unidentified ribonucleoprotein (RNP) complex that is critical to the specificity of these small molecules for SMN2 over other genes. In addition to the therapeutic potential of these molecules for treatment of SMA, our work has wide-ranging implications in understanding how small molecules can interact with specific quaternary RNA structures. Small molecules correcting the splicing deficit of the survival of motor neuron 2 (SMN2) gene have been identified as having therapeutic potential. Here, the authors provide evidence that SMN2 mRNA forms a ribonucleoprotein complex that can be specifically targeted by these small molecules.
Collapse
|
245
|
RNA as a small molecule druggable target. Bioorg Med Chem Lett 2017; 27:5083-5088. [PMID: 29097169 DOI: 10.1016/j.bmcl.2017.10.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/11/2017] [Accepted: 10/22/2017] [Indexed: 12/20/2022]
Abstract
Small molecule drugs have readily been developed against many proteins in the human proteome, but RNA has remained an elusive target for drug discovery. Increasingly, we see that RNA, and to a lesser extent DNA elements, show a persistent tertiary structure responsible for many diverse and complex cellular functions. In this digest, we have summarized recent advances in screening approaches for RNA targets and outlined the discovery of novel, drug-like small molecules against RNA targets from various classes and therapeutic areas. The link of structure, function, and small-molecule Druggability validates now for the first time that RNA can be the targets of therapeutic agents.
Collapse
|
246
|
Morgan BS, Forte JE, Culver RN, Zhang Y, Hargrove AE. Discovery of Key Physicochemical, Structural, and Spatial Properties of RNA-Targeted Bioactive Ligands. Angew Chem Int Ed Engl 2017; 56:13498-13502. [PMID: 28810078 PMCID: PMC5752130 DOI: 10.1002/anie.201707641] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Indexed: 01/20/2023]
Abstract
While a myriad non-coding RNAs are known to be essential in cellular processes and misregulated in diseases, the development of RNA-targeted small molecule probes has met with limited success. To elucidate the guiding principles for selective small molecule/RNA recognition, we analyzed cheminformatic and shape-based descriptors for 104 RNA-targeted ligands with demonstrated biological activity (RNA-targeted BIoactive ligaNd Database, R-BIND). We then compared R-BIND to both FDA-approved small molecule drugs and RNA ligands without reported bioactivity. Several striking trends emerged for bioactive RNA ligands, including: 1) Compliance to medicinal chemistry rules, 2) distinctive structural features, and 3) enrichment in rod-like shapes over others. This work provides unique insights that directly facilitate the selection and synthesis of RNA-targeted libraries with the goal of efficiently identifying selective small molecule ligands for therapeutically relevant RNAs.
Collapse
Affiliation(s)
- Brittany S Morgan
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | - Jordan E Forte
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | - Rebecca N Culver
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | - Yuqi Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| |
Collapse
|
247
|
Morgan BS, Forte JE, Culver RN, Zhang Y, Hargrove AE. Discovery of Key Physicochemical, Structural, and Spatial Properties of RNA-Targeted Bioactive Ligands. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Jordan E. Forte
- Department of Chemistry; Duke University; Durham NC 27708-0346 USA
| | | | - Yuqi Zhang
- Department of Integrative Structural and Computational Biology; The Scripps Research Institute; La Jolla CA 92037 USA
| | | |
Collapse
|
248
|
Alternative Splicing in Genetic Diseases: Improved Diagnosis and Novel Treatment Options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:85-141. [PMID: 29305015 DOI: 10.1016/bs.ircmb.2017.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alternative splicing is an important mechanism to regulate gene expression and to expand the repertoire of gene products in order to accommodate an increase in complexity of multicellular organisms. It needs to be precisely regulated, which is achieved via RNA structure, splicing factors, transcriptional regulation, and chromatin. Changes in any of these factors can lead to disease. These may include the core spliceosome, splicing enhancer/repressor sequences and their interacting proteins, the speed of transcription by RNA polymerase II, and histone modifications. While the basic principle of splicing is well understood, it is still very difficult to predict splicing outcome, due to the multiple levels of regulation. Current molecular diagnostics mainly uses Sanger sequencing of exons, or next-generation sequencing of gene panels or the whole exome. Functional analysis of potential splicing variants is scarce, and intronic variants are often not considered. This likely results in underestimation of the percentage of splicing variants. Understanding how sequence variants may affect splicing is not only crucial for confirmation of diagnosis and for genetic counseling, but also for the development of novel treatment options. These include small molecules, transsplicing, antisense oligonucleotides, and gene therapy. Here we review the current state of molecular mechanisms of splicing regulation and how deregulation can lead to human disease, diagnostics to detect splicing variants, and novel treatment options based on splicing correction.
Collapse
|
249
|
Haasen D, Schopfer U, Antczak C, Guy C, Fuchs F, Selzer P. How Phenotypic Screening Influenced Drug Discovery: Lessons from Five Years of Practice. Assay Drug Dev Technol 2017; 15:239-246. [PMID: 28800248 DOI: 10.1089/adt.2017.796] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Since 2011, phenotypic screening has been a trend in the pharmaceutical industry as well as in academia. This renaissance was triggered by analyses that suggested that phenotypic screening is a superior strategy to discover first-in-class drugs. Despite these promises and considerable investments, pharmaceutical research organizations have encountered considerable challenges with the approach. Few success stories have emerged in the past 5 years and companies are questioning their investment in this area. In this contribution, we outline what we have learned about success factors and challenges of phenotypic screening. We then describe how our efforts in phenotypic screening have influenced our approach to drug discovery in general. We predict that concepts from phenotypic screening will be incorporated into target-based approaches and will thus remain influential beyond the current trend.
Collapse
Affiliation(s)
- Dorothea Haasen
- 1 Novartis Institutes for BioMedical Research (NIBR) , Chemical Biology and Therapeutics (CBT), Basel, Switzerland
| | - Ulrich Schopfer
- 1 Novartis Institutes for BioMedical Research (NIBR) , Chemical Biology and Therapeutics (CBT), Basel, Switzerland
| | - Christophe Antczak
- 2 Novartis Institutes for BioMedical Research (NIBR) , Chemical Biology and Therapeutics (CBT), Cambridge, Massachusetts
| | - Chantale Guy
- 2 Novartis Institutes for BioMedical Research (NIBR) , Chemical Biology and Therapeutics (CBT), Cambridge, Massachusetts
| | - Florian Fuchs
- 1 Novartis Institutes for BioMedical Research (NIBR) , Chemical Biology and Therapeutics (CBT), Basel, Switzerland
| | - Paul Selzer
- 1 Novartis Institutes for BioMedical Research (NIBR) , Chemical Biology and Therapeutics (CBT), Basel, Switzerland
| |
Collapse
|
250
|
Screening for small molecule inhibitors of HIV-1 Gag expression. Methods 2017; 126:201-208. [DOI: 10.1016/j.ymeth.2017.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/08/2017] [Accepted: 06/05/2017] [Indexed: 01/03/2023] Open
|