201
|
Dorjee, Johnson SB, Buckmaster AJ, Downey PO. Developing a hybrid weed risk assessment system for countries with open and porous borders: insights from Bhutan. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02552-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
202
|
|
203
|
Blaalid R, Magnussen K, Westberg NB, Navrud S. A benefit-cost analysis framework for prioritization of control programs for well-established invasive alien species. NEOBIOTA 2021. [DOI: 10.3897/neobiota.68.62122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Invasive alien species (IAS) are identified as a major threat to biodiversity and ecosystem services. While early detection and control programs to avoid establishments of new alien species can be very cost-effective, control costs for well-established species can be enormous. Many of these well-established species constitute severe or high ecological impact and are thus likely to be included in control programs. However, due to limited funds, we need to prioritize which species to control according to the gains in ecological status and human well-being compared to the costs. Benefit-Cost Analysis (BCA) provides such a tool but has been hampered by the difficulties in assessing the overall social benefits on the same monetary scale as the control costs. In order to overcome this obstacle, we combine a non-monetary benefit assessment tool with the ecosystem service framework to create a benefit assessment in line with the welfare economic underpinnings of BCA. Our simplified BCA prioritization tool enables us to conduct rapid and cheap appraisals of large numbers of invasive species that the Norwegian Biodiversity Information Centre has found to cause negative ecological impacts. We demonstrate this application on 30 well-established invasive alien vascular plant species in Norway. Social benefits are calculated and aggregated on a benefit point scale for six impact categories: four types of ecosystem services (supporting, provisioning, regulating and cultural), human health and infrastructure impacts. Total benefit points are then compared to the total control costs of programs aiming at eradicating individual IAS across Norway or in selected vulnerable ecosystems. Although there are uncertainties with regards to IAS population size, benefits assessment and control program effectiveness and costs; our simplified BCA tool identified six species associated with robust low cost-benefit ratios in terms of control costs (in million USD) per benefit point. As a large share of public funds for eradication of IAS is currently spent on control programs for other plant species, we recommend that the environmental authorities at all levels use our BCA prioritization tool to increase the social benefits of their limited IAS control budgets. In order to maximize the net social benefits of IAS control programs, environmental valuation studies of their ecosystem service benefits are needed.
Collapse
|
204
|
Bonnamour A, Gippet JMW, Bertelsmeier C. Insect and plant invasions follow two waves of globalisation. Ecol Lett 2021; 24:2418-2426. [PMID: 34420251 PMCID: PMC9290749 DOI: 10.1111/ele.13863] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/10/2021] [Accepted: 07/27/2021] [Indexed: 01/01/2023]
Abstract
Globalisation has facilitated the spread of alien species, and some of them have significant impacts on biodiversity and human societies. It is commonly thought that biological invasions have accelerated continuously over the last centuries, following increasing global trade. However, the world experienced two distinct waves of globalisation (~1820–1914, 1960‐present), and it remains unclear whether these two waves have influenced invasion dynamics of many species. To test this, we built a statistical model that accounted for temporal variations in sampling effort. We found that insect and plant invasion rates did not continuously increase over the past centuries but greatly fluctuated following the two globalisation waves. Our findings challenge the idea of a continuous acceleration of alien species introductions and highlight the association between temporal variations in trade openness and biological invasion dynamics. More generally, this emphasises the urgency of better understanding the subtleties of socio‐economic drivers to improve predictions of future invasions.
Collapse
Affiliation(s)
- Aymeric Bonnamour
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jérôme M W Gippet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Cleo Bertelsmeier
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
205
|
Baquero RA, Barbosa AM, Ayllón D, Guerra C, Sánchez E, Araújo MB, Nicola GG. Potential distributions of invasive vertebrates in the Iberian Peninsula under projected changes in climate extreme events. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Rocío A. Baquero
- Department of Environmental Sciences Faculty of Environmental Sciences and Biochemistry University of Castilla‐La Mancha (UCLM) Toledo Spain
| | - A. Márcia Barbosa
- CICGE (Centro de Investigação em Ciências Geo‐Espaciais) Universidade do Porto Porto Portugal
| | - Daniel Ayllón
- Department of Environmental Sciences Faculty of Environmental Sciences and Biochemistry University of Castilla‐La Mancha (UCLM) Toledo Spain
- Department of Biodiversity, Ecology and Evolution Faculty of Biology Complutense University of Madrid (UCM) Madrid Spain
| | - Carlos Guerra
- Department of Environmental Sciences Faculty of Environmental Sciences and Biochemistry University of Castilla‐La Mancha (UCLM) Toledo Spain
| | - Enrique Sánchez
- Department of Environmental Sciences Faculty of Environmental Sciences and Biochemistry University of Castilla‐La Mancha (UCLM) Toledo Spain
| | - Miguel B. Araújo
- Department of Biogeography and Global Change Museo Nacional de Ciencias Naturales‐CSIC Madrid Spain
- Rui Nabeiro Biodiversity Chair MED Institute University of Évora Évora Portugal
| | - Graciela G. Nicola
- Department of Environmental Sciences Faculty of Environmental Sciences and Biochemistry University of Castilla‐La Mancha (UCLM) Toledo Spain
- Department of Biodiversity, Ecology and Evolution Faculty of Biology Complutense University of Madrid (UCM) Madrid Spain
| |
Collapse
|
206
|
Wijerathna A, Evenden M, Reid P, Tidemann B, Cárcamo H. Management of Pea Leaf Weevil (Coleoptera: Curculionidae) and Development of a Nominal Threshold in Faba Beans. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1597-1606. [PMID: 34021578 DOI: 10.1093/jee/toab086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 06/12/2023]
Abstract
Pea leaf weevil, Sitona lineatus (L.) (Coleoptera: Curculionidae), can reduce the yield of field pea [Pisum sativum (L.) (Fabales: Fabaceae)] and faba bean [Vicia faba (L.) (Fabales: Fabaceae)]. Adults feed on the foliage and larvae feed on root nodules and nodule-associated Rhizobium Frank (Rhizobiales: Rhizobiacea) bacteria. In this study, we developed a data-based nominal threshold for pea leaf weevil in faba bean. We further tested the efficacy of insecticidal seed treatment and foliar insecticide (thiamethoxam and lambda-cyhalothrin, respectively), and nitrogen amendment for pea leaf weevil control using a multi-year field plot study at two sites in Alberta, Canada. Pea leaf weevil feeding damage significantly reduced faba bean yields. Thiamethoxam reduced adult and larval damage, and protected faba bean yield, while neither lambda-cyhalothrin nor a nitrogen amendment was effective in protecting yield. The percentage of seedlings with feeding on the terminal leaf had a negative relationship with yield and was used to estimate a nominal threshold near 15% of seedlings with terminal leaf damage. Since lambda-cyhalothrin is not effective in managing pea leaf weevil on faba bean, there is a need to research additional integrated pest management strategies to reduce prophylactic insecticidal seed treatments.
Collapse
Affiliation(s)
- Asha Wijerathna
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Maya Evenden
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Patty Reid
- Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | | | - Héctor Cárcamo
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
207
|
Hong SH, Lee YH, Lee G, Lee DH, Adhikari P. Predicting Impacts of Climate Change on Northward Range Expansion of Invasive Weeds in South Korea. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081604. [PMID: 34451649 PMCID: PMC8401637 DOI: 10.3390/plants10081604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 05/04/2023]
Abstract
Predicting the distribution of invasive weeds under climate change is important for the early identification of areas that are susceptible to invasion and for the adoption of the best preventive measures. Here, we predicted the habitat suitability of 16 invasive weeds in response to climate change and land cover changes in South Korea using a maximum entropy modeling approach. Based on the predictions of the model, climate change is likely to increase habitat suitability. Currently, the area of moderately suitable and highly suitable habitats is estimated to be 8877.46 km2, and 990.29 km2, respectively, and these areas are expected to increase up to 496.52% by 2050 and 1439.65% by 2070 under the representative concentration pathways 4.5 scenario across the country. Although habitat suitability was estimated to be highest in the southern regions (<36° latitude), the central and northern regions are also predicted to have substantial increases in suitable habitat areas. Our study revealed that climate change would exacerbate the threat of northward weed invasions by shifting the climatic barriers of invasive weeds from the southern region. Thus, it is essential to initiate control and management strategies in the southern region to prevent further invasions into new areas.
Collapse
Affiliation(s)
- Sun Hee Hong
- School of Plant Science and Landscape Architecture, Hankyong National University, Anseong-si 17579, Gyeonggi-do, Korea;
| | - Yong Ho Lee
- Institute of Ecological Phytochemistry, Hankyong National University, Anseong-si 17579, Gyeonggi-do, Korea; (Y.H.L.); (G.L.)
- OJeong Resilience Institute, Korea University, Seongbuk-gu, Seoul 02841, Korea
| | - Gaeun Lee
- Institute of Ecological Phytochemistry, Hankyong National University, Anseong-si 17579, Gyeonggi-do, Korea; (Y.H.L.); (G.L.)
| | - Do-Hun Lee
- National Institute of Ecology, Seocheon-gun 33657, Chungcheongnam-do, Korea;
| | - Pradeep Adhikari
- Institute of Ecological Phytochemistry, Hankyong National University, Anseong-si 17579, Gyeonggi-do, Korea; (Y.H.L.); (G.L.)
- Correspondence: ; Tel.: +82-31-670-5087
| |
Collapse
|
208
|
Adhikari S, Revolinski SR, Eigenbrode SD, Burke IC. Genetic diversity and population structure of a global invader Mayweed chamomile ( Anthemis cotula): management implications. AOB PLANTS 2021; 13:plab049. [PMID: 34466213 PMCID: PMC8403231 DOI: 10.1093/aobpla/plab049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Mayweed chamomile (Anthemis cotula) is a globally invasive, troublesome annual weed but knowledge of its genetic diversity, population structure in invaded regions and invasion patterns remains unstudied. Therefore, germplasm from 19 A. cotula populations (sites) from three geographically distinct invaded regions: the Walla Walla Basin (located in southern Washington) and the Palouse (located in both northern Idaho and eastern Washington), Pacific Northwest, USA and Kashmir Valley, India were grown in the greenhouse for DNA extraction and sequencing. A total of 18 829 single-nucleotide polymorphisms were called and filtered for each of 89 samples. Pairwise F ST, Nei's genetic distance, heterozygosity, Wright's inbreeding coefficient (F) and self-fertilization rates were estimated for populations within and among the three regions with a total of 19 populations comprised of 89 individuals. Overall measurements of genetic variation were low but significant among regions, populations and individuals. Despite the weak genetic structure, two main genetic clusters were evident, one comprised of populations from Palouse and Kashmir Valley, the other comprised of populations from the Walla Walla Basin. Significant selfing was observed in populations from the Walla Walla Basin and Palouse but not from Kashmir Valley, indicating that Mayweed chamomile in the Pacific Northwest, USA could persist with low pollinator or pollen donor densities. Although F ST values between the regions indicate Palouse populations are more closely related to Kashmir Valley than to Walla Walla Basin populations, based on Migrate-n analysis, panmixis was the most likely model, suggesting an unrestricted gene flow among all three regions. Our study indicated that Kashmir Valley populations either originated from or shared the origin with the Palouse populations, suggesting human-mediated migration of A. cotula between regions.
Collapse
Affiliation(s)
- Subodh Adhikari
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, 875 Perimeter Drive MS 2329, Moscow, ID 83844, USA
- Department of Crop and Soil Sciences, Washington State University, Johnson Hall Rm. 115, PO Box 646420, Pullman, WA 99164, USA
| | - Samuel R Revolinski
- Department of Crop and Soil Sciences, Washington State University, Johnson Hall Rm. 115, PO Box 646420, Pullman, WA 99164, USA
| | - Sanford D Eigenbrode
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, 875 Perimeter Drive MS 2329, Moscow, ID 83844, USA
| | - Ian C Burke
- Department of Crop and Soil Sciences, Washington State University, Johnson Hall Rm. 115, PO Box 646420, Pullman, WA 99164, USA
| |
Collapse
|
209
|
Cai ML, Ding WQ, Zhai JJ, Zheng XT, Yu ZC, Zhang QL, Lin XH, Chow WS, Peng CL. Photosynthetic compensation of non-leaf organ stems of the invasive species Sphagneticola trilobata (L.) Pruski at low temperature. PHOTOSYNTHESIS RESEARCH 2021; 149:121-134. [PMID: 32297101 DOI: 10.1007/s11120-020-00748-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/07/2020] [Indexed: 05/22/2023]
Abstract
Biological invasion is a hot topic in ecological research. Most studies on the physiological mechanisms of plants focus on leaves, but few studies focus on stems. To study the tolerance of invasive plant (Sphagneticola trilobata L.) to low temperature, relevant physiological indicators (including anthocyanin and chlorophyll) in different organs (leaves and stems) were analyzed, using a native species (Sphagneticola calendulacea L.) as the control. The results showed that, upon exposure to low temperature for 15 days, the stems of two Sphagneticola species were markedly reddened, their anthocyanin content increased, chlorophyll and chlorophyll fluorescence parameters decreased, and the accumulation of reactive oxygen species in the stem increased. The percentage increases of antioxidants and total antioxidant capacities in stems were significantly higher in S. trilobata than in S. calendulacea. This showed that S. trilobata had higher cold tolerance in stems while leaves were opposite. To further verify the higher cold tolerance of the stem of S. trilobata, a defoliation experiment was designed. We found that the defoliated stem of S. trilobata reduced anthocyanin accumulation and increased chlorophyll content, while alleviating membrane lipid damage and electrical conductivity, and the defoliated stem still showed an increase in stem diameter and biomass under low temperature. The discovery of the physiological and adaptive mechanisms of the stem of S. trilobata to low temperature will provide a theoretical basis for explaining how S. trilobata maintains its annual growth in South China. This is of great significance for predicting the future spread of cloned and propagated invasive plants.
Collapse
Affiliation(s)
- Min-Ling Cai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wen-Qiao Ding
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jun-Jie Zhai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiao-Ting Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zheng-Chao Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qi-Lei Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiao-Hua Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wah Soon Chow
- Division of Plant Science, Research School of Biology, College of Science, The Australian National University, Acton, ACT, 2601, Australia
| | - Chang-Lian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, College of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
210
|
Rico-Sánchez AE, Haubrock PJ, Cuthbert RN, Angulo E, Ballesteros-Mejia L, López-López E, Duboscq-Carra VG, Nuñez MA, Diagne C, Courchamp F. Economic costs of invasive alien species in Mexico. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.63846] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive alien species (IAS) are a leading driver of biodiversity loss worldwide, and have negative impacts on human societies. In most countries, available data on monetary costs of IAS are scarce, while being crucial for developing efficient management. In this study, we use available data collected from the first global assessment of economic costs of IAS (InvaCost) to quantify and describe the economic cost of invasions in Mexico. This description was made across a range of taxonomic, sectoral and temporal variables, and allowed us to identify knowledge gaps within these areas. Overall, costs of invasions in Mexico were estimated at US$ 5.33 billion (i.e., 109) ($MXN 100.84 billion) during the period from 1992 to 2019. Biological invasion costs were split relatively evenly between aquatic (US$ 1.16 billion; $MXN 21.95 billion) and terrestrial (US$ 1.17 billion; $MXN 22.14 billion) invaders, but semi-aquatic taxa dominated (US$ 2.99 billion; $MXN 56.57 billion), with costs from damages to resources four times higher than those from management of IAS (US$ 4.29 billion vs. US$ 1.04 billion; $MXN 81.17 billion vs $MXN 19.68 billion). The agriculture sector incurred the highest costs (US$ 1.01 billion; $MXN 19.1 billion), followed by fisheries (US$ 517.24 million; $MXN 9.79 billion), whilst most other costs simultaneously impacted mixed or unspecified sectors. When defined, costs to Mexican natural protected areas were mostly associated with management actions in terrestrial environments, and were incurred through official authorities via monitoring, control or eradication. On natural protected islands, mainly mammals were managed (i.e. rodents, cats and goats), to a total of US$ 3.99 million, while feral cows, fishes and plants were mostly managed in protected mainland areas, amounting to US$ 1.11 million in total. Pterygoplichthys sp. and Eichhornia crassipes caused the greatest reported costs in unprotected aquatic ecosystems in Mexico, and Bemisia tabaci to terrestrial systems. Although reported damages from invasions appeared to be fluctuating through time in Mexico, management spending has been increasing. These estimates, albeit conservative, underline the monetary pressure that invasions put on the Mexican economy, calling for urgent actions alongside comprehensive cost reporting in national states such as Mexico.
Collapse
|
211
|
Haubrock PJ, Cuthbert RN, Yeo DCJ, Banerjee AK, Liu C, Diagne C, Courchamp F. Biological invasions in Singapore and Southeast Asia: data gaps fail to mask potentially massive economic costs. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.64560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The impacts of invasive alien species are well-known and are categorised as a leading contributor to biodiversity loss globally. However, relatively little is known about the monetary costs incurred from invasions on national economies, hampering management responses. In this study, we used published data to describe the economic cost of invasions in Southeast Asia, with a focus on Singapore – a biodiversity-rich, tropical island city state with small size, high human density and high trade volume, three factors likely to increase invasions. In this country, as well as in others in Southeast Asia, cost data were scarce, with recorded costs available for only a small fraction of the species known to be invasive. Yet, the overall available economic costs to Singapore were estimated to be ~ US$ 1.72 billion in total since 1975 (after accounting for inflation), which is approximately one tenth of the total cost recorded in all of Southeast Asia (US$ 16.9 billion). These costs, in Singapore and Southeast Asia, were mostly linked to insects in the family Culicidae (principally Aedes spp.) and associated with damage, resource loss, healthcare and control-related spending. Projections for 11 additional species known to be invasive in Singapore, but with recorded costs only from abroad, amounted to an additional US$ 893.13 million, showing the potential huge gap between recorded and actual costs (cost records remain missing for over 90% of invasive species). No costs within the database for Singapore – or for other Southeast Asian countries – were exclusively associated with proactive management, highlighting that a shortage of reporting on the costs of invasions is mirrored by a lack of investment in management. Moreover, invasion cost entries in Singapore were under-reported relative to import levels, but total costs exceeded expectations, based on land area and population size, and to a greater extent than in other Southeast Asian countries. Therefore, the evaluation and reporting of economic costs of invasions need to be improved in this region to provide efficient data-based support for mitigation and management of their impacts.
Collapse
|
212
|
Tshikhudo PP, Nnzeru LR, Rambauli M, Makhado RA, Mudau FN. Phytosanitary risk associated with illegal importation of pest-infested commodities to the South African agricultural sector. S AFR J SCI 2021. [DOI: 10.17159/sajs.2021/8675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We evaluated the phytosanitary risk associated with illegal importation of pest-infested plant commodities into South Africa. Samples were collected from different South African ports of entry over 8 years (2011 to 2019) and data were analysed descriptively using Statistical Software Package. Pests were frequently detected on commodity species such as Citrus (18.31%), Zea mays (13.22%), Phaseolus vulgaris (12.88%), Musa spp. (9.15%) and Fragaria ananassa (5.08%). The highest number of pests intercepted occurred on fresh fruits (44.06%), followed by grains (26.44%) and vegetables (14.23%). The most intercepted organisms were Callosobruchus rhodesianus (7.79%), Dysmicoccus brevipes (7.11%), Callosobruchus maculates (6.10%) and Phyllosticta citricarpa (4.74%). The majority of intercepted organisms were non-quarantine organisms (70.50%), followed by pests of unknown status (17.28%), quarantine pests (10.84%) and potential quarantine pests (1.35%). Phyllosticta citricarpa, Bactrocera dorsalis, Spodoptera frugiperda and Prostephanus truncatus were the only quarantine pests intercepted in terms of South African regulatory status. The interception was mainly from southern African countries, particularly Mozambique, Zimbabwe and Eswatini. The findings present the level of phytosanitary risk associated with illegal importation and/or non-compliance in regard to plants and plant commodities from different countries through South African ports of entry. Crop production, biodiversity, food security, existing export markets, and access to new export markets could be threatened as importing countries may impose stringent phytosanitary measures to limit the chances of introduction and establishment of quarantine pests into their territories.
Collapse
Affiliation(s)
- Phumudzo P. Tshikhudo
- Directorate: Plant Health, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - Livhuwani R. Nnzeru
- Directorate: Biosecurity, Department of Forestry, Fisheries and the Environment, Cape Town, South Africa
| | - Maanda Rambauli
- Directorate: Plant Health, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - Rudzani A. Makhado
- Department of Biodiversity, University of Limpopo, Polokwane, South Africa
| | - Fhathuwani N. Mudau
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
213
|
Duboscq-Carra VG, Fernandez RD, Haubrock PJ, Dimarco RD, Angulo E, Ballesteros-Mejia L, Diagne C, Courchamp F, Nuñez MA. Economic impact of invasive alien species in Argentina: a first national synthesis. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.63208] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Invasive alien species (IAS) affect natural ecosystems and services fundamental to human well-being, human health and economies. However, the economic costs associated with IAS have been less studied than other impacts. This information can be particularly important for developing countries such as Argentina, where monetary resources for invasion management are scarce and economic costs are more impactful. The present study provides the first analysis of the economic cost of IAS in Argentina at the national level, using the InvaCost database (expanded with new data sources in Spanish), the first global compilation of the reported economic costs of invasions. We analyzed the temporal development of invasions costs, distinguishing costs according to the method reliability (i.e. reproducibility of the estimation methodology) and describing the economic costs of invasions by invaded environment, cost type, activity sector affected and taxonomic group of IAS. The total economic cost of IAS in Argentina between 1995 and 2019 was estimated at US$ 6,908 million. All costs were incurred and 93% were highly reliable. The recorded costs were mainly related to terrestrial environments and the agricultural sector, with lack of costs in other sectors, making it difficult to discuss the actual distribution of invasion costs in Argentina. Nevertheless, the reported costs of IAS in this country are very high and yet likely much underestimated due to important data gaps and biases in the literature. Considering that Argentina has an underdeveloped economy, costs associated with biological invasions should be taken into consideration for preventing invasions, and to achieve a more effective use of available resources.
Collapse
|
214
|
Diagne C, Turbelin AJ, Moodley D, Novoa A, Leroy B, Angulo E, Adamjy T, Dia CA, Taheri A, Tambo J, Dobigny G, Courchamp F. The economic costs of biological invasions in Africa: a growing but neglected threat? NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.59132] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Biological invasions can dramatically impact natural ecosystems and human societies. However, although knowledge of the economic impacts of biological invasions provides crucial insights for efficient management and policy, reliable syntheses are still lacking. This is particularly true for low income countries where economic resources are insufficient to control the effects of invasions. In this study, we relied on the recently developed "InvaCost" database – the most comprehensive repository on the monetised impacts of invasive alien species worldwide – to produce the first synthesis of economic costs of biological invasions on the African continent. We found that the reported costs of invasions ranged between US$ 18.2 billion and US$ 78.9 billion between 1970 and 2020. This represents a massive, yet highly underestimated economic burden for African countries. More alarmingly, these costs are exponentially increasing over time, without any signs of abatement in the near future. The reported costs were mostly driven by damage caused by invaders rather than expenses incurred for management. This trend was highly skewed towards a few regions (i.e. Southern and Eastern Africa) and activity sectors (i.e. agriculture) and incurred by a small number of invasive taxa (i.e. mainly three insect pests: Chilo partellus, Tuta absoluta, Spodoptera frugiperda). We also highlight crucial, large gaps in current knowledge on the economic costs of invasions that still need to be bridged with more widespread research effort and management actions across the continent. Finally, our study provides support for developing and implementing preventive measures as well as integrated post-invasion management actions at both national and regional levels. Considering the complex societal and economic realities in African countries, the currently neglected problem of biological invasions should become a priority for sustainable development.
Collapse
|
215
|
Ballesteros-Mejia L, Angulo E, Diagne C, Cooke B, Nuñez MA, Courchamp F. Economic costs of biological invasions in Ecuador: the importance of the Galapagos Islands. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.59116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Biological invasions, as a result of human intervention through trade and mobility, are the second biggest cause of biodiversity loss. The impacts of invasive alien species (IAS) on the environment are well known, however, economic impacts are poorly estimated, especially in mega-diverse countries where both economic and ecological consequences of these effects can be catastrophic. Ecuador, one of the smallest mega-diverse countries, lacks a comprehensive description of the economic costs of IAS within its territory. Here, using "InvaCost", a public database that compiles all recorded monetary costs associated with IAS from English and Non-English sources, we investigated the economic costs of biological invasions. We found that between 1983 and 2017, the reported costs associated with biological invasions ranged between US$86.17 million (when considering only the most robust data) and US$626 million (when including all cost data) belonging to 37 species and 27 genera. Furthermore, 99% of the recorded cost entries were from the Galapagos Islands. From only robust data, the costliest identified taxonomic group was feral goats (Capra hircus; US$20 million), followed by Aedes mosquitoes (US$2.14 million) while organisms like plant species from the genus Rubus, a parasitic fly (Philornis downsi), black rats (Rattus rattus) and terrestrial gastropods (Achatina fulica) represented less than US$2 million each. Costs of "mixed-taxa" (i.e. plants and animals) represented the highest (61% of total robust costs; US$52.44 million). The most impacted activity sector was the national park authorities, which spent about US$84 million. Results from robust data also revealed that management expenditures were the major type of costs recorded in the Galapagos Islands; however, costs reported for medical losses related to Aedes mosquitoes causing dengue fever in mainland Ecuador would have ranked first if more detailed information had allowed us to categorize them as robust data. Over 70% of the IAS reported for Ecuador did not have reported costs. These results suggest that costs reported here are a massive underestimate of the actual economic toll of invasions in the country.
Collapse
|
216
|
Liu C, Diagne C, Angulo E, Banerjee AK, Chen Y, Cuthbert RN, Haubrock PJ, Kirichenko N, Pattison Z, Watari Y, Xiong W, Courchamp F. Economic costs of biological invasions in Asia. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.58147] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Invasive species have caused severe impacts on biodiversity and human society. Although the estimation of environmental impacts caused by invasive species has increased in recent years, economic losses associated with biological invasions are only sporadically estimated in space and time. In this study, we synthesized the losses incurred by invasions in Asia, based on the most comprehensive database of economic costs of invasive species worldwide, including 560 cost records for 88 invasive species in 22 countries. We also assessed the differences in economic costs across taxonomic groups, geographical regions and impacted sectors, and further identified the major gaps of current knowledge in Asia. Reported economic costs of biological invasions were estimated between 1965 and 2017, and reached a total of US$ 432.6 billion (2017 value), with dramatic increases in 2000–2002 and in 2004. The highest costs were recorded for terrestrial ectotherms, for species estimated in South Asia, and for species estimated at the country level, and were related to more than one impacted sector. Two taxonomic groups with the highest reported costs were insects and mammals, and two countries with the highest costs were India and China. Non-English data covered all of 12 taxonomic groups, whereas English data only covered six groups, highlighting the importance of considering data from non-English sources to have a more comprehensive estimation of economic costs associated with biological invasions. However, we found that the estimation of economic costs was lacking for most Asian countries and for more than 96% of introduced species in Asia. Further, the estimation is heavily biased towards insects and mammals and is very limited concerning expenditures on invasion management. To optimize the allocation of limited resources, there is an important need to better and more widely study the economic costs of invasive alien species. In this way, improved cost reporting and more collaborations between scientists and stakeholders are needed across Asia.
Collapse
|
217
|
Haubrock PJ, Cuthbert RN, Sundermann A, Diagne C, Golivets M, Courchamp F. Economic costs of invasive species in Germany. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.59502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Invasive alien species are a well-known and pervasive threat to global biodiversity and human well-being. Despite substantial impacts of invasive alien species, quantitative syntheses of monetary costs incurred from invasions in national economies are often missing. As a consequence, adequate resource allocation for management responses to invasions has been inhibited, because cost-benefit analysis of management actions cannot be derived. To determine the economic cost of invasions in Germany, a Central European country with the 4th largest GDP in the world, we analysed published data collected from the first global assessment of economic costs of invasive alien species. Overall, economic costs were estimated at US$ 9.8 billion between 1960 and 2020, including US$ 8.9 billion in potential costs. The potential costs were mostly linked to extrapolated costs of the American bullfrog Lithobates catesbeianus, the black cherry Prunus serotina and two mammals: the muskrat Ondatra zibethicus and the American mink Neovison vison. Observed costs were driven by a broad range of taxa and mostly associated with control-related spending and resource damages or losses. We identified a considerable increase in costs relative to previous estimates and through time. Importantly, of the 2,249 alien and 181 invasive species reported in Germany, only 28 species had recorded economic costs. Therefore, total quantifications of invasive species costs here should be seen as very conservative. Our findings highlight a distinct lack of information in the openly-accessible literature and governmental sources on invasion costs at the national level, masking the highly-probable existence of much greater costs of invasions in Germany. In addition, given that invasion rates are increasing, economic costs are expected to further increase. The evaluation and reporting of economic costs need to be improved in order to deliver a basis for effective mitigation and management of invasions on national and international economies.
Collapse
|
218
|
Ahmed DA, Hudgins EJ, Cuthbert RN, Haubrock PJ, Renault D, Bonnaud E, Diagne C, Courchamp F. Modelling the damage costs of invasive alien species. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02586-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe rate of biological invasions is growing unprecedentedly, threatening ecological and socioeconomic systems worldwide. Quantitative understandings of invasion temporal trajectories are essential to discern current and future economic impacts of invaders, and then to inform future management strategies. Here, we examine the temporal trends of cumulative invasion costs by developing and testing a novel mathematical model with a population dynamical approach based on logistic growth. This model characterises temporal cost developments into four curve types (I–IV), each with distinct mathematical and qualitative properties, allowing for the parameterization of maximum cumulative costs, carrying capacities and growth rates. We test our model using damage cost data for eight genera (Rattus, Aedes, Canis, Oryctolagus, Sturnus, Ceratitis, Sus and Lymantria) extracted from the InvaCost database—which is the most up-to-date and comprehensive global compilation of economic cost estimates associated with invasive alien species. We find fundamental differences in the temporal dynamics of damage costs among genera, indicating they depend on invasion duration, species ecology and impacted sectors of economic activity. The fitted cost curves indicate a lack of broadscale support for saturation between invader density and impact, including for Canis, Oryctolagus and Lymantria, whereby costs continue to increase with no sign of saturation. For other taxa, predicted saturations may arise from data availability issues resulting from an underreporting of costs in many invaded regions. Overall, this population dynamical approach can produce cost trajectories for additional existing and emerging species, and can estimate the ecological parameters governing the linkage between population dynamics and cost dynamics.
Collapse
|
219
|
Soares JRS, da Silva RS, Ramos RS, Picanço MC. Distribution and invasion risk assessments of Chrysodeixis includens (Walker, [1858]) (Lepidoptera: Noctuidae) using CLIMEX. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1137-1149. [PMID: 33844091 DOI: 10.1007/s00484-021-02094-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Chrysodeixis includens is a polyphagous pest restricted to the American continent. The occurrence of C. includens is allied, among other factors, by favorable conditions such as temperature, humidity, presence of hosts, and migratory behavior. In this work, we built spatiotemporal species distribution models at continental and global levels for the distribution of C. includens using CLIMEX to determine times and regions favorable for year-round survival and migration of this species and in case of invasion on other continents to apply timely and right phytosanitary measures. Our models estimated high climate suitability for C. includens in Central and large proportions of South America throughout the year. Moreover, there is suitability for C. includens growth in all months of the year in Central and northern part of South America. In the northern hemisphere, these conditions range from April to October, while in mid-southern parts of South America, favorable periods comprise October through June. The countries with the highest suitability for C. includens outside the American continent are located on the African and Asian continents. Our results show variable climate suitability for C. includens during the year that help to understand likely migration pattern in North America. This information would direct efforts for appropriate C. includens management during warm and moist periods of the year. Furthermore, our models notify the need for the development of strategies for the inspection and interception of C. includens especially in central Africa, India, South and Southeast Asia, and Northeast Australia.
Collapse
Affiliation(s)
- João Rafael Silva Soares
- Dept de Agronomia, Universidade Federal de Viçosa, Avenida P. H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil.
| | - Ricardo Siqueira da Silva
- Dept de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583, Nº 5000, Diamantina, MG, 39100-000, Brazil
| | - Rodrigo Soares Ramos
- Dept de Entomologia, Universidade Federal de Viçosa, Avenida P. H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Marcelo Coutinho Picanço
- Dept de Agronomia, Universidade Federal de Viçosa, Avenida P. H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
- Dept de Entomologia, Universidade Federal de Viçosa, Avenida P. H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
220
|
Mills NJ. Abundance–suitability relationships for invasive species: Epiphyas postvittana as a case study. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02500-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
221
|
Skórka P, Banach A, Banasiak M, Bokalska-Rajba J, Bonk M, Czachura P, García-Rodríguez A, Gaspar G, Hordyńska N, Kaczmarczyk A, Kapłoniak K, Kociński M, Łopata B, Mazur E, Mirzaei M, Misiewicz A, Parres A, Przystałkowska A, Pustkowiak S, Raczyński M, Sadura I, Splitt A, Stanek M, Sternalski J, Wierzbicka A, Wiorek M, Zduńczyk P. Congruence between the prioritisation of conservation problems at the local and national scale: an evaluation by environmental scientists in Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35317-35326. [PMID: 34100204 DOI: 10.1007/s11356-021-14741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
The anthropogenic pressure on the environment depends on the spatial scale. It is crucial to prioritise conservation actions at different spatial scales to be cost-efficient. Using horizon scanning with the Delphi technique, we asked what the most important conservation problems are in Poland at local and national scales. Twenty-six participants, PhD students, individually identified conservation issues important at the local and national scales. Each problem was then scored and classified into broader categories during the round discussions. Text mining, cross-sectional analyses, and frequency tests were used to compare the context, importance scores, and frequency of identified problems between the two scales, respectively. A total of 115 problems were identified at the local scale and 122 at the national scale. Among them, 30 problems were identical for both scales. Importance scores were higher for national than local problems; however, this resulted from different sets of problems identified at the two scales. Problems linked to urbanisation, education, and management were associated with the local scale. Problems related to policy, forestry, and consumerism were more frequent at the national scale. An efficient conservation policy should be built hierarchically (e.g. introducing adaptive governance), implementing solutions at a national scale with the flexibility to adjust for local differences and to address the most pressing issues.
Collapse
Affiliation(s)
- Piotr Skórka
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Agata Banach
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | - Marek Banasiak
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | - Joanna Bokalska-Rajba
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland
| | - Maciej Bonk
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland
| | - Paweł Czachura
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland
| | - Alberto García-Rodríguez
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland
| | - Gabriela Gaspar
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | - Natalia Hordyńska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Adriana Kaczmarczyk
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Kamila Kapłoniak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Maciej Kociński
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | - Barbara Łopata
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland
| | - Edyta Mazur
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland
| | - Mohamadreza Mirzaei
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Anna Misiewicz
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland
| | - Aida Parres
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland
| | - Anna Przystałkowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | - Sylwia Pustkowiak
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland
| | - Mateusz Raczyński
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland
| | - Iwona Sadura
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Aleksandra Splitt
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland
| | - Małgorzata Stanek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland
| | - Jakub Sternalski
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | - Alicja Wierzbicka
- National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland
| | - Marcin Wiorek
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | - Paweł Zduńczyk
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland
| |
Collapse
|
222
|
|
223
|
Rosenthal WC, McIntyre PB, Lisi PJ, Prather RB, Moody KN, Blum MJ, Hogan JD, Schoville SD. Invasion and rapid adaptation of guppies ( Poecilia reticulata) across the Hawaiian Archipelago. Evol Appl 2021; 14:1747-1761. [PMID: 34295361 PMCID: PMC8288002 DOI: 10.1111/eva.13236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/12/2021] [Accepted: 03/12/2021] [Indexed: 01/19/2023] Open
Abstract
How much does natural selection, as opposed to genetic drift, admixture, and gene flow, contribute to the evolution of invasive species following introduction to a new environment? Here we assess how evolution can shape biological invasions by examining population genomic variation in non-native guppies (Poecilia reticulata) introduced to the Hawaiian Islands approximately a century ago. By examining 18 invasive populations from four Hawaiian islands and four populations from the native range in northern South America, we reconstructed the history of introductions and evaluated population structure as well as the extent of ongoing gene flow across watersheds and among islands. Patterns of differentiation indicate that guppies have developed significant population structure, with little natural or human-mediated gene flow having occurred among populations following introduction. Demographic modeling and admixture graph analyses together suggest that guppies were initially introduced to O'ahu and Maui and then translocated to Hawai'i and Kaua'i. We detected evidence for only one introduction event from the native range, implying that any adaptive evolution in introduced populations likely utilized the genetic variation present in the founding population. Environmental association tests accounting for population structure identified loci exhibiting signatures of adaptive variation related to predators and landscape characteristics but not nutrient regimes. When paired with high estimates of effective population sizes and detectable population structure, the presence of environment-associated loci supports the role of natural selection in shaping contemporary evolution of Hawaiian guppy populations. Our findings indicate that local adaptation may engender invasion success, particularly in species with life histories that facilitate rapid evolution. Finally, evidence of low gene flow between populations suggests that removal could be an effective approach to control invasive guppies across the Hawaiian archipelago.
Collapse
Affiliation(s)
- William C. Rosenthal
- Center for LimnologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of BotanyUniversity of WyomingLaramieWYUSA
| | - Peter B. McIntyre
- Center for LimnologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Natural ResourcesCornell UniversityIthacaNYUSA
| | - Peter J. Lisi
- Center for LimnologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Robert B. Prather
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California RiversideRiversideCAUSA
| | - Kristine N. Moody
- Department of Ecology and Evolutionary BiologyUniversity of Tennessee KnoxvilleKnoxvilleTNUSA
- The ByWater InstituteTulane UniversityNew OrleansLAUSA
- Oak Ridge National LaboratoryOak RidgeTNUSA
| | - Michael J. Blum
- Department of Ecology and Evolutionary BiologyUniversity of Tennessee KnoxvilleKnoxvilleTNUSA
- The ByWater InstituteTulane UniversityNew OrleansLAUSA
| | - James Derek Hogan
- Department of Life SciencesTexas A&M University‐Corpus ChristiCorpus ChristiTXUSA
| | | |
Collapse
|
224
|
Cuthbert RN, Pattison Z, Taylor NG, Verbrugge L, Diagne C, Ahmed DA, Leroy B, Angulo E, Briski E, Capinha C, Catford JA, Dalu T, Essl F, Gozlan RE, Haubrock PJ, Kourantidou M, Kramer AM, Renault D, Wasserman RJ, Courchamp F. Global economic costs of aquatic invasive alien species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145238. [PMID: 33715860 DOI: 10.1016/j.scitotenv.2021.145238] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 05/15/2023]
Abstract
Much research effort has been invested in understanding ecological impacts of invasive alien species (IAS) across ecosystems and taxonomic groups, but empirical studies about economic effects lack synthesis. Using a comprehensive global database, we determine patterns and trends in economic costs of aquatic IAS by examining: (i) the distribution of these costs across taxa, geographic regions and cost types; (ii) the temporal dynamics of global costs; and (iii) knowledge gaps, especially compared to terrestrial IAS. Based on the costs recorded from the existing literature, the global cost of aquatic IAS conservatively summed to US$345 billion, with the majority attributed to invertebrates (62%), followed by vertebrates (28%), then plants (6%). The largest costs were reported in North America (48%) and Asia (13%), and were principally a result of resource damages (74%); only 6% of recorded costs were from management. The magnitude and number of reported costs were highest in the United States of America and for semi-aquatic taxa. Many countries and known aquatic alien species had no reported costs, especially in Africa and Asia. Accordingly, a network analysis revealed limited connectivity among countries, indicating disparate cost reporting. Aquatic IAS costs have increased in recent decades by several orders of magnitude, reaching at least US$23 billion in 2020. Costs are likely considerably underrepresented compared to terrestrial IAS; only 5% of reported costs were from aquatic species, despite 26% of known invaders being aquatic. Additionally, only 1% of aquatic invasion costs were from marine species. Costs of aquatic IAS are thus substantial, but likely underreported. Costs have increased over time and are expected to continue rising with future invasions. We urge increased and improved cost reporting by managers, practitioners and researchers to reduce knowledge gaps. Few costs are proactive investments; increased management spending is urgently needed to prevent and limit current and future aquatic IAS damages.
Collapse
Affiliation(s)
- Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany; South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa.
| | - Zarah Pattison
- Modelling, Evidence and Policy Research Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Nigel G Taylor
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, 13200 Arles, France
| | - Laura Verbrugge
- University of Helsinki, Faculty of Agriculture and Forestry, Department of Forest Sciences, P.O. Box 27, 00014 Helsinki, Finland; Aalto University, Department of Built Environment, Water & Development Research Group, Tietotie 1E, FI-00076 Aalto, Finland
| | - Christophe Diagne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France
| | - Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics (CAMB), Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, P.O. Box 7207, Hawally 32093, Kuwait
| | - Boris Leroy
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum national d'Histoire naturelle, CNRS, IRD, Sorbonne Université, Université Caen-Normandie, Université des Antilles, 43 rue Cuvier, CP 26, 75005 Paris, France
| | - Elena Angulo
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France
| | - Elizabeta Briski
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany
| | - César Capinha
- Centro de Estudos Geográficos, Instituto de Geografia e Ordenamento do Território - IGOT, Universidade de Lisboa, Lisboa, Portugal
| | - Jane A Catford
- Department of Geography, King's College London, Strand WC2B 4BG, UK; School of BioSciences, University of Melbourne, Vic 3010, Australia
| | - Tatenda Dalu
- School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit 1200, South Africa; South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
| | - Franz Essl
- BioInvasions, Global Change, Macroecology-Group, Department of Botany and Biodiversity Research, University Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Rodolphe E Gozlan
- ISEM UMR226, Université de Montpellier, CNRS, IRD, EPHE, 34090 Montpellier, France
| | - Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum, Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Melina Kourantidou
- Woods Hole Oceanographic Institution, Marine Policy Center, Woods Hole, MA 02543, United States; Institute of Marine Biological Resources and Inland Waters, Hellenic Center for Marine Research, Athens 164 52, Greece; University of Southern Denmark, Department of Sociology, Environmental and Business Economics, Esbjerg 6705, Denmark
| | - Andrew M Kramer
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, United States
| | - David Renault
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], - UMR 6553, F 35000 Rennes, France; Institut Universitaire de France, 1 Rue Descartes, 75231 Paris cedex 05, France
| | - Ryan J Wasserman
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa; South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France
| |
Collapse
|
225
|
Beaury EM, Fusco EJ, Allen JM, Bradley BA. Plant regulatory lists in the United States are reactive and inconsistent. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Evelyn M. Beaury
- Organismic and Evolutionary Biology University of Massachusetts Amherst Amherst MA USA
| | - Emily J. Fusco
- Department of Environmental Conservation University of Massachusetts Amherst Amherst MA USA
| | - Jenica M. Allen
- Department of Environmental Conservation University of Massachusetts Amherst Amherst MA USA
- Miller Worley Center for the Environment Mount Holyoke College South Hadley MA USA
| | - Bethany A. Bradley
- Organismic and Evolutionary Biology University of Massachusetts Amherst Amherst MA USA
- Department of Environmental Conservation University of Massachusetts Amherst Amherst MA USA
| |
Collapse
|
226
|
Benkwitt CE, Gunn RL, Le Corre M, Carr P, Graham NAJ. Rat eradication restores nutrient subsidies from seabirds across terrestrial and marine ecosystems. Curr Biol 2021; 31:2704-2711.e4. [PMID: 33887185 DOI: 10.1016/j.cub.2021.03.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/04/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022]
Abstract
Biological invasions pose a threat to nearly every ecosystem worldwide.1,2 Although eradication programs can successfully eliminate invasive species and enhance native biodiversity, especially on islands,3 the effects of eradication on cross-ecosystem processes are unknown. On islands where rats were never introduced, seabirds transfer nutrients from pelagic to terrestrial and nearshore marine habitats, which in turn enhance the productivity, biomass, and functioning of recipient ecosystems.4-6 Here, we test whether rat eradication restores seabird populations, their nutrient subsidies, and some of their associated benefits for ecosystem function to tropical islands and adjacent coral reefs. By comparing islands with different rat invasion histories, we found a clear hierarchy whereby seabird biomass, seabird-driven nitrogen inputs, and the incorporation of seabird-derived nutrients into terrestrial and marine food chains were highest on islands where rats were never introduced, intermediate on islands where rats were eradicated 4-16 years earlier, and lowest on islands with invasive rats still present. Seabird-derived nutrients diminished from land to sea and with increasing distance to rat-eradicated islands, but extended at least 300 m from shore. Although rat eradication enhanced seabird-derived nutrients in soil, leaves, marine algae, and herbivorous reef fish, reef fish growth was similar around rat-eradicated and rat-infested islands. Given that the loss of nutrient subsidies is of global concern,7 that removal of invasive species restores previously lost nutrient pathways over relatively short timescales is promising. However, the full return of cross-ecosystem nutrient subsidies and all of their associated demographic benefits may take multiple decades.
Collapse
Affiliation(s)
| | - Rachel L Gunn
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Matthieu Le Corre
- UMR ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de Nouvelle-Calédonie, Avenue René Cassin, 97490 Sainte Clotilde, La Réunion
| | - Peter Carr
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK; Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9EZ, UK
| | | |
Collapse
|
227
|
Wang X, Yi T, Li W, Xu C, Wang S, Wang Y, Li Y, Liu X. Anthropogenic habitat loss accelerates the range expansion of a global invader. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Xuyu Wang
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing China
- Institute of Physical Science and Information Technology Anhui University Hefei China
| | - Tao Yi
- College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| | - Wenhao Li
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Chunxia Xu
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Supen Wang
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources College of Life Sciences Anhui Normal University Wuhu China
| | - Yanping Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing China
| | - Yiming Li
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
228
|
THE MATERIALS TO THE "BLACK BOOK" OF THE FLORA OF THE CRIMEAN PENINSULA. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2021. [DOI: 10.35885/1996-1499-2021-14-2-16-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The “black list” of the Crimean flora, on the territory of two administrative units - the Republic of the Crimea and the federal city of Sevastopol, is presented. The analysis of the alien species of the Crimean flora was carried out and the most dangerous for ecosystems invasive species of higher plants were identified in accordance with the recommendations for keeping the Black Books. The data on distribution, habitats and invasive status (IS) of 70 species are summarized. Transformers are represented by 9 species with IS 1 ( Ailanthus altissima, Bupleurum fruticosum, Elaeagnus angustifolius, Fraxinus ornus, Jacobaea maritima, Opuntia engelmannii subsp. lindheimeri, O. fragilis,O. humifusa, Rhamnus alaternus ), they change the appearance of ecosystems. Nineteen alien species actively disperse and naturalize in disturbed semi-natural and natural habitats (with IS 2) and 42 species (with IS 3) are widely distributed in disturbed habitats. The peculiarity and variety of soil and climatic conditions of the peninsula contribute to the introduction of alien species, many of which are invasive only on the territory of the Republic of the Crimea and the city of Sevastopol. This article is a necessary step towards the preparation of the Black Book of the flora of the Crimean Peninsula and the basis for making decision on prevention the economic and environmental damage of the natural biodiversity of the region.
Collapse
|
229
|
Montti L, Velazco SJE, Travis JMJ, Grau HR. Predicting current and future global distribution of invasive
Ligustrum lucidum
W.T. Aiton: Assessing emerging risks to biodiversity hotspots. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Lía Montti
- Instituto de Investigaciones Marinas y Costeras (IIMyC) FCEyN, Universidad Nacional de Mar del Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Mar del Plata Buenos Aires Argentina
- Instituto de Geología de Costas y del Cuaternario (IGCyC) FCEyN Universidad Nacional de Mar del Plata‐CIC Mar del Plata Buenos Aires Argentina
- Instituto de Biología Subtropical (IBS) Universidad Nacional de Misiones (UNaM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Misiones Argentina
- Instituto de Ecología Regional (IER) Universidad Nacional de Tucumán (UNT) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Tucumán Argentina
| | - Santiago José Elías Velazco
- Instituto de Biología Subtropical (IBS) Universidad Nacional de Misiones (UNaM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Misiones Argentina
- Department of Botany and Plant Sciences University of California – Riverside Riverside CA USA
- Programa de Pós‐Graduação em Biodiversidade Neotropical Universidade Federal da Integração Latino‐Americana (UNILA) Foz do Iguaçu Brazil
| | | | - H. Ricardo Grau
- Instituto de Ecología Regional (IER) Universidad Nacional de Tucumán (UNT) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Tucumán Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo Universidad Nacional de Tucumán (UNT) Tucumán Argentina
| |
Collapse
|
230
|
McNeill MR, Tu X, Ferguson CM, Ban L, Hardwick S, Rong Z, Barratt BIP, Zehua Z. Diversity and impacts of key grassland and forage arthropod pests in China and New Zealand: An overview of IPM and biosecurity opportunities. NEOBIOTA 2021. [DOI: 10.3897/neobiota.65.61991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
For both New Zealand and China, agriculture is integral to the economy, supporting primary production in both intensive and extensive farming systems. Grasslands have important ecosystem and biodiversity functions, as well providing valuable grazing for livestock. However, production and persistence of grassland and forage species (e.g. alfalfa) is not only compromised by overgrazing, climate change and habitat fragmentation, but from a range of pests and diseases, which impose considerable costs on growers in lost production and income. Some of these pest species are native, but increasingly, international trade is seeing the rapid spread of exotic and invasive species. New Zealand and China are major trading partners with significant tourist flow between the two countries. This overview examines the importance of grasslands and alfalfa in both countries, the current knowledge on the associated insect pest complex and biocontrol options. Identifying similarities and contrasts in biology and impacts along with some prediction on the impact of invasive insect species, especially under climate change, are possible. However, it is suggested that coordinated longitudinal ecological research, carried out in both countries using sentinel grass and forage species, is critical to addressing gaps in our knowledge of biology and impact of potential pests, along with identifying opportunities for control, particularly using plant resistance or biological control.
Collapse
|
231
|
Stringham OC, Lockwood JL. Managing propagule pressure to prevent invasive species establishments: propagule size, number, and risk-release curve. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02314. [PMID: 33636036 DOI: 10.1002/eap.2314] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/28/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
There is considerable evidence that keeping propagule pressure low can drastically reduce establishment probability of potential invasive species. Yet, most management plans and research efforts fail to explicitly acknowledge all three of the components of propagule pressure: size, number, and the risk-release relationship. It is unclear how failing to specify one or more of these components can influence the efficacy of management plans in preventing invasive species establishment. Furthermore, even if all components are acknowledged and quantified, there currently is no mathematical tool available to calculate the levels of propagule pressure that ensure attainment of a predetermined, and system-specific, target establishment probability. Here, we quantify the resulting uncertainty in establishment probability when one or more components of propagule pressure is unknown by using parameter uncertainty analysis on realistic values of propagule pressure. In addition, to aid in the development of management plans that explicitly set propagule pressure limits, we develop a propagule-pressure sensitivity analysis that we use to determine the required reduction in levels for propagule size and number (representative of management actions) to maintain a target establishment probability. We show that the precision of establishment estimates is highly dependent on knowledge of all three propagule pressure components, where the possible range of values for establishment probability can vary by over 50% without full specification. In addition, our sensitivity analysis showed that propagule size and number can be altered independently or in conjunction to lower establishment probability below a target level. Importantly, our sensitivity analysis was able to specifically quantify how much reduction in a propagule pressure component(s) is needed to reach a given target establishment probability. Our findings suggest that quantifying the three components of propagule pressure should be a priority for invasive species prevention moving forward. Furthermore, our sensitivity analysis tool can serve to guide the development of new invasive species management plans in a transparent and quantitative manner. Together with information on the costs associated with approaches to reducing propagule pressure, our tool can be used to identify the most cost-effective approach to prevent invasive species establishments.
Collapse
Affiliation(s)
- Oliver C Stringham
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, 08901, USA
- Invasion Science & Wildlife Ecology Lab, University of Adelaide, Adelaide, South Australia, 5005, Australia
- School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Julie L Lockwood
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, 08901, USA
| |
Collapse
|
232
|
Clarke M, Ma Z, Snyder SA, Floress K. Factors Influencing Family Forest Owners' Interest in Community-led Collective Invasive Plant Management. ENVIRONMENTAL MANAGEMENT 2021; 67:1088-1099. [PMID: 33818641 DOI: 10.1007/s00267-021-01454-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Effective invasive plant management requires collective action. However, little is known about what motivates individuals to work collectively. We conducted a mail survey of 2,600 randomly selected family forest owners in Indiana, USA to examine factors associated with community-led collective action. Specifically, we examined the role of perceived self-efficacy, perceived collective efficacy, concerns about invasive plants, and social norms associated with invasive plant management in shaping family forest owners' self-reported likelihood to work with their neighbors to remove invasive plants. We found that past experience talking to others or working with neighbors to remove invasive plants were important predictors of landowners' intention to work collectively, as were perceived self-efficacy in their own ability to manage invasive plants, perceived need for collective action, social norms, and concerns about invasive plants on neighboring or nearby properties. However, most socio-demographic characteristics (e.g., age, gender, education level, income) and land ownership characteristics (e.g., residence status, having a written forest management plan) were not statisically significant predictors of family forest owners' likelihood to work with their neighbors. Our findings suggest that building individual sense of competence, facilitating neighbor interactions, and strengthening shared concerns may facilitate community-led collective action to manage invasive plants.
Collapse
Affiliation(s)
- Mysha Clarke
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, FL, USA.
| | - Zhao Ma
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Stephanie A Snyder
- USDA Forest Service, Northern Research Station, St. Paul, MN, 55108, USA
| | - Kristin Floress
- USDA Forest Service, Northern Research Station, Evanston, IL, 60201, USA
| |
Collapse
|
233
|
Riera M, Pino J, Melero Y. Impact of introduction pathways on the spread and geographical distribution of alien species: Implications for preventive management in mediterranean ecosystems. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Marc Riera
- CREAF (Center for Ecological Research and Forestry Applications) Bellaterra (Cerdanyola del Vallès) Catalonia Spain
- Universitat Autònoma de Barcelona Bellaterra (Cerdanyola del Vallès) Catalonia Spain
| | - Joan Pino
- CREAF (Center for Ecological Research and Forestry Applications) Bellaterra (Cerdanyola del Vallès) Catalonia Spain
- Universitat Autònoma de Barcelona Bellaterra (Cerdanyola del Vallès) Catalonia Spain
| | - Yolanda Melero
- CREAF (Center for Ecological Research and Forestry Applications) Bellaterra (Cerdanyola del Vallès) Catalonia Spain
- School of Biological Sciences University of Reading Reading UK
| |
Collapse
|
234
|
Morales-Rodríguez C, Wang Y, Martignoni D, Vannini A. Phytophthora cathayensis sp. nov., a new species pathogenic to Chinese Hickory ( Carya cathayensis) in southeast China. Fungal Syst Evol 2021; 7:99-111. [PMID: 34124619 PMCID: PMC8165965 DOI: 10.3114/fuse.2021.07.05] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/04/2020] [Indexed: 11/07/2022] Open
Abstract
Crown decline and mortality associated with collar lesions were observed on Carya cathayensis (Chinese hickory) trees in a plantation in Zhejiang province, China. Examination of active lesions resulted in the isolation of a homothallic, papillate Phytophthora sp. Detailed morphological and physiological studies and phylogenetic analysis, using ITS, beta-tubulin, cytochrome oxidase I, and heat shock protein 90 gene regions, revealed that all isolates belonged to an undescribed species residing in phylogenetic Clade 4, which is described here as Phytophthora cathayensis sp. nov. Inoculation trials were conducted under greenhouse conditions on C. cathayensis and C. illinoensis (pecan) plants to fulfill Koch postulates and hypothesize a possible pathway of the incursion. An existing report of a Phytophthora species with the same ITS sequence was reported on C. illinoensis from the USA in 2009. The difference in susceptibility of the two inoculated Carya species, and the report from the USA, suggest a possible introduction with plant material from the USA to China. Citation: Morales-Rodríguez C, Wang Y, Martignoni D, Vannini A (2020). Phytophthora cathayensis sp. nov., a new species pathogenic to Chinese Hickory (Carya cathayensis) in southeast China. Fungal Systematics and Evolution 7: 99-111. doi: 10.3114/fuse.2021.07.05.
Collapse
Affiliation(s)
| | - Y. Wang
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University in Lin’an, China
| | - D. Martignoni
- DIBAF, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
| | - A. Vannini
- DIBAF, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
| |
Collapse
|
235
|
Yletyinen J, Perry GLW, Burge OR, Mason NWH, Stahlmann‐Brown P. Invasion landscapes as social‐ecological systems: Role of social factors in invasive plant species control. PEOPLE AND NATURE 2021. [DOI: 10.1002/pan3.10217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
236
|
Sohrabi S, Pergl J, Pyšek P, Foxcroft LC, Gherekhloo J. Quantifying the potential impact of alien plants of Iran using the Generic Impact Scoring System (GISS) and Environmental Impact Classification for Alien Taxa (EICAT). Biol Invasions 2021. [DOI: 10.1007/s10530-021-02515-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
237
|
Measuring Alpha and Beta Diversity by Field and Remote-Sensing Data: A Challenge for Coastal Dunes Biodiversity Monitoring. REMOTE SENSING 2021. [DOI: 10.3390/rs13101928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combining field collected and remotely sensed (RS) data represents one of the most promising approaches for an extensive and up-to-date ecosystem assessment. We investigated the potential of the so called spectral variability hypothesis (SVH) in linking field-collected and remote-sensed data in Mediterranean coastal dunes and explored if spectral diversity provides reliable information to monitor floristic diversity, as well as the consistency of such information in altered ecosystems due to plant invasions. We analyzed alpha diversity and beta diversity, integrating floristic field and Remote-Sensing PlanetScope data in the Tyrrhenian coast (Central Italy). We explored the relationship among alpha field diversity (species richness, Shannon index, inverse Simpson index) and spectral variability (distance from the spectral centroid index) through linear regressions. For beta diversity, we implemented a distance decay model (DDM) relating field pairwise (Jaccard similarities index, Bray–Curtis similarities index) and spectral pairwise (Euclidean distance) measures. We observed a positive relationship between alpha diversity and spectral heterogeneity with richness reporting the higher R score. As for DDM, we found a significant relationship between Bray–Curtis floristic similarity and Euclidean spectral distance. We provided a first assessment of the relationship between floristic and spectral RS diversity in Mediterranean coastal dune habitats (i.e., natural or invaded). SVH provided evidence about the potential of RS for estimating diversity in complex and dynamic landscapes.
Collapse
|
238
|
Clarke M, Ma Z, Snyder SA, Hennes EP. Understanding invasive plant management on family forestlands: An application of protection motivation theory. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112161. [PMID: 33691237 DOI: 10.1016/j.jenvman.2021.112161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Invasive forest plants are a growing concern because of their perceived and actual negative ecological, economic, and social impacts. To effectively manage invasive plants in forest ecosystems, it is paramount to understand the management decisions made by family forest owners (FFOs), who collectively own 36% of forestlands in the United States. We contribute to the growing literature on invasive plant management and the factors that influence FFOs' likelihood to manage invasive plants on their property by incorporating protection motivation theory (PMT; Rogers 1975). Protection Motivation Theory argues that the degree to which individuals protect themselves from a perceived threat varies as a function of the perceived severity of the threat, their vulnerability to the threat, their perceptions of self-efficacy to effectively mitigate the threat, and the degree to which they believe they have access to the resources needed to effectively respond to the threat. We surveyed a random sample of 2,600 FFOs in Indiana about their knowledge, perceptions, experience, and plans regarding invasive plants on their wooded lands. Consistent with PMT, we constructed a hierarchical binary logistic model and found that FFOs reported greater intentions to manage invasive plants when they perceived the problem to be more severe and also when they felt a stronger sense of self-efficacy to address the problem. Although perceived vulnerability was not significant in our final model, our results also show that FFOs who had previous invasive plant management experience, had a Bachelor's degree or higher level of education, owned woodlands for recreational purposes, and were more subject to normative social influence also tended to report greater intentions to manage invasive plants. Together, these results suggest that components of PMT (perceived severity and self-efficacy) may be used to inform potential strategies, programs, and outreach for engaging family forest owners in invasive plant management.
Collapse
Affiliation(s)
- Mysha Clarke
- School of Forest Resources and Conservation, University of Florida, 345 Newins-Ziegler Hall, PO Box 110410, Gainesville, Florida, 32611, USA.
| | - Zhao Ma
- Department of Forestry and Natural Resources, Purdue University, USA.
| | | | - Erin P Hennes
- Department of Psychological Sciences, Purdue University, USA.
| |
Collapse
|
239
|
Chaudhary A, Sarkar MS, Adhikari BS, Rawat GS. Ageratina adenophora and Lantana camara in Kailash Sacred Landscape, India: Current distribution and future climatic scenarios through modeling. PLoS One 2021; 16:e0239690. [PMID: 33974622 PMCID: PMC8112658 DOI: 10.1371/journal.pone.0239690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/24/2021] [Indexed: 11/21/2022] Open
Abstract
The Himalayan region is one of the global biodiversity hotspots. However, its biodiversity and ecosystems are threatened due to abiotic and biotic drivers. One of the major biotic threats to biodiversity in this region is the rapid spread of Invasive Alien Species (IAS). Natural forests and grasslands are increasingly getting infested by IAS affecting regeneration of native species and decline in availability of bio-resources. Assessing the current status of IAS and prediction of their future spread would be vital for evolving specific species management interventions. Keeping this in view, we conducted an in-depth study on two IASs, viz., Ageratina adenophora and Lantana camara in the Indian part of Kailash Sacred Landscape (KSL), Western Himalaya. Intensive field surveys were conducted to collect the presence of A. adenophora (n = 567) and L. camara (n = 120) along an altitudinal gradient between 300 and 3000 m a.s.l. We performed Principal Component Analysis to nullify the multi-colinearity effects of the environmental predictors following MaxEnt species distribution model in the current and future climatic scenarios for both the species. All current and future model precision (i.e., Area Under the Curve; AUC) for both species was higher than 0.81. It is predicted that under the current rate of climate change and higher emission (i.e., RCP 8.5 pathway), A. adenophora will spread 45.3% more than its current distribution and is likely to reach up to 3029 m a.s.l., whereas, L. camara will spread 29.8% more than its current distribution range and likely to reach up to 3018 m a.s.l. Our results will help in future conservation planning and participatory management of forests and grasslands in the Kailash Sacred Landscape-India.
Collapse
Affiliation(s)
- Alka Chaudhary
- Wildlife Institute of India, Dehradun, Uttarakhand, India
| | - Mriganka Shekhar Sarkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal, India
- North-East Regional Centre, G. B. Pant National Institute of Himalayan Environment (NIHE), Itanagar, Arunachal Pradesh, India
| | | | | |
Collapse
|
240
|
Occhipinti-Ambrogi A. Biopollution by Invasive Marine Non-Indigenous Species: A Review of Potential Adverse Ecological Effects in a Changing Climate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4268. [PMID: 33920576 PMCID: PMC8074152 DOI: 10.3390/ijerph18084268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022]
Abstract
Biopollution by alien species is considered one of the main threats to environmental health. The marine environment, traditionally less studied than inland domains, has been the object of recent work that is reviewed here. Increasing scientific evidence has been accumulated worldwide on ecosystem deterioration induced by the development of massive non-indigenous population outbreaks in many coastal sites. Biopollution assessment procedures have been proposed, adopting criteria already used for xenochemical compounds, adjusting them to deal with alien species invasions. On the other hand, prevention and mitigation measures to reduce biopollution impact cannot always mimic the emission countermeasures that have been successfully applied for chemical pollutants. Nevertheless, in order to design comprehensive water-quality criteria, risk assessment and management strategies, based on scientific knowledge, have been developed in a similar way as for chemical pollution. The Mediterranean Sea is a well-known case of alien species invasion, mainly linked to the opening of the Suez Canal. Non-indigenous species have caused well-documented changes in many coastal ecosystems, favoured by concomitant changes induced by global warming and by the heavy load of nutrients and pollutants by various anthropogenic activities. Naval commercial traffic and leisure boats are among the most active vectors of spread for alien species inside the Mediterranean, and also towards other ocean regions. The scientific evidence gathered and summarized in this review suggests that effective management actions, under a precautionary approach, should be put in place in order to control introductions of species in new areas. These management measures are already established in international treaties and national legislations, but should be enforced to prevent the disruption of the dynamic ecological equilibria in the receiving environment and to control the direct adverse effects of alien species.
Collapse
Affiliation(s)
- Anna Occhipinti-Ambrogi
- Department of Earth and Environmental Sciences, University of Pavia, Via Sant'Epifanio, 14, 27100 Pavia, Italy
| |
Collapse
|
241
|
Morais MC, Gonçalves B, Cabral JA. A Dynamic Modeling Framework to Evaluate the Efficacy of Control Actions for a Woody Invasive Plant, Hakea sericea. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Invasive alien species (IAS) are a significant component of global changes, causing severe economic and biodiversity damage. In this regard, Hakea sericea is one of the most widespread IAS throughout the Mediterranean region, including Portugal. The difficulty surrounding its management is exacerbated by post-fire situations, signifying a challenging task for managers. To assist in this effort, we used a system dynamic approach to model the population dynamics of Hakea sericea regarding the combinations of wildfire risk and control scenarios, which differ in periodicity, type of interventions, and cohort age. The ultimate goal of this study was to assess the effectiveness and costs of control efforts at reducing the abundance of this IAS. A Natura 2000 site Alvão/Marão (code PTCON0003) in northern Portugal, severely invaded by Hakea sericea, served as the study site. The modeling results demonstrate that Hakea sericea is likely to continue spreading if left uncontrolled. Although it may not be possible to ensure eradication of Hakea sericea from the study, repeated control actions aimed at the entire IAS population could be very effective in reducing its area. From a practical standpoint, removing all plants 24 months after each fire event followed by subsequent monitoring appears to be the most cost-effective strategy for managing Hakea sericea. Considering the modeling results, the dynamic modeling framework developed is a versatile, instructive tool that can support decision-making aimed at effective management of Hakea sericea.
Collapse
|
242
|
Angoh SYJ, Freeland J, Paterson J, Rupasinghe PA, Davy CM. Effects of invasive wetland macrophytes on habitat selection and movement by freshwater turtles. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02505-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractInvasive species can significantly impact native wildlife by structurally altering habitats and access to resources. Understanding how native species respond to habitat modification by invasive species can inform effective habitat restoration, avoiding inadvertent harm to species at risk. The invasive graminoids Phragmites australis australis (hereafter Phragmites) and Typha × glauca are increasingly dominating Nearctic wetlands, often outcompeting native vegetation. Previous research suggests that turtles may avoid invasive Phragmites when moving through their home ranges, but the mechanisms driving avoidance are unclear. We tested two hypotheses that could explain avoidance of invaded habitat: (1) that stands of invasive macrophytes (Phragmites and Typha x glauca) impede movement, and (2) that they provide inadequate thermal conditions for turtles. We quantified active-season movements of E. blandingii (n = 14, 1328 relocations) and spotted turtles (Clemmys guttata; n = 12, 2295 relocations) in a coastal wetland in the Laurentian Great Lakes. Neither hypothesis was supported by the data. Phragmites and mixed-species Typha stands occurred within the home ranges of mature, active E. blandingii and C. guttata, and were used similarly to most other available habitats, regardless of macrophyte stem density. Turtles using stands of invasive macrophytes did not experience restricted movements or cooler shell temperatures compared to other wetland habitat types. Control of invasive macrophytes can restore habitat heterogeneity and benefit native wetland species. However, such restoration work should be informed by the presence of at-risk turtles, as heavy machinery used for control or removal may injure turtles that use these stands as habitat.
Collapse
|
243
|
Bonnet M, Guédon G, Pondaven M, Bertolino S, Padiolleau D, Pénisson V, Gastinel F, Angot F, Renaud PC, Frémy A, Pays O. Aquatic invasive alien rodents in Western France: Where do we stand today after decades of control? PLoS One 2021; 16:e0249904. [PMID: 33831091 PMCID: PMC8031452 DOI: 10.1371/journal.pone.0249904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/26/2021] [Indexed: 11/21/2022] Open
Abstract
Two aquatic invasive alien rodents, the coypu (Myocastor coypus) and muskrat (Ondatra zibethicus), have taken over a significant amount of wetlands in France. Pays de la Loire is an administrative region of about 32 000 km2 in the Western France with 6.3% of its area in wetlands (excluding the Loire River). Populations of coypus and muskrats are established and a permanent control programme has been set to reduce their impacts. The control plan is based on few professional trappers and many volunteers which makes this programme unique compared to other programme relying on professionals only. The aim of this study is to analyse the temporal and spatial dynamics of coypu and muskrat captures during the last 10 years to evaluate their effectiveness. The number of rodents removed per year increased by 50% in 10 years and reached about 288 000 individuals in 2016 with about 80% of them being coypus. During the same time length, the number of trappers involved in the programme also increased by 50% to reach 3 000 people in 2016. Although the raise of coypus and muskrats trapped can possibly be explained by an increase of the number of trappers, the number of coypus removed per trapper per year increased by 22%. Despite the outstanding number of individuals removed per year, our results suggest that the programme does not limit the population dynamics of coypus. Finally, since 2017, the number of data gathered from municipalities decreased, as did the total number of individuals trapped. Indeed, although rewards are crucial to recruit new volunteers, subsidies from local and regional authorities are declining. Decision makers and financers should be encouraged to fund this programme from the perspectives of the direct or indirect costs related to the presence of aquatic invasive alien rodents in wetlands.
Collapse
Affiliation(s)
- Manon Bonnet
- LETG-Angers, UMR 6554 CNRS, Université d’Angers, Angers, France
- REHABS International Research Laboratory, CNRS-Université Lyon 1-Nelson Mandela University, George, South Africa
| | | | | | - Sandro Bertolino
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Torino, Italy
| | | | | | | | - Fabien Angot
- Polleniz 72, ZA de la Belle Croix, Requeil, France
| | | | | | - Olivier Pays
- LETG-Angers, UMR 6554 CNRS, Université d’Angers, Angers, France
- REHABS International Research Laboratory, CNRS-Université Lyon 1-Nelson Mandela University, George, South Africa
| |
Collapse
|
244
|
Rojas-Sandoval J, Ackerman JD. Ornamentals lead the way: global influences on plant invasions in the Caribbean. NEOBIOTA 2021. [DOI: 10.3897/neobiota.64.62939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Understanding the historical factors associated with the invasion success of alien species in a region may help us to identify sources, vectors, and pathways that are more likely to originate new invaders. Here, we gather data for traits related to the history of introduction (e.g., continent of origin, reason for introduction, and date of introduction) of 616 alien plant species listed as invasive on 18 island groups across the Caribbean region. We used these data to evaluate how human activity has influenced plant invasions on Caribbean islands over time and whether invasion success could be driven by traits of the introduction process. We found that significantly more invasive plants (54%) were intentionally introduced for ornamental reasons than for any other purpose. Most invaders in the Caribbean are native to Asia, South America, and Africa and the cumulative number of invasive species in this region has been steadily increasing during the last 200 years, but since 1850, this trend has been led by species introduced as ornamentals. We also found a significant association between continent of origin and reason of introduction, with more invaders than expected being ornamentals from Asia and America, and forage species from Africa. Our results show that introduced ornamentals are successfully invading all major habitats across the Caribbean, exacerbating conservation issues and threatening native biodiversity. Armed with knowledge of origins and reasons for introductions, effective biosecurity actions as well as control and management strategies can be better targeted to address the problem of invasive species in the region.
Collapse
|
245
|
Chen J, Ma F, Zhang Y, Wang C, Xu H. Spatial distribution patterns of invasive alien species in China. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2020.e01432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
246
|
Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, Salles JM, Bradshaw CJA, Courchamp F. High and rising economic costs of biological invasions worldwide. Nature 2021; 592:571-576. [DOI: 10.1038/s41586-021-03405-6] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 02/28/2021] [Indexed: 11/09/2022]
|
247
|
Khan MA, Hussain K, Shah MA. Ecological restoration of habitats invaded by Leucanthemum vulgare that alters key ecosystem functions. PLoS One 2021; 16:e0246665. [PMID: 33770078 PMCID: PMC7996977 DOI: 10.1371/journal.pone.0246665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/24/2021] [Indexed: 12/05/2022] Open
Abstract
Precise assessment of the impacts of invasive alien species (IAS) on ecosystem structure and functions is paramount for implementing appropriate management and restoration strategies. Here we investigated the impacts of Leucanthemum vulgare (ox-eye daisy), an aggressive invader in Kashmir Himalaya, on species diversity and primary productivity. We also evaluated bunch of strategies for the ecological restoration of the habitats invaded by this species. We found that uninvaded plots harbored on an average of 6.11 (±2.92) more species per 1m2 of quadrat than invaded plots. At multivariate scale, the ordination (nMDS) and ANOSIM exhibited significant differences between invaded and uninvaded plots with R = 0.7889 and p < 0.001. The decrease in diversity indices in invaded as compared to uninvaded plots was associated with more productive plant communities due to Leucanthemum invasion. Higher altitude Gulmarg site was more affected by Leucanthemum invasion than lower altitude Drung site. We tested different approaches for restoration and management of invaded habitats that include herbicide treatment at seedling stage, herbicide treatment before and after flowering stage, mowing and herbicide treatment together, joint mowing, digging and herbicide treatment and Leucanthemum uprooting. Among these treatments, uprooting and combined digging, mowing and herbicide treatment proved to be most effective in controlling Leucanthemum invasion. The implications of these results for effective management of ecologically sensitive and socio-culturally important landscapes are discussed.
Collapse
Affiliation(s)
- Mohd Asgar Khan
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Khursheed Hussain
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Manzoor A. Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
248
|
Modeling the Invasion of the Large Hive Beetle, Oplostomusfuligineus, into North Africa and South Europe under a Changing Climate. INSECTS 2021; 12:insects12040275. [PMID: 33804941 PMCID: PMC8063819 DOI: 10.3390/insects12040275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary Large Hive Beetles (LHBs) are common pests of honeybee colonies, especially in the African continent. The ability of this pest to invade new regions in North Africa and Europe is highlighted in the present study using a species distribution modeling technique in current and future climate change scenarios in 2050 and 2070. In brief, this pest will be a new burden on the beekeeping sector outside Africa, and therefore the development of early monitoring strategies is recommended. Abstract Some beetle species can attack honeybee colonies, causing severe damage to beekeeping. These pests include Oplostomus fuligineus, which is also known as the Large Hive Beetle (LHB). This beetle is native to Sub-Saharan Africa and has recently also been recorded in some parts of North Africa. It feeds mainly on young bee larvae and stored food within the colonies, causing severe damage to weak colonies. The present work sheds light on the current and future distribution (from 2050 to 2070) of this beetle in Africa and South Europe using species distribution modeling. Maxent was used to model the invasion of LHB. The Shared Socioeconomic Pathways (SSPs) 126 and 585 were used to model the future distribution of LHB. The Maxent models showed satisfactory results with a high Area Under Curve (AUC) value (0.85 ± 0.02). Furthermore, the True Skill Statistics (TSS) value was equal to 0.87. The current and future maps showed a high risk of invasion because of temperature variation in most of the parts of North Africa and South Europe. The maps also predicted the future invasion of LHB into other countries, mainly through southern Europe. These predictive risk maps will help quarantine authorities in highly relevant countries to prevent the expansion of this pest outside of its natural range.
Collapse
|
249
|
Santiago-Arellano A, Palomera-Hernandez V, Camacho-Cervantes M. Con- and Heterospecific Shoaling Makes Invasive Guppies More Risk Taking. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Invasive species are one of the greatest threats to biodiversity. Behavioral traits are recognized as key to promote individual’s survival in changing conditions. For social species being part of a group is key to carry out vital activities. Heterospecific social environments could provide exotic species with the opportunity to join groups and gain the advantages of being part of a larger population. Short latency to exit a refuge is a behavioral response that could be linked to invasion success as it increases the chances of individuals to locate food sources and other resources in novel environments. The guppy (Poecilia reticulata), a successful invader, has been found to take advantage of the presence of native species to reduce its refuge emergence latency and acquire information. The research was carried out in Mexico, we investigated the effect of heterospecific social contexts that include natives and other invasive viviparous fishes on guppies’ refuge emergence latency. We found that guppies’ emergence latency was shorter when accompanied by another guppy than when alone. Their latency was also shorter when with other invaders and when with native goodeids, but with one of the invaders (Pseudoxiphophorus bimaculatus) and with goodeids (Skiffia bilineata) latency reduction was not as high as when with conspecifics or with the invader Poecilia gracilis. Our experiment supports both the idea that already established invaders could provide benefits to new ones, and that native species also provide benefits but less than invaders. Increasing our knowledge about conspecific and heterospecific social interactions that could make an exotic species become invasive is key to assess the invasion risk of a community.
Collapse
|
250
|
The Case of Lionfish (Pterois miles) in the Mediterranean Sea Demonstrates Limitations in EU Legislation to Address Marine Biological Invasions. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9030325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The European Regulation (EU) 1143/2014 on Invasive Alien Species entered into force in 2015, with the aim to fulfill regional and international biodiversity goals in a concerted manner. To date, the Regulation listed 66 Invasive Alien Species (IAS) that are subject to legal controls. Only one of these is marine. A recent lionfish (Pterois miles) invasion has been closely monitored in the Mediterranean and a detailed risk assessment was made about the profound impacts that this invasive fish is likely to have on the fisheries and biodiversity of the region. In 2016–21, lionfish rapidly became dominant predators along Eastern Mediterranean coasts, yet the process for their inclusion on the EU IAS list has been lengthy and is ongoing. There is an urgent need to learn from this experience. Here, we recommend improvements to the Regulation 1143/2014 and the risk assessment process to protect marine ecosystems and secure the jobs of people that rely on coastal resources.
Collapse
|