201
|
Cheng J, Zhang Q, Fan S, Zhang A, Liu B, Hong Y, Guo J, Cui D, Song J. The vacuolization of macrophages induced by large amounts of inorganic nanoparticle uptake to enhance the immune response. NANOSCALE 2019; 11:22849-22859. [PMID: 31755508 DOI: 10.1039/c9nr08261a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inorganic nanoparticles (NPs), particularly iron oxide (IO) and gold (Au) NPs, are widely used in a variety of biomedical applications, such as diagnosis and cancer therapy. As an important component of host defense in organisms, macrophages play a crucial role in responding to foreign substances, such as nanoparticles. Thus, it is of utmost importance to understand the nanotoxicity effects on the immune system by investigating the influences of such nanoparticles. In this study, we found that macrophages can take up large amounts of amphiphilic polymer (PMA)-modified Au and IO NPs, which will induce macrophage cell vacuolization and enhance macrophage polarization. This mechanism is an essential part of the immune response in vivo. In addition, we report that smaller-sized nanoparticles (ca. 4 nm) show more significant effects on the macrophage polarization and caused lysosomal damage compared to larger nanoparticles (ca. 14 nm). Moreover, the amount of NP uptake in macrophages decreases upon trapping the PMA with PEG, resulting in reduced vacuolization and a reduced immune response. We hypothesize that vacuoles are formed in large amounts during NP uptake by macrophages, which enhances the immune response and induces macrophages toward M1 polarization. These findings are potentially useful for disease treatment and understanding the immune response when NPs are used in vitro and in vivo.
Collapse
Affiliation(s)
- Jin Cheng
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Sisi Fan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Bin Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Yuping Hong
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Jinghui Guo
- Department of gastroenterology, Shanghai Sixth People's Hospital, Shanghai JiaoTong University, P. R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| |
Collapse
|
202
|
Kapitanova KS, Naumenko VA, Garanina AS, Melnikov PA, Abakumov MA, Alieva IB. Advances and Challenges of Nanoparticle-Based Macrophage Reprogramming for Cancer Immunotherapy. BIOCHEMISTRY (MOSCOW) 2019; 84:729-745. [PMID: 31509725 DOI: 10.1134/s0006297919070058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite the progress of modern medicine, oncological diseases are still among the most common causes of death of adult populations in developed countries. The current therapeutic approaches are imperfect, and the high mortality of oncological patients under treatment, the lack of personalized strategies, and severe side effects arising as a result of treatment force seeking new approaches to therapy of malignant tumors. During the last decade, cancer immunotherapy, an approach that relies on activation of the host antitumor immune response, has been actively developing. Cancer immunotherapy is the most promising trend in contemporary fundamental and practical oncology, and restoration of the pathologically altered tumor microenvironment is one of its key tasks, in particular, the reprogramming of tumor macrophages from the immunosuppressive M2-phenotype into the proinflammatory M1-phenotype is pivotal for eliciting antitumor response. This review describes the current knowledge about macrophage classification, mechanisms of their polarization, their role in formation of the tumor microenvironment, and strategies for changing the functional activity of M2-macrophages, as well as problems of targeted delivery of immunostimulatory signals to tumor macrophages using nanoparticles.
Collapse
Affiliation(s)
- K S Kapitanova
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - V A Naumenko
- National University of Science and Technology "MISIS", Moscow, 119049, Russia.
| | - A S Garanina
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - P A Melnikov
- Serbsky Federal Medical Research Center of Psychiatry and Narcology, Department of Fundamental and Applied Neurobiology, Ministry of Health of the Russian Federation, Moscow, 119034, Russia
| | - M A Abakumov
- National University of Science and Technology "MISIS", Moscow, 119049, Russia.,Russian National Research Medical University, Department of Medical Nanobiotechnology, Moscow, 117997, Russia
| | - I B Alieva
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
203
|
Abstract
Nanotechnology has made remarkable contributions to clinical oncology. Nanotherapeutics and diagnostic tools have distinctive characteristics which allow them superior abilities to deliver therapeutics and imaging agents for radiation oncology. Compared to solid biopsies and imaging, the analysis of circulating tumor cells (CTCs) offers a more rapid, real-time, and less invasive method to monitor the dynamic molecular profiles of tumors. The potential of CTCs to be translated as a novel cancer biomarker has been demonstrated in numerous clinical studies. This review will discuss clinical applications of nanomaterials in radiation oncology and the implication of CTCs in cancer detection and monitoring.
Collapse
Affiliation(s)
- Bo Sun
- Radiation Oncology, The University of North Carolina at Chapel Hill, 125 Mason Farm Road, Marsico 2236, Chapel Hill, NC 27599, USA
| | - C Tilden Hagan
- UNC/NCSU Joint Department of Biomedical Engineering, 125 Mason Farm Road, Marsico 2120, Chapel Hill, NC 27599, USA
| | - Joseph Caster
- Radiation Oncology, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Andrew Z Wang
- Radiation Oncology, The University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599, USA.
| |
Collapse
|
204
|
Naumenko VA, Vlasova KY, Garanina AS, Melnikov PA, Potashnikova DM, Vishnevskiy DA, Vodopyanov SS, Chekhonin VP, Abakumov MA, Majouga AG. Extravasating Neutrophils Open Vascular Barrier and Improve Liposomes Delivery to Tumors. ACS NANO 2019; 13:12599-12612. [PMID: 31609576 DOI: 10.1021/acsnano.9b03848] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still limitations with regards to the efficiency of liposomes delivery to tumors and off-target accumulation. A better understanding of nanodrugs extravasation mechanisms in different tumor types and normal vessels is needed to improve their antitumor activity. We used intravital microscopy to track for fluorescent liposomes behavior in xenograft tumor models (murine breast cancer 4T1 and melanoma B16, human prostate cancer 22Rv1) and normal skin and identified two distinct extravasation patterns. Microleakage, a local perivascular nanoparticle deposition, was found both in malignant and healthy tissues. This type of liposomes leakage does not provide access to tumor cells and is presumably responsible for drug deposition in normal tissues. In contrast, macroleakage penetrated deep into tissues and localized predominantly on the tumor-host interface. Although neutrophils did not uptake liposomes, their extravasation appeared to initiate both micro- and macroleakages. Based on neutrophils and liposomes extravasation dynamics, we hypothesized that microleakage and macroleakage are subsequent steps of the extravasation process corresponding to liposomes transport through endothelial and subendothelial barriers. Of note, extravasation spots were detected more often in the proximity of neutrophils, and across studied tumor types, neutrophils counts correlated with leakage frequencies. Reduced liposomes accumulation in 4T1 tumors upon Ly6G depletion further corroborated neutrophils role in nanoparticles delivery. Elucidating liposomes extravasation routes has a potential to help improve existing strategies and develop effective nanodrugs for cancer therapy.
Collapse
Affiliation(s)
- Victor A Naumenko
- National University of Science and Technology (MISIS) , Moscow 119049 , Russia
| | - Kseniya Yu Vlasova
- School of Chemistry , M. V. Lomonosov Moscow State University , Moscow 119991 , Russia
| | | | - Pavel A Melnikov
- Department of Medical Nanobiotechnology , N. I. Pirogov Russian National Research Medical University , Moscow 117997 , Russia
| | - Daria M Potashnikova
- School of Biology, Department of Cell Biology and Histology , M. V. Lomonosov Moscow State University , Moscow 119234 , Russia
| | - Daniil A Vishnevskiy
- Department of Medical Nanobiotechnology , N. I. Pirogov Russian National Research Medical University , Moscow 117997 , Russia
| | - Stepan S Vodopyanov
- National University of Science and Technology (MISIS) , Moscow 119049 , Russia
| | - Vladimir P Chekhonin
- Department of Medical Nanobiotechnology , N. I. Pirogov Russian National Research Medical University , Moscow 117997 , Russia
| | - Maxim A Abakumov
- National University of Science and Technology (MISIS) , Moscow 119049 , Russia
- Department of Medical Nanobiotechnology , N. I. Pirogov Russian National Research Medical University , Moscow 117997 , Russia
| | - Alexander G Majouga
- National University of Science and Technology (MISIS) , Moscow 119049 , Russia
- D. Mendeleev University of Chemical Technology of Russia , Moscow 125047 , Russia
| |
Collapse
|
205
|
Salvioni L, Rizzuto MA, Bertolini JA, Pandolfi L, Colombo M, Prosperi D. Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope. Cancers (Basel) 2019; 11:E1855. [PMID: 31769416 PMCID: PMC6966668 DOI: 10.3390/cancers11121855] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Starting with the enhanced permeability and retention (EPR) effect discovery, nanomedicine has gained a crucial role in cancer treatment. The advances in the field have led to the approval of nanodrugs with improved safety profile and still inspire the ongoing investigations. However, several restrictions, such as high manufacturing costs, technical challenges, and effectiveness below expectations, raised skeptical opinions within the scientific community about the clinical relevance of nanomedicine. In this review, we aim to give an overall vision of the current hurdles encountered by nanotherapeutics along with their design, development, and translation, and we offer a prospective view on possible strategies to overcome such limitations.
Collapse
Affiliation(s)
- Lucia Salvioni
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Maria Antonietta Rizzuto
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Jessica Armida Bertolini
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Laura Pandolfi
- Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Miriam Colombo
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
| | - Davide Prosperi
- Department of Biotecnology and Bioscience, University of Milano-Bicocca, piazza della Scienza 2, 20126 Milano, Italy; (L.S.); (M.A.R.); (J.A.B.); (M.C.)
- Nanomedicine Laboratory, ICS Maugeri, via S. Maugeri 10, 27100 Pavia, Italy
| |
Collapse
|
206
|
Wayne EC, Long C, Haney MJ, Batrakova EV, Leisner TM, Parise LV, Kabanov AV. Targeted Delivery of siRNA Lipoplexes to Cancer Cells Using Macrophage Transient Horizontal Gene Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900582. [PMID: 31728272 PMCID: PMC6839649 DOI: 10.1002/advs.201900582] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/13/2019] [Indexed: 05/15/2023]
Abstract
Delivery of nucleic acids into solid tumor environments remains a pressing challenge. This study examines the ability of macrophages to horizontally transfer small interfering RNA (siRNA) lipoplexes to cancer cells. Macrophages are a natural candidate for a drug carrier because of their ability to accumulate at high densities into many cancer types, including, breast, prostate, brain, and colon cancer. Here, it is demonstrated that macrophages can horizontally transfer siRNA to cancer cells during in vitro coculture. The amount of transfer can be dosed depending on the amount of siRNA loaded and total number of macrophages delivered. Macrophages loaded with calcium integrin binding protein-1 (CIB1)-siRNA result in decreased tumorsphere growth and decreased mRNA expression of CIB1 and KI67 in MDA-MB-468 human breast cancer cells. Adoptive transfer of macrophages transfected with CIB1-siRNA localizes to the orthotopic MDA-MB-468 tumor. Furthermore, it is reported that macrophage activation can modulate this transfer process as well as intracellular trafficking protein Rab27a. As macrophages are heavily involved in tumor progression, understanding how to use macrophages for drug delivery can substantially benefit the treatment of tumors.
Collapse
Affiliation(s)
- Elizabeth C. Wayne
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular PharmacueticsEshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Christian Long
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular PharmacueticsEshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Matthew J. Haney
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular PharmacueticsEshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular PharmacueticsEshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Tina M. Leisner
- Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Leslie V. Parise
- Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Alexander V. Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular PharmacueticsEshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
- Laboratory of Chemical Design of BionanomaterialsFaculty of ChemistryM.V. Lomonosov Moscow State UniversityMoscow119992Russia
| |
Collapse
|
207
|
van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer nanomedicine. NATURE NANOTECHNOLOGY 2019; 14:1007-1017. [PMID: 31695150 PMCID: PMC7227032 DOI: 10.1038/s41565-019-0567-y] [Citation(s) in RCA: 781] [Impact Index Per Article: 130.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/30/2019] [Indexed: 05/19/2023]
Abstract
Nanomedicines are extensively employed in cancer therapy. We here propose four strategic directions to improve nanomedicine translation and exploitation. (1) Patient stratification has become common practice in oncology drug development. Accordingly, probes and protocols for patient stratification are urgently needed in cancer nanomedicine, to identify individuals suitable for inclusion in clinical trials. (2) Rational drug selection is crucial for clinical and commercial success. Opportunistic choices based on drug availability should be replaced by investments in modular (pro)drug and nanocarrier design. (3) Combination therapies are the mainstay of clinical cancer care. Nanomedicines synergize with pharmacological and physical co-treatments, and should be increasingly integrated in multimodal combination therapy regimens. (4) Immunotherapy is revolutionizing the treatment of cancer. Nanomedicines can modulate the behaviour of myeloid and lymphoid cells, thereby empowering anticancer immunity and immunotherapy efficacy. Alone and especially together, these four directions will fuel and foster the development of successful cancer nanomedicine therapies.
Collapse
Affiliation(s)
- Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Einar Sulheim
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF AS, Trondheim, Norway
- Cancer Clinic, St. Olavs University Hospital, Trondheim, Norway
| | - Yang Shi
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Willem J M Mulder
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany.
- Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands.
- Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
208
|
Vinegoni C, Feruglio PF, Gryczynski I, Mazitschek R, Weissleder R. Fluorescence anisotropy imaging in drug discovery. Adv Drug Deliv Rev 2019; 151-152:262-288. [PMID: 29410158 PMCID: PMC6072632 DOI: 10.1016/j.addr.2018.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Non-invasive measurement of drug-target engagement can provide critical insights in the molecular pharmacology of small molecule drugs. Fluorescence polarization/fluorescence anisotropy measurements are commonly employed in protein/cell screening assays. However, the expansion of such measurements to the in vivo setting has proven difficult until recently. With the advent of high-resolution fluorescence anisotropy microscopy it is now possible to perform kinetic measurements of intracellular drug distribution and target engagement in commonly used mouse models. In this review we discuss the background, current advances and future perspectives in intravital fluorescence anisotropy measurements to derive pharmacokinetic and pharmacodynamic measurements in single cells and whole organs.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Ignacy Gryczynski
- University of North Texas Health Science Center, Institute for Molecular Medicine, Fort Worth, TX, United States
| | - Ralph Mazitschek
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
209
|
Lim S, Park J, Shim MK, Um W, Yoon HY, Ryu JH, Lim DK, Kim K. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics 2019; 9:7906-7923. [PMID: 31695807 PMCID: PMC6831456 DOI: 10.7150/thno.38425] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy is an attractive treatment option under clinical settings. However, the major challenges of immunotherapy include limited patient response, limited tumor specificity, immune-related adverse events, and immunosuppressive tumor microenvironment. Therefore, nanoparticle (NP)-based drug delivery has been used to not only increase the efficacy of immunotherapeutic agents, but it also significantly reduces the toxicity. In particular, NP-based drug delivery systems alter the pharmacokinetic (PK) profile of encapsulated or conjugated immunotherapeutic agents to targeted cancer cells or immune cells and facilitate the delivery of multiple therapeutic combinations to targeted cells using single NPs. Recently, advanced NP-based drug delivery systems were effectively utilized in cancer immunotherapy to reduce the toxic side effects and immune-related adverse events. Repurposing these NPs as delivery systems of immunotherapeutic agents may overcome the limitations of current cancer immunotherapy. In this review, we focus on recent advances in NP-based immunotherapeutic delivery systems, such as immunogenic cell death (ICD)-inducing drugs, cytokines and adjuvants for promising cancer immunotherapy. Finally, we discuss the challenges facing current NP-based drug delivery systems that need to be addressed for successful clinical application.
Collapse
Affiliation(s)
- Seungho Lim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jooho Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Wooram Um
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
210
|
Rodell CB, Koch PD, Weissleder R. Screening for new macrophage therapeutics. Theranostics 2019; 9:7714-7729. [PMID: 31695796 PMCID: PMC6831478 DOI: 10.7150/thno.34421] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Myeloid derived macrophages play a key role in many human diseases, and their therapeutic modulation via pharmacological means is receiving considerable attention. Of particular interest is the fact that these cells are i) dynamic phenotypes well suited to therapeutic manipulation and ii) phagocytic, allowing them to be efficiently targeted with nanoformulations. However, it is important to consider that macrophages represent heterogeneous populations of subtypes with often competing biological behaviors and functions. In order to develop next generation therapeutics, it is therefore essential to screen for biological effects through a combination of in vitro and in vivo assays. Here, we review the state-of-the-art techniques, including both cell based screens and in vivo imaging tools that have been developed for assessment of macrophage phenotype. We conclude with a forward-looking perspective on the growing need for noninvasive macrophage assessment and laboratory assays to be put into clinical practice and the potential broader impact of myeloid-targeted therapeutics.
Collapse
|
211
|
Wang F, Wang X, Gao L, Meng LY, Xie JM, Xiong JW, Luo Y. Nanoparticle-mediated delivery of siRNA into zebrafish heart: a cell-level investigation on the biodistribution and gene silencing effects. NANOSCALE 2019; 11:18052-18064. [PMID: 31576876 DOI: 10.1039/c9nr05758g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanomaterials hold promise for the delivery of nucleic acids to facilitate gene therapy in cardiac diseases. However, as much of the in vivo study of nanomaterials was conducted via the "trial and error" method, the understanding of the nanomaterial-mediated delivery in cardiac tissue was limited to the gross efficiency in manipulating the gene expression while little was known about the delivery process and mechanism in particular at the cell level. In this study, small interfering RNA (siRNA) nanoparticles formulated with a polyamidoamine (PAMAM) nanomaterial were applied to the injured heart of zebrafish. The distribution of nanoparticles in cardiomyocytes, endothelial cells, macrophages and leukocytes was quantitatively analyzed with precision at the cell level by using transgenic models. Based on the distribution characteristics, gene silencing effects in a specific group of cells were analyzed to illustrate how siRNA nanoparticles could get potent gene silencing in different cells in vivo. The results elucidated the heterogeneous distribution of siRNA nanoparticles and how nanoparticles could be efficient despite the significant difference in cellular uptake efficiency in different cells. It demonstrated a paradigm and the need to decouple cellular processes to understand nanoparticle-mediated delivery in complex tissue and the investigation/methodology may lead to important information to guide the design of advanced targeted drug-delivery systems in heart.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| | | | | | | | | | | | | |
Collapse
|
212
|
He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902409. [PMID: 31369176 DOI: 10.1002/adma.201902409] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Advantages such as strong signal strength, resistance to photobleaching, tunable fluorescence emissions, high sensitivity, and biocompatibility are the driving forces for the application of fluorescent nanoparticles (FNPs) in cancer diagnosis and therapy. In addition, the large surface area and easy modification of FNPs provide a platform for the design of multifunctional nanoparticles (MFNPs) for tumor targeting, diagnosis, and treatment. In order to obtain better targeting and therapeutic effects, it is necessary to understand the properties and targeting mechanisms of FNPs, which are the foundation and play a key role in the targeting design of nanoparticles (NPs). Widely accepted and applied targeting mechanisms such as enhanced permeability and retention (EPR) effect, active targeting, and tumor microenvironment (TME) targeting are summarized here. Additionally, a freshly discovered targeting mechanism is introduced, termed cell membrane permeability targeting (CMPT), which improves the tumor-targeting rate from less than 5% of the EPR effect to more than 50%. A new design strategy is also summarized, which is promising for future clinical targeting NPs/nanomedicines design. The targeting mechanism and design strategy will inspire new insights and thoughts on targeting design and will speed up precision medicine and contribute to cancer therapy and early diagnosis.
Collapse
Affiliation(s)
- Jiuyang He
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Ding
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Zhang
- Universal Medical Imaging Diagnostic Research Center, Shanghai, 200233, P. R. China
| | - Chenjie Yao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Minmin Liang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
| | - Jie Chen
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Quan Lu
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Ryan Baldridge
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yong Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Minghong Wu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
213
|
Elechalawar CK, Bhattacharya D, Ahmed MT, Gora H, Sridharan K, Chaturbedy P, Sinha SH, Chandra Sekhar Jaggarapu MM, Narayan KP, Chakravarty S, Eswaramoorthy M, Kundu TK, Banerjee R. Dual targeting of folate receptor-expressing glioma tumor-associated macrophages and epithelial cells in the brain using a carbon nanosphere-cationic folate nanoconjugate. NANOSCALE ADVANCES 2019; 1:3555-3567. [PMID: 36133563 PMCID: PMC9417975 DOI: 10.1039/c9na00056a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/22/2019] [Indexed: 05/21/2023]
Abstract
Glioblastoma multiforme (GBM), the highly invasive form of glioma, exhibits the highest mortality in patients with brain malignancies. Increasing glioma patients' survivability is challenging, as targeting only tumor-associated malignant cells would not reduce the overall aggressiveness of the tumor mass. This is due to the inadequacy in countering pro-proliferative, invasive and metastatic factors released by tumor-mass associated macrophages (TAMs). Hence, strategically, dual targeting both tumor cells and TAMs is necessary for effective glioma treatment and increased survivability. Conventional FR-targeting systems can easily target cancer cells that overtly express folate receptors (FRs). However, FRs are expressed only moderately in both glioma cells and in TAMs. Hence, it is more challenging to coordinate dual targeting of glioma cells and TAMs with lower levels of FR expression. A recently developed carbon nanosphere (CSP) with effective blood-brain barrier (BBB) penetrability was modified with a new folic acid-cationic lipid conjugate (F8) as a targeting ligand. The uniqueness of the cationic lipid-folate conjugate is that it stably associates with the negatively charged CSP surface at about >22 mol% surface concentration, a concentration at least 5-fold higher than what is achieved for conventional FR-targeting delivery systems. This enabled dual uptake of the CSP on TAMs and tumor cells via FRs. A doxorubicin-associated FR-targeting formulation (CFD), in an orthotopic glioma model and in a glioma subcutaneous model, induced the maximum anticancer effect with enhanced average mice survivability twice that of untreated mice and without any systemic liver toxicity. Additionally, we observed a significant decrease of TAM-released pro-aggressive factors, TGF-β, STAT3, invasion and migration related sICAM-1, and other cytokines indicating anti-TAM activity of the CFD. Taken together, we principally devised, to the best of our knowledge, the first FR-targeting nano-delivery system for targeting brain-associated TAMs and tumor cells as an efficient glioma therapeutic.
Collapse
Affiliation(s)
- Chandra Kumar Elechalawar
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific & Innovative Research (AcSIR) Taramani Chennai 600113 India
| | - Dwaipayan Bhattacharya
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Department of Biological Sciences, BITS Pilani Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal Hyderabad 500078 India
| | - Mohammed Tanveer Ahmed
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific & Innovative Research (AcSIR) Taramani Chennai 600113 India
| | - Halley Gora
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Kathyayani Sridharan
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific & Innovative Research (AcSIR) Taramani Chennai 600113 India
| | - Piyush Chaturbedy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O Bangalore 560 064 India
| | - Sarmistha Halder Sinha
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O Bangalore 560 064 India
| | - Madhan Mohan Chandra Sekhar Jaggarapu
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific & Innovative Research (AcSIR) Taramani Chennai 600113 India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, BITS Pilani Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal Hyderabad 500078 India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Muthusamy Eswaramoorthy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O Bangalore 560 064 India
| | - Tapas Kumar Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O Bangalore 560 064 India
| | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific & Innovative Research (AcSIR) Taramani Chennai 600113 India
| |
Collapse
|
214
|
Eskandari A, Suntharalingam K. A reactive oxygen species-generating, cancer stem cell-potent manganese(ii) complex and its encapsulation into polymeric nanoparticles. Chem Sci 2019; 10:7792-7800. [PMID: 31588328 PMCID: PMC6764274 DOI: 10.1039/c9sc01275c] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022] Open
Abstract
Intracellular redox modulation offers a viable approach to effectively remove cancer stem cells (CSCs), a subpopulation of tumour cells thought to be responsible for cancer recurrence and metastasis. Here we report the breast CSC potency of reactive oxygen species (ROS)-generating manganese(ii)- and copper(ii)-4,7-diphenyl-1,10-phenanthroline complexes bearing diclofenac, a nonsteriodial anti-inflammatory drug (NSAID), 1 and 3. Notably, the manganese(ii) complex, 1, exhibits 9-fold, 31-fold, and 40-fold greater potency towards breast CSCs than 3, salinomycin (an established breast CSC-potent agent), and cisplatin (a clinically approved anticancer drug) respectively. Encouragingly, 1 displays 61-fold higher potency toward breast CSCs than normal skin fibroblast cells. Clinically relevant epithelial spheroid studies show that 1 is able to selectively inhibit breast CSC-enriched HMLER-shEcad mammosphere formation and viability (one order of magnitude) over non-tumorigenic breast MCF10A spheroids. Mechanistic studies show that 1 prompts breast CSC death by generating intracellular ROS and inhibiting cyclooxygenase-2 (COX-2) activity. The manganese(ii) complex, 1, induces a greater degree of intracellular ROS in CSCs than the corresponding copper(ii) complex, 3, highlighting the ROS-generating superiority of manganese(ii)- over copper(ii)-phenanthroline complexes. Encapsulation of 1 by biodegradable methoxy poly(ethylene glycol)-b-poly(d,l-lactic-co-glycolic) acid (PEG-PLGA) copolymers at the appropriate feed (5%, 1 NP5 ) enhances breast CSC uptake and greatly reduces overall toxicity. The nanoparticle formulation 1 NP5 indiscriminately kills breast CSCs and bulk breast cancer cells, and evokes a similar cellular response to the payload, 1. To the best of our knowledge, this is the first study to investigate the anti-CSC properties of managense complexes and to demonstrate that polymeric nanoparticles can be used to effectively deliver managense complexes into CSCs.
Collapse
Affiliation(s)
- Arvin Eskandari
- Department of Chemistry , King's College London , London , SE1 1DB , UK
| | | |
Collapse
|
215
|
Xue X, Qian C, Fang H, Liu H, Yuan H, Guo Z, Bai Y, He W. Photoactivated Lysosomal Escape of a Monofunctional Pt
II
Complex Pt‐BDPA for Nucleus Access. Angew Chem Int Ed Engl 2019; 58:12661-12666. [DOI: 10.1002/anie.201906203] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Xuling Xue
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
- School of Chemistry and Materials ScienceNanjing Normal University Jiangsu, Nanjing 210023 P. R. China
| | - Chenggen Qian
- School of PharmacyChina Pharmaceutical University Jiangsu, Nanjing 210009 P. R. China
| | - Hongbao Fang
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Hong‐Ke Liu
- School of Chemistry and Materials ScienceNanjing Normal University Jiangsu, Nanjing 210023 P. R. China
| | - Hao Yuan
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Yang Bai
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Weijiang He
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| |
Collapse
|
216
|
Lee SH, Park OK, Kim J, Shin K, Pack CG, Kim K, Ko G, Lee N, Kwon SH, Hyeon T. Deep Tumor Penetration of Drug-Loaded Nanoparticles by Click Reaction-Assisted Immune Cell Targeting Strategy. J Am Chem Soc 2019; 141:13829-13840. [PMID: 31382746 DOI: 10.1021/jacs.9b04621] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanoparticles have been extensively used to deliver therapeutic drugs to tumor tissues through the extravasation of a leaky vessel via enhanced permeation and retention effect (EPR, passive targeting) or targeted interaction of tumor-specific ligands (active targeting). However, the therapeutic efficacy of drug-loaded nanoparticles is hampered by its heterogeneous distribution owing to limited penetration in tumor tissue. Inspired by the fact that cancer cells can recruit inflammatory immune cells to support their survival, we developed a click reaction-assisted immune cell targeting (CRAIT) strategy to deliver drug-loaded nanoparticles deep into the avascular regions of the tumor. Immune cell-targeting CD11b antibodies are modified with trans-cyclooctene to enable bioorthogonal click chemistry with mesoporous silica nanoparticles functionalized with tetrazines (MSNs-Tz). Sequential injection of modified antibodies and MSNs-Tz at intervals of 24 h results in targeted conjugation of the nanoparticles onto CD11b+ myeloid cells, which serve as active vectors into tumor interiors. We show that the CRAIT strategy allows the deep tumor penetration of drug-loaded nanoparticles, resulting in enhanced therapeutic efficacy in an orthotopic 4T1 breast tumor model. The CRAIT strategy does not require ex vivo manipulation of cells and can be applied to various types of cells and nanovehicles.
Collapse
Affiliation(s)
- Soo Hong Lee
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| | - Ok Kyu Park
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jonghoon Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| | - Kwangsoo Shin
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| | - Chan Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center, Department of Convergence Medicine , University of Ulsan College of Medicine , Seoul 05505 , Republic of Korea
| | - Kang Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| | - Giho Ko
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering , Kookmin University , Seoul 02707 , Republic of Korea
| | - Seung-Hae Kwon
- Division of Bio-imaging, Korea Basic Science Institute , Seoul 02841 , Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
217
|
Atukorale PU, Raghunathan SP, Raguveer V, Moon TJ, Zheng C, Bielecki PA, Wiese ML, Goldberg AL, Covarrubias G, Hoimes CJ, Karathanasis E. Nanoparticle Encapsulation of Synergistic Immune Agonists Enables Systemic Codelivery to Tumor Sites and IFNβ-Driven Antitumor Immunity. Cancer Res 2019; 79:5394-5406. [PMID: 31431457 DOI: 10.1158/0008-5472.can-19-0381] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
Effective cancer immunotherapy depends on the robust activation of tumor-specific antigen-presenting cells (APC). Immune agonists encapsulated within nanoparticles (NP) can be delivered to tumor sites to generate powerful antitumor immune responses with minimal off-target dissemination. Systemic delivery enables widespread access to the microvasculature and draining to the APC-rich perivasculature. We developed an immuno-nanoparticle (immuno-NP) coloaded with cyclic diguanylate monophosphate, an agonist of the stimulator of interferon genes pathway, and monophosphoryl lipid A, and a Toll-like receptor 4 agonist, which synergize to produce high levels of type I IFNβ. Using a murine model of metastatic triple-negative breast cancer, systemic delivery of these immuno-NPs resulted in significant therapeutic outcomes due to extensive upregulation of APCs and natural killer cells in the blood and tumor compared with control treatments. These results indicate that NPs can facilitate systemic delivery of multiple immune-potentiating cargoes for effective APC-driven local and systemic antitumor immunity. SIGNIFICANCE: Systemic administration of an immuno-nanoparticle in a murine breast tumor model drives a robust tumor site-specific APC response by delivering two synergistic immune-potentiating molecules, highlighting the potential of nanoparticles for immunotherapy.
Collapse
Affiliation(s)
- Prabhani U Atukorale
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Shruti P Raghunathan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Vanitha Raguveer
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Taylor J Moon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Carolyn Zheng
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Peter A Bielecki
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Michelle L Wiese
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Amy L Goldberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Gil Covarrubias
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Christopher J Hoimes
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Efstathios Karathanasis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,Department of Radiology, Case Western Reserve University, Cleveland, Ohio.,Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
218
|
Li R, Attari A, Prytyskach M, Garlin MA, Weissleder R, Miller MA. Single-Cell Intravital Microscopy of Trastuzumab Quantifies Heterogeneous in vivo Kinetics. Cytometry A 2019; 97:528-539. [PMID: 31423731 DOI: 10.1002/cyto.a.23872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022]
Abstract
Cell-to-cell heterogeneity can substantially impact drug response, especially for monoclonal antibody (mAb) therapies that may exhibit variability in both delivery (pharmacokinetics) and action (pharmacodynamics) within solid tumors. However, it has traditionally been difficult to examine the kinetics of mAb delivery at a single-cell level and in a manner that enables controlled dissection of target-dependent and -independent behaviors. To address this issue, here we developed an in vivo confocal (intravital) microscopy approach to study single-cell mAb pharmacology in a mosaic xenograft comprising a mixture of cancer cells with variable expression of the receptor HER2. As a proof-of-principle, we applied this model to trastuzumab therapy, a HER2-targeted mAb widely used for treating breast and gastric cancer patients. Trastuzumab accumulated to a higher degree in HER2-over expressing tumor cells compared to HER2-low tumor cells (~5:1 ratio at 24 h after administration) but importantly, the majority actually accumulated in tumor-associated phagocytes. For example, 24 h after IV administration over 50% of tumoral trastuzumab was found in phagocytes whereas at 48 h it was >80%. Altogether, these results reveal the dynamics of how phagocytes influence mAb behavior in vivo, and demonstrate an application of intravital microscopy for quantitative single-cell measurement of mAb distribution and retention in tumors with heterogeneous target expression. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Adel Attari
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark Prytyskach
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Michelle A Garlin
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
219
|
Ghosh S, Girigoswami K, Girigoswami A. Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine (Lond) 2019; 14:2067-2082. [DOI: 10.2217/nnm-2019-0155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Owing to the limitations of conventional therapies, there has been an increasing need for nanomedicines for real-time diagnosis and effective treatment of life-threatening diseases. Despite the conceptual and technological success achieved by researchers worldwide, the complexities of biological systems, efficient engineering and formulation of monodispersed nanomedicines, inadequate information on bio–nano interactions, issues on health hazards, clinical trials and commercialization have set new challenges in biomedical research. This review highlights how the biological membrane improves the performance of nanomedicines in drug delivery. With the list of nanomedicines getting longer gradually to overcome the drawbacks of conventional therapeutics, it is important to concentrate on the interactions between nanostructures and living systems in order to improve the biocompatibility and therapeutic efficacy of functional nanomedicines.
Collapse
Affiliation(s)
- Suparna Ghosh
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research & Education (CARE), Kelambakkam, Chennai 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research & Education (CARE), Kelambakkam, Chennai 603103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research & Education (CARE), Kelambakkam, Chennai 603103, India
| |
Collapse
|
220
|
Shamsi M, Mohammadi A, Manshadi MK, Sanati-Nezhad A. Mathematical and computational modeling of nano-engineered drug delivery systems. J Control Release 2019; 307:150-165. [DOI: 10.1016/j.jconrel.2019.06.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
|
221
|
Xue X, Qian C, Fang H, Liu H, Yuan H, Guo Z, Bai Y, He W. Photoactivated Lysosomal Escape of a Monofunctional Pt
II
Complex Pt‐BDPA for Nucleus Access. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xuling Xue
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
- School of Chemistry and Materials ScienceNanjing Normal University Jiangsu, Nanjing 210023 P. R. China
| | - Chenggen Qian
- School of PharmacyChina Pharmaceutical University Jiangsu, Nanjing 210009 P. R. China
| | - Hongbao Fang
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Hong‐Ke Liu
- School of Chemistry and Materials ScienceNanjing Normal University Jiangsu, Nanjing 210023 P. R. China
| | - Hao Yuan
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Yang Bai
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| | - Weijiang He
- State Key Laboratory of Coordination ChemistrySchool of Chemistry and Chemical EngineeringNanjing University Jiangsu, Nanjing 210023 P. R. China
| |
Collapse
|
222
|
Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to improve cancer cell accessibility of second nanoparticles. Nat Commun 2019; 10:3322. [PMID: 31346166 PMCID: PMC6658501 DOI: 10.1038/s41467-019-11235-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
The tumor stromal microenvironments (TSM) including stromal cells and extracellular matrix (ECM) form an abominable barrier hampering nanoparticles accessibility to cancer cells, significantly compromising their antitumor effects. Herein, we report a bioinspired lipoprotein (bLP) that can induce efficient photothermia to remodel TSM and improve second bLP accessibility to cancer cells for antitumor therapy. The multiple stromal cells and ECM components in TSM are remarkably disrupted by bLP-mediated photothermal effects, which cause a 4.27-fold enhancement of second bLP accumulation in tumor, deep penetration in whole tumor mass and 27.0-fold increase of accessibility to cancer cells. Of note, this bLP-mediated TSM-remodeling to enhance cancer cell accessibility (TECA) strategy produces an eminent suppression of tumor growth and results in a 97.4% inhibition of lung metastasis, which is superior to the counterpart liposomes. The bLP-mediated TECA strategy provides deeper insights into enhancing nanoparticle accessibility to cancer cells for antitumor therapy. The stromal cells and extracellular matrix hamper nanoparticle access to cancer cells and their anti-cancer efficacy. Here, the authors report a bioinspired lipoprotein (bLP) for photothermal remodelling of tumour stroma and show this to improve subsequent bLP accessibility to cancer cells.
Collapse
|
223
|
Grodzinski P, Kircher M, Goldberg M, Gabizon A. Integrating Nanotechnology into Cancer Care. ACS NANO 2019; 13:7370-7376. [PMID: 31240914 DOI: 10.1021/acsnano.9b04266] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Research activity in medical and cancer nanotechnology has grown dramatically over the past 15 years. The field has become a cradle of multidisciplinary investigations bringing together physicists, chemists, and engineers working with clinicians and biologists to address paramount problems in cancer care and treatment. Some have argued that the explosion in the number of research papers has not been followed by sufficient clinical activity in nanomedicine. However, three new nanodrugs have now been approved by the U.S. Food and Drug Administration (FDA) in the past three years, confirming the validity of nanotechnology approaches in cancer. Excitingly, translational pipelines contain several additional intriguing candidates. In this Nano Focus article, we discuss potential barriers inhibiting further incorporation of nanomedicines into patient care, possible strategies to overcome these barriers, and promising new directions in cancer interventions based on nanotechnology. Insights presented herein are outcomes of discussions held at a recent strategic workshop hosted by the National Cancer Institute (NCI), which brought together research, clinical, and commercial leaders of the nanomedicine field.
Collapse
Affiliation(s)
- Piotr Grodzinski
- National Cancer Institute , National Institutes of Health , Rockville , Maryland 20814 , United States
| | - Moritz Kircher
- Dana Farber Cancer Institute , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Michael Goldberg
- Dana Farber Cancer Institute , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Alberto Gabizon
- Shaare Zedek Medical Center and Hebrew University-School of Medicine , Jerusalem , Israel
| |
Collapse
|
224
|
Assessing micrometastases as a target for nanoparticles using 3D microscopy and machine learning. Proc Natl Acad Sci U S A 2019; 116:14937-14946. [PMID: 31285340 DOI: 10.1073/pnas.1907646116] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Metastasis of solid tumors is a key determinant of cancer patient survival. Targeting micrometastases using nanoparticles could offer a way to stop metastatic tumor growth before it causes excessive patient morbidity. However, nanoparticle delivery to micrometastases is difficult to investigate because micrometastases are small in size and lie deep within tissues. Here, we developed an imaging and image analysis workflow to analyze nanoparticle-cell interactions in metastatic tumors. This technique combines tissue clearing and 3D microscopy with machine learning-based image analysis to assess the physiology of micrometastases with single-cell resolution and quantify the delivery of nanoparticles within them. We show that nanoparticles access a higher proportion of cells in micrometastases (50% nanoparticle-positive cells) compared with primary tumors (17% nanoparticle-positive cells) because they reside close to blood vessels and require a small diffusion distance to reach all tumor cells. Furthermore, the high-throughput nature of our image analysis workflow allowed us to profile the physiology and nanoparticle delivery of 1,301 micrometastases. This enabled us to use machine learning-based modeling to predict nanoparticle delivery to individual micrometastases based on their physiology. Our imaging method allows researchers to measure nanoparticle delivery to micrometastases and highlights an opportunity to target micrometastases with nanoparticles. The development of models to predict nanoparticle delivery based on micrometastasis physiology could enable personalized treatments based on the specific physiology of a patient's micrometastases.
Collapse
|
225
|
Immunological consequences of chemotherapy: Single drugs, combination therapies and nanoparticle-based treatments. J Control Release 2019; 305:130-154. [DOI: 10.1016/j.jconrel.2019.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 02/07/2023]
|
226
|
Hong Y, Rao Y. Current status of nanoscale drug delivery systems for colorectal cancer liver metastasis. Biomed Pharmacother 2019; 114:108764. [DOI: 10.1016/j.biopha.2019.108764] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/24/2022] Open
|
227
|
Chen L, Chen D, Jiang Y, Zhang J, Yu J, DuFort CC, Hingorani SR, Zhang X, Wu C, Chiu DT. A BODIPY-Based Donor/Donor-Acceptor System: Towards Highly Efficient Long-Wavelength-Excitable Near-IR Polymer Dots with Narrow and Strong Absorption Features. Angew Chem Int Ed Engl 2019; 58:7008-7012. [PMID: 30912228 PMCID: PMC6513679 DOI: 10.1002/anie.201902077] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Indexed: 12/25/2022]
Abstract
Bright long-wavelength-excitable semiconducting polymer dots (LWE-Pdots) are highly desirable for in vivo imaging and multiplexed in vitro bioassays. LWE-Pdots have been obtained by incorporating a near-infrared (NIR) emitter into the backbone of a polymer host to develop a binary donor-acceptor (D-A) system. However, they usually suffer from severe concentration quenching and a trade-off between fluorescence quantum yield (Φf ) and absorption cross-section (σ). Herein, we describe a ternary component (D1 /D2 -A) strategy to achieve ultrabright, green laser-excitable Pdots with narrow-band NIR emission by introducing a BODIPY-based assistant polymer donor as D1 . The D1 /D2 -A Pdots possess improved Φf and σ compared to corresponding binary D2 -A Pdots. Their Φf is as high as 40.2 %, one of the most efficient NIR Pdots reported. The D1 /D2 -A Pdots show ultrahigh single-particle brightness, 83-fold brighter than Qdot 705 when excited by a 532 nm laser. When injected into mice, higher contrast in vivo tumor imaging was achieved using the ternary Pdots versus the binary D-A Pdots.
Collapse
Affiliation(s)
- Lei Chen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United Statet.
| | - Dandan Chen
- Department of Biomedical Engineering, Southern University Science and Technology, Shenzhen, Guangdong 510855, China.
| | - Yifei Jiang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United Statet.
| | - Jicheng Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United Statet.
| | - Jiangbo Yu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United Statet.
| | - Christopher C. DuFort
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Sunil R. Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
- Department of Medicine, University of Washington, Seattle, WA, 98195, United States
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University Science and Technology, Shenzhen, Guangdong 510855, China.
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United Statet.
| |
Collapse
|
228
|
Xiong F, Ling X, Chen X, Chen J, Tan J, Cao W, Ge L, Ma M, Wu J. Pursuing Specific Chemotherapy of Orthotopic Breast Cancer with Lung Metastasis from Docking Nanoparticles Driven by Bioinspired Exosomes. NANO LETTERS 2019; 19:3256-3266. [PMID: 30965009 DOI: 10.1021/acs.nanolett.9b00824] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Breast cancer develops from local tissue but is characterized by a distinct metastatic pattern involving regional lymph nodes and distant organs, which is the primary cause of high mortality in breast cancer patients. Herein, optimal docking nanoparticles (NPs) composed of a laurate-functionalized Pt(IV) prodrug (Pt(lau)), human serum albumin (HSA), and lecithin were predicted by computational modeling, prepared by nanoprecipitation, and validated by fluorescence spectroscopy. As macrophages have been reported to be preferentially recruited by breast cancer, Rex, the exosome spontaneously secreted by murine RAW 264.7 cells, was isolated to encapsulate the NPs. This high-performance delivery system, called NPs/Rex, possessed the desired physicochemical properties, enhanced colloidal stability, and redox-triggered release profile. Investigations of cytodynamics proved that NPs/Rex was internalized through multiple pathways, avoided entrapment by bilayers, and successfully platinized nucleic acids after bioreduction in the cytosol. Intracellular activation of Pt(lau) was confirmed by observing the characteristic effects of cisplatin on cell proliferation and the cell cycle following treatment with NPs/Rex. During in vivo application, the bioinspired Rex coating endowed docking NPs with prolonged blood circulation, smart organ tropism, and enhanced biocompatibility, as well as robust platinum (Pt) chemotherapy for breast cancer cells in orthotopic tumors of fat pads and metastatic nodules of lungs. Therefore, this favorable nanoplatform might provide valuable insight into the derivatization and development of Pt anticancer drugs used currently in the clinic.
Collapse
Affiliation(s)
- Fei Xiong
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| | - Xiang Ling
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| | - Xing Chen
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| | - Jing Chen
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Jiaxing Tan
- Life Sciences Institute and Innovation Center for Cell Signaling Network , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Wuji Cao
- Wyss Institute for Biologically Inspired Engineering at Harvard University , Boston , Massachusetts 02115 , United States
| | - Liang Ge
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , Jiangsu 210009 , China
| | - Minglin Ma
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Jun Wu
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China , Sun Yat-sen University , Guangzhou , Guangdong 510006 , China
| |
Collapse
|
229
|
Erel-Akbaba G, Carvalho LA, Tian T, Zinter M, Akbaba H, Obeid PJ, Chiocca EA, Weissleder R, Kantarci AG, Tannous BA. Radiation-Induced Targeted Nanoparticle-Based Gene Delivery for Brain Tumor Therapy. ACS NANO 2019; 13:4028-4040. [PMID: 30916923 PMCID: PMC7104714 DOI: 10.1021/acsnano.8b08177] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Targeted therapy against the programmed cell death ligand-1 (PD-L1) blockade holds considerable promise for the treatment of different tumor types; however, little effect has been observed against gliomas thus far. Effective glioma therapy requires a delivery vehicle that can reach tumor cells in the central nervous system, with limited systemic side effect. In this study, we developed a cyclic peptide iRGD (CCRGDKGPDC)-conjugated solid lipid nanoparticle (SLN) to deliver small interfering RNAs (siRNAs) against both epidermal growth factor receptor (EGFR) and PD-L1 for combined targeted and immunotherapy against glioblastoma, the most aggressive type of brain tumors. Building on recent studies showing that radiation therapy alters tumors for enhanced nanotherapeutic delivery in tumor-associated macrophage-dependent fashion, we showed that low-dose radiation primes targeted SLN uptake into the brain tumor region, leading to enhanced downregulation of PD-L1 and EGFR. Bioluminescence imaging revealed that radiation therapy followed by systemic administration of targeted SLN leads to a significant decrease in glioblastoma growth and prolonged mouse survival. This study combines radiation therapy to prime the tumor for nanoparticle uptake along with the targeting effect of iRGD-conjugated nanoparticles to yield a straightforward but effective approach for combined EGFR inhibition and immunotherapy against glioblastomas, which can be extended to other aggressive tumor types.
Collapse
Affiliation(s)
- Gulsah Erel-Akbaba
- Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Litia A. Carvalho
- Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tian Tian
- Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Max Zinter
- Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hasan Akbaba
- Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey
| | - Pierre J. Obeid
- Department of Chemistry, University of Balamand, Al Kurah, Deir El-Balamand, P.O. Box 100, Tripoli, Lebanon
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ayse Gulten Kantarci
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
230
|
Li J, Mai J, Hinkle L, Lin D, Zhang J, Liu X, Ramirez MR, Zu Y, Lokesh GL, Volk DE, Shen H. Tracking Biodistribution of Myeloid-Derived Cells in Murine Models of Breast Cancer. Genes (Basel) 2019; 10:genes10040297. [PMID: 31013756 PMCID: PMC6523772 DOI: 10.3390/genes10040297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/24/2022] Open
Abstract
A growing tumor is constantly secreting inflammatory chemokines and cytokines that induce release of immature myeloid cells, including myeloid-derived suppressor cells (MDSCs) and macrophages, from the bone marrow. These cells not only promote tumor growth, but also prepare distant organs for tumor metastasis. On the other hand, the myeloid-derived cells also have phagocytic potential, and can serve as vehicles for drug delivery. We have previously identified thioaptamers that bind a subset of MDSCs with high affinity and specificity. In the current study, we applied one of the thioaptamers as a probe to track myeloid cell distribution in the bone, liver, spleen and tumor in multiple murine models of breast cancer including the 4T1 syngeneic model and MDA-MB-231 and SUM159 xenograft models. Information generated from this study will facilitate further understanding of tumor growth and metastasis, and predict biodistribution patterns of cell-mediated drug delivery.
Collapse
Affiliation(s)
- Jun Li
- Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA.
- Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA.
| | - Louis Hinkle
- Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA.
| | - Daniel Lin
- Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA.
| | - Jingxin Zhang
- Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA.
- Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.
| | - Xiaoling Liu
- Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA.
| | - Maricela R Ramirez
- Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA.
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston, TX 77030, USA.
| | - Ganesh L Lokesh
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - David E Volk
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX 77030, USA.
- Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
231
|
Chen L, Chen D, Jiang Y, Zhang J, Yu J, DuFort CC, Hingorani SR, Zhang X, Wu C, Chiu DT. A BODIPY‐Based Donor/Donor–Acceptor System: Towards Highly Efficient Long‐Wavelength‐Excitable Near‐IR Polymer Dots with Narrow and Strong Absorption Features. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lei Chen
- Department of ChemistryUniversity of Washington Seattle WA 98195 USA
| | - Dandan Chen
- Department of Biomedical EngineeringSouthern University Science and Technology Shenzhen Guangdong 510855 China
| | - Yifei Jiang
- Department of ChemistryUniversity of Washington Seattle WA 98195 USA
| | - Jicheng Zhang
- Department of ChemistryUniversity of Washington Seattle WA 98195 USA
| | - Jiangbo Yu
- Department of ChemistryUniversity of Washington Seattle WA 98195 USA
| | - Christopher C. DuFort
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle WA 98109 USA
| | - Sunil R. Hingorani
- Clinical Research DivisionFred Hutchinson Cancer Research Center Seattle WA 98109 USA
- Public Health Sciences DivisionFred Hutchinson Cancer Research Center Seattle WA 98109 USA
- Department of MedicineUniversity of Washington Seattle WA 98195 USA
| | - Xuanjun Zhang
- Faculty of Health SciencesUniversity of Macau Macau SAR 999078 China
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University Science and Technology Shenzhen Guangdong 510855 China
| | - Daniel T. Chiu
- Department of ChemistryUniversity of Washington Seattle WA 98195 USA
| |
Collapse
|
232
|
Zhu Y, Zhang M, Luo L, Gill MR, De Pace C, Battaglia G, Zhang Q, Zhou H, Wu J, Tian Y, Tian X. NF-κB hijacking theranostic Pt(ll) complex in cancer therapy. Am J Cancer Res 2019; 9:2158-2166. [PMID: 31149035 PMCID: PMC6531303 DOI: 10.7150/thno.30886] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Platinum complexes have been used for anti-cancer propose for decades, however, their high side effects resulting from damage to healthy cells cannot be neglected and prevent further clinical utilisation. Here, we designed a cyclometalated platinum (II) complex that can bind the endogenous nuclear factor-κB (NF-κB) protein. Employing detailed colocalization studies in co-culture cell line models, we show that by binding to NF-κB, the platinum (II) complex is capable of upregulated nuclear translocation specifically in cancer but not normal cells, thereby impairing cancer proliferation without disturbing healthy cells. In a murine tumour model, the platinum (II) complex prevents tumour growth to a greater extent than cisplatin and with considerably lower side-effects and kidney damage. Considering its weak damage to normal cells combined with high toxicity to cancer cells, this NF-κB-binding platinum complex is a potential anti-cancer candidate and acts to verify the strategy of hijacking endogenous trans-nuclear proteins to achieve cancer-cell specificity and enhance therapeutic indices.
Collapse
|
233
|
Abstract
Nanotechnology offers new solutions for the development of cancer therapeutics that display improved efficacy and safety. Although several nanotherapeutics have received clinical approval, the most promising nanotechnology applications for patients still lie ahead. Nanoparticles display unique transport, biological, optical, magnetic, electronic, and thermal properties that are not apparent on the molecular or macroscale, and can be utilized for therapeutic purposes. These characteristics arise because nanoparticles are in the same size range as the wavelength of light and display large surface area to volume ratios. The large size of nanoparticles compared to conventional chemotherapeutic agents or biological macromolecule drugs also enables incorporation of several supportive components in addition to active pharmaceutical ingredients. These components can facilitate solubilization, protection from degradation, sustained release, immunoevasion, tissue penetration, imaging, targeting, and triggered activation. Nanoparticles are also processed differently in the body compared to conventional drugs. Specifically, nanoparticles display unique hemodynamic properties and biodistribution profiles. Notably, the interactions that occur at the bio-nano interface can be exploited for improved drug delivery. This review discusses successful clinically approved cancer nanodrugs as well as promising candidates in the pipeline. These nanotherapeutics are categorized according to whether they predominantly exploit multifunctionality, unique electromagnetic properties, or distinct transport characteristics in the body. Moreover, future directions in nanomedicine such as companion diagnostics, strategies for modifying the microenvironment, spatiotemporal nanoparticle transitions, and the use of extracellular vesicles for drug delivery are also explored.
Collapse
Affiliation(s)
- Joy Wolfram
- Department of Transplantation/Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, Florida 32224, USA
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Department of Medicine, Weill Cornell Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
234
|
Wang Y, Guo L, Dong S, Cui J, Hao J. Microgels in biomaterials and nanomedicines. Adv Colloid Interface Sci 2019; 266:1-20. [PMID: 30776711 DOI: 10.1016/j.cis.2019.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 11/28/2022]
Abstract
Microgels are colloidal particles with crosslinked polymer networks and dimensions ranging from tens of nanometers to micrometers. Specifically, smart microgels are fascinating capable of responding to biological signals in vivo or remote triggers and making the possible for applications in biomaterials and biomedicines. Therefore, how to fundamentally design microgels is an urgent problem to be solved. In this review, we put forward our important fundamental opinions on how to devise the intelligent microgels for cancer therapy, biosensing and biological lubrication. We focus on the design ideas instead of specific implementation process by employing reverse synthesis analysis to programme the microgels at the original stage. Moreover, special insights will be, for the first time, as far as we know, dedicated to the particles completely composed of DNA or proteins into microgel systems. These are discussed in detail in this review. We expect to give readers a broad overview of the design criteria and practical methodologies of microgels according to the application fields, as well as to propel the further developments of highly interesting concepts and materials.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Luxuan Guo
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
235
|
Host-guest complexation-mediated codelivery of anticancer drug and photosensitizer for cancer photochemotherapy. Proc Natl Acad Sci U S A 2019; 116:6618-6623. [PMID: 30894484 DOI: 10.1073/pnas.1902029116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although platinum-based anticancer drugs prevail in cancer treatment, their clinical applications are limited by the severe side effects as well as their ineffectiveness against drug resistant cancers. A precise combination of photodynamic therapy (PDT) and chemotherapy can synergistically improve the therapeutic outcome and thereby may overcome drug resistance through a multipronged assault. Herein, we employ the well-defined cavity of a discrete organoplatinum(II) metallacage (M) to encapsulate octaethylporphine (OEP), a photosensitizer, forming a dual-functionalized system M⊃OEP that is wrapped into the hydrophobic core of the nanoparticles (MNPs) self-assembled from an amphiphilic diblock copolymer. Using a copper-free click reaction, a targeting ligand is conjugated on the surface of the MNPs, aiming to specifically deliver a chemotherapeutic drug and a photosensitizer to cancer cells. Benefiting from the enhanced permeability and retention effect and active targeting capability, high tumor accumulation of MNPs is achieved, leading to an improved therapeutic outcome and reduced side effects. In vivo studies demonstrate that the combination of chemotherapy and PDT exhibits a superior antitumor performance against a drug-resistant tumor model attributed to their synergistic anticancer efficacy.
Collapse
|
236
|
Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 2019; 143:68-96. [PMID: 31022434 DOI: 10.1016/j.addr.2019.04.008] [Citation(s) in RCA: 574] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticle-based therapeutics and diagnostics are commonly referred to as nanomedicine and may significantly impact the future of healthcare. However, the clinical translation of these technologies is challenging. One of these challenges is the efficient delivery of nanoparticles to specific cell populations and subcellular targets in the body to elicit desired biological and therapeutic responses. It is critical for researchers to understand the fundamental concepts of how nanoparticles interact with biological systems to predict and control in vivo nanoparticle transport for improved clinical benefit. In this overview article, we review and discuss cellular internalization pathways, summarize the field`s understanding of how nanoparticle physicochemical properties affect cellular interactions, and explore and discuss intracellular nanoparticle trafficking and kinetics. Our overview may provide a valuable resource for researchers and may inspire new studies to expand our current understanding of nanotechnology-biology interactions at cellular and subcellular levels with the goal to improve clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Nathan D Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Handan Acar
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States; Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, United States.
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States; Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, United States.
| |
Collapse
|
237
|
Abstract
Immunotherapy has become a powerful clinical strategy for treating cancer. The number of immunotherapy drug approvals has been increasing, with numerous treatments in clinical and preclinical development. However, a key challenge in the broad implementation of immunotherapies for cancer remains the controlled modulation of the immune system, as these therapeutics have serious adverse effects including autoimmunity and nonspecific inflammation. Understanding how to increase the response rates to various classes of immunotherapy is key to improving efficacy and controlling these adverse effects. Advanced biomaterials and drug delivery systems, such as nanoparticles and the use of T cells to deliver therapies, could effectively harness immunotherapies and improve their potency while reducing toxic side effects. Here, we discuss these research advances, as well as the opportunities and challenges for integrating delivery technologies into cancer immunotherapy, and we critically analyse the outlook for these emerging areas.
Collapse
Affiliation(s)
- Rachel S Riley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
238
|
Guo L, Zhang Y, Yang Z, Peng H, Wei R, Wang C, Feng M. Tunneling Nanotubular Expressways for Ultrafast and Accurate M1 Macrophage Delivery of Anticancer Drugs to Metastatic Ovarian Carcinoma. ACS NANO 2019; 13:1078-1096. [PMID: 30608136 DOI: 10.1021/acsnano.8b08872] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is extremely difficult for cancer chemotherapy to control the peritoneal metastasis of advanced ovarian carcinoma given its inability to target disseminated tumors and the severe toxic side effects on healthy organs. Here, we report antitumor M1 macrophages developed as live-cell carriers that deliver anticancer drugs for the treatment of the metastatic ovarian carcinoma. Engineered doxorubicin-loaded M1 macrophages (M1-Dox) significantly enhanced tumor tropism by upregulation of CCR2 and CCR4 compared with their parent cells. Meanwhile, M1-Dox inhibited doxorubicin-induced tumor invasion, whereas commercial Lipo-Dox did not limit these side effects. Importantly, our data uncovered a drug delivery mechanism by which M1-Dox transferred drug cargoes into tumor cells via a tunneling nanotube pathway. The tunneling nanotube network acted as a transportation expressway for ultrafast drug delivery of M1-Dox, leading to efficient ovarian carcinoma cell death. Furthermore, genetic, pharmacological, and physical perturbations of these tunneling nanotubes obviously decreased drug transfer of M1-Dox, which further validated the evident correlation between drug delivery of M1-Dox and tunneling nanotubes. Finally, in peritoneal metastatic ovarian carcinoma-burdened mice, M1-Dox specifically penetrated into and accumulated deep within disseminated neoplastic lesions compared with commercial Lipo-Dox, resulting in reducing metastatic tumors to a nearly undetectable level and significantly increasing overall survival. Overall, the strategy of engineered macrophages for ultrafast and accurate drug delivery via the tunneling nanotubular expressway potentially revolutionizes the treatment of metastatic ovarian carcinoma.
Collapse
Affiliation(s)
| | | | | | - Hui Peng
- Department of Surgery , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| | | | | | | |
Collapse
|
239
|
Benchimol MJ, Bourne D, Moghimi SM, Simberg D. Pharmacokinetic analysis reveals limitations and opportunities for nanomedicine targeting of endothelial and extravascular compartments of tumours. J Drug Target 2019; 27:690-698. [PMID: 30614276 DOI: 10.1080/1061186x.2019.1566339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Targeting of nanoparticles to tumours can potentially improve the specificity of imaging and treatments. We have developed a multicompartmental pharmacokinetic model in order to analyse some of the factors that control efficiency of targeting to intravascular (endothelium) and extravascular (tumour cells and stroma) compartments. We make the assumption that transport across tumour endothelium is an important step for subsequent nanoparticle accumulation in the tumour (area-under-the-curve, AUC) regardless of entry route (interendothelial and transendothelial routes) and study this through a multicompartmental simulation. Our model reveals that increasing endothelial targeting efficiency has a much stronger effect on the AUC than increasing extravascular targeting efficiency. Furthermore, our analysis reveals that both extravasation and intratumoral diffusion rates need to be increased in order to significantly increase the AUC of extravascular-targeted nanoparticles. Increasing the nanoparticle circulation half-life increases the AUC independently of extravasation and intratumoral diffusion. Targeting the extravascular compartment leads to a buildup in the first layer surrounding blood vessels at the expense of deeper layers (binding site barrier). This model explains some of the limitations of tumour targeting and provides important guidelines for the design of targeted nanomedicines.
Collapse
Affiliation(s)
| | - David Bourne
- b The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,c Center for Translational Pharmacokinetics and Pharmacogenomics , The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Seyed Moein Moghimi
- d Colorado Center for Nanomedicine and Nanosafety , Aurora , CO , USA.,e School of Pharmacy, The Faculty of Medical Sciences, King George VI Building , Newcastle University , Newcastle upon Tyne , UK.,f Division of Stratified Medicine, Biomarkers & Therapeutics , Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Dmitri Simberg
- b The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,d Colorado Center for Nanomedicine and Nanosafety , Aurora , CO , USA
| |
Collapse
|
240
|
Wang Y, Lin YX, Qiao SL, Wang J, Wang H. Progress in Tumor-Associated Macrophages: From Bench to Bedside. ACTA ACUST UNITED AC 2019; 3:e1800232. [PMID: 32627370 DOI: 10.1002/adbi.201800232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/29/2018] [Indexed: 12/12/2022]
Abstract
Tumor-associated macrophages (TAMs) are of great interest in cancer immunology as they play an important role in the tumor microenvironment as cancer stromal cells recruited from circulating monocytes. TAMs are closely associated with tumor progression, including initiation, trophic growth, metabolism, angiogenesis, and metastasis; moreover, in clinical practice, their quantity can be related to poor prognosis. Fundamental and translational studies imply that TAMs are one of the most promising targets in tumor therapy. Herein, the biological origination and classification of TAMs, which correspond to their functions and differentiations, are reviewed in detail. In addition, recent basic research and clinical preprocess of TAMs in tumor immunotherapy are also discussed. Finally, the advances in the use of nanotechnology and TAMs for tumor therapy are discussed. This review focuses on the background and status of basic research and clinical significance of TAMs, points out the potential of TAMs in tumor immunological therapy, and clarifies the possibility of translation TAM-targeting therapies in medicine.
Collapse
Affiliation(s)
- Yi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100149, P. R. China
| | - Yao-Xin Lin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China
| | - Sheng-Lin Qiao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100149, P. R. China
| | - Jie Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100149, P. R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100149, P. R. China
| |
Collapse
|
241
|
Visser JG, Van Staden ADP, Smith C. Harnessing Macrophages for Controlled-Release Drug Delivery: Lessons From Microbes. Front Pharmacol 2019; 10:22. [PMID: 30740053 PMCID: PMC6355695 DOI: 10.3389/fphar.2019.00022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/09/2019] [Indexed: 01/15/2023] Open
Abstract
With the effectiveness of therapeutic agents ever decreasing and the increased incidence of multi-drug resistant pathogens, there is a clear need for administration of more potent, potentially more toxic, drugs. Alternatively, biopharmaceuticals may hold potential but require specialized protection from premature in vivo degradation. Thus, a paralleled need for specialized drug delivery systems has arisen. Although cell-mediated drug delivery is not a completely novel concept, the few applications described to date are not yet ready for in vivo application, for various reasons such as drug-induced carrier cell death, limited control over the site and timing of drug release and/or drug degradation by the host immune system. Here, we present our hypothesis for a new drug delivery system, which aims to negate these limitations. We propose transport of nanoparticle-encapsulated drugs inside autologous macrophages polarized to M1 phenotype for high mobility and treated to induce transient phagosome maturation arrest. In addition, we propose a significant shift of existing paradigms in the study of host-microbe interactions, in order to study microbial host immune evasion and dissemination patterns for their therapeutic utilization in the context of drug delivery. We describe a system in which microbial strategies may be adopted to facilitate absolute control over drug delivery, and without sacrificing the host carrier cells. We provide a comprehensive summary of the lessons we can learn from microbes in the context of drug delivery and discuss their feasibility for in vivo therapeutic application. We then describe our proposed "synthetic microbe drug delivery system" in detail. In our opinion, this multidisciplinary approach may hold the solution to effective, controlled drug delivery.
Collapse
Affiliation(s)
- Johan Georg Visser
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| | | | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
242
|
Ahmed MS, Rodell CB, Hulsmans M, Kohler RH, Aguirre AD, Nahrendorf M, Weissleder R. A Supramolecular Nanocarrier for Delivery of Amiodarone Anti-Arrhythmic Therapy to the Heart. Bioconjug Chem 2019; 30:733-740. [PMID: 30615425 DOI: 10.1021/acs.bioconjchem.8b00882] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Amiodarone is an effective antiarrhythmic drug used to treat and prevent different types of cardiac arrhythmias. However, amiodarone can have considerable side effects resulting from accumulation in off-target tissues. Cardiac macrophages are highly prevalent tissue-resident immune cells with importance in homeostatic functions, including immune response and modulation of cardiac conduction. We hypothesized that amiodarone could be more efficiently delivered to the heart via cardiac macrophages, an important step toward reducing overall dose and off-target tissue accumulation. Toward this goal, we synthesized a nanoparticle drug carrier composed of l-lysine cross-linked succinyl-β-cyclodextrin that demonstrates amiodarone binding through supramolecular host-guest interaction as well as a high macrophage affinity. Biodistribution analyses at the organ and single-cell level demonstrate accumulation of nanoparticles in the heart resulting from rapid uptake by cardiac macrophages. Nanoparticle assisted delivery of amiodarone resulted in a 250% enhancement in the selective delivery of the drug to cardiac tissue in part due to a concomitant decrease of pulmonary accumulation, the main source of off-target toxicity.
Collapse
Affiliation(s)
- Maaz S Ahmed
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States
| | - Christopher B Rodell
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States
| | - Maarten Hulsmans
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States
| | - Rainer H Kohler
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States
| | - Aaron D Aguirre
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States.,Cardiology Division , Massachusetts General Hospital , 55 Fruit St , Boston , Massachusetts 02114 , United States
| | - Matthias Nahrendorf
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States.,Department of Radiology , Massachusetts General Hospital , 55 Fruit St , Boston , Massachusetts 02114 , United States
| | - Ralph Weissleder
- Center for Systems Biology , Massachusetts General Hospital , 185 Cambridge St , CPZN 5206, Boston , Massachusetts 02114 , United States.,Department of Radiology , Massachusetts General Hospital , 55 Fruit St , Boston , Massachusetts 02114 , United States.,Department of Systems Biology , Harvard Medical School , 200 Longwood Ave , Boston , Massachusetts 02115 , United States
| |
Collapse
|
243
|
Kutova OM, Guryev EL, Sokolova EA, Alzeibak R, Balalaeva IV. Targeted Delivery to Tumors: Multidirectional Strategies to Improve Treatment Efficiency. Cancers (Basel) 2019; 11:E68. [PMID: 30634580 PMCID: PMC6356537 DOI: 10.3390/cancers11010068] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Malignant tumors are characterized by structural and molecular peculiarities providing a possibility to directionally deliver antitumor drugs with minimal impact on healthy tissues and reduced side effects. Newly formed blood vessels in malignant lesions exhibit chaotic growth, disordered structure, irregular shape and diameter, protrusions, and blind ends, resulting in immature vasculature; the newly formed lymphatic vessels also have aberrant structure. Structural features of the tumor vasculature determine relatively easy penetration of large molecules as well as nanometer-sized particles through a blood⁻tissue barrier and their accumulation in a tumor tissue. Also, malignant cells have altered molecular profile due to significant changes in tumor cell metabolism at every level from the genome to metabolome. Recently, the tumor interaction with cells of immune system becomes the focus of particular attention, that among others findings resulted in extensive study of cells with preferential tropism to tumor. In this review we summarize the information on the diversity of currently existing approaches to targeted drug delivery to tumor, including (i) passive targeting based on the specific features of tumor vasculature, (ii) active targeting which implies a specific binding of the antitumor agent with its molecular target, and (iii) cell-mediated tumor targeting.
Collapse
Affiliation(s)
- Olga M Kutova
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Evgenii L Guryev
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Evgeniya A Sokolova
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Razan Alzeibak
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Irina V Balalaeva
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
- The Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya str., Moscow 119991, Russia.
| |
Collapse
|
244
|
Stilgenbauer M, Jayawardhana AMDS, Datta P, Yue Z, Gray M, Nielsen F, Bowers DJ, Xiao H, Zheng YR. A spermine-conjugated lipophilic Pt(iv) prodrug designed to eliminate cancer stem cells in ovarian cancer. Chem Commun (Camb) 2019; 55:6106-6109. [DOI: 10.1039/c9cc02081k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A spermine-conjugated lipophilic Pt(iv) prodrug is designed to induce mitochondrial damage and eliminate ovarian cancer stem cells.
Collapse
Affiliation(s)
| | | | - Payel Datta
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Zhizhou Yue
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Michael Gray
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Frederick Nielsen
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - David J. Bowers
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| |
Collapse
|
245
|
Akhtar N, Pradhan N, Saha A, Kumar V, Biswas O, Dey S, Shah M, Kumar S, Manna D. Tuning the solubility of ionophores: glutathione-mediated transport of chloride ions across hydrophobic membranes. Chem Commun (Camb) 2019; 55:8482-8485. [DOI: 10.1039/c9cc04518j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glutathione-mediated transformation of a water-soluble proanionophore to an active anionophore allows controlled transport of Cl− ion across hydrophobic lipid bilayers.
Collapse
Affiliation(s)
- Nasim Akhtar
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Nirmalya Pradhan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Abhishek Saha
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Vishnu Kumar
- Department of Bioscience and Bioengineering
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Oindrila Biswas
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Subhasis Dey
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Manisha Shah
- Department of Bioscience and Bioengineering
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Sachin Kumar
- Department of Bioscience and Bioengineering
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| | - Debasis Manna
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Assam-781039
- India
| |
Collapse
|
246
|
|
247
|
Reichel D, Tripathi M, Perez JM. Biological Effects of Nanoparticles on Macrophage Polarization in the Tumor Microenvironment. Nanotheranostics 2019; 3:66-88. [PMID: 30662824 PMCID: PMC6328304 DOI: 10.7150/ntno.30052] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/02/2018] [Indexed: 12/11/2022] Open
Abstract
Biological interactions between tumor-associated macrophages (TAMs), cancer cells and other cells within the tumor microenvironment contribute to tumorigenesis, tumor growth, metastasis and therapeutic resistance. TAMs can remodel the tumor microenvironment to reduce growth barriers such as the dense extracellular matrix and shift tumors towards an immunosuppressive microenvironment that protects cancer cells from targeted immune responses. Nanoparticles can interrupt these biological interactions within tumors by altering TAM phenotypes through a process called polarization. Macrophage polarization within tumors can shift TAMs from a growth-promoting phenotype towards a cancer cell-killing phenotype that predicts treatment efficacy. Because many types of nanoparticles have been shown to preferentially accumulate within macrophages following systemic administration, there is considerable interest in identifying nanoparticle effects on TAM polarization, evaluating nanoparticle-induced TAM polarization effects on cancer treatment using drug-loaded nanoparticles and identifying beneficial types of nanoparticles for effective cancer treatment. In this review, the macrophage polarization effects of nanoparticles will be described based on their primary chemical composition. Because of their strong macrophage-polarizing and antitumor effects compared to other types of nanoparticles, the effects of iron oxide nanoparticles on macrophages will be discussed in detail. By comparing the macrophage polarization effects of various nanoparticle treatments reported in the literature, this review aims to both elucidate nanoparticle material effects on macrophage polarization and to provide insight into engineering nanoparticles with more beneficial immunological responses for cancer treatment.
Collapse
Affiliation(s)
- Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Manisha Tripathi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Current Address: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - J. Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
248
|
Wu YG, Wang DB, Hu JJ, Song XQ, Xie CZ, Ma ZY, Xu JY. An iron( iii) complex selectively mediated cancer cell death: crystal structure, DNA targeting and in vitro antitumor activities. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00030e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new iron(iii) complexes were prepared, and complex 3 exhibited a 14-fold higher selectivity index for HeLa vs. LO2 normal cells than cisplatin.
Collapse
Affiliation(s)
- Yi-Gang Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Dong-Bo Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Juan-Juan Hu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Xue-Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Zhong-Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| |
Collapse
|
249
|
Bajgar A, Saloň I, Krejčová G, Doležal T, Jindra M, Štěpánek F. Yeast glucan particles enable intracellular protein delivery in Drosophila without compromising the immune system. Biomater Sci 2019; 7:4708-4719. [DOI: 10.1039/c9bm00539k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Glucan particles spread through the whole organism quickly, accumulate in sites of macrophage occurrence and can deliver cargo into the macrophages with a negligible effect on immune response activation.
Collapse
Affiliation(s)
- Adam Bajgar
- University of South Bohemia
- Faculty of Sciences
- Department of Molecular Biology and Genetics
- 37005 České Budějovice
- Czech Republic
| | - Ivan Saloň
- University of Chemistry and Technology Prague
- Department of Chemical Engineering
- 166 28 Prague
- Czech Republic
| | - Gabriela Krejčová
- University of South Bohemia
- Faculty of Sciences
- Department of Molecular Biology and Genetics
- 37005 České Budějovice
- Czech Republic
| | - Tomáš Doležal
- University of South Bohemia
- Faculty of Sciences
- Department of Molecular Biology and Genetics
- 37005 České Budějovice
- Czech Republic
| | - Marek Jindra
- Biology Centre CAS
- Institute of Entomology
- 37005 České Budějovice
- Czech Republic
| | - František Štěpánek
- University of Chemistry and Technology Prague
- Department of Chemical Engineering
- 166 28 Prague
- Czech Republic
| |
Collapse
|
250
|
Miller MA, Mikula H, Luthria G, Li R, Kronister S, Prytyskach M, Kohler RH, Mitchison T, Weissleder R. Modular Nanoparticulate Prodrug Design Enables Efficient Treatment of Solid Tumors Using Bioorthogonal Activation. ACS NANO 2018; 12:12814-12826. [PMID: 30550257 PMCID: PMC6307086 DOI: 10.1021/acsnano.8b07954] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/04/2018] [Indexed: 05/18/2023]
Abstract
Prodrug strategies that facilitate localized and controlled activity of small-molecule therapeutics can reduce systemic exposure and improve pharmacokinetics, yet limitations in activation chemistry have made it difficult to assign tunable multifunctionality to prodrugs. Here, we present the design and application of a modular small-molecule caging strategy that couples bioorthogonal cleavage with a self-immolative linker and an aliphatic anchor. This strategy leverages recently discovered in vivo catalysis by a nanoencapsulated palladium compound (Pd-NP), which mediates alloxylcarbamate cleavage and triggers release of the activated drug. The aliphatic anchor enables >90% nanoencapsulation efficiency of the prodrug, while also allowing >104-fold increased cytotoxicity upon prodrug activation. We apply the strategy to a prodrug formulation of monomethyl auristatin E (MMAE), demonstrating its ability to target microtubules and kill cancer cells only after selective activation by Pd-NP. Computational pharmacokinetic modeling provides a mechanistic basis for the observation that the nanotherapeutic prodrug strategy can lead to more selective activation in the tumor, yet in a manner that is more sensitive to variable enhanced permeability and retention (EPR) effects. Combination treatment with the nanoencapsulated MMAE prodrug and Pd-NP safely blocks tumor growth, especially when combined with a local radiation therapy regimen that is known to improve EPR effects, and represents a conceptual step forward in prodrug design.
Collapse
Affiliation(s)
- Miles A. Miller
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
- E-mail:
| | - Hannes Mikula
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology (TU Wien), Vienna 1060, Austria
| | - Gaurav Luthria
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Biomedical Informatics, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Ran Li
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
| | - Stefan Kronister
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology (TU Wien), Vienna 1060, Austria
| | - Mark Prytyskach
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
| | - Rainer H. Kohler
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
| | - Timothy Mitchison
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|