201
|
Laguë MN, Detmar J, Paquet M, Boyer A, Richards JS, Adamson SL, Boerboom D. Decidual PTEN expression is required for trophoblast invasion in the mouse. Am J Physiol Endocrinol Metab 2010; 299:E936-46. [PMID: 20858757 PMCID: PMC3006249 DOI: 10.1152/ajpendo.00255.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trophoblast invasion likely depends on complex cross talk between the fetal and maternal tissues and may involve the modulation of phosphatidylinositol 3-kinase (PI3K)/AKT signaling activity in maternal decidual cells. In this report, we studied implantation in Pten(tm1Hwu/tm1Hwu);Amhr2(tm3(cre)Bhr/+) mice, which lack the PI3K signaling antagonist gene Pten in myometrial and stromal/decidual cells. Primiparous Pten(tm1Hwu/tm1Hwu);Amhr2(tm3(cre)Bhr/+) mice were found to be subfertile because of increased fetal mortality at e11.5. Histopathological analyses revealed a failure of decidual regression in these mice, accompanied by reduced or absent invasion of fetal trophoblast glycogen cells and giant cells, abnormal development of the placental labyrinth, and frequent apparent intrauterine fetal growth restriction. Unexpectedly, the loss of phosphate and tensin homolog deleted on chromosome 10 (PTEN) expression in Pten(tm1Hwu/tm1Hwu);Amhr2(tm3(cre)Bhr/+) decidual cells was not accompanied by a detectable increase in AKT phosphorylation or altered expression or activation of PI3K/AKT downstream effectors such as mammalian target of rapamycin or glycogen synthase kinase-3β. Terminal deoxynucleotidyl transferase-mediated nick end labeling and bromodeoxyuridine incorporation analyses attributed to the lack of decidual regression mainly to decreased apoptosis in Pten(tm1Hwu/tm1Hwu);Amhr2(tm3(cre)Bhr/+) decidual cells, rather than to increased proliferation. Remodeling of the maternal vasculature was delayed in Pten(tm1Hwu/tm1Hwu);Amhr2(tm3(cre)Bhr/+) uteri at e11.5, as evidenced by persistence of vascular smooth muscle and decreased infiltration of uterine natural killer cells. In addition, thickening of the myometrium and disorganization of the muscle fibers were observed before and throughout gestation. Almost all Pten(tm1Hwu/tm1Hwu);Amhr2(tm3(cre)Bhr/+) mice failed to carry a second litter to term, apparently attributable to endometrial hyperplasia and uterine infections. Together, these data demonstrate novel roles of PTEN in the mammalian uterus and its requirement for proper trophoblast invasion and decidual regression.
Collapse
|
202
|
Smith L. Good planning and serendipity: exploiting the Cre/Lox system in the testis. Reproduction 2010; 141:151-61. [PMID: 21084571 DOI: 10.1530/rep-10-0404] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the past 20 years, genetic manipulation has revolutionised our understanding of male reproductive development and function. The advent of transgenic mouse lines has permitted elegant dissection of previously intractable issues. The development of the Cre/Lox system, which has permitted spatial and temporal localisation of genetic manipulation, has expanded upon this, and now makes up one of the primary approaches underpinning our increasing understanding of testis development and function. The success of conditional gene targeting is largely reliant upon the choice of Cre recombinase expressing mouse line, which is required to specifically target the correct cell type at the correct time. Presupposition that Cre lines will behave as expected has been one of the main oversights in the design of Cre/Lox experiments, as in practice, many Cre lines are prone to ectopic expression (both temporal and spatial), transgene silencing or genetic background effects. Empirical validation of the spatiotemporal profile of Cre expression prior to undertaking conditional gene targeting studies is essential and can be achieved through a combination of molecular and immunohistochemical approaches, along with in vivo examination of reporter gene expression in targeted tissues. This paper details the key considerations associated with exploitation of the Cre/Lox system and highlights a variety of validated Cre lines that have utility for conditional gene targeting within the testis.
Collapse
Affiliation(s)
- Lee Smith
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
203
|
di Clemente N, Jamin SP, Lugovskoy A, Carmillo P, Ehrenfels C, Picard JY, Whitty A, Josso N, Pepinsky RB, Cate RL. Processing of anti-mullerian hormone regulates receptor activation by a mechanism distinct from TGF-beta. Mol Endocrinol 2010; 24:2193-206. [PMID: 20861221 DOI: 10.1210/me.2010-0273] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
TGF-β family ligands are translated as prepropeptide precursors and are processed into mature C-terminal dimers that signal by assembling a serine/threonine kinase receptor complex containing type I and II components. Many TGF-β ligands are secreted in a latent form that cannot bind their receptor, due to the pro-region remaining associated with the mature ligand in a noncovalent complex after proteolytic cleavage. Here we show that anti-Müllerian hormone (AMH), a TGF-β family ligand involved in reproductive development, must be cleaved to bind its type II receptor (AMHRII), but dissociation of the pro-region from the mature C-terminal dimer is not required for this initial interaction. We provide direct evidence for this interaction by showing that the noncovalent complex binds to a soluble form of AMHRII in an ELISA format and to AMHRII immobilized on Sepharose. Binding of the noncovalent complex to Sepharose-coupled AMHRII induces dissociation of the pro-region from the mature C-terminal dimer, whereas no dissociation occurs after binding to immobilized AMH antibodies. The pro-region cannot be detected after binding of the AMH noncovalent complex to AMHRII expressed on COS cells, indicating that pro-region dissociation may occur as a natural consequence of receptor engagement on cells. Moreover, the mature C-terminal dimer is more active than the noncovalent complex in stimulating Sma- and Mad-related protein activation, suggesting that pro-region dissociation contributes to the assembly of the active receptor complex. AMH thus exemplifies a new mechanism for receptor engagement in which interaction with the type II receptor promotes pro-region dissociation to generate mature ligand.
Collapse
Affiliation(s)
- Nathalie di Clemente
- Institut National de la Santé et de la Recherche Médicale U782, 32 rue des Carnets, Clamart F-92140, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Focal Mullerian duct retention in male mice with constitutively activated beta-catenin expression in the Mullerian duct mesenchyme. Proc Natl Acad Sci U S A 2010; 107:16142-7. [PMID: 20805501 DOI: 10.1073/pnas.1011606107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Müllerian-inhibiting substance (MIS), which is produced by fetal Sertoli cells shortly after commitment of the bipotential gonads to testicular differentiation, causes Müllerian duct (MD) regression. In the fetal female gonads, MIS is not expressed and the MDs will differentiate into the internal female reproductive tract. We have investigated whether dysregulated β-catenin activity affects MD regression by expressing a constitutively activated nuclear form of β-catenin in the MD mesenchyme. We show that constitutively activated (CA) β-catenin causes focal retention of MD tissue in the epididymides and vasa deferentia. In adult mutant mice, the retained MD tissues express α-smooth muscle actin and desmin, which are markers for uterine differentiation. MD retention inhibited the folding complexity of the developing epididymides and usually led to obstructive azoospermia by spermatoceles. The MDs of urogenital ridges from mutant female embryos showed less regression with added MIS in organ culture compared with control MDs when analyzed by whole mount in situ hybridization for Wnt7a as a marker for the MD epithelium. CA β-catenin did not appear to affect expression of either MIS in the embryonic testes or its type II receptor (AMHR2) in the MD mesenchyme nor did it inhibit pSmad1/5/8 nuclear accumulation, suggesting that dysregulated β-catenin must inhibit MD regression independently of MIS signaling. These studies suggest that dysregulated Wnt/β-catenin signaling in the MD mesenchyme might also be a contributing factor in persistent Müllerian duct syndrome, a form of male pseudohermaphroditism, and development of spermatoceles.
Collapse
|
205
|
Boyer A, Lapointe É, Zheng X, Cowan RG, Li H, Quirk SM, DeMayo FJ, Richards JS, Boerboom D. WNT4 is required for normal ovarian follicle development and female fertility. FASEB J 2010; 24:3010-25. [PMID: 20371632 PMCID: PMC2909279 DOI: 10.1096/fj.09-145789] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 03/11/2010] [Indexed: 12/21/2022]
Abstract
To study the role of WNT4 in the postnatal ovary, a mouse strain bearing a floxed Wnt4 allele was created and mated to the Amhr2(tm3(cre)Bhr) strain to target deletion of Wnt4 to granulosa cells. Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice had reduced ovary weights and produced smaller litters (P<0.05). Serial follicle counting demonstrated that Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice were born with a normal ovarian reserve and maintained normal numbers of small follicles until puberty but had only 25.2% of the normal number of healthy antral follicles. Some Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice had no antral follicles or corpora lutea and underwent premature follicle depletion. RT-PCR analyses of Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) granulosa cells and cultured granulosa cells that overexpress WNT4 demonstrated that WNT4 regulates the expression of Star, Cyp11a1, and Cyp19, steroidogenic genes previously identified as downstream targets of the WNT signaling effector CTNNB1. Decreased serum progesterone levels were found in immature, gonadotropin-treated Wnt4(flox/-);Amhr2(tm3(cre)Bhr/+) mice (P<0.05). WNT4- and CTNNB1-overexpressing cultured granulosa cells were analyzed by microarray for alterations in gene expression, which showed that WNT4 regulates additional genes involved in late follicle development via the WNT/CTNNB1 signaling pathway. Together, these data indicate that WNT4 is required for normal antral follicle development and may act by regulating granulosa cell functions including steroidogenesis.
Collapse
Affiliation(s)
- Alexandre Boyer
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| | - Évelyne Lapointe
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Xiaofeng Zheng
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Robert G. Cowan
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - Huaiguang Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| | - Susan M. Quirk
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| | - JoAnne S. Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| | - Derek Boerboom
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; and
| |
Collapse
|
206
|
Fan HY, O'Connor A, Shitanaka M, Shimada M, Liu Z, Richards JS. Beta-catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization. Mol Endocrinol 2010; 24:1529-42. [PMID: 20610534 DOI: 10.1210/me.2010-0141] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wingless-type mouse mammary tumor virus integration site family (WNT)/beta-catenin (CTNNB1) pathway components are expressed in ovarian granulosa cells, direct female gonad development, and are regulated by the pituitary gonadotropins. However, the in vivo functions of CTNNB1 during preovulatory follicular development, ovulation, and luteinization remain unclear. Using a mouse model Ctnnb1((Ex3)fl/fl);Cyp19-Cre (Ctnnb1((Ex3)gc-/-)), expressing dominant stable CTNNB1 in granulosa cells of small antral and preovulatory follicles, we show that CTNNB1 facilitates FSH-induced follicular growth and decreases the follicle atresia (granulosa cell apoptosis). At the molecular level, WNT signaling and FSH synergistically promote the expression of genes required for cell proliferation and estrogen biosynthesis, but decrease FOXO1, which negatively regulates proliferation and steroidogenesis. Conversely, dominant stable CTNNB1 represses LH-induced oocyte maturation, ovulation, luteinization, and progesterone biosynthesis. Specifically, granulosa cells in the Ctnnb1((Ex3)gc)(-/-) mice showed compromised responses to the LH surge and decreased levels of the epidermal growth factor-like factors (Areg and Ereg) that in vivo and in vitro mediate LH action. One underlying mechanism by which CTNNB1 prevents LH responses is by reducing phosphorylation of cAMP-responsive element-binding protein, which is essential for the expression of Areg and Ereg. By contrast, depletion of Ctnnb1 using the Ctnnb1(fl/fl);Cyp19-Cre mice did not alter FSH regulation of preovulatory follicular development or female fertility but dramatically enhanced LH induction of genes in granulosa cells in culture. Thus, CTNNB1 can enhance FSH and LH actions in antral follicles but overactivation of CTNNB1 negatively effects LH-induced ovulation and luteinization, highlighting the cell context-dependent and developmental stage-specific interactions of WNT/CTNNB1 pathway and G protein-coupled gonadotropin receptors in female fertility.
Collapse
Affiliation(s)
- Heng-Yu Fan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
207
|
Rajanahally S, Agno JE, Nalam RL, Weinstein MB, Loveland KL, Matzuk MM, Li Q. Genetic evidence that SMAD2 is not required for gonadal tumor development in inhibin-deficient mice. Reprod Biol Endocrinol 2010; 8:69. [PMID: 20565978 PMCID: PMC2903601 DOI: 10.1186/1477-7827-8-69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/21/2010] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Inhibin is a tumor-suppressor and activin antagonist. Inhibin-deficient mice develop gonadal tumors and a cachexia wasting syndrome due to enhanced activin signaling. Because activins signal through SMAD2 and SMAD3 in vitro and loss of SMAD3 attenuates ovarian tumor development in inhibin-deficient females, we sought to determine the role of SMAD2 in the development of ovarian tumors originating from the granulosa cell lineage. METHODS Using an inhibin alpha null mouse model and a conditional knockout strategy, double conditional knockout mice of Smad2 and inhibin alpha were generated in the current study. The survival rate and development of gonadal tumors and the accompanying cachexia wasting syndrome were monitored. RESULTS Nearly identical to the controls, the Smad2 and inhibin alpha double knockout mice succumbed to weight loss, aggressive tumor progression, and death. Furthermore, elevated activin levels and activin-induced pathologies in the liver and stomach characteristic of inhibin deficiency were also observed in these mice. Our results indicate that SMAD2 ablation does not protect inhibin-deficient females from the development of ovarian tumors or the cachexia wasting syndrome. CONCLUSIONS SMAD2 is not required for mediating tumorigenic signals of activin in ovarian tumor development caused by loss of inhibin.
Collapse
Affiliation(s)
- Saneal Rajanahally
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | - Julio E Agno
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Roopa L Nalam
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael B Weinstein
- Department of Molecular Genetics and Division of Human Cancer Genetics, Ohio State University, Columbus, Ohio 43210, USA
| | - Kate L Loveland
- Departments of Biochemistry & Molecular Biology and Anatomy & Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qinglei Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
208
|
MacLaughlin DT, Donahoe PK. Müllerian inhibiting substance/anti-Müllerian hormone: a potential therapeutic agent for human ovarian and other cancers. Future Oncol 2010; 6:391-405. [PMID: 20222796 DOI: 10.2217/fon.09.172] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
According to the 2008 American Cancer Society statistics, cancer remains the second leading cause of death in American today. Early detection, innovative surgery, new drugs and increased public education regarding avoidable risk factors, such as smoking, have had significant impact on the incidence and survival rates of many cancers, while overall death rates from all cancers have declined a modest 5% over the past 50 years. Ovarian cancer statistics, however, have not been as encouraging. Despite recent advances in the management of this disease, 5-year survival has not improved, and the search continues for rationally designed new treatments. Müllerian Inhibiting Substance is a strong candidate because it addresses many of the deficiencies of existing treatments. Namely, Müllerian Inhibiting Substance has little demonstrated toxicity, it complements the activity of known anticancer drugs, it is highly specific against cancers expressing its receptor and it inhibits the proliferation of drug-resistant tumors.
Collapse
|
209
|
Huang CCJ, Yao HHC. Inactivation of Dicer1 in Steroidogenic factor 1-positive cells reveals tissue-specific requirement for Dicer1 in adrenal, testis, and ovary. BMC DEVELOPMENTAL BIOLOGY 2010; 10:66. [PMID: 20540774 PMCID: PMC2897782 DOI: 10.1186/1471-213x-10-66] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 06/11/2010] [Indexed: 11/22/2022]
Abstract
Background The synthesis of microRNA (miRNA) is a multi-step process that requires the action of the ribonuclease Dicer1. Dicer1 is responsible for the final processing of miRNA and has been implicated in cellular processes such as proliferation, apoptosis, and differentiation. Mouse embryos lacking Dicer1 die in early embryogenesis. In this study, we investigated whether Dicer1 is required for development of adrenal, testis, and ovary in mouse embryos. Results To target Dicer1 deletion specifically in developing adrenals and gonads, we used Steroidogenic factor 1-cre (Sf1/Cre) line in which Cre recombinase is active in the progenitor cells of adrenals and gonads. Lack of Dicer1 in the SF1-positive cells did not affect formation and early differentiation of the adrenals and gonads. However, increasing numbers of apoptotic cells were first detected in the Dicer1 knockout adrenal cortex at 18.5 days post coitum (dpc), followed by apoptosis of somatic cells and germ cells in the testis at postnatal day 0. Affected adrenal and testes underwent complete degeneration 48 hrs after the onset of apoptosis. However, ovaries were not affected at least until postnatal day 5, when the animals died due to adrenal insufficiency. Conclusions Dicer1 is dispensable for formation and differentiation of fetal tissues derived from the SF1-positive adrenogonadal primordium. Dicer1 is essential for maintaining cell survival in adrenal and testis; however, development of the ovary from fetal stages to postnatal day 5 does not require the presence of Dicer1. Our results reveal a tissue-specific requirement of Dicer1 and microRNAs. Future research is needed to understand how the tissue-specific role of Dicer1 is established.
Collapse
Affiliation(s)
- Chen-Che J Huang
- Department of Veterinary Biosciences, University of Illinois, Urbana, IL, USA
| | | |
Collapse
|
210
|
Bone morphogenetic protein signaling in the developing telencephalon controls formation of the hippocampal dentate gyrus and modifies fear-related behavior. J Neurosci 2010; 30:6291-301. [PMID: 20445055 DOI: 10.1523/jneurosci.0550-10.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cortical hem is an embryonic signaling center that generates bone morphogenetic proteins (BMPs) and acts as an organizer for the hippocampus. The role of BMP signaling in hippocampal neurogenesis, however, has not been established. We therefore generated mice that were deficient in Bmpr1b constitutively, and deficient in Bmpr1a conditionally in the dorsal telencephalon. In double mutant male and female mice, the dentate gyrus (DG) was dramatically smaller than in control mice, reflecting decreased production of granule neurons at the peak period of DG neurogenesis. Additionally, the pool of cells that generates new DG neurons throughout life was reduced, commensurate with the smaller size of the DG. Effects of diminished BMP signaling on the cortical hem were at least partly responsible for these defects in DG development. Reduction of the DG and its major extrinsic output to CA3 raised the possibility that the DG was functionally compromised. We therefore looked for behavioral deficits in double mutants and found that the mice were less responsive to fear- or anxiety-provoking stimuli, whether the association of the stimulus with fear or anxiety was learned or innate. Given that no anatomical defects appeared in the double mutant telencephalon outside the DG, our observations support a growing literature that implicates the hippocampus in circuitry mediating fear and anxiety. Our results additionally indicate a requirement for BMP signaling in generating the dorsalmost neuronal lineage of the telencephalon, DG granule neurons, and in the development of the stem cell niche that makes neurons in the adult hippocampus.
Collapse
|
211
|
Activin A, a product of fetal Leydig cells, is a unique paracrine regulator of Sertoli cell proliferation and fetal testis cord expansion. Proc Natl Acad Sci U S A 2010; 107:10526-31. [PMID: 20498064 DOI: 10.1073/pnas.1000318107] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Formation of tubular structures relies upon complex interactions between adjacent epithelium and mesenchyme. In the embryonic testes, dramatic compartmentalization leads to the formation of testis cords (epithelium) and the surrounding interstitium (mesenchyme). Sertoli cells, the epithelial cell type within testis cords, produce signaling molecules to orchestrate testis cord formation. The interstitial fetal Leydig cells, however, are thought only to masculinize the embryo and are not known to be involved in testis cord morphogenesis. Contrary to this notion, we have identified activin A, a member of the TGF-beta protein superfamily, as a product of the murine fetal Leydig cells that acts directly upon Sertoli cells to promote their proliferation during late embryogenesis. Genetic disruption of activin betaA, the gene encoding activin A, specifically in fetal Leydig cells resulted in a failure of fetal testis cord elongation and expansion due to decreased Sertoli cell proliferation. Conditional inactivation of Smad4, the central component of TGF-beta signaling, in Sertoli cells led to testis cord dysgenesis and proliferative defects similar to those of Leydig cell-specific activin betaA knockout testes. These results indicate that activin A is the major TGF-beta protein that acts directly on Sertoli cells. Testicular dysgenesis in activin betaA and Smad4 conditional knockout embryos persists into adulthood, leading to low sperm production and abnormal testicular histology. Our findings challenge the paradigm that fetal testis development is solely under the control of Sertoli cells, by uncovering an active and essential role of fetal Leydig cells during testis cord morphogenesis.
Collapse
|
212
|
van Houten E, Themmen A, Visser J. Anti-Müllerian hormone (AMH): Regulator and marker of ovarian function. ANNALES D'ENDOCRINOLOGIE 2010; 71:191-7. [DOI: 10.1016/j.ando.2010.02.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 02/11/2010] [Accepted: 02/12/2010] [Indexed: 11/28/2022]
|
213
|
Edson MA, Nalam RL, Clementi C, Franco HL, Demayo FJ, Lyons KM, Pangas SA, Matzuk MM. Granulosa cell-expressed BMPR1A and BMPR1B have unique functions in regulating fertility but act redundantly to suppress ovarian tumor development. Mol Endocrinol 2010; 24:1251-66. [PMID: 20363875 DOI: 10.1210/me.2009-0461] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have diverse roles in development and reproduction. Although several BMPs are produced by oocytes, thecal cells, and granulosa cells of developing follicles, the in vivo functions of most of these ligands are unknown. BMP signals are transduced by multiple type I and type II TGFbeta family receptors, and of the type I receptors, BMP receptor 1A (BMPR1A) and BMP receptor 1B (BMPR1B) are known to be expressed in rodent granulosa cells. Female mice homozygous null for Bmpr1b are sterile due to compromised cumulus expansion, but the function of BMPR1A in the ovary is unknown. To further decipher a role for BMP signaling in mouse granulosa cells, we deleted Bmpr1a in the granulosa cells of the ovary and found Bmpr1a conditional knockout females to be subfertile with reduced spontaneous ovulation. To explore the redundant functions of BMP receptor signaling in the ovary, we generated Bmpr1a Bmpr1b double-mutant mice, which developed granulosa cell tumors that have evidence of increased TGFbeta and hedgehog signaling. Thus, similar to SMAD1 and SMAD5, which have redundant roles in suppressing granulosa cell tumor development in mice, two type I BMP receptors, BMPR1A and BMPR1B, function together to prevent ovarian tumorigenesis. These studies support a role for a functional BMP signaling axis as a tumor suppressor pathway in the ovary, with BMPR1A and BMPR1B acting downstream of BMP ligands and upstream of BMP receptor SMADs.
Collapse
Affiliation(s)
- Mark A Edson
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
214
|
|
215
|
Xing D, Scangas G, Nitta M, He L, Xu X, Ioffe YJM, Aspuria PJ, Hedvat CY, Anderson ML, Oliva E, Karlan BY, Mohapatra G, Orsulic S. A role for BRCA1 in uterine leiomyosarcoma. Cancer Res 2009; 69:8231-5. [PMID: 19843854 DOI: 10.1158/0008-5472.can-09-2543] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Uterine leiomyosarcoma (ULMS) is a rare gynecologic malignancy with a low survival rate. Currently, there is no effective treatment for ULMS. Infrequent occurrences of human ULMS hamper the understanding of the initiation and progression of the disease, thereby limiting the ability to develop efficient therapies. To elucidate the roles of the p53 and BRCA1 tumor suppressor genes in gynecologic malignancies, we generated mice in which p53 and/or BRCA1 can be conditionally deleted using anti-Müllerian hormone type II receptor (Amhr2)-driven Cre recombinase. We showed that conditional deletion of p53 in mice results in the development of uterine tumors that resemble human ULMS and that concurrent deletion of p53 and BRCA1 significantly accelerates the progression of these tumors. This finding led to our hypothesis that BRCA1 may play a role in human ULMS development. Consistent with this hypothesis, we showed that the BRCA1 protein is absent in 29% of human ULMS and that BRCA1 promoter methylation is the likely mechanism of BRCA1 downregulation. These data indicate that the loss of BRCA1 function may be an important step in the progression of ULMS. Our findings provide a rationale for investigating therapies that target BRCA1 deficiency in ULMS.
Collapse
Affiliation(s)
- Deyin Xing
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Abstract
Two major functions of the mammalian ovary are the production of germ cells (oocytes), which allow continuation of the species, and the generation of bioactive molecules, primarily steroids (mainly estrogens and progestins) and peptide growth factors, which are critical for ovarian function, regulation of the hypothalamic-pituitary-ovarian axis, and development of secondary sex characteristics. The female germline is created during embryogenesis when the precursors of primordial germ cells differentiate from somatic lineages of the embryo and take a unique route to reach the urogenital ridge. This undifferentiated gonad will differentiate along a female pathway, and the newly formed oocytes will proliferate and subsequently enter meiosis. At this point, the oocyte has two alternative fates: die, a common destiny of millions of oocytes, or be fertilized, a fate of at most approximately 100 oocytes, depending on the species. At every step from germline development and ovary formation to oogenesis and ovarian development and differentiation, there are coordinated interactions of hundreds of proteins and small RNAs. These studies have helped reproductive biologists to understand not only the normal functioning of the ovary but also the pathophysiology and genetics of diseases such as infertility and ovarian cancer. Over the last two decades, parallel progress has been made in the assisted reproductive technology clinic including better hormonal preparations, prenatal genetic testing, and optimal oocyte and embryo analysis and cryopreservation. Clearly, we have learned much about the mammalian ovary and manipulating its most important cargo, the oocyte, since the birth of Louise Brown over 30 yr ago.
Collapse
Affiliation(s)
- Mark A Edson
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
217
|
Tanwar PS, Kaneko-Tarui T, Zhang L, Rani P, Taketo MM, Teixeira J. Constitutive WNT/beta-catenin signaling in murine Sertoli cells disrupts their differentiation and ability to support spermatogenesis. Biol Reprod 2009; 82:422-32. [PMID: 19794154 DOI: 10.1095/biolreprod.109.079335] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sertoli and germ cell interactions are essential for spermatogenesis and, thus, male fertility. Sertoli cells provide a specialized microenvironment for spermatogonial stem cells to divide, allowing both self-renewal and spermatogenesis. In the present study, we used mice with a conditional activated allele of the beta-catenin gene (Ctnnb1(tm1Mmt)(/+)) in Sertoli cells expressing Cre recombinase driven by the anti-Müllerian hormone (AMH; also known as Müllerian-inhibiting substance) type II receptor promoter (Amhr2(tm3(cre)Bhr)(/+)) to show that constitutively activated beta-catenin leads to their continuous proliferation and compromised differentiation. Compared to controls, Sertoli cells in mature mutant mice continue to express high levels of both AMH and glial cell-derived neurotrophic factor (GDNF), which normally are expressed only in immature Sertoli cells. We also show evidence that LiCl treatment, which activates endogenous nuclear beta-catenin activity, regulates both AMH and GDNF expression at the transcriptional level. The epididymides were devoid of sperm in the Amhr2(tm3(cre)Bhr)(/+);Ctnnb1(tm1Mmt)(/+) mice at all ages examined. We show that the mutant mice are infertile because of defective differentiation of germ cells and increased apoptosis, both of which are characteristic of GDNF overexpression in Sertoli cells. Constitutive activation of beta-catenin in Amhr2-null mice showed the same histology, suggesting that the phenotype was the result of persistent overexpression of GDNF. These results show that dysregulated wingless-related MMTV integration site/beta-catenin signaling in Sertoli cells inhibits their postnatal differentiation, resulting in increased germ cell apoptosis and infertility.
Collapse
Affiliation(s)
- Pradeep S Tanwar
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
218
|
Gonzalez G, Behringer RR. Dicer is required for female reproductive tract development and fertility in the mouse. Mol Reprod Dev 2009; 76:678-88. [PMID: 19197916 DOI: 10.1002/mrd.21010] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dicer encodes a riboendonuclease required for microRNA biosynthesis. Dicer was inactivated in Müllerian duct mesenchyme-derived tissues of the reproductive tract of the mouse, using an Amhr2-Cre allele. Although Amhr2-Cre; Dicer conditional mutant males appeared normal and were fertile, mutant females were infertile. In adult mutant females, there was a reduction in the size of the oviducts and uterine horns. The oviducts were less coiled compared to controls and cysts formed at the isthmus near the uterotubal junction. Unfertilized, degenerate oocytes were commonly found within these cysts, indicating a defect in embryo transit. Beads transferred into the mutant oviduct failed to migrate into the uterus. In addition, blastocysts transferred directly into the mutant uterus did not result in pregnancy. Histological analysis demonstrated that the mutant uterus contained less glandular tissue and often the few glands that remained were found within the myometrium, an abnormal condition known as adenomyosis. In adult mutants, there was ectopic expression of Wnt4 and Wnt5a in the luminal epithelium (LE) and glandular epithelium (GE) of the uterus, and Wnt11 was ectopically expressed in GE. These results demonstrate that Dicer is necessary for postnatal differentiation of Müllerian duct mesenchyme-derived tissues of the female reproductive tract, suggesting that microRNAs are important regulators of female reproductive tract development and fertility.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
219
|
Fan HY, Liu Z, Paquet M, Wang J, Lydon JP, DeMayo FJ, Richards JS. Cell type-specific targeted mutations of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult to ovarian surface epithelial cells. Cancer Res 2009; 69:6463-72. [PMID: 19679546 DOI: 10.1158/0008-5472.can-08-3363] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The small G-protein KRAS is crucial for mediating gonadotropin-induced events associated with ovulation. However, constitutive expression of KrasG12D in granulosa cells disrupted normal follicle development leading to the persistence of abnormal follicle-like structures containing nonmitotic cells. To determine what factors mediate this potent effect of KrasG12D, gene profiling analyses were done. We also analyzed KrasG12D;Cyp19-Cre and KrasG12;Pgr-Cre mutant mouse models that express Cre prior to or after the initiation of granulosa cell differentiation, respectively. KrasG12D induced cell cycle arrest in granulosa cells of the KrasG12D;Cyp19-Cre mice but not in the KrasG12D;Pgr-Cre mice, documenting the cell context-specific effect of KrasG12D. Expression of KrasG12D silenced the Kras gene, reduced cell cycle activator genes, and impaired the expression of granulosa cell and oocyte-specific genes. Conversely, levels of PTEN and phosphorylated p38 mitogen-activated protein kinase (MAPK) increased markedly in the mutant granulosa cells. Because disrupting Pten in granulosa cells leads to increased proliferation and survival, Pten was disrupted in the KrasG12D mutant mice. The Pten/Kras mutant mice were infertile but lacked granulosa cell tumors. By contrast, the Ptenfl/fl;KrasG12D;Amhr2-Cre mice developed aggressive ovarian surface epithelial cell tumors that did not occur in the Ptenfl/fl;KrasG12D;Cyp19-Cre or Ptenfl/fl;KrasG12D;Pgr-Cre mouse strains. These data document unequivocally that Amhr2-Cre is expressed in and mediates allelic recombination of oncogenic genes in ovarian surface epithelial cells. That KrasG12D/Pten mutant granulosa cells do not transform but rather undergo cell cycle arrest indicates that they resist the oncogenic insults of Kras/Pten by robust self-protecting mechanisms that silence the Kras gene and elevate PTEN and phosphorylated p38 MAPK.
Collapse
Affiliation(s)
- Heng-Yu Fan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
220
|
Luense LJ, Carletti MZ, Christenson LK. Role of Dicer in female fertility. Trends Endocrinol Metab 2009; 20:265-72. [PMID: 19646895 PMCID: PMC3121329 DOI: 10.1016/j.tem.2009.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 05/08/2009] [Accepted: 05/08/2009] [Indexed: 12/21/2022]
Abstract
Dicer is an RNAse III endonuclease that is essential for the biogenesis of microRNAs and small interfering RNAs. These small RNAs post-transcriptionally regulate mRNA gene expression through several mechanisms to affect key cellular events including proliferation, differentiation and apoptosis. Recently, the role of Dicer function in female reproductive tissues has begun to be elucidated through the use of knockout mouse models. Loss of Dicer within ovarian granulosa cells, luteal tissue, oocyte, oviduct and, potentially, the uterus renders females infertile. This review discusses these early studies and other data describing the current understanding of microRNAs and small interfering RNAs in female reproduction.
Collapse
Affiliation(s)
- Lacey J Luense
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
221
|
Belville C, Maréchal JD, Pennetier S, Carmillo P, Masgrau L, Messika-Zeitoun L, Galey J, Machado G, Treton D, Gonzalès J, Picard JY, Josso N, Cate RL, di Clemente N. Natural mutations of the anti-Mullerian hormone type II receptor found in persistent Mullerian duct syndrome affect ligand binding, signal transduction and cellular transport. Hum Mol Genet 2009; 18:3002-13. [PMID: 19457927 DOI: 10.1093/hmg/ddp238] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The anti-Müllerian hormone type II (AMHRII) receptor is the primary receptor for anti-Müllerian hormone (AMH), a protein produced by Sertoli cells and responsible for the regression of the Müllerian duct in males. AMHRII is a membrane protein containing an N-terminal extracellular domain (ECD) that binds AMH, a transmembrane domain, and an intracellular domain with serine/threonine kinase activity. Mutations in the AMHRII gene lead to persistent Müllerian duct syndrome in human males. In this paper, we have investigated the effects of 10 AMHRII mutations, namely 4 mutations in the ECD and 6 in the intracellular domain. Molecular models of the extra- and intracellular domains are presented and provide insight into how the structure and function of eight of the mutant receptors, which are still expressed at the cell surface, are affected by their mutations. Interestingly, two soluble receptors truncated upstream of the transmembrane domain are not secreted, unless the transforming growth factor beta type II receptor signal sequence is substituted for the endogenous one. This shows that the AMHRII signal sequence is defective and suggests that AMHRII uses its transmembrane domain instead of its signal sequence to translocate to the endoplasmic reticulum, a characteristic of type III membrane proteins.
Collapse
|
222
|
Tanwar PS, Lee HJ, Zhang L, Zukerberg LR, Taketo MM, Rueda BR, Teixeira JM. Constitutive activation of Beta-catenin in uterine stroma and smooth muscle leads to the development of mesenchymal tumors in mice. Biol Reprod 2009; 81:545-52. [PMID: 19403928 DOI: 10.1095/biolreprod.108.075648] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Leiomyomas and other mesenchymally derived tumors are the most common neoplasms of the female reproductive tract. Presently, very little is known about the etiology and progression of these tumors, which are the primary indication for hysterectomies. Dysregulated WNT signaling through beta-catenin is a well-established mechanism for tumorigenesis. We have developed a mouse model that expresses constitutively activated beta-catenin in uterine mesenchyme driven by the expression of Cre recombinase knocked into the Müllerian-inhibiting substance type II receptor promoter locus to investigate its effects on uterine endometrial stroma and myometrium. These mice show myometrial hyperplasia and develop mesenchymal tumors with 100% penetrance that exhibit histological and molecular characteristics of human leiomyomas and endometrial stromal sarcomas. By immunohistochemistry, we also show that both transforming growth factor beta and the mammalian target of rapamycin are induced by constitutive activation of beta-catenin. The prevalence of the tumors was greater in multiparous mice, suggesting that their development may be a hormonally driven process or that changes in uterine morphology during pregnancy and after parturition induce injury and repair mechanisms that stimulate tumorigenesis from stem/progenitor cells, which normally do not express constitutively activated beta-catenin. Additionally, adenomyosis and endometrial gland hyperplasia were occasionally observed in some mice. These results show evidence suggesting that dysregulated, stromal, and myometrial WNT/beta-catenin signaling has pleiotropic effects on uterine function and tumorigenesis.
Collapse
Affiliation(s)
- Pradeep S Tanwar
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Services, and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
223
|
Müllerian inhibiting substance contributes to sex-linked biases in the brain and behavior. Proc Natl Acad Sci U S A 2009; 106:7203-8. [PMID: 19359476 DOI: 10.1073/pnas.0902253106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many behavioral traits and most brain disorders are common to males and females but are more evident in one sex than the other. The control of these subtle sex-linked biases is largely unstudied and has been presumed to mirror that of the highly dimorphic reproductive nuclei. Sexual dimorphism in the reproductive tract is a product of Müllerian inhibiting substance (MIS), as well as the sex steroids. Males with a genetic deficiency in MIS signaling are sexually males, leading to the presumption that MIS is not a neural regulator. We challenge this presumption by reporting that most immature neurons in mice express the MIS-specific receptor (MISRII) and that male Mis(-/-) and Misrii(-/-) mice exhibit subtle feminization of their spinal motor neurons and of their exploratory behavior. Consequently, MIS may be a broad regulator of the subtle sex-linked biases in the nervous system.
Collapse
|
224
|
Boyer A, Paquet M, Laguë MN, Hermo L, Boerboom D. Dysregulation of WNT/CTNNB1 and PI3K/AKT signaling in testicular stromal cells causes granulosa cell tumor of the testis. Carcinogenesis 2009; 30:869-78. [PMID: 19237610 DOI: 10.1093/carcin/bgp051] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Synergistic effects of dysregulation of the WNT/CTNNB1 and phosphatidylinositol 3-kinase (PI3K)/AKT pathways are thought to be important for the development and progression of many forms of cancer, including the granulosa cell tumor of the ovary. Sustained WNT/CTNNB1 signaling in Sertoli cells causes testicular degeneration and the formation of foci of poorly differentiated stromal cells in the seminiferous tubules in mice. To test if concomitant dysregulation of the WNT/CTNNB1 and PI3K/AKT pathways could synergize to cause testicular cancer, Pten(tm1Hwu/tm1Hwu);Ctnnb1(tm1Mmt/+);Amhr2(tm3(cre)Bhr/+) mice that express a dominant, stable CTNNB1 mutant and lack the expression of phosphatase and tensin homolog (PTEN) in their Sertoli cells were generated. These mice developed aggressive testicular cancer with 100% penetrance by 5 weeks of age, and 44% of animals developed pulmonary metastases by 4 months, whereas Pten(tm1Hwu/tm1Hwu);Amhr2(tm3(cre)Bhr/+) controls were phenotypically normal. Surprisingly, the tumors could not be classified as Sertoli cell tumors, but rather bore histologic and ultrastructural characteristics of granulosa cell tumors of the testis (GCTT). Pten(tm1Hwu/tm1Hwu);Ctnnb1(tm1Mmt/+);Amhr2(tm3(cre)Bhr/+) testicular tumors did not express CYP17, CYP19, germ cell nuclear antigen, estrogen receptor 1 or progesterone receptor, but expressed the early granulosa cell markers WNT4 and FOXL2, confirming the diagnosis of GCTT. Immunohistochemical analyses of Pten(tm1Hwu/tm1Hwu);Ctnnb1(tm1Mmt/+);Amhr2(tm3(cre)Bhr/+) GCTT demonstrated a tumor marker profile similar to that reported in human GCTT. Immunoblotting analyses revealed high levels of phosphorylation of AKT and the PI3K/AKT signaling effector FOXO1A in Pten(tm1Hwu/tm1Hwu);Ctnnb1(tm1Mmt/+);Amhr2(tm3(cre)Bhr/+) GCTT, suggesting the involvement of FOXO1A in the mechanism of GCTT development. Together, these data provide the first insights into the molecular etiology of GCTT and the first animal model for the study of GCTT biology.
Collapse
Affiliation(s)
- Alexandre Boyer
- Centre de Recherche en Reproduction Animale, Université de Montréal, St Hyacinthe, Québec J2S7C6, Canada
| | | | | | | | | |
Collapse
|
225
|
Trombly DJ, Woodruff TK, Mayo KE. Roles for transforming growth factor beta superfamily proteins in early folliculogenesis. Semin Reprod Med 2009; 27:14-23. [PMID: 19197801 DOI: 10.1055/s-0028-1108006] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Primordial follicle formation and the subsequent transition of follicles to the primary and secondary stages encompass the early events during folliculogenesis in mammals. These processes establish the ovarian follicle pool and prime follicles for entry into subsequent growth phases during the reproductive cycle. Perturbations during follicle formation can affect the size of the primordial follicle pool significantly, and alterations in follicle transition can cause follicles to arrest at immature stages or result in premature depletion of the follicle reserve. Determining the molecular events that regulate primordial follicle formation and early follicle growth may lead to the development of new fertility treatments. Over the last decade, many of the growth factors and signaling proteins that mediate the early stages of folliculogenesis have been identified using mouse genetic models, in vivo injection studies, and ex vivo organ culture approaches. These studies reveal important roles for the transforming growth factor beta (TGF-beta) superfamily of proteins in the ovary. This article reviews these roles for TGF-beta family proteins and focuses in particular on work from our laboratories on the functions of activin in early folliculogenesis.
Collapse
Affiliation(s)
- Daniel J Trombly
- Department of Biochemistry, Molecular Biology & Cell Biology and Center for Reproductive Science, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
226
|
Ren Y, Cowan RG, Harman RM, Quirk SM. Dominant activation of the hedgehog signaling pathway in the ovary alters theca development and prevents ovulation. Mol Endocrinol 2009; 23:711-23. [PMID: 19196835 DOI: 10.1210/me.2008-0391] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The role of the hedgehog (HH) signaling pathway in ovarian function was examined in transgenic mice in which expression of a dominant active allele of the signal transducer smoothened (SmoM2) was directed to the ovary and Müllerian duct by cre-mediated recombination (Amhr2(cre/+)SmoM2). Mutant mice were infertile and had ovarian and reproductive tract defects. Ovaries contained follicles of all sizes and corpora lutea (CL), but oocytes were rarely recovered from the oviducts of superovulated mice and remained trapped in preovulatory follicles. Measures of luteinization did not differ. Cumulus expansion appeared disorganized, and in vitro analyses confirmed a reduced expansion index. Microarray analysis indicated that expression levels of genes typical of smooth muscle were reduced in mutant mice, and RT-PCR showed that levels of expression of muscle genes were reduced in the nongranulosa, theca-interstitial cell-enriched fraction. Whereas a layer of cells in the outer theca was positively stained for smooth muscle actin in control ovaries, this staining was reduced or absent in mutant ovaries. Expression of a number of genes in granulosa cells that are known to be important for ovulation did not differ in mutants and controls. Expression of components of the HH pathway was observed in both granulosa cells and in the nongranulosa, residual ovarian tissue and changed in response to treatment with equine chorionic gonadotropin/human gonadotropin. The results show that appropriate signaling through the HH pathway is required for development of muscle cells within the theca and that impaired muscle development is associated with failure to release the oocyte at ovulation.
Collapse
Affiliation(s)
- Yi Ren
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
227
|
Hernandez Gifford JA, Hunzicker-Dunn ME, Nilson JH. Conditional deletion of beta-catenin mediated by Amhr2cre in mice causes female infertility. Biol Reprod 2009; 80:1282-92. [PMID: 19176883 DOI: 10.1095/biolreprod.108.072280] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Follicle-stimulating hormone (FSH) regulation of aromatase gene expression in vitro requires the transcriptional coactivator beta-catenin. To ascertain the physiological significance of beta-catenin in granulosa cells during folliculogenesis, mice homozygous for floxed alleles of beta-catenin were intercrossed with Amhr2cre mice. Conditional deletion of beta-catenin in 8-wk-old females occurred in derivatives of the Müllerian duct, granulosa cells and, surprisingly, in brain, pituitary, heart, liver, and tail. Female mice deficient for beta-catenin were infertile, despite reaching puberty and ovulating at the expected age, indications of apparently normal ovarian function. In contrast, their oviducts were grossly distended, with fewer but healthy oocytes. In addition, their uteri lacked implantation sites. Together, these two phenotypes could explain the complete loss of fertility. Nevertheless, although the ovary appeared normal, with serum estradiol concentrations in the normal range, there was marked animal-to-animal variation of mRNAs encoding beta-catenin and aromatase. Similarly, inhibin-alpha and luteinizing hormone receptor mRNAs varied considerably in whole ovaries, whereas pituitary Fshb mRNA was significantly reduced. Collectively, these features suggested cyclization recombination (CRE)-mediated recombination of beta-catenin may be unstable in proliferating granulosa cells, and therefore may mask the suspected steroidogenic requirement for beta-catenin. We tested this possibility by transducing primary cultures of granulosa cells from mice homozygous for floxed alleles of beta-catenin with a CRE-expressing adenovirus. Reduction of beta-catenin significantly compromised FSH stimulation of aromatase mRNA and subsequent production of estradiol. Collectively, these data suggest that FSH regulation of steroidogenesis requires beta-catenin, a role that remains hidden when tested through Amhr2cre-mediated recombination in vivo.
Collapse
|
228
|
Pastorelli LM, Wells S, Fray M, Smith A, Hough T, Harfe BD, McManus MT, Smith L, Woolf AS, Cheeseman M, Greenfield A. Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mamm Genome 2009; 20:140-51. [PMID: 19169742 DOI: 10.1007/s00335-008-9169-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 12/22/2008] [Indexed: 02/06/2023]
Abstract
Despite the increasing interest in other classes of small RNAs, microRNAs (miRNAs) remain the most widely investigated and have been shown to play a role in a number of different processes in mammals. Many studies investigating miRNA function focus on the processing enzyme Dicer1, which is an RNAseIII protein essential for the biogenesis of active miRNAs through its cleavage of precursor RNA molecules. General deletion of Dicer1 in the mouse confirms that miRNAs are essential for development because embryos lacking Dicer1 fail to reach the end of gastrulation. Here we investigate the role of Dicer1 in urogenital tract development. We utilised a conditional allele of the Dicer1 gene and two Cre-expressing lines, driven by HoxB7 and Amhr2, to investigate the effect of Dicer1 deletion on both male and female reproductive tract development. Data presented here highlight an essential role for Dicer1 in the correct morphogenesis and function of the female reproductive tract and confirm recent findings that suggest Dicer1 is required for female fertility. In addition, HoxB7:Cre-mediated deletion in ureteric bud derivatives leads to a spectrum of anomalies in both males and females, including hydronephrotic kidneys and kidney parenchymal cysts. Male reproductive tract development, however, remains largely unaffected in the absence of Dicer1. Thus, Dicer1 is required for development of the female reproductive tract and also normal kidney morphogenesis.
Collapse
|
229
|
|
230
|
Hong X, Luense LJ, McGinnis LK, Nothnick WB, Christenson LK. Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology 2008; 149:6207-12. [PMID: 18703631 PMCID: PMC2613048 DOI: 10.1210/en.2008-0294] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ribonuclease III endonuclease, Dicer1 (also known as Dicer), is essential for the synthesis of the 19-25 nucleotide noncoding RNAs known as micro-RNAs (miRNAs). These miRNAs associate with the RNA-induced silencing complex to regulate gene expression posttranscriptionally by base pairing with 3'untranslated regions of complementary mRNA targets. Although it is established that miRNAs are expressed in the reproductive tract, their functional role and effect on reproductive disease remain unknown. The studies herein establish for the first time the reproductive phenotype of mice with loxP insertions in the Dicer1 gene (Dicer1fl/fl) when crossed with mice expressing Cre-recombinase driven by the anti-müllerian hormone receptor 2 promoter (Amhr2Cre/+). Adult female Dicer1fl/fl;Amhr2Cre/+ mice displayed normal mating behavior but failed to produce offspring when exposed to fertile males during a 5-month breeding trial. Morphological and histological assessments of the reproductive tracts of immature and adult mice indicated that the uterus and oviduct were hypotrophic, and the oviduct was highly disorganized. Natural mating of Dicer1fl/fl;Amhr2Cre/+ females resulted in successful fertilization as evidenced by the recovery of fertilized oocytes on d 1 pregnancy, which developed normally to blastocysts in culture. Developmentally delayed embryos were collected from Dicer1fl/fl; Amhr2Cre/+ mice on d 3 pregnancy when compared with controls. Oviductal transport was disrupted in the Dicer1fl/fl;Amhr2Cre/+ mouse as evidenced by the failure of embryos to enter the uterus on d 4 pregnancy. These studies implicate Dicer1/miRNA mediated posttranscriptional gene regulation in reproductive somatic tissues as critical for the normal development and function of these tissues and for female fertility.
Collapse
Affiliation(s)
- Xiaoman Hong
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
231
|
Abstract
Transforming growth factor beta (TGF-beta) superfamily members are critical in maintaining cell growth and differentiation in the ovary. Although signaling of activins, TGF-betas, growth differentiation factor 9, and nodal converge preferentially to SMAD2 and SMAD3, the in vivo functions and redundancy of these SMADs in the ovary and female reproduction remain largely unidentified. To circumvent the deleterious phenotypic aspects of ubiquitous deletion of Smad2 and Smad3, a conditional knockout strategy was formulated to selectively inactivate Smad2, Smad3, or both Smad2 and Smad3 in ovarian granulosa cells. While granulosa cell ablation of individual Smad2 or Smad3 caused insignificant changes in female fertility, deletion of both Smad2 and Smad3 led to dramatically reduced female fertility and fecundity. These defects were associated with the disruption of multiple ovarian processes, including follicular development, ovulation, and cumulus cell expansion. Furthermore, the impaired expansion of cumulus cells may be partially associated with altered cumulus expansion-related transcripts that are regulated by SMAD2/3 signaling. Our results indicate that SMAD2 and SMAD3 function redundantly in vivo to maintain normal female fertility and further support the involvement of an intraovarian SMAD2/3 pathway in mediating oocyte-produced signals essential for coordinating key events of the ovulatory process.
Collapse
|
232
|
Carletti MZ, Christenson LK. MicroRNA in the ovary and female reproductive tract. J Anim Sci 2008; 87:E29-38. [PMID: 18791135 DOI: 10.2527/jas.2008-1331] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Posttranscriptional gene regulation plays a vital role in male and female germ cell function, but our understanding of this regulatory process in somatic cells and its effect on reproductive tissue development and function is not understood. In mammalian cells, microRNA (miRNA) are key posttranscriptional regulators and function by modulating translation or degradation of their target mRNA. Mature miRNA are synthesized through a multi-step process that concludes with the cleavage of stem-loop pre-miRNA by the RNase III enzyme, Dicer1. To determine the extent of miRNA regulation and establish a baseline, miRNA profiling has indicated the presence of large numbers of miRNA within reproductive tissues and cells. Moreover, several studies have indicated that miRNA expression in reproductive tissues varies in response to pituitary and gonadal hormones. To understand the role that miRNA-mediated posttranscriptional gene regulation plays in female reproduction, a global Dicer1 hypomorph mouse and several tissue-specific Dicer1 knockout mice have been studied. Interestingly, when Dicer1 expression is decreased in reproductive tissues or cells, the females are infertile. This review discusses all the work regarding miRNA regulation within the mammalian female reproductive system published to date.
Collapse
Affiliation(s)
- M Z Carletti
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City 66160, USA
| | | |
Collapse
|
233
|
Duggavathi R, Volle DH, Mataki C, Antal MC, Messaddeq N, Auwerx J, Murphy BD, Schoonjans K. Liver receptor homolog 1 is essential for ovulation. Genes Dev 2008; 22:1871-6. [PMID: 18628394 DOI: 10.1101/gad.472008] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Female fertility requires normal ovarian follicular growth and ovulation. The nuclear receptor liver receptor homolog 1 has been implicated in processes as diverse as bile acid metabolism, steroidogenesis, and cell proliferation. In the ovary, Lrh1 is expressed exclusively in granulosa and luteal cells. Using somatic targeted mutagenesis, we show that mice lacking Lrh1 in granulosa cells are sterile, due to anovulation. The preovulatory stimulus fails to elicit cumulus expansion, luteinization, and follicular rupture in these mice. Multiple defects, including severely reduced transactivation of the Lrh1 target gene, nitric oxide synthase 3, leads to increased intrafollicular estradiol levels in the absence of Lrh1. This further causes dysfunction of prostaglandin and hyaluronic acid cascades and interrupts cumulus expansion. Lack of Lrh1 also interferes with progesterone synthesis because of failure of normal expression of the Lrh1 targets, steroidogenic acute regulatory protein and cytochrome P450 side-chain cleavage. In addition, expression of extracellular matrix proteases essential for ovulation is compromised. These results demonstrate that Lrh1 is a regulator of multiple mechanisms essential for maturation of ovarian follicles and for ovulation. Lrh1 is therefore a key modulator of female fertility and a potential target for contraception.
Collapse
Affiliation(s)
- Rajesha Duggavathi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Rodina AV, Gukasova NV, Makarov VA, Kondrasheva IG, Khomyakova AV, Posypanova GA, Popova ON, Moskaleva EY, Severin SE. Localization of Mullerian inhibiting substance receptors in various human cancer cell lines. BIOCHEMISTRY (MOSCOW) 2008; 73:797-805. [PMID: 18707588 DOI: 10.1134/s0006297908070080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recombinant human MIS (rhMIS) produced in transfected Chinese hamster ovary cells has been purified by immunoaffinity chromatography. In the absence of reducing agents, 140 kD homodimer and several oligomers with molecular masses from 280 to 1000 kD are present. Homodimer, tetramer, and higher-molecular-weight rhMIS fractions reduced survival of tumor cells. For these experiments, FITC-labeled rhMIS was used for binding and endocytosis studies by flow cytometry. Flow cytometry performed on MIS-sensitive cancer cell lines demonstrated specific binding of rhMIS. The majority of rhMIS receptors have cytosolic localization. Thus, the level of MIS receptors on the cell membrane was proportional to the content of MIS-binding proteins in the whole cell and defines a level of receptor-mediated endocytosis. The immunopurified rhMIS caused significant growth inhibition of ovarian and prostate adenocarcinoma and melanoma human cell lines in inhibition assays.
Collapse
Affiliation(s)
- A V Rodina
- Moscow Research Institute of Medical Ecology, Moscow Department of Health Care, Moscow, 117638, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Wu X, Wan S, Pujar S, Haskins ME, Schlafer DH, Lee MM, Meyers-Wallen VN. A single base pair mutation encoding a premature stop codon in the MIS type II receptor is responsible for canine persistent Müllerian duct syndrome. ACTA ACUST UNITED AC 2008; 30:46-56. [PMID: 18723470 DOI: 10.2164/jandrol.108.005736] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Müllerian inhibiting substance (MIS), a secreted glycoprotein in the transforming growth factor-beta family of growth factors, mediates regression of the Müllerian ducts during embryonic sex differentiation in males. In persistent Müllerian duct syndrome (PMDS), rather than undergoing involution, the Müllerian ducts persist in males, giving rise to the uterus, fallopian tubes, and upper vagina. Genetic defects in MIS or its receptor (MISRII) have been identified in patients with PMDS. The phenotype in the canine model of PMDS derived from the miniature schnauzer breed is strikingly similar to that of human patients. In this model, PMDS is inherited as a sex-limited autosomal recessive trait. Previous studies indicated that a defect in the MIS receptor or its downstream signaling pathway was likely to be causative of the canine syndrome. In this study, the canine PMDS phenotype and clinical sequelae are described in detail. Affected and unaffected members of this pedigree are genotyped, identifying a single base pair substitution in MISRII that introduces a stop codon in exon 3. The homozygous mutation terminates translation at 80 amino acids, eliminating much of the extracellular domain and the entire transmembrane and intracellular signaling domains. Findings in this model could enable insights to be garnered from correlation of detailed clinical descriptions with molecular defects, which are not otherwise possible in the human syndrome.
Collapse
Affiliation(s)
- Xiufeng Wu
- Pediatric Endocrine Division, Department of Pediatrics and Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
236
|
Fan HY, Shimada M, Liu Z, Cahill N, Noma N, Wu Y, Gossen J, Richards JS. Selective expression of KrasG12D in granulosa cells of the mouse ovary causes defects in follicle development and ovulation. Development 2008; 135:2127-37. [PMID: 18506027 DOI: 10.1242/dev.020560] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of the RAS family of small G-proteins is essential for follicle stimulating hormone-induced signaling events and the regulation of target genes in cultured granulosa cells. To analyze the functions of RAS protein in granulosa cells during ovarian follicular development in vivo, we generated conditional knock-in mouse models in which the granulosa cells express a constitutively active KrasG12D. The KrasG12D mutant mice were subfertile and exhibited signs of premature ovarian failure. The mutant ovaries contained numerous abnormal follicle-like structures that were devoid of mitotic and apoptotic cells and cells expressing granulosa cell-specific marker genes. Follicles that proceeded to the antral stage failed to ovulate and expressed reduced levels of ovulation-related genes. The human chorionic gonadotropin-stimulated phosphorylation of ERK1/2 was markedly reduced in mutant cells. Reduced ERK1/2 phosphorylation was due, in part, to increased expression of MKP3, an ERK1/2-specific phosphatase. By contrast, elevated levels of phospho-AKT were evident in granulosa cells of immature KrasG12D mice, even in the absence of hormone treatments, and were associated with the progressive decline of FOXO1 in the abnormal follicle-like structures. Thus, inappropriate activation of KRAS in granulosa cells blocks the granulosa cell differentiation pathway, leading to the persistence of abnormal non-mitotic, non-apoptotic cells rather than tumorigenic cells. Moreover, those follicles that reach the antral stage exhibit impaired responses to hormones, leading to ovulation failure. Transient but not sustained activation of RAS in granulosa cells is therefore crucial for directing normal follicle development and initiating the ovulation process.
Collapse
Affiliation(s)
- Heng-Yu Fan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Pelusi C, Ikeda Y, Zubair M, Parker KL. Impaired follicle development and infertility in female mice lacking steroidogenic factor 1 in ovarian granulosa cells. Biol Reprod 2008; 79:1074-83. [PMID: 18703422 DOI: 10.1095/biolreprod.108.069435] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The nuclear receptor steroidogenic factor 1 (SF-1 [officially designated NR5A1]) is essential for fetal gonadal development, but its roles in postnatal ovarian function are less well defined. Herein, we have extended our analyses of knockout (KO) mice with markedly decreased SF-1 expression in granulosa cells. As described, these SF-1 KO mice had hypoplastic ovaries that contained a decreased number of follicles and lacked corpora lutea. In the present study, we showed that SF-1 KO mice exhibited abnormal estrous cycles, were infertile, and released significantly fewer oocytes in response to a standard superovulation regimen. Moreover, they had blunted induction of plasma estradiol in response to gonadotropins. The granulosa cell-specific SF-1 KO also significantly affected ovarian expression of putative SF-1 target genes. Consistent with their decreased follicle number, these mice had reduced ovarian expression of anti-müllerian hormone (Amh), which correlates with the reserve pool of ovarian follicles, as well as decreased gonadotropin-induced ovarian expression of aromatase (Cyp19a1) and cyclin D2 (Ccnd2). In contrast, perhaps because of their abnormal cyclicity, SF-1 KO ovaries had higher basal expression of inhibin-alpha. They also had decreased immunoreactivity for genes related to proliferation (Ccnd2 and Mki67 [also known as Ki67]) and increased expression of Cdkn1b, also known as p27, which inhibits cyclin-dependent kinases, arguing for a role of SF-1 in granulosa cell proliferation. These findings demonstrate that SF-1 has a key role in female reproduction via essential actions in granulosa cells.
Collapse
Affiliation(s)
- Carla Pelusi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8857, USA
| | | | | | | |
Collapse
|
238
|
Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, Zhu H, Agno JE, Gunaratne PH, DeMayo FJ, Matzuk MM. Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 2008; 22:2336-52. [PMID: 18687735 DOI: 10.1210/me.2008-0142] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dicer is an evolutionarily conserved ribonuclease III that is necessary for microRNA (miRNA) processing and the synthesis of small interfering RNAs from long double-stranded RNA. Although it has been shown that Dicer plays important roles in the mammalian germline and early embryogenesis, the functions of Dicer-dependent pathways in the somatic cells of the female reproductive tract are unknown. Using a transgenic line in which Cre recombinase is driven by the anti-Müllerian hormone receptor type 2 promoter, we conditionally inactivated Dicer1 in the mesenchyme of the developing Müllerian ducts and postnatally in ovarian granulosa cells and mesenchyme-derived cells of the oviducts and uterus. Deletion of Dicer in these cell types results in female sterility and multiple reproductive defects including decreased ovulation rates, compromised oocyte and embryo integrity, prominent bilateral paratubal (oviductal) cysts, and shorter uterine horns. The paratubal cysts act as a reservoir for spermatozoa and oocytes and prevent embryos from transiting the oviductal isthmus and passing the uterotubal junction to enter the uterus for implantation. Deep sequencing of small RNAs in oviduct revealed down-regulation of specific miRNAs in Dicer conditional knockout females compared with wild type. The majority of these differentially expressed miRNAs are predicted to regulate genes important for Müllerian duct differentiation and mesenchyme-derived structures, and several of these putative target genes were significantly up-regulated upon conditional deletion of Dicer1. Thus, our findings reveal diverse and critical roles for Dicer and its miRNA products in the development and function of the female reproductive tract.
Collapse
Affiliation(s)
- Ankur K Nagaraja
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Laguë MN, Paquet M, Fan HY, Kaartinen MJ, Chu S, Jamin SP, Behringer RR, Fuller PJ, Mitchell A, Doré M, Huneault LM, Richards JS, Boerboom D. Synergistic effects of Pten loss and WNT/CTNNB1 signaling pathway activation in ovarian granulosa cell tumor development and progression. Carcinogenesis 2008; 29:2062-72. [PMID: 18687666 DOI: 10.1093/carcin/bgn186] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of granulosa cell tumor (GCT) development may involve the dysregulation of signaling pathways downstream of follicle-stimulating hormone, including the phosphoinosite-3 kinase (PI3K)/AKT pathway. To test this hypothesis, a genetically engineered mouse model was created to derepress the PI3K/AKT pathway in granulosa cells by conditional targeting of the PI3K antagonist gene Pten (Pten(flox/flox);Amhr2(cre/+)). The majority of Pten(flox/flox);Amhr2(cre/+) mice featured no ovarian anomalies, but occasionally ( approximately 7%) developed aggressive, anaplastic GCT with pulmonary metastases. The expression of the PI3K/AKT downstream effector FOXO1 was abrogated in Pten(flox/flox);Amhr2(cre/+) GCT, indicating a mechanism by which GCT cells may increase proliferation and evade apoptosis. To relate these findings to spontaneously occurring GCT, analyses of PTEN and phospho-AKT expression were performed on human and equine tumors. Although PTEN loss was not detected, many GCT (2/5 human, 7/17 equine) featured abnormal nuclear or perinuclear localization of phospho-AKT, suggestive of altered PI3K/AKT activity. As inappropriate activation of WNT/CTNNB1 signaling causes late-onset GCT development and cross talk between the PI3K/AKT and WNT/CTNNB1 pathways has been reported, we tested whether these pathways could synergize in GCT. Activation of both the PI3K/AKT and WNT/CTNNB1 pathways in the granulosa cells of a mouse model (Pten(flox/flox);Ctnnb1(flox(ex3)/+);Amhr2(cre/+)) resulted in the development of GCT similar to those observed in Pten(flox/flox);Amhr2(cre/+) mice, but with 100% penetrance, perinatal onset, extremely rapid growth and the ability to spread by seeding into the abdominal cavity. These data indicate a synergistic effect of dysregulated PI3K/AKT and WNT/CTNNB1 signaling in the development and progression of GCT and provide the first animal models for metastatic GCT.
Collapse
Affiliation(s)
- Marie-Noëlle Laguë
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Arango NA, Kobayashi A, Wang Y, Jamin SP, Lee HH, Orvis GD, Behringer RR. A mesenchymal perspective of Müllerian duct differentiation and regression in Amhr2-lacZ mice. Mol Reprod Dev 2008; 75:1154-62. [PMID: 18213646 DOI: 10.1002/mrd.20858] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Müllerian ducts give rise to the female reproductive tract, including the Fallopian tubes, uterus, cervix, and anterior vagina. In male embryos, the Müllerian ducts regress, preventing the formation of female organs. We introduced the bacterial lacZ gene, encoding beta-galactosidase (beta-gal), into the AMHR-II locus (Amhr2) by gene targeting in mouse embryonic stem (ES) cells to mark Müllerian duct differentiation and regression. We show that Amhr2-lacZ heterozygotes express beta-gal activity in an Amhr2-specific pattern. In the gonads, beta-gal activity was detected in Sertoli cells of the testes from 2 weeks after birth, and fetal ovaries and granulosa cells of the adult ovary. beta-gal activity was first detected in the rostral mesenchyme of the Müllerian ducts at 12.5 days post coitus (dpc) in both sexes but soon thereafter expression was found along the entire length of the Müllerian ducts with higher levels initially found in males. In females, beta-gal activity was restricted to one side of the ductal mesoepithelium, whereas in males beta-gal expression encircled the duct. beta-gal activity was also detected in the coelomic epithelium at 13.5 and 14.5 dpc. In male embryos, mesenchymal beta-gal activity permitted the visualization of the temporal and spatial pattern of Müllerian duct regression. This pattern was similar to that observed using a Müllerian duct mesoepithelium lacZ reporter, indicating a coordinated loss of Müllerian duct mesoepithelium and Amhr2-expressing mesenchyme.
Collapse
Affiliation(s)
- Nelson A Arango
- Program in Genes and Development, The University of Texas, Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
241
|
Boyer A, Hermo L, Paquet M, Robaire B, Boerboom D. Seminiferous tubule degeneration and infertility in mice with sustained activation of WNT/CTNNB1 signaling in sertoli cells. Biol Reprod 2008; 79:475-85. [PMID: 18480464 DOI: 10.1095/biolreprod.108.068627] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
WNT/CTNNB1 signaling is involved in the regulation of multiple embryonic developmental processes, adult tissue homeostasis, abd cell fate determination and differentiation. Many WNTs and components of the WNT/CTNNB1 signaling pathway are expressed in the testis, but their physiological roles in this organ are largely unknown. To elucidate the role(s) of WNT/CTNNB1 signaling in the testis, transgenic Ctnnb1 tm1Mmt/+;Amhr2 tm3(cre)Bhr/+ mice were generated to obtain sustained activation of the WNT/CTNNB1 pathway in both Leydig and Sertoli cells. Male Ctnnb1 tm1Mmt/+;Amhr2 tm3(cre)Bhr/+ mice were sterile because of testicular atrophy starting at 5 wk of age, associated with degeneration of seminiferous tubules and the progressive loss of germ cells. Although Cre activity was expected in Ctnnb1 tm1Mmt/+;Amhr2 tm3(cre)Bhr/+ Leydig cells, no evidence of Cre-mediated recombination of the floxed allele or of WNT/CTNNB1 pathway activation could be obtained, and testosterone levels were comparable to age-matched controls, suggesting that genetic recombination was inefficient in Leydig cells. Conversely, sustained WNT/CTNNB1 pathway activation was obtained in Ctnnb1 tm1Mmt/+;Amhr2 tm3(cre)Bhr/+ Sertoli cells. The latter often exhibited morphological characteristics suggestive of incomplete differentiation that appeared in a manner coincident with germ cell loss, and this was accompanied by an increase in the expression of the immature Sertoli cell marker AMH. In addition, a poorly differentiated, WT1-positive somatic cell population accumulated in multilayered foci near the basement membrane of many seminiferous tubules. Together, these data suggest that the WNT/CTNNB1 pathway regulates Sertoli cell functions critical to their capacity to support spermatogenesis in the postnatal testis.
Collapse
Affiliation(s)
- Alexandre Boyer
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
242
|
Klattig J, Englert C. The Müllerian duct: recent insights into its development and regression. Sex Dev 2008; 1:271-8. [PMID: 18391537 DOI: 10.1159/000108929] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 08/13/2007] [Indexed: 01/24/2023] Open
Abstract
Several recent publications have contributed to our understanding of the processes involved in development of the Müllerian ducts in both sexes and regression of these structures in male embryos. Additionally, new insights in the regulation of the anti-Müllerian hormone (AMH) signaling pathway, the pathway, which mediates the male specific degeneration of Müllerian ducts, have been gained. It has become clear that the Müllerian duct is formed by invagination of the coelomic epithelium and elongates primarily by proliferation. Later on cells of the coelomic epithelium perform epithelial to mesenchymal transition and move around the epithelium of the Müllerian duct to induce degeneration of this structure in male embryos. Besides AMH and its specific type II receptor AMHR2 two different type I receptors as well as different SMAD family members have been shown to be involved in the AMH signaling cascade. Other factors including WT1, WNT7a, beta-catenin and MMP2 act upstream and downstream of AMH signaling. Here we try to draw an overall picture of Müllerian duct formation and regression by integrating the recent literature in the field.
Collapse
Affiliation(s)
- J Klattig
- Leibniz Institute for Age Research, Jena, Germany
| | | |
Collapse
|
243
|
Orvis GD, Jamin SP, Kwan KM, Mishina Y, Kaartinen VM, Huang S, Roberts AB, Umans L, Huylebroeck D, Zwijsen A, Wang D, Martin JF, Behringer RR. Functional redundancy of TGF-beta family type I receptors and receptor-Smads in mediating anti-Mullerian hormone-induced Mullerian duct regression in the mouse. Biol Reprod 2008; 78:994-1001. [PMID: 18322278 DOI: 10.1095/biolreprod.107.066605] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Amniotes, regardless of genetic sex, develop two sets of genital ducts: the Wolffian and Müllerian ducts. For normal sexual development to occur, one duct must differentiate into its corresponding organs, and the other must regress. In mammals, the Wolffian duct differentiates into the male reproductive tract, mainly the vasa deferentia, epididymides, and seminal vesicles, whereas the Müllerian duct develops into the four components of the female reproductive tract, the oviducts, uterus, cervix, and upper third of the vagina. In males, the fetal Leydig cells produce testosterone, which stimulates the differentiation of the Wolffian duct, whereas the Sertoli cells of the fetal testes express anti-Müllerian hormone, which activates the regression of the Müllerian duct. Anti-Müllerian hormone is a member of the transforming growth factor-beta (TGF-beta) family of secreted signaling molecules and has been shown to signal through the BMP pathway. It binds to its type II receptor, anti-Müllerian hormone receptor 2 (AMHR2), in the Müllerian duct mesenchyme and through an unknown mechanism(s); the mesenchyme induces the regression of the Müllerian duct mesoepithelium. Using tissue-specific gene inactivation with an Amhr2-Cre allele, we have determined that two TGF-beta type I receptors (Acvr1 and Bmpr1a) and all three BMP receptor-Smads (Smad1, Smad5, and Smad8) function redundantly in transducing the anti-Müllerian hormone signal required for Müllerian duct regression. Loss of these genes in the Müllerian duct mesenchyme results in male infertility due to retention of Müllerian duct derivatives in an otherwise virilized male.
Collapse
Affiliation(s)
- G D Orvis
- Program in Genes and Development, Graduate School of Biomedical Sciences at Houston, The University of Texas, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Renlund N, Pieretti-Vanmarcke R, O'Neill FH, Zhang L, Donahoe PK, Teixeira J. c-Jun N-terminal kinase inhibitor II (SP600125) activates Mullerian inhibiting substance type II receptor-mediated signal transduction. Endocrinology 2008; 149:108-15. [PMID: 17947357 PMCID: PMC2194615 DOI: 10.1210/en.2007-0529] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Müllerian inhibiting substance (MIS), the hormone required for Müllerian duct regression in fetal males, is also expressed in both adult males and females, but its physiological role in these settings is not clear. The expression of the MIS type II receptor (MISRII) in ovarian cancer cells and the ability of MIS to inhibit proliferation of these cells suggest that MIS might be a promising therapeutic for recurrent ovarian cancer. Using an MISRII-dependent activity assay in a small-molecule screen for MIS-mimetic compounds, we have identified the c-Jun N-terminal kinase inhibitor SP600125 as an activator of the MIS signal transduction pathway. SP600125 increased the activity of a bone morphogenetic protein-responsive reporter gene in a dose-dependent manner and exerted a synergistic effect when used in combination with MIS. This effect was specific for the MISRII and was not seen with other receptors of the TGFbeta family. Moreover, treatment of mouse ovarian cancer cells with a combination of SP600125 and paclitaxel, an established chemotherapeutic agent used in the treatment of ovarian cancer, or with MIS enabled inhibition of cell proliferation at a lower dose than with each treatment alone. These results offer a strong rationale for testing the therapeutic potential of SP600125, alone or in combination with already established drugs, in the treatment of recurrent ovarian cancer with a much-needed decrease in the toxic side effects of currently employed therapeutic agents.
Collapse
Affiliation(s)
- Nina Renlund
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
245
|
Pangas SA, Li X, Umans L, Zwijsen A, Huylebroeck D, Gutierrez C, Wang D, Martin JF, Jamin SP, Behringer RR, Robertson EJ, Matzuk MM. Conditional deletion of Smad1 and Smad5 in somatic cells of male and female gonads leads to metastatic tumor development in mice. Mol Cell Biol 2008; 28:248-57. [PMID: 17967875 PMCID: PMC2223289 DOI: 10.1128/mcb.01404-07] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 09/21/2007] [Accepted: 10/19/2007] [Indexed: 12/31/2022] Open
Abstract
The transforming growth factor beta (TGFbeta) family has critical roles in the regulation of fertility. In addition, the pathogenesis of some human cancers is attributed to misregulation of TGFbeta function and SMAD2 or SMAD4 mutations. There are limited mouse models for the BMP signaling SMADs (BR-SMADs) 1, 5, and 8 because of embryonic lethality and suspected genetic redundancy. Using tissue-specific ablation in mice, we deleted the BR-SMADs from somatic cells of ovaries and testes. Single conditional knockouts for Smad1 or Smad5 or mice homozygous null for Smad8 are viable and fertile. Female double Smad1 Smad5 and triple Smad1 Smad5 Smad8 conditional knockout mice become infertile and develop metastatic granulosa cell tumors. Male double Smad1 Smad5 conditional knockout mice are fertile but demonstrate metastatic testicular tumor development. Microarray analysis indicated significant alterations in expression of genes related to the TGFbeta pathway, as well as genes involved in infertility and extracellular matrix production. These data strongly implicate the BR-SMADs as part of a critical developmental pathway in ovaries and testis that, when disrupted, leads to malignant transformation.
Collapse
Affiliation(s)
- Stephanie A Pangas
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Clement TM, Anway MD, Uzumcu M, Skinner MK. Regulation of the gonadal transcriptome during sex determination and testis morphogenesis: comparative candidate genes. Reproduction 2007; 134:455-72. [PMID: 17709564 PMCID: PMC8260008 DOI: 10.1530/rep-06-0341] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Gene expression profiles during sex determination and gonadal differentiation were investigated to identify new potential regulatory factors. Embryonic day 13 (E13), E14, and E16 rat testes and ovaries were used for microarray analysis, as well as E13 testis organ cultures that undergo testis morphogenesis and develop seminiferous cords in vitro. A list of 109 genes resulted from a selective analysis for genes present in male gonadal development and with a 1.5-fold change in expression between E13 and E16. Characterization of these 109 genes potentially important for testis development revealed that cytoskeletal-associated proteins, extracellular matrix factors, and signaling factors were highly represented. Throughout the developmental period (E13-E16), sex-enriched transcripts were more prevalent in the male with 34 of the 109 genes having testis-enriched expression during sex determination. In ovaries, the total number of transcripts with a 1.5-fold change in expression between E13 and E16 was similar to the testis, but none of those genes were both ovary enriched and regulated during the developmental period. Genes conserved in sex determination were identified by comparing changing transcripts in the rat analysis herein, to transcripts altered in previously published mouse studies of gonadal sex determination. A comparison of changing mouse and rat transcripts identified 43 genes with species conservation in sex determination and testis development. Profiles of gene expression during E13-E16 rat testis and ovary development are presented and candidate genes for involvement in sex determination and testis differentiation are identified. Analysis of cellular pathways did not reveal any specific pathways involving multiple candidate genes. However, the genes and gene network identified influence numerous cellular processes with cellular differentiation, proliferation, focal contact, RNA localization, and development being predominant.
Collapse
Affiliation(s)
- Tracy M Clement
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | |
Collapse
|
247
|
Roy A, Matzuk MM. Society for Reproductive Biology Founders' Lecture 2007. Insights into germ cell biology: from the bench to the clinic. Reprod Fertil Dev 2007; 19:783-91. [PMID: 17897580 DOI: 10.1071/rd07090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 07/18/2007] [Indexed: 12/22/2022] Open
Abstract
The germline is unique among tissues in being the only lineage that is transmitted through generations. The gonadal somatic cells that interact with male and female germ cells are equally important for their juxtacrine and paracrine signalling pathways that lead to the formation of functionally mature gametes and healthy progeny. The present review summarises exciting new studies that our group and others have achieved at the frontier of male and female germ cell biology and in studying transforming growth factor-beta signalling pathways in oocyte-somatic cell interactions and gonadal growth and differentiation. In the process, we have produced over 70 transgenic and knockout models to study reproduction in vivo. These models have helped us identify novel and unexplored areas of germ cell biology and translate this work into the fertility clinic.
Collapse
Affiliation(s)
- Angshumoy Roy
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | | |
Collapse
|
248
|
Morinaga C, Saito D, Nakamura S, Sasaki T, Asakawa S, Shimizu N, Mitani H, Furutani-Seiki M, Tanaka M, Kondoh H. The hotei mutation of medaka in the anti-Mullerian hormone receptor causes the dysregulation of germ cell and sexual development. Proc Natl Acad Sci U S A 2007; 104:9691-6. [PMID: 17535919 PMCID: PMC1887600 DOI: 10.1073/pnas.0611379104] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Indexed: 12/13/2022] Open
Abstract
We previously performed mutant screens in the medaka for defects in gonadal development and identified a mutant of interest in this regard, which was designated as hotei (hot). This mutant manifests a number of remarkable phenotypic abnormalities including: (i) excessive proliferation of germ cells that initiates at around the hatching stage regardless of the genetic sex of the fish; (ii) initiation of premature meiosis in phenotypically male hot homozygotes; (iii) one-half of the hot-homozygous XY fish undergo sex reversal, which accompanies the expression of the female-characteristic aromatase gene in the somatic cells of the gonad; and (iv) in phenotypically female homozygotes, follicular development is arrested at an early stage. We have also performed genetic mapping, chromosome walking, and candidate gene sequencing analysis of hot and demonstrate that the underlying mutation occurs in the recently identified medaka anti-Müllerian hormone (Amh) receptor type II (amhrII) gene. Moreover, this gene was found to be responsible for each of the hot phenotypes, as an amhrII transgene rescues these abnormalities. In addition, the amhrII gene is expressed in the somatic cells of the gonads of both sexes. The phenotypes of the hot homozygotes indicate that there are multiple regulatory functions of the AMH/AMHRII signaling system in the development of the gonad, including the sex-dependent regulation of germ cell proliferation and follicular development. These presumably represent the basic roles of Amh, which precede Müllerian duct evolution during phylogeny.
Collapse
Affiliation(s)
- Chikako Morinaga
- *Japan Science and Technology Agency, Solution Oriented Research for Science and Technology Kondoh Research Team, Kyoto 606-8305, Japan
| | - Daisuke Saito
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Higashiyama 5-1, Okazaki 444-8787, Japan
| | - Shuhei Nakamura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Higashiyama 5-1, Okazaki 444-8787, Japan
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Sasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shuichi Asakawa
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Nobuyoshi Shimizu
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate school of Frontier Science, University of Tokyo, Chiba 277-8562, Japan; and
| | - Makoto Furutani-Seiki
- *Japan Science and Technology Agency, Solution Oriented Research for Science and Technology Kondoh Research Team, Kyoto 606-8305, Japan
| | - Minoru Tanaka
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Higashiyama 5-1, Okazaki 444-8787, Japan
| | - Hisato Kondoh
- *Japan Science and Technology Agency, Solution Oriented Research for Science and Technology Kondoh Research Team, Kyoto 606-8305, Japan
- **Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
249
|
Deutscher E, Hung-Chang Yao H. Essential roles of mesenchyme-derived beta-catenin in mouse Müllerian duct morphogenesis. Dev Biol 2007; 307:227-36. [PMID: 17532316 PMCID: PMC2020447 DOI: 10.1016/j.ydbio.2007.04.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 04/06/2007] [Accepted: 04/26/2007] [Indexed: 11/26/2022]
Abstract
Members of the Wnt family of genes such as Wnt4, Wnt5a, and Wnt7a have been implicated in the formation and morphogenesis of the Müllerian duct into various parts of the female reproductive tract. These WNT ligands elicit their action via either the canonical WNT/beta-catenin or the non-canonical WNT/calcium pathway and could possibly function redundantly in Müllerian duct differentiation. By using the Müllerian duct-specific anti-Müllerian hormone receptor 2 cre (Amhr2-cre) mouse line, we established a conditional knockout model that removed beta-catenin specifically in the mesenchyme of the Müllerian duct. At birth, loss of beta-catenin in the Müllerian duct mesenchyme disrupted the normal coiling of the oviduct in the knockout embryo, resembling the phenotype of the Wnt7a knockout. The overall development of the female reproductive tract was stunted at birth with a decrease in proliferation in the mesenchyme and epithelium. We also discovered that Wnt5a and Wnt7a expression remained normal, excluding the possibility that the phenotypes resulted from a loss of these WNT ligands. We examined the expression of Frizzled (Fzd), the receptors for WNT, and found that Fzd1 is one receptor present in the Müllerian duct mesenchyme and could be the putative receptor for beta-catenin activation in the Müllerian duct. In summary, our findings suggest that mesenchymal beta-catenin is a downstream effector of Wnt7a that mediates the patterning of the oviduct and proper differentiation of the uterus.
Collapse
Affiliation(s)
- Erica Deutscher
- Department of Veterinary Biosciences, 3806 VMBSB, 2001 South Lincoln Avenue, University of Illinois, Urbana, IL 61802, USA
| | | |
Collapse
|
250
|
Petit FG, Jamin SP, Kurihara I, Behringer RR, DeMayo FJ, Tsai MJ, Tsai SY. Deletion of the orphan nuclear receptor COUP-TFII in uterus leads to placental deficiency. Proc Natl Acad Sci U S A 2007; 104:6293-8. [PMID: 17404209 PMCID: PMC1851059 DOI: 10.1073/pnas.0702039104] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
COUP-TFII (NR2F2), chicken ovalbumin upstream promoter-transcription factor II, is an orphan nuclear receptor of the steroid/thyroid hormone receptor superfamily. The Coup-tfII-null mutant mice die during the early embryonic development because of angiogenesis and heart defects. To analyze the physiological function of COUP-TFII during organogenesis, we used the cre/loxP system to conditionally inactivate COUP-TFII in the ovary and uterus. Homozygous adult female mutants with specific inactivation of the Coup-tfII gene in uterine stromal and smooth muscle cells have severely impaired placental formation, leading to miscarriage at days 10-12 of pregnancy. Deletion of the Coup-tfII gene resulted in an increase in trophoblast giant cell differentiation, a reduction of the spongiotrophoblast layer, and an absence of labyrinth formation causing an improper vascularization of the placenta. This study describes an important maternal role of COUP-TFII in regulating the placentation. The endometrial COUP-TFII might modulate the signaling between the uterus and the extraembryonic tissue for the proper formation of the placenta.
Collapse
Affiliation(s)
- Fabrice G. Petit
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
- Institut National de la Santé et de la Recherche Médicale, Unité 553, Hôpital Saint-Louis, 1, Avenue Claude Vellefaux, F-75010 Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 782, Université de Paris-Sud, Hôpital Antoine Béclère, 32, Rue des Carnets, F-92140 Clamart, France; and
- To whom correspondence may be sent at the ‡ address. E-mail:
| | - Soazik P. Jamin
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Isao Kurihara
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| | - Richard R. Behringer
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Francesco J. DeMayo
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| | - Ming-Jer Tsai
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
- **To whom correspondence may be addressed. E-mail: or
| | - Sophia Y. Tsai
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
- **To whom correspondence may be addressed. E-mail: or
| |
Collapse
|