201
|
Migeot JA, Duran-Aniotz CA, Signorelli CM, Piguet O, Ibáñez A. A predictive coding framework of allostatic-interoceptive overload in frontotemporal dementia. Trends Neurosci 2022; 45:838-853. [PMID: 36057473 PMCID: PMC11286203 DOI: 10.1016/j.tins.2022.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 10/31/2022]
Abstract
Recent allostatic-interoceptive explanations using predictive coding models propose that efficient regulation of the body's internal milieu is necessary to correctly anticipate environmental needs. We review this framework applied to understanding behavioral variant frontotemporal dementia (bvFTD) considering both allostatic overload and interoceptive deficits. First, we show how this framework could explain divergent deficits in bvFTD (cognitive impairments, behavioral maladjustment, brain atrophy, fronto-insular-temporal network atypicality, aberrant interoceptive electrophysiological activity, and autonomic disbalance). We develop a set of theory-driven predictions based on levels of allostatic interoception associated with bvFTD phenomenology and related physiopathological mechanisms. This approach may help further understand the disparate behavioral and physiopathological dysregulations of bvFTD, suggesting targeted interventions and strengthening clinical models of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Joaquin A Migeot
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Claudia A Duran-Aniotz
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Camilo M Signorelli
- Department of Computer Science, University of Oxford, Oxford, UK; Physiology of Cognition, GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium; Cognitive Neuroimaging Unit, INSERM, Saclay, France
| | - Olivier Piguet
- The University of Sydney, School of Psychology and Brain & Mind Centre, Sydney, Australia
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Global Brain Health Institute, University of California-San Francisco, San Francisco, CA, USA, and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
202
|
Johnson SB, Lingg RT, Skog TD, Hinz DC, Romig-Martin SA, Viau V, Narayanan NS, Radley JJ. Activity in a prefrontal-periaqueductal gray circuit overcomes behavioral and endocrine features of the passive coping stress response. Proc Natl Acad Sci U S A 2022; 119:e2210783119. [PMID: 36306326 PMCID: PMC9636920 DOI: 10.1073/pnas.2210783119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
The question of how the brain links behavioral and biological features of defensive responses has remained elusive. The importance of this problem is underscored by the observation that behavioral passivity in stress coping is associated with elevations in glucocorticoid hormones, and each may carry risks for susceptibility to a host of stress-related diseases. Past work implicates the medial prefrontal cortex (mPFC) in the top-down regulation of stress-related behaviors; however, it is unknown whether such changes have the capacity to buffer against the longer-lasting biological consequences associated with aversive experiences. Using the shock probe defensive burying test in rats to naturalistically measure behavioral and endocrine features of coping, we observed that the active behavioral component of stress coping is associated with increases in activity along a circuit involving the caudal mPFC and midbrain dorsolateral periaqueductal gray (PAG). Optogenetic manipulations of the caudal mPFC-to-dorsolateral PAG pathway bidirectionally modulated active (escape and defensive burying) behaviors, distinct from a rostral mPFC-ventrolateral PAG circuit that instead limited passive (immobility) behavior. Strikingly, under conditions that biased rats toward a passive coping response set, including exaggerated stress hormonal output and increased immobility, excitation of the caudal mPFC-dorsolateral PAG projection significantly attenuated each of these features. These results lend insight into how the brain coordinates response features to overcome passive coping and may be of importance for understanding how activated neural systems promote stress resilience.
Collapse
Affiliation(s)
- Shane B. Johnson
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
| | - Ryan T. Lingg
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Timothy D. Skog
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
| | - Dalton C. Hinz
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Sara A. Romig-Martin
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Victor Viau
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Nandakumar S. Narayanan
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
- Department of Neurology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
| | - Jason J. Radley
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
203
|
The neuroprotective and neuroplastic potential of glutamatergic therapeutic drugs in bipolar disorder. Neurosci Biobehav Rev 2022; 142:104906. [DOI: 10.1016/j.neubiorev.2022.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
204
|
Marcolongo-Pereira C, Castro FCDAQ, Barcelos RM, Chiepe KCMB, Rossoni Junior JV, Ambrosio RP, Chiarelli-Neto O, Pesarico AP. Neurobiological mechanisms of mood disorders: Stress vulnerability and resilience. Front Behav Neurosci 2022; 16:1006836. [PMID: 36386785 PMCID: PMC9650072 DOI: 10.3389/fnbeh.2022.1006836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 09/05/2023] Open
Abstract
Stress is an important factor in the development of several human pathologies. The response of rodents and humans to stress depends on many factors; some people and rodents develop stress-related mood disorders, such as depression and anxiety in humans, depression-like and anxiety-like behavior in mice and rats, while others report no new psychological symptoms in response to chronic or acute stress, and are considered susceptible and resilient to stress, respectively. Resilience is defined as the ability to thrive in the face of adversity and is a learned process that can help protect against occupational stressors and mental illnesses. There is growing interest in the underlying mechanisms involved in resilience and vulnerability to depression caused by stress, and some studies have demonstrated that individual variability in the way animals and humans respond to stress depends on several mechanisms, such as oxidative stress, neuronal plasticity, immunology and genetic factors, among others not discussed in this review, this review provides a general overview about this mechanism.
Collapse
Affiliation(s)
- Clairton Marcolongo-Pereira
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | | | - Rafael Mazioli Barcelos
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | | | - Joamyr Victor Rossoni Junior
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | - Roberta Passamani Ambrosio
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | - Orlando Chiarelli-Neto
- Coordenadoria de Pesquisa, Pós-Graduação e Extensão (CEPEG), Centro Universitário do Espírito Santo (UNESC), Colatina, Brazil
| | - Ana Paula Pesarico
- Curso de Medicina, Universidade Federal do Pampa (Unipampa), Bagé, Brazil
| |
Collapse
|
205
|
Zhang B, Dong W, Ma Z, Duan S, Han R, Lv Z, Liu X, Mao Y. Hyperbaric oxygen improves depression-like behaviors in chronic stress model mice by remodeling gut microbiota and regulating host metabolism. CNS Neurosci Ther 2022; 29:239-255. [PMID: 36261870 PMCID: PMC9804075 DOI: 10.1111/cns.13999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/09/2022] [Accepted: 09/30/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS There is growing evidence that the gut microbiota plays a significant part in the pathophysiology of chronic stress. The dysbiosis of the gut microbiota closely relates to dysregulation of microbiota-host cometabolism. Composition changes in the gut microbiota related to perturbations in metabolic profiles are vital risk factors for disease development. Hyperbaric oxygen therapy is commonly applied as an alternative or primary therapy for various diseases. Therefore, a metabolic and gut bacteria perspective is essential to uncover possible mechanisms of chronic stress and the therapeutic effect of hyperbaric oxygenation. We determined that there were significantly disturbed metabolites and disordered gut microbiota between control and chronic stress group. The study aims to offer further information on the interactions between host metabolism, gut microbiota, and chronic stress. METHODS At present, chronic unpredictable mild stress is considered the most widespread method of modeling chronic stress in animals, so we used a chronic unpredictable mild stress mouse model to characterize changes in the metabolome and microbiome of depressed mice by combining 16S rRNA gene sequencing and UHPLC-MS/MS-based metabolomics. Pearson's correlation-based clustering analysis was performed with above metabolomics and fecal microbiome data to determine gut microbiota-associated metabolites. RESULTS We found that 18 metabolites showed a significant correlation with campylobacterota. Campylobacterota associated metabolites were significantly enriched mainly in the d-glutamate and d-glutamine metabolism. Hyperoxia treatment may improve depression-like behaviors in chronic stress model mice through regulating the disrupted metabolites. CONCLUSIONS Hyperbaric oxygen improves depression-like behaviors in chronic stress model mice by remodeling Campylobacterota associated metabolites.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Wenwen Dong
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Zhixin Ma
- Translational Medical InstituteShanghai UniversityShanghaiChina
| | - Shuxian Duan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Ruina Han
- Translational Medical InstituteShanghai UniversityShanghaiChina
| | - Zhou Lv
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xinru Liu
- Translational Medical InstituteShanghai UniversityShanghaiChina
| | - Yanfei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
206
|
Akber U, Bong S, Park ZY, Park CS. Effects of cereblon on stress-activated redox proteins and core behavior. Brain Res 2022; 1793:148054. [PMID: 35973609 DOI: 10.1016/j.brainres.2022.148054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022]
Abstract
The mechanisms underlying the vulnerability and resilience of an individual to stress are only partly understood. Response to stress is determined by behavioral and biochemical changes in the brain. Chronic ultra-mild stress (CUMS) induces an anhedonic-like state in mice that resembles symptoms of human depression. This study reports the role of cereblon (CRBN) in regulating the metabolic and antioxidant status of neuronal tissues in the mouse model of CUMS. Intriguingly, Crbn-/- (KO) mice showed resilient responsiveness, both at the behavioral and proteomic levels. Several core behaviors were also differentially altered by CUMS in KO mice. Liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based proteome analysis of whole brain lysate (WBL) showed an enriched chaperonic, metabolic, and antioxidant status in the brains of KO subjects, including several members of DNAJ chaperones, creatine kinase, quinone oxidoreductase, superoxide dismutase (SOD1), glutathione S-transferase Mu (GSTM), peroxiredoxin-6 (PRDX6), and thioredoxin. Pathological phosphorylation as characterized by aggregation of tau and α-synuclein (α-syn) was significantly reduced in the neuronal tissues of KO mouse model of CUMS as compared to wild type (WT) mice. Furthermore, significantly increased SOD1 activity and reduced lipid peroxidation were observed in Crbn-KO systems. Integrated signaling pathways were also identified in CRBN-specific sub-networks constructed from protein-protein interaction analysis by STRING. The present study highlights the roles of CRBN in regulating the stress response (SR) and reshaping metabolic status in the brains of mice exposed to CUMS. A better understanding of the molecular mechanisms of depression and neurodegeneration can improve the development of novel treatments.
Collapse
Affiliation(s)
- Uroos Akber
- Laboratory of Molecular Neurobiology, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sunhwa Bong
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Zee-Yong Park
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Chul-Seung Park
- Laboratory of Molecular Neurobiology, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
207
|
Kot M, Neglur PK, Pietraszewska A, Buzanska L. Boosting Neurogenesis in the Adult Hippocampus Using Antidepressants and Mesenchymal Stem Cells. Cells 2022; 11:cells11203234. [PMID: 36291101 PMCID: PMC9600461 DOI: 10.3390/cells11203234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The hippocampus is one of the few privileged regions (neural stem cell niche) of the brain, where neural stem cells differentiate into new neurons throughout adulthood. However, dysregulation of hippocampal neurogenesis with aging, injury, depression and neurodegenerative disease leads to debilitating cognitive impacts. These debilitating symptoms deteriorate the quality of life in the afflicted individuals. Impaired hippocampal neurogenesis is especially difficult to rescue with increasing age and neurodegeneration. However, the potential to boost endogenous Wnt signaling by influencing pathway modulators such as receptors, agonists, and antagonists through drug and cell therapy-based interventions offers hope. Restoration and augmentation of hampered Wnt signaling to facilitate increased hippocampal neurogenesis would serve as an endogenous repair mechanism and contribute to hippocampal structural and functional plasticity. This review focuses on the possible interaction between neurogenesis and Wnt signaling under the control of antidepressants and mesenchymal stem cells (MSCs) to overcome debilitating symptoms caused by age, diseases, or environmental factors such as stress. It will also address some current limitations hindering the direct extrapolation of research from animal models to human application, and the technical challenges associated with the MSCs and their cellular products as potential therapeutic solutions.
Collapse
Affiliation(s)
- Marta Kot
- Correspondence: ; Tel.: +48-22-60-86-563
| | | | | | | |
Collapse
|
208
|
Peters A, Sprengell M, Kubera B. The principle of 'brain energy on demand' and its predictive power for stress, sleep, stroke, obesity and diabetes. Neurosci Biobehav Rev 2022; 141:104847. [PMID: 36067964 DOI: 10.1016/j.neubiorev.2022.104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022]
Abstract
Does the brain actively draw energy from the body when needed? There are different schools of thought regarding energy metabolism. In this study, the various theoretical models are classified into one of two categories: (1) conceptualizations of the brain as being purely passively supplied, which we call 'P-models,' and (2) models understanding the brain as not only passively receiving energy but also actively procuring energy for itself on demand, which we call 'A-models.' One prominent example of such theories making use of an A-model is the selfish-brain theory. The ability to make predictions was compared between the A- and P-models. A-models were able to predict and coherently explain all data examined, which included stress, sleep, caloric restriction, stroke, type-1-diabetes mellitus, obesity, and type-2-diabetes, whereas the predictions of P-models failed in most cases. The strength of the evidence supporting A-models is based on the coherence of accurate predictions across a spectrum of metabolic states. The theory test conducted here speaks to a brain that pulls its energy from the body on-demand.
Collapse
Affiliation(s)
- Achim Peters
- Medical Clinic 1, Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | - Marie Sprengell
- Medical Clinic 1, Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Britta Kubera
- Medical Clinic 1, Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| |
Collapse
|
209
|
Durieux L, Herbeaux K, Borcuk C, Hildenbrand C, Andry V, Goumon Y, Barbelivien A, Mathis C, Bataglia D, Majchrzak M, Lecourtier L. Functional brain-wide network mapping during acute stress exposure in rats: Interaction between the lateral habenula and cortical, amygdalar, hypothalamic and monoaminergic regions. Eur J Neurosci 2022; 56:5154-5176. [PMID: 35993349 DOI: 10.1111/ejn.15803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/31/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Upon stress exposure, a broad network of structures comes into play in order to provide adequate responses and restore homeostasis. It has been known for decades that the main structures engaged during the stress response are the medial prefrontal cortex, the amygdala, the hippocampus, the hypothalamus, the monoaminergic systems (noradrenaline, dopamine and serotonin) and the periaqueductal gray. The lateral habenula (LHb) is an epithalamic structure directly connected to prefrontal cortical areas and to the amygdala, whereas it functionally interacts with the hippocampus. Also, it is a main modulator of monoaminergic systems. The LHb is activated upon exposure to basically all types of stressors, suggesting it is also involved in the stress response. However, it remains unknown if and how the LHb functionally interacts with the broad stress response network. In the current study we performed in rats a restraint stress procedure followed by immunohistochemical staining of the c-Fos protein throughout the brain. Using graph theory-based functional connectivity analyses, we confirm the principal hubs of the stress network (e.g., prefrontal cortex, amygdala and periventricular hypothalamus) and show that the LHb is engaged during stress exposure in close interaction with the medial prefrontal cortex, the lateral septum and the medial habenula. In addition, we performed DREADD-induced LHb inactivation during the same restraint paradigm in order to explore its consequences on the stress response network. This last experiment gave contrasting results as the DREADD ligand alone, clozapine-N-oxide, was able to modify the network.
Collapse
Affiliation(s)
- Laura Durieux
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
| | - Karine Herbeaux
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
| | - Christopher Borcuk
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
| | - Cécile Hildenbrand
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
| | - Virginie Andry
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France.,Mass Spectrometry Facilities of the CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Yannick Goumon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France.,Mass Spectrometry Facilities of the CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Alexandra Barbelivien
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
| | - Chantal Mathis
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
| | - Demian Bataglia
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France.,University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg, France.,Université d'Aix-Marseille, Inserm, Institut de Neurosciences des Systèmes (INS) UMR-S 1106, Marseille, France
| | - Monique Majchrzak
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
| | - Lucas Lecourtier
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
| |
Collapse
|
210
|
Musazzi L, Tornese P, Sala N, Lee FS, Popoli M, Ieraci A. Acute stress induces an aberrant increase of presynaptic release of glutamate and cellular activation in the hippocampus of BDNF Val/Met mice. J Cell Physiol 2022; 237:3834-3844. [PMID: 35908196 PMCID: PMC9796250 DOI: 10.1002/jcp.30833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 01/01/2023]
Abstract
Stressful life events are considered major risk factors for the development of several psychiatric disorders, though people differentially cope with stress. The reasons for this are still largely unknown but could be accounted for by individual genetic variants, previous life events, or the kind of stressors. The human brain-derived neurotrophic factor (BDNF) Val66Met variant, which was found to impair intracellular trafficking and activity-dependent secretion of BDNF, has been associated with increased susceptibility to develop several neuropsychiatric disorders, although there is still some controversial evidence. On the other hand, acute stress has been consistently demonstrated to promote the release of glutamate in cortico-limbic regions and altered glutamatergic transmission has been reported in psychiatric disorders. However, it is not known if the BDNF Val66Met single-nucleotide polymorphism (SNP) affects the stress-induced presynaptic glutamate release. In this study, we exposed adult male BDNFVal/Val and BDNFVal/Met knock-in mice to 30 min of acute restraint stress. Plasma corticosterone levels, glutamate release, protein, and gene expression in the hippocampus were analyzed immediately after the end of the stress session. Acute restraint stress similarly increased plasma corticosterone levels and nuclear glucocorticoid receptor levels and phosphorylation in both BDNFVal/Val and BDNFVal/Met mice. However, acute restraint stress induced higher increases in hippocampal presynaptic release of glutamate, phosphorylation of cAMP-response element binding protein (CREB), and levels of the immediate early gene c-fos of BDNFVal/Met compared to BFNFVal/Val mice. Moreover, acute restraint stress selectively increased phosphorylation levels of synapsin I at Ser9 and at Ser603 in BDNFVal/Val and BDNFVal/Met mice, respectively. In conclusion, we report here that the BDNF Val66Met SNP knock-in mice display an altered response to acute restraint stress in terms of hippocampal glutamate release, CREB phosphorylation, and neuronal activation, compared to wild-type animals. Taken together, these results could partially explain the enhanced vulnerability to stressful events of Met carriers reported in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Laura Musazzi
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Paolo Tornese
- Dipartimento di Scienze FarmaceuticheUniversity of MilanMilanItaly
| | - Nathalie Sala
- Dipartimento di Scienze FarmaceuticheUniversity of MilanMilanItaly
| | - Francis S. Lee
- Department of PsychiatryWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Maurizio Popoli
- Dipartimento di Scienze FarmaceuticheUniversity of MilanMilanItaly
| | | |
Collapse
|
211
|
Liu YF, Pan L, Feng M. Structural and functional brain alterations in Cushing's disease: A narrative review. Front Neuroendocrinol 2022; 67:101033. [PMID: 36126747 DOI: 10.1016/j.yfrne.2022.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
Abstract
Neurocognitive and psychiatric symptoms are non-negligible in Cushing's disease and are accompanied by structural and functional alterations of the brain. In this review, we have summarized multimodal neuroimaging and neurophysiological studies to highlight the current and historical understandings of the structural and functional brain alterations in Cushing's disease. Specifically, structural studies showed atrophy of the gray matter, loss of white matter integrity, and demyelination in widespread brain regions. Functional imaging studies have identified three major functional brain connectome networks influenced by hypercortisolemia: the limbic network, the default mode network, and the executive control network. After endocrinological remission, atrophy of gray matter regions and the compromised functional network activities were partially reversible, and the widespread white matter integrity alterations cannot recover in years. In conclusion, Cushing's disease patients display structural and functional brain connectomic alterations, which provides insights into the neurocognitive and psychiatric symptoms observed in this disease.
Collapse
Affiliation(s)
- Yi-Fan Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lei Pan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; School of Medicine, Tsinghua University, Beijing 100083, China
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
212
|
Nishimura KJ, Poulos A, Drew MR, Rajbhandari AK. Know thy SEFL: Fear sensitization and its relevance to stressor-related disorders. Neurosci Biobehav Rev 2022; 142:104884. [PMID: 36174795 DOI: 10.1016/j.neubiorev.2022.104884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/07/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022]
Abstract
Extreme stress can cause long-lasting changes in affective behavior manifesting in conditions such as post-traumatic stress disorder (PTSD). Understanding the biological mechanisms that govern trauma-induced behavioral dysregulation requires reliable and rigorous pre-clinical models that recapitulate multiple facets of this complex disease. For decades, Pavlovian fear conditioning has been a dominant paradigm for studying the effects of trauma through an associative learning framework. However, severe stress also causes long-lasting nonassociative fear sensitization, which is often overlooked in Pavlovian fear conditioning studies. This paper synthesizes recent research on the stress-enhanced fear learning (SEFL) paradigm, a valuable rodent model that can dissociate associative and nonassociative effects of stress. We discuss evidence that the SEFL paradigm produces nonassociative fear sensitization that is distinguishable from Pavlovian fear conditioning. We also discuss key biological variables, such as age and sex, neural circuit mechanisms, and crucial gaps in knowledge. We argue that nonassociative fear sensitization deserves more attention within current PTSD models and that SEFL provides a valuable complement to Pavlovian conditioning research on trauma-related pathology.
Collapse
Affiliation(s)
- Kenji J Nishimura
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA, 78712
| | - Andrew Poulos
- Department of Psychology and Center for Neuroscience Research, State University of New York at Albany, Albany, USA, 12222
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA, 78712
| | | |
Collapse
|
213
|
Gaszner T, Farkas J, Kun D, Ujvári B, Berta G, Csernus V, Füredi N, Kovács LÁ, Hashimoto H, Reglődi D, Kormos V, Gaszner B. Fluoxetine treatment supports predictive validity of the three hit model of depression in male PACAP heterozygous mice and underpins the impact of early life adversity on therapeutic efficacy. Front Endocrinol (Lausanne) 2022; 13:995900. [PMID: 36213293 PMCID: PMC9537566 DOI: 10.3389/fendo.2022.995900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 01/06/2023] Open
Abstract
According to the three hit concept of depression, interaction of genetic predisposition altered epigenetic programming and environmental stress factors contribute to the disease. Earlier we demonstrated the construct and face validity of our three hit concept-based mouse model. In the present work, we aimed to examine the predictive validity of our model, the third willnerian criterion. Fluoxetine treatment was applied in chronic variable mild stress (CVMS)-exposed (environmental hit) CD1 mice carrying one mutated allele of pituitary adenylate cyclase-activating polypeptide gene (genetic hit) that were previously exposed to maternal deprivation (epigenetic hit) vs. controls. Fluoxetine reduced the anxiety level in CVMS-exposed mice in marble burying test, and decreased the depression level in tail suspension test if mice were not deprived maternally. History of maternal deprivation caused fundamental functional-morphological changes in response to CVMS and fluoxetine treatment in the corticotropin-releasing hormone-producing cells of the bed nucleus of the stria terminalis and central amygdala, in tyrosine-hydroxylase content of ventral tegmental area, in urocortin 1-expressing cells of the centrally projecting Edinger-Westphal nucleus, and serotonergic cells of the dorsal raphe nucleus. The epigenetic background of alterations was approved by altered acetylation of histone H3. Our findings further support the validity of both the three hit concept and that of our animal model. Reversal of behavioral and functional-morphological anomalies by fluoxetine treatment supports the predictive validity of the model. This study highlights that early life stress does not only interact with the genetic and environmental factors, but has strong influence also on therapeutic efficacy.
Collapse
Affiliation(s)
- Tamás Gaszner
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - József Farkas
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - Dániel Kun
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary
| | - Valér Csernus
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - László Ákos Kovács
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Dóra Reglődi
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- ELKH-PTE PACAP Research Group Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, University of Pécs, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, Pécs, Hungary
- Research Group for Mood Disorders, Centre for Neuroscience & Szentágothai Research Centre, University Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
214
|
Tomas-Roig J, Ramasamy S, Zbarsky D, Havemann-Reinecke U, Hoyer-Fender S. Psychosocial stress and cannabinoid drugs affect acetylation of α-tubulin (K40) and gene expression in the prefrontal cortex of adult mice. PLoS One 2022; 17:e0274352. [PMID: 36129937 PMCID: PMC9491557 DOI: 10.1371/journal.pone.0274352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
The dynamics of neuronal microtubules are essential for brain plasticity. Vesicular transport and synaptic transmission, additionally, requires acetylation of α-tubulin, and aberrant tubulin acetylation and neurobiological deficits are associated. Prolonged exposure to a stressor or consumption of drugs of abuse, like marihuana, lead to neurological changes and psychotic disorders. Here, we studied the effect of psychosocial stress and the administration of cannabinoid receptor type 1 drugs on α-tubulin acetylation in different brain regions of mice. We found significantly decreased tubulin acetylation in the prefrontal cortex in stressed mice. The impact of cannabinoid drugs on stress-induced microtubule disturbance was investigated by administration of the cannabinoid receptor agonist WIN55,212–2 and/or antagonist rimonabant. In both, control and stressed mice, the administration of WIN55,212–2 slightly increased the tubulin acetylation in the prefrontal cortex whereas administration of rimonabant acted antagonistically indicating a cannabinoid receptor type 1 mediated effect. The analysis of gene expression in the prefrontal cortex showed a consistent expression of ApoE attributable to either psychosocial stress or administration of the cannabinoid agonist. Additionally, ApoE expression inversely correlated with acetylated tubulin levels when comparing controls and stressed mice treated with WIN55,212–2 whereas rimonabant treatment showed the opposite.
Collapse
Affiliation(s)
- Jordi Tomas-Roig
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
- * E-mail: (JTR); (SHF)
| | - Shyam Ramasamy
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Diana Zbarsky
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Ursula Havemann-Reinecke
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
- * E-mail: (JTR); (SHF)
| |
Collapse
|
215
|
Khan I, Cañamero L. The Long-Term Efficacy of "Social Buffering" in Artificial Social Agents: Contextual Affective Perception Matters. Front Robot AI 2022; 9:699573. [PMID: 36185976 PMCID: PMC9520257 DOI: 10.3389/frobt.2022.699573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/29/2022] [Indexed: 11/21/2022] Open
Abstract
In dynamic (social) environments, an affective state of "stress" can be adaptive and promote agent wellbeing, but maladaptive if not appropriately regulated. The presence of (and interactions with) affect-based social support has been hypothesised to provide mechanisms to regulate stress (the "social buffering" hypothesis), though the precise, underlying mechanisms are still unclear. However, the hormone oxytocin has been implicated in mediating these effects in at least two ways: by improving social appraisals and reducing the short-term release of stress hormones (i.e., cortisol), and adapting an agent's long-term stress tolerance. These effects likely facilitate an agent's long-term adaptive ability by grounding their physiological and behavioural adaptation in the (affective) social environment, though these effects also appear to be context-dependent. In this paper, we investigate whether two of the hypothesised hormonal mechanisms that underpin the "social buffering" phenomenon affect the long-term wellbeing of (artificial) social agents who share affective social bonds, across numerous social and physical environmental contexts. Building on previous findings, we hypothesise that "social buffering" effects can improve the long-term wellbeing of agents who share affective social bonds in dynamic environments, through regular prosocial interactions with social bond partners. We model some of the effects associated with oxytocin and cortisol that underpin these hypothesised mechanisms in our biologically-inspired, socially-adaptive agent model, and conduct our investigation in a small society of artificial agents whose goal is to survive in challenging environments. Our results find that, while stress can be adaptive and regulated through affective social support, long-term behavioural and physiological adaptation is determined by the contextual perception of affective social bonds, which is influenced by early-stage interactions between affective social bond partners as well as the degree of the physical and social challenges. We also show how these low-level effects associated with oxytocin and cortisol can be used as "biomarkers" of social support and environmental stress. For socially-situated artificial agents, we suggest that these "social buffering" mechanisms can adapt the (adaptive) stress mechanisms, but that the long-term efficacy of this adaptation is related to the temporal dynamics of social interactions and the contextual perception of the affective social and physical environments.
Collapse
Affiliation(s)
- Imran Khan
- Embodied Emotion, Cognition, and (Inter-)Action Lab, School of Physics, Engineering, and Computer Science, University of Hertfordshire, College Lane, Hatfield, United Kingdom
| | - Lola Cañamero
- Embodied Emotion, Cognition, and (Inter-)Action Lab, School of Physics, Engineering, and Computer Science, University of Hertfordshire, College Lane, Hatfield, United Kingdom
- ETIS Lab, CY Cergy Paris University—ENSEA—CNRS UMR8051, Cergy, France
| |
Collapse
|
216
|
Pallier PN, Ferrara M, Romagnolo F, Ferretti MT, Soreq H, Cerase A. Chromosomal and environmental contributions to sex differences in the vulnerability to neurological and neuropsychiatric disorders: Implications for therapeutic interventions. Prog Neurobiol 2022; 219:102353. [PMID: 36100191 DOI: 10.1016/j.pneurobio.2022.102353] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.
Collapse
Affiliation(s)
- Patrick N Pallier
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Maria Ferrara
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Women's Brain Project (WBP), Switzerland
| | - Francesca Romagnolo
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 9190401, Israel
| | - Andrea Cerase
- EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, RM, Italy; Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
217
|
Rejer I, Wacewicz D, Schab M, Romanowski B, Łukasiewicz K, Maciaszczyk M. Stressors Length and the Habituation Effect-An EEG Study. SENSORS (BASEL, SWITZERLAND) 2022; 22:6862. [PMID: 36146211 PMCID: PMC9505843 DOI: 10.3390/s22186862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The research described in this paper aimed to determine whether people respond differently to short and long stimuli and whether stress stimuli repeated over time evoke a habituation effect. To meet this goal, we performed a cognitive experiment with eight subjects. During this experiment, the subjects were presented with two trays of stress-inducing stimuli (different in length) interlaced with the main tasks. The mean beta power calculated from the EEG signal recorded from the two prefrontal electrodes (Fp1 and Fp2) was used as a stress index. The main results are as follows: (i) we confirmed the previous finding that beta power assessed from the EEG signal recorded from prefrontal electrodes is significantly higher for the STRESS condition compared to NON-STRESS condition; (ii) we found a significant difference in beta power between STRESS conditions that differed in length-the beta power was four times higher for short, compared to long, stress-inducing stimuli; (iii) we did not find enough evidence to confirm (or reject) the hypothesis that stress stimuli repeated over time evoke the habituation effect; although the general trends aggregated over subjects and stressors were negative, their slopes were not statistically significant; moreover, there was no agreement among subjects with respect to the slope of individual trends.
Collapse
|
218
|
Hu W, Zhao X, Liu Y, Ren Y, Wei Z, Tang Z, Tian Y, Sun Y, Yang J. Reward sensitivity modulates the brain reward pathway in stress resilience via the inherent neuroendocrine system. Neurobiol Stress 2022; 20:100485. [PMID: 36132434 PMCID: PMC9483565 DOI: 10.1016/j.ynstr.2022.100485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
In the previous 10 years, researchers have suggested a critical role for the brain reward system in stress resilience. However, no study has provided an empirical link between activity in the mesostriatal reward regions during stress and the recovery of cortisol stress response. Moreover, although reward sensitivity as a trait has been demonstrated to promote stress resilience, it remains unclear whether it modulates the brain reward system in stress resilience and how this effect is achieved by the inherent neuroendocrine system. To investigate these uncertainties, 70 young adults were recruited to participate in a ScanSTRESS task, and their brain imaging data and saliva samples (for cortisol assay) were collected during the task. In addition, we assessed reward sensitivity, cortisol awakening response, and intrinsic functional connectivity of the brain in all the participants. We found that left putamen activation during stress exposure positively predicted cortisol recovery. In addition, reward sensitivity was positively linked with activation of the left putamen, and this relationship was serially mediated by the cortisol awakening response and right hippocampus-left inferior frontal gyrus intrinsic connectivity. These findings suggest that reward sensitivity modulates reward pathways in stress resilience through the interplay of the diurnal stress response system and network of the hippocampus-prefrontal circuitry. Summarily, the current study built a model to highlight the dynamic and multifaceted interaction between pertinent allostatic factors in the reward-resilience pathway and uncovered new insight into the resilience function of the mesostriatal reward system during stress. Cortisol recovery can be predicted by activation of the left putamen in stress. Activation of the left putamen was positively linked with reward sensitivity. This relationship was serially mediated by the cortisol awakening response and right hippocampus-left inferior frontal gyrus intrinsic coupling.
Collapse
Affiliation(s)
- Weiyu Hu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Xiaolin Zhao
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yadong Liu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yipeng Ren
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Zhenni Wei
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Zihan Tang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yun Tian
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yadong Sun
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Juan Yang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| |
Collapse
|
219
|
Polick CS, Polick SR, Stoddard SA. Relationships between childhood trauma and multiple sclerosis: A systematic review. J Psychosom Res 2022; 160:110981. [PMID: 35779440 DOI: 10.1016/j.jpsychores.2022.110981] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Adverse Childhood Experiences (ACEs), such as physical, emotional, and sexual abuse trigger inflammatory changes and have been associated with many causes of morbidity and mortality, including autoimmune diseases. Although Multiple Sclerosis (MS) is a debilitating neurological autoimmune disease, literature linking ACEs and MS is understudied. The aim of this review was to examine the 1) state of the literature, and 2) relationships between childhood adversity and the prevalence and physical clinical features of MS (e.g., age at onset, relapses, pain, fatigue, disability). METHODS A comprehensive search was preformed through five databases and by hand using the ancestry and descendancy approach for connections to papers published through January 20th, 2022. Studies were screened by independent reviewers using Rayyan.ai, and critically appraised for both quality and reporting transparency. RESULTS Twelve studies examined relationships between any ACE(s) and the prevalence or physical clinical features of MS. There was considerable variance in the measurement of stressors, confounders, and categorization of MS; however most studies (n = 10) demonstrated an association between ACEs and MS (alone or grouped with other similar diagnoses), or physical clinical features. CONCLUSION Although there are few studies in this area, it is of quickly growing interest. These results should be cautiously interpreted, yet highlight the need for continued work to disentangle and discern true associations.
Collapse
Affiliation(s)
- Carri S Polick
- University of Michigan, School of Nursing, Ann Arbor, MI, United States of America.
| | - Scott R Polick
- Department of Psychiatry, St. Joseph Mercy Health System, Ann Arbor, MI, United States of America.
| | - Sarah A Stoddard
- University of Michigan, School of Nursing, Ann Arbor, MI, United States of America.
| |
Collapse
|
220
|
Shintani Y, Hayata-Takano A, Yamano Y, Ikuta M, Takeshita R, Takuma K, Okada T, Toyooka N, Takasaki I, Miyata A, Kurihara T, Hashimoto H. Small-molecule non-peptide antagonists of the PACAP receptor attenuate acute restraint stress-induced anxiety-like behaviors in mice. Biochem Biophys Res Commun 2022; 631:146-151. [DOI: 10.1016/j.bbrc.2022.09.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
|
221
|
Oshri A, Cui Z, Owens M, Carvalho C, Sweet L. Low-to-moderate level of perceived stress strengthens working memory: Testing the hormesis hypothesis through neural activation. Neuropsychologia 2022; 176:108354. [PMID: 36041501 DOI: 10.1016/j.neuropsychologia.2022.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
The negative impact of stress on neurocognitive functioning is extensively documented by empirical research. However, emerging reports suggest that stress may also confer positive neurocognitive effects. This hypothesis has been advanced by the hormesis model of psychosocial stress, in which low-moderate levels of stress are expected to result in neurocognitive benefits, such as improved working memory (WM), a central executive function. We tested the hormesis hypothesis, purporting an inverted U-shaped relation between stress and neurocognitive performance, in a large sample of young adults from the Human Connectome Project (n = 1000, Mage = 28.74, SD = 3.67, 54.3% female). In particular, we investigated whether neural response during a WM challenge is a potential intermediary through which low-moderate levels of stress confer beneficial effects on WM performance. Further, we tested whether the association between low-moderate prolonged stress and WM-related neural function was stronger in contexts with more psychosocial resources. Findings showed that low-moderate levels of perceived stress were associated with elevated WM-related neural activation, resulting in more optimal WM behavioral performance (α *β = -0.02, p = .046). The strength of this association tapered off at high-stress levels. Finally, we found that the benefit of low-moderate stress was stronger among individuals with access to higher levels of psychosocial resources (β = -0.06, p = .021). By drawing attention to the dose-dependent, nonlinear relation between stress and WM, this study highlights emerging evidence of a process by which mild stress induces neurocognitive benefits, and the psychosocial context under which benefits are most likely to manifest.
Collapse
Affiliation(s)
- Assaf Oshri
- Youth Development Institute, Human Development and Family Science, University of Georgia, Georgia; Department of Psychology, University of Georgia, Georgia.
| | - Zehua Cui
- Youth Development Institute, Human Development and Family Science, University of Georgia, Georgia; The Neuroscience Program, University of Georgia, Georgia
| | - Max Owens
- Peter Boris Centre for Addictions Research, McMaster University/ St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Cory Carvalho
- Youth Development Institute, Human Development and Family Science, University of Georgia, Georgia
| | - Lawrence Sweet
- Youth Development Institute, Human Development and Family Science, University of Georgia, Georgia; Department of Psychology, University of Georgia, Georgia
| |
Collapse
|
222
|
Zhang L, Zhang P, Qi G, Cai H, Li T, Li M, Cui C, Lei J, Ren K, Yang J, Ming J, Tian B. A zona incerta-basomedial amygdala circuit modulates aversive expectation in emotional stress-induced aversive learning deficits. Front Cell Neurosci 2022; 16:910699. [PMID: 36090791 PMCID: PMC9459227 DOI: 10.3389/fncel.2022.910699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
A previously published study showed that stress may interfere with associative aversive learning and facilitate mood-related disorders. However, whether emotional stress alone affects aversive learning is unknown. Using three chamber-vicarious social defeat stress (3C-VSDS) model mice, we investigated the effect of emotional stress on aversive learning. An important origin of dopamine (DA) neurons, the zona incerta (ZI), is expected to be a novel target for the modulation of aversive learning. However, less is known about the circuit mechanism of ZIDA neurons in aversive learning. Here, we subjected mice to a fear-conditioning system (FCS) and observed an increased calcium activity of ZI TH+ neurons in aversive expectation during the conditioning phase, especially during the late stage of the conditional stimulus (CS) when CS and unconditional stimulus (US) pairings were used. Optogenetic inhibition of ZI TH+ neurons at the late stage of CS disrupted conditioned fear learning in mice. We further identified a TH+ projection from the ZI to the basomedial amygdala (BMA) and found that optogenetic inhibition of the ZI-BMA circuit could also block aversive learning. Finally, we used 3C-VSDS mice as a model of emotional stress. We found that the 3C-VSDS model mice demonstrated reduced aversive expectation associated with ZI TH+ neurons in the late stage of CS and impaired aversive learning in FCS. Optogenetic activation of ZI-BMA TH+ projections in the late stage of CS significantly reversed the aversive FCS learning disability of 3C-VSDS model mice. These data suggest that a TH+ circuit from the ZI to the BMA is required for aversive expectation, both at baseline and in 3C-VSDS-induced aversive learning deficits and that this circuit is a potential target for the modulation of aversive learning. Low activity of ZI-BMA TH+ projections is one reason for 3C-VSDS-induced aversive learning deficits.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, China
| | - Guangjian Qi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, China
| | - Hongwei Cai
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongxia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Cui
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Lei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Ren
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, China
- *Correspondence: Bo Tian,
| |
Collapse
|
223
|
Brivio P, Gallo MT, Gruca P, Lason M, Litwa E, Fumagalli F, Papp M, Calabrese F. Resilience to chronic mild stress-induced anhedonia preserves the ability of the ventral hippocampus to respond to an acute challenge. Eur Arch Psychiatry Clin Neurosci 2022:10.1007/s00406-022-01470-0. [PMID: 36018382 PMCID: PMC10359391 DOI: 10.1007/s00406-022-01470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/02/2022] [Indexed: 11/03/2022]
Abstract
Stress is a major precipitating factor for psychiatric disorders and its effects may depend on its duration and intensity. Of note, there are differences in individual susceptibility to stress, with some subjects displaying vulnerability and others showing resistance. Furthermore, the ability to react to stressful-life events can alter the response to a subsequent new stressor. Hence, we investigated whether the vulnerability and resilience to the chronic mild stress (CMS) paradigm, in terms of the hedonic phenotype, are paralleled by a different response when facing a novel acute challenge. Specifically, rats submitted to CMS were stratified based on their sucrose intake into vulnerable (anhedonic rats showing reduce intake of sucrose) and resilient (rats not showing the anhedonic-like behavior) subgroups and then further exposed to an acute restraint stress (ARS). Then, neuronal activation was investigated by measuring the gene expression of early immediate (IEG) genes such as Arc and Cfos and early response (ERG) genes, such as Gadd45β, Sgk1, Dusp1, and Nr4a1, in brain regions that play a crucial role in the stress response. We found that resilient rats preserve the ability to increase ERG expression following the ARS selectively in the ventral hippocampus. Conversely, such ability is lost in vulnerable rats. Interestingly, the recovery from the anhedonic phenotype observed in vulnerable rats after 3 weeks of rest from the CMS procedure also parallels the restoration of the ability to adequately respond to the challenge. In conclusion, these findings support the role of the ventral subregion of the hippocampus in the management of both chronic and acute stress response and point to this brain subregion as a critical target for a potential therapeutic strategy aimed at promoting stress resilience.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
224
|
Liu T, Qi C, Bai W, Tian X, Zheng X. Behavioral state-dependent oscillatory activity in prefrontal cortex induced by chronic social defeat stress. Front Neurosci 2022; 16:885432. [PMID: 36033616 PMCID: PMC9403768 DOI: 10.3389/fnins.2022.885432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic stress contributes to the onset and exacerbation of major depressive disorder (MDD) through the oscillatory activity in the prefrontal cortex (PFC). However, the oscillations on which chronic social stress converges to yield the behavioral state of social avoidance are largely unknown. Here, we use a chronic social defeat stress model and in vivo electrophysiological recordings to uncover a novel neurophysiological measure that predicts the social behavioral state in stressed animals. First, in this study, we find that chronic social defeat stress model induces depression-like behaviors (anhedonia and social avoidance). Second, we find statistically significant differences in PFC oscillatory activity across different frequency ranges in social behavioral state, and the oscillatory activity correlates with stress-induced behavioral state. Finally, we show that the social behavioral states are accurately decoded from the oscillatory activity based on machine learning. Together, these results demonstrate that naturally occurring differences in PFC oscillation underlie the social behavioral state that accompanies the emergence of stress-induced behavioral dysfunction.
Collapse
|
225
|
Visualization and Semantic Labeling of Mood States Based on Time-Series Features of Eye Gaze and Facial Expressions by Unsupervised Learning. Healthcare (Basel) 2022; 10:healthcare10081493. [PMID: 36011150 PMCID: PMC9408575 DOI: 10.3390/healthcare10081493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
This study is intended to develop a stress measurement and visualization system for stress management in terms of simplicity and reliability. We present a classification and visualization method of mood states based on unsupervised machine learning (ML) algorithms. Our proposed method attempts to examine the relation between mood states and extracted categories in human communication from facial expressions, gaze distribution area and density, and rapid eye movements, defined as saccades. Using a psychological check sheet and a communication video with an interlocutor, an original benchmark dataset was obtained from 20 subjects (10 male, 10 female) in their 20s for four or eight weeks at weekly intervals. We used a Profile of Mood States Second edition (POMS2) psychological check sheet to extract total mood disturbance (TMD) and friendliness (F). These two indicators were classified into five categories using self-organizing maps (SOM) and U-Matrix. The relation between gaze and facial expressions was analyzed from the extracted five categories. Data from subjects in the positive categories were found to have a positive correlation with the concentrated distributions of gaze and saccades. Regarding facial expressions, the subjects showed a constant expression time of intentional smiles. By contrast, subjects in negative categories experienced a time difference in intentional smiles. Moreover, three comparative experiment results demonstrated that the feature addition of gaze and facial expressions to TMD and F clarified category boundaries obtained from U-Matrix. We verify that the use of SOM and its two variants is the best combination for the visualization of mood states.
Collapse
|
226
|
Haile A, Watts M, Aichner S, Stahlberg F, Hoffmann V, Tschoep MH, Meissner K. Central correlates of placebo effects in nausea differ between men and women. Brain Behav 2022; 12:e2685. [PMID: 35810479 PMCID: PMC9392536 DOI: 10.1002/brb3.2685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/29/2022] [Accepted: 06/12/2022] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Despite growing evidence validating placebo effects in nausea, little is known about the underlying cortical mechanisms in women and men. Therefore, the present study examined sex differences and electroencephalography (EEG) characteristics of the placebo effect on nausea. METHODS On 2 consecutive days, 90 healthy subjects (45 females) were exposed to a nauseating visual stimulus. Nausea was continuously rated on an 11-point numeric rating scale, and 32 EEG channels were recorded. On day 2, subjects were randomly allocated to either placebo treatment or no treatment: the placebo group received sham acupuncture, whereas the control group did not receive any intervention. RESULTS In contrast to the control group, both sexes in the placebo group showed reduced signs for anticipatory nausea in the EEG, indexed by increased frontal lobe and anterior cingulate activity. Among women, the improvement in perceived nausea in the placebo group was accompanied by decreased activation in the parietal, frontal, and temporal lobes. In contrast, the placebo-related improvement of perceived nausea in men was accompanied by increased activation in the limbic and sublobar (insular) lobes. CONCLUSION Activation of the parietal lobe in women during the placebo intervention may reflect altered afferent activity from gastric mechanoreceptors during nausea-induced tachyarrhythmia, whereas in men, altered interoceptive signals in the insular cortex might play a role. Thus, the results suggest different cerebral mechanisms underlying the placebo effects in men and women, which could have implications for the treatment of nausea.
Collapse
Affiliation(s)
- Anja Haile
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mallissa Watts
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Simone Aichner
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Franziska Stahlberg
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Verena Hoffmann
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Matthias H Tschoep
- Helmholtz Diabetes Center and German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany.,Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Karin Meissner
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany.,Division of Health Promotion, Coburg University of Applied Sciences & Arts, Coburg, Germany
| |
Collapse
|
227
|
Is perceived stress linked to enhanced cognitive functioning and reduced risk for psychopathology? Testing the hormesis hypothesis. Psychiatry Res 2022; 314:114644. [PMID: 35772214 DOI: 10.1016/j.psychres.2022.114644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 12/25/2022]
Abstract
Extensive research documents the impact of psychosocial stress on risk for the development of psychiatric symptoms across one's lifespan. Further, evidence exists that cognitive functioning mediates this link. However, a growing body of research suggests that limited stress can result in cognitive benefits that may contribute to resilience. The hypothesis that low-to-moderate levels of stress are linked to more adaptive outcomes has been referred to as hormesis. Using a sample of young adults from the Human Connectome Project (N = 1,206, 54.4% female, Mage = 28.84), the present study aims to test the hormetic effect between low-to-moderate perceived stress and psychopathological symptoms (internalizing and externalizing symptoms), as well as to cross-sectionally explore the intermediate role of cognitive functioning in this effect. Results showed cognitive functioning as a potential intermediating mechanism underlying the curvilinear associations between perceived stress and externalizing, but not internalizing, behaviors. This study provides preliminary support for the benefits of limited stress to the process of human resilience.
Collapse
|
228
|
Repo S, Elovainio M, Pyörälä E, Iriarte-Lüttjohann M, Tuominen T, Härkönen T, Gluschkoff K, Paunio T. Comparison of two different mindfulness interventions among health care students in Finland: a randomised controlled trial. ADVANCES IN HEALTH SCIENCES EDUCATION : THEORY AND PRACTICE 2022; 27:709-734. [PMID: 35503145 PMCID: PMC9063251 DOI: 10.1007/s10459-022-10116-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
We investigated the short- and long-term effects of two different evidence-based mindfulness training on students' stress and well-being. A randomised controlled trial with three measurement points (baseline, post-intervention, and 4 months post-intervention) was conducted among undergraduate students of medicine, dentistry, psychology, and logopaedics at the University of Helsinki. The participants were randomly assigned into three groups: (1) face-to-face mindfulness training based on the Mindfulness Skills for Students course (n = 40), (2) a web-based Student Compass program using Mindfulness and Acceptance and Commitment therapy (n = 22), and (3) a control group that received mental health support as usual (n = 40). The primary outcome was psychological distress measured using the Clinical Outcomes in Routine Evaluation Outcome Measure (CORE-OM). Secondary outcomes included hair cortisol concentrations and a wide range of well-being indicators. Psychological distress increased in all the groups from baseline to post-intervention, but significantly less so in the intervention groups than in the control group. At 4-month follow-up, were found no differences between the primary outcomes of the control and intervention groups, but the participants who continued practising mindfulness at least twice a week were less stressed than the others. Our results suggest that participating in a mindfulness course may mitigate health care students' psychological distress during the academic year, but only if the participants continue practising mindfulness at least twice a week.
Collapse
Affiliation(s)
- Saara Repo
- Centre for University Teaching and Learning, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland.
| | - Marko Elovainio
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Eeva Pyörälä
- Centre for University Teaching and Learning, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland
| | | | | | - Tiina Härkönen
- Research Services, University of Helsinki, Helsinki, Finland
| | - Kia Gluschkoff
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Tiina Paunio
- Department of Psychiatry and SleepWell Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
229
|
Du Y, Shi Y, Wang X, Song H, Wang X, Hao Y, Zhao Y, Guo X, Shi M, Gong M, Song L, Wang S, Gao Y, Shi H. Hippocampal Semaphorin 3B Improves Depression-like Behaviours in Mice by Upregulating Synaptic Plasticity and Inhibiting Neuronal Apoptosis. J Neurochem 2022; 163:133-148. [PMID: 35892177 DOI: 10.1111/jnc.15680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/03/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022]
Abstract
Depression is a global health problem, and there is a pressing need for a better understanding of its pathogenesis. Semaphorin 3B (Sema 3B) is an important axon guidance molecule that is primarily expressed in neurons and contributes to synaptic plasticity. Our previous studies using a high-throughput microarray assay suggested that Sema 3B expression was tremendously decreased during the development of depression, but the specific role and mechanisms of Sema 3B in depression are still unknown. Herein, we report that levels of Sema 3B protein are decreased in the hippocampus and serum of chronic mild stress (CMS)-treated mice. Increasing the levels of Sema 3B, either by injecting AAV-Sema 3B into the hippocampus or by injecting recombinant Sema 3B protein into the lateral ventricles, alleviated CMS-induced depression-like behaviours and enhanced the resistance to acute stress by increasing dendritic spine density in hippocampal neurons. In contrast, interfering the function of Sema 3B by injecting anti-Sema 3B antibody into the lateral ventricles decreased the resistance to acute stress. In vitro, corticosterone (CORT) treatment decreased survival rate and protein levels of Sema 3B and synapse-associated proteins in HT22 cells. Overexpression of Sema 3B improved the decreased survival rate caused by CORT by inhibiting apoptosis and increasing levels of synaptic-associated proteins. And knockdown of Sema 3B reduces the cellular resistance to CORT and the levels of synapse-associated proteins. These findings represent the first evidence for the neuroprotective mechanism of Sema 3B against stresses, suggesting that Sema 3B could be a promising novel target for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Yuru Du
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.,Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Yun Shi
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.,Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China.,Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of, China, Shijiazhuang, Hebei
| | - Xi Wang
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.,Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China.,Department of Endocrinology, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Han Song
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.,Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Xinhao Wang
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.,Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Ying Hao
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.,Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Ye Zhao
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.,Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Xiangfei Guo
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.,Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Mengxu Shi
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.,Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Miao Gong
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.,Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Li Song
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.,Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Sheng Wang
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.,Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Yuan Gao
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.,Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Haishui Shi
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.,Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
230
|
Singh M, Xu Q, Wang SJ, Hong T, Ghassemi MM, Lo AW. Real-time extended psychophysiological analysis of financial risk processing. PLoS One 2022; 17:e0269752. [PMID: 35877608 PMCID: PMC9312384 DOI: 10.1371/journal.pone.0269752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
We study the relationships between the real-time psychophysiological activity of professional traders, their financial transactions, and market fluctuations. We collected multiple physiological signals such as heart rate, blood volume pulse, and electrodermal activity of 55 traders at a leading global financial institution during their normal working hours over a five-day period. Using their physiological measurements, we implemented a novel metric of trader’s “psychophysiological activation” to capture affect such as excitement, stress and irritation. We find statistically significant relations between traders’ psychophysiological activation levels and such as their financial transactions, market fluctuations, the type of financial products they traded, and their trading experience. We conducted post-measurement interviews with traders who participated in this study to obtain additional insights in the key factors driving their psychophysiological activation during financial risk processing. Our work illustrates that psychophysiological activation plays a prominent role in financial risk processing for professional traders.
Collapse
Affiliation(s)
- Manish Singh
- MIT Laboratory for Financial Engineering, Cambridge, Massachusetts, United States of America
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Qingyang Xu
- MIT Laboratory for Financial Engineering, Cambridge, Massachusetts, United States of America
- Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sarah J. Wang
- MIT Laboratory for Financial Engineering, Cambridge, Massachusetts, United States of America
| | - Tinah Hong
- MIT Laboratory for Financial Engineering, Cambridge, Massachusetts, United States of America
| | - Mohammad M. Ghassemi
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, United States of America
- Ghamut Corporation, East Lansing, MI, United States of America
| | - Andrew W. Lo
- MIT Laboratory for Financial Engineering, Cambridge, Massachusetts, United States of America
- Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- MIT Sloan School of Management, Cambridge, Massachusetts, United States of America
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
231
|
Sachett A, Gallas-Lopes M, Benvenutti R, Marcon M, Linazzi AM, Aguiar GPS, Herrmann AP, Oliveira JV, Siebel AM, Piato A. Non-micronized and micronized curcumin do not prevent the behavioral and neurochemical effects induced by acute stress in zebrafish. Pharmacol Rep 2022; 74:736-744. [DOI: 10.1007/s43440-022-00389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
|
232
|
Xu S, Yao X, Li B, Cui R, Zhu C, Wang Y, Yang W. Uncovering the Underlying Mechanisms of Ketamine as a Novel Antidepressant. Front Pharmacol 2022; 12:740996. [PMID: 35872836 PMCID: PMC9301111 DOI: 10.3389/fphar.2021.740996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is a devastating psychiatric disorder which exacts enormous personal and social-economic burdens. Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been discovered to exert rapid and sustained antidepressant-like actions on MDD patients and animal models. However, the dissociation and psychotomimetic propensities of ketamine have limited its use for psychiatric indications. Here, we review recently proposed mechanistic hypotheses regarding how ketamine exerts antidepressant-like actions. Ketamine may potentiate α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR)-mediated transmission in pyramidal neurons by disinhibition and/or blockade of spontaneous NMDAR-mediated neurotransmission. Ketamine may also activate neuroplasticity- and synaptogenesis-relevant signaling pathways, which may converge on key components like brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) and mechanistic target of rapamycin (mTOR). These processes may subsequently rebalance the excitatory/inhibitory transmission and restore neural network integrity that is compromised in depression. Understanding the mechanisms underpinning ketamine’s antidepressant-like actions at cellular and neural circuit level will drive the development of safe and effective pharmacological interventions for the treatment of MDD.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Yao Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| |
Collapse
|
233
|
Role of Dopamine Transporter in the Relationship Between Plasma Cortisol and Cognition. Psychosom Med 2022; 84:685-694. [PMID: 35472074 DOI: 10.1097/psy.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Cortisol is associated with cognition in both healthy individuals and patients with neuropsychiatric disorders. Regarding the effects of cortisol on the dopamine system and the association between dopamine transporter (DAT) and cognition, DAT might be a central target linking cortisol and cognition. This study explored the role of striatal DAT in the cortisol-cognition relationship. METHODS We recruited 33 patients with carbon monoxide poisoning and 33 age- and sex-matched healthy controls. All participants underwent cognitive assessments of attention, memory, and executive function. Single-photon emission computed tomography with 99mTc-TRODAT was used to determine striatal DAT availability. Plasma cortisol, tumor necrosis factor α, and interleukin-10 levels were measured using enzyme-linked immunosorbent assays. RESULTS Compared with healthy controls, patients with carbon monoxide poisoning had lower cognitive performance, bilateral striatal DAT availability, and plasma tumor necrosis factor-α levels and higher cortisol and interleukin-10 levels. In all participants, plasma cortisol level and bilateral striatal DAT availability were negatively and positively related to cognition, respectively, including memory and executive function with β from -0.361 (95% confidence interval [CI] = -0.633 to -0.090) to 0.588 (95% CI = 0.319 to 0.858). Moreover, bilateral striatal DAT mediated the cortisol-cognition relationship with indirect effects from -0.067 (95% CI = -0.179 to -0.001) to -0.135 (95% CI = -0.295 to -0.024). The cytokine levels did not influence the mediation effects. CONCLUSIONS This is the first study to demonstrate that striatal DAT mediates the cortisol-cognition relationship. Future studies are needed to comprehensively evaluate the role of the dopamine system in cortisol-cognition associations and treatment implications.
Collapse
|
234
|
Schär S, Mürner-Lavanchy I, Schmidt SJ, Koenig J, Kaess M. Child maltreatment and hypothalamic-pituitary-adrenal axis functioning: A systematic review and meta-analysis. Front Neuroendocrinol 2022; 66:100987. [PMID: 35202606 DOI: 10.1016/j.yfrne.2022.100987] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
Alterations in hypothalamic-pituitary-adrenal (HPA) axis and its effector hormone cortisol have been proposed as one possible mechanism linking child maltreatment experiences to health disparities. In this series of meta-analyses, we aimed to quantify the existing evidence on the effect of child maltreatment on various measures of HPA axis activity. The systematic literature search yielded 1,858 records, of which 87 studies (k = 132) were included. Using random-effects models, we found evidence for blunted cortisol stress reactivity in individuals exposed to child maltreatment. In contrast, no overall differences were found in any of the other HPA axis activity measures (including measures of daily activity, cortisol assessed in the context of pharmacological challenges and cumulative measures of cortisol secretion). The impact of several moderators (e.g., sex, psychopathology, study quality), the role of methodological shortcomings of existing studies, as well as potential directions for future research are discussed.
Collapse
Affiliation(s)
- Selina Schär
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Ines Mürner-Lavanchy
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Stefanie J Schmidt
- Department of Clinical Psychology and Psychotherapy, University of Bern, Bern, Switzerland
| | - Julian Koenig
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany; Section for Experimental Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Clinic for Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
235
|
Birba A, Santamaría-García H, Prado P, Cruzat J, Ballesteros AS, Legaz A, Fittipaldi S, Duran-Aniotz C, Slachevsky A, Santibañez R, Sigman M, García AM, Whelan R, Moguilner S, Ibáñez A. Allostatic-Interoceptive Overload in Frontotemporal Dementia. Biol Psychiatry 2022; 92:54-67. [PMID: 35491275 PMCID: PMC11184918 DOI: 10.1016/j.biopsych.2022.02.955] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND The predictive coding theory of allostatic-interoceptive load states that brain networks mediating autonomic regulation and interoceptive-exteroceptive balance regulate the internal milieu to anticipate future needs and environmental demands. These functions seem to be distinctly compromised in behavioral variant frontotemporal dementia (bvFTD), including alterations of the allostatic-interoceptive network (AIN). Here, we hypothesize that bvFTD is typified by an allostatic-interoceptive overload. METHODS We assessed resting-state heartbeat evoked potential (rsHEP) modulation as well as its behavioral and multimodal neuroimaging correlates in patients with bvFTD relative to healthy control subjects and patients with Alzheimer's disease (N = 94). We measured 1) resting-state electroencephalography (to assess the rsHEP, prompted by visceral inputs and modulated by internal body sensing), 2) associations between rsHEP and its neural generators (source location), 3) cognitive disturbances (cognitive state, executive functions, facial emotion recognition), 4) brain atrophy, and 5) resting-state functional magnetic resonance imaging functional connectivity (AIN vs. control networks). RESULTS Relative to healthy control subjects and patients with Alzheimer's disease, patients with bvFTD presented more negative rsHEP amplitudes with sources in critical hubs of the AIN (insula, amygdala, somatosensory cortex, hippocampus, anterior cingulate cortex). This exacerbated rsHEP modulation selectively predicted the patients' cognitive profile (including cognitive decline, executive dysfunction, and emotional impairments). In addition, increased rsHEP modulation in bvFTD was associated with decreased brain volume and connectivity of the AIN. Machine learning results confirmed AIN specificity in predicting the bvFTD group. CONCLUSIONS Altogether, these results suggest that bvFTD may be characterized by an allostatic-interoceptive overload manifested in ongoing electrophysiological markers, brain atrophy, functional networks, and cognition.
Collapse
Affiliation(s)
- Agustina Birba
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile; National Scientific and Technical Research Council, Buenos Aires, Argentina; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Hernando Santamaría-García
- PhD Neuroscience Program, Physiology and Psychiatry Departments, Pontificia Universidad Javeriana, Bogotá, Colombia; Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia; Global Brain Health Institute, University of California San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
| | - Pavel Prado
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Josefina Cruzat
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile
| | | | - Agustina Legaz
- National Scientific and Technical Research Council, Buenos Aires, Argentina; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Sol Fittipaldi
- National Scientific and Technical Research Council, Buenos Aires, Argentina; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Claudia Duran-Aniotz
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile; Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Andrea Slachevsky
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, Institute of Biomedical Sciences, Santiago, Chile; Memory and Neuropsychiatric Clinic, Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile; Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Santibañez
- Neurology Service, Hospital Dr. Sótero del Río, Santiago, Chile; Neurology Department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariano Sigman
- National Scientific and Technical Research Council, Buenos Aires, Argentina; Laboratorio de Neurociencia, Universidad Torcuato Di Tella, Buenos Aires, Argentina; Facultad de Lenguas y Educación, Universidad Nebrija, Madrid, Spain
| | - Adolfo M García
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile; National Scientific and Technical Research Council, Buenos Aires, Argentina; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina; Global Brain Health Institute, University of California San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
| | - Robert Whelan
- Global Brain Health Institute, University of California San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sebastián Moguilner
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile; National Scientific and Technical Research Council, Buenos Aires, Argentina; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina; Global Brain Health Institute, University of California San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Agustín Ibáñez
- Latin American Brain Health Institute, Universidad Adolfo Ibáñez, Santiago, Chile; National Scientific and Technical Research Council, Buenos Aires, Argentina; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina; Global Brain Health Institute, University of California San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
236
|
Huggins AA, McTeague LM, Davis MM, Bustos N, Crum KI, Polcyn R, Adams ZW, Carpenter LA, Hajcak G, Halliday CA, Joseph JE, Danielson CK. Neighborhood Disadvantage Associated With Blunted Amygdala Reactivity to Predictable and Unpredictable Threat in a Community Sample of Youth. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:242-252. [PMID: 35928141 PMCID: PMC9348572 DOI: 10.1016/j.bpsgos.2022.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Childhood socioeconomic disadvantage is a form of adversity associated with alterations in critical frontolimbic circuits involved in the pathophysiology of psychiatric disorders. Most work has focused on individual-level socioeconomic position, yet individuals living in deprived communities typically encounter additional environmental stressors that have unique effects on the brain and health outcomes. Notably, chronic and unpredictable stressors experienced in the everyday lives of youth living in disadvantaged neighborhoods may impact neural responsivity to uncertain threat. METHODS A community sample of children (N = 254) ages 8 to 15 years (mean = 12.15) completed a picture anticipation task during a functional magnetic resonance imaging scan, during which neutral and negatively valenced photos were presented in a temporally predictable or unpredictable manner. Area Deprivation Index (ADI) scores were derived from participants' home addresses as an index of relative neighborhood disadvantage. Voxelwise analyses examined interactions of ADI, valence, and predictability on neural response to picture presentation. RESULTS There was a significant ADI × valence interaction in the middle temporal gyrus, anterior cingulate cortex, hippocampus, and amygdala. Higher ADI was associated with less amygdala activation to negatively valenced images. ADI also interacted with predictability. Higher ADI was associated with greater activation of lingual and calcarine gyri for unpredictably presented stimuli. There was no three-way interaction of ADI, valence, and predictability. CONCLUSIONS Neighborhood disadvantage may impact how the brain perceives and responds to potential threats. Future longitudinal work is critical for delineating how such effects may persist across the life span and how health outcomes may be modifiable with community-based interventions and policies.
Collapse
Affiliation(s)
- Ashley A. Huggins
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, North Carolina
| | - Lisa M. McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Megan M. Davis
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nicholas Bustos
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Kathleen I. Crum
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rachel Polcyn
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Zachary W. Adams
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Laura A. Carpenter
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Greg Hajcak
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Colleen A. Halliday
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Jane E. Joseph
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Carla Kmett Danielson
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
237
|
Wang ZJ, Shwani T, Liu J, Zhong P, Yang F, Schatz K, Zhang F, Pralle A, Yan Z. Molecular and cellular mechanisms for differential effects of chronic social isolation stress in males and females. Mol Psychiatry 2022; 27:3056-3068. [PMID: 35449296 PMCID: PMC9615910 DOI: 10.1038/s41380-022-01574-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/21/2022]
Abstract
Chronic social isolation stress during adolescence induces susceptibility for neuropsychiatric disorders. Here we show that 5-week post-weaning isolation stress induces sex-specific behavioral abnormalities and neuronal activity changes in the prefrontal cortex (PFC), basal lateral amygdala (BLA), and ventral tegmental area (VTA). Chemogenetic manipulation, optogenetic recording, and in vivo calcium imaging identify that the PFC to BLA pathway is causally linked to heightened aggression in stressed males, and the PFC to VTA pathway is causally linked to social withdrawal in stressed females. Isolation stress induces genome-wide transcriptional alterations in a region-specific manner. Particularly, the upregulated genes in BLA of stressed males are under the control of activated transcription factor CREB, and CREB inhibition in BLA normalizes gene expression and reverses aggressive behaviors. On the other hand, neuropeptide Hcrt (Hypocretin/Orexin) is among the top-ranking downregulated genes in VTA of stressed females, and Orexin-A treatment rescues social withdrawal. These results have revealed molecular mechanisms and potential therapeutic targets for stress-related mental illness.
Collapse
Affiliation(s)
- Zi-Jun Wang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Treefa Shwani
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Junting Liu
- Department of Physics, College of Arts and Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Fengwei Yang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kelcie Schatz
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Freddy Zhang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Arnd Pralle
- Department of Physics, College of Arts and Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
238
|
Lamanna J, Isotti F, Ferro M, Spadini S, Racchetti G, Musazzi L, Malgaroli A. Occlusion of dopamine-dependent synaptic plasticity in the prefrontal cortex mediates the expression of depressive-like behavior and is modulated by ketamine. Sci Rep 2022; 12:11055. [PMID: 35773275 PMCID: PMC9246912 DOI: 10.1038/s41598-022-14694-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Unpredictable chronic mild stress (CMS) is among the most popular protocols used to induce depressive-like behaviors such as anhedonia in rats. Differences in CMS protocols often result in variable degree of vulnerability, and the mechanisms behind stress resilience are of great interest in neuroscience due to their involvement in the development of psychiatric disorders, including major depressive disorder. Expression of depressive-like behaviors is likely driven by long-term alterations in the corticolimbic system and by downregulation of dopamine (DA) signaling. Although we have a deep knowledge about the dynamics of tonic and phasic DA release in encoding incentive salience and in response to acute/chronic stress, its modulatory action on cortical synaptic plasticity and the following implications on animal behavior remain elusive. Here, we show that the expression of DA-dependent synaptic plasticity in the medial prefrontal cortex (mPFC) is occluded in rats vulnerable to CMS, likely reflecting differential expression of AMPA receptors. Interestingly, such difference is not observed when rats are acutely treated with sub-anesthetic ketamine, possibly through the recruitment of dopaminergic nuclei such as the ventral tegmental area. In addition, by applying the synaptic activity sensor SynaptoZip in vivo, we found that chronic stress unbalances the synaptic drive from the infralimbic and prelimbic subregions of the mPFC toward the basolateral amygdala, and that this effect is counteracted by ketamine. Our results provide novel insights into the neurophysiological mechanisms behind the expression of vulnerability to stress, as well as behind the antidepressant action of ketamine.
Collapse
Affiliation(s)
- Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy. .,Faculty of Psychology, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Francesco Isotti
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.,Department of Psychology, Sigmund Freud University, 20143, Milan, Italy
| | - Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Gabriella Racchetti
- Division of Neuroscience, Scientific Institute Ospedale San Raffaele, 20132, Milan, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy. .,Faculty of Psychology, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| |
Collapse
|
239
|
Stress level of glucocorticoid exacerbates neuronal damage and Aβ production through activating NLRP1 inflammasome in primary cultured hippocampal neurons of APP-PS1 mice. Int Immunopharmacol 2022; 110:108972. [PMID: 35777263 DOI: 10.1016/j.intimp.2022.108972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
Glucocorticoid (GC), secreted by adrenal cortex, plays important roles in regulating many physiological functions, while chronic stress level of GC exposure has many adverse effects on the structure and function of hippocampal neurons, and is closely implicated to the deterioration of Alzheimer's disease (AD). Oxidative stress and neuroinflammation play an important role in the occurrence and development of AD. However, it is still unclear whether chronic GC exposure promotes beta-amyloid (Aβ) accumulation and neuronal injury by increasing oxidative stress and neuroinflammation. In this study, we investigated the effects of chronic GC exposure on NOX2-NLRP1 inflammasome activation and the protective effects of NLRP1-siRNA against GC-induced neuronal injury in primary hippocampal neurons of APP/PS1 mice. The results showed that chronic dexamethasone (DEX, 1 µM) exposure 72 h had no significant effect on the primary hippocampal neurons of WT mice, but significantly increased Aβ1-42 accumulation (2.17 ± 0.19 fold in APP group and 3.06 ± 0.49 fold in APP + DEX group over WT group) and neuronal injury in primary hippocampal neurons of APP/PS1 mice. Meanwhile, chronic DEX exposure significantly increased the levels of reactive oxygen species (ROS) production and IL-1β, and significantly up-regulated the expressions of NOX2- and NLRP1-related proteins and mRNAs in primary hippocampal neurons of APP/PS1 mice but not in WT mice. Moreover, inhibition of NLRP1 by NLRP1-siRNA treatment also significantly alleviated neuronal injury and Aβ1-42 accumulation (1.96 ± 0.11 fold in APP + DEX group and 0.25 ± 0.01 fold in APP + NLRP1-siRNA + DEX group over APP group), and down-regulated the expressions of APP, BACE1, NCSTN and p-TAU/TAU in chronic DEX-induced hippocampal neurons of APP/PS1 mice. The results suggest that chronic GC exposure can accelerate neuronal damage and Aβ production by activating oxidative stress and NLRP1 inflammasome in primary hippocampal neurons of APP/PS1 mice, resulting in deterioration of AD.And inhibition of NLRP1 inflammasome may be an important strategy in improving chronic GC-induced neuronal injury.
Collapse
|
240
|
Khalifeh N, Omary A, Cotter D, Kim MS, Geffner ME, Herting MM. Congenital Adrenal Hyperplasia and Brain Health: A Systematic Review of Structural, Functional, and Diffusion Magnetic Resonance Imaging (MRI) Investigations. J Child Neurol 2022; 37:758-783. [PMID: 35746874 PMCID: PMC9464669 DOI: 10.1177/08830738221100886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Congenital adrenal hyperplasia (CAH) is a group of genetic disorders that affects the adrenal glands and is the most common cause of primary adrenal insufficiency in children. In the past few decades, magnetic resonance imaging (MRI) has been implemented to investigate how the brain may be affected by CAH. A systematic review was conducted to evaluate and synthesize the reported evidence of brain findings related to CAH using structural, functional, and diffusion-weighted MRI. METHODS We searched bibliographical databases through July 2021 for brain MRI studies in individuals with CAH. RESULTS Twenty-eight studies were identified, including 13 case reports or series, 10 studies that recruited and studied CAH patients vs unaffected controls, and 5 studies without a matched control group. Eleven studies used structural MRI to identify structural abnormalities or quantify brain volumes, whereas 3 studies implemented functional MRI to investigate brain activity, and 3 reported diffusion MRI findings to assess white matter microstructure. Some commonly reported findings across studies included cortical atrophy and differences in gray matter volumes, as well as white matter hyperintensities, altered white matter microstructure, and distinct patterns of emotion and reward-related brain activity. CONCLUSIONS These findings suggest differences in brain structure and function in patients with CAH. Limitations of these studies highlight the need for CAH neuroimaging studies to incorporate larger sample sizes and follow best study design and MRI analytic practices, as well as clarify potential neurologic effects seen across the lifespan and in relation to clinical and behavioral CAH phenotypes.
Collapse
Affiliation(s)
- Noor Khalifeh
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Adam Omary
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Devyn Cotter
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Mimi S. Kim
- Center for Endocrinology, Diabetes, and Metabolism, and The Saban Research Institute at Children’s Hospital Los Angeles; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mitchell E. Geffner
- Center for Endocrinology, Diabetes, and Metabolism, and The Saban Research Institute at Children’s Hospital Los Angeles; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Division of Children, Youth, and Families, Children’s Hospital Los Angeles
| |
Collapse
|
241
|
Ou-Yang B, Hu Y, Fei XY, Cheng ST, Hang Y, Yang C, Cheng L. A meta-analytic study of the effects of early maternal separation on cognitive flexibility in rodent offspring. Dev Cogn Neurosci 2022; 56:101126. [PMID: 35751993 PMCID: PMC9243050 DOI: 10.1016/j.dcn.2022.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/27/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022] Open
Abstract
Adverse early life experiences, such as maternal separation, are associated with an increased risk for several mental health problems. Symptoms induced by maternal separation that mirror clinically relevant aspects of mental problems, such as cognitive inflexibility, open the possibility of testing putative therapeutics prior to clinical development. Although several animal (e.g., rodent) studies have evaluated the effects of early maternal separation on cognitive flexibility, no consistent conclusions have been drawn. To clarify this issue, in this study, a meta-analysis method was used to systematically explore the relationship between early maternal separation and cognitive flexibility in rodent offspring. Results indicate that early maternal separation could significantly impair cognitive flexibility in rodent offspring. Moderator analyses further showed that the relationship between early maternal separation and cognitive flexibility was not consistent in any case, but was moderated by variations in the experimental procedures, such as the deprivation levels, task characteristics, and rodent strains. These clarify the inconsistent effects of maternal separation on cognitive flexibility in rodents and help us better understand the association between early life adversity and cognitive development. Meta-analysis method was used to discuss the inconsistent effects of maternal separation on cognitive flexibility in rodent. Maternal separation was found to necessarily impair the cognitive flexibility in rodent. Variations in the experimental procedures moderated the relationship between maternal separation and cognitive flexibility. Further studies on environment-cognition associations in rodents should take experimental procedural factors into account.
Collapse
Affiliation(s)
- Bo Ou-Yang
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Yue Hu
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Xin-Yuan Fei
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Sha-Te Cheng
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Ying Hang
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Chen Yang
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Liang Cheng
- School of Psychology, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
242
|
Milaneschi Y, Arnold M, Kastenmüller G, Dehkordi SM, Krishnan RR, Dunlop BW, Rush AJ, Penninx BWJH, Kaddurah-Daouk R. Genomics-based identification of a potential causal role for acylcarnitine metabolism in depression. J Affect Disord 2022; 307:254-263. [PMID: 35381295 DOI: 10.1016/j.jad.2022.03.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Altered metabolism of acylcarnitines - transporting fatty acids to mitochondria - may link cellular energy dysfunction to depression. We examined the potential causal role of acylcarnitine metabolism in depression by leveraging genomics and Mendelian randomization. METHODS Summary statistics were obtained from large GWAS: the Fenland Study (N = 9363), and the Psychiatric Genomics Consortium (246,363 depression cases and 561,190 controls). Two-sample Mendelian randomization analyses tested the potential causal link of 15 endogenous acylcarnitines with depression. RESULTS In univariable analyses, genetically-predicted lower levels of short-chain acylcarnitines C2 (odds ratio [OR] 0.97, 95% confidence intervals [CIs] 0.95-1.00) and C3 (OR 0.97, 95%CIs 0.96-0.99) and higher levels of medium-chain acylcarnitines C8 (OR 1.04, 95%CIs 1.01-1.06) and C10 (OR 1.04, 95%CIs 1.02-1.06) were associated with increased depression risk. No reverse potential causal role of depression genetic liability on acylcarnitines levels was found. Multivariable analyses showed that the association with depression was driven by the medium-chain acylcarnitines C8 (OR 1.04, 95%CIs 1.02-1.06) and C10 (OR 1.04, 95%CIs 1.02-1.06), suggesting a potential causal role in the risk of depression. Causal estimates for C8 (OR = 1.05, 95%CIs = 1.02-1.07) and C10 (OR = 1.05, 95%CIs = 1.02-1.08) were confirmed in follow-up analyses using genetic instruments derived from a GWAS meta-analysis including up to 16,841 samples. DISCUSSION Accumulation of medium-chain acylcarnitines is a signature of inborn errors of fatty acid metabolism and age-related metabolic conditions. Our findings point to a link between altered mitochondrial energy production and depression pathogenesis. Acylcarnitine metabolism represents a promising access point for the development of novel therapeutic approaches for depression.
Collapse
Affiliation(s)
- Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, The Netherlands; Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam, The Netherlands.
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Ranga R Krishnan
- Department of Psychiatry, Rush Medical College, Chicago, IL, USA
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - A John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke-National University of Singapore, Singapore; Department of Psychiatry, Texas Tech University, Health Sciences Center, Permian Basin, TX, USA
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | | |
Collapse
|
243
|
Handa RJ, Sheng JA, Castellanos EA, Templeton HN, McGivern RF. Sex Differences in Acute Neuroendocrine Responses to Stressors in Rodents and Humans. Cold Spring Harb Perspect Biol 2022; 14:a039081. [PMID: 35667789 PMCID: PMC9438783 DOI: 10.1101/cshperspect.a039081] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sex differences in the neuroendocrine response to acute stress occur in both animals and humans. In rodents, stressors such as restraint and novelty induce a greater activation of the hypothalamic-pituitary-adrenal axis (HPA) in females compared to males. The nature of this difference arises from steroid actions during development (organizational effects) and adulthood (activational effects). Androgens decrease HPA stress responsivity to acute stress, while estradiol increases it. Androgenic down-regulation of HPA responsiveness is mediated by the binding of testosterone (T) and dihydrotestosterone (DHT) to the androgen receptor, as well as the binding of the DHT metabolite, 3β-diol, to the β form of the estrogen receptor (ERβ). Estradiol binding to the α form of the estrogen receptor (ERα) increases HPA responsivity. Studies of human sex differences are relatively few and generally employ a psychosocial paradigm to measure stress-related HPA activation. Men consistently show greater HPA reactivity than women when being evaluated for achievement. Some studies have found greater reactivity in women when being evaluated for social performance. The pattern is inconsistent with rodent studies but may involve the differential nature of the stressors employed. Psychosocial stress is nonphysical and invokes a significant degree of top-down processing that is not easily comparable to the types of stressors employed in rodents. Gender identity may also be a factor based on recent work showing that it influences the neural processing of positive and negative emotional stimuli independent of genetic sex. Comparing different types of stressors and how they interact with gender identity and genetic sex will provide a better understanding of sex steroid influences on stress-related HPA reactivity.
Collapse
Affiliation(s)
- Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Julietta A Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Emily A Castellanos
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Hayley N Templeton
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Robert F McGivern
- Department of Psychology, San Diego State University, San Diego, California 92120, USA
| |
Collapse
|
244
|
Kinlein SA, Wallace NK, Savenkova MI, Karatsoreos IN. Chronic hypothalamic-pituitary-adrenal axis disruption alters glutamate homeostasis and neural responses to stress in male C57Bl6/N mice. Neurobiol Stress 2022; 19:100466. [PMID: 35720261 PMCID: PMC9198473 DOI: 10.1016/j.ynstr.2022.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
It is now well-established that stress elicits brain- and body-wide changes in physiology and has significant impacts on many aspects of health. The hypothalamic-pituitary-adrenal (HPA) axis is the major neuroendocrine system mediating the integrated response to stress. Appropriate engagement and termination of HPA activity enhances survival and optimizes physiological and behavioral responses to stress, while dysfunction of this system is linked to negative health outcomes such as depression, anxiety, and post-traumatic stress disorder. Glutamate signaling plays a large role in the transmission of stress-related information throughout the brain. Furthermore, aberrant glutamate signaling has negative consequences for neural plasticity and synaptic function and is linked to stress-related pathology. However, the connection between HPA dysfunction and glutamate signaling is not fully understood. We tested how HPA axis dysfunction (using low dose chronic corticosterone in the drinking water) affects glutamate homeostasis and neural responses under baseline and acute stress in male C57BL/6N mice. Using laser microdissection and transcriptomic analyses, we show that chronic disruption of the HPA axis alters the expression of genes related to glutamate signaling in the medial prefrontal cortex (mPFC), hippocampus, and amygdala. While neural responses to stress (as measured by FOS) in the hippocampus and amygdala were not affected in our model of HPA dysfunction, we observed an exaggerated response to stress in the mPFC. To further probe this we undertook in vivo biosensor measurements of the dynamics of extracellular glutamate responses to stress in the mPFC in real-time, and found glutamate dynamics in the mPFC were significantly altered by chronic HPA dysfunction. Together, these findings support the hypothesis that chronic HPA axis dysfunction alters glutamatergic signaling in regions known to regulate emotional behavior, providing more evidence linking HPA dysfunction and stress vulnerability.
Collapse
|
245
|
Li C, Zhang Y, Wang W, Zhou T, Yu X, Tao H. Altered hippocampal volume and functional connectivity in patients with Cushing's disease. Brain Behav 2022; 12:e2507. [PMID: 35506636 PMCID: PMC9226821 DOI: 10.1002/brb3.2507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/18/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Stress-related brain disorders can be associated with glucocorticoid disturbance and hippocampal alteration. However, it remains largely unknown how cortisol affects the structure and function of hippocampus. Cushing's disease (CD) provides a unique "hyperexpression model" to explore the effects of excessive cortisol on hippocampus as well as the relation between these effects and neuropsychological deficits. METHODS We acquired high-resolution T1-weighted and resting-state functional magnetic resonance imaging in 47 CD patients and 53 healthy controls. We obtained the volume and functional connectivity of the hippocampal rostral and caudal subregions in both groups. Relationships between hippocampal alterations, neuroendocrine, and neuropsychological assessments were identified. RESULTS Relative to control subjects, the CD patients had smaller volumes of all four hippocampal subregions. Furthermore, whole brain resting-state functional connectivity analyses with these four different hippocampal regions as seeds revealed altered hippocampal functional connectivity with high-order networks, involving the DMN, frontoparietal, and limbic networks in CD patients. The intrinsic hippocampal functional connectivity was associated with the quality of life of the CD patients. CONCLUSIONS Our findings elucidate the cumulative effect of excess cortisol on the morphology and function of hippocampus and reinforce the need for effective interventions in stress-related brain disease to halt potential hippocampal damage.
Collapse
Affiliation(s)
- Chuqi Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanyang Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Wenxin Wang
- Department of Radiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tao Zhou
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Hong Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
246
|
Differential expression of serum extracellular vesicle microRNAs and analysis of target-gene pathways in major depressive disorder. Biomark Neuropsychiatry 2022. [DOI: 10.1016/j.bionps.2022.100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
247
|
The Impact of Chronic Unpredictable Mild Stress-Induced Depression on Spatial, Recognition and Reference Memory Tasks in Mice: Behavioral and Histological Study. Behav Sci (Basel) 2022; 12:bs12060166. [PMID: 35735376 PMCID: PMC9219659 DOI: 10.3390/bs12060166] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Depression-induced cognitive impairment has recently been given more attention in research. However, the relationship between depression and different types of memory is still not clear. Chronic unpredictable mild stress (CUMS) is a commonly used animal model of depression in which animals are exposed to chronic unpredictable environmental and psychological stressors, which mimics daily human life stressors. This study investigated the impact of different durations of CUMS on various types of memory (short- and long-term spatial memory and recognition memory) and investigated CUMS’ impact on the ultrastructural level by histological assessment of the hippocampus and prefrontal cortex. Twenty male C57BL/J6 mice (6 weeks old, 21.8 ± 2 g) were randomly divided into two groups (n = 10): control and CUMS (8 weeks). A series of behavioral tasks were conducted twice at weeks 5–6 (early CUMS) and weeks 7–8 (late CUMS). A tail-suspension test (TST), forced swimming test (FST), elevated zero maze (EZM), elevated plus maze (EPM), open field test (OFT), and sucrose-preference test (SPT) were used to assess anxiety and depressive symptoms. The cognitive function was assessed by the novel object recognition test (NORT; for recognition memory), Y-maze (for short-term spatial memory), and Morris water maze (MWM: for long-term spatial memory) with a probe test (for reference memory). Our data showed that 8 weeks of CUMS increased the anxiety level, reported by a significant increase in anxiety index in both EPM and EZM and a significant decrease in central preference in OFT, and depression was reported by a significant increase in immobility in the TST and FST and sucrose preference in the SPT. Investigating the impact of CUMS on various types of memory, we found that reference memory is the first memory to be affected in early CUMS. In late CUMS, all types of memory were impaired, and this was consistent with the abnormal histological features of the memory-related areas in the brain (hippocampus and prefrontal cortex).
Collapse
|
248
|
Gorodetskaya IV, Gusakova EA. The Effect of Iodine-Containing Thyroid Hormones on the Activity of Central Stress-Limiting Systems. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s002209302202017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
249
|
Murray A, Tharmalingam S, Khurana S, Lalonde C, Nguyen P, Tai TC. Effect of Prenatal Glucocorticoid Exposure on Circadian Rhythm Gene Expression in the Brains of Adult Rat Offspring. Cells 2022; 11:cells11101613. [PMID: 35626652 PMCID: PMC9139626 DOI: 10.3390/cells11101613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Circadian clocks control many vital aspects of physiology from the sleep-wake cycle to metabolism. The circadian clock operates through transcriptional-translational feedback loops. The normal circadian signaling relies on a ‘master clock’, located in the suprachiasmatic nucleus (SCN), which synchronizes peripheral oscillators. Glucocorticoid receptor (GR) signaling has the ability to reset the phase of peripheral clocks. It has been shown that maternal exposure to glucocorticoids (GCs) can lead to modification of hypothalamic-pituitary-adrenal (HPA) function, impact stress-related behaviors, and result in a hypertensive state via GR activation. We previously demonstrated altered circadian rhythm signaling in the adrenal glands of offspring exposed to the synthetic GC, dexamethasone (Dex). Results from the current study show that prenatal exposure to Dex affects circadian rhythm gene expression in a brain region-specific and a sex-specific manner within molecular oscillators of the amygdala, hippocampus, paraventricular nucleus, and prefrontal cortex, as well as the main oscillator in the SCN. Results also show that spontaneously hypertensive rats (SHR) exhibited dysregulated circadian rhythm gene expression in these same brain regions compared with normotensive Wistar-Kyoto rats (WKY), although the pattern of dysregulation was markedly different from that seen in adult offspring prenatally exposed to GCs.
Collapse
Affiliation(s)
- Alyssa Murray
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (A.M.); (S.T.); (S.K.); (C.L.)
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (A.M.); (S.T.); (S.K.); (C.L.)
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Sandhya Khurana
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (A.M.); (S.T.); (S.K.); (C.L.)
| | - Christine Lalonde
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (A.M.); (S.T.); (S.K.); (C.L.)
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Phong Nguyen
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - T. C. Tai
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (A.M.); (S.T.); (S.K.); (C.L.)
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: ; Tel.: +1-705-662-7239
| |
Collapse
|
250
|
Zhang Y, Li M, Zhang X, Zhang D, Tan HY, Yue W, Yan H. Unsuppressed Striatal Activity and Genetic Risk for Schizophrenia Associated With Individual Cognitive Performance Under Social Competition. Schizophr Bull 2022; 48:599-608. [PMID: 35307738 PMCID: PMC9077431 DOI: 10.1093/schbul/sbac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Social competition affects human behaviors by inducing psychosocial stress. The neural and genetic mechanisms of individual differences of cognitive-behavioral response to stressful situations in a competitive context remain unknown. We hypothesized that variation in stress-related brain activation and genetic heterogeneity associated with psychiatric disorders may play roles towards individually differential responses under stress. STUDY DESIGN A total of 419 healthy subjects and 66 patients with schizophrenia were examined functional magnetic resonance imaging during working memory task including social competition stressors. We explored the correlation between stress-induced brain activity and individual working memory performance. The partial least squares regression was performed to examine the genetic correlates between stress-related activity and gene expression data from Allen Human Brain Atlas. Polygenic risk score (PRS) was used to assess individual genetic risk for schizophrenia. STUDY RESULTS Greater suppression of bilateral striatal activity was associated with better behavioral improvement in working memory manipulation under social competition (left: rPearson = -0.245, P = 4.0 × 10-6, right: rPearson = -0.234, P = 1.0 × 10-5). Genes transcriptionally related to stress-induced activation were linked to genetic risk for schizophrenia (PFDR < 0.005). Participants with decreased accuracy under social competition exhibited higher PRS of schizophrenia (t = 2.328, P = .021). Patients with schizophrenia showed less suppressed striatal activity under social stress (F = 13.493, P = 3.5 × 10-4). CONCLUSIONS Striatal activity change and genetic risk for schizophrenia might play a role in the individually behavioral difference in working memory manipulation under stress.
Collapse
Affiliation(s)
- Yuyanan Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Mingzhu Li
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiao Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Hao-Yang Tan
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Hao Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| |
Collapse
|