201
|
Wilson GH, Yang P, Gore JC, Chen LM. Correlated inter-regional variations in low frequency local field potentials and resting state BOLD signals within S1 cortex of monkeys. Hum Brain Mapp 2016; 37:2755-66. [PMID: 27091582 PMCID: PMC4945372 DOI: 10.1002/hbm.23207] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 01/05/2023] Open
Abstract
The hypothesis that specific frequency components of the spontaneous local field potentials (LFPs) underlie low frequency fluctuations of resting state fMRI (rsfMRI) signals was tested. The previous analyses of rsfMRI signals revealed differential inter-regional correlations among areas 3a, 3b, and 1 of primary somatosensory cortex (S1) in anesthetized monkeys (Wang et al. [2013]: Neuron 78:1116-1126). Here LFP band(s) which correlated between S1 regions, and how these inter-regional correlation differences covaried with rsfMRI signals were examined. LFP signals were filtered into seven bands (delta, theta, alpha, beta, gamma low, gamma high, and gamma very high), and then a Hilbert transformation was applied to obtain measures of instantaneous amplitudes and temporal lags between regions of interest (ROI) digit-digit pairs (areas 3b-area 1, area 3a-area 1, area 3a-area 3b) and digit-face pairs (area 3b-face, area 1-face, and area 3a-face). It was found that variations in the inter-regional correlation strengths between digit-digit and digit-face pairs in the delta (1-4 Hz), alpha (9-14 Hz), beta (15-30 Hz), and gamma (31-50 Hz) bands parallel those of rsfMRI signals to varying degrees. Temporal lags between digit-digit area pairs varied across LFP bands, with area 3a mostly leading areas 1/2 and 3b. In summary, the data demonstrates that the low and middle frequency range (1-50 Hz) of spontaneous LFP signals similarly covary with the low frequency fluctuations of rsfMRI signals within local circuits of S1, supporting a neuronal electrophysiological basis of rsfMRI signals. Inter-areal LFP temporal lag differences provided novel insights into the directionality of information flow among S1 areas at rest. Hum Brain Mapp 37:2755-2766, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- George H. Wilson
- Vanderbilt University Institute of Imaging ScienceNashvilleTennessee
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
| | - Pai‐Feng Yang
- Vanderbilt University Institute of Imaging ScienceNashvilleTennessee
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
| | - John C. Gore
- Vanderbilt University Institute of Imaging ScienceNashvilleTennessee
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
| | - Li Min Chen
- Vanderbilt University Institute of Imaging ScienceNashvilleTennessee
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennessee
| |
Collapse
|
202
|
Perrotta A, Chiacchiaretta P, Anastasio MG, Pavone L, Grillea G, Bartolo M, Siravo E, Colonnese C, De Icco R, Serrao M, Sandrini G, Pierelli F, Ferretti A. Temporal summation of the nociceptive withdrawal reflex involves deactivation of posterior cingulate cortex. Eur J Pain 2016; 21:289-301. [PMID: 27452295 DOI: 10.1002/ejp.923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Temporal summation of pain sensation is pivotal both in physiological and pathological nociception. In humans, it develops in parallel with temporal summation of the nociceptive withdrawal reflex (NWR) of the lower limb, an objective representation of the temporal processing of nociceptive signals into the spinal cord. METHODS To study the contribution of cortical and subcortical structures in temporal summation of pain reflex responses, we compared the fMRI signal changes related to the temporal summation threshold (TST) of the NWR with that related to the single NWR response. We studied 17 healthy subjects using a stimulation paradigm previously determined to evoke both the TST of the NWR (SUMM) and the NWR single response (SING). RESULTS We found a significant activation in left (contralateral) primary somatosensory cortex (SI), bilateral secondary somatosensory cortex (SII), bilateral insula, anterior cingulate cortex (ACC) and bilateral thalamus during both SUMM and SING conditions. The SUMM versus SING contrast revealed a significant deactivation in the posterior cingulate cortex (PCC) and bilateral middle occipital gyrus in SUMM when compared to SING condition. CONCLUSIONS Our data support the hypothesis that temporal summation of nociceptive reflex responses is driven through a switch between activation and deactivation of a specific set of brain areas linked to the default mode network. This behaviour could be explained in view of the relevance of the pain processing induced by temporal summation, recognized as a more significant potential damaging condition with respect to a single, isolated, painful stimulation of comparable pain intensity. SIGNIFICANCE The study demonstrated that TST of the NWR involves a selective deactivation of PCC.
Collapse
Affiliation(s)
- A Perrotta
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - P Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio" of Chieti, Italy
| | | | - L Pavone
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - G Grillea
- IRCCS Neuromed, Pozzilli (Isernia), Italy.,Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - M Bartolo
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - E Siravo
- IRCCS Neuromed, Pozzilli (Isernia), Italy
| | - C Colonnese
- IRCCS Neuromed, Pozzilli (Isernia), Italy.,Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - R De Icco
- C. Mondino National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - M Serrao
- Unit of Neurorehabilitation, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, ICOT, Latina, Italy
| | - G Sandrini
- C. Mondino National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - F Pierelli
- IRCCS Neuromed, Pozzilli (Isernia), Italy.,Unit of Neurorehabilitation, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, ICOT, Latina, Italy
| | - A Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio" of Chieti, Italy
| |
Collapse
|
203
|
Xiong YZ, Zhang JY, Yu C. Bottom-up and top-down influences at untrained conditions determine perceptual learning specificity and transfer. eLife 2016; 5. [PMID: 27377357 PMCID: PMC4965262 DOI: 10.7554/elife.14614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/04/2016] [Indexed: 11/13/2022] Open
Abstract
Perceptual learning is often orientation and location specific, which may indicate neuronal plasticity in early visual areas. However, learning specificity diminishes with additional exposure of the transfer orientation or location via irrelevant tasks, suggesting that the specificity is related to untrained conditions, likely because neurons representing untrained conditions are neither bottom-up stimulated nor top-down attended during training. To demonstrate these top-down and bottom-up contributions, we applied a “continuous flash suppression” technique to suppress the exposure stimulus into sub-consciousness, and with additional manipulations to achieve pure bottom-up stimulation or top-down attention with the transfer condition. We found that either bottom-up or top-down influences enabled significant transfer of orientation and Vernier discrimination learning. These results suggest that learning specificity may result from under-activations of untrained visual neurons due to insufficient bottom-up stimulation and/or top-down attention during training. High-level perceptual learning thus may not functionally connect to these neurons for learning transfer. DOI:http://dx.doi.org/10.7554/eLife.14614.001 People can become more sensitive to small changes in what they are seeing – such as detecting a slight change in the angle of a particular line – with practice. This process is called perceptual learning, but the improvement is often specific such that it is typically lost if the line moves to a new place, or a different line angle is used. Previous work does show that it is possible to transfer the learning to a new location or angle if the individual also practices another, seemingly irrelevant, task at the same or a later time – such as judging how bright the line is. To understand what might be happening to produce these seemingly conflicting results, Xiong et al. used a technique called “continuous flash suppression” with human volunteers. This approach meant that the volunteers were shown an object (such as an angled line) in one eye, while their other eye viewed white noise similar to the “snowflakes” seen on an old-fashioned un-tuned television screen. The flashing snowflakes in one eye meant that the volunteers were not consciously aware of the presence of the angled line in the other eye. The experiments revealed that perceptual learning at the new location or line angle happened when a subconsciously-observed object was shown in the new location or angle, or when the volunteers were asked to pay attention to the “subconscious object” when no object was actually there. This suggests that perceptual learning can happen in new conditions both through ‘bottom-up’ processes, which rely entirely on information coming in from the senses, and ‘top-down’ processes, which are influenced by what a person is aware of and paying attetion to. What is more, the results suggest that the classical observations of specificity in perceptual learning are likely to be a result of the lack of bottom-up and top-down influences in the untrained condition, when the volunteers work hard to improve their performance with the trained condition. Future studies could directly look at what is going on in the brain when perceptual learning becomes less specific, for example by using a technique like functional magnetic resonance imaging to measure brain activity. DOI:http://dx.doi.org/10.7554/eLife.14614.002
Collapse
Affiliation(s)
- Ying-Zi Xiong
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Jun-Yun Zhang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Cong Yu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
204
|
Taheri S, Xun Z, See RE, Joseph JE, Reichel CM. Cocaine and methamphetamine induce opposing changes in BOLD signal response in rats. Brain Res 2016; 1642:497-504. [PMID: 27103569 PMCID: PMC4899179 DOI: 10.1016/j.brainres.2016.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/07/2016] [Accepted: 04/16/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neuroimaging studies in psychostimulant addicts have reported functional neural activity changes in brain regions involved in relapse. However, the difference between the effects of the psychostimulants methamphetamine and cocaine on neuronal activity in a similar setting not been clarified. Since studies in humans are limited by the inability to study the initial impact of psychostimulant drugs, we addressed this issue in a rat model. OBJECTIVE Here, we report methamphetamine and cocaine-induced blood-oxygen-level dependent (BOLD) signal change using functional magnetic resonance imaging (fMRI) in rats receiving drug for the first time during the imaging session. METHODS Twenty-three male Long Evans rats underwent fMRI imaging and received an intravenous infusion of methamphetamine, cocaine, or saline. Anatomical and pharmacological fMRI (pfMRI) were performed on a 7T BioSpec dedicated research MR scanner under isoflurane gas (1.5-2%). After collecting baseline data for 10min, rats received drug over the next 10min for a total 40min scan time. Data were then preprocessed and statistically analyzed in anatomically defined regions of interest (ROIs) that have been implicated in persistent drug seeking and relapse. RESULTS Methamphetamine during the imaging session resulted in a sustained negative BOLD signal change in key regions of the relapse circuit, except for the prefrontal cortex. In contrast, cocaine evoked a positive or unchanged BOLD signal in these same regions. In all of the investigated ROIs, there were no changes in BOLD signal following saline. CONCLUSION Acute methamphetamine and cocaine have distinct patterns of functional activity as measured by pfMRI.
Collapse
Affiliation(s)
- Saeid Taheri
- Department of Pharmaceutical Sciences, University of South Florida, Tampa FL 33612
| | - Zhu Xun
- Department of Neurosciences, Medical University of South Carolina, Charleston SC 29425
| | - Ronald E See
- Department of Neurosciences, Medical University of South Carolina, Charleston SC 29425
| | - Jane E Joseph
- Department of Neurosciences, Medical University of South Carolina, Charleston SC 29425
| | - Carmela M Reichel
- Department of Neurosciences, Medical University of South Carolina, Charleston SC 29425
| |
Collapse
|
205
|
Goense J, Bohraus Y, Logothetis NK. fMRI at High Spatial Resolution: Implications for BOLD-Models. Front Comput Neurosci 2016; 10:66. [PMID: 27445782 PMCID: PMC4923185 DOI: 10.3389/fncom.2016.00066] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
As high-resolution functional magnetic resonance imaging (fMRI) and fMRI of cortical layers become more widely used, the question how well high-resolution fMRI signals reflect the underlying neural processing, and how to interpret laminar fMRI data becomes more and more relevant. High-resolution fMRI has shown laminar differences in cerebral blood flow (CBF), volume (CBV), and neurovascular coupling. Features and processes that were previously lumped into a single voxel become spatially distinct at high resolution. These features can be vascular compartments such as veins, arteries, and capillaries, or cortical layers and columns, which can have differences in metabolism. Mesoscopic models of the blood oxygenation level dependent (BOLD) response therefore need to be expanded, for instance, to incorporate laminar differences in the coupling between neural activity, metabolism and the hemodynamic response. Here we discuss biological and methodological factors that affect the modeling and interpretation of high-resolution fMRI data. We also illustrate with examples from neuropharmacology and the negative BOLD response how combining BOLD with CBF- and CBV-based fMRI methods can provide additional information about neurovascular coupling, and can aid modeling and interpretation of high-resolution fMRI.
Collapse
Affiliation(s)
- Jozien Goense
- Department of Psychology, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - Yvette Bohraus
- Department of Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics Tübingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max-Planck Institute for Biological CyberneticsTübingen, Germany; Divison of Imaging Science and Biomedical Engineering, University of ManchesterManchester, UK
| |
Collapse
|
206
|
Carey LM, Seitz RJ. Functional Neuroimaging in Stroke Recovery and Neurorehabilitation: Conceptual Issues and Perspectives. Int J Stroke 2016; 2:245-64. [DOI: 10.1111/j.1747-4949.2007.00164.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background In stroke, functional neuroimaging has become a potent diagnostic tool; opened new insights into the pathophysiology of ischaemic damage in the human brain; and made possible the assessment of functional–structural relationships in postlesion recovery. Summary of review Here, we give a critical account on the potential and limitation of functional neuroimaging and discuss concepts related to the use of neuroimaging for exploring the neurobiological and neuroanatomical mechanisms of poststroke recovery and neurorehabilitation. We identify and provide evidence for five hypotheses that functional neuroimaging can provide new insights into: adaptation occurs at the level of functional brain systems; the brain–behaviour relationship varies with recovery and over time; functional neuroimaging can improve our ability to predict recovery and select individuals for rehabilitation; mechanisms of recovery reflect different pathophysiological phases; and brain adaptation may be modulated by experience and specific rehabilitation. The significance and application of this new evidence is discussed, and recommendations made for investigations in the field. Conclusion Functional neuroimaging is an important tool to explore the mechanisms underlying brain plasticity and, thereby, to guide clinical research in neurorehabilitation.
Collapse
Affiliation(s)
- Leeanne M. Carey
- National Stroke Research Institute, Neurosciences Building, Heidelberg Heights, Vic., Australia
- School of Occupational Therapy, LaTrobe University, Bundoora, Vic., Australia
| | - Rüdiger J. Seitz
- National Stroke Research Institute, Neurosciences Building, Heidelberg Heights, Vic., Australia
- Institute of Advanced Study, La Trobe University, Bundoora, Vic., Australia
- Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
207
|
Muzik O, Diwadkar VA. In vivo correlates of thermoregulatory defense in humans: Temporal course of sub-cortical and cortical responses assessed with fMRI. Hum Brain Mapp 2016; 37:3188-202. [PMID: 27220041 DOI: 10.1002/hbm.23233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 01/28/2023] Open
Abstract
Extensive studies in rodents have established the role of neural pathways that are activated during thermoregulation. However, few studies have been conducted in humans to assess the complex, hierarchically organized thermoregulatory network in the CNS that maintains thermal homeostasis, especially as it pertains to cold exposure. To study the human thermoregulatory network during whole body cold exposure, we have used functional MRI to characterize changes in the BOLD signal within the constituents of the thermoregulatory network in 20 young adult controls during non-noxious cooling and rewarming of the skin by a water-perfused body suit. Our results indicate significant decreases of BOLD signal during innocuous whole body cooling stimuli in the midbrain, the right anterior insula, the right anterior cingulate, and the right inferior parietal lobe. Whereas brain activation in these areas decreased during cold exposure, brain activation increased significantly in the bilateral orbitofrontal cortex during this period. The BOLD signal time series derived from significant activation sites in the orbitofrontal cortex showed opposed phase to those observed in the other brain regions, suggesting complementary processing mechanisms during mild hypothermia. The significance of our findings lies in the recognition that whole body cooling evokes a response in a hierarchically organized thermoregulatory network that distinguishes between cold and warm stimuli. This network seems to generate a highly resolved interoceptive representation of the body's condition that provides input to the orbitofrontal cortex, where higher-order integration takes place and invests internal states with emotional significance that motivate behavior. Hum Brain Mapp 37:3188-3202, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Otto Muzik
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, 48201.,Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, 48201
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, 48201
| |
Collapse
|
208
|
Fry A, Mullinger KJ, O'Neill GC, Barratt EL, Morris PG, Bauer M, Folland JP, Brookes MJ. Modulation of post-movement beta rebound by contraction force and rate of force development. Hum Brain Mapp 2016; 37:2493-511. [PMID: 27061243 PMCID: PMC4982082 DOI: 10.1002/hbm.23189] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/12/2016] [Accepted: 03/09/2016] [Indexed: 11/30/2022] Open
Abstract
Movement induced modulation of the beta rhythm is one of the most robust neural oscillatory phenomena in the brain. In the preparation and execution phases of movement, a loss in beta amplitude is observed [movement related beta decrease (MRBD)]. This is followed by a rebound above baseline on movement cessation [post movement beta rebound (PMBR)]. These effects have been measured widely, and recent work suggests that they may have significant importance. Specifically, they have potential to form the basis of biomarkers for disease, and have been used in neuroscience applications ranging from brain computer interfaces to markers of neural plasticity. However, despite the robust nature of both MRBD and PMBR, the phenomena themselves are poorly understood. In this study, we characterise MRBD and PMBR during a carefully controlled isometric wrist flexion paradigm, isolating two fundamental movement parameters; force output, and the rate of force development (RFD). Our results show that neither altered force output nor RFD has a significant effect on MRBD. In contrast, PMBR was altered by both parameters. Higher force output results in greater PMBR amplitude, and greater RFD results in a PMBR which is higher in amplitude and shorter in duration. These findings demonstrate that careful control of movement parameters can systematically change PMBR. Further, for temporally protracted movements, the PMBR can be over 7 s in duration. This means accurate control of movement and judicious selection of paradigm parameters are critical in future clinical and basic neuroscientific studies of sensorimotor beta oscillations. Hum Brain Mapp 37:2493–2511, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc
Collapse
Affiliation(s)
- Adam Fry
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, United Kingdom
| | - Karen J Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.,Birmingham University Imaging Centre, School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - George C O'Neill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Eleanor L Barratt
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Peter G Morris
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Markus Bauer
- School of Psychology, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Jonathan P Folland
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, United Kingdom
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
209
|
Erlikhman G, Gurariy G, Mruczek REB, Caplovitz GP. The neural representation of objects formed through the spatiotemporal integration of visual transients. Neuroimage 2016; 142:67-78. [PMID: 27033688 DOI: 10.1016/j.neuroimage.2016.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 11/18/2022] Open
Abstract
Oftentimes, objects are only partially and transiently visible as parts of them become occluded during observer or object motion. The visual system can integrate such object fragments across space and time into perceptual wholes or spatiotemporal objects. This integrative and dynamic process may involve both ventral and dorsal visual processing pathways, along which shape and spatial representations are thought to arise. We measured fMRI BOLD response to spatiotemporal objects and used multi-voxel pattern analysis (MVPA) to decode shape information across 20 topographic regions of visual cortex. Object identity could be decoded throughout visual cortex, including intermediate (V3A, V3B, hV4, LO1-2,) and dorsal (TO1-2, and IPS0-1) visual areas. Shape-specific information, therefore, may not be limited to early and ventral visual areas, particularly when it is dynamic and must be integrated. Contrary to the classic view that the representation of objects is the purview of the ventral stream, intermediate and dorsal areas may play a distinct and critical role in the construction of object representations across space and time.
Collapse
Affiliation(s)
| | | | - Ryan E B Mruczek
- Department of Psychology, University of Nevada, Reno, USA; Department of Psychology, Worcester State University, USA
| | | |
Collapse
|
210
|
Khoram N, Zayane C, Djellouli R, Laleg-Kirati TM. A novel approach to calibrate the hemodynamic model using functional Magnetic Resonance Imaging (fMRI) measurements. J Neurosci Methods 2016; 262:93-109. [PMID: 26802187 DOI: 10.1016/j.jneumeth.2016.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND The calibration of the hemodynamic model that describes changes in blood flow and blood oxygenation during brain activation is a crucial step for successfully monitoring and possibly predicting brain activity. This in turn has the potential to provide diagnosis and treatment of brain diseases in early stages. NEW METHOD We propose an efficient numerical procedure for calibrating the hemodynamic model using some fMRI measurements. The proposed solution methodology is a regularized iterative method equipped with a Kalman filtering-type procedure. The Newton component of the proposed method addresses the nonlinear aspect of the problem. The regularization feature is used to ensure the stability of the algorithm. The Kalman filter procedure is incorporated here to address the noise in the data. RESULTS Numerical results obtained with synthetic data as well as with real fMRI measurements are presented to illustrate the accuracy, robustness to the noise, and the cost-effectiveness of the proposed method. COMPARISON WITH EXISTING METHOD(S) We present numerical results that clearly demonstrate that the proposed method outperforms the Cubature Kalman Filter (CKF), one of the most prominent existing numerical methods. CONCLUSION We have designed an iterative numerical technique, called the TNM-CKF algorithm, for calibrating the mathematical model that describes the single-event related brain response when fMRI measurements are given. The method appears to be highly accurate and effective in reconstructing the BOLD signal even when the measurements are tainted with high noise level (as high as 30%).
Collapse
Affiliation(s)
- Nafiseh Khoram
- Department of Mathematics & Interdisciplinary Research Institute for the Sciences, IRIS, California State University Northridge (CSUN), Northridge, USA..
| | - Chadia Zayane
- Department of Applied Mathematics and Computational Science, King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| | - Rabia Djellouli
- Department of Mathematics & Interdisciplinary Research Institute for the Sciences, IRIS, California State University Northridge (CSUN), Northridge, USA..
| | - Taous-Meriem Laleg-Kirati
- Department of Applied Mathematics and Computational Science, King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| |
Collapse
|
211
|
Maggioni E, Zucca C, Reni G, Cerutti S, Triulzi FM, Bianchi AM, Arrigoni F. Investigation of the electrophysiological correlates of negative BOLD response during intermittent photic stimulation: An EEG-fMRI study. Hum Brain Mapp 2016; 37:2247-62. [PMID: 26987932 DOI: 10.1002/hbm.23170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/17/2023] Open
Abstract
Although the occurrence of concomitant positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to visual stimuli is increasingly investigated in neuroscience, it still lacks a definite explanation. Multimodal imaging represents a powerful tool to study the determinants of negative BOLD responses: the integration of functional Magnetic Resonance Imaging (fMRI) and electroencephalographic (EEG) recordings is especially useful, since it can give information on the neurovascular coupling underlying this complex phenomenon. In the present study, the brain response to intermittent photic stimulation (IPS) was investigated in a group of healthy subjects using simultaneous EEG-fMRI, with the main objective to study the electrophysiological mechanisms associated with the intense NBRs elicited by IPS in extra-striate visual cortex. The EEG analysis showed that IPS induced a desynchronization of the basal rhythm, followed by the instauration of a novel rhythm driven by the visual stimulation. The most interesting results emerged from the EEG-informed fMRI analysis, which suggested a relationship between the neuronal rhythms at 10 and 12 Hz and the BOLD dynamics in extra-striate visual cortex. These findings support the hypothesis that NBRs to visual stimuli may be neuronal in origin rather than reflecting pure vascular phenomena. Hum Brain Mapp 37:2247-2262, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eleonora Maggioni
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy.,Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milano, Italy
| | - Claudio Zucca
- Clinical Neurophysiology Unit, Scientific Institute IRCCS E.Medea, Bosisio Parini, Lecco, Italy
| | - Gianluigi Reni
- Bioengineering Laboratory, Scientific Institute IRCCS E.Medea, Bosisio Parini, Lecco, Italy
| | - Sergio Cerutti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Fabio M Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna M Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Filippo Arrigoni
- Neuroradiology Unit, Scientific Institute IRCCS E.Medea, Bosisio Parini, Lecco, Italy
| |
Collapse
|
212
|
Mayhew SD, Mullinger KJ, Ostwald D, Porcaro C, Bowtell R, Bagshaw AP, Francis ST. Global signal modulation of single-trial fMRI response variability: Effect on positive vs negative BOLD response relationship. Neuroimage 2016; 133:62-74. [PMID: 26956909 DOI: 10.1016/j.neuroimage.2016.02.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 01/25/2023] Open
Abstract
In functional magnetic resonance imaging (fMRI), the relationship between positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to stimulation is potentially informative about the balance of excitatory and inhibitory brain responses in sensory cortex. In this study, we performed three separate experiments delivering visual, motor or somatosensory stimulation unilaterally, to one side of the sensory field, to induce PBR and NBR in opposite brain hemispheres. We then assessed the relationship between the evoked amplitudes of contralateral PBR and ipsilateral NBR at the level of both single-trial and average responses. We measure single-trial PBR and NBR peak amplitudes from individual time-courses, and show that they were positively correlated in all experiments. In contrast, in the average response across trials the absolute magnitudes of both PBR and NBR increased with increasing stimulus intensity, resulting in a negative correlation between mean response amplitudes. Subsequent analysis showed that the amplitude of single-trial PBR was positively correlated with the BOLD response across all grey-matter voxels and was not specifically related to the ipsilateral sensory cortical response. We demonstrate that the global component of this single-trial response modulation could be fully explained by voxel-wise vascular reactivity, the BOLD signal standard deviation measured in a separate resting-state scan (resting state fluctuation amplitude, RSFA). However, bilateral positive correlation between PBR and NBR regions remained. We further report that modulations in the global brain fMRI signal cannot fully account for this positive PBR-NBR coupling and conclude that the local sensory network response reflects a combination of superimposed vascular and neuronal signals. More detailed quantification of physiological and noise contributions to the BOLD signal is required to fully understand the trial-by-trial PBR and NBR relationship compared with that of average responses.
Collapse
Affiliation(s)
- S D Mayhew
- Birmingham University Imaging Centre (BUIC), School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - K J Mullinger
- Birmingham University Imaging Centre (BUIC), School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - D Ostwald
- Arbeitsbereich Computational Cognitive Neuroscience, Department of Education and Psychology, Free University Berlin, Berlin, Germany; Center for Adaptive Rationality (ARC), Max-Planck-Institute for Human Development, Berlin, Germany
| | - C Porcaro
- Laboratory of Electrophysiology for Translational Neuroscience (LET'S) - ISTC - CNR, Department of Neuroscience, Fatebenefratelli Hospital Isola Tiberina, Rome, Italy; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK; Department of Information Engineering,Università Politecnica delle Marche, Ancona, Italy
| | - R Bowtell
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - A P Bagshaw
- Birmingham University Imaging Centre (BUIC), School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - S T Francis
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| |
Collapse
|
213
|
Zhan Q, Buchanan GF, Motelow JE, Andrews J, Vitkovskiy P, Chen WC, Serout F, Gummadavelli A, Kundishora A, Furman M, Li W, Bo X, Richerson GB, Blumenfeld H. Impaired Serotonergic Brainstem Function during and after Seizures. J Neurosci 2016; 36:2711-22. [PMID: 26937010 PMCID: PMC4879214 DOI: 10.1523/jneurosci.4331-15.2016] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/11/2016] [Accepted: 01/23/2016] [Indexed: 12/30/2022] Open
Abstract
Impaired breathing, cardiac function, and arousal during and after seizures are important causes of morbidity and mortality. Previous work suggests that these changes are associated with depressed brainstem function in the ictal and post-ictal periods. Lower brainstem serotonergic systems are postulated to play an important role in cardiorespiratory changes during and after seizures, whereas upper brainstem serotonergic and other systems regulate arousal. However, direct demonstration of seizure-associated neuronal activity changes in brainstem serotonergic regions has been lacking. Here, we performed multiunit and single-unit recordings from medullary raphe and midbrain dorsal raphe nuclei in an established rat seizure model while measuring changes in breathing rate and depth as well as heart rate. Serotonergic neurons were identified by immunohistochemistry. Respiratory rate, tidal volume, and minute ventilation were all significantly decreased during and after seizures in this model. We found that population firing of neurons in the medullary and midbrain raphe on multiunit recordings was significantly decreased during the ictal and post-ictal periods. Single-unit recordings from identified serotonergic neurons in the medullary raphe revealed highly consistently decreased firing during and after seizures. In contrast, firing of midbrain raphe serotonergic neurons was more variable, with a mixture of increases and decreases. The markedly suppressed firing of medullary serotonergic neurons supports their possible role in simultaneously impaired cardiorespiratory function in seizures. Decreased arousal likely arises from depressed population activity of several neuronal pools in the upper brainstem and forebrain. These findings have important implications for preventing morbidity and mortality in people living with epilepsy. SIGNIFICANCE STATEMENT Seizures often cause impaired breathing, cardiac dysfunction, and loss of consciousness. The brainstem and, specifically, brainstem serotonin neurons are thought to play an important role in controlling breathing, cardiac function, and arousal. We used an established rat seizure model to study the overall neuronal activity in the brainstem as well as firing of specific serotonin neurons while measuring cardiorespiratory function. Our results demonstrated overall decreases in brainstem neuronal activity and marked downregulation of lower brainstem serotonin neuronal firing in association with decreased breathing and heart rate during and after seizures. These findings point the way toward new treatments to augment brainstem function and serotonin, aiming to prevent seizure complications and reduce morbidity and mortality in people living with epilepsy.
Collapse
Affiliation(s)
- Qiong Zhan
- Departments of Neurology, Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China, Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | | | | | | | | | | | | | | | | | | | - Wei Li
- Departments of Neurology, Department of Neurosurgery, Jinling Hospital, School of Medicine Nanjing University, Nanjing Jiangsu 210002, China, and
| | - Xiao Bo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - George B Richerson
- Departments of Neurology and Molecular Physiology and Biophysics, and Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Hal Blumenfeld
- Departments of Neurology, Neuroscience, and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520,
| |
Collapse
|
214
|
Walter SA, Forsgren M, Lundengård K, Simon R, Torkildsen Nilsson M, Söderfeldt B, Lundberg P, Engström M. Positive Allosteric Modulator of GABA Lowers BOLD Responses in the Cingulate Cortex. PLoS One 2016; 11:e0148737. [PMID: 26930498 PMCID: PMC4773017 DOI: 10.1371/journal.pone.0148737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022] Open
Abstract
Knowledge about the neural underpinnings of the negative blood oxygen level dependent (BOLD) responses in functional magnetic resonance imaging (fMRI) is still limited. We hypothesized that pharmacological GABAergic modulation attenuates BOLD responses, and that blood concentrations of a positive allosteric modulator of GABA correlate inversely with BOLD responses in the cingulate cortex. We investigated whether or not pure task-related negative BOLD responses were co-localized with pharmacologically modulated BOLD responses. Twenty healthy adults received either 5 mg diazepam or placebo in a double blind, randomized design. During fMRI the subjects performed a working memory task. Results showed that BOLD responses in the cingulate cortex were inversely correlated with diazepam blood concentrations; that is, the higher the blood diazepam concentration, the lower the BOLD response. This inverse correlation was most pronounced in the pregenual anterior cingulate cortex and the anterior mid-cingulate cortex. For subjects with diazepam plasma concentration > 0.1 mg/L we observed negative BOLD responses with respect to fixation baseline. There was minor overlap between cingulate regions with task-related negative BOLD responses and regions where the BOLD responses were inversely correlated with diazepam concentration. We interpret that the inverse correlation between the BOLD response and diazepam was caused by GABA-related neural inhibition. Thus, this study supports the hypothesis that GABA attenuates BOLD responses in fMRI. The minimal overlap between task-related negative BOLD responses and responses attenuated by diazepam suggests that these responses might be caused by different mechanisms.
Collapse
Affiliation(s)
- Susanna A. Walter
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Mikael Forsgren
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Karin Lundengård
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Rozalyn Simon
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | | | - Birgitta Söderfeldt
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Maria Engström
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
215
|
Lea-Carnall CA, Montemurro MA, Trujillo-Barreto NJ, Parkes LM, El-Deredy W. Cortical Resonance Frequencies Emerge from Network Size and Connectivity. PLoS Comput Biol 2016; 12:e1004740. [PMID: 26914905 PMCID: PMC4767278 DOI: 10.1371/journal.pcbi.1004740] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/06/2016] [Indexed: 11/25/2022] Open
Abstract
Neural oscillations occur within a wide frequency range with different brain regions exhibiting resonance-like characteristics at specific points in the spectrum. At the microscopic scale, single neurons possess intrinsic oscillatory properties, such that is not yet known whether cortical resonance is consequential to neural oscillations or an emergent property of the networks that interconnect them. Using a network model of loosely-coupled Wilson-Cowan oscillators to simulate a patch of cortical sheet, we demonstrate that the size of the activated network is inversely related to its resonance frequency. Further analysis of the parameter space indicated that the number of excitatory and inhibitory connections, as well as the average transmission delay between units, determined the resonance frequency. The model predicted that if an activated network within the visual cortex increased in size, the resonance frequency of the network would decrease. We tested this prediction experimentally using the steady-state visual evoked potential where we stimulated the visual cortex with different size stimuli at a range of driving frequencies. We demonstrate that the frequency corresponding to peak steady-state response inversely correlated with the size of the network. We conclude that although individual neurons possess resonance properties, oscillatory activity at the macroscopic level is strongly influenced by network interactions, and that the steady-state response can be used to investigate functional networks. When entrained using repetitive stimulation, sensory cortices appear to respond maximally, or resonate, at different driving frequencies: 10Hz in visual cortex; 20Hz and 40Hz in somatosensory and auditory cortices, respectively. The resonance frequencies are inversely correlated to the cortical volume of the respective regions, but it is unclear what drives this relationship. Here we used both computational and empirical data to demonstrate that resonance frequencies are emergent properties of the connectivity parameters of the underlying networks. The experimental paradigm stimulated large and small areas of visual cortex with different size objects made of flickering dots, and varied the driving frequency. Larger cortical areas exhibited maximum response at lower frequency than smaller areas, suggesting the inverse relationship between cortical size and resonance frequency holds, even within the same sensory modality. Computationally, we simulated cortical patches of different sizes and varied their connectivity parameters. We demonstrate that the size of the activated network is inversely related to its resonance frequency and that this change is due to the increased transmission delay and greater node degree within the larger network. The results are important for understanding the functional significance of oscillatory processes, and as a tool for probing changes in functional connectivity.
Collapse
Affiliation(s)
- Caroline A. Lea-Carnall
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| | | | | | - Laura M. Parkes
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Wael El-Deredy
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- School of Biomedical Engineering, University of Valparaiso, Valparaiso, Chile
| |
Collapse
|
216
|
Reliability of negative BOLD in ipsilateral sensorimotor areas during unimanual task activity. Brain Imaging Behav 2016; 9:245-54. [PMID: 24788334 DOI: 10.1007/s11682-014-9302-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Research using functional magnetic resonance imaging has for numerous years now reported the existence of a negative blood oxygenation level dependent (BOLD) response. Based on accumulating evidence, this negative BOLD signal appears to represent an active inhibition of cortical areas in which it is found during task activity. This particularly important with respect to motor function given that it is fairly well-established that, in younger adults, the ipsilateral sensorimotor cortex exhibits negative BOLD during unimanual movements in fMRI. This interhemispheric suppression of cortical activity may have useful implications for our understanding of both basic motor function and rehabilitation of injury or disease. However, to date, we are aware of no study that has tested the reliability of evoked negative BOLD in ipsilateral sensorimotor cortex in individuals across sessions. The current study employs a unimanual finger opposition task previously shown to evoke negative BOLD in ipsilateral sensorimotor cortex across three sessions. Reliability metrics across sessions indicates that both the magnitude and location of ipsilateral sensorimotor negative BOLD response is relatively stable over each of the three sessions. Moreover, the volume of negative BOLD in ipsilateral cortex was highly correlated with volume of positive BOLD activity in the contralateral primary motor cortex. These findings show that the negative BOLD signal can be reliably evoked in unimanual task paradigms, and that the signal dynamic could represent an active suppression of the ipsilateral sensorimotor cortex originating from the contralateral motor areas.
Collapse
|
217
|
Ma Z, Cao P, Sun P, Zhao L, Li L, Tong S, Lu Y, Yan Y, Chen Y, Chai X. Inverted optical intrinsic response accompanied by decreased cerebral blood flow are related to both neuronal inhibition and excitation. Sci Rep 2016; 6:21627. [PMID: 26860040 PMCID: PMC4748280 DOI: 10.1038/srep21627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/27/2016] [Indexed: 01/27/2023] Open
Abstract
Negative hemodynamic response has been widely reported in blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging studies, however its origin is still controversial. Optical intrinsic signal (OIS) imaging can be used to study brain activity by simultaneously recording hemodynamic signals at different wavelengths with high spatial resolution. In this study, we found transcorneal electrical stimulation (TcES) could elicit both positive OIS response (POR) and negative OIS response (NOR) in cats’ visual cortex. We then investigated the property of this negative response to TcES and its relationship with cerebral blood flow (CBF) and neuronal activity. Results from laser speckle contrast imaging showed decreased CBF in the NOR region while increased CBF in the POR region. Both planar and laminar electrophysiological recordings in the middle (500–700 μm) cortical layers demonstrated that decreased and increased neuronal activities were coexisted in the NOR region. Furthermore, decreased neuronal activity was also detected in the deep cortical layers in the NOR region. This work provides evidence that the negative OIS together with the decreased CBF should be explained by mechanisms of both neuronal inhibition and excitation within middle cortical layers. Our results would be important for interpreting neurophysiological mechanisms underlying the negative BOLD signals.
Collapse
Affiliation(s)
- Zengguang Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengjia Cao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengcheng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linna Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liming Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiliang Lu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Yan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
218
|
Foster BL, He BJ, Honey CJ, Jerbi K, Maier A, Saalmann YB. Spontaneous Neural Dynamics and Multi-scale Network Organization. Front Syst Neurosci 2016; 10:7. [PMID: 26903823 PMCID: PMC4746329 DOI: 10.3389/fnsys.2016.00007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/19/2016] [Indexed: 11/16/2022] Open
Abstract
Spontaneous neural activity has historically been viewed as task-irrelevant noise that should be controlled for via experimental design, and removed through data analysis. However, electrophysiology and functional MRI studies of spontaneous activity patterns, which have greatly increased in number over the past decade, have revealed a close correspondence between these intrinsic patterns and the structural network architecture of functional brain circuits. In particular, by analyzing the large-scale covariation of spontaneous hemodynamics, researchers are able to reliably identify functional networks in the human brain. Subsequent work has sought to identify the corresponding neural signatures via electrophysiological measurements, as this would elucidate the neural origin of spontaneous hemodynamics and would reveal the temporal dynamics of these processes across slower and faster timescales. Here we survey common approaches to quantifying spontaneous neural activity, reviewing their empirical success, and their correspondence with the findings of neuroimaging. We emphasize invasive electrophysiological measurements, which are amenable to amplitude- and phase-based analyses, and which can report variations in connectivity with high spatiotemporal precision. After summarizing key findings from the human brain, we survey work in animal models that display similar multi-scale properties. We highlight that, across many spatiotemporal scales, the covariance structure of spontaneous neural activity reflects structural properties of neural networks and dynamically tracks their functional repertoire.
Collapse
Affiliation(s)
| | - Biyu J. He
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of HealthMD, USA
| | | | - Karim Jerbi
- Department of Psychology, University of MontrealQC, Canada
| | | | - Yuri B. Saalmann
- Department of Psychology, University of Wisconsin - MadisonWI, USA
| |
Collapse
|
219
|
Mizuguchi N, Nakata H, Kanosue K. Motor imagery beyond the motor repertoire: Activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements. Neuroscience 2016; 315:104-13. [DOI: 10.1016/j.neuroscience.2015.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/06/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
220
|
Kok P, Bains LJ, van Mourik T, Norris DG, de Lange FP. Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback. Curr Biol 2016; 26:371-6. [PMID: 26832438 DOI: 10.1016/j.cub.2015.12.038] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/07/2015] [Accepted: 12/08/2015] [Indexed: 11/29/2022]
Abstract
In addition to bottom-up input, the visual cortex receives large amounts of feedback from other cortical areas [1-3]. One compelling example of feedback activation of early visual neurons in the absence of bottom-up input occurs during the famous Kanizsa illusion, where a triangular shape is perceived, even in regions of the image where there is no bottom-up visual evidence for it. This illusion increases the firing activity of neurons in the primary visual cortex with a receptive field on the illusory contour [4]. Feedback signals are largely segregated from feedforward signals within each cortical area, with feedforward signals arriving in the middle layer, while top-down feedback avoids the middle layers and predominantly targets deep and superficial layers [1, 2, 5, 6]. Therefore, the feedback-mediated activity increase in V1 during the perception of illusory shapes should lead to a specific laminar activity profile that is distinct from the activity elicited by bottom-up stimulation. Here, we used fMRI at high field (7 T) to empirically test this hypothesis, by probing the cortical response to illusory figures in human V1 at different cortical depths [7-14]. We found that, whereas bottom-up stimulation activated all cortical layers, feedback activity induced by illusory figures led to a selective activation of the deep layers of V1. These results demonstrate the potential for non-invasive recordings of neural activity with laminar specificity in humans and elucidate the role of top-down signals during perceptual processing.
Collapse
Affiliation(s)
- Peter Kok
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands.
| | - Lauren J Bains
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands; Erwin L. Hahn Institute for Magnetic Resonance Imaging, UNESCO-Weltkulturerbe Zollverein, Leitstand Kokerei Zollverein, Kokereiallee 7, 45141 Essen, Germany
| | - Tim van Mourik
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands; Erwin L. Hahn Institute for Magnetic Resonance Imaging, UNESCO-Weltkulturerbe Zollverein, Leitstand Kokerei Zollverein, Kokereiallee 7, 45141 Essen, Germany; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500 AE Enschede, the Netherlands
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands
| |
Collapse
|
221
|
Wang KS, Smith DV, Delgado MR. Using fMRI to study reward processing in humans: past, present, and future. J Neurophysiol 2016; 115:1664-78. [PMID: 26740530 DOI: 10.1152/jn.00333.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 01/04/2016] [Indexed: 01/10/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a noninvasive tool used to probe cognitive and affective processes. Although fMRI provides indirect measures of neural activity, the advent of fMRI has allowed for1) the corroboration of significant animal findings in the human brain, and2) the expansion of models to include more common human attributes that inform behavior. In this review, we briefly consider the neural basis of the blood oxygenation level dependent signal to set up a discussion of how fMRI studies have applied it in examining cognitive models in humans and the promise of using fMRI to advance such models. Specifically, we illustrate the contribution that fMRI has made to the study of reward processing, focusing on the role of the striatum in encoding reward-related learning signals that drive anticipatory and consummatory behaviors. For instance, we discuss how fMRI can be used to link neural signals (e.g., striatal responses to rewards) to individual differences in behavior and traits. While this functional segregation approach has been constructive to our understanding of reward-related functions, many fMRI studies have also benefitted from a functional integration approach that takes into account how interconnected regions (e.g., corticostriatal circuits) contribute to reward processing. We contend that future work using fMRI will profit from using a multimodal approach, such as combining fMRI with noninvasive brain stimulation tools (e.g., transcranial electrical stimulation), that can identify causal mechanisms underlying reward processing. Consequently, advancements in implementing fMRI will promise new translational opportunities to inform our understanding of psychopathologies.
Collapse
Affiliation(s)
- Kainan S Wang
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey; and
| | - David V Smith
- Department of Psychology, Rutgers University, Newark, New Jersey
| | - Mauricio R Delgado
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey; and Department of Psychology, Rutgers University, Newark, New Jersey
| |
Collapse
|
222
|
|
223
|
Saillet S, Quilichini PP, Ghestem A, Giusiano B, Ivanov AI, Hitziger S, Vanzetta I, Bernard C, Bénar CG. Interneurons contribute to the hemodynamic/metabolic response to epileptiform discharges. J Neurophysiol 2015; 115:1157-69. [PMID: 26745250 DOI: 10.1152/jn.00994.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/21/2015] [Indexed: 01/28/2023] Open
Abstract
Interpretation of hemodynamic responses in epilepsy is hampered by an incomplete understanding of the underlying neurovascular coupling, especially the contributions of excitation and inhibition. We made simultaneous multimodal recordings of local field potentials (LFPs), firing of individual neurons, blood flow, and oxygen level in the somatosensory cortex of anesthetized rats. Epileptiform discharges induced by bicuculline injections were used to trigger large local events. LFP and blood flow were robustly coupled, as were LFP and tissue oxygen. In a parametric linear model, LFP and the baseline activities of cerebral blood flow and tissue partial oxygen tension contributed significantly to blood flow and oxygen responses. In an analysis of recordings from 402 neurons, blood flow/tissue oxygen correlated with the discharge of putative interneurons but not of principal cells. Our results show that interneuron activity is important in the vascular and metabolic responses during epileptiform discharges.
Collapse
Affiliation(s)
- Sandrine Saillet
- INSERM, UMR 1106, Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France
| | - Pascale P Quilichini
- INSERM, UMR 1106, Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France
| | - Antoine Ghestem
- INSERM, UMR 1106, Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France
| | - Bernard Giusiano
- INSERM, UMR 1106, Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Division of Public Health, Marseille, France
| | - Anton I Ivanov
- INSERM, UMR 1106, Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France
| | | | - Ivo Vanzetta
- Aix-Marseille Université, CNRS, INT UMR 7289, Marseille, France
| | - Christophe Bernard
- INSERM, UMR 1106, Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France
| | - Christian-G Bénar
- INSERM, UMR 1106, Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, Marseille, France;
| |
Collapse
|
224
|
Tyler CW, Likova LT, Nicholas SC. Analysis of Neural-BOLD Coupling Through Four Models of the Neural Metabolic Demand. Front Neurosci 2015; 9:419. [PMID: 26696806 PMCID: PMC4678231 DOI: 10.3389/fnins.2015.00419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 10/16/2015] [Indexed: 01/13/2023] Open
Abstract
The coupling of the neuronal energetics to the blood-oxygen-level-dependent (BOLD) response is still incompletely understood. To address this issue, we compared the fits of four plausible models of neurometabolic coupling dynamics to available data for simultaneous recordings of the local field potential and the local BOLD response recorded from monkey primary visual cortex over a wide range of stimulus durations. The four models of the metabolic demand driving the BOLD response were: direct coupling with the overall LFP; rectified coupling to the LFP; coupling with a slow adaptive component of the implied neural population response; and coupling with the non-adaptive intracellular input signal defined by the stimulus time course. Taking all stimulus durations into account, the results imply that the BOLD response is most closely coupled with metabolic demand derived from the intracellular input waveform, without significant influence from the adaptive transients and nonlinearities exhibited by the LFP waveform.
Collapse
|
225
|
Zippo AG, Rinaldi S, Pellegata G, Caramenti GC, Valente M, Fontani V, Biella GEM. Electrophysiological effects of non-invasive Radio Electric Asymmetric Conveyor (REAC) on thalamocortical neural activities and perturbed experimental conditions. Sci Rep 2015; 5:18200. [PMID: 26658170 PMCID: PMC4676007 DOI: 10.1038/srep18200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/13/2015] [Indexed: 01/20/2023] Open
Abstract
The microwave emitting Radio Electric Asymmetric Conveyor (REAC) is a technology able to interact with biological tissues at low emission intensity (2 mW at the emitter and 2.4 or 5.8 GHz) by inducing radiofrequency generated microcurrents. It shows remarkable biological effects at many scales from gene modulations up to functional global remodeling even in human subjects. Previous REAC experiments by functional Magnetic Resonance Imaging (fMRI) on healthy human subjects have shown deep modulations of cortical BOLD signals. In this paper we studied the effects of REAC application on spontaneous and evoked neuronal activities simultaneously recorded by microelectrode matrices from the somatosensory thalamo-cortical axis in control and chronic pain experimental animal models. We analyzed the spontaneous spiking activity and the Local Field Potentials (LFPs) before and after REAC applied with a different protocol. The single neuron spiking activities, the neuronal responses to peripheral light mechanical stimuli, the population discharge synchronies as well as the correlations and the network dynamic connectivity characteristics have been analyzed. Modulations of the neuronal frequency associated with changes of functional correlations and significant LFP temporal realignments have been diffusely observed. Analyses by topological methods have shown changes in functional connectivity with significant modifications of the network features.
Collapse
Affiliation(s)
- Antonio G Zippo
- Institute of Molecular Bioimaging and Physiology, Dept. of Bio-Medicine, National Research Council (CNR), LITA Bldg., Via Fratelli Cervi, 93, 20090 Segrate (Milan), Italy
| | - Salvatore Rinaldi
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy.,Department of Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy.,Research Department, Rinaldi Fontani Foundation - NPO, Viale Belfiore 43, 50144 Florence, Italy
| | - Giulio Pellegata
- Institute of Molecular Bioimaging and Physiology, Dept. of Bio-Medicine, National Research Council (CNR), LITA Bldg., Via Fratelli Cervi, 93, 20090 Segrate (Milan), Italy
| | - Gian Carlo Caramenti
- Institute of Biomedical Technology, National Research Council, (CNR), LITA Bldg., Via Fratelli Cervi, 93, 20090 Segrate (Milan), Italy
| | - Maurizio Valente
- Institute of Molecular Bioimaging and Physiology, Dept. of Bio-Medicine, National Research Council (CNR), LITA Bldg., Via Fratelli Cervi, 93, 20090 Segrate (Milan), Italy
| | - Vania Fontani
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy.,Department of Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy.,Research Department, Rinaldi Fontani Foundation - NPO, Viale Belfiore 43, 50144 Florence, Italy
| | - Gabriele E M Biella
- Institute of Molecular Bioimaging and Physiology, Dept. of Bio-Medicine, National Research Council (CNR), LITA Bldg., Via Fratelli Cervi, 93, 20090 Segrate (Milan), Italy
| |
Collapse
|
226
|
Liu J, Lee HJ, Weitz AJ, Fang Z, Lin P, Choy M, Fisher R, Pinskiy V, Tolpygo A, Mitra P, Schiff N, Lee JH. Frequency-selective control of cortical and subcortical networks by central thalamus. eLife 2015; 4:e09215. [PMID: 26652162 PMCID: PMC4721962 DOI: 10.7554/elife.09215] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/06/2015] [Indexed: 12/29/2022] Open
Abstract
Central thalamus plays a critical role in forebrain arousal and organized behavior. However, network-level mechanisms that link its activity to brain state remain enigmatic. Here, we combined optogenetics, fMRI, electrophysiology, and video-EEG monitoring to characterize the central thalamus-driven global brain networks responsible for switching brain state. 40 and 100 Hz stimulations of central thalamus caused widespread activation of forebrain, including frontal cortex, sensorimotor cortex, and striatum, and transitioned the brain to a state of arousal in asleep rats. In contrast, 10 Hz stimulation evoked significantly less activation of forebrain, inhibition of sensory cortex, and behavioral arrest. To investigate possible mechanisms underlying the frequency-dependent cortical inhibition, we performed recordings in zona incerta, where 10, but not 40, Hz stimulation evoked spindle-like oscillations. Importantly, suppressing incertal activity during 10 Hz central thalamus stimulation reduced the evoked cortical inhibition. These findings identify key brain-wide dynamics underlying central thalamus arousal regulation. DOI:http://dx.doi.org/10.7554/eLife.09215.001 The ability to wake up every morning and to fall asleep at night is something that most people take for granted. However, damage to a brain region called the central thalamus can cause a range of consciousness-related disorders, including memory problems, excessive sleeping, and even comas. For example, cell death within the central thalamus has been associated with severely disabled patients following traumatic brain injury. Previous studies have found that electrically stimulating the neurons in the central thalamus can change whether an animal is drowsy or awake and alert. However, it was not clear whether a single group of neurons in the central thalamus was responsible for switching the brain’s state between sleep and wakefulness, or how this would work. Liu, Lee, Weitz, Fang et al. have now used a technique called optogenetics to stimulate specific neurons in the central thalamus of rats, by using flashes of light. Stimulation was combined with several techniques to monitor the response of other brain regions, including fMRI imaging that shows the activity of the entire brain. The results showed that rapidly stimulating the neurons in the central thalamus – 40 or 100 times a second – led to widespread brain activity and caused sleeping rats to wake up. In contrast, stimulating the neurons of the central thalamus more slowly – around 10 times a second – suppressed the activity of part of the brain called the sensory cortex and caused rats to enter a seizure-like state of unconsciousness. Further investigation identified a group of inhibitory neurons that the central thalamus interacts with to carry out this suppression. The results suggest that the central thalamus can either power the brain to an “awake” state or promote a state of unconsciousness, depending on how rapidly its neurons are stimulated. Future work will seek to translate these results to the clinic and investigate how stimulation of the central thalamus can be optimized to reduce cognitive deficits in animal models of traumatic brain injury. DOI:http://dx.doi.org/10.7554/eLife.09215.002
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States
| | - Hyun Joo Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States
| | - Andrew J Weitz
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States
| | - Zhongnan Fang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Electrical Engineering, Stanford University, Stanford, United States
| | - Peter Lin
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States
| | - ManKin Choy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States
| | - Robert Fisher
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States
| | - Vadim Pinskiy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | | | - Partha Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Nicholas Schiff
- Department of Neurology, Weill Cornell Medical College, New York, United States
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States.,Department of Electrical Engineering, Stanford University, Stanford, United States.,Department of Neurosurgery, Stanford University, Stanford, United States
| |
Collapse
|
227
|
Tal Z, Geva R, Amedi A. The origins of metamodality in visual object area LO: Bodily topographical biases and increased functional connectivity to S1. Neuroimage 2015; 127:363-375. [PMID: 26673114 PMCID: PMC4758827 DOI: 10.1016/j.neuroimage.2015.11.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/16/2015] [Accepted: 11/24/2015] [Indexed: 11/14/2022] Open
Abstract
Recent evidence from blind participants suggests that visual areas are task-oriented and sensory modality input independent rather than sensory-specific to vision. Specifically, visual areas are thought to retain their functional selectivity when using non-visual inputs (touch or sound) even without having any visual experience. However, this theory is still controversial since it is not clear whether this also characterizes the sighted brain, and whether the reported results in the sighted reflect basic fundamental a-modal processes or are an epiphenomenon to a large extent. In the current study, we addressed these questions using a series of fMRI experiments aimed to explore visual cortex responses to passive touch on various body parts and the coupling between the parietal and visual cortices as manifested by functional connectivity. We show that passive touch robustly activated the object selective parts of the lateral–occipital (LO) cortex while deactivating almost all other occipital–retinotopic-areas. Furthermore, passive touch responses in the visual cortex were specific to hand and upper trunk stimulations. Psychophysiological interaction (PPI) analysis suggests that LO is functionally connected to the hand area in the primary somatosensory homunculus (S1), during hand and shoulder stimulations but not to any of the other body parts. We suggest that LO is a fundamental hub that serves as a node between visual-object selective areas and S1 hand representation, probably due to the critical evolutionary role of touch in object recognition and manipulation. These results might also point to a more general principle suggesting that recruitment or deactivation of the visual cortex by other sensory input depends on the ecological relevance of the information conveyed by this input to the task/computations carried out by each area or network. This is likely to rely on the unique and differential pattern of connectivity for each visual area with the rest of the brain. We studied cross-modal effects of passive somatosensory inputs on the visual cortex. Passive touch on the body evoked massive deactivation in the visual cortex. Passive hand stimulation evoked unique activation in visual object area LO. This area was also uniquely connected to the hand area in Penfield's homunculus — S1.
Collapse
Affiliation(s)
- Zohar Tal
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel.
| | - Ran Geva
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | - Amir Amedi
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel; The Edmond and Lily Safra Center for Brain Science (ELSC), The Hebrew University of Jerusalem, Jerusalem 91220, Israel; Program of Cognitive Science, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| |
Collapse
|
228
|
Spain A, Howarth C, Khrapitchev AA, Sharp T, Sibson NR, Martin C. Neurovascular and neuroimaging effects of the hallucinogenic serotonin receptor agonist psilocin in the rat brain. Neuropharmacology 2015; 99:210-20. [PMID: 26192543 PMCID: PMC4655865 DOI: 10.1016/j.neuropharm.2015.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/22/2015] [Accepted: 07/16/2015] [Indexed: 12/28/2022]
Abstract
The development of pharmacological magnetic resonance imaging (phMRI) has presented the opportunity for investigation of the neurophysiological effects of drugs in vivo. Psilocin, a hallucinogen metabolised from psilocybin, was recently reported to evoke brain region-specific, phMRI signal changes in humans. The present study investigated the effects of psilocin in a rat model using phMRI and then probed the relationship between neuronal and haemodynamic responses using a multimodal measurement preparation. Psilocin (2 mg/kg or 0.03 mg/kg i.v.) or vehicle was administered to rats (N=6/group) during either phMRI scanning or concurrent imaging of cortical blood flow and recording of local field potentials. Compared to vehicle controls psilocin (2 mg/kg) evoked phMRI signal increases in a number of regions including olfactory and limbic areas and elements of the visual system. PhMRI signal decreases were seen in other regions including somatosensory and motor cortices. Investigation of neurovascular coupling revealed that whilst neuronal responses (local field potentials) to sensory stimuli were decreased in amplitude by psilocin administration, concurrently measured haemodynamic responses (cerebral blood flow) were enhanced. The present findings show that psilocin evoked region-specific changes in phMRI signals in the rat, confirming recent human data. However, the results also suggest that the haemodynamic signal changes underlying phMRI responses reflect changes in both neuronal activity and neurovascular coupling. This highlights the importance of understanding the neurovascular effects of pharmacological manipulations for interpreting haemodynamic neuroimaging data.
Collapse
Affiliation(s)
- Aisling Spain
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK; Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Clare Howarth
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK; Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Alexandre A Khrapitchev
- Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Nicola R Sibson
- Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| | - Chris Martin
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| |
Collapse
|
229
|
Hanlon FM, Shaff NA, Dodd AB, Ling JM, Bustillo JR, Abbott CC, Stromberg SF, Abrams S, Lin DS, Mayer AR. Hemodynamic response function abnormalities in schizophrenia during a multisensory detection task. Hum Brain Mapp 2015; 37:745-55. [PMID: 26598791 DOI: 10.1002/hbm.23063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/20/2015] [Accepted: 11/12/2015] [Indexed: 11/07/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) of the blood oxygen level dependent (BOLD) response has commonly been used to investigate the neuropathology underlying cognitive and sensory deficits in patients with schizophrenia (SP) by examining the positive phase of the BOLD response, assuming a fixed shape for the hemodynamic response function (HRF). However, the individual phases (positive and post-stimulus undershoot (PSU)) of the HRF may be differentially affected by a variety of underlying pathologies. The current experiment used a multisensory detection task with a rapid event-related fMRI paradigm to investigate both the positive and PSU phases of the HRF in SP and healthy controls (HC). Behavioral results indicated no significant group differences during task performance. Analyses that examined the shape of the HRF indicated two distinct group differences. First, SP exhibited a reduced and/or prolonged PSU following normal task-related positive BOLD activation in secondary auditory and visual sensory areas relative to HC. Second, SP did not show task-induced deactivation in the anterior node of the default-mode network (aDMN) relative to HC. In contrast, when performing traditional analyses that focus on the positive phase, there were no group differences. Interestingly, the magnitude of the PSU in secondary auditory and visual areas was positively associated with the magnitude of task-induced deactivation within the aDMN, suggesting a possible common neural mechanism underlying both of these abnormalities (failure in neural inhibition). Results are consistent with recent views that separate neural processes underlie the two phases of the HRF and that they are differentially affected in SP. Hum Brain Mapp 37:745-755, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Faith M Hanlon
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Nicholas A Shaff
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Josef M Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Juan R Bustillo
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Christopher C Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Shannon F Stromberg
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Swala Abrams
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Denise S Lin
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.,Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
230
|
Havlicek M, Roebroeck A, Friston K, Gardumi A, Ivanov D, Uludag K. Physiologically informed dynamic causal modeling of fMRI data. Neuroimage 2015; 122:355-72. [DOI: 10.1016/j.neuroimage.2015.07.078] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 12/15/2022] Open
|
231
|
Abstract
Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based cerebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to assess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) imaging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI technique with high translational value in studying resting-state brain function.
Collapse
Affiliation(s)
- J. Jean Chen
- Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Kay Jann
- Laboratory of Functional MRI Technology, Department of Neurology, University of California Los Angeles, Los Angeles, California
| | - Danny J.J. Wang
- Laboratory of Functional MRI Technology, Department of Neurology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
232
|
Xu J. Implications of cortical balanced excitation and inhibition, functional heterogeneity, and sparseness of neuronal activity in fMRI. Neurosci Biobehav Rev 2015; 57:264-70. [PMID: 26341939 PMCID: PMC4623927 DOI: 10.1016/j.neubiorev.2015.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 11/15/2022]
Abstract
Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies often report inconsistent findings, probably due to brain properties such as balanced excitation and inhibition and functional heterogeneity. These properties indicate that different neurons in the same voxels may show variable activities including concurrent activation and deactivation, that the relationships between BOLD signal and neural activity (i.e., neurovascular coupling) are complex, and that increased BOLD signal may reflect reduced deactivation, increased activation, or both. The traditional general-linear-model-based-analysis (GLM-BA) is a univariate approach, cannot separate different components of BOLD signal mixtures from the same voxels, and may contribute to inconsistent findings of fMRI. Spatial independent component analysis (sICA) is a multivariate approach, can separate the BOLD signal mixture from each voxel into different source signals and measure each separately, and thus may reconcile previous conflicting findings generated by GLM-BA. We propose that methods capable of separating mixed signals such as sICA should be regularly used for more accurately and completely extracting information embedded in fMRI datasets.
Collapse
Affiliation(s)
- Jiansong Xu
- Department of Psychiatry, Yale University, School of Medicine, 1 Church St., Room 729, New Haven, CT 06519, USA.
| |
Collapse
|
233
|
Hayashi MJ, Ditye T, Harada T, Hashiguchi M, Sadato N, Carlson S, Walsh V, Kanai R. Time Adaptation Shows Duration Selectivity in the Human Parietal Cortex. PLoS Biol 2015; 13:e1002262. [PMID: 26378440 PMCID: PMC4574920 DOI: 10.1371/journal.pbio.1002262] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/21/2015] [Indexed: 11/29/2022] Open
Abstract
Although psychological and computational models of time estimation have postulated the existence of neural representations tuned for specific durations, empirical evidence of this notion has been lacking. Here, using a functional magnetic resonance imaging (fMRI) adaptation paradigm, we show that the inferior parietal lobule (IPL) (corresponding to the supramarginal gyrus) exhibited reduction in neural activity due to adaptation when a visual stimulus of the same duration was repeatedly presented. Adaptation was strongest when stimuli of identical durations were repeated, and it gradually decreased as the difference between the reference and test durations increased. This tuning property generalized across a broad range of durations, indicating the presence of general time-representation mechanisms in the IPL. Furthermore, adaptation was observed irrespective of the subject’s attention to time. Repetition of a nontemporal aspect of the stimulus (i.e., shape) did not produce neural adaptation in the IPL. These results provide neural evidence for duration-tuned representations in the human brain. A series of functional magnetic resonance imaging (fMRI) adaptation experiments provide empirical evidence for the existence of neural populations in the human inferior parietal lobule that are tuned to specific durations of time. The human brain has the ability to estimate the passage of time, which allows us to perform complex cognitive tasks such as playing music, dancing, and understanding speech. Scientists have just begun to understand which brain areas become active when we estimate time. However, it still remains a mystery how exactly the information about time is represented in the brain. In this study, we hypothesized that time might be represented by neurons that are specifically tuned to a specific duration, as has been known for simple visual features such as the orientation and the motion direction in the visual cortex. To test this idea, we performed multiple functional magnetic resonance imaging (fMRI) adaptation experiments in which we sought evidence of neuronal adaptation, that is, a reduction in the responsiveness of neurons to repeated presentations of similar durations. Our experiments revealed that the level of brain activity in the right inferior parietal lobule (IPL) was strongly reduced when a stimulus of the same duration was repeatedly presented. This finding was reproduced for a range of subsecond durations. Our results indicate that neurons in the human IPL are tuned to specific preferred durations.
Collapse
Affiliation(s)
- Masamichi J. Hayashi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- School of Psychology, University of Sussex, Brighton, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Thomas Ditye
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Tokiko Harada
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
| | - Maho Hashiguchi
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Japan
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Synnöve Carlson
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vincent Walsh
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Ryota Kanai
- School of Psychology, University of Sussex, Brighton, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Department of Neuroinformatics, Araya Brain Imaging, Tokyo, Japan
| |
Collapse
|
234
|
Brouwer GJ, Arnedo V, Offen S, Heeger DJ, Grant AC. Normalization in human somatosensory cortex. J Neurophysiol 2015; 114:2588-99. [PMID: 26311189 DOI: 10.1152/jn.00939.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 08/24/2015] [Indexed: 01/23/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) was used to measure activity in human somatosensory cortex and to test for cross-digit suppression. Subjects received stimulation (vibration of varying amplitudes) to the right thumb (target) with or without concurrent stimulation of the right middle finger (mask). Subjects were less sensitive to target stimulation (psychophysical detection thresholds were higher) when target and mask digits were stimulated concurrently compared with when the target was stimulated in isolation. fMRI voxels in a region of the left postcentral gyrus each responded when either digit was stimulated. A regression model (called a forward model) was used to separate the fMRI measurements from these voxels into two hypothetical channels, each of which responded selectively to only one of the two digits. For the channel tuned to the target digit, responses in the left postcentral gyrus increased with target stimulus amplitude but were suppressed by concurrent stimulation to the mask digit, evident as a shift in the gain of the response functions. For the channel tuned to the mask digit, a constant baseline response was evoked for all target amplitudes when the mask was absent and responses decreased with increasing target amplitude when the mask was concurrently presented. A computational model based on divisive normalization provided a good fit to the measurements for both mask-absent and target + mask stimulation. We conclude that the normalization model can explain cross-digit suppression in human somatosensory cortex, supporting the hypothesis that normalization is a canonical neural computation.
Collapse
Affiliation(s)
- Gijs Joost Brouwer
- Department of Psychology and Center for Neural Science, New York University, New York, New York; and
| | - Vanessa Arnedo
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Shani Offen
- Department of Psychology and Center for Neural Science, New York University, New York, New York; and
| | - David J Heeger
- Department of Psychology and Center for Neural Science, New York University, New York, New York; and
| | - Arthur C Grant
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
235
|
Turkheimer FE, Leech R, Expert P, Lord LD, Vernon AC. The brain's code and its canonical computational motifs. From sensory cortex to the default mode network: A multi-scale model of brain function in health and disease. Neurosci Biobehav Rev 2015; 55:211-22. [PMID: 25956253 DOI: 10.1016/j.neubiorev.2015.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/01/2015] [Accepted: 04/25/2015] [Indexed: 12/21/2022]
Affiliation(s)
| | - Robert Leech
- Division of Brain Sciences, Imperial College London, London, UK
| | - Paul Expert
- Institute of Psychiatry, King's College London, London, UK
| | | | | |
Collapse
|
236
|
Jacques C, Witthoft N, Weiner KS, Foster BL, Rangarajan V, Hermes D, Miller KJ, Parvizi J, Grill-Spector K. Corresponding ECoG and fMRI category-selective signals in human ventral temporal cortex. Neuropsychologia 2015. [PMID: 26212070 DOI: 10.1016/j.neuropsychologia.2015.07.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Functional magnetic resonance imaging (fMRI) and electrocorticography (ECoG) research have been influential in revealing the functional characteristics of category-selective responses in human ventral temporal cortex (VTC). One important, but unanswered, question is how these two types of measurements might be related with respect to the VTC. Here we examined which components of the ECoG signal correspond to the fMRI response by using a rare opportunity to measure both fMRI and ECoG responses from the same individuals to images of exemplars of various categories including faces, limbs, cars and houses. Our data reveal three key findings. First, we discovered that the coupling between fMRI and ECoG responses is frequency and time dependent. The strongest and most sustained correlation is observed between fMRI and high frequency broadband (HFB) ECoG responses (30-160 hz). In contrast, the correlation between fMRI and ECoG signals in lower frequency bands is temporally transient, where the correlation is initially positive, but then tapers off or becomes negative. Second, we find that the strong and positive correlation between fMRI and ECoG signals in all frequency bands emerges rapidly around 100 ms after stimulus onset, together with the onset of the first stimulus-driven neural signals in VTC. Third, we find that the spatial topology and representational structure of category-selectivity in VTC reflected in ECoG HFB responses mirrors the topology and structure observed with fMRI. These findings of a strong and rapid coupling between fMRI and HFB responses validate fMRI measurements of functional selectivity with recordings of direct neural activity and suggest that fMRI category-selective signals in VTC are associated with feed-forward neural processing.
Collapse
Affiliation(s)
- Corentin Jacques
- Department of Psychology, Stanford University, Stanford, CA 94305, USA; Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, 10 Place du Cardinal Mercier, 1348 Louvain-la-Neuve, Belgium; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA.
| | - Nathan Witthoft
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Kevin S Weiner
- Department of Psychology, Stanford University, Stanford, CA 94305, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA
| | - Brett L Foster
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA
| | - Vinitha Rangarajan
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA
| | - Dora Hermes
- Department of Psychology, Stanford University, Stanford, CA 94305, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA
| | - Kai J Miller
- Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Josef Parvizi
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA; Stanford Neuroscience Institute, SNI, Stanford University, Stanford, CA 94305, USA
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA 94305, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA; Stanford Neuroscience Institute, SNI, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
237
|
Hu D, Huang L. Negative hemodynamic response in the cortex: evidence opposing neuronal deactivation revealed via optical imaging and electrophysiological recording. J Neurophysiol 2015; 114:2152-61. [PMID: 26180117 DOI: 10.1152/jn.00246.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/08/2015] [Indexed: 11/22/2022] Open
Abstract
Functional brain imaging techniques depend on the relationship between regional hemodynamic responses and neural activity. The positive hemodynamic response (PHR) has widely been discussed and has generally been associated with an increase in neuronal signals. In contrast, the negative hemodynamic response (NHR) has not been investigated extensively, and its underlying nature is highly controversial. In the present study, we employed an optical imaging (OI) technique and microelectrode array (MEA) recordings in the rat cortex to examine the NHR to hindlimb electrical stimulation; we primarily focused on the NHR adjacent to a PHR region. We determined that the dynamics of the total blood volume signal in the NHR regions lagged slightly behind those in the PHR areas. Additionally, the deoxyhemoglobin signal in the PHR areas increased immediately after stimulation and the deoxyhemoglobin signal in the NHR regions remained unchanged or increased. Consistent with the change in the deoxyhemoglobin signal, the MEA recordings demonstrated that neural activity in the PHR regions was elevated and that activity in the NHR areas was unchanged or increased during stimulation, implying that the NHR occurred in the absence of neural deactivation. These results suggest that the NHR may be explained by purely hemodynamic contributions, specifically "blood stealing" or increased neural activity, and indicate that caution should be exercised when interpreting the NHR as a decrease in neural activity, especially when the NHR is adjacent to a PHR.
Collapse
Affiliation(s)
- Dewen Hu
- College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Liangming Huang
- College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
238
|
Luo C, Zhang Y, Cao W, Huang Y, Yang F, Wang J, Tu S, Wang X, Yao D. Altered Structural and Functional Feature of Striato-Cortical Circuit in Benign Epilepsy with Centrotemporal Spikes. Int J Neural Syst 2015; 25:1550027. [PMID: 26126612 DOI: 10.1142/s0129065715500276] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Benign epilepsy with centrotemporal spikes (BECT) is the most common form of childhood idiopathic focal epilepsy syndrome. We investigated quantitative evidence regarding brain morphology and functional connectivity features to provide insight into the neuroanatomical foundation of this disorder, using high resolution T1-weighted magnetic resonance imaging (MRI) and resting state functional MRI in 21 patients with BECT and in 20 healthy children. The functional connectivity analysis, seeded at the regions with altered gray-matter (GM) volume in voxel-based morphometry (VBM) analysis, was further performed. Then, the observed structural and functional alteration were investigated for their association with the clinical and behavior manifestations. The increased GM volume in the striatum and fronto-temporo-parietal cortex (striato-cortical circuit) was observed in BECT. The decreased connections were found among the motor network and frontostriatal loop, and between the default mode network (DMN) and language regions. Additionally, the GM of striatum was negatively correlated with age at epilepsy onset. The current observations may contribute to the understanding of the altered structural and functional feature of striato-cortical circuit in patients with BECT. The findings also implied alterations of the motor network and DMN, which were associated with the epileptic activity in patients with BECT. This further suggested that the onset of BECT might have enduring structural and functional effects on brain maturation.
Collapse
Affiliation(s)
- Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging, Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yaodan Zhang
- Neurology Department, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, NanChong 637007, China
| | - Weifang Cao
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging, Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yue Huang
- Pediatric Department, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, NanChong 637007, China
| | - Fei Yang
- Neurology Department, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, NanChong 637007, China
| | - Jianjun Wang
- Pediatric Department, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, NanChong 637007, China
| | - Shipeng Tu
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging, Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaoming Wang
- Neurology Department, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, NanChong 637007, China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, High-Field Magnetic Resonance Brain Imaging, Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
239
|
Benuzzi F, Ballotta D, Mirandola L, Ruggieri A, Vaudano AE, Zucchelli M, Ferrari E, Nichelli PF, Meletti S. An EEG-fMRI Study on the Termination of Generalized Spike-And-Wave Discharges in Absence Epilepsy. PLoS One 2015; 10:e0130943. [PMID: 26154563 PMCID: PMC4496065 DOI: 10.1371/journal.pone.0130943] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
Introduction Different studies have investigated by means of EEG-fMRI coregistration the brain networks related to generalized spike-and-wave discharges (GSWD) in patients with idiopathic generalized epilepsy (IGE). These studies revealed a widespread GSWD-related neural network that involves the thalamus and regions of the default mode network. In this study we investigated which brain regions are critically involved in the termination of absence seizures (AS) in a group of IGE patients. Methods Eighteen patients (6 male; mean age 25 years) with AS were included in the EEG-fMRI study. Functional data were acquired at 3T with continuous simultaneous video-EEG recording. Event-related analysis was performed with SPM8 software, using the following regressors: (1) GSWD onset and duration; (2) GSWD offset. Data were analyzed at single-subject and at group level with a second level random effect analysis. Results A mean of 17 events for patient was recorded (mean duration of 4.2 sec). Group-level analysis related to GSWD onset respect to rest confirmed previous findings revealing thalamic activation and a precuneus/posterior cingulate deactivation. At GSWD termination we observed a decrease in BOLD signal over the bilateral dorsolateral frontal cortex respect to the baseline (and respect to GSWD onset). The contrast GSWD offset versus onset showed a BOLD signal increase over the precuneus-posterior cingulate region bilaterally. Parametric correlations between electro-clinical variables and BOLD signal at GSWD offset did not reveal significant effects. Conclusion The role of the decreased neural activity of lateral prefrontal cortex at GSWD termination deserve future investigations to ascertain if it has a role in promoting the discharge offset, as well as in the determination of the cognitive deficits often present in patients with AS. The increased BOLD signal at precuneal/posterior cingulate cortex might reflect the recovery of neural activity in regions that are “suspended” during spike and waves activity, as previously hypothesized.
Collapse
Affiliation(s)
- Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Mirandola
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, NOCSAE Hospital-ASL, Modena, Italy
| | - Andrea Ruggieri
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, NOCSAE Hospital-ASL, Modena, Italy
| | | | | | - Paolo Frigio Nichelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, NOCSAE Hospital-ASL, Modena, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, NOCSAE Hospital-ASL, Modena, Italy
- * E-mail:
| |
Collapse
|
240
|
Decreased subcortical cholinergic arousal in focal seizures. Neuron 2015; 85:561-72. [PMID: 25654258 DOI: 10.1016/j.neuron.2014.12.058] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 11/18/2014] [Accepted: 12/17/2014] [Indexed: 11/20/2022]
Abstract
Impaired consciousness in temporal lobe seizures has a major negative impact on quality of life. The prevailing view holds that this disorder impairs consciousness by seizure spread to the bilateral temporal lobes. We propose instead that seizures invade subcortical regions and depress arousal, causing impairment through decreases rather than through increases in activity. Using functional magnetic resonance imaging in a rodent model, we found increased activity in regions known to depress cortical function, including lateral septum and anterior hypothalamus. Importantly, we found suppression of intralaminar thalamic and brainstem arousal systems and suppression of the cortex. At a cellular level, we found reduced firing of identified cholinergic neurons in the brainstem pedunculopontine tegmental nucleus and basal forebrain. Finally, we used enzyme-based amperometry to demonstrate reduced cholinergic neurotransmission in both cortex and thalamus. Decreased subcortical arousal is a critical mechanism for loss of consciousness in focal temporal lobe seizures.
Collapse
|
241
|
Long-latency reductions in gamma power predict hemodynamic changes that underlie the negative BOLD signal. J Neurosci 2015; 35:4641-56. [PMID: 25788681 DOI: 10.1523/jneurosci.2339-14.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Studies that use prolonged periods of sensory stimulation report associations between regional reductions in neural activity and negative blood oxygenation level-dependent (BOLD) signaling. However, the neural generators of the negative BOLD response remain to be characterized. Here, we use single-impulse electrical stimulation of the whisker pad in the anesthetized rat to identify components of the neural response that are related to "negative" hemodynamic changes in the brain. Laminar multiunit activity and local field potential recordings of neural activity were performed concurrently with two-dimensional optical imaging spectroscopy measuring hemodynamic changes. Repeated measurements over multiple stimulation trials revealed significant variations in neural responses across session and animal datasets. Within this variation, we found robust long-latency decreases (300 and 2000 ms after stimulus presentation) in gamma-band power (30-80 Hz) in the middle-superficial cortical layers in regions surrounding the activated whisker barrel cortex. This reduction in gamma frequency activity was associated with corresponding decreases in the hemodynamic responses that drive the negative BOLD signal. These findings suggest a close relationship between BOLD responses and neural events that operate over time scales that outlast the initiating sensory stimulus, and provide important insights into the neurophysiological basis of negative neuroimaging signals.
Collapse
|
242
|
Karten A, Hirsch J. Brief report: Anomalous neural deactivations and functional connectivity during receptive language in autism spectrum disorder: a functional MRI study. J Autism Dev Disord 2015; 45:1905-14. [PMID: 25526952 PMCID: PMC4441908 DOI: 10.1007/s10803-014-2344-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neural mechanisms that underlie language disability in autism spectrum disorder (ASD) have been associated with reduced excitatory processes observed as positive blood oxygen level dependent (BOLD) responses. However, negative BOLD responses (NBR) associated with language and inhibitory processes have been less studied in ASD. In this study, functional magnetic resonance imaging showed that the NBR in ASD participants was reduced during passive listening to spoken narratives compared to control participants. Further, functional connectivity between the superior temporal gyrus and regions that exhibited a NBR during receptive language in control participants was increased in ASD participants. These findings extend models for receptive language disability in ASD to include anomalous neural deactivations and connectivity consistent with reduced or poorly modulated inhibitory processes.
Collapse
Affiliation(s)
- Ariel Karten
- Brain Function Laboratory, Departments of Psychiatry and Neurobiology, Yale University School of Medicine, 300 George Street, Suite 902, New Haven, CT 06511 USA
- Stony Brook University School of Medicine, 101 Nicolls Rd., Stony Brook, NY 11794 USA
| | - Joy Hirsch
- Brain Function Laboratory, Departments of Psychiatry and Neurobiology, Yale University School of Medicine, 300 George Street, Suite 902, New Haven, CT 06511 USA
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, 300 George Street, Suite 902, New Haven, CT 06511 USA
| |
Collapse
|
243
|
Shatillo A, Salo RA, Giniatullin R, Gröhn OH. Involvement of NMDA receptor subtypes in cortical spreading depression in rats assessed by fMRI. Neuropharmacology 2015; 93:164-70. [DOI: 10.1016/j.neuropharm.2015.01.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/23/2014] [Accepted: 01/26/2015] [Indexed: 02/07/2023]
|
244
|
Crosson B, McGregor KM, Nocera JR, Drucker JH, Tran SM, Butler AJ. The relevance of aging-related changes in brain function to rehabilitation in aging-related disease. Front Hum Neurosci 2015; 9:307. [PMID: 26074807 PMCID: PMC4444823 DOI: 10.3389/fnhum.2015.00307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/12/2015] [Indexed: 12/29/2022] Open
Abstract
The effects of aging on rehabilitation of aging-related diseases are rarely a design consideration in rehabilitation research. In this brief review we present strong coincidental evidence from these two fields suggesting that deficits in aging-related disease or injury are compounded by the interaction between aging-related brain changes and disease-related brain changes. Specifically, we hypothesize that some aphasia, motor, and neglect treatments using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) in stroke patients may address the aging side of this interaction. The importance of testing this hypothesis and addressing the larger aging by aging-related disease interaction is discussed. Underlying mechanisms in aging that most likely are relevant to rehabilitation of aging-related diseases also are covered.
Collapse
Affiliation(s)
- Bruce Crosson
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA ; Department of Psychology, Georgia State University Atlanta, GA, USA ; School of Health and Rehabilitation Sciences, University of Queensland Brisbane, Qld, Australia
| | - Keith M McGregor
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA
| | - Joe R Nocera
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA
| | - Jonathan H Drucker
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA ; Department of Psychology, Emory University Atlanta, GA, USA
| | - Stella M Tran
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Psychology, Georgia State University Atlanta, GA, USA
| | - Andrew J Butler
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Physical Therapy and School of Nursing and Health Professionals, Georgia State University Atlanta, GA, USA
| |
Collapse
|
245
|
Raichle ME. The restless brain: how intrinsic activity organizes brain function. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140172. [PMID: 25823869 PMCID: PMC4387513 DOI: 10.1098/rstb.2014.0172] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2015] [Indexed: 11/12/2022] Open
Abstract
Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease.
Collapse
Affiliation(s)
- Marcus E Raichle
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, Room 2116, St Louis, MO 63110, USA
| |
Collapse
|
246
|
Vanni S, Sharifian F, Heikkinen H, Vigário R. Modeling fMRI signals can provide insights into neural processing in the cerebral cortex. J Neurophysiol 2015; 114:768-80. [PMID: 25972586 DOI: 10.1152/jn.00332.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/04/2015] [Indexed: 12/16/2022] Open
Abstract
Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals.
Collapse
Affiliation(s)
- Simo Vanni
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland;
| | - Fariba Sharifian
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland; Advanced Magnetic Imaging Centre, Aalto Neuroimaging, School of Science, Aalto University, Espoo, Finland; and
| | - Hanna Heikkinen
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland; Advanced Magnetic Imaging Centre, Aalto Neuroimaging, School of Science, Aalto University, Espoo, Finland; and
| | - Ricardo Vigário
- Department Computer Science, School of Science, Aalto University, Espoo, Finland
| |
Collapse
|
247
|
Abstract
The brain's default mode network consists of discrete, bilateral and symmetrical cortical areas, in the medial and lateral parietal, medial prefrontal, and medial and lateral temporal cortices of the human, nonhuman primate, cat, and rodent brains. Its discovery was an unexpected consequence of brain-imaging studies first performed with positron emission tomography in which various novel, attention-demanding, and non-self-referential tasks were compared with quiet repose either with eyes closed or with simple visual fixation. The default mode network consistently decreases its activity when compared with activity during these relaxed nontask states. The discovery of the default mode network reignited a longstanding interest in the significance of the brain's ongoing or intrinsic activity. Presently, studies of the brain's intrinsic activity, popularly referred to as resting-state studies, have come to play a major role in studies of the human brain in health and disease. The brain's default mode network plays a central role in this work.
Collapse
Affiliation(s)
- Marcus E Raichle
- Washington University School of Medicine, St. Louis, Missouri 63110;
| |
Collapse
|
248
|
Heikkinen H, Sharifian F, Vigario R, Vanni S. Feedback to distal dendrites links fMRI signals to neural receptive fields in a spiking network model of the visual cortex. J Neurophysiol 2015; 114:57-69. [PMID: 25925319 DOI: 10.1152/jn.00169.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/27/2015] [Indexed: 11/22/2022] Open
Abstract
The blood oxygenation level-dependent (BOLD) response has been strongly associated with neuronal activity in the brain. However, some neuronal tuning properties are consistently different from the BOLD response. We studied the spatial extent of neural and hemodynamic responses in the primary visual cortex, where the BOLD responses spread and interact over much longer distances than the small receptive fields of individual neurons would predict. Our model shows that a feedforward-feedback loop between V1 and a higher visual area can account for the observed spread of the BOLD response. In particular, anisotropic landing of inputs to compartmental neurons were necessary to account for the BOLD signal spread, while retaining realistic spiking responses. Our work shows that simple dendrites can separate tuning at the synapses and at the action potential output, thus bridging the BOLD signal to the neural receptive fields with high fidelity.
Collapse
Affiliation(s)
- Hanna Heikkinen
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland; Aalto Neuroimaging, Aalto University School of Science, Espoo, Finland;
| | - Fariba Sharifian
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland; Aalto Neuroimaging, Aalto University School of Science, Espoo, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ricardo Vigario
- Department of Computer Science, Aalto University School of Science, Espoo, Finland; and
| | - Simo Vanni
- Aalto Neuroimaging, Aalto University School of Science, Espoo, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
249
|
Snyder AC, Morais MJ, Willis CM, Smith MA. Global network influences on local functional connectivity. Nat Neurosci 2015; 18:736-43. [PMID: 25799040 PMCID: PMC4641678 DOI: 10.1038/nn.3979] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/17/2015] [Indexed: 01/01/2023]
Abstract
A central neuroscientific pursuit is understanding neuronal interactions that support computations underlying cognition and behavior. Although neurons interact across disparate scales, from cortical columns to whole-brain networks, research has been restricted to one scale at a time. We measured local interactions through multi-neuronal recordings while accessing global networks using scalp electroencephalography (EEG) in rhesus macaques. We measured spike count correlation, an index of functional connectivity with computational relevance, and EEG oscillations, which have been linked to various cognitive functions. We found a non-monotonic relationship between EEG oscillation amplitude and spike count correlation, contrary to the intuitive expectation of a direct relationship. With a widely used network model, we replicated these findings by incorporating a private signal targeting inhibitory neurons, a common mechanism proposed for gain modulation. Finally, we found that spike count correlation explained nonlinearities in the relationship between EEG oscillations and response time in a spatial selective attention task.
Collapse
Affiliation(s)
- Adam C. Snyder
- Dept. of Ophthalmology, Univ. of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Univ. of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J. Morais
- Dept. of Ophthalmology, Univ. of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Bioengineering, Univ. of Pittsburgh, Pittsburgh, PA, USA
| | - Cory M. Willis
- Dept. of Ophthalmology, Univ. of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew A. Smith
- Dept. of Ophthalmology, Univ. of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Univ. of Pittsburgh, Pittsburgh, PA, USA
- Dept. of Bioengineering, Univ. of Pittsburgh, Pittsburgh, PA, USA
- Fox Center for Vision Restoration, Univ. of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
250
|
Takata N, Yoshida K, Komaki Y, Xu M, Sakai Y, Hikishima K, Mimura M, Okano H, Tanaka KF. Optogenetic activation of CA1 pyramidal neurons at the dorsal and ventral hippocampus evokes distinct brain-wide responses revealed by mouse fMRI. PLoS One 2015; 10:e0121417. [PMID: 25793741 PMCID: PMC4368201 DOI: 10.1371/journal.pone.0121417] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/01/2015] [Indexed: 11/19/2022] Open
Abstract
The dorsal and ventral hippocampal regions (dHP and vHP) are proposed to have distinct functions. Electrophysiological studies have revealed intra-hippocampal variances along the dorsoventral axis. Nevertheless, the extra-hippocampal influences of dHP and vHP activities remain unclear. In this study, we compared the spatial distribution of brain-wide responses upon dHP or vHP activation and further estimate connection strengths between the dHP and the vHP with corresponding extra-hippocampal areas. To achieve this, we first investigated responses of local field potential (LFP) and multi unit activities (MUA) upon light stimulation in the hippocampus of an anesthetized transgenic mouse, whose CA1 pyramidal neurons expressed a step-function opsin variant of channelrhodopsin-2 (ChR2). Optogenetic stimulation increased hippocampal LFP power at theta, gamma, and ultra-fast frequency bands, and augmented MUA, indicating light-induced activation of CA1 pyramidal neurons. Brain-wide responses examined using fMRI revealed that optogenetic activation at the dHP or vHP caused blood oxygenation level-dependent (BOLD) fMRI signals in situ. Although activation at the dHP induced BOLD responses at the vHP, the opposite was not observed. Outside the hippocampal formation, activation at the dHP, but not the vHP, evoked BOLD responses at the retrosplenial cortex (RSP), which is in line with anatomical evidence. In contrast, BOLD responses at the lateral septum (LS) were induced only upon vHP activation, even though both dHP and vHP send axonal fibers to the LS. Our findings suggest that the primary targets of dHP and vHP activation are distinct, which concurs with attributed functions of the dHP and RSP in spatial memory, as well as of the vHP and LS in emotional responses.
Collapse
Affiliation(s)
- Norio Takata
- Department of Neuropsychiatry, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
- * E-mail: (NT); (KFT)
| | - Keitaro Yoshida
- Department of Neuropsychiatry, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | - Yuji Komaki
- Department of Physiology, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Ming Xu
- Department of Neuropsychiatry, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | - Yuki Sakai
- Department of Neuropsychiatry, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keigo Hikishima
- Department of Physiology, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | - Kenji F. Tanaka
- Department of Neuropsychiatry, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
- * E-mail: (NT); (KFT)
| |
Collapse
|