201
|
Tang J, Zou Y, Li L, Lu F, Xu H, Ren P, Bai F, Niedermann G, Zhu X. BAY 60-6583 Enhances the Antitumor Function of Chimeric Antigen Receptor-Modified T Cells Independent of the Adenosine A2b Receptor. Front Pharmacol 2021; 12:619800. [PMID: 33776765 PMCID: PMC7994267 DOI: 10.3389/fphar.2021.619800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/01/2021] [Indexed: 01/12/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells are powerful in eradicating hematological malignancies, but their efficacy is limited in treating solid tumors. One of the barriers is the immunosuppressive response induced by immunomodulatory signaling pathways. Pharmacological targeting of these immunosuppressive pathways may be a simple way to improve the efficacy of CAR T cells. In this study, anti-CD133 and anti-HER2 CAR T cells were generated from healthy donors, and combination therapy using CAR T cells and small molecules targeting adenosine receptors was performed in vitro and in vivo with the goal of probing for potential synergistic antitumor activities. The adenosine A2b receptor agonist, BAY 60-6583, was found to significantly increase cytokine secretion of CD133-or HER2-specific CAR T cells when co-cultured with the respective target tumor cells. The in vitro cytotoxicity and proliferation of CAR T cells were also enhanced when supplied with BAY 60-6583. Furthermore, the combination with this small molecule facilitated the anti-HER2 CAR T cell-mediated elimination of tumor cells in a xenograft mouse model. However, the enhanced antitumor activities could not be suppressed by knockout of the adenosine A2b receptor in CAR T cells. Furthermore, mass spectrometry and computational methods were used to predict several potential alternative targets. Four potential targets (pyruvate kinase M (PKM), Talin-1, Plastin-2, and lamina-associated polypeptide 2) were captured by a photo-affinity probe, of which PKM and Talin-1 were predicted to interact with BAY 60-6583. Overall, our data suggest that BAY 60-6583 upregulates T cell functions through a mechanism independent of the adenosine A2b receptor.
Collapse
Affiliation(s)
- Jiaxing Tang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zou
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Long Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Fengping Lu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Pengxuan Ren
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium, Partner Site Freiburg and German Cancer Research Center, Heidelberg, Germany
| | - Xuekai Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
202
|
Virtual Screening of Cablin Patchouli Herb as a Treatment for Heat Stress: A Study Based on Network Pharmacology, Molecular Docking, and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8057587. [PMID: 33777163 PMCID: PMC7969090 DOI: 10.1155/2021/8057587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/18/2022]
Abstract
Heat-related diseases have long been known to damage the structure and function of essential macromolecules such as proteins, lipids, and nucleic acids, thereby compromising the integrity of cells and tissues and the physiological functions of the entire organism. Heat stress is the physical discomfort caused by overheating the body and is also the initial manifestation of heat-related diseases. Cablin patchouli herb (CPB) has been used in China for two thousand years and has been used to treat heat stress, but to date, no related mechanistic research is available. In this study, KEGG and PPI networks and the TCMSP and GEO databases were used to explore the components of CPB in relation to heat stress: quercetin, genkwanin, irisolidone, 3,23-dihydroxy-12-oleanen-28-oic acid, and quercetin 7-O-β-D-glucoside. The targets identified were EGFR, NCOA1, FOS, HIF1A, NFKBIA, and NCOA2; these proteins were verified by molecular docking and experimental verification. In short, our research represents the first report on the use of the traditional Chinese medicine CPB to treat heat stress and thus has pioneering significance.
Collapse
|
203
|
Carrero YN, Callejas DE, Mosquera JA. In situ immunopathological events in human cervical intraepithelial neoplasia and cervical cancer: Review. Transl Oncol 2021; 14:101058. [PMID: 33677234 PMCID: PMC7937982 DOI: 10.1016/j.tranon.2021.101058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Neoplasia of the cervix represents one of the most common cancers in women. Clinical and molecular research has identified immunological impairment in squamous intraepithelial cervical lesions and cervical cancer patients. The in-situ expression of several cytokines by uterine epithelial cells and by infiltrating leukocytes occurs during the cervical intraepithelial neoplasia and cervical cancer. Some of these cytokines can prevent and others can induce the progression of the neoplasm. The infiltrating leukocytes also produce cytokines and growth factors relate to angiogenesis, chemotaxis, and apoptosis capable of modulating the dysplasia progression. In this review we analyzed several interleukins with an inductive effect or blocking effect on the neoplastic progression. We also analyze the genetic polymorphism of some cytokines and their relationship with the risk of developing cervical neoplasia. In addition, we describe the leukocyte cells that infiltrate the cervical uterine tissue during the neoplasia and their effects on neoplasia progression.
Collapse
Affiliation(s)
- Yenddy N Carrero
- Facultad de Ciencias de la Salud. Carrera de Medicina, Universidad Técnica de Ambato, Ambato, Ecuador.
| | - Diana E Callejas
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - Jesús A Mosquera
- Instituto de Investigaciones Clínicas Dr. Américo Negrette. Facultad de Medicina, Universidad del Zulia. Maracaibo, Venezuela.
| |
Collapse
|
204
|
A proteomic view of cellular responses of macrophages to copper when added as ion or as copper-polyacrylate complex. J Proteomics 2021; 239:104178. [PMID: 33662612 DOI: 10.1016/j.jprot.2021.104178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
Copper is an essential metal for life, but is toxic at high concentrations. In mammalian cells, two copper transporters are known, CTR1 and CTR2. In order to gain insights on the possible influence of the import pathway on cellular responses to copper, two copper challenges were compared: one with copper ion, which is likely to use preferentially CTR1, and one with a copper-polyacrylate complex, which will be internalized via the endosomal pathway and is likely to use preferentially CTR2. A model system consisting in the J774A1 mouse macrophage system, with a strong endosomal/lysosomal pathway, was used. In order to gain wide insights into the cellular responses to copper, a proteomic approach was used. The proteomic results were validated by targeted experiments, and showed differential effects of the import mode on cellular physiology parameters. While the mitochondrial transmembrane potential was kept constant, a depletion in the free glutahione content was observed with copper (ion and polylacrylate complex). Both copper-polyacrylate and polyacrylate induced perturbations in the cytoskeleton and in phagocytosis. Inflammatory responses were also differently altered by copper ion and copper-polyacrylate. Copper-polyacrylate also perturbed several metabolic enzymes. Lastly, enzymes were used as a test set to assess the predictive value of proteomics. SIGNIFICANCE: Proteomic profiling provides an in depth analysis of the alterations induced on cells by copper under two different exposure modes to this metal, namely as the free ion or as a complex with polyacrylate. The cellular responses were substantially different between the two exposure modes, although some cellular effects are shared, such as the depletion in free glutathione. Targeted experiments were used to confirm the proteomic results. Some metabolic enzymes showed altered activities after exposure to the copper-polyacrylate complex. The basal inflammatory responses were different for copper ion and for the copper-polyacrylate complex, while the two forms of copper inhibited lipopolysaccharide-induced inflammatory responses.
Collapse
|
205
|
Wang S, Sun Z, Hou Y. Engineering Nanoparticles toward the Modulation of Emerging Cancer Immunotherapy. Adv Healthc Mater 2021; 10:e2000845. [PMID: 32790039 DOI: 10.1002/adhm.202000845] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/09/2020] [Indexed: 12/16/2022]
Abstract
Cancer immunotherapy is a new therapeutic strategy to fight cancer by activating the patients' own immune system. At present, immunotherapy approaches such as cancer vaccines, immune checkpoint blockade (ICB), adoptive cell transfer (ACT), monoclonal antibodies (mAbs) therapy, and cytokines therapy have therapeutic potential in preclinical and clinical applications. However, the intrinsic limitations of conventional immunotherapy are difficulty of precise dosage control, insufficient enrichment in tumor tissues, partial immune response silencing or hyperactivity, and high cost. Engineering nanoparticles (NPs) have been emerging as a promising multifunctional platform to enhance conventional immunotherapy due to their intrinsic immunogenicity, convenient delivery function, controlled surface chemistry activity, multifunctional modifying potential, and intelligent targeting. This review presents the recent progress reflected by engineering NPs, including the diversified selection of functionalized NPs, the superiority of engineering NPs for enhancing conventional immunotherapy, and NP-mediated multiscale strategies for synergistic therapy consisting of compositions and their mechanism. Finally, the perspective on multifunctional NP-based cancer immunotherapy for boosting immunomodulation is discussed, which reveals the expanding landscape of engineering NPs in clinical translation.
Collapse
Affiliation(s)
- Shuren Wang
- Beijing Key Laboratory of Magnetoelectric Materials and Devices Department of Materials Science and Engineering College of Engineering Beijing Innovation Centre for Engineering Science and Advanced Technology Peking University Beijing 100871 China
| | - Zhaoli Sun
- Beijing Key Laboratory of Magnetoelectric Materials and Devices Department of Materials Science and Engineering College of Engineering Beijing Innovation Centre for Engineering Science and Advanced Technology Peking University Beijing 100871 China
- College of Life Sciences Peking University Beijing 100871 China
| | - Yanglong Hou
- Beijing Key Laboratory of Magnetoelectric Materials and Devices Department of Materials Science and Engineering College of Engineering Beijing Innovation Centre for Engineering Science and Advanced Technology Peking University Beijing 100871 China
| |
Collapse
|
206
|
Hou Q, Jiang Z, Li Z, Jiang M. Identification and Functional Validation of Radioresistance-Related Genes AHNAK2 and EVPL in Esophageal Squamous Cell Carcinoma by Exome and Transcriptome Sequencing Analyses. Onco Targets Ther 2021; 14:1131-1145. [PMID: 33633453 PMCID: PMC7901560 DOI: 10.2147/ott.s291007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/05/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction Esophageal squamous cell carcinoma (ESCC) is often resistant to radiotherapy, likely due to sub-clones that survive and repopulate in the tumor. The analysis of genomic sequencing data related to radiotherapy will provide a better understanding of the intratumoral heterogeneity and genetic evolution of ESCC during radiotherapy. Methods We analyzed whole-exome sequencing data from pre- and post-irradiation ESCC patients at single-cell and bulk levels in public datasets. We investigated the gene functions involving radioresistance in ESCC cell lines. Furthermore, we established gene knockdown cell lines and explored the transcriptional alterations induced by RNA interference (RNAi) of these genes in KYSE-150 ESCC cell line. Results We identified three candidate genes related to radioresistance: AHNAK2, EVPL and LAMA5. Knockdown of AHNAK2 and EVPL genes led to increased radioresistance in ESCC cell lines, but not LAMA5. The transcriptome analysis indicated that these genes may regulate the expression of interleukins, interleukin receptors and chemokines by inhibiting the NF-κB and TNF signaling pathways in radioresistant ESCC cells, thereby suppressing their immune response. Conclusion These data may provide new therapeutic strategies by targeting general ESCC radioresistance-related genes, which may eventually help the development of targeted therapies.
Collapse
Affiliation(s)
- Qiang Hou
- Department of Clinical Laboratory, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, 320000, People's Republic of China.,Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, 320000, People's Republic of China
| | - Zhenzhen Jiang
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, 320000, People's Republic of China
| | - Ziwei Li
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, 320000, People's Republic of China
| | - Mingfeng Jiang
- Department of Clinical Laboratory, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, 320000, People's Republic of China.,Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, 320000, People's Republic of China
| |
Collapse
|
207
|
Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22041964. [PMID: 33671123 PMCID: PMC7922096 DOI: 10.3390/ijms22041964] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The immune system constantly monitors the emergence of cancerous cells and eliminates them. CD8+ cytotoxic T lymphocytes (CTLs), which kill tumor cells and provide antitumor immunity, select their targets by recognizing tumor antigenic peptides presented by MHC class-I (MHC-I) molecules. Cancer cells circumvent immune surveillance using diverse strategies. A key mechanism of cancer immune evasion is downregulation of MHC-I and key proteins of the antigen processing and presentation machinery (APM). Even though impaired MHC-I expression in cancers is well-known, reversing the MHC-I defects remains the least advanced area of tumor immunology. The discoveries that NLRC5 is the key transcriptional activator of MHC-I and APM genes, and genetic lesions and epigenetic modifications of NLRC5 are the most common cause of MHC-I defects in cancers, have raised the hopes for restoring MHC-I expression. Here, we provide an overview of cancer immunity mediated by CD8+ T cells and the functions of NLRC5 in MHC-I antigen presentation pathways. We describe the impressive advances made in understanding the regulation of NLRC5 expression, the data supporting the antitumor functions of NLRC5 and a few reports that argue for a pro-tumorigenic role. Finally, we explore the possible avenues of exploiting NLRC5 for cancer immunotherapy.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14834)
| |
Collapse
|
208
|
Identification of potential biomarkers associated with immune infiltration in the esophageal carcinoma tumor microenvironment. Biosci Rep 2021; 41:227787. [PMID: 33543230 PMCID: PMC7890403 DOI: 10.1042/bsr20202439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor immune cell infiltration was significantly correlated with the progression and the effect of immunotherapy in cancers including esophageal carcinoma (ESCA). However, no biomarkers were identified which were associated with immune infiltration in ESCA. In the present study, a total of 128 common differentially expressed genes (DEGs) were identified between esophageal squamous cell carcinomas (ESCC) and esophageal adenocarcinomas (EAC). The results of gene ontology (GO) enrichment and Reactome pathway analysis displayed that the up-regulated DEGs were mainly involved in the regulation of extracellular matrix (ECM), while the down-regulated DEGs were mainly involved in the regulation of cornification and keratinocyte differentiation. The most significant module of up-regulated DEGs was selected by Molecular Complex Detection (MCODE). Top ten similar genes of COL1A2 were explored, then validation and the prognostic analysis of these genes displayed that COL1A2, COL1A1, COL3A1, ZNF469 and Periostin (POSTN) had the prognostic value which were up-regulated in ESCA. The expressions of COL1A2 and its four similar genes were mainly correlated with infiltrating levels of macrophages and dendritic cells (DCs) and showed strong correlations with diverse immune marker sets in ESCA. To summarize, COL1A2 and its four similar genes were identified as the potential biomarkers associated with immune infiltration in ESCA. These genes might be applied to immunotherapy for ESCA.
Collapse
|
209
|
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021; 121:1746-1803. [PMID: 33445874 PMCID: PMC7883342 DOI: 10.1021/acs.chemrev.0c00779] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Nanomaterial (NM) delivery to solid tumors has been the focus of intense research for over a decade. Classically, scientists have tried to improve NM delivery by employing passive or active targeting strategies, making use of the so-called enhanced permeability and retention (EPR) effect. This phenomenon is made possible due to the leaky tumor vasculature through which NMs can leave the bloodstream, traverse through the gaps in the endothelial lining of the vessels, and enter the tumor. Recent studies have shown that despite many efforts to employ the EPR effect, this process remains very poor. Furthermore, the role of the EPR effect has been called into question, where it has been suggested that NMs enter the tumor via active mechanisms and not through the endothelial gaps. In this review, we provide a short overview of the EPR and mechanisms to enhance it, after which we focus on alternative delivery strategies that do not solely rely on EPR in itself but can offer interesting pharmacological, physical, and biological solutions for enhanced delivery. We discuss the strengths and shortcomings of these different strategies and suggest combinatorial approaches as the ideal path forward.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational
Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
210
|
Extracellular vesicles (EVs): What we know of the mesmerizing roles of these tiny vesicles in hematological malignancies? Life Sci 2021; 271:119177. [PMID: 33577843 DOI: 10.1016/j.lfs.2021.119177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a complex disease in which a bidirectional collaboration between malignant cells and surrounding microenvironment creates an appropriate platform which ultimately facilitates the progression of the disease. The discovery of extracellular vesicles (EVs) was a turning point in the modern era of cancer biology, as their importance in human malignancies has set the stage to widen research interest in the field of cell-to-cell communication. The implication in short- and long-distance interaction via horizontally transfer of cellular components, ranging from non-coding RNAs to functional proteins, as well as stimulating target cells receptors by the means of ligands anchored on their membrane endows these "tiny vesicles with giant impacts" with incredible potential to re-educate normal tissues, and thus, to re-shape the surrounding niche. In this review, we highlight the pathogenic roles of EVs in human cancers, with an extensive focus on the recent advances in hematological malignancies.
Collapse
|
211
|
Ren X, Yang S, Yu N, Sharjeel A, Jiang Q, Macharia DK, Yan H, Lu C, Geng P, Chen Z. Cell membrane camouflaged bismuth nanoparticles for targeted photothermal therapy of homotypic tumors. J Colloid Interface Sci 2021; 591:229-238. [PMID: 33609894 DOI: 10.1016/j.jcis.2021.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Bi nanoparticles (NPs) have been demonstrated as effective all-in-one type theranostic agent for imaging-guided photothermal therapy, but their applications have been limited by relatively low biocompatibility and target accumulation capacity. To address this issue, we report the camouflage of Bi NPs (size: ~42 ± 2 nm) by using the mouse colon cancer CT26 cells membrane (CT26 CCM). The camouflaging process confers the efficient coating of CCM shell layer with thickness of ~8 ± 2 nm on Bi NPs cores, which can be confirmed by TEM image, zeta potential and protein gel electrophoresis tests. Simultaneously, CCM shell has no side effects on the photoabsorption/photothermal effect. Importantly, Bi@CCM NPs retain significant features of CCM, including good biocompatibility and homologous targeting ability. When Bi@CCM dispersion was intravenously (i.v.) injected into mice, they exhibited higher blood circulation half-life (11.5 h, ~2.9 times) and accumulation amount (4.7 ± 0.56% ID/g, ~2.3 times) in homotypic CT26 tumor compared to those (4.0 h in blood and 2.03 ± 0.60% ID/g in tumor) from uncoated Bi NPs. After 808 nm laser irradiation, CT26 cancer cells could be effectively ablated after the photothermal therapy of high-accumulated Bi@CCM NPs, and then the tumor tends to be eradicated after 12 days. Thus, Bi NPs camouflaged with CT26 CCM have great potential for the targeted photothermal therapy of homotypic tumors.
Collapse
Affiliation(s)
- Xiaoling Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shuangping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ahmed Sharjeel
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qin Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Daniel K Macharia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Han Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Changrui Lu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Peng Geng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
212
|
He Y, Lei L, Cao J, Yang X, Cai S, Tong F, Huang D, Mei H, Luo K, Gao H, He B, Peppas NA. A combinational chemo-immune therapy using an enzyme-sensitive nanoplatform for dual-drug delivery to specific sites by cascade targeting. SCIENCE ADVANCES 2021; 7:7/6/eaba0776. [PMID: 33547067 PMCID: PMC7864565 DOI: 10.1126/sciadv.aba0776] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/21/2020] [Indexed: 02/05/2023]
Abstract
Nanoparticle-based drug delivery faces challenges from the imprecise targeted delivery and the low bioavailability of drugs due to complex biological barriers. Here, we designed cascade-targeting, dual drug–loaded, core-shell nanoparticles (DLTPT) consisting of CD44-targeting hyaluronic acid shells decorated with doxorubicin (HA-DOX) and mitochondria-targeting triphenylphosphonium derivative nanoparticle cores loaded with lonidamine (LND) dimers (LTPT). DLTPT displayed prolonged blood circulation time and efficiently accumulated at the tumor site due to the tumor-homing effect and negatively charged hyaluronic acid. Subsequently, the HA-DOX shell was degraded by extracellular hyaluronidase, resulting in decreased particle size and negative-to-positive charge reversal, which would increase tumor penetration and internalization. The degradation of HA-DOX further accelerated the release of DOX and exposed the positively charged LTPT core for rapid endosomal escape and mitochondria-targeted delivery of LND. Notably, when DLTPT was used in combination with anti–PD-L1, the tumor growth was inhibited, which induced immune response against tumor metastasis.
Collapse
Affiliation(s)
- Yanmei He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.,West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China. .,Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78731, USA
| | - Xiaotong Yang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Shengsheng Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Fan Tong
- West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Dennis Huang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78731, USA
| | - Heng Mei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Huile Gao
- West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China.
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78731, USA. .,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78731, USA
| |
Collapse
|
213
|
Mahnke YD, Devevre E, Baumgaertner P, Matter M, Rufer N, Romero P, Speiser DE. Human melanoma-specific CD8(+) T-cells from metastases are capable of antigen-specific degranulation and cytolysis directly ex vivo. Oncoimmunology 2021; 1:467-530. [PMID: 22754765 PMCID: PMC3382891 DOI: 10.4161/onci.19856] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The relatively low frequencies of tumor Ag-specific T-cells in PBMC and metastases from cancer patients have long precluded the analysis of their direct ex vivo cytolytic capacity. Using a new composite technique that works well with low cell numbers, we aimed at determining the functional competence of melanoma-specific CD8+ T-cells. A multiparameter flow cytometry based technique was applied to assess the cytolytic function, degranulation and IFNγ production by tumor Ag-specific CD8+ T-cells from PBMC and tumor-infiltrated lymph nodes (TILN) of melanoma patients. We found strong cytotoxicity by T-cells not only when they were isolated from PBMC but also from TILN. Cytotoxicity was observed against peptide-pulsed target cells and melanoma cells presenting the naturally processed endogenous antigen. However, unlike their PBMC-derived counterparts, T-cells from TILN produced only minimal amounts of IFNγ, while exhibiting similar levels of degranulation, revealing a critical functional dichotomy in metastatic lesions. Our finding of partial functional impairment fits well with the current knowledge that T-cells from cancer metastases are so-called exhausted, a state of T-cell hyporesponsiveness also found in chronic viral infections. The identification of responsible mechanisms in the tumor microenvironment is important for improving cancer therapies.
Collapse
Affiliation(s)
- Yolanda D Mahnke
- Ludwig Center for Cancer Research; University of Lausanne; Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
214
|
Zhao E, Wang L, Dai J, Kryczek I, Wei S, Vatan L, Altuwaijri S, Sparwasser T, Wang G, Keller ET, Zou W. Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer. Oncoimmunology 2021; 1:152-161. [PMID: 22720236 PMCID: PMC3376984 DOI: 10.4161/onci.1.2.18480] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human prostate cancer frequently metastasizes to bone marrow. What defines the cellular and molecular predilection for prostate cancer to metastasize to bone marrow is not well understood. CD4+CD25+ regulatory T (Treg) cells contribute to self-tolerance and tumor immune pathology. We now show that functional Treg cells are increased in the bone marrow microenvironment in prostate cancer patients with bone metastasis, and that CXCR4/CXCL12 signaling pathway contributes to Treg cell bone marrow trafficking. Treg cells exhibit active cell cycling in the bone marrow, and bone marrow dendritic cells express high levels of receptor activator of NFκB (RANK), and promote Treg cell expansion through RANK and its ligand (RANKL) signals. Furthermore, Treg cells suppress osteoclast differentiation induced by activated T cells and M-CSF, adoptive transferred Treg cells migrate to bone marrow, and increase bone mineral intensity in the xenograft mouse models with human prostate cancer bone marrow inoculation. In vivo Treg cell depletion results in reduced bone density in tumor bearing mice. The data indicates that bone marrow Treg cells may form an immunosuppressive niche to facilitate cancer bone metastasis and contribute to bone deposition, the major bone pathology in prostate cancer patients with bone metastasis. These findings mechanistically explain why Treg cells accumulate in the bone marrow, and demonstrate a previously unappreciated role for Treg cells in patients with prostate cancer. Thus, targeting Treg cells may not only improve anti-tumor immunity, but also ameliorate bone pathology in prostate cancer patients with bone metastasis.
Collapse
Affiliation(s)
- Ende Zhao
- Department of Surgery; University of Michigan; Ann Arbor, MI USA ; Department of Surgery; Central Laboratory; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Malvicini M, Piccioni F, Bayo J, Fiore E, Atorrasagasti C, Alaniz L, Garcia M, Aquino JB, Gidekel M, Matar P, Mazzolini G. Chemoimmunotherapy for advanced gastrointestinal carcinomas: A successful combination of gene therapy and cyclophosphamide. Oncoimmunology 2021; 1:1626-1628. [PMID: 23264916 PMCID: PMC3525625 DOI: 10.4161/onci.21651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The combination of a single low dose of cyclophosphamide (Cy) with the adenovirus-mediated gene transfer of interleukin-12 (AdIL-12) might represent a successful therapy for experimental gastrointestinal tumors. This approach has been proven to revert immunosuppressive mechanisms elicited by cancer cells and to synergistically promote antitumor immunity. In addition, this therapeutic regimen has been shown to be more efficient in achieving complete tumor regressions in mice than the application of a metronomic schedule of Cy plus AdIL-12.
Collapse
Affiliation(s)
- Mariana Malvicini
- Gene Therapy Laboratory; Liver Unit; School of Medicine; Austral University; Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Wei Y, Xiao X, Lao XM, Zheng L, Kuang DM. Immune landscape and therapeutic strategies: new insights into PD-L1 in tumors. Cell Mol Life Sci 2021; 78:867-887. [PMID: 32940722 PMCID: PMC11072479 DOI: 10.1007/s00018-020-03637-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 08/07/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
PD-1/PD-L1 axis represents an important target for renormalizing and resetting anti-tumor immunity in cancer patients. Currently, anti-PD-1/PD-L1 therapy has been applied in a broad spectrum of tumors and has yielded durable remission in patients. However, how to further broaden the application, guide personalized therapeutic strategies, and improve clinical responses remains a vital task. At present, PD-L1 expression is an important parameter of clinical indications for immune checkpoint blockade in many types of cancers, a strategy based on the supposition that positive PD-L1 expression reflects local T cell response. Recent studies have revealed that PD-L1 expression is regulated by multiple layers of complicated factors, during which the host immune microenvironment exerts a pivotal role and determines the clinical efficacy of the therapy. In this review, we will summarize recent findings on PD-1/PD-L1 in cancer, focusing on how local immune landscape participates in the regulation of PD-L1 expression and modification. Importantly, we will also discuss these topics in the context of clinical treatment and analyze how these fundamental principles might inspire our efforts to develop more precise and effective immune therapeutics for cancer.
Collapse
Affiliation(s)
- Yuan Wei
- The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao Xiao
- Cancer Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Xiang-Ming Lao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Limin Zheng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China.
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Dong-Ming Kuang
- The Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, China.
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
217
|
G Lahori D, Varamini P. Nanotechnology-based platforms to improve immune checkpoint blockade efficacy in cancer therapy. Future Oncol 2021; 17:711-722. [DOI: 10.2217/fon-2020-0720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In recent years, cancer immunotherapy has evolved as an exciting novel strategy for researchers and clinicians worldwide. Immunotherapeutic agents such as immune checkpoint blockers have changed the standard-of-care treatment provided for many tumors. Unfortunately, only a small proportion of patients respond effectively to these checkpoint inhibitors. Moreover, the immunosuppressive pathways for cancer are probably too complicated to achieve optimal outcome with immune checkpoint inhibitors alone. Combining current therapeutic options and immunotherapy-based approaches is being explored as an effective strategy to treat cancer. The use of nanotechnology-based platforms for delivery of immunotherapeutic agents or combination therapy could offer a major advantage over conventional anticancer treatment options. This review highlights the potential role of different nanotechnology-based strategies in improving the efficacy of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Deeksha G Lahori
- School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Pegah Varamini
- School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
218
|
Hashemzadeh N, Dolatkhah M, Adibkia K, Aghanejad A, Barzegar-Jalali M, Omidi Y, Barar J. Recent advances in breast cancer immunotherapy: The promising impact of nanomedicines. Life Sci 2021; 271:119110. [PMID: 33513401 DOI: 10.1016/j.lfs.2021.119110] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/29/2022]
Abstract
Breast cancer (BC) is one of the prevalent cancers among women. Generally, the treatment of BC is mostly based on several prominent strategies, including chemotherapy, surgery, endocrine therapy, molecular targeted therapy, and radiation. Owing to the growing knowledge about the complexity of BC pathobiology, immunotherapy as a promising treatment modality has substantially improved the patients' care in the clinic. Immunotherapy is used to harness the patient's immune system to recognize and battle devious cancer cells. As a novel therapy approach, this emerging strategy targets the key molecular entities of tumor tissue. To achieve maximal therapeutic impacts, the dynamic interplay between cancer and immune cells needs to be fully comprehended. The key molecular machinery of solid tumors can be targeted by nanoscale immunomedicines. While discussing the potential biomarkers involved in the initiation and progression of BC, we aimed to provide comprehensive insights into the immunotherapy and articulate the recent advances in terms of the therapeutic strategies used to control this disease, including immune checkpoint inhibitors, vaccines, chimeric antigen receptor T cells therapy, and nanomedicines.
Collapse
Affiliation(s)
- Nastaran Hashemzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Dolatkhah
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
219
|
Chen YC, Huang MY, Zhang LL, Feng ZL, Jiang XM, Yuan LW, Huang RY, Liu B, Yu H, Wang YT, Chen XP, Lin LG, Lu JJ. Nagilactone E increases PD-L1 expression through activation of c-Jun in lung cancer cells. Chin J Nat Med 2021; 18:517-525. [PMID: 32616192 DOI: 10.1016/s1875-5364(20)30062-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Indexed: 01/03/2023]
Abstract
Nagilactone E (NLE), a natural product with anticancer activities, is isolated from Podocarpus nagi. In this study, we reported that NLE increased programmed death ligand 1 (PD-L1) expressions at both protein and mRNA levels in human lung cancer cells, and enhanced its localization on the cell membrane. Mechanistically, NLE increased the phosphorylation and expression of c-Jun, and promoted the localization of c-Jun in the nucleus, while silencing of c-Jun by small interfering RNA (siRNA) reduced NLE-induced PD-L1. Further study showed that NLE activated the c-Jun N-terminal kinases (JNK), the upstream of c-Jun, and its inhibitor SP600125 reversed the NLE-increased PD-L1. Moreover, NLE-induced PD-L1 increased the binding intensity of PD-1 on the cell surface. In summary, NLE upregulates the expression of PD-L1 in lung cancer cells through the activation of JNK-c-Jun axis, which has the potential to combine with the PD-1/PD-L1 antibody therapies in lung cancer.
Collapse
Affiliation(s)
- Yu-Chi Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Le-Le Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; School of Medicine, Chengdu University, Chengdu 610106, China
| | - Zhe-Ling Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xiao-Ming Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Luo-Wei Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Run-Yue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Bo Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xiu-Ping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
220
|
Yu X, Liu W, Chen S, Cheng X, Paez PA, Sun T, Yuan F, Wei C, Landry JW, Poklepovic AS, Bear HD, Subjeck JR, Repasky E, Guo C, Wang XY. Immunologically programming the tumor microenvironment induces the pattern recognition receptor NLRC4-dependent antitumor immunity. J Immunother Cancer 2021; 9:jitc-2020-001595. [PMID: 33468554 PMCID: PMC7817794 DOI: 10.1136/jitc-2020-001595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 01/21/2023] Open
Abstract
Background The efficacy of cancer immunotherapy can be limited by the poor immunogenicity of cancer and the immunosuppressive tumor microenvironment (TME). Immunologically programming the TME and creating an immune-inflamed tumor phenotype is critical for improving the immune-responsiveness of cancers. Here, we interrogate the immune modulator Flagrp170, engineered via incorporation of a pathogen-associated molecular pattern (ie, flagellin) into an immunostimulatory chaperone molecule, in transforming poorly immunogenic tumors and establishing a highly immunostimulatory milieu for immune augmentation. Methods Multiple murine cancer models were used to evaluate the immunostimulatory activity, antitumor potency, and potential side effects of Flagrp170 on administration into the tumors using a replication impaired adenovirus. Antibody neutralization and mice deficient in pattern recognition receptors, that is, toll-like receptor 5 (TLR5) and NOD like receptor (NLR) family caspase activation and recruitment domain (CARD) domain-containing protein 4 (NLRC4), both of which can recognize flagellin, were employed to understand the immunological mechanism of action of the Flagrp170. Results Intratumoral delivery of mouse or human version of Flagrp170 resulted in robust inhibition of multiple malignancies including head and neck squamous cell carcinoma and breast cancer, without tissue toxicities. This in situ Flagrp170 treatment induced a set of cytokines in the TME known to support Th1/Tc1-dominant antitumor immunity. Additionally, granulocyte macrophage colony-stimulating factor derived from mobilized CD8+ T cells was involved in the therapeutic activity of Flagrp170. We also made a striking finding that NLRC4, not TLR5, is required for Flagrp170-mediated antitumor immune responses. Conclusion Our results elucidate a novel immune-potentiating activity of Flagrp170 via engaging the innate pattern recognition receptor NLRC4, and support its potential clinical use to reshape cancer immune phenotype for overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Wenjie Liu
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Shixian Chen
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Xueqian Cheng
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Patrick A Paez
- Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Tuanwei Sun
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Fang Yuan
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Chunyan Wei
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Joseph W Landry
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Andrew S Poklepovic
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Harry D Bear
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John R Subjeck
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Elizabeth Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Chunqing Guo
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA .,Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Xiang-Yang Wang
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA .,Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.,Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA
| |
Collapse
|
221
|
Pallerla S, Abdul AURM, Comeau J, Jois S. Cancer Vaccines, Treatment of the Future: With Emphasis on HER2-Positive Breast Cancer. Int J Mol Sci 2021; 22:E779. [PMID: 33466691 PMCID: PMC7828795 DOI: 10.3390/ijms22020779] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the leading causes of death in women. With improvements in early-stage diagnosis and targeted therapies, there has been an improvement in the overall survival rate in breast cancer over the past decade. Despite the development of targeted therapies, tyrosine kinase inhibitors, as well as monoclonal antibodies and their toxin conjugates, all metastatic tumors develop resistance, and nearly one-third of HER2+ breast cancer patients develop resistance to all these therapies. Although antibody therapy has shown promising results in breast cancer patients, passive immunotherapy approaches have limitations and need continuous administration over a long period. Vaccine therapy introduces antigens that act on cancer cells causing prolonged activation of the immune system. In particular, cancer relapse could be avoided due to the presence of a longer period of immunological memory with an effective vaccine that can protect against various tumor antigens. Cancer vaccines are broadly classified as preventive and therapeutic. Preventive vaccines are used to ward off any future infections and therapeutic vaccines are used to treat a person with active disease. In this article, we provided details about the tumor environment, different types of vaccines, their advantages and disadvantages, and the current status of various vaccine candidates with a focus on vaccines for breast cancer. Current data indicate that therapeutic vaccines themselves have limitations in terms of efficacy and are used in combination with other chemotherapeutic or targeting agents. The majority of breast cancer vaccines are undergoing clinical trials and the next decade will see the fruitfulness of breast cancer vaccine therapy.
Collapse
Affiliation(s)
- Sandeep Pallerla
- School of Pharmaceutical and Toxicological Sciences and School of Clinical Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA; (S.P.); (J.C.)
| | | | - Jill Comeau
- School of Pharmaceutical and Toxicological Sciences and School of Clinical Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA; (S.P.); (J.C.)
| | - Seetharama Jois
- School of Pharmaceutical and Toxicological Sciences and School of Clinical Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA; (S.P.); (J.C.)
| |
Collapse
|
222
|
Lu W, Yu W, He J, Liu W, Yang J, Lin X, Zhang Y, Wang X, Jiang W, Luo J, Zhang Q, Yang H, Peng S, Yi Z, Ren S, Chen J, Siwko S, Nussinov R, Cheng F, Zhang H, Liu M. Reprogramming immunosuppressive myeloid cells facilitates immunotherapy for colorectal cancer. EMBO Mol Med 2021; 13:e12798. [PMID: 33283987 PMCID: PMC7799360 DOI: 10.15252/emmm.202012798] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint blockade (ICB) has a limited effect on colorectal cancer, underlining the requirement of co-targeting the complementary mechanisms. Here, we identified prostaglandin E2 (PGE2 ) receptor 4 (EP4) as the master regulator of immunosuppressive myeloid cells (IMCs), which are the major driver of resistance to ICB therapy. PGE2 -bound EP4 promotes the differentiation of immunosuppressive M2 macrophages and myeloid-derived suppressor cells (MDSCs) and reduces the expansion of immunostimulated M1 macrophages. To explore the immunotherapeutic role of EP4 signaling, we developed a novel and selective EP4 antagonist TP-16. TP-16 effectively blocked the function of IMCs and enhanced cytotoxic T-cell-mediated tumor elimination in vivo. Cell co-culture experiments revealed that TP-16 promoted T-cell proliferation, which was impaired by tumor-derived CD11b+ myeloid cells. Notably, TP-16 and anti-PD-1 combination therapy significantly impeded tumor progression and prolonged mice survival. We further demonstrated that TP-16 increased responsiveness to anti-PD-1 therapy in an IMC-related spontaneous colorectal cancer mouse model. In summary, this study demonstrates that inhibition of EP4-expressing IMCs may offer a potential strategy for enhancing the efficacy of immunotherapy for colorectal cancer.
Collapse
Affiliation(s)
- Weiqiang Lu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Weiwei Yu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Jiacheng He
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Wenjuan Liu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Junjie Yang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xianhua Lin
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Wenhao Jiang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Shihong Peng
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Shancheng Ren
- Department of UrologyChanghai HospitalSecond Military UniversityShanghaiChina
| | - Jing Chen
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| | - Stefan Siwko
- Department of Molecular and Cellular MedicineInstitute of Biosciences and TechnologyTexas A&M University Health Science CenterHoustonTXUSA
| | - Ruth Nussinov
- Cancer and Inflammation ProgramLeidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research Sponsored by the National Cancer InstituteFrederickMDUSA
- Department of Human Molecular Genetics and BiochemistrySackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research InstituteCleveland ClinicClevelandOHUSA
- Department of Molecular MedicineCleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOHUSA
- Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - Hankun Zhang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| |
Collapse
|
223
|
Chen J, Sun HW, Yang YY, Chen HT, Yu XJ, Wu WC, Xu YT, Jin LL, Wu XJ, Xu J, Zheng L. Reprogramming immunosuppressive myeloid cells by activated T cells promotes the response to anti-PD-1 therapy in colorectal cancer. Signal Transduct Target Ther 2021; 6:4. [PMID: 33414378 PMCID: PMC7791142 DOI: 10.1038/s41392-020-00377-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Overcoming local immunosuppression is critical for immunotherapy to produce robust anti-tumor responses. Myeloid-derived suppressor cells (MDSCs) are key regulators of immunosuppressive networks and promote tumor progression. However, it remains unclear whether and how tumor-infiltrating MDSCs are shaped in response to anti-PD-1 treatment and what their impact on therapeutic efficacy is in colorectal cancer (CRC). In this study, the levels of infiltrating MDSCs were significantly higher in the non-responding organoids and were selectively reduced in the responding group, with MDSCs showing increased apoptosis and attenuated functional activity after anti-PD-1 treatment. A negative correlation between T-cell activation and MDSC function was also observed in fresh human CRC tissues. Mechanistic studies revealed that autocrine IFN-α/β upregulated TRAIL expression on activated T cells to elicit MDSC apoptosis via the TRAIL–DR5 interaction and acted synergistically with TNF-α to inhibit MDSC function of suppressing the T-cell response through the JNK-NMDAR-ARG-1 pathway. Moreover, blockade of IFN-α/β and TNF-α abolished the therapeutic efficacy of anti-PD-1 treatment by preserving the frequency and suppressive activity of infiltrating MDSCs in a CRC mouse model. This result suggested that reprogramming MDSCs by IFN-α/β and TNF-α from activated T cells was necessary for successful anti-PD-1 treatment and might serve as a novel strategy to improve the response and efficacy of anticancer therapy.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hong-Wei Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan-Yan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hai-Tian Chen
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing-Juan Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Chao Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yi-Tuo Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Lian Jin
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Jun Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Limin Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China. .,MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
224
|
Glucose metabolism characteristics and TLR8-mediated metabolic control of CD4 + Treg cells in ovarian cancer cells microenvironment. Cell Death Dis 2021; 12:22. [PMID: 33414414 PMCID: PMC7790820 DOI: 10.1038/s41419-020-03272-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
Immunotherapy is expected to become the most promising new treatment for ovarian cancer owing to its immunogenicity. However, immunosuppression in the tumor microenvironment is a major obstacle to the efficacy of tumor therapy. Studies have found different metabolism ways of regulatory T cells (Tregs) in the cancer environment may be related to the immunosuppression and Toll-like receptor 8 (TLR8) can reverse the suppression function of Tregs. But it is still unclear that if the TLR8-mediated function reversal is associated with the change of glucose metabolism of Tregs. It was found that the positive expression rates of Glut1, HIF-1α, and Ki67 in CD4+ Treg cells of OC were significantly higher than that in benign ovarian tumor and HC, and also significantly higher than that in CD4+ Teffs of OC. What’s more, compared with CD4+ Teff group, CD4+ Tregs highly expressed seven genes and three proteins related to glucose metabolism and had higher levels of glucose uptake and glycolysis. After activating TLR8 signal of CD4+ Tregs, the proliferation level of naive CD4+ T cells was higher than that of the control group. At the same time, the expression levels of eight genes and five proteins related to glucose metabolism in CD4+ Treg cells with TLR8 activated were decreased and levels of glucose uptake and glycolysis were also lower. Furthermore, TLR8 signaling also downregulated the mTOR pathway in CD4+ Tregs. CD4+ Tregs pretreated with 2-deoxy-d-Glucose (2-DG) and galloflavin also attenuated the inhibition of Teffs proliferation. Although CD4+ Tregs pretreated with 2-DG and galloflavin before activating TLR8 signal had no significant difference compared with the group only treated with inhibitors, which suggested TLR8-mediated reversal of CD4+ Treg cells inhibitory function in ovarian cancer cells co-cultured microenvironment had a causal relationship with glucose metabolism.
Collapse
|
225
|
Jia C, Zhang M, He XW, Li WY, Zhang YK. Preparation of responsive "dual-lock" nanoparticles and their application in collaborative therapy based on CuS coordination. J Mater Chem B 2021; 9:1049-1058. [PMID: 33399610 DOI: 10.1039/d0tb02490b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is difficult for drug delivery systems to release drugs as expected, often leading to undesired side effects. To solve this problem, a CuS@MSN/DOX@MnO2@membrane (CMDMm) was reasonably designed. It was introduced to release the drug by a double response, similar to using two keys to open two locks at the same time for one door. CuS@MSN was used as a photothermal therapy (PTT) material and carrier, and then the surface of CuS@MSN/DOX was sealed by MnO2 to prevent drug release in advance. MnO2 could be reduced and degraded in a tumor microenvironment. It was applied in MR imaging due to the T1 magnetism of Mn2+ following the reduction of MnO2. Finally, the 4T1 cell membrane was extracted and coated onto the surface of CuS@MSN/DOX@MnO2, which served as a target for 4T1 tumor cells. A noteworthy phenomenon was that the fluorescence of DOX was quenched by the coordination between DOX and CuS, and this greatly improved the interaction between DOX and CuS@MSN. However, the coordination was weakened when DOX was protonated in a tumor microenvironment (∼pH 5.0), leading to the release of DOX and fluorescence recovery. The drug release experiments showed that the release efficiency was higher at pH 5.0 with 10 mmol L-1 GSH. Through in vitro laser confocal imaging, it was successfully observed that DOX was reliably released in specific tumor cells according to the fluorescence recovery, and that there was no leakage in other cells. In short, effective double response drug release was successfully confirmed.
Collapse
Affiliation(s)
- Chao Jia
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | | | | | | | | |
Collapse
|
226
|
Song X, Liu C, Wang N, Huang H, He S, Gong C, Wei Y. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv Drug Deliv Rev 2021; 168:158-180. [PMID: 32360576 DOI: 10.1016/j.addr.2020.04.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems are efficient and versatile gene editing tools, which offer enormous potential to treat cancer by editing genome, transcriptome or epigenome of tumor cells and/or immune cells. A large body of works have been done with CRISPR/Cas systems for genetic modification, and 16 clinical trials were conducted to treat cancer by ex vivo or in vivo gene editing approaches. Now, promising preclinical works have begun using CRISPR/Cas systems in vivo. However, efficient and safe delivery of CRISPR/Cas systems in vivo is still a critical challenge for their clinical applications. This article summarizes delivery of CRISPR/Cas systems by physical methods, viral vectors and non-viral vectors for cancer gene therapy and immunotherapy. The prospects for the development of physical methods, viral vectors and non-viral vectors for delivery of CRISPR/Cas systems are reviewed, and promising advances in cancer treatment using CRISPR/Cas systems are discussed.
Collapse
Affiliation(s)
- Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hai Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Siyan He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
227
|
Blaauboer A, Sideras K, van Eijck CHJ, Hofland LJ. Type I interferons in pancreatic cancer and development of new therapeutic approaches. Crit Rev Oncol Hematol 2020; 159:103204. [PMID: 33387625 DOI: 10.1016/j.critrevonc.2020.103204] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy has emerged as a new treatment strategy for cancer. However, its promise in pancreatic cancer has not yet been realized. Understanding the immunosuppressive tumor microenvironment of pancreatic cancer, and identifying new therapeutic targets to increase tumor-specific immune responses, is necessary in order to improve clinical outcomes. Type I interferons, e.g. IFN-α and -β, are considered as an important bridge between the innate and adaptive immune system. Thereby, type I IFNs induce a broad spectrum of anti-tumor effects, including immunologic, vascular, as well as direct anti-tumor effects. While IFN therapies have been around for a while, new insights into exogenous and endogenous activation of the IFN pathway have resulted in new IFN-related cancer treatment strategies. Here, we focus on the pre-clinical and clinical evidence of novel ways to take advantage of the type I IFN pathway, such as IFN based conjugates and activation of the STING and RIG-I pathways.
Collapse
Affiliation(s)
- Amber Blaauboer
- Department of Surgery, Rotterdam, The Netherlands; Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Leo J Hofland
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
228
|
Luo Z, Liu Z, Liang Z, Pan J, Xu J, Dong J, Bai Y, Deng H, Wei S. Injectable Porous Microchips with Oxygen Reservoirs and an Immune-Niche Enhance the Efficacy of CAR T Cell Therapy in Solid Tumors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56712-56722. [PMID: 33306365 DOI: 10.1021/acsami.0c15239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a promising new class of hematological malignancy treatment. However, CAR T cells are rarely effective in solid tumor therapy mainly because of the poor trafficking of injected CAR T cells to the tumor site and their limited infiltration and survival in the immunosuppressive and hypoxic tumor microenvironment (TME). Here, we built an injectable immune-microchip (i-G/MC) system to intratumorally deliver CAR T cells and enhance their therapeutic efficacy in solid tumors. In the i-G/MC, oxygen carriers (Hemo) are released to disrupt the TME, and then, CAR T cells migrate from IL-15-laden i-G/MCs into the tumor stroma. The results indicate that Hemo and IL-15 synergistically enhanced CAR T cell survival and expansion under hypoxic conditions, promoting the potency and memory of CAR T cells. This i-G/MC not only serves as a cell carrier but also builds an immune-niche, enhancing the efficacy of CAR T cells.
Collapse
Affiliation(s)
- Zuyuan Luo
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
- Laboratory for Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Zhen Liu
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
| | - Zhen Liang
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
| | - Jijia Pan
- Laboratory for Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Jun Xu
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
| | - Jiebin Dong
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
| | - Yun Bai
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
| | - Hongkui Deng
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
| | - Shicheng Wei
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University; Peking University Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, Center for Molecular and Translational Medicine, Peking University Health Science Center, Beijing 100081, P.R. China
- Laboratory for Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
229
|
Thakur N, Thakur S, Chatterjee S, Das J, Sil PC. Nanoparticles as Smart Carriers for Enhanced Cancer Immunotherapy. Front Chem 2020; 8:597806. [PMID: 33409265 PMCID: PMC7779678 DOI: 10.3389/fchem.2020.597806] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of many forms of cancer by stimulating body's own immune system. This therapy not only eradicates tumor cells by inducing strong anti-tumor immune response but also prevent their recurrence. The clinical cancer immunotherapy faces some insurmountable challenges including high immune-mediated toxicity, lack of effective and targeted delivery of cancer antigens to immune cells and off-target side effects. However, nanotechnology offers some solutions to overcome those limitations, and thus can potentiate the efficacy of immunotherapy. This review focuses on the advancement of nanoparticle-mediated delivery of immunostimulating agents for efficient cancer immunotherapy. Here we have outlined the use of the immunostimulatory nanoparticles as a smart carrier for effective delivery of cancer antigens and adjuvants, type of interactions between nanoparticles and the antigen/adjuvant as well as the factors controlling the interaction between nanoparticles and the receptors on antigen presenting cells. Besides, the role of nanoparticles in targeting/activating immune cells and modulating the immunosuppressive tumor microenvironment has also been discussed extensively. Finally, we have summarized some theranostic applications of the immunomodulatory nanomaterials in treating cancers based on the earlier published reports.
Collapse
Affiliation(s)
- Neelam Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Saloni Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | | | - Joydeep Das
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
230
|
Augustin LB, Milbauer L, Hastings SE, Leonard AS, Saltzman DA, Schottel JL. Virulence-attenuated Salmonella engineered to secrete immunomodulators reduce tumour growth and increase survival in an autochthonous mouse model of breast cancer. J Drug Target 2020; 29:430-438. [PMID: 33183080 DOI: 10.1080/1061186x.2020.1850739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The ultimate goal of bacterial based cancer therapy is to achieve non-toxic penetration and colonisation of the tumour microenvironment. To overcome this efficacy-limiting toxicity of anticancer immunotherapy, we have tested a therapy comprised of systemic delivery of a vascular disrupting agent to induce intratumoral necrotic space, cannabidiol to temporarily inhibit angiogenesis and acute inflammation, and a strain of Salmonella Typhimurium that was engineered for non-toxic colonisation and expression of immunomodulators within the tumour microenvironment. This combination treatment strategy was administered to transgenic mice burdened with autochthonous mammary gland tumours and demonstrated a statistically significant 64% slower tumour growth and a 25% increase in mean survival time compared to control animals without treatment. These experiments were accomplished with minimal toxicity as measured by less than 7% weight loss and a return to normal weight gain within three days following intravenous administration of the bacteria. Thus, non-toxic, robust colonisation of the microenvironment was achieved to produce a significant antitumor effect.
Collapse
Affiliation(s)
- Lance B Augustin
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Liming Milbauer
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Sara E Hastings
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Arnold S Leonard
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Daniel A Saltzman
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Janet L Schottel
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
231
|
Motta JM, Rumjanek VM. Modulation of cytokine production by monocytes and developing-dendritic cells under the influence of leukemia and lymphoma cell products. Cell Biol Int 2020; 45:890-897. [PMID: 33289218 DOI: 10.1002/cbin.11514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/13/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
Cytokines and other soluble factors released by tumor cells play an important role in modulating immune cells to favor tumor development. Monocyte differentiation into macrophages or dendritic cells (DCs) with specific phenotypes is deeply affected by tumor signals and understanding this context is paramount to prevent and propose new therapeutic possibilities. Hence, we developed a study to better describe the modulatory effects of leukemia and lymphoma cell products on human monocytes and monocyte-derived DCs secretion of cytokines such as interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-6, and IL-12. Except with the promyelocytic leukemia cell supernatants (HL-60), the other two tumor supernatants (chronic myeloid leukemia, K562 and Burkitt lymphoma, DAUDI) increased both TNF-α and IL-1β production by monocytes and monocytes undergoing differentiation. This effect was neither explained by alterations of cell number in culture nor by the high amount of vascular endothelial growth factor (VEGF) present in the tumor supernatants. Moreover, all supernatants used were able to induce drastic reduction of IL-12 secretion by cells induced to activation, suggesting a negative interference with Th1 antitumoral responses that should be a huge advantage for tumor progression.
Collapse
Affiliation(s)
- Juliana Maria Motta
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian Mary Rumjanek
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
232
|
Naghibi L, Yazdani M, Momtazi-Borojeni AA, Razazan A, Shariat S, Mansourian M, Arab A, Barati N, Arabsalmani M, Abbasi A, Saberi Z, Badiee A, Jalali SA, Jaafari MR. Preparation of nanoliposomes containing HER2/neu (P5+435) peptide and evaluation of their immune responses and anti-tumoral effects as a prophylactic vaccine against breast cancer. PLoS One 2020; 15:e0243550. [PMID: 33301467 PMCID: PMC7728212 DOI: 10.1371/journal.pone.0243550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022] Open
Abstract
HER2/neu is an immunogenic protein inducing both humoral and cell-mediated immune responses. The antigen-specific cytotoxic T lymphocytes (CTLs) are the main effector immune cells in the anti-tumor immunity. To induce an effective CTL specific response against P5+435 single peptide derived from rat HER2/neu oncogene, we used a liposome delivery vehicle. In vivo enhancement of liposome stability and intracytoplasmic delivery of peptides are the main strategies which elevate the liposome-mediated drug delivery. Liposomes containing high transition temperature phospholipids, such as DSPC, are stable with prolonged in vivo circulation and more accessibility to the immune system. Incorporation of DOPE phospholipid results in the effective delivery of peptide into the cytoplasm via the endocytotic pathway. To this end, the P5+435 peptide was linked to Maleimide-PEG2000-DSPE and coupled on the surface of nanoliposomes containing DSPC: DSPG: Cholesterol with/without DOPE. We observed that mice vaccinated with Lip-DOPE-P5+435 formulation had the highest number of IFN-γ- producing CTLs with the highest cytotoxic activity that consequently led to significantly smallest tumor size and prolonged survival rate in the TUBO mice model. In conclusion, our study indicated that the liposomal form of P5+435 peptide containing DOPE can be regarded as a promising prophylactic anti-cancer vaccine to generate potent antigen-specific immunity.
Collapse
Affiliation(s)
- Laleh Naghibi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Razazan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sheida Shariat
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mercedeh Mansourian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Atefeh Arab
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Barati
- Vice Chancellor for Research and Technology, Hamadan University of Medical Science, Hamadan, Iran
| | - Mahdieh Arabsalmani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Abbasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Saberi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
- * E-mail: (MRJ); (SAJ); (AB)
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail: (MRJ); (SAJ); (AB)
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- * E-mail: (MRJ); (SAJ); (AB)
| |
Collapse
|
233
|
Ma C, Kang W, Yu L, Yang Z, Ding T. AUNIP Expression Is Correlated With Immune Infiltration and Is a Candidate Diagnostic and Prognostic Biomarker for Hepatocellular Carcinoma and Lung Adenocarcinoma. Front Oncol 2020; 10:590006. [PMID: 33363020 PMCID: PMC7756081 DOI: 10.3389/fonc.2020.590006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
AUNIP, a novel prognostic biomarker, has been shown to be associated with stromal and immune scores in oral squamous cell carcinoma (OSCC). Nonetheless, its role in other cancer types was unclear. In this study, AUNIP expression was increased in hepatocellular carcinoma (HCC) and lung adenocarcinoma (LUAD) according to data from The Cancer Genome Atlas (TCGA) database, Integrative Molecular Database of Hepatocellular Carcinoma (HCCDB), and Gene Expression Omnibus (GEO) database (GSE45436, GSE102079, GSE10072, GSE31210, and GSE43458). Further, according to copy number variation analysis, AUNIP up-regulation may be associated with copy number variation. Immunohistochemistry showed AUNIP expression was higher in HCC and LUAD compared with the normal tissues. Receiver operating characteristic (ROC) curve analysis demonstrated that AUNIP is a candidate diagnostic biomarker for HCC and LUAD. Next, TCGA, International Cancer Genome Consortium (ICGC), and GEO (GSE31210 and GSE50081) data showed that increased AUNIP expression clearly predicted poor overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in HCC and LUAD. Additionally, multivariate Cox regression analysis involving various clinical factors showed that AUNIP is an independent prognostic biomarker for HCC and LUAD. Next, the role of AUNIP in HCC and LUAD was explored via a co-expression analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and a gene set variation analysis (GSVA). HCC and LUAD exhibited almost identical enrichment results. More specifically, high AUNIP expression was associated with DNA replication, cell cycle, oocyte meiosis, homologous recombination, mismatch repair, the p53 signal transduction pathway, and progesterone-mediated oocyte maturation. Lastly, the Tumor Immune Estimation Resource (TIMER) tool was used to determine the correlations of AUNIP expression with tumor immune infiltration. AUNIP expression was positively correlated with the infiltration degree of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells in HCC. However, AUNIP expression was negatively correlated with the infiltration degree of B cells, CD4+ T cells, and macrophages in LUAD. In addition, AUNIP expression was correlated with immune infiltration in various other tumors. In conclusion, AUNIP, which is associated with tumor immune infiltration, is a candidate diagnostic and prognostic biomarker for HCC and LUAD.
Collapse
Affiliation(s)
- Chenxi Ma
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Wenyan Kang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Lu Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zongcheng Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Tian Ding
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
234
|
Zhou S, Shang Q, Wang N, Li Q, Song A, Luan Y. Rational design of a minimalist nanoplatform to maximize immunotherapeutic efficacy: Four birds with one stone. J Control Release 2020; 328:617-630. [DOI: 10.1016/j.jconrel.2020.09.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022]
|
235
|
Pan S, Zhou Y, Wang Q, Wang Y, Tian C, Wang T, Huang L, Nan J, Li L, Yang S. Discovery and structure-activity relationship studies of 1-aryl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione derivatives as potent dual inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) and trytophan 2,3-dioxygenase (TDO). Eur J Med Chem 2020; 207:112703. [DOI: 10.1016/j.ejmech.2020.112703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
|
236
|
Expanded activated autologous lymphocyte infusions improve outcomes of low- and intermediate-risk childhood acute myeloid leukemia with low level of minimal residual disease. Cancer Lett 2020; 493:128-132. [PMID: 32829005 DOI: 10.1016/j.canlet.2020.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 11/22/2022]
Abstract
The presence of minimal residual disease (MRD) is a risk factor for relapse among children with acute myeloid leukemia (AML), and eliminating MRD can usually improve survival rates. To investigate the effect of expanded activated autologous lymphocytes (EAALs) combined with chemotherapy on eliminating MRD and improving survival rates of children with AML, we retrospectively analyzed the results of 115 children with low- or intermediate-risk AML with MRD treated at the Pediatric Hematological Center, Peking University People's Hospital, between January 2010 and January 2016. The patients were assigned to the chemotherapy plus EAAL (combined therapy) group (n = 61) and chemotherapy group (n = 54). The MRD-negativity rates were 95.1% (58/61) in the combined therapy group and 63.0% (34/54) in the chemotherapy group (P < 0.0001) during consolidation treatment. The 5-year event-free survival rate was higher in the combined therapy group than in the chemotherapy group (86.3 ± 4.6% vs. 72.1 ± 6.1%, P = 0.025). No severe adverse event was observed after EAAL infusion. The present study showed that EAAL combined with chemotherapy could improve the MRD-negativity rate and event-free survival rate among children with AML with low level MRD-positive status.
Collapse
|
237
|
Montemagno C, Hagege A, Borchiellini D, Thamphya B, Rastoin O, Ambrosetti D, Iovanna J, Rioux-Leclercq N, Porta C, Negrier S, Ferrero JM, Chamorey E, Pagès G, Dufies M. Soluble forms of PD-L1 and PD-1 as prognostic and predictive markers of sunitinib efficacy in patients with metastatic clear cell renal cell carcinoma. Oncoimmunology 2020; 9:1846901. [PMID: 33299657 PMCID: PMC7714499 DOI: 10.1080/2162402x.2020.1846901] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metastatic clear cell renal cell carcinoma (mccRCC) benefits from several treatment options in the first-line setting with VEGFR inhibitors and/or immunotherapy including anti-PD-L1 or anti-PD1 agents. Identification of predictive biomarkers is highly needed to optimize patient care. Circulating markers could reflect the biology of metastatic disease. Therefore, we evaluated soluble forms of PD-L1 (sPD-L1) and PD-1 (sPD-1) in mccRCC patients. The levels of sPD-L1 and sPD-1 were evaluated from plasma samples of mccRCC patients before they received a first-line treatment (T0) by the VEGFR inhibitor sunitinib (50 patients) or by the anti-VEGF bevacizumab (37 patients). The levels of sPD-L1 and sPD-1 were correlated to clinical parameters and progression-free survival (PFS). High levels of sPD-1 or sPDL1 were not correlated to PFS under bevacizumab while they were independent prognostic factors of PFS in the sunitinib group. Patients with high T0 plasmatic levels of sPD-L1 had a shorter PFS (11.3 vs 22.5 months, p = .011) in the sunitinib group. Equivalent shorter PFS was found with high levels of sPD-1 (8.6 vs 14.1 months, p = .009). mccRCC patients with high plasmatic levels of sPD-L1 or sPD-1 are poor responders to sunitinib. sPD-L1 or sPD-1 could be a valuable tool to guide the optimal treatment strategy including VEGFR inhibitor.
Collapse
Affiliation(s)
- Christopher Montemagno
- Biomedical Department, Centre Scientifique De Monaco, principally of Monaco.,Centre Antoine Lacassagne, University Cote d'Azur (UCA), Institute for research on cancer and aging of Nice, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, Nic, France.,LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Anais Hagege
- Centre Antoine Lacassagne, University Cote d'Azur (UCA), Institute for research on cancer and aging of Nice, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, Nic, France.,LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Delphine Borchiellini
- University Côte d'Azur, Centre Antoine Lacassagne, Department of Medical Oncology, University Côte d'Azur, Nice, France
| | - Brice Thamphya
- Centre Antoine Lacassagne, Department of Statistic, University Côte d'Azur, Nice, France
| | - Olivia Rastoin
- Centre Antoine Lacassagne, University Cote d'Azur (UCA), Institute for research on cancer and aging of Nice, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, Nic, France.,LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Damien Ambrosetti
- Centre Hospitalier Universitaire (CHU) De Nice, Hôpital Pasteur, Central Laboratory of Pathology University Côte d'Azur, Nice, France
| | - Juan Iovanna
- Team Pancreatic Cancer, Centre De Recherche En Cancérologie De Marseille (CRCM), Marseille, France
| | | | - Camillio Porta
- Department of Biomedical Sciences and Human Oncology, I.R.C.C.S. San Matteo University Hospital, Pavia, Italy (Present Affiliation: University of Bari 'A. Moro', Bari, Italy
| | - Sylvie Negrier
- Centre Léon Bérard, University Hospital De Lyon, Lyon, France
| | - Jean-Marc Ferrero
- University Côte d'Azur, Centre Antoine Lacassagne, Department of Medical Oncology, University Côte d'Azur, Nice, France
| | - Emmanuel Chamorey
- Centre Antoine Lacassagne, Department of Statistic, University Côte d'Azur, Nice, France
| | - Gilles Pagès
- Biomedical Department, Centre Scientifique De Monaco, principally of Monaco.,Centre Antoine Lacassagne, University Cote d'Azur (UCA), Institute for research on cancer and aging of Nice, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, Nic, France.,LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| | - Maeva Dufies
- Biomedical Department, Centre Scientifique De Monaco, principally of Monaco.,LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco
| |
Collapse
|
238
|
Kashani B, Zandi Z, Pourbagheri-Sigaroodi A, Bashash D, Ghaffari SH. The role of toll-like receptor 4 (TLR4) in cancer progression: A possible therapeutic target? J Cell Physiol 2020; 236:4121-4137. [PMID: 33230811 DOI: 10.1002/jcp.30166] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The toll-like receptor (TLR) family consists of vital receptors responsible for pattern recognition in innate immunity, making them the core proteins involved in pathogen detection and eliciting immune responses. The most studied member of this family, TLR4, has been the center of attention regarding its contributory role in many inflammatory diseases including sepsis shock and asthma. Notably, mounting pieces of evidence have proved that this receptor is aberrantly expressed on the tumor cells and the tumor microenvironment in a wide range of cancer types and it is highly associated with the initiation of tumorigenesis as well as tumor progression and drug resistance. Cancer therapy using TLR4 inhibitors has recently drawn scientists' attention, and the promising results of such studies may pave the way for more investigation in the foreseeable future. This review will introduce the key proteins of the TLR4 pathway and how they interact with major growth factors in the tumor microenvironment. Moreover, we will discuss the many aspects of tumor progression affected by the activation of this receptor and provide an overview of the recent therapeutic approaches using various TLR4 antagonists.
Collapse
Affiliation(s)
- Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
239
|
Igarashi Y, Sasada T. Cancer Vaccines: Toward the Next Breakthrough in Cancer Immunotherapy. J Immunol Res 2020; 2020:5825401. [PMID: 33282961 PMCID: PMC7685825 DOI: 10.1155/2020/5825401] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Until now, three types of well-recognized cancer treatments have been developed, i.e., surgery, chemotherapy, and radiotherapy; these either remove or directly attack the cancer cells. These treatments can cure cancer at earlier stages but are frequently ineffective for treating cancer in the advanced or recurrent stages. Basic and clinical research on the tumor microenvironment, which consists of cancerous, stromal, and immune cells, demonstrates the critical role of antitumor immunity in cancer development and progression. Cancer immunotherapies have been proposed as the fourth cancer treatment. In particular, clinical application of immune checkpoint inhibitors, such as anti-CTLA-4 and anti-PD-1/PD-L1 antibodies, in various cancer types represents a major breakthrough in cancer therapy. Nevertheless, accumulating data regarding immune checkpoint inhibitors demonstrate that these are not always effective but are instead only effective in limited cancer populations. Indeed, several issues remain to be solved to improve their clinical efficacy; these include low cancer cell antigenicity and poor infiltration and/or accumulation of immune cells in the cancer microenvironment. Therefore, to accelerate the further development of cancer immunotherapies, more studies are necessary. In this review, we will summarize the current status of cancer immunotherapies, especially cancer vaccines, and discuss the potential problems and solutions for the next breakthrough in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuka Igarashi
- Kanagawa Cancer Center, Research Institute, Division of Cancer Immunotherapy, Japan
| | - Tetsuro Sasada
- Kanagawa Cancer Center, Research Institute, Division of Cancer Immunotherapy, Japan
- Kanagawa Cancer Center, Cancer Vaccine and Immunotherapy Center, Japan
| |
Collapse
|
240
|
Biomaterial-based scaffold for in situ chemo-immunotherapy to treat poorly immunogenic tumors. Nat Commun 2020; 11:5696. [PMID: 33173046 PMCID: PMC7655953 DOI: 10.1038/s41467-020-19540-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Poorly immunogenic tumors, including triple negative breast cancers (TNBCs), remain resistant to current immunotherapies, due in part to the difficulty of reprogramming the highly immunosuppressive tumor microenvironment (TME). Here we show that peritumorally injected, macroporous alginate gels loaded with granulocyte-macrophage colony-stimulating factor (GM-CSF) for concentrating dendritic cells (DCs), CpG oligonucleotides, and a doxorubicin-iRGD conjugate enhance the immunogenic death of tumor cells, increase systemic tumor-specific CD8 + T cells, repolarize tumor-associated macrophages towards an inflammatory M1-like phenotype, and significantly improve antitumor efficacy against poorly immunogenic TNBCs. This system also prevents tumor recurrence after surgical resection and results in 100% metastasis-free survival upon re-challenge. This chemo-immunotherapy that concentrates DCs to present endogenous tumor antigens generated in situ may broadly serve as a facile platform to modulate the suppressive TME, and enable in situ personalized cancer vaccination. The immunosuppressive tumour microenvironment impairs immunotherapy in poorly immunogenic cancer. Here, the authors load an alginate gel with GM-CSF, CpG oligonucleotides and doxorubicin-iRGD to promote immunogenic death of tumour cells and improve immunotherapy efficacy in triple negative breast cancer models.
Collapse
|
241
|
Liu Y, Zhang T, Zhang H, Li J, Zhou N, Fiskesund R, Chen J, Lv J, Ma J, Zhang H, Tang K, Cheng F, Zhou Y, Zhang X, Wang N, Huang B. Cell Softness Prevents Cytolytic T-cell Killing of Tumor-Repopulating Cells. Cancer Res 2020; 81:476-488. [PMID: 33168645 DOI: 10.1158/0008-5472.can-20-2569] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Biomechanics is a fundamental feature of a cell. However, the manner by which actomysin tension affects tumor immune evasion remains unclear. Here we show that although cytotoxic T lymphocytes (CTL) can effectively destroy stiff differentiated tumor cells, they fail to kill soft tumor-repopulating cells (TRC). TRC softness prevented membrane pore formation caused by CTL-released perforin. Perforin interacting with nonmuscle myosin heavy-chain 9 transmitted forces to less F-actins in soft TRC, thus generating an inadequate contractile force for perforin pore formation. Stiffening TRC allowed perforin the ability to drill through the membrane, leading to CTL-mediated killing of TRC. Importantly, overcoming mechanical softness in human TRC also enhanced TRC cell death caused by human CTL, potentiating a mechanics-based immunotherapeutic strategy. These findings reveal a mechanics-mediated tumor immune evasion, thus potentially providing an alternative approach for tumor immunotherapy. SIGNIFICANCE: Tumor-repopulating cells evade CD8+ cytolytic T-cell killing through a mechanical softness mechanism, underlying the impediment of perforin pore formation at the immune synapse site.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, China.
- Clinical Immunology Center, CAMS, Beijing, China
| | - Tianzhen Zhang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, China
| | - Haizeng Zhang
- National Cancer Center/Cancer Hospital, CAMS, Beijing, China
| | - Jiping Li
- Beijing Smartchip Microelectronics Technology Company Limited, Beijing, China
| | - Nannan Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, China
| | - Roland Fiskesund
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, China
- Karolinska Institutet Medical School, Stockholm, Sweden
| | - Junwei Chen
- Laboratory for Cellular Biomechanics and Regenerative Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiadi Lv
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, China
| | - Jingwei Ma
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafeng Zhang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feiran Cheng
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, China
| | - Yabo Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Ning Wang
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Bo Huang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, China.
- Clinical Immunology Center, CAMS, Beijing, China
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
242
|
Diener C, Hart M, Kehl T, Rheinheimer S, Ludwig N, Krammes L, Pawusch S, Lenhof K, Tänzer T, Schub D, Sester M, Walch-Rückheim B, Keller A, Lenhof HP, Meese E. Quantitative and time-resolved miRNA pattern of early human T cell activation. Nucleic Acids Res 2020; 48:10164-10183. [PMID: 32990751 PMCID: PMC7544210 DOI: 10.1093/nar/gkaa788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/14/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
T cells are central to the immune response against various pathogens and cancer cells. Complex networks of transcriptional and post-transcriptional regulators, including microRNAs (miRNAs), coordinate the T cell activation process. Available miRNA datasets, however, do not sufficiently dissolve the dynamic changes of miRNA controlled networks upon T cell activation. Here, we established a quantitative and time-resolved expression pattern for the entire miRNome over a period of 24 h upon human T-cell activation. Based on our time-resolved datasets, we identified central miRNAs and specified common miRNA expression profiles. We found the most prominent quantitative expression changes for miR-155-5p with a range from initially 40 molecules/cell to 1600 molecules/cell upon T-cell activation. We established a comprehensive dynamic regulatory network of both the up- and downstream regulation of miR-155. Upstream, we highlight IRF4 and its complexes with SPI1 and BATF as central for the transcriptional regulation of miR-155. Downstream of miR-155-5p, we verified 17 of its target genes by the time-resolved data recorded after T cell activation. Our data provide comprehensive insights into the range of stimulus induced miRNA abundance changes and lay the ground to identify efficient points of intervention for modifying the T cell response.
Collapse
Affiliation(s)
- Caroline Diener
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Martin Hart
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Tim Kehl
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany
| | | | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Lena Krammes
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Sarah Pawusch
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Kerstin Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany
| | - Tanja Tänzer
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - David Schub
- Department of Transplant and Infection Immunology, Saarland University, 66421 Homburg, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, 66421 Homburg, Germany
| | - Barbara Walch-Rückheim
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
243
|
Wang W, Zou W. Amino Acids and Their Transporters in T Cell Immunity and Cancer Therapy. Mol Cell 2020; 80:384-395. [PMID: 32997964 PMCID: PMC7655528 DOI: 10.1016/j.molcel.2020.09.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/01/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
Abstract
Metabolism reprogramming is critical for both cancer progression and effective immune responses in the tumor microenvironment. Amino acid metabolism in different cells and their cross-talk shape tumor immunity and therapy efficacy in patients with cancer. In this review, we focus on multiple amino acids and their transporters, solute carrier (SLC) members. We discuss their involvement in regulation of immune responses in the tumor microenvironment and assess their associations with cancer immunotherapy, chemotherapy, and radiation therapy, and we review their potential as targets for cancer therapy. We stress the necessity to understand individual amino acids and their transporters in different cell subsets, the molecular intersection between amino acid metabolism, and effective T cell immunity and its relevance in cancer therapies.
Collapse
Affiliation(s)
- Weimin Wang
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
244
|
Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment. Cancers (Basel) 2020; 12:cancers12113244. [PMID: 33153193 PMCID: PMC7693872 DOI: 10.3390/cancers12113244] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The role of lactate in cancer described by Otto Warburg in 1927 states that cancer cells uptake high amount of glucose with a marked increase in lactate production, this is known as the “Warburg effect”. Since then lactate turn out to be a major signaling molecule in cancer progression. Its release from tumor cells is accompanied by acidification ranging from 6.3 to 6.9 in the tumor microenvironment (TME) which favors processes such as tumor promotion, angiogenesis, metastasis, tumor resistance and more importantly, immunosuppression which has been associated with a poor outcome. The goal of this review is to examine and discuss in deep detail the recent studies that address the role of lactate in all these cancerous processes. Lastly, we explore the efforts to target the lactate production and its transport as a promising approach for cancer therapeutics. Abstract Cancer is a complex disease that includes the reprogramming of metabolic pathways by malignant proliferating cells, including those affecting the tumor microenvironment (TME). The “TME concept” was introduced in recognition of the roles played by factors other than tumor cells in cancer progression. In response to the hypoxic or semi-hypoxic characteristic of the TME, cancer cells generate a large amount of lactate via the metabolism of glucose and glutamine. Export of this newly generated lactate by the tumor cells together with H+ prevents intracellular acidification but acidifies the TME. In recent years, the importance of lactate and acidosis in carcinogenesis has gained increasing attention, including the role of lactate as a tumor-promoting metabolite. Here we review the existing literature on lactate metabolism in tumor cells and the ability of extracellular lactate to direct the metabolic reprogramming of those cells. Studies demonstrating the roles of lactate in biological processes that drive or sustain carcinogenesis (tumor promotion, angiogenesis, metastasis and tumor resistance) and lactate’s role as an immunosuppressor that contributes to tumor evasion are also considered. Finally, we consider recent therapeutic efforts using available drugs directed at and interfering with lactate production and transport in cancer treatment.
Collapse
|
245
|
Hu X, Liu Y, Zhang X, Kong D, Kong J, Zhao D, Guo Y, Sun L, Chu L, Liu S, Hou X, Ren F, Zhao Y, Lu C, Zhai D, Yuan X. The anti-B7-H4 checkpoint synergizes trastuzumab treatment to promote phagocytosis and eradicate breast cancer. Neoplasia 2020; 22:539-553. [PMID: 32966956 PMCID: PMC7509589 DOI: 10.1016/j.neo.2020.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
Trastuzumab is a humanized mAb used to treat HER2-overexpressing breast cancer; however its mechanisms remain to be fully elucidated. Previous studies suggest a role for immunity in mediating trastuzumab-specific antitumor effects. This study evaluated the role(s) of trastuzumab and other antibodies on macrophage activation and Ab-dependent cell-mediated phagocytosis (ADCP) of HER2+ breast cancer cells in vitro and in vivo. We employed orthotopic implantation of HER2+ murine breast cancer (BC) cells in immunocompetent mouse models, a human HER2+ BC xenograft in an immune humanized mouse model, and human PDXs involving adoptive transfer of autologous macrophages to simulate an endogenous mammary tumor-immune microenvironment. Our study demonstrated that trastuzumab greatly and consistently increased macrophage frequency and tumor-cell phagocytosis, and that concurrent knockdown of B7-H4 by a neutralizing antibody increased immune cell infiltration and promoted an antitumor phenotype. Furthermore, neoadjuvant trastuzumab therapy significantly upregulated B7-H4 in the cancer-infiltrating macrophages of HER2+ BC patients, which predicted poor trastuzumab response. We suggest that strategies to specifically enhance ADCP activity might be critical to overcoming resistance to HER2 mAb therapies by inhibiting tumor growth and potentially enhance antigen presentation. Furthermore, these results advance the understanding of macrophage plasticity by uncovering a dual role for ADCP in macrophages involving elimination of tumors by engulfing cancer cells while causing a concomitant undesired effect by upregulating immunosuppressive checkpoints.
Collapse
Affiliation(s)
- Xiaochen Hu
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Yiwen Liu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Xiusen Zhang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Dejiu Kong
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Jinyu Kong
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Di Zhao
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Yibo Guo
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Lingyun Sun
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Luoyi Chu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Shupei Liu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Xurong Hou
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Feng Ren
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ying Zhao
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Chengbiao Lu
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Desheng Zhai
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiang Yuan
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
246
|
Zhang W, Wang F, Hu C, Zhou Y, Gao H, Hu J. The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharm Sin B 2020; 10:2037-2053. [PMID: 33304778 PMCID: PMC7714986 DOI: 10.1016/j.apsb.2020.07.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/14/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most serious threats to human being, cancer is hard to be treated when metastasis happens. What's worse, there are few identified targets of metastasis for drug development. Therefore, it is important to develop strategies to prevent metastasis or treat existed metastasis. This review focuses on the procedure of metastasis, and first summarizes the targeting delivery strategies, including primary tumor targeting drug delivery, tumor metastasis targeting drug delivery and hijacking circulation cells. Then, as a promising treatment, the application of immunotherapy in tumor metastasis treatment is introduced, and strategies that stimulating immune response are reviewed, including chemotherapy, photothermal therapy, photodynamic therapy, ferroptosis, sonodynamic therapy, and nanovaccines. Finally, the challenges and perspective about nanoparticle-enabled tumor metastasis treatment are discussed.
Collapse
|
247
|
Inhibitory effect of ginsenoside Rg3 on cancer stemness and mesenchymal transition in breast cancer via regulation of myeloid-derived suppressor cells. PLoS One 2020; 15:e0240533. [PMID: 33091036 PMCID: PMC7580975 DOI: 10.1371/journal.pone.0240533] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/28/2020] [Indexed: 01/21/2023] Open
Abstract
Ginsenoside Rg3 (Rg3) has been studied in several cancer models and is suggested to act through various pharmacological effects. We investigated the anticancer properties of Rg3 through myeloid-derived suppressor cell (MDSC) modulation in FM3A mouse mammary carcinoma cells. The effects of Rg3 on MDSCs and consequent changes in cancer stem-like cells (CSCs) and epithelial-mesenchymal transition (EMT) were evaluated by diverse methods. MDSCs promoted cancer by enhancing breast cancer stemness and promoting EMT. Rg3 at a dose without obvious cytotoxicity downregulated MDSCs and repressed MDSC-induced cancer stemness and EMT. Mechanistic investigations suggested that these inhibitory effects of Rg3 on MDSCs and corresponding cancer progression depend upon suppression of the STAT3-dependent pathway, tumor-derived cytokines, and the NOTCH signaling pathway. In a mouse model, MDSCs accelerated tumor progression, and Rg3 delayed tumor growth, which is consistent with the results of in vitro experiments. These results indicated that Rg3 could effectively inhibit the progression of breast cancer. The anticancer effect of Rg3 might be partially due to its downregulation of MDSCs and consequent repression of cancer stemness and EMT in breast cancer. Hence, we suggest the regulation of MDSCs through Rg3 treatment as an effective therapeutic strategy for breast cancer patients.
Collapse
|
248
|
Abstract
The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized gene editing research. Through the repurposing of programmable RNA-guided CRISPR-associated (Cas) nucleases, CRISPR-based genome editing systems allow for the precise modification of specific sites in the human genome and inspire novel approaches for the study and treatment of inherited and acquired human diseases. Here, we review how CRISPR technologies have stimulated key advances in dermatologic research. We discuss the role of CRISPR in genome editing for cutaneous disease and highlight studies on the use of CRISPR-Cas technologies for genodermatoses, cutaneous viruses and bacteria, and melanoma. Additionally, we examine key limitations of current CRISPR technologies, including the challenges these limitations pose for the widespread therapeutic application of CRISPR-based therapeutics.
Collapse
Affiliation(s)
- Catherine Baker
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Matthew S Hayden
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.,Section of Dermatology, Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, 03766, USA
| |
Collapse
|
249
|
Wang C, Li M, Wei R, Wu J. Adoptive transfer of TILs plus anti-PD1 therapy: An alternative combination therapy for treating metastatic osteosarcoma. J Bone Oncol 2020; 25:100332. [PMID: 33145154 PMCID: PMC7591383 DOI: 10.1016/j.jbo.2020.100332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/14/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Anti-PD1 therapy for metastatic osteosarcoma patients is limited and the identification of new strategies for these patients is urgently needed. TILs plus anti-PD1 therapy significantly increases ORR, mPFS and mOS of patients. More infusion of TIL numbers and CD8+TIL percentage and less infusion of CD8+PD1+ TIL percentage and CD4+FoxP3+ TIL percentage may be potential prognostic factors which can predict clinical response to combined TILs and anti-PD1 therapy. PD1hi in fresh TILs is another good prognostic factor that predict PFS and OS.
Aim We sought to investigate the efficacy of adoptive transfer of TILs plus anti-PD1 therapy in metastatic osteosarcoma patients. Materials and methods A total of 30 patients received anti-PD1 therapy (Group 1) while 30 patients were subjected to TILs plus anti-PD1 therapy (Group 2). Progression-free survival time (PFS) and overall survival time (OS) were analyzed using Kaplan-Meier analysis. Potential prognostic factors were analyzed using univariate and multivariate analyses. Results The ORR in Group 2 is 33.3%, which is significantly higher than Group1 (6.67%). In addition, we found significantly prolonged mPFS (5.4 months) and mOS (15.2 months) in Group 2 compared to those in Group 1, which recorded mPFS and mOS of 3.8 and 6.6 months, respectively. Univariate and multivariate analyses indicate that patients with more infusions of TIL numbers and CD8+TILs or less infusions of CD8+ PD1+TILs and CD4+FoxP3+ TILs show increased PFS and OS. Moreover, PD1hi is another good prognostic factor that predict PFS and OS. Conclusion Overall, these findings indicated that TILs plus anti-PD1 therapy has significant clinical outcomes in metastatic osteosarcoma patients. However, further studies are essential to validate and characterize the therapeutic activity of TILs plus anti-PD1.
Collapse
Affiliation(s)
- Chao Wang
- Department of Orthopedic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471009, China
| | - Ming Li
- Department of Orthopedic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471009, China
| | - Rong Wei
- Department of Orthopedic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471009, China
| | - Junlong Wu
- Department of Orthopedic Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471009, China
| |
Collapse
|
250
|
Picado C, Roca-Ferrer J. Role of the Cyclooxygenase Pathway in the Association of Obstructive Sleep Apnea and Cancer. J Clin Med 2020; 9:E3237. [PMID: 33050416 PMCID: PMC7601393 DOI: 10.3390/jcm9103237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
The objective of this review is to examine the findings that link obstructive sleep apnea (OSA) with cancer and the role played by the cyclooxygenase (COX) pathway in this association. Epidemiological studies in humans suggest a link between OSA and increased cancer incidence and mortality. Studies carried out in animal models have shown that intermittent hypoxia (IH) induces changes in several signaling pathways involved in the regulation of host immunological surveillance that results in tumor establishment and invasion. IH induces the expression of cyclooxygenase 2 (COX-2) that results in an increased synthesis of prostaglandin E2 (PGE2). PGE2 modulates the function of multiple cells involved in immune responses including T lymphocytes, NK cells, dendritic cells, macrophages, and myeloid-derived suppressor cells. In a mouse model blockage of COX-2/PGE2 abrogated the pro-oncogenic effects of IH. Despite the fact that aspirin inhibits PGE2 production and prevents the development of cancer, none of the epidemiological studies that investigated the association of OSA and cancer included aspirin use in the analysis. Studies are needed to investigate the regulation of the COX-2/PGE2 pathway and PGE2 production in patients with OSA, to better define the role of this axis in the physiopathology of OSA and the potential role of aspirin in preventing the development of cancer.
Collapse
Affiliation(s)
- César Picado
- Hospital Clinic, Department of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto Carlos III, 28029 Madrid, Spain
| | - Jordi Roca-Ferrer
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto Carlos III, 28029 Madrid, Spain
| |
Collapse
|