201
|
Chen H, Zhou R, Pang J, Guo Y, Chen J, Kang Y, Duan M, Hou T. Molecular View on the Dissociation Pathways and Transactivation Regulation Mechanism of Nonsteroidal GR Ligands. J Chem Inf Model 2021; 62:5233-5245. [PMID: 34506144 DOI: 10.1021/acs.jcim.1c00150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
As a major drug target for anti-inflammatory therapy, the glucocorticoid receptor (GR) regulates a wide range of physiological processes through transactivation (TA) or transrepression. GR TA is involved in many adverse effects of GR-targeting drugs, and therefore, the discovery of novel GR ligands with lower TA activity and longer residence time is quite urgent. Undoubtedly, understanding the ligand dissociation mechanisms and the structural basis of the TA regulation is crucial for the development of novel GR-targeting drugs. Here, we used random accelerated molecular dynamics (RAMD) and funnel metadynamics (FM) simulations to explore the dissociation mechanisms of 5 classic glucocorticoids and 6 nonsteroidal GR ligands. Multiple ligand dissociation pathways were discovered. The classic glucocorticoids exhibit a strong preference for Path I, and most nonsteroidal ligands tend to dissociate along mixed pathways. We also find that the distinct unbinding preferences for AZD2906 and AZD9567, two representative nonsteroidal ligands with similar scaffolds but different TA activities, are primarily determined by their different polar interactions with the surrounding residues. Notably, the binding of AZD9567 poses a substantial impact on the conformation of the GR homodimer interface, which provides a valuable clue to understand the mechanisms of the TA-related side effects induced by the adjustments of the homodimerization process. These findings are critical for the structure-based rational design of novel GR ligands with more potent anti-inflammatory potency and reduced side effects.
Collapse
Affiliation(s)
- Haiyi Chen
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China.,National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, China
| | - Rui Zhou
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, China
| | - Jinping Pang
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Yue Guo
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, China
| | - Jiawen Chen
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Mojie Duan
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China.,State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| |
Collapse
|
202
|
Basu R, Wang N, Basak S, Daryaee F, Babar M, Allen EK, Walker SG, Haley JD, Tonge PJ. Impact of Target Turnover on the Translation of Drug-Target Residence Time to Time-Dependent Antibacterial Activity. ACS Infect Dis 2021; 7:2755-2763. [PMID: 34357770 DOI: 10.1021/acsinfecdis.1c00317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The translation of time-dependent drug-target occupancy to extended pharmacological activity at low drug concentration depends on factors such as target vulnerability and the rate of target turnover. Previously, we demonstrated that the postantibiotic effect (PAE) caused by inhibitors of bacterial drug targets could be used to assess target vulnerability, and that high levels of target vulnerability coupled with relatively low rates of target resynthesis resulted in a strong correlation between drug-target residence time and the PAE following compound washout. Although the residence time of inhibitors on UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) in Pseudomonas aeruginosa (paLpxC) results in significant PAE, inhibitors of the equivalent enzyme in Escherichia coli (ecLpxC) do not cause a PAE. Hyperactivity of the fatty acid biosynthesis enzyme FabZ or the inclusion of sub-MIC levels of azithromycin lead to the observation of a PAE for three inhibitors of ecLpxC. FabZ hyperactivity has been shown to stabilize ecLpxC, and using mass spectrometry, we demonstrate that the appearance of a PAE can be directly linked to a 3-fold increase in the stability of ecLpxC. These studies substantiate the importance of target turnover in time-dependent drug activity.
Collapse
Affiliation(s)
- Rajeswari Basu
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Nan Wang
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Sneha Basak
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Fereidoon Daryaee
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Mustufa Babar
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Eleanor K. Allen
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Stephen G. Walker
- Department of Oral Biology and Pathology, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - John D. Haley
- Department of Pathology, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Chemistry, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
- Department of Radiology, Stony Brook University, John S. Toll Drive, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
203
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
204
|
Kato J, Inoue T, Yokoyama M, Kuroha M. A review of a new voltage-gated Ca 2+ channel α 2δ ligand, mirogabalin, for the treatment of peripheral neuropathic pain. Expert Opin Pharmacother 2021; 22:2311-2322. [PMID: 34431423 DOI: 10.1080/14656566.2021.1958780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Neuropathic pain (NeP) is a chronic and refractory condition in many patients, and its treatment is a challenge for physicians. A new voltage-gated Ca2+ channel α2δ ligand, mirogabalin, has a high specific binding affinity for the α2δ subunit, with a slower dissociation rate for α2δ-1 than α2δ-2 compared to that of pregabalin. Mirogabalin was shown to be effective in NeP animal models, with a margin of safety between central nervous system side effects and the analgesic effect of the dose. It exerted a favorable analgesic effect, was well tolerated in patients with peripheral NeP (P-NeP), and was first approved in Japan in 2019 and subsequently in Korea and Taiwan in 2020. AREAS COVERED The purpose of this article is to review the pharmacological characteristics, pharmacokinetics, and efficacy and safety of mirogabalin for NeP based on the results of non-clinical and clinical studies. EXPERT OPINION Although there are several first-line therapies for NeP, insufficient efficacy and adverse drug reactions of NeP drugs often cause patient dissatisfaction. Mirogabalin was effective and well tolerated with a step-wise dose increase in clinical studies on P-NeP patients. Thus, mirogabalin is expected to be a useful treatment option for patients with P-NeP.
Collapse
Affiliation(s)
- Jitsu Kato
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Teruyoshi Inoue
- Medical Science Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Mizuka Yokoyama
- Medical Science Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Masanori Kuroha
- Clinical Development Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| |
Collapse
|
205
|
Jung S, Fuchs N, Johe P, Wagner A, Diehl E, Yuliani T, Zimmer C, Barthels F, Zimmermann RA, Klein P, Waigel W, Meyr J, Opatz T, Tenzer S, Distler U, Räder HJ, Kersten C, Engels B, Hellmich UA, Klein J, Schirmeister T. Fluorovinylsulfones and -Sulfonates as Potent Covalent Reversible Inhibitors of the Trypanosomal Cysteine Protease Rhodesain: Structure-Activity Relationship, Inhibition Mechanism, Metabolism, and In Vivo Studies. J Med Chem 2021; 64:12322-12358. [PMID: 34378914 DOI: 10.1021/acs.jmedchem.1c01002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rhodesain is a major cysteine protease of Trypanosoma brucei rhodesiense, a pathogen causing Human African Trypanosomiasis, and a validated drug target. Recently, we reported the development of α-halovinylsulfones as a new class of covalent reversible cysteine protease inhibitors. Here, α-fluorovinylsulfones/-sulfonates were optimized for rhodesain based on molecular modeling approaches. 2d, the most potent and selective inhibitor in the series, shows a single-digit nanomolar affinity and high selectivity toward mammalian cathepsins B and L. Enzymatic dilution assays and MS experiments indicate that 2d is a slow-tight binder (Ki = 3 nM). Furthermore, the nonfluorinated 2d-(H) shows favorable metabolism and biodistribution by accumulation in mice brain tissue after intraperitoneal and oral administration. The highest antitrypanosomal activity was observed for inhibitors with an N-terminal 2,3-dihydrobenzo[b][1,4]dioxine group and a 4-Me-Phe residue in P2 (2e/4e) with nanomolar EC50 values (0.14/0.80 μM). The different mechanisms of reversible and irreversible inhibitors were explained using QM/MM calculations and MD simulations.
Collapse
Affiliation(s)
- Sascha Jung
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Natalie Fuchs
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Patrick Johe
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Annika Wagner
- Department of Chemistry, Biochemistry Section, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Erika Diehl
- Department of Chemistry, Biochemistry Section, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Tri Yuliani
- Institute for Pharmacology and Clinical Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60439 Frankfurt, Germany
| | - Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Philipp Klein
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Waldemar Waigel
- Department of Physical and Theoretical Chemistry, Julius-Maximilians-University, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Jessica Meyr
- Department of Physical and Theoretical Chemistry, Julius-Maximilians-University, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Till Opatz
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Hans-Joachim Räder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Bernd Engels
- Department of Physical and Theoretical Chemistry, Julius-Maximilians-University, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Ute A Hellmich
- Department of Chemistry, Biochemistry Section, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.,Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Jochen Klein
- Institute for Pharmacology and Clinical Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60439 Frankfurt, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
206
|
Wright EB, Fukuda S, Li M, Li Y, O'Doherty GA, Lannigan DA. Identifying requirements for RSK2 specific inhibitors. J Enzyme Inhib Med Chem 2021; 36:1798-1809. [PMID: 34348556 PMCID: PMC8344253 DOI: 10.1080/14756366.2021.1957862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Identifying isoform-specific inhibitors for closely related kinase family members remains a substantial challenge. The necessity for achieving this specificity is exemplified by the RSK family, downstream effectors of ERK1/2, which have divergent physiological effects. The natural product, SL0101, a flavonoid glycoside, binds specifically to RSK1/2 through a binding pocket generated by an extensive conformational rearrangement within the RSK N-terminal kinase domain (NTKD). In modelling experiments a single amino acid that is divergent in RSK3/4 most likely prevents the required conformational rearrangement necessary for SL0101 binding. Kinetic analysis of RSK2 association with SL0101 and its derivatives identified that regions outside of the NTKD contribute to stable inhibitor binding. An analogue with an n-propyl-carbamate at the 4” position on the rhamnose moiety was identified that forms a highly stable inhibitor complex with RSK2 but not with RSK1. These results identify a SL0101 modification that will aid the identification of RSK2 specific inhibitors.
Collapse
Affiliation(s)
- Eric B Wright
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Shinji Fukuda
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Mingzong Li
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Yu Li
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - George A O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Deborah A Lannigan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
207
|
Spiegelberg D, Stenberg J, Richalet P, Vanhove M. K D determination from time-resolved experiments on live cells with LigandTracer and reconciliation with end-point flow cytometry measurements. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:979-991. [PMID: 34302187 PMCID: PMC8448686 DOI: 10.1007/s00249-021-01560-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
Design of next-generation therapeutics comes with new challenges and emulates technology and methods to meet them. Characterizing the binding of either natural ligands or therapeutic proteins to cell-surface receptors, for which relevant recombinant versions may not exist, represents one of these challenges. Here we report the characterization of the interaction of five different antibody therapeutics (Trastuzumab, Rituximab, Panitumumab, Pertuzumab, and Cetuximab) with their cognate target receptors using LigandTracer. The method offers the advantage of being performed on live cells, alleviating the need for a recombinant source of the receptor. Furthermore, time-resolved measurements, in addition to allowing the determination of the affinity of the studied drug to its target, give access to the binding kinetics thereby providing a full characterization of the system. In this study, we also compared time-resolved LigandTracer data with end-point KD determination from flow cytometry experiments and hypothesize that discrepancies between these two approaches, when they exist, generally come from flow cytometry titration curves being acquired prior to full equilibration of the system. Our data, however, show that knowledge of the kinetics of the interaction allows to reconcile the data obtained by flow cytometry and LigandTracer and demonstrate the complementarity of these two methods.
Collapse
Affiliation(s)
- Diana Spiegelberg
- Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Jonas Stenberg
- Ridgeview Instruments AB, Skillsta 4, 740 20, Vänge, Sweden.,A3P Biomedical AB, Vallongatan 1, 752 28, Uppsala, Sweden
| | | | - Marc Vanhove
- Marc Vanhove Consultancy, 4100, Boncelles, Belgium. .,Oxurion N.V., Gaston Geenslaan 1, 3001, Leuven, Belgium.
| |
Collapse
|
208
|
Tian G, Suarez J, Zhang Z, Connolly P, Ahn K. Potent Phenylpyridine and Oxodihydrofuran Inhibitors of Cyclooxygenase-2: Optimization toward a Long Residence Time with Balanced Internal Energetics. Biochemistry 2021; 60:2407-2418. [PMID: 34293856 DOI: 10.1021/acs.biochem.1c00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Long residence time enzyme inhibitors with a two-step binding mechanism are characterized by a high internal energy barrier for target association. This raises the question of whether optimizing residence time via further increasing this internal energy barrier would inevitably lead to insufficient target occupancy in vivo due to slow, time-dependent binding. We attempted to address this question during optimization of cyclooxygenase-2 (COX-2) inhibitors. Defining long residence time drugs with acceptable association and dissociation rate constants required for sufficient target occupancy and sustained efficacy, which we termed "balanced internal energetics", provides an important criterion for successful progression during lead optimization. Despite the advancement of several COX-2 inhibitors to marketed drugs, their detailed inhibition kinetics have been surprisingly limiting especially during the structure-activity relationship process mainly due to the lack of robust kinetic assays. Herein, we describe a reoptimized COX enzymatic assay and a novel MS-based assay enabling detailed mechanistic studies for identifying long residence time COX-2 inhibitors with balanced internal energetics. These efforts led to the discovery of promising leads possessing dissociation half-lives of ≤40 h, much greater than the values of 6 and 0.71 h for two marketed drugs, etoricoxib and celecoxib, respectively. Importantly, the inhibition rate constants remain comparable to those of the marketed drugs and above the lower limits set by the criteria of balanced internal energetics, predicting sufficient target occupancy required for efficacy. Taken together, this study demonstrates the feasibility of increasing the internal energy barrier as a viable approach for lead optimization toward discovering long residence time drug candidates.
Collapse
|
209
|
Copeland RA. Chance Favors the Perplexed Mind: The Critical Role of Mechanistic Biochemistry in Drug Discovery. Biochemistry 2021; 60:2275-2284. [PMID: 34259514 DOI: 10.1021/acs.biochem.1c00345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scientific discoveries often start with an observation that does not quite make sense, within the framework of a well-established hypothesis. It is when researchers delve deeply to understand such perplexing data that established hypotheses are modified or replaced, and new and expanded knowledge of the system can be gained. This is often the case in the field of drug discovery. In this Perspective, case studies demonstrate how an understanding of perplexing data can lead to novel discoveries regarding the biological function of drug targets, or the mechanisms of compound-target interactions, that can ultimately result in new drugs entering the clinic. These case studies reinforce two interdependent themes: (1) that understanding the pathophysiological context in which drug targets function and the mechanistic details of drug-target interactions are critical to efficient and effective drug discovery and (2) that investing time and energy into following up on perplexing data can lead to novel discoveries that can drive the development of new and improved medicines.
Collapse
Affiliation(s)
- Robert A Copeland
- Accent Therapeutics, Inc., 65 Hayden Avenue, Lexington, Massachusetts 02421, United States
| |
Collapse
|
210
|
Yang F, Yang J, Zhang Z, Tu G, Yao X, Xue W, Zhu F. Recent Advances in Computer-aided Antiviral Drug Design Targeting HIV-1 Integrase and Reverse Transcriptase Associated Ribonuclease H. Curr Med Chem 2021; 29:1664-1676. [PMID: 34238145 DOI: 10.2174/0929867328666210708090123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS) has been a chronic, life-threatening disease for a long time. However, a broad range of antiretroviral drug regimens are applicable for the successful suppression of virus replication in human immunodeficiency virus type 1 (HIV-1) infected people. The mutation-induced drug resistance problems during the treatment of AIDS forced people to continuously look for new antiviral agents. HIV-1 integrase (IN) and reverse transcriptase associated ribonuclease (RT-RNase H), two pivotal enzymes in HIV-1 replication progress, has gain popularity as drug-able targets for designing novel HIV-1 antiviral drugs. During the development of HIV-1 IN and/or RT-RNase H inhibitors, computer-aided drug design (CADD), including homology modeling, pharmacophore, docking, molecular dynamics (MD) simulation, and binding free energy calculation, represents a significant tool to accelerate the discovery of new drug candidates and reduce costs in antiviral drug development. In this review, we summarized the recent advances in the design of single-and dual-target inhibitors against HIV-1 IN or/and RT-RNase H as well as the prediction of mutation-induced drug resistance based on computational methods. We highlighted the results of the reported literature and proposed some perspectives on the design of novel and more effective antiviral drugs in the future.
Collapse
Affiliation(s)
- Fengyuan Yang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Jingyi Yang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Zhao Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Gao Tu
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| |
Collapse
|
211
|
Combining Well-Tempered Metadynamics Simulation and SPR Assays to Characterize the Binding Mechanism of the Universal T-Lymphocyte Tetanus Toxin Epitope TT830-843. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5568980. [PMID: 34285916 PMCID: PMC8275407 DOI: 10.1155/2021/5568980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022]
Abstract
Peptide TT830-843 from the tetanus toxin is a universal T-cell epitope. It helps in vaccination and induces T-cell activation. However, the fine molecular interaction between this antigen and the major histocompatibility complex (MHC) remains unknown. Molecular analysis of its interaction with murine MHC (H-2) was proposed to explore its immune response efficiency. Molecular dynamics simulations are important mechanisms for understanding the basis of protein-ligand interactions, and metadynamics is a useful technique for enhancing sampling in molecular dynamics. SPR (surface plasmon resonance) assays were used to validate whether the metadynamics results are in accordance with the experimental results. The peptide TT830-843 unbinding process was simulated, and the free energy surface reconstruction revealed a detailed conformational landscape. The simulation described the exiting path as a stepwise mechanism between progressive detachment states. We pointed out how the terminus regions act as anchors for binding and how the detachment mechanism includes the opening of α-helices to permit the peptide's central region dissociation. The results indicated the peptide/H-2 receptor encounter occurs within a distance lesser than 27.5 Å, and the encounter can evolve to form a stable complex. SPR assays confirmed the complex peptide/H-2 as a thermodynamically stable system, exhibiting enough free energy to interact with TCR on the antigen-presenting cell surface. Therefore, combining in silico and in vitro assays provided significant evidence to support the peptide/H-2 complex formation.
Collapse
|
212
|
Abstract
IntroductionThe pharmacological action of a drug is linked to its affinity for a specific molecular target as quantified by in vitro equilibrium measurements. However, it is clear that for many highly effective drugs, interactions with their molecular targets do not conform to simple, equilibrium conditions in vivo and this results in a temporal discordance between pharmacokinetics and pharmacodynamics. The drug-target residence time model was developed to provide a theoretical framework with which to understand cases in which very slow dissociation of the drug-target complex in vivo results in durable PD effects even after systemic concentrations of drug have waned.Area coveredIn this article, the author provides a brief description of the drug-target residence time model and focuses on the refinements that have been made to the original model to incorporate the influences of compound rebinding in cells and pharmacokinetic properties of drug molecules.Expert opinionThere is now overwhelming evidence for the utility of the drug-target residence time model as a framework for understanding in vivo drug action. The in vitro measured residence time (τR) must be used in concert with equilibrium measures of drug-target affinity (e.g. IC50) and with in vivo measures of pharmacokinetic half-life, to afford the researcher a powerful approach to compound optimization for clinical effect. Despite the significant use and refinement of this model, continued studies are required to better understand the dynamic interplay between residence time, target pathobiology, drug distribution and drug pharmacokinetics.
Collapse
|
213
|
Hoare SRJ. The Problems of Applying Classical Pharmacology Analysis to Modern In Vitro Drug Discovery Assays: Slow Binding Kinetics and High Target Concentration. SLAS DISCOVERY 2021; 26:835-850. [PMID: 34112012 DOI: 10.1177/24725552211019653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The analysis framework used to quantify drug potency in vitro (e.g., Kd or Ki) was initially developed for classical pharmacology bioassays, for example, organ bath experiments testing moderate-affinity natural products. Modern drug discovery can infringe the assumptions of the classical pharmacology analysis equations, owing to the reduction of assay volume in miniaturization, target overexpression, and the increase of compound-target affinity in medicinal chemistry. These assumptions are that (1) the compound concentration greatly exceeds the target concentration (i.e., minimal ligand depletion), and (2) the compound is at equilibrium with the receptor (i.e., rapid ligand binding kinetics). Unappreciated infringement of these assumptions can lead to substantial underestimation of compound affinity, which negatively impacts the drug discovery process, from early-stage lead optimization to prediction of human dosing. This study evaluates the real-world impact of these factors on the target interaction assays used in drug discovery using literature examples, database searches, and simulations. The ranges of compound affinity and the assay types that are prone to depletion and equilibration artifacts are identified. Importantly, the highest-affinity compounds, usually the highest value chemical matter in drug discovery, are the most affected. Methods and simulation tools are provided to enable investigators to evaluate, manage, and minimize depletion or equilibration artifacts. This study enables the correct application of pharmacological data analysis to accurately quantify affinity using modern drug discovery assay technology.
Collapse
|
214
|
Tao ZF, Wang X, Chen J, Ingram JP, Jin S, Judge RA, Kovar PJ, Park C, Sun C, Wakefield BD, Zhou L, Zhang H, Elmore SW, Phillips DC, Judd AS, Leverson JD, Souers AJ. Structure-Based Design of A-1293102, a Potent and Selective BCL-X L Inhibitor. ACS Med Chem Lett 2021; 12:1011-1016. [PMID: 34141086 PMCID: PMC8201748 DOI: 10.1021/acsmedchemlett.1c00162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023] Open
Abstract
BCL-XL, an antiapoptotic member of the BCL-2 family of proteins, drives tumor survival and maintenance and thus represents a key target for cancer treatment. Herein we report the rational design of a novel series of selective BCL-XL inhibitors exemplified by A-1293102. This molecule contains structural elements of selective BCL-XL inhibitor A-1155463 and the dual BCL-XL/BCL-2 inhibitors ABT-737 and navitoclax, while representing a distinct pharmacophore as assessed by an objective cheminformatic evaluation. A-1293102 exhibited picomolar binding affinity to BCL-XL and both efficiently and selectively killed BCL-XL-dependent tumor cells. X-ray crystallographic analysis demonstrated a key hydrogen bonding network in the P2 binding pocket of BCL-XL, while the bent-back moiety achieved efficient occupancy of the P4 pocket in a manner similar to that of navitoclax. A-1293102 represents one of the few distinct structural series of selective BCL-XL inhibitors, and thus serves as a useful tool for biological studies as well as a lead compound for further optimization.
Collapse
Affiliation(s)
- Zhi-Fu Tao
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Xilu Wang
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Jun Chen
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Justin P. Ingram
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Sha Jin
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Russell A. Judge
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Peter J. Kovar
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Chang Park
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Chaohong Sun
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Brian D. Wakefield
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Li Zhou
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Haichao Zhang
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Steven W. Elmore
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Darren C. Phillips
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Andrew S. Judd
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Joel D. Leverson
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| | - Andrew J. Souers
- AbbVie Inc., 1 North Waukegan Rd, North
Chicago, Illinois 60064, United States
| |
Collapse
|
215
|
Shi X. A Hill type equation can predict target gene expression driven by p53 pulsing. FEBS Open Bio 2021; 11:1799-1808. [PMID: 33955710 PMCID: PMC8167869 DOI: 10.1002/2211-5463.13179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/27/2022] Open
Abstract
Many factors determine target gene expression dynamics under p53 pulsing. In this study, I sought to determine the mechanism by which duration, frequency, binding affinity and maximal transcription rate affect the expression dynamics of target genes. Using an analytical method to solve a simple model, I found that the fold change of target gene expression increases relative to the number of p53 pulses, and the optimal frequency, 0.18 h-1 , from two real p53 pulses drives the maximal fold change with a decay rate of 0.18 h-1 . Moreover, p53 pulses may also lead to a higher fold change than sustained p53. Finally, I discovered that a Hill-type equation, including these effect factors, can characterise target gene expression. The average error between the theoretical predictions and experiments was 23%. Collectively, this equation advances the understanding of transcription factor dynamics, where duration and frequency play a significant role in the fine regulation of target gene expression with higher binding affinity.
Collapse
Affiliation(s)
- Xiaomin Shi
- Department of Mathematics and International Center for Quantum and Molecular StructuresShanghai UniversityChina
| |
Collapse
|
216
|
Khurana P, McWilliams L, Wingfield J, Barratt D, Srinivasan B. A Novel High-Throughput FLIPR Tetra-Based Method for Capturing Highly Confluent Kinetic Data for Structure-Kinetic Relationship Guided Early Drug Discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:684-697. [PMID: 33783249 DOI: 10.1177/24725552211000676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Target engagement by small molecules is necessary for producing a physiological outcome. In the past, a lot of emphasis was placed on understanding the thermodynamics of such interactions to guide structure-activity relationships. It is becoming clearer, however, that understanding the kinetics of the interaction between a small-molecule inhibitor and the biological target [structure-kinetic relationship (SKR)] is critical for selection of the optimum candidate drug molecule for clinical trial. However, the acquisition of kinetic data in a high-throughput manner using traditional methods can be labor intensive, limiting the number of molecules that can be tested. As a result, in-depth kinetic studies are often carried out on only a small number of compounds, and usually at a later stage in the drug discovery process. Fundamentally, kinetic data should be used to drive key decisions much earlier in the drug discovery process, but the throughput limitations of traditional methods preclude this. A major limitation that hampers acquisition of high-throughput kinetic data is the technical challenge in collecting substantially confluent data points for accurate parameter estimation from time course analysis. Here, we describe the use of the fluorescent imaging plate reader (FLIPR), a charge-coupled device (CCD) camera technology, as a potential high-throughput tool for generating biochemical kinetic data with smaller time intervals. Subsequent to the design and optimization of the assay, we demonstrate the collection of highly confluent time-course data for various kinase protein targets with reasonable throughput to enable SKR-guided medicinal chemistry. We select kinase target 1 as a special case study with covalent inhibition, and demonstrate methods for rapid and detailed analysis of the resultant kinetic data for parameter estimation. In conclusion, this approach has the potential to enable rapid kinetic studies to be carried out on hundreds of compounds per week and drive project decisions with kinetic data at an early stage in drug discovery.
Collapse
Affiliation(s)
- Puneet Khurana
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Lisa McWilliams
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jonathan Wingfield
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Derek Barratt
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Bharath Srinivasan
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
217
|
Tabuchi Y, Watanabe T, Katsuki R, Ito Y, Taki M. Direct screening of a target-specific covalent binder: stringent regulation of warhead reactivity in a matchmaking environment. Chem Commun (Camb) 2021; 57:5378-5381. [PMID: 33978001 DOI: 10.1039/d1cc01773j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A peptide-type covalent binder for a target protein was obtained by direct and stringent screening of a warhead-modified peptide library on the robust T7 phage. The aryl fluorosulfate (fosylate) warhead was activated only in a matchmaking microenvironment created between the target protein and an appropriate peptide during the reactivity/affinity-based co-selection process of extended phage display.
Collapse
Affiliation(s)
- Yudai Tabuchi
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Takahito Watanabe
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Riku Katsuki
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | - Yuji Ito
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Masumi Taki
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| |
Collapse
|
218
|
Ge Y, Zhang S, Erdelyi M, Voelz VA. Solution-State Preorganization of Cyclic β-Hairpin Ligands Determines Binding Mechanism and Affinities for MDM2. J Chem Inf Model 2021; 61:2353-2367. [PMID: 33905247 PMCID: PMC9960209 DOI: 10.1021/acs.jcim.1c00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Understanding mechanisms of protein folding and binding is crucial to designing their molecular function. Molecular dynamics (MD) simulations and Markov state model (MSM) approaches provide a powerful way to understand complex conformational change that occurs over long time scales. Such dynamics are important for the design of therapeutic peptidomimetic ligands, whose affinity and binding mechanism are dictated by a combination of folding and binding. To examine the role of preorganization in peptide binding to protein targets, we performed massively parallel explicit-solvent MD simulations of cyclic β-hairpin ligands designed to mimic the p53 transactivation domain and competitively bind mouse double minute 2 homologue (MDM2). Disrupting the MDM2-p53 interaction is a therapeutic strategy to prevent degradation of the p53 tumor suppressor in cancer cells. MSM analysis of over 3 ms of aggregate trajectory data enabled us to build a detailed mechanistic model of coupled folding and binding of four cyclic peptides which we compare to experimental binding affinities and rates. The results show a striking relationship between the relative preorganization of each ligand in solution and its affinity for MDM2. Specifically, changes in peptide conformational populations predicted by the MSMs suggest that entropy loss upon binding is the main factor influencing affinity. The MSMs also enable detailed examination of non-native interactions which lead to misfolded states and comparison of structural ensembles with experimental NMR measurements. In contrast to an MSM study of p53 transactivation domain (TAD) binding to MDM2, MSMs of cyclic β-hairpin binding show a conformational selection mechanism. Finally, we make progress toward predicting accurate off rates of cyclic peptides using multiensemble Markov models (MEMMs) constructed from unbiased and biased simulated trajectories.
Collapse
Affiliation(s)
- Yunui Ge
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Si Zhang
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Mate Erdelyi
- Department of Chemistry - BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Vincent A. Voelz
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
219
|
Yang H, Li X, Li G, Huang H, Yang W, Jiang X, Sen M, Liu J, Liu Y, Pan Y, Wang G. Accurate quantitative determination of affinity and binding kinetics for tight binding inhibition of xanthine oxidase. Biomed Pharmacother 2021; 139:111664. [PMID: 34243606 DOI: 10.1016/j.biopha.2021.111664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
The accurate quantitative determination of affinity and binding kinetics (BK) for tight binding inhibition is extraordinary important from both the continuous optimization of compounds, particularly in developing structure-activity relationships (SAR), and the prediction of in vivo target occupancy (TO). Due to the unique properties for tight binding inhibition that the inhibitors are characterized by the ultrahigh-affinity, relatively fast association to the target enzyme combined with extremely slow dissociation of the inhibitor-enzyme binary complex, the classical steady state equilibrium methods are no longer valid. Here, we made several recommendations of how to design the optimal experiments and apply special mathematical calculation approaches to quantitatively evaluate the accurate affinity and BK as the examples of two tight binding inhibitors against the xanthine oxidase (XO), as well as compared the differences in the results calculated from the different data analytical methods and analyzed the influence of these differences on the XO engagement in human. Analysis of the results displayed that the accurate apparent dissociation constant (Ki*,app) was 0.2 ± 0.06 nM for topiroxotstat and was 0.45 ± 0.2 nM for febuxostat; that on-rate (kon) was (4.3 ± 1.1) × 106 M-1s-1 for topiroxotstat and was(133.3 ± 3.5) × 106 M-1s-1 for febuxostat, and off-rate (koff) was (1.0±0.2) × 10-5 s-1 for topiroxotstat and was ≤ 0.16 × 10-5 s-1for febuxostat. Moreover, there were significant differences in the Ki*,app and koff values estimated using the appropriate specialized methods for tight binding inhibition versus classical steady state equilibrium methods, with the substantial differences of 14-fold and 32-fold reduction for topiroxostat, respectively, and of 9.6-fold and ≥ 213-fold reduction for febuxostat, while the kon values remain the moderate differences for the two inhibitors. The obvious greater AUC of XO engagement time courses and longer durations of above 70% engagement by the appropriate specialized methods for tight binding inhibition were observed that the results display the differences of 70.1% and 88%, respectively for topiroxostat and of 38.1% and 35.0%, respectively for febuxostat in human liver cell than by classical steady state equilibrium methods. Again, our studies provide several valuable recommendations of the optimal experiment protocols and appropriate analytical approaches for accurately quantitatively assessing the affinity and BK parameters as well as demonstrate the ability of our recommended methods to generate reliable data for tight binding inhibitors against XO.
Collapse
Affiliation(s)
- Haiyang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueyan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gang Li
- Beijing Adamadle Biotech Co., Ltd., Beijing 100102, China
| | - Huating Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenning Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoquan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Muli Sen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jingjing Liu
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yanli Pan
- Institute of Information on Traditional Chinese Medicine China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing 101500, China.
| |
Collapse
|
220
|
Kim HS, Hammill JT, Scott DC, Chen Y, Rice AL, Pistel W, Singh B, Schulman BA, Guy RK. Improvement of Oral Bioavailability of Pyrazolo-Pyridone Inhibitors of the Interaction of DCN1/2 and UBE2M. J Med Chem 2021; 64:5850-5862. [PMID: 33945681 PMCID: PMC8159160 DOI: 10.1021/acs.jmedchem.1c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The cullin-RING ubiquitin ligases (CRLs) are ubiquitin E3 enzymes that play a key role
in controlling proteasomal degradation and are activated by neddylation. We previously
reported inhibitors that target CRL activation by disrupting the interaction of
defective in cullin neddylation 1 (DCN1), a CRL neddylation co-E3, and UBE2M, a
neddylation E2. Our first-generation inhibitors possessed poor oral bioavailability and
fairly rapid clearance that hindered the study of acute inhibition of DCN-controlled CRL
activity in vivo. Herein, we report studies to improve the pharmacokinetic performance
of the pyrazolo-pyridone inhibitors. The current best inhibitor, 40,
inhibits the interaction of DCN1 and UBE2M, blocks NEDD8 transfer in biochemical assays,
thermally stabilizes cellular DCN1, and inhibits anchorage-independent growth in a DCN1
amplified squamous cell carcinoma cell line. Additionally, we demonstrate that a single
oral 50 mg/kg dose sustains plasma exposures above the biochemical IC90 for
24 h in mice.
Collapse
Affiliation(s)
- Ho Shin Kim
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Jared T Hammill
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yizhe Chen
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Amy L Rice
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40508, United States
| | - William Pistel
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Bhuvanesh Singh
- Department of Surgery, Laboratory of Epithelial Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - R Kiplin Guy
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40508, United States
| |
Collapse
|
221
|
Li L, Chen N, Xia D, Xu S, Dai W, Tong Y, Wang L, Jiang Z, You Q, Xu X. Discovery of a covalent inhibitor of heat shock protein 90 with antitumor activity that blocks the co-chaperone binding via C-terminal modification. Cell Chem Biol 2021; 28:1446-1459.e6. [PMID: 33932325 DOI: 10.1016/j.chembiol.2021.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/25/2021] [Accepted: 03/29/2021] [Indexed: 01/24/2023]
Abstract
Heat shock protein (Hsp90), a critical molecular chaperone that regulates the maturation of a large number of oncogenic client proteins, plays an essential role in the growth of neoplastic cells. Herein, DDO-6600 is identified to covalent modification of Cys598 on Hsp90 from in silico study and is verified by a series of biological assays. We demonstrated that DDO-6600 covalently bound to Cys598 on the Hsp90 C terminus and exhibited antiproliferative activities against multiple tumor cells without inhibiting ATPase activity. Further studies showed that DDO-6600 disrupted the interaction between Hsp90 and Cdc37, which induced the degradation of kinase client proteins in multiple tumor cell lines, promoted apoptosis, and inhibited cell motility. Our findings offer mechanic insights into the covalent modification of Hsp90 and provide an alternative strategy for the development of Hsp90 covalent regulators or chemical probes to explore the therapeutical potential of Hsp90.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nannan Chen
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dandan Xia
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Shicheng Xu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Dai
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Tong
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
222
|
Johe P, Jung S, Endres E, Kersten C, Zimmer C, Ye W, Sönnichsen C, Hellmich UA, Sotriffer C, Schirmeister T, Neuweiler H. Warhead Reactivity Limits the Speed of Inhibition of the Cysteine Protease Rhodesain. ACS Chem Biol 2021; 16:661-670. [PMID: 33719398 DOI: 10.1021/acschembio.0c00911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viral and parasitic pathogens rely critically on cysteine proteases for host invasion, replication, and infectivity. Their inhibition by synthetic inhibitors, such as vinyl sulfone compounds, has emerged as a promising treatment strategy. However, the individual reaction steps of protease inhibition are not fully understood. Using the trypanosomal cysteine protease rhodesain as a medically relevant target, we design photoinduced electron transfer (PET) fluorescence probes to detect kinetics of binding of reversible and irreversible vinyl sulfones directly in solution. Intriguingly, the irreversible inhibitor, apart from its unlimited residence time in the enzyme, reacts 5 times faster than the reversible one. Results show that the reactivity of the warhead, and not binding of the peptidic recognition unit, limits the rate constant of protease inhibition. The use of a reversible inhibitor decreases the risk of off-target side effects not only by allowing its release from an off-target but also by reducing the rate constant of binding.
Collapse
Affiliation(s)
- Patrick Johe
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55128 Mainz, Germany
| | - Sascha Jung
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55128 Mainz, Germany
- TU Dortmund University, Chemical Biology, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Erik Endres
- Institute for Pharmacy and Food Chemistry, Julius Maximilians University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55128 Mainz, Germany
| | - Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55128 Mainz, Germany
| | - Weixiang Ye
- Department of Chemistry, Nanobiotechnology, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Carsten Sönnichsen
- Department of Chemistry, Nanobiotechnology, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Ute A. Hellmich
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Johann-Joachim-Becherweg 30, D-55128 Mainz, Germany
- Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, Max von Laue Str. 9, D-60438 Frankfurt, Germany
| | - Christoph Sotriffer
- Institute for Pharmacy and Food Chemistry, Julius Maximilians University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, D-55128 Mainz, Germany
| | - Hannes Neuweiler
- Institute for Biotechnology & Biophysics, Julius Maximilians University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
223
|
Ai Y, Hwang L, MacKerell AD, Melnick A, Xue F. Progress toward B-Cell Lymphoma 6 BTB Domain Inhibitors for the Treatment of Diffuse Large B-Cell Lymphoma and Beyond. J Med Chem 2021; 64:4333-4358. [PMID: 33844535 DOI: 10.1021/acs.jmedchem.0c01686] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
B-cell lymphoma 6 (BCL6) is a master regulator of germinal center formation that produce antibody-secreting plasma cells and memory B-cells for sustained immune responses. The BTB domain of BCL6 (BCL6BTB) forms a homodimer that mediates transcriptional repression by recruiting its corepressor proteins to form a biologically functional transcriptional complex. The protein-protein interaction (PPI) between the BCL6BTB and its corepressors has emerged as a therapeutic target for the treatment of DLBCL and a number of other human cancers. This Perspective provides an overview of recent advances in the development of BCL6BTB inhibitors from reversible inhibitors, irreversible inhibitors, to BCL6 degraders. Inhibitor design and medicinal chemistry strategies for the development of novel compounds will be provided. The binding mode of new inhibitors to BCL6BTB are highlighted. Also, the in vitro and in vivo assays used for the evaluation of new compounds will be discussed.
Collapse
Affiliation(s)
- Yong Ai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Lucia Hwang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Ari Melnick
- Department of Hematology and Oncology, Weill Cornell Medical College, New York, New York 10021, United States.,Department of Pharmacology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
224
|
Eltschkner S, Kehrein J, Le TA, Davoodi S, Merget B, Basak S, Weinrich JD, Schiebel J, Tonge PJ, Engels B, Sotriffer C, Kisker C. A Long Residence Time Enoyl-Reductase Inhibitor Explores an Extended Binding Region with Isoenzyme-Dependent Tautomer Adaptation and Differential Substrate-Binding Loop Closure. ACS Infect Dis 2021; 7:746-758. [PMID: 33710875 DOI: 10.1021/acsinfecdis.0c00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enoyl-acyl carrier protein (ACP) reductase (ENR) is a key enzyme within the bacterial fatty-acid synthesis pathway. It has been demonstrated that small-molecule inhibitors carrying the diphenylether (DPE) scaffold bear a great potential for the development of highly specific and effective drugs against this enzyme class. Interestingly, different substitution patterns of the DPE scaffold have been shown to lead to varying effects on the kinetic and thermodynamic behavior toward ENRs from different organisms. Here, we investigated the effect of a 4'-pyridone substituent in the context of the slow tight-binding inhibitor SKTS1 on the inhibition of the Staphylococcus aureus enoyl-ACP-reductase saFabI and the closely related isoenzyme from Mycobacterium tuberculosis, InhA, and explored a new interaction site of DPE inhibitors within the substrate-binding pocket. Using high-resolution crystal structures of both complexes in combination with molecular dynamics (MD) simulations, kinetic measurements, and quantum mechanical (QM) calculations, we provide evidence that the 4'-pyridone substituent adopts different tautomeric forms when bound to the two ENRs. We furthermore elucidate the structural determinants leading to significant differences in the residence time of SKTS1 on both enzymes.
Collapse
Affiliation(s)
- Sandra Eltschkner
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Josef Kehrein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Thien Anh Le
- Institute of Physical and Theoretical Chemistry, University of Würzburg, 97074 Würzburg, Germany
- Department of Experimental Physics 5 (Biophysics), University of Würzburg, 97074 Würzburg, Germany
| | - Shabnam Davoodi
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Benjamin Merget
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Sneha Basak
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jonas D. Weinrich
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
- Department of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Johannes Schiebel
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Peter J. Tonge
- Institute for Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Bernd Engels
- Institute of Physical and Theoretical Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
225
|
Souza PCT, Limongelli V, Wu S, Marrink SJ, Monticelli L. Perspectives on High-Throughput Ligand/Protein Docking With Martini MD Simulations. Front Mol Biosci 2021; 8:657222. [PMID: 33855050 PMCID: PMC8039319 DOI: 10.3389/fmolb.2021.657222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/05/2021] [Indexed: 01/12/2023] Open
Abstract
Molecular docking is central to rational drug design. Current docking techniques suffer, however, from limitations in protein flexibility and solvation models and by the use of simplified scoring functions. All-atom molecular dynamics simulations, on the other hand, feature a realistic representation of protein flexibility and solvent, but require knowledge of the binding site. Recently we showed that coarse-grained molecular dynamics simulations, based on the most recent version of the Martini force field, can be used to predict protein/ligand binding sites and pathways, without requiring any a priori information, and offer a level of accuracy approaching all-atom simulations. Given the excellent computational efficiency of Martini, this opens the way to high-throughput drug screening based on dynamic docking pipelines. In this opinion article, we sketch the roadmap to achieve this goal.
Collapse
Affiliation(s)
- Paulo C. T. Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
- PharmCADD, Busan, South Korea
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, Lyon, France
| | - Vittorio Limongelli
- Faculty of Biomedical Sciences, Institute of Computational Science, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Sangwook Wu
- PharmCADD, Busan, South Korea
- Department of Physics, Pukyong National University, Busan, South Korea
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS, University of Lyon, Lyon, France
| |
Collapse
|
226
|
Ludwig J, Smith J, Pfaendtner J. Analyzing the Long Time-Scale Dynamics of Uremic Toxins Bound to Sudlow Site II in Human Serum Albumin. J Phys Chem B 2021; 125:2910-2920. [PMID: 33715376 DOI: 10.1021/acs.jpcb.1c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein bound uremic toxins (PBUTs), a series of chemicals that remain a challenge for removal strategies used on patients suffering with chronic kidney disease, could be strong candidates for MD study in order to better understand the interactions and time scales associated with binding mode transitions. Currently, traditional dialysis methods cannot satisfactorily remove PBUTs from the bloodstream. This is at least partly due to these toxin's high level of affinity for protein binding sites, particularly the prominent human serum albumin (HSA) and two of its drug binding sites (Sudlow site I and II). We investigate the dynamics of binding site transitions and interactions by MD simulations targeting four well-known toxins: indoxyl sulfate (IS), p-cresyl sulfate (PCS), indole-3-acetic acid (IAA), and hippurate acid (HIP). Long-time scale dynamics are obtained by the use of time-structure independent component analysis (tICA) for dimensionality reduction followed by spectral analysis of a Markov state model (MSM) scored using the generalized matrix Rayleigh quotient (GMRQ). Our results add new insights to prior findings related to the key role of charge-pairing in governing toxin-protein interactions. We find that IAA, the bulkiest hydrophobic toxin studied, observes the slowest process of at least 3 times slower than the smaller, less hydrophobic toxins. In general, we find that the processes slower than 15 ns are correlated with a transition from dominantly hydrophobic interactions deep in the binding pocket to a gain in hydrogen bonding partners near the mouth of the pocket. Our results indicate that aromatic residues such as PHE play a part in a type of toxin stabilization akin to π-stacking. In conclusion, this work presents mechanistic descriptions of interactions/transitions for a set of important PBUTs that bind Sudlow site II on time scales relevant to the underlying binding kinetics of most interest.
Collapse
Affiliation(s)
- James Ludwig
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Josh Smith
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States
| | - Jim Pfaendtner
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States
| |
Collapse
|
227
|
Concentration sensing in crowded environments. Biophys J 2021; 120:1718-1731. [PMID: 33675760 DOI: 10.1016/j.bpj.2021.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
Signal transduction within crowded cellular compartments is essential for the physiological function of cells. Although the accuracy with which receptors can probe the concentration of ligands has been thoroughly investigated in dilute systems, the effect of macromolecular crowding on the inference of concentration remains unclear. In this work, we develop an algorithm to simulate reversible reactions between reacting Brownian particles. Our algorithm facilitates the calculation of reaction rates and correlation times for ligand-receptor systems in the presence of macromolecular crowding. Using this method, we show that it is possible for crowding to increase the accuracy of estimated ligand concentration based on receptor occupancy. In particular, we find that crowding can enhance the effective association rates between small ligands and receptors to a degree sufficient to overcome the increased chance of rebinding due to caging by crowding molecules. For larger ligands, crowding decreases the accuracy of the receptor's estimate primarily by decreasing the microscopic association and dissociation rates.
Collapse
|
228
|
Zhou Y, Fu Y, Yin W, Li J, Wang W, Bai F, Xu S, Gong Q, Peng T, Hong Y, Zhang D, Zhang D, Liu Q, Xu Y, Xu HE, Zhang H, Jiang H, Liu H. Kinetics-Driven Drug Design Strategy for Next-Generation Acetylcholinesterase Inhibitors to Clinical Candidate. J Med Chem 2021; 64:1844-1855. [PMID: 33570950 DOI: 10.1021/acs.jmedchem.0c01863] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acetylcholinesterase (AChE) inhibitors remain key therapeutic drugs for the treatment of Alzheimer's disease (AD). However, the low-safety window limits their maximum therapeutic benefits. Here, a novel kinetics-driven drug design strategy was employed to discover new-generation AChE inhibitors that possess a longer drug-target residence time and exhibit a larger safety window. After detailed investigations, compound 12 was identified as a highly potent, highly selective, orally bioavailable, and brain preferentially distributed AChE inhibitor. Moreover, it significantly ameliorated cognitive impairments in different mouse models with a lower effective dose than donepezil. The X-ray structure of the cocrystal complex provided a precise binding mode between 12 and AChE. Besides, the data from the phase I trials demonstrated that 12 had good safety, tolerance, and pharmacokinetic profiles at all preset doses in healthy volunteers, providing a solid basis for its further investigation in phase II trials for the treatment of AD.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People's Republic of China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Yan Fu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Wanchao Yin
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Jian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People's Republic of China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023, People's Republic of China
| | - Wei Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Shengtao Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People's Republic of China
| | - Qi Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Tao Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People's Republic of China
| | - Yu Hong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People's Republic of China
| | - Dong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People's Republic of China
| | - Dan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People's Republic of China
| | - Qiufeng Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - H Eric Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People's Republic of China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People's Republic of China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People's Republic of China
| |
Collapse
|
229
|
Tabuchi Y, Yang J, Taki M. Inhibition of thrombin activity by a covalent-binding aptamer and reversal by the complementary strand antidote. Chem Commun (Camb) 2021; 57:2483-2486. [PMID: 33625415 DOI: 10.1039/d0cc08109d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alleviating the potential risk of irreversible adverse drug effects has been an important and challenging issue for the development of covalent drugs. Here we created a DNA-aptamer-type covalent drug by introducing a sulfonyl fluoride warhead at appropriate positions of the thrombin binding aptamer to create weaponized covalent drugs. We showed the de-activation of thrombin by the novel modality, followed by its re-activation by the complementary strand antidote at an arbitrary time. We envision that such on-demand reversal of covalent drugs will alleviate the major concern of potentially irreversible ADEs and accelerate the translational application of covalent aptamer drugs.
Collapse
Affiliation(s)
- Yudai Tabuchi
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | | | | |
Collapse
|
230
|
Ginn J, Jiang X, Sun S, Michino M, Huggins DJ, Mbambo Z, Jansen R, Rhee KY, Arango N, Lima CD, Liverton N, Imaeda T, Okamoto R, Kuroita T, Aso K, Stamford A, Foley M, Meinke PT, Nathan C, Bryk R. Whole Cell Active Inhibitors of Mycobacterial Lipoamide Dehydrogenase Afford Selectivity over the Human Enzyme through Tight Binding Interactions. ACS Infect Dis 2021; 7:435-444. [PMID: 33527832 PMCID: PMC7888283 DOI: 10.1021/acsinfecdis.0c00788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Tuberculosis remains a leading cause of death from a single bacterial infection
worldwide. Efforts to develop new treatment options call for expansion into an
unexplored target space to expand the drug pipeline and bypass resistance to current
antibiotics. Lipoamide dehydrogenase is a metabolic and antioxidant enzyme critical for
mycobacterial growth and survival in mice. Sulfonamide analogs were previously
identified as potent and selective inhibitors of mycobacterial lipoamide dehydrogenase
in vitro but lacked activity against whole mycobacteria. Here we
present the development of analogs with improved permeability, potency, and selectivity,
which inhibit the growth of Mycobacterium tuberculosis in axenic
culture on carbohydrates and within mouse primary macrophages. They increase
intrabacterial pyruvate levels, supporting their on-target activity within mycobacteria.
Distinct modalities of binding between the mycobacterial and human enzymes contribute to
improved potency and hence selectivity through induced-fit tight binding interactions
within the mycobacterial but not human enzyme, as indicated by kinetic analysis and
crystallography.
Collapse
Affiliation(s)
- John Ginn
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10065, United States
| | | | - Shan Sun
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10065, United States
| | - Mayako Michino
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10065, United States
| | - David J. Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10065, United States
| | | | | | | | - Nancy Arango
- Structural Biology Program, Sloan Kettering Institute, New York, New York 10065, United States
| | - Christopher D. Lima
- Structural Biology Program, Sloan Kettering Institute, New York, New York 10065, United States
- Howard Hughes Medical Institute, New York, New York 10065, United States
| | - Nigel Liverton
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10065, United States
| | - Toshihiro Imaeda
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10065, United States
| | - Rei Okamoto
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10065, United States
| | - Takanobu Kuroita
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10065, United States
| | - Kazuyoshi Aso
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10065, United States
| | - Andrew Stamford
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10065, United States
| | - Michael Foley
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10065, United States
| | - Peter T. Meinke
- Tri-Institutional Therapeutics Discovery Institute, New York, New York 10065, United States
| | | | | |
Collapse
|
231
|
Benn CL, Gibson KR, Reynolds DS. Drugging DNA Damage Repair Pathways for Trinucleotide Repeat Expansion Diseases. J Huntingtons Dis 2021; 10:203-220. [PMID: 32925081 PMCID: PMC7990437 DOI: 10.3233/jhd-200421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA damage repair (DDR) mechanisms have been implicated in a number of neurodegenerative diseases (both genetically determined and sporadic). Consistent with this, recent genome-wide association studies in Huntington’s disease (HD) and other trinucleotide repeat expansion diseases have highlighted genes involved in DDR mechanisms as modifiers for age of onset, rate of progression and somatic instability. At least some clinical genetic modifiers have been shown to have a role in modulating trinucleotide repeat expansion biology and could therefore provide new disease-modifying therapeutic targets. In this review, we focus on key considerations with respect to drug discovery and development using DDR mechanisms as a target for trinucleotide repeat expansion diseases. Six areas are covered with specific reference to DDR and HD: 1) Target identification and validation; 2) Candidate selection including therapeutic modality and delivery; 3) Target drug exposure with particular focus on blood-brain barrier penetration, engagement and expression of pharmacology; 4) Safety; 5) Preclinical models as predictors of therapeutic efficacy; 6) Clinical outcome measures including biomarkers.
Collapse
Affiliation(s)
- Caroline L Benn
- LoQus23 Therapeutics, Riverside, Babraham Research Campus, Cambridge, UK
| | - Karl R Gibson
- Sandexis Medicinal Chemistry Ltd, Innovation House, Discovery Park, Sandwich, Kent, UK
| | - David S Reynolds
- LoQus23 Therapeutics, Riverside, Babraham Research Campus, Cambridge, UK
| |
Collapse
|
232
|
Rudolph J, Roberts G, Luger K. Histone Parylation factor 1 contributes to the inhibition of PARP1 by cancer drugs. Nat Commun 2021; 12:736. [PMID: 33531508 PMCID: PMC7854685 DOI: 10.1038/s41467-021-20998-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
Poly-(ADP-ribose) polymerase 1 and 2 (PARP1 and PARP2) are key enzymes in the DNA damage response. Four different inhibitors (PARPi) are currently in the clinic for treatment of ovarian and breast cancer. Recently, histone PARylation Factor 1 (HPF1) has been shown to play an essential role in the PARP1- and PARP2-dependent poly-(ADP-ribosylation) (PARylation) of histones, by forming a complex with both enzymes and altering their catalytic properties. Given the proximity of HPF1 to the inhibitor binding site both PARPs, we hypothesized that HPF1 may modulate the affinity of inhibitors toward PARP1 and/or PARP2. Here we demonstrate that HPF1 significantly increases the affinity for a PARP1 - DNA complex of some PARPi (i.e., olaparib), but not others (i.e., veliparib). This effect of HPF1 on the binding affinity of Olaparib also holds true for the more physiologically relevant PARP1 - nucleosome complex but does not extend to PARP2. Our results have important implications for the interpretation of PARP inhibition by current PARPi as well as for the design and analysis of the next generation of clinically relevant PARP inhibitors.
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Genevieve Roberts
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
233
|
Long MJC, Rogg C, Aye Y. An Oculus to Profile and Probe Target Engagement In Vivo: How T-REX Was Born and Its Evolution into G-REX. Acc Chem Res 2021; 54:618-631. [PMID: 33228351 DOI: 10.1021/acs.accounts.0c00537] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here we provide a personal account of innovation and design principles underpinning a method to interrogate precision electrophile signaling that has come to be known as "REX technologies". This Account is framed in the context of trying to improve methods of target mining and understanding of individual target-ligand engagement by a specific natural electrophile and the ramifications of this labeling event in cells and organisms. We start by explaining from a practical standpoint why gleaning such understanding is critical: we are constantly assailed by a battery of electrophilic molecules that exist as a consequence of diet, food preparation, ineluctable endogenous metabolic processes, and potentially disease. The resulting molecules, which are detectable in the body, appear to be able to modify function of specific proteins. Aside from potentially being biologically relevant in their own right, these labeling events are essentially identical to protein-covalent drug interactions. Thus, on what proteins and even in what ways a covalent drug will work can be understood through the eyes of natural electrophiles; extending this logic leads to the postulate that target identification of specific electrophiles can inform on drug design. However, when we entered this field, there was no way to interrogate how a specific labeling event impacted a specific protein in an unperturbed cell. Methods to evaluate stoichiometry of labeling, and even chemospecificity of a specific phenotype were limited. There were further no generally accepted ways to study electrophile signaling that did not hugely disturb physiology.We developed T-REX, a method to study single-protein-specific electrophile engagement, to interrogate how single-protein electrophile labeling shapes pathway flux. Using T-REX, we discovered that labeling of several proteins by a specific electrophile, even at low occupancy, leads to biologically relevant signaling outputs. Further experimentation using T-REX showed that in some instances, single-protein isoforms were electrophile responsive against other isoforms, such as Akt3. Selective electrophile-labeling of Akt3 elicited inhibition of Akt-pathway flux in cells and in zebrafish embryos. Using these data, we rationally designed a molecule to selectively target Akt3. This was a fusion of the naturally derived electrophile and an isoform-nonspecific, reversible Akt inhibitor in phase-II trials, MK-2206. The resulting molecule was a selective inhibitor of Akt3 and was shown to fare better than MK-2206 in breast cancer xenograft mouse models. Recently, we have also developed a means to screen electrophile sensors that is unbiased and uses a precise burst of electrophiles. Using this method, dubbed G-REX, in conjunction with T-REX, we discovered new DNA-damage response upregulation pathways orchestrated by simple natural electrophiles. We thus emphasize how deriving a quantitative understanding of electrophile signaling that is linked to thorough and precise mechanistic studies can open doors to numerous medicinally and biologically relevant insights, from gleaning better understanding of target engagement and target mining to rational design of targeted covalent medicines.
Collapse
Affiliation(s)
- Marcus J. C. Long
- Department of Molecular Biology, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Chloé Rogg
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland
| | - Yimon Aye
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland
| |
Collapse
|
234
|
Chaudhry C, Tebben A, Tokarski JS, Borzilleri R, Pitts WJ, Lippy J, Zhang L. An innovative kinome platform to accelerate small-molecule inhibitor discovery and optimization from hits to leads. Drug Discov Today 2021; 26:1115-1125. [PMID: 33497831 DOI: 10.1016/j.drudis.2021.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/23/2020] [Accepted: 01/18/2021] [Indexed: 01/09/2023]
Abstract
Kinases, accounting for 20% of the human genome, have been the focus of pharmaceutical drug discovery efforts for over three decades. Despite concerns surrounding the tractability of kinases as drug targets, it is evident that kinase drug discovery offers great potential, underscored by the US Food and Drug Administration (FDA) approval of 48 small-molecule kinase inhibitors. Despite these successes, it is challenging to identify novel kinome selective inhibitors with good pharmacokinetic/pharmacodynamic (PK/PD) properties, and resistance to kinase inhibitor treatment frequently arises. A new era of kinase drug discovery predicates the need for diverse and powerful tools to discover the next generation of kinase inhibitors. Here, we outline key tenets of the Bristol Meyers Squibb (BMS) kinase platform, to enable efficient generation of highly optimized kinase inhibitors.
Collapse
Affiliation(s)
- Charu Chaudhry
- Lead Discovery and Optimization, Bristol Myers Squibb, NJ, USA.
| | - Andrew Tebben
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol Myers Squibb, NJ, USA
| | - John S Tokarski
- Molecular Structure and Design, Molecular Discovery Technologies, Bristol Myers Squibb, NJ, USA
| | | | - William J Pitts
- Immunosciences Discovery Chemistry, Bristol Myers Squibb, NJ, USA
| | - Jonathan Lippy
- Lead Discovery and Optimization, Bristol Myers Squibb, NJ, USA
| | - Litao Zhang
- Lead Discovery and Optimization, Bristol Myers Squibb, NJ, USA
| |
Collapse
|
235
|
Carling CJ, Brülls M. Milling of poorly soluble crystalline drug compounds to generate appropriate particle sizes for inhaled sustained drug delivery. Int J Pharm 2021; 593:120116. [PMID: 33246049 DOI: 10.1016/j.ijpharm.2020.120116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/18/2022]
Abstract
One of the simplest design concepts of inhaled sustained drug delivery to the lung is to utilize the slow dissolution of drug crystals with poor aqueous solubility. An optimum dissolution rate, and thereby a delivery profile locally in the lung tissue, can be achieved in a reliable way by selecting a compound with an appropriate combination of solubility and particle size. It is in our experience relatively straightforward to manufacture monomodal particle size distributions of poorly soluble drug crystals in the mass median diameter range of either a few micrometers or a few hundred nanometers, but very challenging to manufacture a monomodal distribution in the range intermediate to these two. In this manuscript, we describe an investigation with the objective of generating desired particle sizes in the whole size range from a few micrometers to a few hundred nanometers for inhaled sustained drug delivery, by utilizing Adaptive Focused Acoustic (AFA) milling and planetary bead-milling. By combining the two different milling techniques it was possible to produce two to three distinctly different monomodal or almost monomodal particle size distributions in the desired particle size range of each of the model drug compounds in milligram scale. The dissolution kinetics of the different particle sizes of the model drugs were measured experimentally as well as predicted theoretically, showcasing that the dissolution kinetics can be characterized, predicted and significantly changed in a controlled way by modifying the particle size. For one of the model drugs, it was shown in an in vivo rat study that the inhaled sustained drug delivery profile in the lung tissue could be significantly changed by modifying the particle size of the drug.
Collapse
Affiliation(s)
- Carl-Johan Carling
- Early Product Development and Manufacture, Pharmaceutical Sciences R&D, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden.
| | - Mikael Brülls
- Early Product Development and Manufacture, Pharmaceutical Sciences R&D, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| |
Collapse
|
236
|
Spiriti J, Wong CF. Qualitative Prediction of Ligand Dissociation Kinetics from Focal Adhesion Kinase Using Steered Molecular Dynamics. Life (Basel) 2021; 11:life11020074. [PMID: 33498237 PMCID: PMC7909260 DOI: 10.3390/life11020074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
Most early-stage drug discovery projects focus on equilibrium binding affinity to the target alongside selectivity and other pharmaceutical properties. Since many approved drugs have nonequilibrium binding characteristics, there has been increasing interest in optimizing binding kinetics early in the drug discovery process. As focal adhesion kinase (FAK) is an important drug target, we examine whether steered molecular dynamics (SMD) can be useful for identifying drug candidates with the desired drug-binding kinetics. In simulating the dissociation of 14 ligands from FAK, we find an empirical power–law relationship between the simulated time needed for ligand unbinding and the experimental rate constant for dissociation, with a strong correlation depending on the SMD force used. To improve predictions, we further develop regression models connecting experimental dissociation rate with various structural and energetic quantities derived from the simulations. These models can be used to predict dissociation rates from FAK for related compounds.
Collapse
|
237
|
Structural Investigations of the Inhibition of Escherichia coli AmpC β-Lactamase by Diazabicyclooctanes. Antimicrob Agents Chemother 2021; 65:AAC.02073-20. [PMID: 33199391 PMCID: PMC7849013 DOI: 10.1128/aac.02073-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
β-Lactam antibiotics are presently the most important treatments for infections by pathogenic Escherichia coli, but their use is increasingly compromised by β-lactamases, including the chromosomally encoded class C AmpC serine-β-lactamases (SBLs). The diazabicyclooctane (DBO) avibactam is a potent AmpC inhibitor; the clinical success of avibactam combined with ceftazidime has stimulated efforts to optimize the DBO core. We report kinetic and structural studies, including four high-resolution crystal structures, concerning inhibition of the AmpC serine-β-lactamase from E. coli (AmpC EC ) by clinically relevant DBO-based inhibitors: avibactam, relebactam, nacubactam, and zidebactam. Kinetic analyses and mass spectrometry-based assays were used to study their mechanisms of AmpC EC inhibition. The results reveal that, under our assay conditions, zidebactam manifests increased potency (apparent inhibition constant [K iapp], 0.69 μM) against AmpC EC compared to that of the other DBOs (K iapp = 5.0 to 7.4 μM) due to an ∼10-fold accelerated carbamoylation rate. However, zidebactam also has an accelerated off-rate, and with sufficient preincubation time, all the DBOs manifest similar potencies. Crystallographic analyses indicate a greater conformational freedom of the AmpC EC -zidebactam carbamoyl complex compared to those for the other DBOs. The results suggest the carbamoyl complex lifetime should be a consideration in development of DBO-based SBL inhibitors for the clinically important class C SBLs.
Collapse
|
238
|
Ahalawat N, Mondal J. An Appraisal of Computer Simulation Approaches in Elucidating Biomolecular Recognition Pathways. J Phys Chem Lett 2021; 12:633-641. [PMID: 33382941 DOI: 10.1021/acs.jpclett.0c02785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Computer simulation approaches in biomolecular recognition processes have come a long way. In this Perspective, we highlight a series of recent success stories in which computer simulations have played a remarkable role in elucidating the atomic resolution mechanism of kinetic processes of protein-ligand binding in a quantitative fashion. In particular, we show that a robust combination of unbiased simulation, harnessed by a high-fidelity computing environment, and Markov state modeling approaches has been instrumental in revealing novel protein-ligand recognition pathways in multiple systems. We also elucidate the role of recent developments in enhanced sampling approaches in providing the much-needed impetus in accelerating simulation of the ligand recognition process. We identify multiple key issues, including force fields and the sampling bottleneck, which are currently preventing the field from achieving quantitative reconstruction of experimental measurements. Finally, we suggest a possible way forward via adoption of multiscale approaches and coarse-grained simulations as next steps toward efficient elucidation of ligand binding kinetics.
Collapse
Affiliation(s)
- Navjeet Ahalawat
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh, Haryana Agricultural University, Hisar 125004, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, Hyderabad 500046, India
| |
Collapse
|
239
|
Ganotra GK, Nunes-Alves A, Wade RC. A Protocol to Use Comparative Binding Energy Analysis to Estimate Drug-Target Residence Time. Methods Mol Biol 2021; 2266:171-186. [PMID: 33759127 DOI: 10.1007/978-1-0716-1209-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Comparative Binding Energy (COMBINE) analysis is an approach for deriving a target-specific scoring function to compute binding free energy, drug-binding kinetics, or a related property by exploiting the information contained in the three-dimensional structures of receptor-ligand complexes. Here, we describe the process of setting up and running COMBINE analysis to derive a Quantitative Structure-Kinetics Relationship (QSKR) for the dissociation rate constants (koff) of inhibitors of a drug target. The derived QSKR model can be used to estimate residence times (τ, τ=1/koff) for similar inhibitors binding to the same target, and it can also help to identify key receptor-ligand interactions that distinguish inhibitors with short and long residence times. Herein, we demonstrate the protocol for the application of COMBINE analysis on a dataset of 70 inhibitors of heat shock protein 90 (HSP90) belonging to 11 different chemical classes. The procedure is generally applicable to any drug target with known structural information on its complexes with inhibitors.
Collapse
Affiliation(s)
- Gaurav K Ganotra
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Ariane Nunes-Alves
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany.
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
240
|
Ryan K, Bolaňos B, Smith M, Palde PB, Cuenca PD, VanArsdale TL, Niessen S, Zhang L, Behenna D, Ornelas MA, Tran KT, Kaiser S, Lum L, Stewart A, Gajiwala KS. Dissecting the molecular determinants of clinical PARP1 inhibitor selectivity for tankyrase1. J Biol Chem 2021; 296:100251. [PMID: 33361107 PMCID: PMC7948648 DOI: 10.1074/jbc.ra120.016573] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/23/2022] Open
Abstract
Poly-ADP-ribosyltransferases play a critical role in DNA repair and cell death, and poly(ADP-ribosyl) polymerase 1 (PARP1) is a particularly important therapeutic target for the treatment of breast cancer because of its synthetic lethal relationship with breast cancer susceptibility proteins 1 and 2. Numerous PARP1 inhibitors have been developed, and their efficacy in cancer treatment is attributed to both the inhibition of enzymatic activity and their ability to trap PARP1 on to the damaged DNA, which is cytotoxic. Of the clinical PARP inhibitors, talazoparib is the most effective at trapping PARP1 on damaged DNA. Biochemically, talazoparib is also suspected to be a potent inhibitor of PARP5a/b (tankyrase1/2 [TNKS1/2]), which is an important regulator of Wnt/β-catenin pathway. Here we show using competition experiments in cell lysate that, at a clinically relevant concentration, talazoparib can potentially bind and engage TNKS1. Using surface plasmon resonance, we measured the dissociation constants of talazoparib, olaparib, niraparib, and veliparib for their interaction with PARP1 and TNKS1. The results show that talazoparib has strong affinity for PARP1 as well as uniquely strong affinity for TNKS1. Finally, we used crystallography and hydrogen deuterium exchange mass spectroscopy to dissect the molecular mechanism of differential selectivity of these PARP1 inhibitors. From these data, we conclude that subtle differences between the ligand-binding sites of PARP1 and TNKS1, differences in the electrostatic nature of the ligands, protein dynamics, and ligand conformational energetics contribute to the different pharmacology of these PARP1 inhibitors. These results will help in the design of drugs to treat Wnt/β-catenin pathway-related cancers, such as colorectal cancers.
Collapse
Affiliation(s)
- Kevin Ryan
- Structural Biology and Protein Science, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Ben Bolaňos
- Structural Biology and Protein Science, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Marissa Smith
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Prakash B Palde
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Paulina Delgado Cuenca
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Todd L VanArsdale
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Sherry Niessen
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Lianglin Zhang
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Douglas Behenna
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Martha A Ornelas
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Khanh T Tran
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Stephen Kaiser
- Structural Biology and Protein Science, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Lawrence Lum
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Al Stewart
- Structural Biology and Protein Science, Pfizer Worldwide Research and Development, San Diego, California, USA
| | - Ketan S Gajiwala
- Structural Biology and Protein Science, Pfizer Worldwide Research and Development, San Diego, California, USA.
| |
Collapse
|
241
|
Stuckey JI, Cantone NR, Côté A, Arora S, Vivat V, Ramakrishnan A, Mertz JA, Khanna A, Brenneman J, Gehling VS, Moine L, Sims RJ, Audia JE, Trojer P, Levell JR, Cummings RT. Identification and characterization of second-generation EZH2 inhibitors with extended residence times and improved biological activity. J Biol Chem 2021; 296:100349. [PMID: 33524394 PMCID: PMC7949150 DOI: 10.1016/j.jbc.2021.100349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
The histone methyltransferase EZH2 has been the target of numerous small-molecule inhibitor discovery efforts over the last 10+ years. Emerging clinical data have provided early evidence for single agent activity with acceptable safety profiles for first-generation inhibitors. We have developed kinetic methodologies for studying EZH2-inhibitor-binding kinetics that have allowed us to identify a unique structural modification that results in significant increases in the drug-target residence times of all EZH2 inhibitor scaffolds we have studied. The unexpected residence time enhancement bestowed by this modification has enabled us to create a series of second-generation EZH2 inhibitors with sub-pM binding affinities. We provide both biophysical evidence validating this sub-pM potency and biological evidence demonstrating the utility and relevance of such high-affinity interactions with EZH2.
Collapse
Affiliation(s)
- Jacob I Stuckey
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Nico R Cantone
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Alexandre Côté
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Shilpi Arora
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Valerie Vivat
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | | | | | - Avinash Khanna
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | | | | | - Ludivine Moine
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Robert J Sims
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | - James E Audia
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Patrick Trojer
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Julian R Levell
- Constellation Pharmaceuticals, Cambridge, Massachusetts, USA
| | | |
Collapse
|
242
|
Tóth AD, Garger D, Prokop S, Soltész-Katona E, Várnai P, Balla A, Turu G, Hunyady L. A general method for quantifying ligand binding to unmodified receptors using Gaussia luciferase. J Biol Chem 2021; 296:100366. [PMID: 33545176 PMCID: PMC7950324 DOI: 10.1016/j.jbc.2021.100366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/23/2022] Open
Abstract
Reliable measurement of ligand binding to cell surface receptors is of outstanding biological and pharmacological importance. Resonance energy transfer-based assays are powerful approaches to achieve this goal, but the currently available methods are hindered by the necessity of receptor tagging, which can potentially alter ligand binding properties. Therefore, we developed a tag-free system to measure ligand‒receptor interactions in live cells using the Gaussia luciferase (GLuc) as a bioluminescence resonance energy transfer donor. GLuc is as small as the commonly applied Nanoluciferase but has enhanced brightness, and its proper substrate is the frequently used coelenterazine. In our assay, bystander bioluminescence resonance energy transfer is detected between a GLuc-based extracellular surface biosensor and fluorescent ligands bound to their unmodified receptors. The broad spectrum of applications includes equilibrium and kinetic ligand binding measurements for both labeled and competitive unlabeled ligands, and the assay can be utilized for different classes of plasma membrane receptors. Furthermore, the assay is suitable for high-throughput screening, as evidenced by the identification of novel α1 adrenergic receptor ligands. Our data demonstrate that GLuc-based biosensors provide a simple, sensitive, and cost-efficient platform for drug characterization and development.
Collapse
Affiliation(s)
- András Dávid Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary; Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Dániel Garger
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Susanne Prokop
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Eszter Soltész-Katona
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary.
| |
Collapse
|
243
|
Abstract
Molecular dynamics (MD) simulations have become increasingly useful in the modern drug development process. In this review, we give a broad overview of the current application possibilities of MD in drug discovery and pharmaceutical development. Starting from the target validation step of the drug development process, we give several examples of how MD studies can give important insights into the dynamics and function of identified drug targets such as sirtuins, RAS proteins, or intrinsically disordered proteins. The role of MD in antibody design is also reviewed. In the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best candidate molecules for further development. The importance of considering the biological lipid bilayer environment in the MD simulations of membrane proteins is also discussed, using G-protein coupled receptors and ion channels as well as the drug-metabolizing cytochrome P450 enzymes as relevant examples. Lastly, we discuss the emerging role of MD simulations in facilitating the pharmaceutical formulation development of drugs and candidate drugs. Specifically, we look at how MD can be used in studying the crystalline and amorphous solids, the stability of amorphous drug or drug-polymer formulations, and drug solubility. Moreover, since nanoparticle drug formulations are of great interest in the field of drug delivery research, different applications of nano-particle simulations are also briefly summarized using multiple recent studies as examples. In the future, the role of MD simulations in facilitating the drug development process is likely to grow substantially with the increasing computer power and advancements in the development of force fields and enhanced MD methodologies.
Collapse
|
244
|
Pagoni A, Grabowiecka A, Tabor W, Mucha A, Vassiliou S, Berlicki Ł. Covalent Inhibition of Bacterial Urease by Bifunctional Catechol-Based Phosphonates and Phosphinates. J Med Chem 2020; 64:404-416. [PMID: 33369409 DOI: 10.1021/acs.jmedchem.0c01143] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, a new class of bifunctional inhibitors of bacterial ureases, important molecular targets for antimicrobial therapies, was developed. The structures of the inhibitors consist of a combination of a phosphonate or (2-carboxyethyl)phosphinate functionality with a catechol-based fragment, which are designed for complexation of the catalytic nickel ions and covalent bonding with the thiol group of Cys322, respectively. Compounds with three types of frameworks, including β-3,4-dihydroxyphenyl-, α-3,4-dihydroxybenzyl-, and α-3,4-dihydroxybenzylidene-substituted derivatives, exhibited complex and varying structure-dependent kinetics of inhibition. Among irreversible binders, methyl β-(3,4-dihydroxyphenyl)-β-(2-carboxyethyl)phosphorylpropionate was observed to be a remarkably reactive inhibitor of Sporosarcina pasteurii urease (kinact/KI = 10 420 s-1 M-1). The high potential of this group of compounds was also confirmed in Proteus mirabilis whole-cell-based inhibition assays. Some compounds followed slow-binding and reversible kinetics, e.g., methyl β-(3,4-dihydroxyphenyl)-β-phosphonopropionate, with Ki* = 0.13 μM, and an atypical low dissociation rate (residence time τ = 205 min).
Collapse
Affiliation(s)
- Aikaterini Pagoni
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15701 Athens, Greece
| | - Agnieszka Grabowiecka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wojciech Tabor
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Stamatia Vassiliou
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15701 Athens, Greece
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
245
|
Sahasrabuddhe A, Oakley D, Chen K, McCarter JD. Development of a High-Throughput Affinity Mass Spectrometry (AMS) Platform Using Laser Diode Thermal Desorption Ionization Coupled to Mass Spectrometry (LDTD-MS). SLAS DISCOVERY 2020; 26:230-241. [PMID: 33334237 DOI: 10.1177/2472555220979596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Affinity selection mass spectrometry (MS) or, simply, affinity mass spectrometry (AMS) is a label-free technology that has been used to identify high-affinity ligands of target proteins of interest by screening against small-molecule compound libraries and identifying molecules that are enriched in the presence of the target protein. We have previously applied Agilent Technology's (Santa Clara, CA) RapidFire solid-phase extraction (SPE)-based high-throughput MS technology to screen small-molecule libraries using AMS. However, SPE-based technologies rely on fluidics for desalting and separation prior to mass analysis with attendant high solvent consumption, relatively high sample volume requirements, risk of sample carryover, and frequent maintenance. To address these challenges, we have established an AMS platform using a laser diode thermal desorption-atmospheric pressure chemical ionization (LDTD-APCI) ionization source (Phytronix, Quebec, Canada) coupled with a SCIEX 5600+ TripleTOF MS (Framingham, MA). We also validated a data-independent acquisition (DIA) Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) method for the robust detection and analysis of small-molecule affinity hits. An informatics platform developed in-house has resulted in a streamlined data analysis workflow for high-throughput AMS screening campaigns and reduced data processing time without compromising data quality. Finally, 68,000 compounds were screened in a single plate and affinity selected hits were confirmed in an orthogonal enzyme activity assay.
Collapse
Affiliation(s)
| | - Dylan Oakley
- Research Automation Technologies, Thousand Oaks, CA, USA
| | - Kui Chen
- Discovery Technologies, Thousand Oaks, CA, USA
| | | |
Collapse
|
246
|
New small molecule fluorescent probes for G protein-coupled receptors: valuable tools for drug discovery. Future Med Chem 2020; 13:63-90. [PMID: 33319586 DOI: 10.4155/fmc-2019-0327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are essential signaling proteins and tractable therapeutic targets. To develop new drug candidates, GPCR drug discovery programs require versatile, sensitive pharmacological tools for ligand binding and compound screening. With the availability of new imaging modalities and proximity-based ligand binding technologies, fluorescent ligands offer many advantages and are increasingly being used, yet labeling small molecules remains considerably more challenging relative to peptides. Focusing on recent fluorescent small molecule studies for family A GPCRs, this review addresses some of the key challenges, synthesis approaches and structure-activity relationship considerations, and discusses advantages of using high-resolution GPCR structures to inform conjugation strategies. While no single approach guarantees successful labeling without loss of affinity or selectivity, the choice of fluorophore, linker type and site of attachment have proved to be critical factors that can significantly affect their utility in drug discovery programs, and as discussed, can sometimes lead to very unexpected results.
Collapse
|
247
|
The Active Site of a Prototypical “Rigid” Drug Target is Marked by Extensive Conformational Dynamics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
248
|
Decherchi S, Cavalli A. Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation. Chem Rev 2020; 120:12788-12833. [PMID: 33006893 PMCID: PMC8011912 DOI: 10.1021/acs.chemrev.0c00534] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Computational studies play an increasingly important role in chemistry and biophysics, mainly thanks to improvements in hardware and algorithms. In drug discovery and development, computational studies can reduce the costs and risks of bringing a new medicine to market. Computational simulations are mainly used to optimize promising new compounds by estimating their binding affinity to proteins. This is challenging due to the complexity of the simulated system. To assess the present and future value of simulation for drug discovery, we review key applications of advanced methods for sampling complex free-energy landscapes at near nonergodicity conditions and for estimating the rate coefficients of very slow processes of pharmacological interest. We outline the statistical mechanics and computational background behind this research, including methods such as steered molecular dynamics and metadynamics. We review recent applications to pharmacology and drug discovery and discuss possible guidelines for the practitioner. Recent trends in machine learning are also briefly discussed. Thanks to the rapid development of methods for characterizing and quantifying rare events, simulation's role in drug discovery is likely to expand, making it a valuable complement to experimental and clinical approaches.
Collapse
Affiliation(s)
- Sergio Decherchi
- Computational
and Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, 16163 Genoa, Italy
| | - Andrea Cavalli
- Computational
and Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, 16163 Genoa, Italy
- Department
of Pharmacy and Biotechnology, University
of Bologna, 40126 Bologna, Italy
| |
Collapse
|
249
|
Krasavin M, Kalinin S, Sharonova T, Supuran CT. Inhibitory activity against carbonic anhydrase IX and XII as a candidate selection criterion in the development of new anticancer agents. J Enzyme Inhib Med Chem 2020; 35:1555-1561. [PMID: 32746643 PMCID: PMC7470080 DOI: 10.1080/14756366.2020.1801674] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Analysis of the literature data reveals that while inhibition of cancer-related carbonic anhydrase IX and XII isoforms continues to be an important enrichment factor for designing anticancer agent development libraries, exclusive reliance on the in vitro inhibition of these two recombinant isozymes in nominating candidate compounds for evaluation of their effects on cancer cells may lead not only to identifying numerous compounds devoid of the desired cellular efficacy but also to overlooking many promising candidates which may not display the best potency in biochemical inhibition assay. However, SLC-0111, now in phase Ib/II clinical trials, was developed based on the excellent agreement between the in vitro, in vivo and more recently, in-patient data.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Stanislav Kalinin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Tatiana Sharonova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
250
|
Fluxes for Unraveling Complex Binding Mechanisms. Trends Pharmacol Sci 2020; 41:923-932. [DOI: 10.1016/j.tips.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/05/2023]
|