201
|
Acoustic-transfection for genomic manipulation of single-cells using high frequency ultrasound. Sci Rep 2017; 7:5275. [PMID: 28706248 PMCID: PMC5509725 DOI: 10.1038/s41598-017-05722-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/16/2017] [Indexed: 01/21/2023] Open
Abstract
Efficient intracellular delivery of biologically active macromolecules has been a challenging but important process for manipulating live cells for research and therapeutic purposes. There have been limited transfection techniques that can deliver multiple types of active molecules simultaneously into single-cells as well as different types of molecules into physically connected individual neighboring cells separately with high precision and low cytotoxicity. Here, a high frequency ultrasound-based remote intracellular delivery technique capable of delivery of multiple DNA plasmids, messenger RNAs, and recombinant proteins is developed to allow high spatiotemporal visualization and analysis of gene and protein expressions as well as single-cell gene editing using clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein-9 nuclease (Cas9), a method called acoustic-transfection. Acoustic-transfection has advantages over typical sonoporation because acoustic-transfection utilizing ultra-high frequency ultrasound over 150 MHz can directly deliver gene and proteins into cytoplasm without microbubbles, which enables controlled and local intracellular delivery to acoustic-transfection technique. Acoustic-transfection was further demonstrated to deliver CRISPR-Cas9 systems to successfully modify and reprogram the genome of single live cells, providing the evidence of the acoustic-transfection technique for precise genome editing using CRISPR-Cas9.
Collapse
|
202
|
Fisher RK, Mattern-Schain SI, Best MD, Kirkpatrick SS, Freeman MB, Grandas OH, Mountain DJH. Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications. J Surg Res 2017; 219:136-144. [PMID: 29078873 DOI: 10.1016/j.jss.2017.05.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/28/2017] [Accepted: 05/25/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND We have previously defined mechanisms of intimal hyperplasia that could be targets for molecular therapeutics aimed at vascular pathology. However, biocompatible nanocarriers are needed for effective delivery. Cationic liposomes (CLPs) have been demonstrated as effective nanocarriers in vitro. However, in vivo success has been hampered by cytotoxicity. Recently, neutral PEGylated liposomes (PLPs) have been modified with cell-penetrating peptides (CPPs) to enhance cellular uptake. We aim to establish CPP-modified neutral liposomes as viable molecular nanocarriers in vascular smooth muscle cells. METHODS CLPs, PLPs, and CPP-modified PLPs (R8-PLPs) were assembled with short interfering RNA (siRNA) via ethanol injection. Characterization studies determined liposomal morphology, size, and charge. siRNA encapsulation efficiency was measured via RiboGreen assay. Vascular smooth muscle cells were exposed to equal lipid/siRNA across all groups. Rhodamine-labeled liposomes were used to quantify cell association via fluorometry, live/dead dual stain was used to measure cytotoxicity, and gene silencing was measured by quantitative polymerase chain reaction. RESULTS R8-PLPs exhibited increased encapsulation efficiency equivalent to CLPs. PLPs and R8-PLP-5 mol% and R8-PLP-10 mol% had no cytotoxic effect. CLPs demonstrated significant cytotoxicity. R8-PLP-5 mol% and R8-PLP-10 mol% exhibited increased cell association versus PLPs. R8-PLP-10 mol% resulted in significant gene silencing, in a manner dependent on lipid-to-siRNA load capacity. CONCLUSIONS The negligible cytotoxicity and enhanced cellular association and gene silencing capacity exhibited by R8-PLPs reveal this class of liposomes as a candidate for future applications. Further modifications for optimizing R8-PLPs are still warranted to improve efficacy, and in vivo studies are needed for translational development. However, this could prove to be an optimal nanocarrier for vascular gene therapeutics.
Collapse
Affiliation(s)
- Richard K Fisher
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | | | - Michael D Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Stacy S Kirkpatrick
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Michael B Freeman
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Oscar H Grandas
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Deidra J H Mountain
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee.
| |
Collapse
|
203
|
Darvishi B, Farahmand L, Majidzadeh-A K. Stimuli-Responsive Mesoporous Silica NPs as Non-viral Dual siRNA/Chemotherapy Carriers for Triple Negative Breast Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 7:164-180. [PMID: 28624192 PMCID: PMC5415966 DOI: 10.1016/j.omtn.2017.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 12/31/2022]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive and lethal subtype of breast cancer. It is associated with a very poor prognosis and intrinsically resistant to several conventional and targeted chemotherapy agents and has a 5-year survival rate of less than 25%. Because the treatment options for TNBC are very limited and not efficient enough for achieving minimum desired goals, shifting toward a new generation of anti-cancer agents appears to be very critical. Among recent alternative approaches being proposed, small interfering RNA (siRNA) gene therapy can potently suppress Bcl-2 proto-oncogene and p-glycoprotein gene expression, the most important chemotherapy resistance inducers in TNBC. When resensitized, primarily ineffective chemotherapy drugs turn back into valuable sources for further intensive chemotherapy. Regrettably, siRNA's poor stability, rapid clearance in the circulatory system, and poor cellular uptake mostly hampers the beneficial outcomes of siRNA therapy. Considering these drawbacks, dual siRNA/chemotherapy drug encapsulation in targeted delivery vehicles, especially mesoporous silica nanoparticles (MSNs) appears to be the most reasonable solution. The literature is full of reports of successful treatments of multi-drug-resistant cancer cells by administration of dual drug/siRNA-loaded MSNs. Here we tried to answer the question of whether application of a similar approach with identical delivery devices in TNBC is rational.
Collapse
Affiliation(s)
- Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 1517964311 Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 1517964311 Tehran, Iran
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, 1517964311 Tehran, Iran.
| |
Collapse
|
204
|
Dhungel B, Jayachandran A, Layton CJ, Steel JC. Seek and destroy: targeted adeno-associated viruses for gene delivery to hepatocellular carcinoma. Drug Deliv 2017; 24:289-299. [PMID: 28165834 PMCID: PMC8241004 DOI: 10.1080/10717544.2016.1247926] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer with high incidence globally. Increasing mortality and morbidity rates combined with limited treatment options available for advanced HCC press for novel and effective treatment modalities. Gene therapy represents one of the most promising therapeutic options. With the recent approval of herpes simplex virus for advanced melanoma, the field of gene therapy has received a major boost. Adeno-associated virus (AAV) is among the most widely used and effective viral vectors today with safety and efficacy demonstrated in a number of human clinical trials. This review identifies the obstacles for effective AAV based gene delivery to HCC which primarily include host immune responses and off-target effects. These drawbacks could be more pronounced for HCC because of the underlying liver dysfunction in most of the patients. We discuss approaches that could be adopted to tackle these shortcomings and manufacture HCC-targeted vectors. The combination of transductional targeting by modifying the vector capsid and transcriptional targeting using HCC-specific promoters has the potential to produce vectors which can specifically seek HCC and deliver therapeutic gene without significant side effects. Finally, the identification of novel HCC-specific ligands and promoters should facilitate and expedite this process.
Collapse
Affiliation(s)
- Bijay Dhungel
- a Gallipoli Medical Research Institute, Greenslopes Private Hospital , Brisbane , QLD , Australia.,b School of Medicine, The University of Queensland , Brisbane , QLD , Australia.,c University of Queensland Diamantina Institute, Translational Research Institute , Woolloongabba , QLD , Australia , and
| | - Aparna Jayachandran
- a Gallipoli Medical Research Institute, Greenslopes Private Hospital , Brisbane , QLD , Australia.,b School of Medicine, The University of Queensland , Brisbane , QLD , Australia
| | - Christopher J Layton
- b School of Medicine, The University of Queensland , Brisbane , QLD , Australia.,d Ophthalmology Department, Gallipoli Medical Research Institute, Greenslopes Private Hospital , Brisbane , QLD , Australia
| | - Jason C Steel
- a Gallipoli Medical Research Institute, Greenslopes Private Hospital , Brisbane , QLD , Australia.,b School of Medicine, The University of Queensland , Brisbane , QLD , Australia
| |
Collapse
|
205
|
Gonzalez-Fernandez T, Sathy B, Hobbs C, Cunniffe G, McCarthy H, Dunne N, Nicolosi V, O'Brien F, Kelly D. Mesenchymal stem cell fate following non-viral gene transfection strongly depends on the choice of delivery vector. Acta Biomater 2017; 55:226-238. [PMID: 28363788 DOI: 10.1016/j.actbio.2017.03.044] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/06/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022]
Abstract
Controlling the phenotype of mesenchymal stem cells (MSCs) through the delivery of regulatory genes is a promising strategy in tissue engineering (TE). Essential to effective gene delivery is the choice of gene carrier. Non-viral delivery vectors have been extensively used in TE, however their intrinsic effects on MSC differentiation remain poorly understood. The objective of this study was to investigate the influence of three different classes of non-viral gene delivery vectors: (1) cationic polymers (polyethylenimine, PEI), (2) inorganic nanoparticles (nanohydroxyapatite, nHA) and (3) amphipathic peptides (RALA peptide) on modulating stem cell fate after reporter and therapeutic gene delivery. Despite facilitating similar reporter gene transfection efficiencies, these nanoparticle-based vectors had dramatically different effects on MSC viability, cytoskeletal morphology and differentiation. After reporter gene delivery (pGFP or pLUC), the nHA and RALA vectors supported an elongated MSC morphology, actin stress fibre formation and the development of mature focal adhesions, while cells appeared rounded and less tense following PEI transfection. These changes in MSC morphology correlated with enhanced osteogenesis following nHA and RALA transfection and adipogenesis following PEI transfection. When therapeutic genes encoding for transforming growth factor beta 3 (TGF-β3) and/or bone morphogenic protein 2 (BMP2) were delivered to MSCs, nHA promoted osteogenesis in 2D culture and the development of an endochondral phenotype in 3D culture, while RALA was less osteogenic and appeared to promote a more stable hyaline cartilage-like phenotype. In contrast, PEI failed to induce robust osteogenesis or chondrogenesis of MSCs, despite effective therapeutic protein production. Taken together, these results demonstrate that the differentiation of MSCs through the application of non-viral gene delivery strategies depends not only on the gene delivered, but also on the gene carrier itself. STATEMENT OF SIGNIFICANCE Nanoparticle-based non-viral gene delivery vectors have been extensively used in regenerative medicine, however their intrinsic effects on mesenchymal stem cell (MSC) differentiation remain poorly understood. This paper demonstrates that different classes of commonly used non-viral vectors are not inert and they have a strong effect on cell morphology, stress fiber formation and gene transcription in MSCs, which in turn modulates their capacity to differentiate towards osteogenic, adipogenic and chondrogenic lineages. These results also point to the need for careful and tissue-specific selection of nanoparticle-based delivery vectors to prevent undesired phenotypic changes and off-target effects when delivering therapeutic genes to damaged or diseased tissues.
Collapse
|
206
|
Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, Zhao C, Zeng Z, Shu Y, Wu X, Lei J, Li Y, Zhang W, Yang C, Wu K, Wu Y, Ho S, Athiviraham A, Lee MJ, Wolf JM, Reid RR, He TC. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine. Genes Dis 2017; 4:43-63. [PMID: 28944281 PMCID: PMC5609467 DOI: 10.1016/j.gendis.2017.04.001] [Citation(s) in RCA: 440] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Despite numerous setbacks, efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases. It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies. There has been a long-lasting interest in using viral vectors, especially adenoviral vectors, to deliver therapeutic genes for the past two decades. Among all currently available viral vectors, adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types. The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development. In fact, among over 2,000 gene therapy clinical trials approved worldwide since 1989, a significant portion of the trials have utilized adenoviral vectors. This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors, including adenoviral biology, approaches to engineering adenoviral vectors, and their applications in clinical and pre-clinical studies with an emphasis in the areas of cancer treatment, vaccination and regenerative medicine. Current challenges and future directions regarding the use of adenoviral vectors are also discussed. It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine.
Collapse
Affiliation(s)
- Cody S. Lee
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Elliot S. Bishop
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Evan M. Farina
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xingye Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jiayan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yasha Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Laboratory Medicine and Clinical Diagnostics, The Affiliated Yantai Hospital, Binzhou Medical University, Yantai 264100, China
| | - Chao Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ying Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Immunology and Microbiology, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
207
|
Harguindey A, Domaille DW, Fairbanks BD, Wagner J, Bowman CN, Cha JN. Synthesis and Assembly of Click-Nucleic-Acid-Containing PEG-PLGA Nanoparticles for DNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700743. [PMID: 28397966 DOI: 10.1002/adma.201700743] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/06/2017] [Indexed: 06/07/2023]
Abstract
Co-delivery of both chemotherapy drugs and siRNA from a single delivery vehicle can have a significant impact on cancer therapy due to the potential for overcoming issues such as drug resistance. However, the inherent chemical differences between charged nucleic acids and hydrophobic drugs have hindered entrapment of both components within a single carrier. While poly(ethylene glycol)-block-poly(lactic-co-glycolic acid) (PEG-PLGA) copolymers have been used successfully for targeted delivery of chemotherapy drugs, loading of DNA or RNA has been poor. It is demonstrated that significant amounts of DNA can be encapsulated within PLGA-containing nanoparticles through the use of a new synthetic DNA analog, click nucleic acids (CNAs). First, triblock copolymers of PEG-CNA-PLGA are synthesized and then formulated into polymer nanoparticles from oil-in-water emulsions. The CNA-containing particles show high encapsulation of DNA complementary to the CNA sequence, whereas PEG-PLGA alone shows minimal DNA loading, and non-complementary DNA strands do not get encapsulated within the PEG-CNA-PLGA nanoparticles. Furthermore, the dye pyrene can be successfully co-loaded with DNA and lastly, a complex, larger DNA sequence that contains an overhang complementary to the CNA can also be encapsulated, demonstrating the potential utility of the CNA-containing particles as carriers for chemotherapy agents and gene silencers.
Collapse
Affiliation(s)
- Albert Harguindey
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
| | - Dylan W Domaille
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
| | - Justine Wagner
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
| | - Jennifer N Cha
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado, 3415 Colorado Ave, Boulder, CO, 80303, USA
| |
Collapse
|
208
|
Roh KH, Nerem RM, Roy K. Biomanufacturing of Therapeutic Cells: State of the Art, Current Challenges, and Future Perspectives. Annu Rev Chem Biomol Eng 2017; 7:455-78. [PMID: 27276552 DOI: 10.1146/annurev-chembioeng-080615-033559] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stem cells and other functionally defined therapeutic cells (e.g., T cells) are promising to bring hope of a permanent cure for diseases and disorders that currently cannot be cured by conventional drugs or biological molecules. This paradigm shift in modern medicine of using cells as novel therapeutics can be realized only if suitable manufacturing technologies for large-scale, cost-effective, reproducible production of high-quality cells can be developed. Here we review the state of the art in therapeutic cell manufacturing, including cell purification and isolation, activation and differentiation, genetic modification, expansion, packaging, and preservation. We identify current challenges and discuss opportunities to overcome them such that cell therapies become highly effective, safe, and predictively reproducible while at the same time becoming affordable and widely available.
Collapse
Affiliation(s)
- Kyung-Ho Roh
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Atlanta, Georgia 30332-0313; .,The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Robert M Nerem
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332.,The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Atlanta, Georgia 30332-0313; .,The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
209
|
Zhang T, Guo W, Zhang C, Yu J, Xu J, Li S, Tian JH, Wang PC, Xing JF, Liang XJ. Transferrin-Dressed Virus-like Ternary Nanoparticles with Aggregation-Induced Emission for Targeted Delivery and Rapid Cytosolic Release of siRNA. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16006-16014. [PMID: 28447465 PMCID: PMC5545884 DOI: 10.1021/acsami.7b03402] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Viruses have evolved to be outstandingly efficient at gene delivery, but their use as vectors is limited by safety risks. Inspired by the structure of viruses, we constructed a virus-mimicking vector (denoted as TR4@siRNA@Tf NCs) with virus-like architecture and infection properties. Composed of a hydrophilic peptide, an aggregation-induced emission (AIE) luminogen, and a lipophilic tail, TR4 imitates the viral capsid and endows the vector with AIE properties as well as efficient siRNA compaction. The outer glycoprotein transferrin (Tf) mimics the viral envelope protein and endows the vector with reduced cytotoxicity as well as enhanced targeting capability. Because of the strong interaction between Tf and transferrin receptors on the cell surface, the Tf coating can accelerate the intracellular release of siRNA into the cytosol. Tf and TR4 are eventually cycled back to the cell membrane. Our results confirmed that the constructed siRNA@TR4@Tf NCs show a high siRNA silencing efficiency of 85% with significantly reduced cytotoxicity. These NCs have comparable transfection ability to natural viruses while avoiding the toxicity issues associated with typical nonviral vectors. Therefore, this proposed virus-like siRNA vector, which integrates the advantages of both viral and nonviral vectors, should find many potential applications in gene therapy.
Collapse
Affiliation(s)
- Tingbin Zhang
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Weisheng Guo
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunqiu Zhang
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou 310014, China
| | - Jing Xu
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyi Li
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hua Tian
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Paul C. Wang
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, D.C. 20060, United States
- College of Science and Engineering, Fu Jen Catholic University, Taipei 24205, Taiwan
| | - Jin-Feng Xing
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
210
|
Somplatzki S, Mühlenhoff M, Kröger A, Gerardy-Schahn R, Böldicke T. Intrabodies against the Polysialyltransferases ST8SiaII and ST8SiaIV inhibit Polysialylation of NCAM in rhabdomyosarcoma tumor cells. BMC Biotechnol 2017; 17:42. [PMID: 28499450 PMCID: PMC5429572 DOI: 10.1186/s12896-017-0360-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/19/2017] [Indexed: 01/05/2023] Open
Abstract
Background Polysialic acid (polySia) is a carbohydrate modification of the neural cell adhesion molecule (NCAM), which is implicated in neural differentiation and plays an important role in tumor development and metastasis. Polysialylation of NCAM is mediated by two Golgi-resident polysialyltransferases (polyST) ST8SiaII and ST8SiaIV. Intracellular antibodies (intrabodies; IB) expressed inside the ER and retaining proteins passing the ER such as cell surface receptors or secretory proteins provide an efficient means of protein knockdown. To inhibit the function of ST8SiaII and ST8SiaIV specific ER IBs were generated starting from two corresponding hybridoma clones. Both IBs αST8SiaII-IB and αST8SiaIV-IB were constructed in the scFv format and their functions characterized in vitro and in vivo. Results IBs directed against the polySTs prevented the translocation of the enzymes from the ER to the Golgi-apparatus. Co-immunoprecipitation of ST8SiaII and ST8SiaIV with the corresponding IBs confirmed the intracellular interaction with their cognate antigens. In CHO cells overexpressing ST8SiaII and ST8SiaIV, respectively, the transfection with αST8SiaII-IB or αST8SiaIV-IB inhibited significantly the cell surface expression of polysialylated NCAM. Furthermore stable expression of ST8SiaII-IB, ST8SiaIV-IB and luciferase in the rhabdomyosarcoma cell line TE671 reduced cell surface expression of polySia and delayed tumor growth if cells were xenografted into C57BL/6 J RAG-2 mice. Conclusion Data obtained strongly indicate that αST8SiaII-IB and αST8SiaIV-IB are promising experimental tools to analyze the individual role of the two enzymes during brain development and during migration and proliferation of tumor cells. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0360-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Somplatzki
- Helmholtz Centre for Infection Research, Structural and Functional Protein Research, Inhoffenstraße 7, D-38124, Braunschweig, Germany
| | - Martina Mühlenhoff
- Institute of Cellular Chemistry, Hannover Medical School, D-30625, Hannover, Germany
| | - Andrea Kröger
- Helmholtz Centre for Infection Research, Group Innate Immunity and Infection, Inhoffenstraße 7, D-38124, Braunschweig, Germany
| | - Rita Gerardy-Schahn
- Institute of Cellular Chemistry, Hannover Medical School, D-30625, Hannover, Germany
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, Structural and Functional Protein Research, Inhoffenstraße 7, D-38124, Braunschweig, Germany.
| |
Collapse
|
211
|
Albuquerque LJC, de Castro CE, Riske KA, da Silva MCC, Muraro PIR, Schmidt V, Giacomelli C, Giacomelli FC. Gene Transfection Mediated by Catiomers Requires Free Highly Charged Polymer Chains To Overcome Intracellular Barriers. Biomacromolecules 2017; 18:1918-1927. [PMID: 28453254 DOI: 10.1021/acs.biomac.7b00344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The prospective use of the block copolymers poly(ethylene oxide)113-b-poly[2-(diethylamino)ethyl methacrylate]50 (PEO113-b-PDEA50) and poly[oligo(ethylene glycol)methyl ether methacrylate]70-b-poly[oligo(ethylene glycol)methyl ether methacrylate10-co-2-(diethylamino)ethyl methacrylate47-co-2-(diisopropylamino)ethyl methacrylate47] (POEGMA70-b-P(OEGMA10-co-DEA47-co-DPA47)) as nonviral gene vectors was evaluated. The polymers are able to properly condense DNA into nanosized particles (RH ≈ 75 nm), which are marginally cytotoxic and can be uptaken by cells. However, the green fluorescent protein (GFP) expression assays evidenced that DNA delivery is essentially negligible meaning that intracellular trafficking hampers efficient gene release. Subsequently, we demonstrate that cellular uptake and particularly the quantity of GFP-positive cells are substantially enhanced when the block copolymer polyplexes are produced and further supplemented by BPEI chains (branched polyethylenimine). The dynamic light scattering/electrophoretic light scattering/isothermal titration calorimetry data suggest that such a strategy allows the adsorption of BPEI onto the surface of the polyplexes, and this phenomenon is responsible for increasing the size and surface charge of the assemblies. Nevertheless, most of the BPEI chains remain freely diffusing in the systems. The biological assays confirmed that cellular uptake is enhanced in the presence of BPEI and principally, the free highly charged polymer chains play the central role in intracellular trafficking and gene transfection. These investigations pointed out that the transfection efficiency versus cytotoxicity issue can be balanced by a mixture of BPEI and less cytotoxic agents such as for instance the proposed block copolymers.
Collapse
Affiliation(s)
- Lindomar J C Albuquerque
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , 09210-580 Santo André, Brazil
| | - Carlos E de Castro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , 09210-580 Santo André, Brazil
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo , 04023-062 São Paulo, Brazil
| | - Maria C Carlan da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , 09210-580 Santo André, Brazil
| | - Paulo I R Muraro
- Departamento de Química, Universidade Federal de Santa Maria , 97105-900 Santa Maria, Brazil
| | - Vanessa Schmidt
- Departamento de Química, Universidade Federal de Santa Maria , 97105-900 Santa Maria, Brazil
| | - Cristiano Giacomelli
- Departamento de Química, Universidade Federal de Santa Maria , 97105-900 Santa Maria, Brazil
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , 09210-580 Santo André, Brazil
| |
Collapse
|
212
|
Kulkarni JA, Myhre JL, Chen S, Tam YYC, Danescu A, Richman JM, Cullis PR. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1377-1387. [DOI: 10.1016/j.nano.2016.12.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/07/2016] [Accepted: 12/19/2016] [Indexed: 01/10/2023]
|
213
|
Highly Branched poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate) for High Performance Gene Transfection. Polymers (Basel) 2017; 9:polym9050161. [PMID: 30970840 PMCID: PMC6432012 DOI: 10.3390/polym9050161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 11/18/2022] Open
Abstract
The top-performing linear poly(β-amino ester) (LPAE), poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate) (C32), has demonstrated gene transfection efficiency comparable to viral-mediated gene delivery. Herein, we report the synthesis of a series of highly branched poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate) (HC32) and explore how the branching structure influences the performance of C32 in gene transfection. HC32 were synthesized by an “A2 + B3 + C2” Michal addition strategy. Gaussia luciferase (Gluciferase) and green fluorescent protein (GFP) coding plasmid DNA were used as reporter genes and the gene transfection efficiency was evaluated in human cervical cancer cell line (HeLa) and human recessive dystrophic epidermolysis bullosa keratinocyte (RDEBK) cells. We found that the optimal branching structure led to a much higher gene transfection efficiency in comparison to its linear counterpart and commercial reagents, while preserving high cell viability in both cell types. The branching strategy affected DNA binding, proton buffering capacity and degradation of polymers as well as size, zeta potential, stability, and DNA release rate of polyplexes significantly. Polymer degradation and DNA release rate played pivotal parts in achieving the high gene transfection efficiency of HC32-103 polymers, providing new insights for the development of poly(β-amino ester)s-based gene delivery vectors.
Collapse
|
214
|
Ghanbari Safari M, Baesi K, Hosseinkhani S. An alternative approach in regulation of expression of a transgene by endogenous miR-145 in carcinoma and normal breast cell lines. Biotechnol Appl Biochem 2017; 64:244-250. [PMID: 25923846 DOI: 10.1002/bab.1390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 04/27/2015] [Indexed: 12/31/2022]
Abstract
MicroRNAs are small noncoding RNAs that regulate gene expression by repressing translation of target cellular transcripts. Increasing evidences indicate that miRNAs have different expression profiles and play crucial roles in numerous cellular processes. Delivery and expression of transgenes for cancer therapy must be specific for tumors to avoid killing of healthy tissues. Many investigators have shown that transgene expression can be suppressed in normal cells using vectors that are responsive to microRNA regulation. To overcome this problem, miR-145 that exhibits downregulation in many types of cancer cells was chosen for posttranscriptional regulatory systems mediated by microRNAs. In this study, a psiCHECK-145T vector carrying four tandem copies of target sequences of miR-145 into 3'-UTR of the Renilla luciferase gene was constructed. Renilla luciferase activity from the psiCHECK-145T vector was 57% lower in MCF10A cells with high miR-145 expression as compared to a control condition. Additionally, overexpression of miR-145 in MCF-7 cells with low expression level of miR-145 showed more than 76% reduction in the Renilla luciferase activity from the psiCHECK-145T vector. Inclusion of miR-145 target sequences into the 3'-UTR of the Renilla luciferase gene is a feasible strategy for restricting transgene expression in a breast cancer cell line while sparing a breast normal cell line.
Collapse
Affiliation(s)
- Maryam Ghanbari Safari
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kazem Baesi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
215
|
Li L, Li X, Wu Y, Song L, Yang X, He T, Wang N, Yang S, Zeng Y, Wu Q, Qian Z, Wei Y, Gong C. Multifunctional Nucleus-targeting Nanoparticles with Ultra-high Gene Transfection Efficiency for In Vivo Gene Therapy. Theranostics 2017; 7:1633-1649. [PMID: 28529641 PMCID: PMC5436517 DOI: 10.7150/thno.17588] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/14/2017] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cell-like cells (CSCL) are responsible for tumor recurrence associated with conventional therapy (e.g. surgery, radiation, and chemotherapy). Here, we developed a novel multifunctional nucleus-targeting nanoparticle-based gene delivery system which is capable of targeting and eradicating CSCL. These nanoparticles can facilitate efficient endosomal escape and spontaneously penetrate into nucleus without additional nuclear localization signal. They also induced extremely high gene transfection efficiency (>95%) even in culture medium containing 30% serum, which significantly surpassed that of some commercial transfection reagents, such as Lipofectamine 2000 and Lipofectamine 3000 etc. Especially, when loaded with the TRAIL gene, this system mediated remarkable depletion of CSCL. Upon systemic administration, the nanoparticles accumulated in tumor sites while sparing the non-cancer tissues and significantly inhibited the growth of tumors with no evident systemic toxicity. Taken together, our results suggest that these novel multifunctional, nucleus-targeting nanoparticles are a very promising in vivo gene delivery system capable of targeting CSCL and represent a new treatment candidate for improving the survival of cancer patients.
Collapse
|
216
|
Taning CNT, Van Eynde B, Yu N, Ma S, Smagghe G. CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:245-257. [PMID: 28108316 DOI: 10.1016/j.jinsphys.2017.01.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/28/2016] [Accepted: 01/12/2017] [Indexed: 05/13/2023]
Abstract
Discovered as a bacterial adaptive immune system, CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat/CRISPR associated) is being developed as an attractive tool in genome editing. Due to its high specificity and applicability, CRISPR/Cas9-mediated gene editing has been employed in a multitude of organisms and cells, including insects, for not only fundamental research such as gene function studies, but also applied research such as modification of organisms of economic importance. Despite the rapid increase in the use of CRISPR in insect genome editing, results still differ from each study, principally due to existing differences in experimental parameters, such as the Cas9 and guide RNA form, the delivery method, the target gene and off-target effects. Here, we review current reports on the successes of CRISPR/Cas9 applications in diverse insects and insect cells. We furthermore summarize several best practices to give a useful checklist of CRISPR/Cas9 experimental setup in insects for beginners. Lastly, we discuss the biosafety concerns related to the release of CRISPR/Cas9-edited insects into the environment.
Collapse
Affiliation(s)
- Clauvis Nji Tizi Taning
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Benigna Van Eynde
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
217
|
Zhang T, Suryawanshi YR, Woyczesczyk HM, Essani K. Targeting Melanoma with Cancer-Killing Viruses. Open Virol J 2017; 11:28-47. [PMID: 28567163 PMCID: PMC5420172 DOI: 10.2174/1874357901711010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Melanoma is the deadliest skin cancer with ever-increasing incidence. Despite the development in diagnostics and therapies, metastatic melanoma is still associated with significant morbidity and mortality. Oncolytic viruses (OVs) represent a class of novel therapeutic agents for cancer by possessing two closely related properties for tumor reduction: virus-induced lysis of tumor cells and induction of host anti-tumor immune responses. A variety of viruses, either in "natural" or in genetically modified forms, have exhibited a remarkable therapeutic efficacy in regressing melanoma in experimental and/or clinical studies. This review provides a comprehensive summary of the molecular and cellular mechanisms of action of these viruses, which involve manipulating and targeting the abnormalities of melanoma, and can be categorized as enhancing viral tropism, targeting the tumor microenvironment and increasing the innate and adaptive antitumor responses. Additionally, this review describes the "biomarkers" and deregulated pathways of melanoma that are responsible for melanoma initiation, progression and metastasis. Advances in understanding these abnormalities of melanoma have resulted in effective targeted and immuno-therapies, and could potentially be applied for engineering OVs with enhanced oncolytic activity in future.
Collapse
Affiliation(s)
- Tiantian Zhang
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Yogesh R. Suryawanshi
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Helene M. Woyczesczyk
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| |
Collapse
|
218
|
Kurihara C, Nakade K, Pan J, Huang J, Wasylyk B, Obata Y. An easy method for preparation of Cre-loxP regulated fluorescent adenoviral expression vectors and its application for direct reprogramming into hepatocytes. ACTA ACUST UNITED AC 2017; 12:26-32. [PMID: 28352551 PMCID: PMC5361070 DOI: 10.1016/j.btre.2016.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 01/31/2023]
Abstract
The recombinant adenoviral gene expression system is a powerful tool for gene delivery. However, it is difficult to obtain high titers of infectious virus, principally due to the toxicity of the expressed gene which affects on virus replication in the host HEK293 cells. To avoid these problems, we generated a Cre-loxP-regulated fluorescent universal vector (termed pAxCALRL). This vector produces recombinant adenoviruses that express the red fluorescent protein (RFP) instead of the inserted gene during proliferation, which limits toxicity and can be used to monitor viral replication. Expression of the gene of interest is induced by co-infection with an adenovirus that expresses Cre-recombinase (AxCANCre). Recombinant adenovirus produced by this system that express Hnf4α and Foxa2 were used to reprogram mouse embryo fibroblast (MEF) into induced-hepatocyte-like cells (iHep) following several rounds of infection, demonstrating the efficacy of this new system.
Collapse
Affiliation(s)
- Chitose Kurihara
- Gene Engineering Division, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Koji Nakade
- Gene Engineering Division, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Jianzhi Pan
- Gene Engineering Division, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan; Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd., Hangzhou, Zhejiang, PR China
| | - Jing Huang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Rd., Hangzhou, Zhejiang, PR China
| | - Bohdan Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, Rue Laurent Fries, Illkirch Cedex 67404, France
| | - Yuichi Obata
- Gene Engineering Division, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
219
|
O’Dea S, Annibaldi V, Gallagher L, Mulholland J, Molloy EL, Breen CJ, Gilbert JL, Martin DS, Maguire M, Curry FR. Vector-free intracellular delivery by reversible permeabilization. PLoS One 2017; 12:e0174779. [PMID: 28358921 PMCID: PMC5373627 DOI: 10.1371/journal.pone.0174779] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Despite advances in intracellular delivery technologies, efficient methods are still required that are vector-free, can address a wide range of cargo types and can be applied to cells that are difficult to transfect whilst maintaining cell viability. We have developed a novel vector-free method that uses reversible permeabilization to achieve rapid intracellular delivery of cargos with varying composition, properties and size. A permeabilizing delivery solution was developed that contains a low level of ethanol as the permeabilizing agent. Reversal of cell permeabilization is achieved by temporally and volumetrically controlling the contact of the target cells with this solution. Cells are seeded in conventional multi-well plates. Following removal of the supernatant, the cargo is mixed with the delivery solution and applied directly to the cells using an atomizer. After a short incubation period, permeabilization is halted by incubating the cells in a phosphate buffer saline solution that dilutes the ethanol and is non-toxic to the permeabilized cells. Normal culture medium is then added. The procedure lasts less than 5 min. With this method, proteins, mRNA, plasmid DNA and other molecules have been delivered to a variety of cell types, including primary cells, with low toxicity and cargo functionality has been confirmed in proof-of-principle studies. Co-delivery of different cargo types has also been demonstrated. Importantly, delivery occurs by diffusion directly into the cytoplasm in an endocytic-independent manner. Unlike some other vector-free methods, adherent cells are addressed in situ without the need for detachment from their substratum. The method has also been adapted to address suspension cells. This delivery method is gentle yet highly reproducible, compatible with high throughput and automated cell-based assays and has the potential to enable a broad range of research, drug discovery and clinical applications.
Collapse
Affiliation(s)
- Shirley O’Dea
- Avectas Ltd., Maynooth, Co. Kildare, Ireland
- * E-mail:
| | | | | | | | | | | | | | | | | | - Fitz-Roy Curry
- Avectas Ltd., Maynooth, Co. Kildare, Ireland
- Department of Physiology & Membrane Biology, University of California, Davis, California, United States of America
| |
Collapse
|
220
|
Ha JS, Lee JS, Jeong J, Kim H, Byun J, Kim SA, Lee HJ, Chung HS, Lee JB, Ahn DR. Poly-sgRNA/siRNA ribonucleoprotein nanoparticles for targeted gene disruption. J Control Release 2017; 250:27-35. [PMID: 28167287 DOI: 10.1016/j.jconrel.2017.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/29/2016] [Accepted: 02/03/2017] [Indexed: 12/13/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein-9 nuclease (Cas9) can be used for the specific disruption of a target gene to permanently suppress the expression of the protein encoded by the target gene. Efficient delivery of the system to an intracellular target site should be achieved to utilize the tremendous potential of the genome-editing tool in biomedical applications such as the knock-out of disease-related genes and the correction of defect genes. Here, we devise polymeric CRISPR/Cas9 system based on poly-ribonucleoprotein (RNP) nanoparticles consisting of polymeric sgRNA, siRNA, and Cas9 endonuclease in order to improve the delivery efficiency. When delivered by cationic lipids, the RNP nanoparticles built with chimeric poly-sgRNA/siRNA sequences generate multiple sgRNA-Cas9 RNP complexes upon the Dicer-mediated digestion of the siRNA parts, leading to more efficient disruption of the target gene in cells and animal models, compared with the monomeric sgRNA-Cas9 RNP complex.
Collapse
Affiliation(s)
- Jong Seong Ha
- The Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jae Sung Lee
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Jaepil Jeong
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Hejin Kim
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Juyoung Byun
- The Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang Ah Kim
- The Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hee Jae Lee
- The Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hak Suk Chung
- The Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| | - Dae-Ro Ahn
- The Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
221
|
|
222
|
Wang Y, Chen X, Tian B, Liu J, Yang L, Zeng L, Chen T, Hong A, Wang X. Nucleolin-targeted Extracellular Vesicles as a Versatile Platform for Biologics Delivery to Breast Cancer. Theranostics 2017; 7:1360-1372. [PMID: 28435471 PMCID: PMC5399599 DOI: 10.7150/thno.16532] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Small interfering RNAs (siRNA)/microRNAs (miRNA) have promising therapeutic potential, yet their clinical application has been hampered by the lack of appropriate delivery systems. Herein, we employed extracellular vesicles (EVs) as a targeted delivery system for small RNAs. EVs are cell-derived small vesicles that participate in cell-to-cell communication for protein and RNA delivery. We used the aptamer AS1411-modified EVs for targeted delivery of siRNA/microRNA to breast cancer tissues. Tumor targeting was facilitated via AS1411 binding to nucleolin, which is highly expressed on the surface membrane of breast cancer cells. This delivery vesicle targeted let-7 miRNA delivery to MDA-MB-231 cells in vitro as confirmed with fluorescent microscopic imaging and flow cytometry. Also, intravenously delivered AS1411-EVs loaded with miRNA let-7 labeled with the fluorescent marker, Cy5, selectively targeted tumor tissues in tumor-bearing mice and inhibited tumor growth. Importantly, the modified EVs were well tolerated and showed no evidence of nonspecific side effects or immune response. Thus, the RNAi nanoplatform is versatile and can deliver siRNA or miRNA to breast cancer cells both in vitro and in vivo. Our results suggest that the AS1411-EVs have a great potential as drug delivery vehicles to treat cancers.
Collapse
Affiliation(s)
- Yayu Wang
- Institute of Biomedicine & Department of Cell Biology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Xiaojia Chen
- Institute of Biomedicine & Department of Cell Biology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Baoqing Tian
- Institute of Biomedicine & Department of Cell Biology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Jiafan Liu
- Institute of Biomedicine & Department of Cell Biology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Li Yang
- Institute of Biomedicine & Department of Cell Biology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Lilan Zeng
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Tianfen Chen
- Department of Chemistry, Jinan University, Guangzhou, China
| | - An Hong
- Institute of Biomedicine & Department of Cell Biology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Xiaogang Wang
- Institute of Biomedicine & Department of Cell Biology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| |
Collapse
|
223
|
Bludau H, Czapar AE, Pitek AS, Shukla S, Jordan R, Steinmetz NF. POxylation as an alternative stealth coating for biomedical applications. Eur Polym J 2017; 88:679-688. [PMID: 28713172 PMCID: PMC5510027 DOI: 10.1016/j.eurpolymj.2016.10.041] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polyethylene glycol (PEG) polymers are currently used in a variety of medical formulations to reduce toxicity, minimize immune interactions and improve pharmacokinetics. Despite its widespread use however, the presence of anti-PEG antibodies indicates that this polymer has the potential to be immunogenic and antigenic. Here we present an alternative polymer, poly(2-oxazoline) (POx) for stealth applications, specifically shielding of a proteinaceous nanoparticle from recognition by the immune system. Tobacco mosaic virus (TMV) was used as our testbed due to its potential for use as a nanocarrier for drug delivery and molecular imaging applications.
Collapse
Affiliation(s)
- Herdis Bludau
- Chair of Macromolecular Chemistry, School of Science, Technische
Unversität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Anna E. Czapar
- Department of Pathology, Case Western Reserve University, Cleveland,
OH 44106, United States
| | - Andrzej S. Pitek
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, OH 44106, United States
| | - Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, OH 44106, United States
| | - Rainer Jordan
- Chair of Macromolecular Chemistry, School of Science, Technische
Unversität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve
University, Cleveland, OH 44106, United States
- Department of Radiology, Case Western Reserve University, Cleveland,
OH 44106, United States
- Department of Materials Science and Engineering, Case Western
Reserve University, Cleveland, OH 44106, United States
- Department of Macromolecular Science and Engineering, Case Western
Reserve University, Cleveland, OH 44106, United States
- Case Comprehensive Cancer Center, Case Western Reserve University,
Cleveland, OH 44106, United States
| |
Collapse
|
224
|
Targeting of phage particles towards endothelial cells by antibodies selected through a multi-parameter selection strategy. Sci Rep 2017; 7:42230. [PMID: 28186116 PMCID: PMC5301479 DOI: 10.1038/srep42230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.
Collapse
|
225
|
Chen G, Wang Y, Xie R, Gong S. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery. J Control Release 2017; 259:105-114. [PMID: 28159516 DOI: 10.1016/j.jconrel.2017.01.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/29/2017] [Indexed: 01/17/2023]
Abstract
A unique pH/redox dual-sensitive cationic unimolecular nanoparticle (NP) enabling excellent endosomal/lysosomal escape and efficient siRNA decomplexation inside the target cells was developed for tumor-targeted delivery of siRNA. siRNA was complexed into the cationic core of the unimolecular NP through electrostatic interactions. The cationic core used for complexing siRNA contained reducible disulfide bonds that underwent intracellular reduction owing to the presence of high concentrations of reduced glutathione (GSH) inside the cells, thereby facilitating the decomplexation of siRNA from the unimolecular NPs. The cationic polymers were conjugated onto the hyperbranched core (H40) via a pH-sensitive bond, which further facilitated the decomplexation of siRNA from the NPs. In vitro studies on the siRNA release behaviors showed that dual stimuli (pH=5.3, 10mM GSH) induced the quickest release of siRNA from the NPs. In addition, the imidazole groups attached to the cationic polymer segments enhanced the endosomal/lysosomal escape of NPs via the proton sponge effect. Intracellular tracking studies revealed that siRNA delivered by unimolecular NPs was efficiently released to the cytosol. Moreover, the GE11 peptide, an anti-EGFR peptide, enhanced the cellular uptake of NPs in MDA-MB-468, an EFGR-overexpressing triple negative breast cancer (TNBC) cell line. The GE11-conjugated, GFP-siRNA-complexed NPs exhibited excellent GFP gene silencing efficiency in GFP-MDA-MB-468 TNBC cells without any significant cytotoxicity. Therefore, these studies suggest that this smart unimolecular NP could be a promising nanoplatform for targeted siRNA delivery to EFGR-overexpressing cancer cells.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Yuyuan Wang
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ruosen Xie
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
226
|
Abstract
mRNA vaccines elicit a potent immune response including antibodies and cytotoxic T cells. mRNA vaccines are currently evaluated in clinical trials for cancer immunotherapy applications, but also have great potential as prophylactic vaccines. Efficient delivery of mRNA vaccines will be key for their success and translation to the clinic. Among potential nonviral vectors, lipid nanoparticles are particularly promising. Indeed, lipid nanoparticles can be synthesized with relative ease in a scalable manner, protect the mRNA against degradation, facilitate endosomal escape, can be targeted to the desired cell type by surface decoration with ligands, and as needed, can be codelivered with adjuvants.
Collapse
|
227
|
Uldahl KB, Wu L, Hall A, Papathanasiou P, Peng X, Moghimi SM. Recognition of extremophilic archaeal viruses by eukaryotic cells: a promising nanoplatform from the third domain of life. Sci Rep 2016; 6:37966. [PMID: 27892499 PMCID: PMC5125014 DOI: 10.1038/srep37966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/19/2016] [Indexed: 01/08/2023] Open
Abstract
Viruses from the third domain of life, Archaea, exhibit unusual features including extreme stability that allow their survival in harsh environments. In addition, these species have never been reported to integrate into human or any other eukaryotic genomes, and could thus serve for exploration of novel medical nanoplatforms. Here, we selected two archaeal viruses Sulfolobus monocaudavirus 1 (SMV1) and Sulfolobus spindle shaped virus 2 (SSV2) owing to their unique spindle shape, hyperthermostable and acid-resistant nature and studied their interaction with mammalian cells. Accordingly, we followed viral uptake, intracellular trafficking and cell viability in human endothelial cells of brain (hCMEC/D3 cells) and umbilical vein (HUVEC) origin. Whereas SMV1 is efficiently internalized into both types of human cells, SSV2 differentiates between HUVECs and hCMEC/D3 cells, thus opening a path for selective cell targeting. On internalization, both viruses localize to the lysosomal compartments. Neither SMV1, nor SSV2 induced any detrimental effect on cell morphology, plasma membrane and mitochondrial functionality. This is the first study demonstrating recognition of archaeal viruses by eukaryotic cells which provides good basis for future exploration of archaeal viruses in bioengineering and development of multifunctional vectors.
Collapse
Affiliation(s)
- Kristine Buch Uldahl
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen, 2200, Denmark
| | - Linping Wu
- Nanomedicine Research Group, Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Arnaldur Hall
- Nanomedicine Research Group, Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Pavlos Papathanasiou
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen, 2200, Denmark
| | - Xu Peng
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen, 2200, Denmark
| | - Seyed Moein Moghimi
- Nanomedicine Research Group, Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.,School of Medicine, Pharmacy and Health, Durham University, Wolfson building, Queens campus, Stockton on Tees, TS17 6BS, UK
| |
Collapse
|
228
|
Tung JK, Berglund K, Gross RE. Optogenetic Approaches for Controlling Seizure Activity. Brain Stimul 2016; 9:801-810. [PMID: 27496002 PMCID: PMC5143193 DOI: 10.1016/j.brs.2016.06.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023] Open
Abstract
Optogenetics, a technique that utilizes light-sensitive ion channels or pumps to activate or inhibit neurons, has allowed scientists unprecedented precision and control for manipulating neuronal activity. With the clinical need to develop more precise and effective therapies for patients with drug-resistant epilepsy, these tools have recently been explored as a novel treatment for halting seizure activity in various animal models. In this review, we provide a detailed and current summary of these optogenetic approaches and provide a perspective on their future clinical application as a potential neuromodulatory therapy.
Collapse
Affiliation(s)
- Jack K Tung
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA; Department of Neurosurgery, Emory University, Atlanta, GA
| | - Ken Berglund
- Department of Neurosurgery, Emory University, Atlanta, GA
| | - Robert E Gross
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA; Department of Neurosurgery, Emory University, Atlanta, GA.
| |
Collapse
|
229
|
Dual and antagonic therapeutic effects of sulfated glycans. Bioorg Med Chem 2016; 24:3965-3971. [DOI: 10.1016/j.bmc.2016.07.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 11/24/2022]
|
230
|
Heider S, Dangerfield JA, Metzner C. Biomedical applications of glycosylphosphatidylinositol-anchored proteins. J Lipid Res 2016; 57:1778-1788. [PMID: 27542385 PMCID: PMC5036375 DOI: 10.1194/jlr.r070201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/13/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) use a unique posttranslational modification to link proteins to lipid bilayer membranes. The anchoring structure consists of both a lipid and carbohydrate portion and is highly conserved in eukaryotic organisms regarding its basic characteristics, yet highly variable in its molecular details. The strong membrane targeting property has made the anchors an interesting tool for biotechnological modification of lipid membrane-covered entities from cells through extracellular vesicles to enveloped virus particles. In this review, we will take a closer look at the mechanisms and fields of application for GPI-APs in lipid bilayer membrane engineering and discuss their advantages and disadvantages for biomedicine.
Collapse
Affiliation(s)
- Susanne Heider
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria
| | | | - Christoph Metzner
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria.
| |
Collapse
|
231
|
Kelemen RE, Mukherjee R, Cao X, Erickson SB, Zheng Y, Chatterjee A. A Precise Chemical Strategy To Alter the Receptor Specificity of the Adeno-Associated Virus. Angew Chem Int Ed Engl 2016; 55:10645-9. [PMID: 27483453 DOI: 10.1002/anie.201604067] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/29/2016] [Indexed: 12/12/2022]
Abstract
The ability to target the adeno-associated virus (AAV) to specific types of cells, by altering the cell-surface receptor it binds, is desirable to generate safe and efficient therapeutic vectors. Chemical attachment of receptor-targeting agents onto the AAV capsid holds potential to alter its tropism, but is limited by the lack of site specificity of available conjugation strategies. The development of an AAV production platform is reported that enables incorporation of unnatural amino acids (UAAs) into specific sites on the virus capsid. Incorporation of an azido-UAA enabled site-specific attachment of a cyclic-RGD peptide onto the capsid, retargeting the virus to the αv β3 integrin receptors, which are overexpressed in tumor vasculature. Retargeting ability was site-dependent, underscoring the importance of achieving site-selective capsid modification. This work provides a general chemical approach to introduce various receptor binding agents onto the AAV capsid with site selectivity to generate optimized vectors with engineered infectivity.
Collapse
Affiliation(s)
- Rachel E Kelemen
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Raja Mukherjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Xiaofu Cao
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Sarah B Erickson
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Yunan Zheng
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
232
|
Kelemen RE, Mukherjee R, Cao X, Erickson SB, Zheng Y, Chatterjee A. A Precise Chemical Strategy To Alter the Receptor Specificity of the Adeno-Associated Virus. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rachel E. Kelemen
- Department of Chemistry; Boston College; 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Raja Mukherjee
- Department of Chemistry; Boston College; 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Xiaofu Cao
- Department of Chemistry; Boston College; 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Sarah B. Erickson
- Department of Chemistry; Boston College; 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Yunan Zheng
- Department of Chemistry; Boston College; 2609 Beacon Street Chestnut Hill MA 02467 USA
| | - Abhishek Chatterjee
- Department of Chemistry; Boston College; 2609 Beacon Street Chestnut Hill MA 02467 USA
| |
Collapse
|
233
|
Li L, Zhang L, Knez M. Comparison of two endogenous delivery agents in cancer therapy: Exosomes and ferritin. Pharmacol Res 2016; 110:1-9. [DOI: 10.1016/j.phrs.2016.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/07/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022]
|
234
|
Joo H, Shin J, Cho SW, Kim P. Wrinkled-Surface Mediated Reverse Transfection Platform for Highly Efficient, Addressable Gene Delivery. Adv Healthc Mater 2016; 5:2025-30. [PMID: 27336858 DOI: 10.1002/adhm.201600354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 01/25/2023]
Abstract
A novel reverse transfection platform, which embraces a wrinkled-surface, is developed for highly efficient long-term gene delivery. Since reverse transfection utilizes the contact between cell and substrate, the increase in the contact area between substrate and cells significantly increases the gene delivery rate. Furthermore, by adopting microwell structures, multiplex, addressable delivery of exogenous materials is successfully demonstrated.
Collapse
Affiliation(s)
- Hyunwoo Joo
- Department of Bio and Brain Engineering; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 305-338 Republic of Korea
| | - Jisoo Shin
- Department of Biotechnology; Yonsei University; 50 Yonsei-ro Seodaemun-gu Seoul 120-749 Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology; Yonsei University; 50 Yonsei-ro Seodaemun-gu Seoul 120-749 Republic of Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Yuseong-gu Daejeon 305-338 Republic of Korea
| |
Collapse
|
235
|
Das J, Han JW, Choi YJ, Song H, Cho SG, Park C, Seo HG, Kim JH. Cationic lipid-nanoceria hybrids, a novel nonviral vector-mediated gene delivery into mammalian cells: investigation of the cellular uptake mechanism. Sci Rep 2016; 6:29197. [PMID: 27380727 PMCID: PMC4933920 DOI: 10.1038/srep29197] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/14/2016] [Indexed: 01/30/2023] Open
Abstract
Gene therapy is a promising technique for the treatment of various diseases. The development of minimally toxic and highly efficient non-viral gene delivery vectors is the most challenging undertaking in the field of gene therapy. Here, we developed dimethyldioctadecylammonium bromide (DODAB)-nanoceria (CeO2) hybrids as a new class of non-viral gene delivery vectors. These DODAB-modified CeO2 nanoparticles (CeO2/DODAB) could effectively compact the pDNA, allowing for highly efficient gene transfection into the selected cell lines. The CeO2/DODAB nanovectors were also found to be non-toxic and did not induce ROS formation as well as any stress responsive and pro-survival signaling pathways. The overall vector performance of CeO2/DODAB nanohybrids was comparable with lipofectamine and DOTAP, and higher than calcium phosphate and DEAE-dextran for transfecting small plasmids. The increased cellular uptake of the nanovector/DNA complexes through clathrin- and caveolae-mediated endocytosis and subsequent release from the endosomes further support the increased gene transfection efficiency of the CeO2/DODAB vectors. Besides, CeO2/DODAB nanovectors could transfect genes in vivo without any sign of toxicity. Taken together, this new nano-vector has the potential to be used for gene delivery in biomedical applications.
Collapse
Affiliation(s)
- Joydeep Das
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Jae Woong Han
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Han Geuk Seo
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
236
|
Structure, activity and uptake mechanism of siRNA-lipid nanoparticles with an asymmetric ionizable lipid. Int J Pharm 2016; 510:350-8. [PMID: 27374199 DOI: 10.1016/j.ijpharm.2016.06.124] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/09/2016] [Accepted: 06/26/2016] [Indexed: 12/31/2022]
Abstract
Lipid nanoparticles (LNPs) represent the most advanced platform for the systemic delivery of siRNA. We have previously reported the discovery of novel ionizable lipids with asymmetric lipid tails, enabling potent gene-silencing activity in hepatocytes in vivo; however, the structure and delivery mechanism had not been elucidated. Here, we report the structure, activity and uptake mechanism of LNPs with an asymmetric ionizable lipid. Zeta potential and hemolytic activity of LNPs showed that LNPs were neutral at the pH of the blood compartment but become increasingly charged and fusogenic in the acidic endosomal compartment. (31)P NMR experiments indicated that the siRNA was less mobile inside particles, presumably because of an electrostatic interaction with an ionizable lipid. The role of Apolipoprotein E (apoE) was studied using recombinant human apoE both in vitro and in vivo. A comparative study in wild-type and apoE-deficient mice revealed that apoE significantly influenced the in vivo biodistribution of LNPs and enhanced the cellular uptake. Pretreatment of mice with siRNA targeting low-density lipoprotein receptor (LDLR) impaired gene-silencing of the following siRNA treatment, demonstrating that in vivo activity of LNPs is dependent on LDLR. Our studies on the detailed mechanism should lead to the creation of more sophisticated LNP-based RNAi therapeutics.
Collapse
|
237
|
Sun Y, Ye X, Cai M, Liu X, Xiao J, Zhang C, Wang Y, Yang L, Liu J, Li S, Kang C, Zhang B, Zhang Q, Wang Z, Hong A, Wang X. Osteoblast-Targeting-Peptide Modified Nanoparticle for siRNA/microRNA Delivery. ACS NANO 2016; 10:5759-68. [PMID: 27176123 DOI: 10.1021/acsnano.5b07828] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Antiosteoporosis gene-based drug development strategies are presently focused on targeting osteoblasts to either suppress bone loss or increase bone mass. Although siRNA/microRNA-based gene therapy has enormous potential, it is severely limited by the lack of specific cell-targeting delivery systems. We report an osteoblast-targeting peptide (SDSSD) that selectively binds to osteoblasts via periostin. We developed SDSSD-modified polyurethane (PU) nanomicelles encapsulating siRNA/microRNA that delivers drugs to osteoblasts; the data showed that SDSSD-PU could selectively target not only bone-formation surfaces but also osteoblasts without overt toxicity or eliciting an immune response in vivo. We used the SDSSD-PU delivery system to deliver anti-miR-214 to osteoblasts and our results showed increased bone formation, improved bone microarchitecture, and increased bone mass in an ovariectomized osteoporosis mouse model. SDSSD-PU may be a useful osteoblast-targeting small nucleic acid delivery system that could be used as an anabolic strategy to treat osteoblast-induced bone diseases.
Collapse
Affiliation(s)
- Yao Sun
- Department of Oral Implantology, School of Stomatology, Tongji University , Shanghai 200072, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Shanghai 200072, China
- Sino-Russian Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University , Harbin 150086, China
| | - Xiongzhen Ye
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Mingxiang Cai
- Department of Oral Implantology, School of Stomatology, Tongji University , Shanghai 200072, China
| | - Xiangning Liu
- The First Affiliated Hospital of Jinan University , Guangzhou 510632, China
| | - Jia Xiao
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Chenyang Zhang
- Department of Oral Implantology, School of Stomatology, Tongji University , Shanghai 200072, China
| | - Yayu Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Li Yang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Jiafan Liu
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Shannai Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Chen Kang
- Sino-Russian Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University , Harbin 150086, China
| | - Bin Zhang
- Sino-Russian Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University , Harbin 150086, China
| | - Qi Zhang
- Department of Oral Implantology, School of Stomatology, Tongji University , Shanghai 200072, China
| | - Zuolin Wang
- Department of Oral Implantology, School of Stomatology, Tongji University , Shanghai 200072, China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Shanghai 200072, China
| | - An Hong
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Xiaogang Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| |
Collapse
|
238
|
Kasala D, Yoon AR, Hong J, Kim SW, Yun CO. Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine (Lond) 2016; 11:1689-713. [PMID: 27348247 DOI: 10.2217/nnm-2016-0060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Viral vectors are promising gene carriers for cancer therapy. However, virus-mediated gene therapies have demonstrated insufficient therapeutic efficacy in clinical trials due to rapid dissemination to nontarget tissues and to the immunogenicity of viral vectors, resulting in poor retention at the disease locus and induction of adverse inflammatory responses in patients. Further, the limited tropism of viral vectors prevents efficient gene delivery to target tissues. In this regard, modification of the viral surface with nanomaterials is a promising strategy to augment vector accumulation at the target tissue, circumvent the host immune response, and avoid nonspecific interactions with the reticuloendothelial system or serum complement. In the present review, we discuss various chemical modification strategies to enhance the therapeutic efficacy of viral vectors delivered either locally or systemically. We conclude by highlighting the salient features of various nanomaterial-coated viral vectors and their prospects and directions for future research.
Collapse
Affiliation(s)
- Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Jinwoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Sung Wan Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea.,Department of Pharmaceutics & Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| |
Collapse
|
239
|
CRISPR-Cas9 technology: applications and human disease modelling. Brief Funct Genomics 2016; 16:4-12. [DOI: 10.1093/bfgp/elw025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
240
|
Breunig HG, Batista A, Uchugonova A, König K. Cell optoporation with a sub-15 fs and a 250-fs laser. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:60501. [PMID: 27251075 DOI: 10.1117/1.jbo.21.6.060501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/05/2016] [Indexed: 05/03/2023]
Abstract
We employed two commercially available femtosecond lasers, a Ti:sapphire and a ytterbium-based oscillator, to directly compare from a user’s practical point-of-view in one common experimental setup the efficiencies of transient laser-induced cell membrane permeabilization, i.e., of so-called optoporation. The experimental setup consisted of a modified multiphoton laser-scanning microscope employing high-NA focusing optics. An automatic cell irradiation procedure was realized with custom-made software that identified cell positions and controlled relevant hardware components. The Ti:sapphire and ytterbium-based oscillators generated broadband sub-15-fs pulses around 800 nm and 250-fs pulses at 1044 nm, respectively. A higher optoporation rate and posttreatment viability were observed for the shorter fs pulses, confirming the importance of multiphoton effects for efficient optoporation.
Collapse
Affiliation(s)
- Hans Georg Breunig
- JenLab GmbH, Science Park 2, Campus D 1.2, 66123 Saarbrücken, Germany and Schillerstr. 1, 07745 Jena, Germany
| | - Ana Batista
- JenLab GmbH, Science Park 2, Campus D 1.2, 66123 Saarbrücken, Germany and Schillerstr. 1, 07745 Jena, GermanybSaarland University, Department of Biophotonics and Laser Technology, Campus A5.1, 66123 Saarbrücken, Germany
| | - Aisada Uchugonova
- JenLab GmbH, Science Park 2, Campus D 1.2, 66123 Saarbrücken, Germany and Schillerstr. 1, 07745 Jena, GermanybSaarland University, Department of Biophotonics and Laser Technology, Campus A5.1, 66123 Saarbrücken, Germany
| | - Karsten König
- JenLab GmbH, Science Park 2, Campus D 1.2, 66123 Saarbrücken, Germany and Schillerstr. 1, 07745 Jena, GermanybSaarland University, Department of Biophotonics and Laser Technology, Campus A5.1, 66123 Saarbrücken, Germany
| |
Collapse
|
241
|
Hulin-Curtis SL, Uusi-Kerttula H, Jones R, Hanna L, Chester JD, Parker AL. Evaluation of CD46 re-targeted adenoviral vectors for clinical ovarian cancer intraperitoneal therapy. Cancer Gene Ther 2016; 23:229-34. [PMID: 27229159 PMCID: PMC4947523 DOI: 10.1038/cgt.2016.22] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023]
Abstract
Ovarian cancer accounts for >140 000 deaths globally each year. Typically, disease is asymptomatic until an advanced, incurable stage. Although response to cytotoxic chemotherapy is frequently observed, resistance to conventional platinum-based therapies develop rapidly. Improved treatments are therefore urgently required. Virotherapy offers great potential for ovarian cancer, where the application of local, intraperitoneal delivery circumvents some of the limitations of intravenous strategies. To develop effective, adenovirus (Ad)-based platforms for ovarian cancer, we profiled the fluid and cellular components of patient ascites for factors known to influence adenoviral transduction. Levels of factor X (FX) and neutralizing antibodies (nAbs) in ascitic fluid were quantified and tumor cells were assessed for the expression of coxsackie virus and adenovirus receptor (CAR) and CD46. We show that clinical ascites contains significant levels of FX but consistently high CD46 expression. We therefore evaluated in vitro the relative transduction of epithelial ovarian cancers (EOCs) by Ad5 (via CAR) and Ad5 pseudotyped with the fiber of Ad35 (Ad5T*F35++) via CD46. Ad5T*F35++ achieved significantly increased transduction in comparison to Ad5 (P<0.001), independent of FX and nAb levels. We therefore propose selective transduction of CD46 over-expressing EOCs using re-targeted, Ad35-pseudotyped Ad vectors may represent a promising virotherapy for ovarian cancer.
Collapse
Affiliation(s)
- S L Hulin-Curtis
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - H Uusi-Kerttula
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - R Jones
- Velindre Cancer Centre, Cardiff, UK
| | - L Hanna
- Velindre Cancer Centre, Cardiff, UK
| | - J D Chester
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK.,Velindre Cancer Centre, Cardiff, UK
| | - A L Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
242
|
Ruigrok MJR, Frijlink HW, Hinrichs WLJ. Pulmonary administration of small interfering RNA: The route to go? J Control Release 2016; 235:14-23. [PMID: 27235976 DOI: 10.1016/j.jconrel.2016.05.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 12/11/2022]
Abstract
Ever since the discovery of RNA interference (RNAi), which is a post-transcriptional gene silencing mechanism, researchers have been studying the therapeutic potential of using small interfering RNA (siRNA) to treat diseases that are characterized by excessive gene expression. Excessive gene expression can be particularly harmful if it occurs in a vulnerable organ such as the lungs as they are essential for physiological respiration. Consequently, RNAi could offer an approach to treat such lung diseases. Parenteral administration of siRNA has been shown to be difficult due to degradation by nucleases in the systemic circulation and excretion by the kidneys. To avoid these issues and to achieve local delivery and local effects, pulmonary administration has been proposed as an alternative administration route. Regarding this application, various animal studies have been conducted over the past few years. Therefore, this review presents a critical analysis of publications where pulmonary administration of siRNA in animals has been reported. Such an analysis is necessary to determine the feasibility of this administration route and to define directions for future research. First, we provide background information on lungs, pulmonary administration, and delivery vectors. Thereafter, we present and discuss relevant animal studies. Though nearly all publications reported positive outcomes, several reoccurring challenges were identified. They relate to 1) the necessity, efficacy, and safety of delivery vectors, 2) the biodistribution of siRNA in tissues other than the lungs, 3) the poor correlation between in vitro and in vivo models, and 4) the long-term effects upon (repeated) administration of siRNA. Finally, we present recommendations for future research to define the route to go: towards safer and more effective pulmonary administration of siRNA.
Collapse
Affiliation(s)
- M J R Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - H W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - W L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
243
|
Abstract
Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.
Collapse
Affiliation(s)
- Zahid Delwar
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaixin Zhang
- Department of Urology, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul S Rennie
- Prostate Research Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
244
|
Chimeric adeno-associated virus and bacteriophage: a potential targeted gene therapy vector for malignant glioma. Ther Deliv 2016; 5:975-90. [PMID: 25375341 DOI: 10.4155/tde.14.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The incipient development of gene therapy for cancer has fuelled its progression from bench to bedside in mere decades. Of all malignancies that exist, gliomas are the largest class of brain tumors, and are renowned for their aggressiveness and resistance to therapy. In order for gene therapy to achieve clinical success, a multitude of barriers ranging from glioma tumor physiology to vector biology must be overcome. Many viral gene delivery systems have been subjected to clinical investigation; however, with highly limited success. In this review, the current progress and challenges of gene therapy for malignant glioma are discussed. Moreover, we highlight the hybrid adeno-associated virus and bacteriophage vector as a potential candidate for targeted gene delivery to brain tumors.
Collapse
|
245
|
Kim N, Duncan GA, Hanes J, Suk JS. Barriers to inhaled gene therapy of obstructive lung diseases: A review. J Control Release 2016; 240:465-488. [PMID: 27196742 DOI: 10.1016/j.jconrel.2016.05.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
Knowledge of genetic origins of obstructive lung diseases has made inhaled gene therapy an attractive alternative to the current standards of care that are limited to managing disease symptoms. Initial lung gene therapy clinical trials occurred in the early 1990s following the discovery of the genetic defect responsible for cystic fibrosis (CF), a monogenic disorder. However, despite over two decades of intensive effort, gene therapy has yet to help patients with CF or any other obstructive lung disease. The slow progress is due in part to poor understanding of the biological barriers to inhaled gene therapy. Encouragingly, clinical trials have shown that inhaled gene therapy with various viral vectors and non-viral gene vectors is well tolerated by patients, and continued research has provided valuable lessons and resources that may lead to future success of this therapeutic strategy. In this review, we first introduce representative obstructive lung diseases and examine limitations of currently available therapeutic options. We then review key components for successful execution of inhaled gene therapy, including gene delivery systems, primary physiological barriers and strategies to overcome them, and advances in preclinical disease models with which the most promising systems may be identified for human clinical trials.
Collapse
Affiliation(s)
- Namho Kim
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregg A Duncan
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Environmental and Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
246
|
GUO ZHENGRONG, PENG HUANYAN, KANG JIWEN, SUN DIANXING. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomed Rep 2016; 4:528-534. [PMID: 27123243 PMCID: PMC4840506 DOI: 10.3892/br.2016.639] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/09/2016] [Indexed: 01/09/2023] Open
Abstract
Cell-penetrating peptides (CPPs), also known as protein transduction domains, are a class of diverse peptides with 5-30 amino acids. CPPs are divided into cationic, amphipathic and hydrophobic CPPs. They are able to carry small molecules, plasmid DNA, small interfering RNA, proteins, viruses, imaging agents and other various nanoparticles across the cellular membrane, resulting in internalization of the intact cargos. However, the mechanisms of CPP internalization remain to be elucidated. Recently, CPPs have received considerable attention due to their high transduction efficiency and low cytotoxicity. These peptides have a significant potential for diagnostic and therapeutic applications, such as delivery of fluorescent or radioactive compounds for imaging, delivery of peptides and proteins for therapeutic application, and delivery of molecules into induced pluripotent stem cells for directing differentiation. The present study reviews the classifications and transduction mechanisms of CPPs, as well as their potential applications.
Collapse
Affiliation(s)
- ZHENGRONG GUO
- The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
- Department of Gastroenterology, The First Hospital of Shijiazhuang City, Shijiazhuang, Hebei 050011, P.R. China
| | - HUANYAN PENG
- The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
- Hebei Medical University Graduate School, Shijiazhuang, Hebei 050017, P.R. China
| | - JIWEN KANG
- The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - DIANXING SUN
- The Liver Diseases Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| |
Collapse
|
247
|
Berman M, Mattheolabakis G, Suresh M, Amiji M. Reversing epigenetic mechanisms of drug resistance in solid tumors using targeted microRNA delivery. Expert Opin Drug Deliv 2016; 13:987-98. [DOI: 10.1080/17425247.2016.1178236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Melissa Berman
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - George Mattheolabakis
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Megha Suresh
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
248
|
Liu ZJ, Daftarian P, Kovalski L, Wang B, Tian R, Castilla DM, Dikici E, Perez VL, Deo S, Daunert S, Velazquez OC. Directing and Potentiating Stem Cell-Mediated Angiogenesis and Tissue Repair by Cell Surface E-Selectin Coating. PLoS One 2016; 11:e0154053. [PMID: 27104647 PMCID: PMC4841581 DOI: 10.1371/journal.pone.0154053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/07/2016] [Indexed: 01/12/2023] Open
Abstract
Stem cell therapy has emerged as a promising approach for treatment of a number of diseases, including delayed and non-healing wounds. However, targeted systemic delivery of therapeutic cells to the dysfunctional tissues remains one formidable challenge. Herein, we present a targeted nanocarrier-mediated cell delivery method by coating the surface of the cell to be delivered with dendrimer nanocarriers modified with adhesion molecules. Infused nanocarrier-coated cells reach to destination via recognition and association with the counterpart adhesion molecules highly or selectively expressed on the activated endothelium in diseased tissues. Once anchored on the activated endothelium, nanocarriers-coated transporting cells undergo transendothelial migration, extravasation and homing to the targeted tissues to execute their therapeutic role. We now demonstrate feasibility, efficacy and safety of our targeted nanocarrier for delivery of bone marrow cells (BMC) to cutaneous wound tissues and grafted corneas and its advantages over conventional BMC transplantation in mouse models for wound healing and neovascularization. This versatile platform is suited for targeted systemic delivery of virtually any type of therapeutic cell.
Collapse
Affiliation(s)
- Zhao-Jun Liu
- Department of Surgery, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Pirouz Daftarian
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
- Dr. JT Macdonald Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Letícia Kovalski
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Bo Wang
- Department of Surgery, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Runxia Tian
- Department of Surgery, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Diego M. Castilla
- Department of Surgery, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Victor L. Perez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
- Dr. JT Macdonald Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida, 33136, United States of America
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
- Dr. JT Macdonald Biomedical Nanotechnology Institute, University of Miami, Coral Gables, Florida, 33136, United States of America
- * E-mail: (OV); (SD)
| | - Omaida C. Velazquez
- Department of Surgery, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Miami, Coral Gables, Florida, 33136, United States of America
- * E-mail: (OV); (SD)
| |
Collapse
|
249
|
El-Shamayleh Y, Ni AM, Horwitz GD. Strategies for targeting primate neural circuits with viral vectors. J Neurophysiol 2016; 116:122-34. [PMID: 27052579 PMCID: PMC4961743 DOI: 10.1152/jn.00087.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/05/2016] [Indexed: 11/22/2022] Open
Abstract
Understanding how the brain works requires understanding how different types of neurons contribute to circuit function and organism behavior. Progress on this front has been accelerated by optogenetics and chemogenetics, which provide an unprecedented level of control over distinct neuronal types in small animals. In primates, however, targeting specific types of neurons with these tools remains challenging. In this review, we discuss existing and emerging strategies for directing genetic manipulations to targeted neurons in the adult primate central nervous system. We review the literature on viral vectors for gene delivery to neurons, focusing on adeno-associated viral vectors and lentiviral vectors, their tropism for different cell types, and prospects for new variants with improved efficacy and selectivity. We discuss two projection targeting approaches for probing neural circuits: anterograde projection targeting and retrograde transport of viral vectors. We conclude with an analysis of cell type-specific promoters and other nucleotide sequences that can be used in viral vectors to target neuronal types at the transcriptional level.
Collapse
Affiliation(s)
- Yasmine El-Shamayleh
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Seattle, Washington; and
| | - Amy M Ni
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gregory D Horwitz
- Department of Physiology and Biophysics and Washington National Primate Research Center, University of Washington, Seattle, Washington; and
| |
Collapse
|
250
|
|