201
|
Kim KY, Cho EH, Yoon M, Kim MG. Critical Adjuvant Influences on Preventive Anti-Metastasis Vaccine Using a Structural Epitope Derived from Membrane Type Protease PRSS14. Immune Netw 2020; 20:e33. [PMID: 32895620 PMCID: PMC7458796 DOI: 10.4110/in.2020.20.e33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 01/04/2023] Open
Abstract
We tested how adjuvants effect in a cancer vaccine model using an epitope derived from an autoactivation loop of membrane-type protease serine protease 14 (PRSS14; loop metavaccine) in mouse mammary tumor virus (MMTV)-polyoma middle tumor-antigen (PyMT) system and in 2 other orthotopic mouse systems. Earlier, we reported that loop metavaccine effectively prevented progression and metastasis regardless of adjuvant types and TH types of hosts in tail-vein injection systems. However, the loop metavaccine with Freund's complete adjuvant (CFA) reduced cancer progression and metastasis while that with alum, to our surprise, were adversely affected in 3 tumor bearing mouse models. The amounts of loop peptide specific antibodies inversely correlated with tumor burden and metastasis, meanwhile both TH1 and TH2 isotypes were present regardless of host type and adjuvant. Tumor infiltrating myeloid cells such as eosinophil, monocyte, and neutrophil were asymmetrically distributed among 2 adjuvant groups with loop metavaccine. Systemic expression profiling using the lymph nodes of the differentially immunized MMTV-PyMT mouse revealed that adjuvant types, as well as loop metavaccine can change the immune signatures. Specifically, loop metavaccine itself induces TH2 and TH17 responses but reduces TH1 and Treg responses regardless of adjuvant type, whereas CFA but not alum increased follicular TH response. Among the myeloid signatures, eosinophil was most distinct between CFA and alum. Survival analysis of breast cancer patients showed that eosinophil chemokines can be useful prognostic factors in PRSS14 positive patients. Based on these observations, we concluded that multiple immune parameters are to be considered when applying a vaccine strategy to cancer patients.
Collapse
Affiliation(s)
- Ki Yeon Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Eun Hye Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Minsang Yoon
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Moon Gyo Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| |
Collapse
|
202
|
Modi T, Gervais D, Smith S, Miller J, Subramaniam S, Thalassinos K, Shepherd A. Characterization of the UK anthrax vaccine and human immunogenicity. Hum Vaccin Immunother 2020; 17:747-758. [PMID: 32897798 PMCID: PMC7993152 DOI: 10.1080/21645515.2020.1799668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The manufacture of the UK Anthrax vaccine (AVP) focuses on the production of Protective Antigen (PA) from the Bacillus anthracis Sterne strain. Although used for decades, several of AVP’s fundamental properties are poorly understood, including its exact composition, the extent to which proteins other than PA may contribute to protection, and whether the degree of protection varies between individuals. This study involved three innovative investigations. Firstly, the composition of AVP was analyzed using liquid chromatography tandem mass-spectrometry (LC-MS/MS), requiring the development of a novel desorption method for releasing B. anthracis proteins from the vaccine’s aluminum-containing adjuvant. Secondly, computational MHC-binding predictions using NetMHCIIpan were made for the eight most abundant proteins of AVP, for the commonest HLA alleles in multiple ethnic groups, and for multiple B. anthracis strains. Thirdly, antibody levels and toxin neutralizing antibody (TNA) levels were measured in sera from AVP human vaccinees for both PA and Lethal Factor (LF). It was demonstrated that AVP is composed of at least 138 B. anthracis proteins, including PA (65%), LF (8%) and Edema Factor (EF) (3%), using LC-MS/MS. NetMHCIIpan predicted that peptides from all eight abundant proteins are likely to be presented to T cells, a pre-requisite for protection; however, the number of such peptides varied considerably between different HLA alleles. These analyses highlight two important properties of the AVP vaccine that have not been established previously. Firstly, the effectiveness of AVP within humans may not depend on PA alone; there is compelling evidence to suggest that LF has a protective role, with computational predictions suggesting that additional proteins may be important for individuals with specific HLA allele combinations. Secondly, in spite of differences in the sequences of key antigenic proteins from different B. anthracis strains, these are unlikely to affect the cross-strain protection afforded by AVP.
Collapse
Affiliation(s)
- Tapasvi Modi
- Porton Biopharma Limited, Development, Porton Down, Salisbury, Wiltshire, UK
| | - David Gervais
- Porton Biopharma Limited, Development, Porton Down, Salisbury, Wiltshire, UK
| | - Stuart Smith
- Porton Biopharma Limited, Development, Porton Down, Salisbury, Wiltshire, UK
| | - Julie Miller
- Porton Biopharma Limited, Development, Porton Down, Salisbury, Wiltshire, UK
| | - Shaan Subramaniam
- Institute of Structural and Molecular Biology, Division of Biosciences, Darwin Building Room 101A, University College London, London, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, Darwin Building Room 101A, University College London, London, UK.,Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Adrian Shepherd
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| |
Collapse
|
203
|
Xu H, Alzhrani RF, Warnken ZN, Thakkar SG, Zeng M, Smyth HDC, Williams RO, Cui Z. Immunogenicity of Antigen Adjuvanted with AS04 and Its Deposition in the Upper Respiratory Tract after Intranasal Administration. Mol Pharm 2020; 17:3259-3269. [PMID: 32787271 DOI: 10.1021/acs.molpharmaceut.0c00372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adjuvant system 04 (AS04) is in injectable human vaccines. AS04 contains two known adjuvants, 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and insoluble aluminum salts. Data from previous studies showed that both MPL and insoluble aluminum salts have nasal mucosal vaccine adjuvant activity. The present study was designed to test the feasibility of using AS04 as an adjuvant to help nasally administered antigens to induce specific mucosal and systemic immunity as well as to evaluate the deposition of antigens in the upper respiratory tract when adjuvanted with AS04. Alhydrogel, an aluminum (oxy)hydroxide suspension, was mixed with MPL to form AS04, which was then mixed with ovalbumin (OVA) or 3× M2e-HA2, a synthetic influenza virus hemagglutinin fusion protein, as an antigen to prepare OVA/AS04 and 3× M2e-HA2/AS04 vaccines, respectively. In mice, AS04 enabled antigens, when given intranasally, to induce specific IgA response in nasal and lung mucosal secretions as well as specific IgG response in the serum samples of the immunized mice, whereas subcutaneous injection of the same vaccine induced specific antibody responses only in the serum samples but not in the mucosal secretions. Splenocytes isolated from mice intranasally immunized with the OVA/AS04 also proliferated and released cytokines (i.e., IL-4 and IFN-γ) after in vitro stimulation with the antigen. In the immunogenicity test, intranasal OVA/AS04 was not more effective than intranasal OVA/MPL at the dosing regimens tested. However, when compared to OVA/MPL, OVA/AS04 showed a different atomized droplet size distribution and more importantly a more favorable OVA deposition profile when atomized into a nasal cast that was 3-D printed based on the computer tomography scan of the nose of a child. It is concluded that AS04 has mucosal adjuvant activity when given intranasally. In addition, there is a reason to be optimistic about using AS04 as an adjuvant to target an antigen of interest to the right region of the nasal cavity in humans for immune response induction.
Collapse
Affiliation(s)
- Haiyue Xu
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Riyad F Alzhrani
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary N Warnken
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sachin G Thakkar
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mingtao Zeng
- Department of Molecular and Translational Medicine, Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, United States
| | - Hugh D C Smyth
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Robert O Williams
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhengrong Cui
- College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
204
|
Gogoi H, Mansouri S, Jin L. The Age of Cyclic Dinucleotide Vaccine Adjuvants. Vaccines (Basel) 2020; 8:E453. [PMID: 32823563 PMCID: PMC7563944 DOI: 10.3390/vaccines8030453] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
As prophylactic vaccine adjuvants for infectious diseases, cyclic dinucleotides (CDNs) induce safe, potent, long-lasting humoral and cellular memory responses in the systemic and mucosal compartments. As therapeutic cancer vaccine adjuvants, CDNs induce potent anti-tumor immunity, including cytotoxic T cells and NK cells activation that achieve durable regression in multiple mouse models of tumors. Clinical trials are ongoing to fulfill the promise of CDNs (ClinicalTrials.gov: NCT02675439, NCT03010176, NCT03172936, and NCT03937141). However, in October 2018, the first clinical data with Merck's CDN MK-1454 showed zero activity as a monotherapy in patients with solid tumors or lymphomas (NCT03010176). Lately, the clinical trial from Aduro's CDN ADU-S100 monotherapy was also disappointing (NCT03172936). The emerging hurdle in CDN vaccine development calls for a timely re-evaluation of our understanding on CDN vaccine adjuvants. Here, we review the status of CDN vaccine adjuvant research, including their superior adjuvant activities, in vivo mode of action, and confounding factors that affect their efficacy in humans. Lastly, we discuss the strategies to overcome the hurdle and advance promising CDN adjuvants in humans.
Collapse
Affiliation(s)
| | | | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (H.G.); (S.M.)
| |
Collapse
|
205
|
Jauro S, C. Ndumnego O, Ellis C, Buys A, Beyer W, van Heerden H. Immunogenicity of Non-Living Anthrax Vaccine Candidates in Cattle and Protective Efficacy of Immune Sera in A/J Mouse Model Compared to the Sterne Live Spore Vaccine. Pathogens 2020; 9:pathogens9070557. [PMID: 32664259 PMCID: PMC7400155 DOI: 10.3390/pathogens9070557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
The Sterne live spore vaccine (SLSV, Bacillus anthracis strain 34F2) is the veterinary vaccine of choice against anthrax though contra-indicated for use with antimicrobials. However, the use of non-living anthrax vaccine (NLAV) candidates can overcome the SLSV limitation. In this study, cattle were vaccinated with either of the NLAV (purified recombinant PA (PrPA) or crude rPA (CrPA) and formaldehyde-inactivated spores (FIS of B. anthracis strain 34F2) and emulsigen-D®/alhydrogel® adjuvants) or SLSV. The immunogenicity of the NLAV and SLSV was assessed and the protective efficacies evaluated using a passive immunization mouse model. Polyclonal IgG (including the IgG1 subset) and IgM responses increased significantly across all vaccination groups after the first vaccination. Individual IgG subsets titres peaked significantly with all vaccines used after the second vaccination at week 5 and remained significant at week 12 when compared to week 0. The toxin neutralization (TNA) titres of the NLAV vaccinated cattle groups showed similar trends to those observed with the ELISA titres, except that the former were lower, but still significant, when compared to week 0. The opsonophagocytic assay indicated good antibody opsonizing responses with 75% (PrPA+FIS), 66% (CrPA+FIS) and 80% (SLSV) phagocytosis following spores opsonization. In the passive protection test, A/J mice transfused with purified IgG from cattle vaccinated with PrPA+FIS+Emulsigen-D®/Alhydrogel® and SLSV had 73% and 75% protection from challenge with B. anthracis strain 34F2 spores, respectively, whereas IgG from cattle vaccinated with CrPA+FIS+Emulsigen-D®/Alhydrogel® offered insignificant protection of 20%. There was no difference in protective immune response in cattle vaccinated twice with either the PrPA+FIS or SLSV. Moreover, PrPA+FIS did not show any residual side effects in vaccinated cattle. These results suggest that the immunogenicity and protective efficacy induced by the NLAV (PrPA+FIS) in the cattle and passive mouse protection test, respectively, are comparable to that induced by the standard SLSV.
Collapse
Affiliation(s)
- Solomon Jauro
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa;
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600230, Nigeria
- Correspondence:
| | | | - Charlotte Ellis
- Design Biologix, Building 43b CSIR, Meiring Naude Road, Brummeria 0184, South Africa; (C.E.); (A.B.)
| | - Angela Buys
- Design Biologix, Building 43b CSIR, Meiring Naude Road, Brummeria 0184, South Africa; (C.E.); (A.B.)
| | - Wolfgang Beyer
- Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, Stuttgart 70599, Germany;
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa;
| |
Collapse
|
206
|
Yamamoto-Hanada K, Pak K, Saito-Abe M, Yang L, Sato M, Mezawa H, Sasaki H, Nishizato M, Konishi M, Ishitsuka K, Matsumoto K, Saito H, Ohya Y. Cumulative inactivated vaccine exposure and allergy development among children: a birth cohort from Japan. Environ Health Prev Med 2020; 25:27. [PMID: 32635895 PMCID: PMC7341599 DOI: 10.1186/s12199-020-00864-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/18/2020] [Indexed: 01/03/2023] Open
Abstract
Background Adjuvants used in inactivated vaccines often upregulate type 2 immunity, which is dominant in allergic diseases. We hypothesised that cumulative adjuvant exposure in infancy may influence the development of allergies later in life by changing the balance of type 1/type 2 immunity. We examined the relationship between immunisation with different vaccine types and later allergic disease development. Methods We obtained information regarding vaccinations and allergic diseases through questionnaires that were used in The Japan Environment and Children’s Study (JECS), which is a nationwide, multicentre, prospective birth cohort study that included 103,099 pregnant women and their children. We examined potential associations between the initial vaccination before 6 months of age and symptoms related to allergies at 12 months of age. Results Our statistical analyses included 56,277 children. Physician-diagnosed asthma was associated with receiving three (aOR 1.395, 95% CI 1.028–1.893) or four to five different inactivated vaccines (aOR 1.544, 95% CI 1.149–2.075), compared with children who received only one inactivated vaccine. Similar results were found for two questionnaire-based symptoms, i.e. wheeze (aOR 1.238, 95% CI 1.094–1.401; three vaccines vs. a single vaccine) and eczema (aOR 1.144, 95% CI 1.007–1.299; four or five vaccines vs. a single vaccine). Conclusions Our results, which should be cautiously interpreted, suggest that the prevalence of asthma, wheeze and eczema among children at 12 months of age might be related to the amount of inactivated vaccine exposure before 6 months of age. Future work should assess if this association is due to cumulative adjuvant exposure. Despite this possible association, we strongly support the global vaccination strategy and recommend that immunisations continue. Trial registration UMIN000030786.
Collapse
Affiliation(s)
- Kiwako Yamamoto-Hanada
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan. .,Medical Support Center for the Japan Environment and Children's Study, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Kyongsun Pak
- Division of Biostatistics, Department of Data Management, Center for Clinical Research and Development, National Center for Child Health and Development, Tokyo, Japan
| | - Mayako Saito-Abe
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan.,Medical Support Center for the Japan Environment and Children's Study, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Limin Yang
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan.,Medical Support Center for the Japan Environment and Children's Study, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Miori Sato
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan.,Medical Support Center for the Japan Environment and Children's Study, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hidetoshi Mezawa
- Medical Support Center for the Japan Environment and Children's Study, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hatoko Sasaki
- Medical Support Center for the Japan Environment and Children's Study, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Minaho Nishizato
- Medical Support Center for the Japan Environment and Children's Study, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mizuho Konishi
- Medical Support Center for the Japan Environment and Children's Study, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazue Ishitsuka
- Medical Support Center for the Japan Environment and Children's Study, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Medical Support Center for the Japan Environment and Children's Study, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Medical Support Center for the Japan Environment and Children's Study, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yukihiro Ohya
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan.,Medical Support Center for the Japan Environment and Children's Study, National Research Institute for Child Health and Development, Tokyo, Japan
| | | |
Collapse
|
207
|
Park H, Bang E, Hong JJ, Lee S, Ko HL, Kwak HW, Park H, Kang KW, Kim R, Ryu SR, Kim G, Oh H, Kim H, Lee K, Kim M, Kim SY, Kim J, El‐Baz K, Lee H, Song M, Jeong DG, Keum G, Nam J. Nanoformulated Single‐Stranded RNA‐Based Adjuvant with a Coordinative Amphiphile as an Effective Stabilizer: Inducing Humoral Immune Response by Activation of Antigen‐Presenting Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hyo‐Jung Park
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Eun‐Kyoung Bang
- Center for Neuro-Medicine Brain Science Institute Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center Korea Research Institute of Bioscience and Biotechnology Cheongju 28116 Republic of Korea
| | - Sang‐Myeong Lee
- Division of Biotechnology College of Environmental and Bioresource Sciences Jeonbuk National University Iksan 54596 Republic of Korea
- Korea Zoonosis Research Institute Jeonbuk National University Iksan 54531 Republic of Korea
| | - Hae Li Ko
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
- Present address: Scripps Korea Antibody Institute Chuncheon 24341 Republic of Korea
| | - Hye Won Kwak
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Hyelim Park
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Kyung Won Kang
- Division of Biotechnology College of Environmental and Bioresource Sciences Jeonbuk National University Iksan 54596 Republic of Korea
| | - Rhoon‐Ho Kim
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Seung Rok Ryu
- Division of Biotechnology College of Environmental and Bioresource Sciences Jeonbuk National University Iksan 54596 Republic of Korea
| | - Green Kim
- National Primate Research Center Korea Research Institute of Bioscience and Biotechnology Cheongju 28116 Republic of Korea
| | - Hanseul Oh
- National Primate Research Center Korea Research Institute of Bioscience and Biotechnology Cheongju 28116 Republic of Korea
| | - Hye‐Jung Kim
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Kyuri Lee
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Minjeong Kim
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Soo Young Kim
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Jae‐Ouk Kim
- Clinical Research Lab International Vaccine Institute, Seoul National University Research Park Seoul 08826 Republic of Korea
| | - Karim El‐Baz
- Center for Neuro-Medicine Brain Science Institute Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Hyukjin Lee
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Manki Song
- Clinical Research Lab International Vaccine Institute, Seoul National University Research Park Seoul 08826 Republic of Korea
| | - Dae Gwin Jeong
- Infectious Diseases Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
| | - Gyochang Keum
- Center for Neuro-Medicine Brain Science Institute Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Jae‐Hwan Nam
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| |
Collapse
|
208
|
Nitric Oxide Production and Fc Receptor-Mediated Phagocytosis as Functional Readouts of Macrophage Activity upon Stimulation with Inactivated Poultry Vaccines In Vitro. Vaccines (Basel) 2020; 8:vaccines8020332. [PMID: 32580391 PMCID: PMC7350413 DOI: 10.3390/vaccines8020332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Vaccine batches must pass routine quality control to confirm that their ability to induce protection against disease is consistent with batches of proven efficacy from development studies. For poultry vaccines, these tests are often performed in laboratory chickens by vaccination-challenge trials or serological assays. The aim of this study was to investigate innate immune responses against inactivated poultry vaccines and identify candidate immune parameters for in vitro quality tests as alternatives for animal-based quality tests. For this purpose, we set up assays to measure nitric oxide production and phagocytosis by the macrophage-like cell line HD11, upon stimulation with inactivated poultry vaccines for infectious bronchitis virus (IBV), Newcastle disease virus (NDV), and egg drop syndrome virus (EDSV). In both assays, macrophages became activated after stimulation with various toll-like receptor agonists. Inactivated poultry vaccines stimulated HD11 cells to produce nitric oxide due to the presence of mineral oil adjuvant. Moreover, inactivated poultry vaccines were found to enhance Fc receptor-mediated phagocytosis due to the presence of allantoic fluid in the vaccine antigen preparations. We showed that inactivated poultry vaccines stimulated nitric oxide production and Fc receptor-mediated phagocytosis by chicken macrophages. Similar to antigen quantification methods, the cell-based assays described here can be used for future assessment of vaccine batch-to-batch consistency. The ability of the assays to determine the immunopotentiating properties of inactivated poultry vaccines provides an additional step in the replacement of current in vivo batch-release quality tests.
Collapse
|
209
|
Sepulveda-Crespo D, Resino S, Martinez I. Innate Immune Response against Hepatitis C Virus: Targets for Vaccine Adjuvants. Vaccines (Basel) 2020; 8:vaccines8020313. [PMID: 32560440 PMCID: PMC7350220 DOI: 10.3390/vaccines8020313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Despite successful treatments, hepatitis C virus (HCV) infections continue to be a significant world health problem. High treatment costs, the high number of undiagnosed individuals, and the difficulty to access to treatment, particularly in marginalized susceptible populations, make it improbable to achieve the global control of the virus in the absence of an effective preventive vaccine. Current vaccine development is mostly focused on weakly immunogenic subunits, such as surface glycoproteins or non-structural proteins, in the case of HCV. Adjuvants are critical components of vaccine formulations that increase immunogenic performance. As we learn more information about how adjuvants work, it is becoming clear that proper stimulation of innate immunity is crucial to achieving a successful immunization. Several hepatic cell types participate in the early innate immune response and the subsequent inflammation and activation of the adaptive response, principally hepatocytes, and antigen-presenting cells (Kupffer cells, and dendritic cells). Innate pattern recognition receptors on these cells, mainly toll-like receptors, are targets for new promising adjuvants. Moreover, complex adjuvants that stimulate different components of the innate immunity are showing encouraging results and are being incorporated in current vaccines. Recent studies on HCV-vaccine adjuvants have shown that the induction of a strong T- and B-cell immune response might be enhanced by choosing the right adjuvant.
Collapse
Affiliation(s)
| | - Salvador Resino
- Correspondence: (S.R.); (I.M.); Tel.: +34-91-8223266 (S.R.); +34-91-8223272 (I.M.); Fax: +34-91-5097919 (S.R. & I.M.)
| | - Isidoro Martinez
- Correspondence: (S.R.); (I.M.); Tel.: +34-91-8223266 (S.R.); +34-91-8223272 (I.M.); Fax: +34-91-5097919 (S.R. & I.M.)
| |
Collapse
|
210
|
Nguyen QT, Kim E, Yang J, Lee C, Ha DH, Lee CG, Lee YR, Poo H. E. coli-Produced Monophosphoryl Lipid a Significantly Enhances Protective Immunity of Pandemic H1N1 Vaccine. Vaccines (Basel) 2020; 8:vaccines8020306. [PMID: 32560094 PMCID: PMC7350214 DOI: 10.3390/vaccines8020306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
Emerging influenza viruses pose an extreme global risk to human health, resulting in an urgent need for effective vaccination against influenza infection. Adjuvants are vital components that can improve vaccine efficacy, yet only a few adjuvants have been licensed in human vaccines. Here, we investigate the adjuvant effects of Escherichia coli-produced monophosphoryl lipid A (MPL), named EcML, in enhancing the immunogenicity and efficacy of an influenza vaccine. Similar to MPL, EcML activated dendritic cells and enhanced the antigen processing of cells in vitro. Using ovalbumin (OVA) as a model antigen, EcML increased OVA-specific antibody production, cytotoxic T lymphocyte activity. The safety of EcML was demonstrated as being similar to that of MPL by showing not significant in vitro cell cytotoxicity but transient systemic inflammatory responses within 24 h in OVA immunized mice. Importantly, mice vaccinated with pandemic H1N1 (pH1N1) vaccine antigen, combined with EcML, were fully protected from pH1N1 virus infection by enhanced influenza-specific antibody titers, hemagglutination inhibition titers, and IFN-γ- secreting cells. Taken together, our results strongly suggest that EcML might be a promising vaccine adjuvant for preventing influenza virus infection.
Collapse
Affiliation(s)
- Quyen Thi Nguyen
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (Q.T.N.); (E.K.); (J.Y.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Eunjin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (Q.T.N.); (E.K.); (J.Y.)
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (Q.T.N.); (E.K.); (J.Y.)
| | - Chankyu Lee
- Eubiologics. Co., Ltd., V Plant, Gangwon-do 24410, Korea; (C.L.); (D.H.H.); (C.G.L.); (Y.R.L.)
| | - Da Hui Ha
- Eubiologics. Co., Ltd., V Plant, Gangwon-do 24410, Korea; (C.L.); (D.H.H.); (C.G.L.); (Y.R.L.)
| | - Choon Geun Lee
- Eubiologics. Co., Ltd., V Plant, Gangwon-do 24410, Korea; (C.L.); (D.H.H.); (C.G.L.); (Y.R.L.)
| | - Ye Ram Lee
- Eubiologics. Co., Ltd., V Plant, Gangwon-do 24410, Korea; (C.L.); (D.H.H.); (C.G.L.); (Y.R.L.)
| | - Haryoung Poo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (Q.T.N.); (E.K.); (J.Y.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-42-860-4157
| |
Collapse
|
211
|
Ma J, Wang B, Yu L, Song B, Yu Y, Wu S, Dong Y, Zhu Z, Cui Y. The novel combinations of CTB, CpG, and aluminum hydroxide significantly enhanced the immunogenicity of clumping factor A 221-550 of Staphylococcus aureus. Biosci Biotechnol Biochem 2020; 84:1846-1855. [PMID: 32501144 DOI: 10.1080/09168451.2020.1771170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Here, we prepared the novel combined adjuvants, CTB as intra-molecular adjuvant, CpG and aluminum hydroxide (Alum) to strengthen the immunogenicity of clumping factor A221-550 of Staphylococcus aureus (S. aureus). The protein-immunoactive results showed CTB-ClfA221-550 elicited the strong immune responses to serum from mice immunized with CTB and ClfA221-550, respectively. The mice immunized with CTB-ClfA221-550 plus CpG and Alum adjuvant exhibited significantly stronger CD4+ T cell responses for IFN-γ, IL-2, IL-4, and IL-17 and displayed the higher proliferation response of splenic lymphocytes than the control groups, in addition, these mice generated the strongest humoral immune response against ClfA221-550 among all groups. Our results also showed CTB-ClfA221-550 plus CpG and Alum adjuvant obviously increased the survival percentage of the mice challenged by S. aureus. These data suggested that the novel combined adjuvants, CTB, CpG, and Alum, significantly enhance the immune responses triggered with ClfA221-550, and could provide a new approach against infection of S. aureus. ABBREVIATIONS CTB: Cholera Toxin B; CpG: Cytosine preceding Guanosine; ODN: Oligodeoxynucleotides; Alum: Aluminum hydroxide; TRAP: Target of RNAIII-activating Protein; TLR9: Toll-like Receptor 9; TMB: 3, 3', 5, 5'-tetramethylbenzidine; mAbs: Monoclonal Antibodies; OD: Optical Densities; S. aureus: Staphylococcus aureus; ClfA: Clumping factor A; FnBPA: Fibronection-binding protein A; IsdB: Iron-regulated surface determinant B; SasA: Staphylococcus aureus Surface Protein A; GapC: Glycer-aldehyde-3-phosphate dehydrogenase-C.
Collapse
Affiliation(s)
- Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Beiyan Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Liquan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Baifen Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Yongzhong Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Shuangshuang Wu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Yazun Dong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University , Daqing, China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University , Daqing, China
| |
Collapse
|
212
|
Arif S, Gomez-Tourino I, Kamra Y, Pujol-Autonell I, Hanton E, Tree T, Melandri D, Hull C, Wherrett DK, Beam C, Roep BO, Lorenc A, Peakman M. GAD-alum immunotherapy in type 1 diabetes expands bifunctional Th1/Th2 autoreactive CD4 T cells. Diabetologia 2020; 63:1186-1198. [PMID: 32248243 PMCID: PMC7228993 DOI: 10.1007/s00125-020-05130-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/18/2020] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS Antigen-specific therapy aims to modify inflammatory T cell responses in type 1 diabetes and restore immune tolerance. One strategy employs GAD65 conjugated to aluminium hydroxide (GAD-alum) to take advantage of the T helper (Th)2-biasing adjuvant properties of alum and thereby regulate pathological Th1 autoimmunity. We explored the cellular and molecular mechanism of GAD-alum action in the setting of a previously reported randomised placebo-controlled clinical trial conducted by Type 1 Diabetes TrialNet. METHODS In the clinical trial conducted by Type 1 Diabetes TrialNet, participants were immunised with 20 μg GAD-alum (twice or three times) or alum alone and peripheral blood mononuclear cell samples were banked at baseline and post treatment. In the present study, GAD-specific T cell responses were measured in these samples and GAD-specific T cell lines and clones were generated, which were then further characterised. RESULTS At day 91 post immunisation, we detected GAD-specific IL-13+ CD4 T cell responses significantly more frequently in participants immunised with GAD-alum (71% and 94% treated twice or three times, respectively) compared with those immunised with alum alone (38%; p = 0.003 and p = 0.0002, respectively) accompanied by high secreted levels of IL-13, IL-4 and IL-5, confirming a GAD-specific, GAD-alum-induced Th2 response. Of note, GAD-specific, IL-13+ CD4 T cells observed after immunisation co-secreted IFN-γ, displaying a bifunctional Th1/Th2 phenotype. Single-cell transcriptome analysis identified IL13 and IFNG expression in concert with the canonical Th2 and Th1 transcription factor genes GATA3 and TBX21, respectively. T cell receptor β-chain (TCRB) CDR3 regions of GAD-specific bifunctional T cells were identified in circulating naive and central memory CD4 T cell pools of non-immunised participants with new-onset type 1 diabetes and healthy individuals, suggesting the potential for bifunctional responses to be generated de novo by GAD-alum immunisation or via expansion from an existing public repertoire. CONCLUSIONS/INTERPRETATION GAD-alum immunisation activates and propagates GAD-specific CD4 T cells with a distinctive bifunctional phenotype, the functional analysis of which might be important in understanding therapeutic responses.
Collapse
Affiliation(s)
- Sefina Arif
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Iria Gomez-Tourino
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Yogesh Kamra
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Irma Pujol-Autonell
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Emily Hanton
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Timothy Tree
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Daisy Melandri
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Caroline Hull
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Diane K Wherrett
- Division of Endocrinology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Craig Beam
- Homer Stryker MD School of Medicine, Western Michigan University, Kalamazoo, MI, USA
| | - Bart O Roep
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Anna Lorenc
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Mark Peakman
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK.
- King's Health Partners Institute of Diabetes, Endocrinology and Obesity, King's College Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
213
|
Chou YJ, Lin CC, Dzhagalov I, Chen NJ, Lin CH, Lin CC, Chen ST, Chen KH, Fu SL. Vaccine adjuvant activity of a TLR4-activating synthetic glycolipid by promoting autophagy. Sci Rep 2020; 10:8422. [PMID: 32439945 PMCID: PMC7242473 DOI: 10.1038/s41598-020-65422-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/20/2020] [Indexed: 11/09/2022] Open
Abstract
Toll-like receptors (TLRs) play crucial roles in host immune defenses. Recently, TLR-mediated autophagy is reported to promote immune responses via increasing antigen processing and presentation in antigen presenting cells. The present study examined whether the synthetic TLR4 activator (CCL-34) could induce autophagy to promote innate and adaptive immunity. In addition, the potential of CCL-34 as an immune adjuvant in vivo was also investigated. Our data using RAW264.7 cells and bone marrow-derived macrophages showed that CCL-34 induced autophagy through a TLR4-NF-κB pathway. The autophagy-related molecules (Nrf2, p62 and Beclin 1) were activated in RAW264.7 cells and bone marrow-derived macrophages under CCL-34 treatment. CCL-34-stimulated macrophages exhibited significant antigen-processing activity and induced the proliferation of antigen-specific CD4+T cells as well as the production of activated T cell-related cytokines, IL-2 and IFN-γ. Furthermore, CCL-34 immunization in mice induced infiltration of monocytes in the peritoneal cavity and elevation of antigen-specific IgG in the serum. CCL-34 treatment in vivo did not cause toxicity based on serum biochemical profiles. Notably, the antigen-specific responses induced by CCL-34 were attenuated by the autophagy inhibitor, 3-methyladenine. In summary, we demonstrated CCL-34 can induce autophagy to promote antigen-specific immune responses and act as an efficient adjuvant.
Collapse
Affiliation(s)
- Yi-Ju Chou
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University and Academia Sinica, Taipei, 11221, Taiwan
| | - Ching-Cheng Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ivan Dzhagalov
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Nien-Jung Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Szu-Ting Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Kuo-Hsin Chen
- Department of Surgery, Far-Eastern Memorial Hospital, New Taipei City, 22060, Taiwan.
| | - Shu-Ling Fu
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University and Academia Sinica, Taipei, 11221, Taiwan. .,Institute of Traditional Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.
| |
Collapse
|
214
|
Park HJ, Bang EK, Hong JJ, Lee SM, Ko HL, Kwak HW, Park H, Kang KW, Kim RH, Ryu SR, Kim G, Oh H, Kim HJ, Lee K, Kim M, Kim SY, Kim JO, El-Baz K, Lee H, Song M, Jeong DG, Keum G, Nam JH. Nanoformulated Single-Stranded RNA-Based Adjuvant with a Coordinative Amphiphile as an Effective Stabilizer: Inducing Humoral Immune Response by Activation of Antigen-Presenting Cells. Angew Chem Int Ed Engl 2020; 59:11540-11549. [PMID: 32239636 DOI: 10.1002/anie.202002979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Indexed: 12/29/2022]
Abstract
As agonists of TLR7/8, single-stranded RNAs (ssRNAs) are safe and promising adjuvants that do not cause off-target effects or innate immune overactivation. However, low stability prevents them from mounting sufficient immune responses. This study evaluates the adjuvant effects of ssRNA derived from the cricket paralysis virus intergenic region internal ribosome entry site, formulated as nanoparticles with a coordinative amphiphile, containing a zinc/dipicolylamine complex moiety as a coordinative phosphate binder, as a stabilizer for RNA-based adjuvants. The nanoformulated ssRNA adjuvant was resistant to enzymatic degradation in vitro and in vivo, and that with a coordinative amphiphile bearing an oleyl group (CA-O) was approximately 100 nm, promoted effective recognition, and improved activation of antigen-presenting cells, leading to better induction of neutralizing antibodies following single immunization. Hence, CA-O may increase the efficacy of ssRNA-based adjuvants, proving useful to meet the urgent need for vaccines during pathogen outbreaks.
Collapse
Affiliation(s)
- Hyo-Jung Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Eun-Kyoung Bang
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea.,Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Hae Li Ko
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.,Present address: Scripps Korea Antibody Institute, Chuncheon, 24341, Republic of Korea
| | - Hye Won Kwak
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hyelim Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Rhoon-Ho Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Seung Rok Ryu
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Green Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Hanseul Oh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Hye-Jung Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Minjeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Soo Young Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jae-Ouk Kim
- Clinical Research Lab, International Vaccine Institute, Seoul National, University Research Park, Seoul, 08826, Republic of Korea
| | - Karim El-Baz
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Manki Song
- Clinical Research Lab, International Vaccine Institute, Seoul National, University Research Park, Seoul, 08826, Republic of Korea
| | - Dae Gwin Jeong
- Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Gyochang Keum
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| |
Collapse
|
215
|
Schussek S, Bernasconi V, Mattsson J, Wenzel UA, Strömberg A, Gribonika I, Schön K, Lycke NY. The CTA1-DD adjuvant strongly potentiates follicular dendritic cell function and germinal center formation, which results in improved neonatal immunization. Mucosal Immunol 2020; 13:545-557. [PMID: 31959882 PMCID: PMC7223721 DOI: 10.1038/s41385-020-0253-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/04/2023]
Abstract
Vaccination of neonates and young infants is hampered by the relative immaturity of their immune systems and the lack of safe and efficacious vaccine adjuvants. Immaturity of the follicular dendritic cells (FDCs), in particular, appears to play a critical role for the inability to stimulate immune responses. Using the CD21mT/mG mouse model we found that at 7 days of life, FDCs exhibited a mature phenotype only in the Peyer´s patches (PP), but our unique adjuvant, CTA1-DD, effectively matured FDCs also in peripheral lymph nodes following systemic, as well as mucosal immunizations. This was a direct effect of complement receptor 2-binding to the FDC and a CTA1-enzyme-dependent enhancing effect on gene transcription, among which CR2, IL-6, ICAM-1, IL-1β, and CXCL13 encoding genes were upregulated. This way we achieved FDC maturation, increased germinal center B-cell- and Tfh responses, and enhanced specific antibody levels close to adult magnitudes. Oral priming immunization of neonates against influenza infection with CTA1-3M2e-DD effectively promoted anti-M2e-immunity and significantly reduced morbidity against a live virus challenge infection. To the best of our knowledge, this is the first study to demonstrate direct effects of an adjuvant on FDC gene transcriptional functions and the subsequent enhancement of neonatal immune responses.
Collapse
Affiliation(s)
- Sophie Schussek
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Bernasconi
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Mattsson
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Alexander Wenzel
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anneli Strömberg
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Inta Gribonika
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nils Y Lycke
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
216
|
Sisteré-Oró M, Pedersen GK, Córdoba L, López-Serrano S, Christensen D, Darji A. Influenza NG-34 T cell conserved epitope adjuvanted with CAF01 as a possible influenza vaccine candidate. Vet Res 2020; 51:57. [PMID: 32312317 PMCID: PMC7168942 DOI: 10.1186/s13567-020-00770-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
Conserved epitopes are targets commonly researched to be part of universal vaccine candidates against influenza viruses (IV). These conserved epitopes need to be cross-protecting against distinct IV subtypes and to have a strong immunogenic potential. Nevertheless, subunit vaccines generally require a strong adjuvant to enhance their immunological effects. Herewith, we compare four different adjuvants differing in their immunological signatures that may enhance efficacy of a conserved hemagglutinin (HA)-epitope from IV, the NG-34, to define the most efficient combination of antigen/adjuvant to combat IV infections. Soluble NG-34 was mixed with adjuvants like aluminium hydroxide (AH) and AddaVax, known to induce Th2 and humoral responses; CAF01 which displays a biased Th1/Th17 profile and Diluvac Forte which augments the humoral response. Combinations were tested in different groups of mice which were subjected to immunological analyses. CAF01 + NG-34 induced a complete immune response with the highest IgG1, IgG2c titers and percentages of activated CD4 T cell promoting IFN-γ, IL-2 and TNF-α producing cells. Furthermore, in NG-34 stimulated mice splenocytes, cytokine levels of IFN-γ, IL-1β, IL-6, IL-10, IL-17 and TNF-α were also the highest in the CAF01 + NG-34 mouse group. This complete induced immune response covering the humoral and the cellular arms of the adaptive immunity promoted by CAF01 + NG-34 group suggests that CAF01 could be a good candidate as an adjuvant to combine with NG-34 for an efficacious vaccine against IV. However, more studies performed in IV hosts as well as studies with a challenge model are further required.
Collapse
Affiliation(s)
- Marta Sisteré-Oró
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Gabriel K Pedersen
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Lorena Córdoba
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Sergi López-Serrano
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Dennis Christensen
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Ayub Darji
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
217
|
Ivanov K, Garanina E, Rizvanov A, Khaiboullina S. Inflammasomes as Targets for Adjuvants. Pathogens 2020; 9:E252. [PMID: 32235526 PMCID: PMC7238254 DOI: 10.3390/pathogens9040252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 11/16/2022] Open
Abstract
Inflammasomes are an essential part of the innate immune system. They are necessary for the development of a healthy immune response against infectious diseases. Inflammasome activation leads to the secretion of pro-inflammatory cytokines such as IL-1β and IL-18, which stimulate the adaptive immune system. Inflammasomes activators can be used as adjuvants to provide and maintain the strength of the immune response. This review is focused on the mechanisms of action and the effects of adjuvants on inflammasomes. The therapeutic and prophylaxis significance of inflammasomes in infectious diseases is also discussed.
Collapse
Affiliation(s)
- Konstantin Ivanov
- Kazan Federal University, 420008 Kazan, Russia; (K.I.); (E.G.); (A.R.)
| | - Ekaterina Garanina
- Kazan Federal University, 420008 Kazan, Russia; (K.I.); (E.G.); (A.R.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Albert Rizvanov
- Kazan Federal University, 420008 Kazan, Russia; (K.I.); (E.G.); (A.R.)
| | - Svetlana Khaiboullina
- Kazan Federal University, 420008 Kazan, Russia; (K.I.); (E.G.); (A.R.)
- University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
218
|
Lee SJ, Park HJ, Ko HL, Lee JE, Lee HJ, Kim H, Nam JH. Evaluation of glycoprotein E subunit and live attenuated varicella-zoster virus vaccines formulated with a single-strand RNA-based adjuvant. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:216-227. [PMID: 32167678 PMCID: PMC7212201 DOI: 10.1002/iid3.297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Introduction Varicella‐zoster virus (VZV), a human alphaherpesvirus 3, elicits both chickenpox and shingles and/or postherpetic neuralgia. A live attenuated vaccine (LAV) and glycoprotein E (gE) subunit vaccine were developed to prevent VZV‐induced diseases. We recently reported that single‐strand RNA (ssRNA) based on the intergenic region of the internal ribosome entry site of cricket paralysis virus (CrPV) is an effective adjuvant for protein‐based and virus‐like particle‐based vaccines. Here, Chinese hamster ovary expression system and an LAV from Oka/SK strains. Methods We appraised the adjuvant effect of the same CrPV ssRNA encoding the gE gene formulated in the two vaccines using VZV‐primed C57BL/6 mice and guinea pigs. Humoral immunity and cell‐mediated immunity were assessed by enzyme‐linked immunosorbent assay (ELISA) and ELISPOT in gE subunit vaccine and by ELISA and fluorescent antibody to membrane antigen in LAV. Results The gE subunit vaccine‐induced gE‐specific antibodies and CD4+ T‐cell responses (indicated by interferon‐γ [IFN‐γ] and interleukin‐2 secretion) in the ssRNA‐based adjuvant containing the VZV gE gene. Therefore, an ssRNA adjuvant combined with gE antigen can trigger the innate immune response and induce an adaptive immune response to ultimately activate humoral and cell‐mediated responses. VZV LAV could also induce VZV‐specific antibodies and IFN‐γ stimulated by LAV, whereas the effect of ssRNA as a vaccine adjuvant could not be confirmed. However, the ssRNA adjuvant increased VZV‐specific neutralizing antibody response. Conclusions Taken together, these results highlight that the gE subunit vaccine and LAV developed in this study can be functional VZV vaccines, and ssRNAs appear to function better as adjuvants in a subunit vaccine than in an LAV.
Collapse
Affiliation(s)
- Su Jeen Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea.,Department of R&D, SK Bioscience, Pangyoro, Bundang-gu, Republic of Korea
| | - Hyo-Jung Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hae Li Ko
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jung Eun Lee
- Department of R&D, SK Bioscience, Pangyoro, Bundang-gu, Republic of Korea
| | - Hyun Joo Lee
- Department of R&D, SK Bioscience, Pangyoro, Bundang-gu, Republic of Korea
| | - Hun Kim
- Department of R&D, SK Bioscience, Pangyoro, Bundang-gu, Republic of Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
219
|
El-Sissi AF, Mohamed FH, Danial NM, Gaballah AQ, Ali KA. Chitosan and chitosan nanoparticles as adjuvant in local Rift Valley Fever inactivated vaccine. 3 Biotech 2020; 10:88. [PMID: 32089983 DOI: 10.1007/s13205-020-2076-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/18/2020] [Indexed: 02/04/2023] Open
Abstract
The present study aimed to improve the potency of inactivated Rift Valley Fever Virus (RVFV) vaccine using chitosan (CS) or chitosan nanoparticles (CNP) as adjuvants. Chitosan nanoparticles were prepared by ionic gelation method. Rift Valley Fever Virus (RVFV) inactivated antigen was loaded on CS and CNP to form two vaccine formulations, RVFV-chitosan nanoparticles based vaccine (RVFV-CNP) and RVFV chitosan based vaccine (RVFV-CS). Five groups of mice were used in this study, each group was injected with one of the following: phosphate buffer saline (group1 G1), RVFV-CNP (G2), (RVF-CS) (G3), RVFV-Alum based vaccine (RVFV-Alum) (G4) and adjuvant free RVFV inactivated antigen (RVFV-Ag) (G5). The immunization was performed twice with 2 weeks interval. The results showed that, RVFV-CNP vaccine enhanced strongly the phagocytic activity of peritoneal macrophage (PM), neutralization antibodies titer against RVFV and IgG values against RVFV nucleoprotein than other vaccine formulations did. In addition, the RVFV-CNP and RVF-CS vaccines upregulate the gene expression of IL-2, IFN-γ (which promote cell mediated immunity) and IL-4 (which promote humeral immunity), while RVFV-Alum vaccine upregulate the gene expression of IL-4 only. These findings indicated that CS and CNP were comparable to the alum as adjuvant in efficacy but superior to it in inducing cell-mediated immune response and might be a candidate adjuvant for inactivated RVFV vaccine.
Collapse
Affiliation(s)
- Ashgan F El-Sissi
- Department of Immunology, Animal Health Research Institute, Dokki, Cairo, Egypt
| | - Farida H Mohamed
- Department of Immunology, Animal Health Research Institute, Dokki, Cairo, Egypt
| | - Nadia M Danial
- Department of Virology, Animal Health Research Institute, Dokki, Cairo, Egypt
| | - Ali Q Gaballah
- 3Holding Company for Biological products and Vaccines (VACSERA), Giza, Egypt
| | - Korany A Ali
- 4Applied Organic Chemistry Department, Center of Excellence, Advanced Materials and Nanotechnology Group, National Research Centre, Dokki, Giza, 12622 Egypt
| |
Collapse
|
220
|
[Aluminium adjuvant exposure through vaccines in France in 2018]. ANNALES PHARMACEUTIQUES FRANÇAISES 2020; 78:111-128. [PMID: 32081303 DOI: 10.1016/j.pharma.2020.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Aluminum-containing vaccine adjuvants stimulate an adequate immune response to vaccination. The safety and rapid elimination of these molecules, a guarantee of their safe use for several decades, have been challenged by a growing number of studies over the last 20 years. Evaluation of exposure to aluminum adjuvants of an individual is thus essential. The current review answers the following questions: what is the exposure of aluminum adjuvants of an individual vaccinated in France? What are the factors of variation? METHODS To evaluate the immunization exposure to aluminum for a vaccinee in France, we used the 2018 vaccination schedule and the Social Security database for vaccines reimbursed that year. French mandatory and recommended vaccines for an individual who does not travel abroad and has no particular professional obligations have been taken into account. RESULTS Our results show that an individual following the vaccination requirements and recommendations of 2018 receives between 2545 and 7735μg of Al3+ during his lifetime, and at least 50% before the age of 1year. Exposure varies with age, weight, sex, and choice of administered vaccines. CONCLUSION Vaccines with higher doses of aluminum are mainly injected at the beginning of life. Women receive a proportionately larger dose than men. The most reimbursed vaccines are often those with the highest amount of aluminum salts.
Collapse
|
221
|
|
222
|
Bragazzi NL, Hejly A, Watad A, Adawi M, Amital H, Shoenfeld Y. ASIA syndrome and endocrine autoimmune disorders. Best Pract Res Clin Endocrinol Metab 2020; 34:101412. [PMID: 32265102 DOI: 10.1016/j.beem.2020.101412] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An adjuvant is an immunological or pharmacological substance or group of substances that can be added to a given agent to enhance its effect in terms of efficacy, effectiveness and potency. Different mechanisms have been hypothesized underlying the action of the adjuvant, including boosting immune (innate and adaptive) response: this generally results in sparing the necessary amount of the agent and can potentially reduce the frequency of the needed number of therapeutic interventions. Adjuvants can be commonly found in vaccines, immunization products, mineral oils, cosmetics, silicone breast implants and other therapeutic/medical devices, being usually safe and effective. However, in a fraction of genetically susceptible and predisposed subjects, the administration of adjuvants may lead to the insurgence of serious side-effects, called "autoimmune/inflammatory syndrome by adjuvants" (ASIA) or Shoenfeld's syndrome. The present review is aimed at focusing on the "endocrine pebbles" of the mosaic of autoimmunity and of the ASIA syndrome, collecting together 54 cases of sub-acute thyroiditis, 2 cases of Hashimoto's thyroiditis, 11 cases of primary ovarian failure/primary ovarian insufficiency, 13 cases of autoimmune diabetes type 1, and 1 case of autoimmune adrenal gland insufficiency occurred after exposure to adjuvants.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Mathematics and Statistics, Laboratory for Industrial and Applied Mathematics (LIAM), Toronto, Canada
| | - Ashraf Hejly
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Internal Medicine 'B', Sheba Medical Center, Ramat Gan, Israel
| | - Abdulla Watad
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Internal Medicine 'B', Sheba Medical Center, Ramat Gan, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel
| | - Mohammed Adawi
- Department of Obstetrics and Gynecology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Howard Amital
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Internal Medicine 'B', Sheba Medical Center, Ramat Gan, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel; Department of Obstetrics and Gynecology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.
| |
Collapse
|
223
|
Biomaterials for Immunoengineering. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
224
|
Sandgren KJ, Truong NR, Smith JB, Bertram K, Cunningham AL. Vaccines for Herpes Simplex: Recent Progress Driven by Viral and Adjuvant Immunology. Methods Mol Biol 2020; 2060:31-56. [PMID: 31617171 DOI: 10.1007/978-1-4939-9814-2_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herpes simplex viruses (HSV) types 1 and 2 are ubiquitous. They both cause genital herpes, occasionally severe disease in the immunocompromised, and facilitate much HIV acquisition globally. Despite more than 60 years of research, there is no licensed prophylactic HSV vaccine and some doubt as to whether this can be achieved. Nevertheless, a previous HSV vaccine candidate did have partial success in preventing genital herpes and HSV acquisition and another immunotherapeutic candidate reduced viral shedding and recurrent lesions, inspiring further research. However, the entry pathway of HSV into the anogenital mucosa and the subsequent cascade of immune responses need further elucidation so that these responses could be mimicked or improved by a vaccine, to prevent viral entry and colonization of the neuronal ganglia. For an effective novel vaccine against genital herpes the choice of antigen and adjuvant may be critical. The incorporation of adjuvants of the vaccine candidates in the past, may account for their partial efficacy. It is likely that they can be improved by understanding the mechanisms of immune responses elicited by different adjuvants and comparing these to natural immune responses. Here we review the history of vaccines for HSV, those in development and compare them to successful vaccines for chicken pox or herpes zoster. We also review what is known of the natural immune control of herpes lesions, via interacting innate immunity and CD4 and CD8 T cells and the lessons they provide for development of new, more effective vaccines.
Collapse
Affiliation(s)
- Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Jacinta B Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Kirstie Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia. .,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
225
|
Abstract
Metals are essential components in all forms of life required for the function of nearly half of all enzymes and are critically involved in virtually all fundamental biological processes. Especially, the transition metals iron (Fe), zinc (Zn), manganese (Mn), nickel (Ni), copper (Cu) and cobalt (Co) are crucial micronutrients known to play vital roles in metabolism as well due to their unique redox properties. Metals carry out three major functions within metalloproteins: to provide structural support, to serve as enzymatic cofactors, and to mediate electron transportation. Metal ions are also involved in the immune system from metal allergies to nutritional immunity. Within the past decade, much attention has been drawn to the roles of metal ions in the immune system, since increasing evidence has mounted to suggest that metals are critically implicated in regulating both the innate immune sensing of and the host defense against invading pathogens. The importance of ions in immunity is also evidenced by the identification of various immunodeficiencies in patients with mutations in ion channels and transporters. In addition, cancer immunotherapy has recently been conclusively demonstrated to be effective and important for future tumor treatment, although only a small percentage of cancer patients respond to immunotherapy because of inadequate immune activation. Importantly, metal ion-activated immunotherapy is becoming an effective and potential way in tumor therapy for better clinical application. Nevertheless, we are still in a primary stage of discovering the diverse immunological functions of ions and mechanistically understanding the roles of these ions in immune regulation. This review summarizes recent advances in the understanding of metal-controlled immunity. Particular emphasis is put on the mechanisms of innate immune stimulation and T cell activation by the essential metal ions like calcium (Ca2+), zinc (Zn2+), manganese (Mn2+), iron (Fe2+/Fe3+), and potassium (K+), followed by a few unessential metals, in order to draw a general diagram of metalloimmunology.
Collapse
Affiliation(s)
- Chenguang Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoming Wei
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mengze Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
226
|
Shinchi H, Yamaguchi T, Moroishi T, Yuki M, Wakao M, Cottam HB, Hayashi T, Carson DA, Suda Y. Gold Nanoparticles Coimmobilized with Small Molecule Toll-Like Receptor 7 Ligand and α-Mannose as Adjuvants. Bioconjug Chem 2019; 30:2811-2821. [PMID: 31560198 DOI: 10.1021/acs.bioconjchem.9b00560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adjuvants enhance the immune response during vaccination. Among FDA-approved adjuvants, aluminum salts are most commonly used in vaccines. Although aluminum salts enhance humoral immunity, they show a limited effect for cell-mediated immune responses. Thus, further development of adjuvants that induce T-cell-mediated immune response is needed. Toll-like receptors (TLRs) recognizing specific pathogen-associated molecular patterns activate innate immunity, which is crucial to shape adaptive immunity. Using TLR ligands as novel adjuvants in vaccines has therefore attracted substantial attention. Among them a small molecule TLR7 ligand, imiquimod, has been approved for clinical use, but its use is restricted to local administration due to unwanted adverse side effects when used systematically. Since TLR7 is mainly located in the endosomal compartment of immune cells, efficient transport of the ligand into the cells is important for improving the potency of the TLR7 ligand. In this study we examined gold nanoparticles (GNPs) immobilized with α-mannose as carriers for a TLR7 ligand to target immune cells. The small molecule synthetic TLR7 ligand, 2-methoxyethoxy-8-oxo-9-(4-carboxy benzyl)adenine (1V209), and α-mannose were coimmobilized via linker molecules consisting of thioctic acid on the GNP surface (1V209-αMan-GNPs). The in vitro cytokine production activity of 1V209-αMan-GNPs was higher than that of the unconjugated 1V209 derivative in mouse bone marrow-derived dendritic cells and in human peripheral blood mononuclear cells. In the in vivo immunization study, 1V209-αMan-GNPs induced significantly higher titers of IgG2c antibody specific to ovalbumin as an antigen than did unconjugated 1V209, and splenomegaly and weight loss were not observed. These results indicate that 1V209-αMan-GNPs could be useful as safe and effective adjuvants for development of vaccines against infectious diseases and cancer.
Collapse
Affiliation(s)
- Hiroyuki Shinchi
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering , Kagoshima University , 1-21-40 Korimoto , Kagoshima 890-0065 , Japan
| | - Toru Yamaguchi
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering , Kagoshima University , 1-21-40 Korimoto , Kagoshima 890-0065 , Japan
| | - Toshiro Moroishi
- Department of Molecular Enzymology, Faculty of Life Sciences , Kumamoto University , 1-1-1 Honjo, Chuo-ku , Kumamoto 860-8556 , Japan.,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences , Kumamoto University , Kumamoto 860-8556 , Japan.,Precursory Research for Embryonic Science and Technology (PRESTO) , Japan Science and Technology Agency (JST) , Kawaguchi 332-0012 , Japan
| | - Masaharu Yuki
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering , Kagoshima University , 1-21-40 Korimoto , Kagoshima 890-0065 , Japan
| | - Masahiro Wakao
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering , Kagoshima University , 1-21-40 Korimoto , Kagoshima 890-0065 , Japan
| | - Howard B Cottam
- Moores Cancer Center , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0695 , United States
| | - Tomoko Hayashi
- Moores Cancer Center , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0695 , United States
| | - Dennis A Carson
- Moores Cancer Center , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0695 , United States
| | - Yasuo Suda
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering , Kagoshima University , 1-21-40 Korimoto , Kagoshima 890-0065 , Japan.,SUDx-Biotec Corporation , 1-42-1 Shiroyama , Kagoshima 890-0013 , Japan
| |
Collapse
|
227
|
Abraham S, Juel HB, Bang P, Cheeseman HM, Dohn RB, Cole T, Kristiansen MP, Korsholm KS, Lewis D, Olsen AW, McFarlane LR, Day S, Knudsen S, Moen K, Ruhwald M, Kromann I, Andersen P, Shattock RJ, Follmann F. Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2019; 19:1091-1100. [DOI: 10.1016/s1473-3099(19)30279-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/30/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
|
228
|
Alberca Custodio RW, Mirotti L, Gomes E, Nunes FP, S. Vieira R, Graça L, R. Almeida R, S. Câmara NO, Russo M. Dendritic Cells Expressing MyD88 Molecule Are Necessary and Sufficient for CpG-Mediated Inhibition of IgE Production In Vivo. Cells 2019; 8:cells8101165. [PMID: 31569343 PMCID: PMC6829343 DOI: 10.3390/cells8101165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022] Open
Abstract
Elevated levels of immunoglobulin E (IgE) are associated with allergies and other immunological disorders. Sensitization with alum adjuvant favours IgE production while CpG-ODN adjuvant, a synthetic toll-like receptor 9 (TLR9) agonist, inhibits it. The cellular mechanisms underlying in vivo TLR regulation of immunoglobulin production, specially IgE, are still controversial. Specifically, TLR-mediated IgE regulation in vivo is not yet known. In this study we showed that augmented levels of IgE induced by sensitizations to OVA with or without alum adjuvant or with OVA-pulsed dendritic cells (DCs) were inhibited by co-administration of CpG. Notably, CpG-mediated suppression of IgE production required MyD88-expression on DCs but not on B-cells. This finding contrasts with previous in vitro studies reporting regulation of IgE by a direct action of CpG on B cells via MyD88 pathway. In addition, we showed that CpG also inhibited IgE production in a MyD88-dependent manner when sensitization was performed with OVA-pulsed DCs. Finally, CpG signalling through MyD88 pathway was also necessary and sufficient to prevent anaphylactic antibody production involved in active cutaneous anaphylaxis.
Collapse
Affiliation(s)
- Ricardo W. Alberca Custodio
- Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (R.W.A.C.); (L.M.); (E.G.); (R.S.V.); (R.R.A.); (N.O.S.C.)
| | - Luciana Mirotti
- Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (R.W.A.C.); (L.M.); (E.G.); (R.S.V.); (R.R.A.); (N.O.S.C.)
| | - Eliane Gomes
- Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (R.W.A.C.); (L.M.); (E.G.); (R.S.V.); (R.R.A.); (N.O.S.C.)
| | - Fernanda P.B. Nunes
- Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (R.W.A.C.); (L.M.); (E.G.); (R.S.V.); (R.R.A.); (N.O.S.C.)
| | - Raquel S. Vieira
- Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (R.W.A.C.); (L.M.); (E.G.); (R.S.V.); (R.R.A.); (N.O.S.C.)
| | - Luís Graça
- Institute of Molecular Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Rafael R. Almeida
- Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (R.W.A.C.); (L.M.); (E.G.); (R.S.V.); (R.R.A.); (N.O.S.C.)
| | - Niels O. S. Câmara
- Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (R.W.A.C.); (L.M.); (E.G.); (R.S.V.); (R.R.A.); (N.O.S.C.)
| | - Momtchilo Russo
- Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (R.W.A.C.); (L.M.); (E.G.); (R.S.V.); (R.R.A.); (N.O.S.C.)
- Correspondence: ; Tel.: +55-1130-917-377
| |
Collapse
|
229
|
Song C, Li F, Wang S, Wang J, Wei W, Ma G. Recent Advances in Particulate Adjuvants for Cancer Vaccination. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cui Song
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianghua Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
230
|
Rudicell RS, Garinot M, Kanekiyo M, Kamp HD, Swanson K, Chou TH, Dai S, Bedel O, Simard D, Gillespie RA, Yang K, Reardon M, Avila LZ, Besev M, Dhal PK, Dharanipragada R, Zheng L, Duan X, Dinapoli J, Vogel TU, Kleanthous H, Mascola JR, Graham BS, Haensler J, Wei CJ, Nabel GJ. Comparison of adjuvants to optimize influenza neutralizing antibody responses. Vaccine 2019; 37:6208-6220. [PMID: 31493950 DOI: 10.1016/j.vaccine.2019.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/26/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022]
Abstract
Seasonal influenza vaccines represent a positive intervention to limit the spread of the virus and protect public health. Yet continual influenza evolution and its ability to evade immunity pose a constant threat. For these reasons, vaccines with improved potency and breadth of protection remain an important need. We previously developed a next-generation influenza vaccine that displays the trimeric influenza hemagglutinin (HA) on a ferritin nanoparticle (NP) to optimize its presentation. Similar to other vaccines, HA-nanoparticle vaccine efficacy is increased by the inclusion of adjuvants during immunization. To identify the optimal adjuvants to enhance influenza immunity, we systematically analyzed TLR agonists for their ability to elicit immune responses. HA-NPs were compatible with nearly all adjuvants tested, including TLR2, TLR4, TLR7/8, and TLR9 agonists, squalene oil-in-water mixtures, and STING agonists. In addition, we chemically conjugated TLR7/8 and TLR9 ligands directly to the HA-ferritin nanoparticle. These TLR agonist-conjugated nanoparticles induced stronger antibody responses than nanoparticles alone, which allowed the use of a 5000-fold-lower dose of adjuvant than traditional admixtures. One candidate, the oil-in-water adjuvant AF03, was also tested in non-human primates and showed strong induction of neutralizing responses against both matched and heterologous H1N1 viruses. These data suggest that AF03, along with certain TLR agonists, enhance strong neutralizing antibody responses following influenza vaccination and may improve the breadth, potency, and ultimately vaccine protection in humans.
Collapse
Affiliation(s)
| | | | - Masaru Kanekiyo
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | - Rebecca A Gillespie
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | - John R Mascola
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
231
|
Park MH, You JW, Kim HJ, Kim HJ. IgG and IgM responses to human papillomavirus L1 virus-like particle as a function of dosing schedule and vaccine formulation. J Microbiol 2019; 57:821-827. [PMID: 31452045 DOI: 10.1007/s12275-019-9308-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/26/2023]
Abstract
Most commercialized virus-like particle (VLP) vaccines use aluminum salt as adjuvant, even though VLPs provoke adequate antibody responses without adjuvant. We do not have detailed knowledge of how adjuvant affects the profile of anti-VLP antibodies. Meanwhile, there is evidence that differences between vaccination protocols influence the glycosylation of antibodies, which may alter their effector functions. In the present study a murine model was used to investigate the effects of dosing schedule and adjuvant on the antibody profiles and glycosylation levels of antigen-specific antibody responses to human papillomavirus type 16 L1 (HPV16 L1) VLPs. Mice received subcutaneously 2,000 ng of antigen divided into 4 or 7 doses. The HPV16 L1 VLPs elicited > 4 log10 anti-HPV16 L1 IgG titers without adjuvant, and aluminum hydroxide as adjuvant increased IgG titers 1.3- to 4-fold and reduced the anti-HPV16 L1 IgG2a / anti-HPV16 L1 IgG1 ratio value (use of aluminum hydroxide reduced the ratio of the IgG2a). Immunization with HPV16 L1 VLPs in combination with Freund's adjuvant enhanced IgG titers 5- to 12-fold. Seven-dose immunization markedly increased anti-HPV16 L1 IgM titers compared to four-dose immunization, as well as increasing the proportion of glycosylated antibodies. Our results suggest that antibody glycosylation can be controlled immunologically, and IgG and IgM profiles and glycosylation profiles of the vaccine-induced antibodies can be used as indicators reflecting the vaccine characteristics. These results indicate that the HPV16 L1 VLP dosing schedule can affect the quality of antigen-specific antibody responses. We suggest that dosing schedules should be noted in vaccination protocols for VLP-based vaccines.
Collapse
Affiliation(s)
- Min-Hye Park
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji Won You
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
232
|
Comberlato A, Paloja K, Bastings MMC. Nucleic acids presenting polymer nanomaterials as vaccine adjuvants. J Mater Chem B 2019; 7:6321-6346. [PMID: 31460563 DOI: 10.1039/c9tb01222b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most vaccines developed today include only the antigens that best stimulate the immune system rather than the entire virus or microbe, which makes vaccine production and use safer and easier, though they lack potency to induce acceptable immunity and long-term protection. The incorporation of additional immune stimulating components, named adjuvants, is required to generate a strong protective immune response. Nucleic acids (DNA and RNA) and their synthetic analogs are promising candidates as vaccine adjuvants activating Toll-like receptors (TLRs). Additionally, in the last few years several nanocarriers have emerged as platforms for targeted co-delivery of antigens and adjuvants. In this review, we focus on the recent developments in polymer nanomaterials presenting nucleic acids as vaccine adjuvants. We aim to compare the effectiveness of the various classes of polymers in immune modulating materials (nanoparticles, dendrimers, single-chain particles, nanogels, polymersomes and DNA-based architectures). In particular, we address the critical role of parameters such as size, shape, complexation and release of TLR ligands, cellular uptake, stability, toxicity and potential importance of spatial control in ligand presentation.
Collapse
Affiliation(s)
- Alice Comberlato
- IMX/IBI, EPFL, EPFL-STI-IMX-PBL MXC 340 Station 12, Lausanne, 1015, Switzerland.
| | - Kaltrina Paloja
- IMX/IBI, EPFL, EPFL-STI-IMX-PBL MXC 340 Station 12, Lausanne, 1015, Switzerland.
| | - Maartje M C Bastings
- IMX/IBI, EPFL, EPFL-STI-IMX-PBL MXC 340 Station 12, Lausanne, 1015, Switzerland.
| |
Collapse
|
233
|
Pan Y, Qi Y, Shao N, Tadle AC, Huang Y. Amino-Modified Polymer Nanoparticles as Adjuvants to Activate the Complement System and to Improve Vaccine Efficacy in Vivo. Biomacromolecules 2019; 20:3575-3583. [DOI: 10.1021/acs.biomac.9b00887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Yanbian University Medical College, Yanji 133002, P. R. China
| | - Nannan Shao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Abegail C. Tadle
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
234
|
Laupèze B, Hervé C, Di Pasquale A, Tavares Da Silva F. Adjuvant Systems for vaccines: 13 years of post-licensure experience in diverse populations have progressed the way adjuvanted vaccine safety is investigated and understood. Vaccine 2019; 37:5670-5680. [PMID: 31420171 DOI: 10.1016/j.vaccine.2019.07.098] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/09/2019] [Accepted: 07/22/2019] [Indexed: 01/11/2023]
Abstract
Adjuvant Systems (AS) are combinations of immune stimulants that enhance the immune response to vaccine antigens. The first vaccine containing an AS (AS04) was licensed in 2005. As of 2018, several vaccines containing AS04, AS03 or AS01 have been licensed or approved by regulatory authorities in some countries, and included in vaccination programs. These vaccines target diverse viral and parasitic diseases (hepatitis B, human papillomavirus, malaria, herpes zoster, and (pre)pandemic influenza), and were developed for widely different target populations (e.g. individuals with renal impairment, girls and young women, infants and children living in Africa, adults 50 years of age and older, and the general population). Clearly, the safety profile of one vaccine in one target population cannot be extrapolated to another vaccine or to another target population, even for vaccines containing the same adjuvant. Therefore, the assessment of adjuvant safety poses specific challenges. In this review we provide a historical perspective on how AS were developed from the angle of the challenges encountered on safety evaluation during clinical development and after licensure, and illustrate how these challenges have been met to date. Methods to evaluate safety of adjuvants have evolved based on the availability of new technologies allowing a better understanding of their mode of action, and new ways of collecting and assessing safety information. Since 2005, safety experience with AS has accumulated with their use in diverse vaccines and in markedly different populations, in national immunization programs, and in a pandemic setting. Thirteen years of experience using antigens combined with AS attest to their acceptable safety profile. Methods developed to assess the safety of vaccines containing AS have progressed the way we understand and investigate vaccine safety, and have helped set new standards that will guide and support new candidate vaccine development, particularly those using new adjuvants. FOCUS ON THE PATIENT: What is the context? Adjuvants are immunostimulants used to modulate and enhance the immune response induced by vaccination. Since the 1990s, adjuvantation has moved toward combining several immunostimulants in the form of Adjuvant System(s) (AS), rather than relying on a single immunostimulant. AS have enabled the development of new vaccines targeting diseases and/or populations with special challenges that were previously not feasible using classical vaccine technology. What is new? In the last 13 years, several AS-containing vaccines have been studied targeting different diseases and populations. Over this period, overall vaccine safety has been monitored and real-life safety profiles have been assessed following routine use in the general population in many countries. Moreover, new methods for safety assessment, such as a better determination of the mode of action, have been implemented in order to help understand the safety characteristics of AS-containing vaccines. What is the impact? New standards and safety experience accumulated over the last decade can guide and help support the safety assessment of new candidate vaccines during development.
Collapse
|
235
|
Gaylo-Moynihan A, Prizant H, Popović M, Fernandes NRJ, Anderson CS, Chiou KK, Bell H, Schrock DC, Schumacher J, Capece T, Walling BL, Topham DJ, Miller J, Smrcka AV, Kim M, Hughson A, Fowell DJ. Programming of Distinct Chemokine-Dependent and -Independent Search Strategies for Th1 and Th2 Cells Optimizes Function at Inflamed Sites. Immunity 2019; 51:298-309.e6. [PMID: 31399281 PMCID: PMC6904228 DOI: 10.1016/j.immuni.2019.06.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023]
Abstract
T-helper (Th) cell differentiation drives specialized gene programs that dictate effector T cell function at sites of infection. Here, we have shown Th cell differentiation also imposes discrete motility gene programs that shape Th1 and Th2 cell navigation of the inflamed dermis. Th1 cells scanned a smaller tissue area in a G protein-coupled receptor (GPCR) and chemokine-dependent fashion, while Th2 cells scanned a larger tissue area independent of GPCR signals. Differential chemokine reliance for interstitial migration was linked to STAT6 transcription-factor-dependent programming of integrin αVβ3 expression: Th2 cell differentiation led to high αVβ3 expression relative to Th1 cells. Th1 and Th2 cell modes of motility could be switched simply by manipulating the amount of αVβ3 on the cell surface. Deviating motility modes from those established during differentiation impaired effector function. Thus, programmed expression of αVβ3 tunes effector T cell reliance on environmental cues for optimal exploration of inflamed tissues.
Collapse
Affiliation(s)
- Alison Gaylo-Moynihan
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hen Prizant
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Milan Popović
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ninoshka R J Fernandes
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Christopher S Anderson
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kevin K Chiou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah Bell
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dillon C Schrock
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Justin Schumacher
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Tara Capece
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Brandon L Walling
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jim Miller
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Alan V Smrcka
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Minsoo Kim
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Angela Hughson
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Deborah J Fowell
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
236
|
Saleh M, Nowroozi J, Fotouhi F, Farahmand B. Physicochemical study of the influenza A virus M2 protein and aluminum salt adjuvant interaction as a vaccine candidate model. Future Virol 2019. [DOI: 10.2217/fvl-2019-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The present study evaluated the structural changes resulting from the interaction between a recombinant influenza A virus M2 protein and aluminum hydroxide adjuvant to investigate the antigen for further immunological studies. Materials & methods: Membrane protein II was produced from the H1N1 subtype of human influenza A virus. The interaction between M2 protein and alum inum hydroxide adjuvant was evaluated by physicochemical techniques including scanning electron microscope, UV-Vis spectra, Fourier-transform infrared spectroscopy and circular dichroism spectroscopy. Results: Physicochemical methods showed high-level protein adsorption and accessibility to the effective parts of the protein. Conclusion: It was concluded that M2 protein secondary structural perturbations, including the α-helix-to-β-sheet transition, enhanced its mechanical properties toward adsorption.
Collapse
Affiliation(s)
- Maryam Saleh
- Department of Microbiology, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Jamileh Nowroozi
- Department of Microbiology, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Fatemeh Fotouhi
- Department of Influenza & Respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Behrokh Farahmand
- Department of Influenza & Respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
237
|
Hu Y, Smith D, Zhao Z, Harmon T, Pentel PR, Ehrich M, Zhang C. Alum as an adjuvant for nanoparticle based vaccines: A case study with a hybrid nanoparticle-based nicotine vaccine. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 20:102023. [PMID: 31181264 PMCID: PMC6702048 DOI: 10.1016/j.nano.2019.102023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
Abstract
The treatment efficacy of a nicotine vaccine largely relies on its ability to induce high titers of nicotine-specific antibodies. Due to its strong immune-potentiating effects, aluminum salt (Alum) has been commonly used as an adjuvant in various nicotine vaccine formulations. In this study, we attempted to improve the immunological performance of a hybrid nanoparticle-based nicotine vaccine (NanoNicVac) by co-administering it with Alum. It was found that Alum severely restricted the release of NanoNicVac at the site of injection. Moreover, Alum damaged the hybrid structure of the vaccine. In the animal trial, mice immunized with NanoNicVac alone achieved an anti-nicotine IgG titer of 3.5 ± 0.2 × 104 after three injections. Unexpectedly, Alum with quantities of 125, 250, 500, and 1000 μg did not enhance the immunogenicity of NanoNicVac. In addition, Alum did not improve the ability of the vaccine to reduce the entry of nicotine into the brain.
Collapse
Affiliation(s)
- Yun Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Daniel Smith
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Zongmin Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Theresa Harmon
- Minneapolis Medical Research Foundation, Minneapolis, MN, USA
| | - Paul R Pentel
- Minneapolis Medical Research Foundation, Minneapolis, MN, USA
| | - Marion Ehrich
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
238
|
Kwak HW, Park HJ, Ko HL, Park H, Cha MH, Lee SM, Kang KW, Kim RH, Ryu SR, Kim HJ, Kim JO, Song M, Kim H, Jeong DG, Shin EC, Nam JH. Cricket paralysis virus internal ribosome entry site-derived RNA promotes conventional vaccine efficacy by enhancing a balanced Th1/Th2 response. Vaccine 2019; 37:5191-5202. [PMID: 31371226 PMCID: PMC7115557 DOI: 10.1016/j.vaccine.2019.07.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/21/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
Abstract
RNA adjuvant was developed from the CrPV intergenic region IRES. The RNA adjuvant functioned as an adjuvant with protein-based vaccines. The RNA adjuvant increased vaccine efficacy and induced balanced Th1/Th2 response. The RNA adjuvant enhanced APC chemotaxis.
An ideal adjuvant should increase vaccine efficacy through balanced Th1/Th2 responses and be safe to use. Recombinant protein-based vaccines are usually formulated with aluminum (alum)-based adjuvants to ensure an adequate immune response. However, use of alum triggers a Th2-biased immune induction, and hence is not optimal. Although the adjuvanticity of RNA has been reported, a systematic and overall investigation on its efficacy is lacking. We found that single strand RNA (termed RNA adjuvant) derived from cricket paralysis virus intergenic region internal ribosome entry site induced the expression of various adjuvant-function-related genes, such as type 1 and 2 interferon (IFN) and toll-like receptor (TLR), T cell activation, and leukocyte chemotaxis in human peripheral blood mononuclear cells; furthermore, its innate and IFN transcriptome profile patterns were similar to those of a live-attenuated yellow fever vaccine. This suggests that protein-based vaccines formulated using RNA adjuvant function as live-attenuated vaccines. Application of the RNA adjuvant in mouse enhanced the efficacy of Middle East respiratory syndrome spike protein, a protein-subunit vaccine and human papillomavirus L1 protein, a virus-like particle vaccine, by activating innate immune response through TLR7 and enhancing pAPC chemotaxis, leading to a balanced Th1/Th2 responses. Moreover, the combination of alum and the RNA adjuvant synergistically induced humoral and cellular immune responses and endowed long-term immunity. Therefore, RNA adjuvants have broad applicability and can be used with all conventional vaccines to improve vaccine efficacy qualitatively and quantitively.
Collapse
Affiliation(s)
- Hye Won Kwak
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hyo-Jung Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hae Li Ko
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hyelim Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Min Ho Cha
- KM Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, The Chonbuk National University, Iksan, Republic of Korea
| | - Kyung Won Kang
- Division of Biotechnology, The Chonbuk National University, Iksan, Republic of Korea
| | - Rhoon-Ho Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Seung Rok Ryu
- Division of Biotechnology, The Chonbuk National University, Iksan, Republic of Korea
| | - Hye-Jung Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jae-Ouk Kim
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, Republic of Korea
| | - Manki Song
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, Republic of Korea
| | - Hun Kim
- Life Science Research Institute, SK Bioscience, Seongnam, Republic of Korea
| | - Dae Gwin Jeong
- Infectious Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea.
| |
Collapse
|
239
|
Trier NH, Güven E, Skogstrand K, Ciplys E, Slibinskas R, Houen G. Comparison of immunological adjuvants. APMIS 2019; 127:635-641. [DOI: 10.1111/apm.12976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/19/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Nicole H. Trier
- Department of Autoimmunology Statens Serum Institut Copenhagen S Denmark
| | - Esin Güven
- Department of Autoimmunology Statens Serum Institut Copenhagen S Denmark
| | - Kristin Skogstrand
- Department of Congenital Diseases Statens Serum Institut Copenhagen S Denmark
| | - Evaldas Ciplys
- Institute of Biotechnology University of Vilnius Vilnius Lithuania
| | | | - Gunnar Houen
- Department of Autoimmunology Statens Serum Institut Copenhagen S Denmark
| |
Collapse
|
240
|
Lehrer AT, Wong TAS, Lieberman MM, Johns L, Medina L, Feldmann F, Feldmann H, Marzi A. Recombinant subunit vaccines protect guinea pigs from lethal Ebola virus challenge. Vaccine 2019; 37:6942-6950. [PMID: 31324500 DOI: 10.1016/j.vaccine.2019.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/09/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
Abstract
Ebola virus (EBOV) is among the deadliest pathogens known to man causing infrequent outbreaks of hemorrhagic disease. In humans, the case fatality rates in the outbreaks can reach 90%. During the West African epidemic almost 30,000 people were infected and of these over 11,000 fatalities were reported. Currently, we are facing an uncontained larger outbreak in the Democratic Republic of the Congo. Even though EBOV was discovered in 1976, extensive efforts to develop countermeasures, particularly therapeutics and vaccines, started late and there is still no FDA-approved product available. Nevertheless, one candidate vaccine, the rVSV-ZEBOV, is being used in clinical trials during the current outbreak with the hope of ending the human transmission chains. However, adverse reactions to administration of some EBOV vaccines have been reported; therefore, we have developed a safe and efficacious formulation of insect-cell derived adjuvanted protein vaccines. Vaccine candidates containing the EBOV glycoprotein with or without matrix proteins VP24 and VP40 formulated with one of three different adjuvants were tested in guinea pigs for immunogenicity and efficacy against lethal EBOV challenge. The results demonstrated that these vaccine candidates engendered high titers of antigen-specific antibodies in immunized animals and two of these vaccine candidates afforded complete or nearly complete protection against lethal challenge. Interestingly, we found a sex bias in partially protected immunized groups with male guinea pigs succumbing to disease and females surviving. In summary, we developed a safe and immunogenic adjuvanted subunit vaccine uniformly protective against EBOV disease in guinea pigs.
Collapse
Affiliation(s)
- Axel T Lehrer
- PanThera Biopharma, LLC, Aiea, HI 96701, United States; University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, HI 96813, United States.
| | - Teri-Ann S Wong
- PanThera Biopharma, LLC, Aiea, HI 96701, United States; University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, HI 96813, United States
| | - Michael M Lieberman
- University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, HI 96813, United States
| | - Lisa Johns
- PanThera Biopharma, LLC, Aiea, HI 96701, United States; University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, HI 96813, United States
| | - Liana Medina
- University of Hawaii at Manoa, John A. Burns School of Medicine, Honolulu, HI 96813, United States
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, United States.
| |
Collapse
|
241
|
Yousefi S, Abbassi-Daloii T, Tahmoorespur M, Sekhavati MH. Nanoparticle or conventional adjuvants: which one improves immune response against Brucellosis? IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:360-366. [PMID: 31168339 PMCID: PMC6535204 DOI: 10.22038/ijbms.2019.31748.7642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective(s): Brucellosis is a common infectious disease among animals and humans. While subunit vaccines could be used as an efficient strategy against pathogens, they usually seem to be less immunogenic than live or killed vaccines. However, the use of a suitable adjuvant accompanied by subunit vaccines can be a good alternative to enhance the immune response. Materials and Methods: To find a proper adjuvant against Brucellosis, the immune response of induced mice by Aluminum Hydroxide (AH), Incomplete Freund (IFA), and Chitosan Nanoparticle (CS) adjuvants in individuals and in combination with CS were assessed. Results: Immunization with CS stimulated higher interferon gamma (IFN-γ) immunity, while there were no significant differences between rOMP25 (IFA), rOMP25 (AH), rOMP25 (AH-CS) and rOMP25 (IFA-CS) recombinant proteins. Tumor necrosis factor alpha (TNF-α) analysis revealed there were no significant differencesbetween immunized groups and the positive control group, except for the treatment formulated in single IFA. Furthermore, unlike IFN-γ, there was a reverse interleukin-4 (IL-4) immune response trend for treatments, as rOMP25 (CS) displayed the lowest response. rOMP25 (CS) induced higher titer of total antibody than the other ones. Although the recombinant proteins emulsified in different adjuvants induced similar titer of IgG1 antibody, the ones that were formulated in CS, IFA and IFA-CS showed a higher titer of IgG2a. The cell proliferation assay demonstrating the antigen-specific cell proliferative response could be promoted after immunization with CS. Conclusion: CS whether single or in combination with IF adjuvants has potential to improve Th1-Th2 responses.
Collapse
Affiliation(s)
- Soheil Yousefi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | | |
Collapse
|
242
|
Yuen R, Kuniholm J, Lisk C, Wetzler LM. Neisserial PorB immune enhancing activity and use as a vaccine adjuvant. Hum Vaccin Immunother 2019; 15:2778-2781. [PMID: 31112447 PMCID: PMC6930065 DOI: 10.1080/21645515.2019.1609852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Our laboratory has focused on Porin B (PorB), an outer membrane protein from Neisseria meningitidis and TLR2 ligand-based adjuvant, to characterize specific molecular and cellular pathways involved in improved immune responses induced by vaccine adjuvants. PorB’s ability to form micellar nanoparticular multi-molecular organized structures and its interaction with Toll-like receptor 2/1 complexes likely accounts for its potent adjuvant activity. Downstream from this stimulation, we have observed enhanced antigen uptake in antigen presenting cells (APC), greater antigen deposition in secondary lymphoid organs, and promotion of germinal center reactions. In mice, antigen-specific IgGs were increased after PorB adjuvanted vaccination using the model antigen ovalbumin (OVA). Likewise, this formulation resulted in more IL-4 and IFN-γ positive T cells. Mice that received PorB adjuvanted vaccinations benefitted from lower bacterial burdens when challenged with recombinant Listeria monocytogenes expressing OVA. Mouse models lacking MyD88 signaling in various APC types helped identify macrophages as an essential cell type for the adjuvant activity of PorB. We believe the work presented here provides examples of the mechanistic studies required to understand how vaccine adjuvants are contributing to the establishment of protective immunity.
Collapse
Affiliation(s)
- Rachel Yuen
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Jeff Kuniholm
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Christina Lisk
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center, Boston, MA, USA
| | - Lee M Wetzler
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA.,Section of Infectious Diseases, Department of Medicine, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
243
|
Myalgia and chronic fatigue syndrome following immunization: macrophagic myofasciitis and animal studies support linkage to aluminum adjuvant persistency and diffusion in the immune system. Autoimmun Rev 2019; 18:691-705. [PMID: 31059838 DOI: 10.1016/j.autrev.2019.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 01/31/2019] [Indexed: 01/04/2023]
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a multifactorial and poorly undersood disabling disease. We present epidemiological, clinical and experimental evidence that ME/CFS constitutes a major type of adverse effect of vaccines, especially those containing poorly degradable particulate aluminum adjuvants. Evidence has emerged very slowly due to the multiplicity, lack of specificity, delayed onset, and frequent medical underestimation of ME/CFS symptoms. It was supported by an epidemiological study comparing vaccinated vs unvaccinated militaries that remained undeployed during Gulf War II. Affected patients suffer from cognitive dysfunction affecting attention, memory and inter-hemispheric connexions, well correlated to brain perfusion defects and associated with a stereotyped and distinctive pattern of cerebral glucose hypometabolism. Deltoid muscle biopsy performed to investigate myalgia typically yields macrophagic myofasciitis (MMF), a histological biomarker assessing longstanding persistency of aluminum agglomerates within innate immune cells at site of previous immunization. MMF is seemingly linked to altered mineral particle detoxification by the xeno/autophagy machinery. Comparing toxicology of different forms of aluminum and different types of exposure is misleading and inadequate and small animal experiments have turned old dogma upside down. Instead of being rapidly solubilized in the extracellular space, injected aluminum particles are quickly captured by immune cells and transported to distant organs and the brain where they elicit an inflammatory response and exert selective low dose long-term neurotoxicity. Clinical observations and experiments in sheep, a large animal like humans, confirmed both systemic diffusion and neurotoxic effects of aluminum adjuvants. Post-immunization ME/CFS represents the core manifestation of "autoimmune/inflammatory syndrome induced by adjuvants" (ASIA).
Collapse
|
244
|
Mirzaei B, Mousavi SF, Babaei R, Bahonar S, Siadat SD, Shafiee Ardestani M, Shahrooei M, Van Eldere J. Synthesis of conjugated PIA–rSesC and immunological evaluation against biofilm-forming Staphylococcus epidermidis. J Med Microbiol 2019; 68:791-802. [DOI: 10.1099/jmm.0.000910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Bahman Mirzaei
- Department of Microbiology, Microbial Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Science, Iran
| | - Seyed Fazlollah Mousavi
- Department of Microbiology, Microbial Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reyhane Babaei
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Science, Iran
| | - Sara Bahonar
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Science, Iran
| | - Seyed Davar Siadat
- Mycobacteriology and Pulmonary Research Department, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radio-pharmacy, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Shahrooei
- Laboratory of Medical Microbiology, Department of Medical Diagnostic Sciences, KU Leuven, UZ Gasthuisberg, Herestraat 49 CDG 8th floor, B-3000 Leuven, Belgium
| | - John Van Eldere
- Laboratory of Medical Microbiology, Department of Medical Diagnostic Sciences, KU Leuven, UZ Gasthuisberg, Herestraat 49 CDG 8th floor, B-3000 Leuven, Belgium
| |
Collapse
|
245
|
New Insights on the Adjuvant Properties of the Leishmania infantum Eukaryotic Initiation Factor. J Immunol Res 2019; 2019:9124326. [PMID: 31183394 PMCID: PMC6515109 DOI: 10.1155/2019/9124326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/16/2019] [Accepted: 02/19/2019] [Indexed: 01/12/2023] Open
Abstract
Vaccination is the most effective tool against infectious diseases. Subunit vaccines are safer compared to live-attenuated vaccines but are less immunogenic and need to be delivered with an adjuvant. Adjuvants are essential for enhancing vaccine potency by improving humoral and cell-mediated immune responses. Only a limited number of adjuvants are licensed for human vaccines, and their mode of action is still not clear. Leishmania eukaryotic initiation factor (LeIF) has been described having a dual role, as a natural adjuvant and as an antigen that possesses advantageous immunomodulatory properties. In this study, we assessed the adjuvant properties of recombinant Leishmania infantum eukaryotic initiation factor (LieIF) through in vitro and in vivo assays. LieIF was intraperitoneally administered in combination with the protein antigen ovalbumin (OVA), and the widely used alum was used as a reference adjuvant. Our in vitro studies using J774A.1 macrophages showed that LieIF induced stimulatory effects as demonstrated by the enhanced surface expression of CD80 and CD86 co-stimulatory molecules and the induced production of the immune mediators NO and MIP-1α. Additionally, LieIF co-administration with OVA in an in vivo murine model induced a proinflammatory environment as demonstrated by the elevated expression of TNF-α, IL-1β, and NF-κB2 genes in peritoneal exudate cells (PEC). Furthermore, PEC derived from OVA-LieIF-immunized mice exhibited elevated expression of CD80 molecule and production of NO and MIP-1α in culture supernatants. Moreover, LieIF administration in the peritoneum of mice resulted in the recruitment of neutrophils and monocytes at 24 h post-injection. Also, we showed that this immunopotentiating effect of LieIF did not depend on the induction of uric acid danger signal. These findings suggest the potential use of LieIF as adjuvant in new vaccine formulations against different infectious diseases.
Collapse
|
246
|
Sarkar I, Garg R, van Drunen Littel-van den Hurk S. Selection of adjuvants for vaccines targeting specific pathogens. Expert Rev Vaccines 2019; 18:505-521. [PMID: 31009255 PMCID: PMC7103699 DOI: 10.1080/14760584.2019.1604231] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Adjuvants form an integral component in most of the inactivated and subunit vaccine formulations. Careful and proper selection of adjuvants helps in promoting appropriate immune responses against target pathogens at both innate and adaptive levels such that protective immunity can be elicited. Areas covered: Herein, we describe the recent progress in our understanding of the mode of action of adjuvants that are licensed for use in human vaccines or in clinical or pre-clinical stages at both innate and adaptive levels. Different pathogens have distinct characteristics, which require the host to mount an appropriate immune response against them. Adjuvants can be selected to elicit a tailor-made immune response to specific pathogens based on their unique properties. Identification of biomarkers of adjuvanticity for several candidate vaccines using omics-based technologies can unravel the mechanism of action of modern and experimental adjuvants. Expert opinion: Adjuvant technology has been revolutionized over the last two decades. In-depth understanding of the role of adjuvants in activating the innate immune system, combined with systems vaccinology approaches, have led to the development of next-generation, novel adjuvants that can be used in vaccines against challenging pathogens and in specific target populations.
Collapse
Affiliation(s)
- Indranil Sarkar
- a VIDO-InterVac , University of Saskatchewan , Saskatoon , Canada.,b Microbiology and Immunology , University of Saskatchewan , Saskatoon , Canada
| | - Ravendra Garg
- a VIDO-InterVac , University of Saskatchewan , Saskatoon , Canada
| | | |
Collapse
|
247
|
Georg P, Sander LE. Innate sensors that regulate vaccine responses. Curr Opin Immunol 2019; 59:31-41. [PMID: 30978666 DOI: 10.1016/j.coi.2019.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/07/2019] [Accepted: 02/22/2019] [Indexed: 02/08/2023]
Abstract
Pattern recognition receptors (PRRs) control elemental functions of antigen presenting cells (APCs) and critically shape adaptive immune responses. Wielding a natural adjuvanticity, live attenuated vaccines elicit exceptionally efficient and durable immunity. Commonly used vaccine adjuvants target individual PRRs or bolster the immunogenicity of vaccines via indirect mechanisms of inflammation. Here, we review the impact of innate sensors on immune responses to live attenuated vaccines and commonly used vaccine adjuvants, with a focus on human vaccine responses. We discuss the unique potential of microbial nucleic acids and their corresponding sensing receptors to mimic live attenuated vaccines and promote protective immunity.
Collapse
Affiliation(s)
- Philipp Georg
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
248
|
Truong NR, Smith JB, Sandgren KJ, Cunningham AL. Mechanisms of Immune Control of Mucosal HSV Infection: A Guide to Rational Vaccine Design. Front Immunol 2019; 10:373. [PMID: 30894859 PMCID: PMC6414784 DOI: 10.3389/fimmu.2019.00373] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Herpes Simplex Virus (HSV) is a highly prevalent sexually transmitted infection that aside from causing cold sores and genital lesions, causes complications in the immunocompromised and has facilitated a large proportion of HIV acquisition globally. Despite decades of research, there is no prophylactic HSV vaccine ready for use in humans, leaving many questioning whether a prophylactic vaccine is an achievable goal. A previous HSV vaccine trial did have partial success in decreasing acquisition of HSV2–promising evidence that vaccines can prevent acquisition. However, there is still an incomplete understanding of the immune response pathways elicited by HSV after initial mucosal infection and how best to replicate these responses with a vaccine, such that acquisition and colonization of the dorsal root ganglia could be prevented. Another factor to consider in the rational design of an HSV vaccine is adjuvant choice. Understanding the immune responses elicited by different adjuvants and whether lasting humoral and cell-mediated responses are induced is important, especially when studies of past trial vaccines found that a sufficiently protective cell-mediated response was lacking. In this review, we discuss what is known of the immune control involved in initial herpes lesions and reactivation, including the importance of CD4 and CD8 T cells, and the interplay between innate and adaptive immunity in response to primary infection, specifically focusing on the viral relay involved. Additionally, a summary of previous and current vaccine trials, including the components used, immune responses elicited and the feasibility of prophylactic vaccines looking forward, will also be discussed.
Collapse
Affiliation(s)
- Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jacinta B Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
249
|
Ayaz F, Ugur N, Ocakoglu K, Ince M. Photo-induced anti-inflammatory activities of chloro substituted subphthalocyanines on the mammalian macrophage in vitro. Photodiagnosis Photodyn Ther 2019; 25:499-503. [DOI: 10.1016/j.pdpdt.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
|
250
|
Lu F, Mosley YYC, Carmichael B, Brown DD, HogenEsch H. Formulation of aluminum hydroxide adjuvant with TLR agonists poly(I:C) and CpG enhances the magnitude and avidity of the humoral immune response. Vaccine 2019; 37:1945-1953. [PMID: 30803844 DOI: 10.1016/j.vaccine.2019.02.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 02/02/2023]
Abstract
Subunit vaccines generally require adjuvants to achieve optimal immune responses. Toll-like receptor (TLR) agonists are promising immune potentiators, but rapid diffusion from the injection site reduces their local effective concentration and may cause systemic reactions. In this study, we investigated the potential of aluminum hydroxide adjuvant (AH) to adsorb the TLR3 agonist poly(I:C) and TLR9 agonist CpG and compared the effect of the combination adjuvant on the immune response with either the TLR agonists or AH alone in mice. Poly(I:C) and CpG readily adsorbed onto AH and this combination adjuvant induced a stronger IgG1 and IgG2a immune response with a significant increase of antibody avidity. The combination adjuvant enhanced antigen uptake and activation of dendritic cells in vitro. It induced an inflammatory response at the injection site similar to AH but without eosinophils which are typically observed with AH. A distinctive antigen-containing monocyte/macrophage population with an intermediate level of CD11c expression was identified in the draining lymph nodes after immunization with TLR agonists and the combination adjuvant. Injection of the combination adjuvant did not induce an increase of TNFα and CXCL10 in serum in contrast to the injection of soluble TLR agonists. These results indicate that this combination adjuvant is a promising formulation to solve some of the unmet needs of current vaccines.
Collapse
Affiliation(s)
- Fangjia Lu
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | - Yung-Yi C Mosley
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | - Brooke Carmichael
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | - Devonte D Brown
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States; Purdue Institute of Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|