201
|
Early Covert Appearance of Marginal Zone B Cells in Salivary Glands of Sjögren's Syndrome-Susceptible Mice: Initiators of Subsequent Overt Clinical Disease. Int J Mol Sci 2021; 22:ijms22041919. [PMID: 33671965 PMCID: PMC7919007 DOI: 10.3390/ijms22041919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
The C57BL/6.NOD-Aec1Aec2 mouse model has been extensively studied to define the underlying cellular and molecular bioprocesses critical in the onset of primary Sjögren’s Syndrome (pSS), a human systemic autoimmune disease characterized clinically as the loss of lacrimal and salivary gland functions leading to dry eye and dry mouth pathologies. This mouse model, together with several gene knockout mouse models of SS, has indicated that B lymphocytes, especially marginal zone B (MZB) cells, are necessary for development and onset of clinical manifestations despite the fact that destruction of the lacrimal and salivary gland cells involves a classical T cell-mediated autoimmune response. Because migrations and functions of MZB cells are difficult to study in vivo, we have carried out ex vivo investigations that use temporal global RNA transcriptomic analyses to profile autoimmunity as it develops within the salivary glands of C57BL/6.NOD-Aec1Aec2 mice. Temporal profiles indicate the appearance of Notch2-positive cells within the salivary glands of these SS-susceptible mice concomitant with the early-phase appearance of lymphocytic foci (LF). Data presented here identify cellular bioprocesses occurring during early immune cell migrations into the salivary glands and suggest MZB cells are recruited to the exocrine glands by the upregulated Cxcl13 chemokine where they recognize complement (C’)-decorated antigens via their sphingosine-1-phosphate (S1P) and B cell (BC) receptors. Based on known MZB cell behavior and mobility, we propose that MZB cells activated in the salivary glands migrate to splenic follicular zones to present antigens to follicular macrophages and dendritic cells that, in turn, promote a subsequent systemic cell-mediated and autoantibody-mediated autoimmune T cell response that targets exocrine gland cells and functions. Overall, this study uses the power of transcriptomic analyses to provide greater insight into several molecular events defining cellular bioprocesses underlying SS that can be modelled and more thoroughly studied at the cellular level.
Collapse
|
202
|
Mesenchymal stromal cells attenuate post-stroke infection by preventing caspase-1-dependent splenic marginal zone B cell death. Signal Transduct Target Ther 2021; 6:60. [PMID: 33579897 PMCID: PMC7881133 DOI: 10.1038/s41392-020-00415-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/02/2020] [Accepted: 11/03/2020] [Indexed: 01/16/2023] Open
|
203
|
Garis M, Garrett-Sinha LA. Notch Signaling in B Cell Immune Responses. Front Immunol 2021; 11:609324. [PMID: 33613531 PMCID: PMC7892449 DOI: 10.3389/fimmu.2020.609324] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
The Notch signaling pathway is highly evolutionarily conserved, dictating cell fate decisions and influencing the survival and growth of progenitor cells that give rise to the cells of the immune system. The roles of Notch signaling in hematopoietic stem cell maintenance and in specification of T lineage cells have been well-described. Notch signaling also plays important roles in B cells. In particular, it is required for specification of marginal zone type B cells, but Notch signaling is also important in other stages of B cell development and activation. This review will focus on established and new roles of Notch signaling during B lymphocyte lineage commitment and describe the function of Notch within mature B cells involved in immune responses.
Collapse
Affiliation(s)
- Matthew Garis
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
204
|
Ercoli G, Ramos-Sevillano E, Nakajima R, de Assis RR, Jasinskas A, Goldblatt D, Felgner P, Weckbecker G, Brown J. The Influence of B Cell Depletion Therapy on Naturally Acquired Immunity to Streptococcus pneumoniae. Front Immunol 2021; 11:611661. [PMID: 33584691 PMCID: PMC7876223 DOI: 10.3389/fimmu.2020.611661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023] Open
Abstract
The anti-CD20 antibody Rituximab to deplete CD20+ B cells is an effective treatment for rheumatoid arthritis and B cell malignancies, but is associated with an increased incidence of respiratory infections. Using mouse models we have investigated the consequences of B cell depletion on natural and acquired humoral immunity to Streptococcus pneumoniae. B cell depletion of naïve C57Bl/6 mice reduced natural IgM recognition of S. pneumoniae, but did not increase susceptibility to S. pneumoniae pneumonia. ELISA and flow cytometry assays demonstrated significantly reduced IgG and IgM recognition of S. pneumoniae in sera from mice treated with B cell depletion prior to S. pneumoniae nasopharyngeal colonization compared to untreated mice. Colonization induced antibody responses to protein rather than capsular antigen, and when measured using a protein array B cell depletion prior to colonization reduced serum levels of IgG to several protein antigens. However, B cell depleted S. pneumoniae colonized mice were still partially protected against both lung infection and septicemia when challenged with S. pneumoniae after reconstitution of their B cells. These data indicate that although B cell depletion markedly impairs antibody recognition of S. pneumoniae in colonized mice, some protective immunity is maintained, perhaps mediated by cellular immunity.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Disease Models, Animal
- Female
- Host-Pathogen Interactions
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Innate
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Immunologic Factors/pharmacology
- Lymphocyte Depletion
- Mice, Inbred C57BL
- Pneumonia, Pneumococcal/blood
- Pneumonia, Pneumococcal/immunology
- Pneumonia, Pneumococcal/microbiology
- Pneumonia, Pneumococcal/prevention & control
- Rituximab/pharmacology
- Streptococcus pneumoniae/immunology
- Streptococcus pneumoniae/pathogenicity
- Mice
Collapse
Affiliation(s)
- Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Elisa Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Rafael Ramiro de Assis
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Algis Jasinskas
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - David Goldblatt
- Department of Immunobiology, UCL Great Ormond Street Institute of Child Health, NIHR Biomedical Research Centre, London, United Kingdom
| | - Philip Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Gisbert Weckbecker
- Novartis Institute for BioMedical Research, Novartis, Basel, Switzerland
| | - Jeremy Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| |
Collapse
|
205
|
Jiménez M, Pastor L, Urrea V, Rodríguez de la Concepción ML, Parker E, Fuente-Soro L, Jairoce C, Mandomando I, Carrillo J, Naniche D, Blanco J. A Longitudinal Analysis Reveals Early Activation and Late Alterations in B Cells During Primary HIV Infection in Mozambican Adults. Front Immunol 2021; 11:614319. [PMID: 33519823 PMCID: PMC7844141 DOI: 10.3389/fimmu.2020.614319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Primary HIV infection (PHI) and subsequent chronic infection alter B-cell compartment. However, longitudinal analysis defining the dynamics of B-cell alterations are still limited. We longitudinally studied B-cell subsets in individuals followed for 1 year after PHI (n = 40). Treated and untreated chronic HIV infected (n = 56) and HIV-uninfected individuals (n = 58) were recruited as reference groups at the Manhiça District in Mozambique. B cells were analyzed by multicolor flow-cytometry. Anti-HIV humoral response and plasma cytokines were assessed by ELISA or Luminex-based technology. A generalized activation of B cells induced by HIV occurs early after infection and is characterized by increases in Activated and Tissue-like memory cells, decreases in IgM-IgD- (switched) and IgM-only B cells. These alterations remain mostly stable until chronic infection and are reverted in part by ART. In contrast, other parameters followed particular dynamics: PD-1 expression in memory cells decreases progressively during the first year of infection, Transitional B cells expand at month 3-4 after infection, and Marginal zone-like B cells show a late depletion. Plasmablasts expand 2 months after infection linked to plasma viral load and anti-p24 IgG3 responses. Most of well-defined changes induced by HIV in B-cell activation and memory subsets are readily observed after PHI, lasting until ART initiation. However, subsequent changes occur after sustained viral infection. These data indicate that HIV infection impacts B cells in several waves over time, and highlight that early treatment would result in beneficial effects on the B-cell compartment.
Collapse
Affiliation(s)
- Montse Jiménez
- AIDS Research Institute-IrsiCaixa, Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Lucía Pastor
- AIDS Research Institute-IrsiCaixa, Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain.,ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Victor Urrea
- AIDS Research Institute-IrsiCaixa, Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - María Luisa Rodríguez de la Concepción
- AIDS Research Institute-IrsiCaixa, Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Erica Parker
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Laura Fuente-Soro
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Inacio Mandomando
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Jorge Carrillo
- AIDS Research Institute-IrsiCaixa, Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Denise Naniche
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Julià Blanco
- AIDS Research Institute-IrsiCaixa, Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
| |
Collapse
|
206
|
Rastogi M, Saha RN, Alexander A, Singhvi G, Puri A, Dubey SK. Role of stealth lipids in nanomedicine-based drug carriers. Chem Phys Lipids 2021; 235:105036. [PMID: 33412151 DOI: 10.1016/j.chemphyslip.2020.105036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 02/01/2023]
Abstract
The domain of nanomedicine owns a wide-ranging variety of lipid-based drug carriers, and novel nanostructured drug carriersthat are further added to this range every year. The primary goal behind the exploration of any new lipid-based nanoformulation is the improvement of the therapeutic index of the concerned drug molecule along with minimization in the associated side-effects. However, for maintaining a sustained delivery of these intravenously injected lipoidal nanomedicines to the targeted tissues and organ systems in the body, longer circulation in the bloodstream, as well as their stability, are important. After administration, upon recognition as foreign entities in the body, these systems are rapidly cleared by the cells associated with the mononuclear phagocyte system. In order to provide these lipid-based systems with long circulation characteristics, techniques such as coating of the lipoidal surface with an inert polymeric material like polyethylene glycol (PEG) assists in imparting 'stealth properties' to these nanoformulations for avoiding recognition by the macrophages of the immune system. In this review, detailed importance is given to the hydrophilic PEG polymer and the role played by PEG-linked lipid polymers in the field of nanomedicine-based drug carriers. The typical structure and classification of stealth lipids, clinical utility, assemblage techniques, physicochemical characterization, and factors governing the in-vivo performance of the PEG-linked lipids containing formulations will be discussed. Eventually, the novel concept of accelerated blood clearance (ABC) phenomenon associated with the use of PEGylated therapeutics will be deliberated.
Collapse
Affiliation(s)
- Mehak Rastogi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Ranendra Narayan Saha
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai, United Arab Emirates
| | - Amit Alexander
- Department of Pharmaceutical Technology (Formulation), National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India.
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India; Emami Limited, R&D Healthcare Division, 13, BT Road, Kolkata, 700 056, West Bengal, India.
| |
Collapse
|
207
|
Wittmann J. Modeling Lymphocytes. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
208
|
Akauliya M, Gautam A, Maharjan S, Park BK, Kim J, Kwon HJ. CD83 expression regulates antibody production in response to influenza A virus infection. Virol J 2020; 17:194. [PMID: 33302987 PMCID: PMC7730749 DOI: 10.1186/s12985-020-01465-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/04/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND CD83 is known to regulate lymphocyte maturation, activation, homeostasis, and antibody response to immunization and infection. While CD83 has a major part in B cell function, its role in influenza A virus infection has not yet been investigated. METHODS We investigated the role of CD83 using C57BL/6J wild type mice and CD83 knockout (KO) mice after intraperitoneal administration of the influenza A/WSN/1933 virus. We analyzed cells of the peritoneal cavity, splenocytes, and cells of the bone marrow with FACS to investigate CD83 expression and cell population change in response to the virus infection. ELISA was performed with sera and peritoneal cavity fluids to detect A/WSN/1933 virus-specific IgG and the subclasses of IgG. RESULTS FACS analysis data showed a transient but distinct induction of CD83 expression in the peritoneal B cells of wild type mice. CD83 KO mice exhibited a delayed recovery of B cells in the bone marrow after influenza virus infection and overall, a smaller T cell population compared to wild type mice. The peritoneal cavity and serum of the wild type mice contained a high titer of IgG within 14 days after infection, whereas the CD83 KO mice had a very low titer of IgG. CONCLUSIONS These results show the importance of CD83 in lymphocytes homeostasis and antibody production during influenza A virus infection.
Collapse
Affiliation(s)
- Madhav Akauliya
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Avishekh Gautam
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Sony Maharjan
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Byoung Kwon Park
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
209
|
Dolasia K, Nazar F, Mukhopadhyay S. Mycobacterium tuberculosis PPE18 protein inhibits MHC class II antigen presentation and B cell response in mice. Eur J Immunol 2020; 51:603-619. [PMID: 33084017 DOI: 10.1002/eji.201848071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 01/18/2023]
Abstract
PPE18 protein belongs to PE/PPE family of Mycobacterium tuberculosis. We reported earlier that PPE18 protein provides survival advantage to M. tuberculosis during infection. In the current study, we found that PPE18 inhibits MHC class II-mediated antigen presentation by macrophages in a dose-dependent manner without affecting the surface level of MHC class II or co-stimulatory molecules. PPE18 does not affect antigen uptake or presentation of preprocessed peptide by macrophages. Antigen degradation was found to be inhibited by PPE18 protein due to perturbation in phagolysosomal acidification. PPE18-mediated inhibition of MHC class II antigen presentation caused poorer activation of CD4 T cells. Mice infected with M. smegmatis expressing PPE18 exhibited reduced maturation and activation of B cells and had decreased Mycobacteria-specific antibody titers. Thus M. tuberculosis probably utilizes PPE18 to inhibit MHC class II antigen presentation causing poorer activation of adaptive immune responses. This study may be useful in understanding host-pathogen interaction and open up directions of designing novel therapeutics targeting PPE18 to tackle this nefarious pathogen.
Collapse
Affiliation(s)
- Komal Dolasia
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Faiza Nazar
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
210
|
Nettersheim FS, De Vore L, Winkels H. Vaccination in Atherosclerosis. Cells 2020; 9:cells9122560. [PMID: 33266027 PMCID: PMC7760548 DOI: 10.3390/cells9122560] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is the major underlying pathology of cardiovascular diseases that together are the leading cause of death worldwide. The formation of atherosclerotic plaques is driven by chronic vascular inflammation. Although several risk factors have been identified and significant progress in disease prevention and treatment has been made, no therapeutic agents targeting inflammation are clinically available. Recent clinical trials established the potential of anti-inflammatory therapies as a treatment of atherosclerosis. However, adverse impacts on host defense have raised safety concerns about these therapies. Scientific evidence during the past 40 years implicated an adaptive immune response against plaque-associated autoantigens in atherogenesis. Preclinical data have underscored the protective potential of immunization against such targets precisely and without the impairment of host defense. In this review, we discuss the current vaccination strategies against atherosclerosis, supposed mechanisms of action, therapeutic potential, and the challenges that must be overcome in translating this idea into clinical practice.
Collapse
|
211
|
Jaufmann J, Carevic M, Tümen L, Eliacik D, Schmitt F, Hartl D, Beer-Hammer S. Enhanced IgG 1 -mediated antibody response towards thymus-dependent immunization in CXCR1-deficient mice. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:210-222. [PMID: 33226189 PMCID: PMC7860589 DOI: 10.1002/iid3.380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
Background Chemokine receptors and their corresponding ligands are key players of immunity by regulation of immune cell differentiation and migration. CXCR1 is a high‐affinity receptor for CXCL8. Differential expression of CXCR1 is associated with a variety of human pathologies including cancer and inflammatory diseases. While various studies have highlighted the importance of CXCR1‐mediated CXCL8‐sensing for neutrophil trafficking and function, its role in B‐cell responses remains unsolved. Therefore, our aim was to investigate innate and adaptive antibody responses in CXCR1‐deficient mice. Methods Cell populations of the spleen and the peritoneal cavity were identified and quantified via flow cytometry. To investigate thymus‐independent (TI) and thymus‐dependent (TD) antibody responses, mice were immunized intraperitoneally with TNP‐Ficoll, Pneumovax23, and TNP‐Chicken Gamma Globulin. Mice were bled before as well as 7 and 14 days after vaccination to collect serum. Serum antibody levels overtime were analyzed according to their specificity by enzyme‐linked immunosorbent assay. B‐1 cell functionality was examined by IL‐5/IL‐5Rα‐dependent stimulation of peritoneal and splenic cells in vitro. To analyze CXCR1/2‐expression, CD19+ splenocytes were enriched by magnetic‐activated cell sorting before isolation of total RNA contents, followed by reverse transcription and real‐time polymerase chain reaction. Results The distribution of natural B‐1 cell populations was disturbed in the absence of CXCR1, while their responsiveness towards TI antigens and in vitro stimulation remained functional. Besides, CXCR1‐deficiency was accompanied by increased frequencies of follicular B‐2 cells in the spleen. Interestingly, these mice produced elevated levels of antigen‐specific IgG1 upon TD immunization and harbored a significantly enlarged proportion of CXCR5‐expressing T helper (H) cells. CXCR1‐expression was detectable in CD19+ splenocytes derived from wild‐type, but not CXCR1‐deficient mice. Conclusion Our data demonstrate a previously unknown relevance of CXCR1 for the production of specific IgG1 in response to vaccination. These findings identify CXCR1 as a promising candidate for future studies on the regulation of adaptive antibody responses.
Collapse
Affiliation(s)
- Jennifer Jaufmann
- Department of Pharmacology, Experimental Therapy, and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Melanie Carevic
- Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tuebingen, Tuebingen, Germany
| | - Leyla Tümen
- Department of Pharmacology, Experimental Therapy, and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Derya Eliacik
- Department of Pharmacology, Experimental Therapy, and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Fee Schmitt
- Department of Pharmacology, Experimental Therapy, and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Dominik Hartl
- Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tuebingen, Tuebingen, Germany.,Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy, and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
212
|
Ex vivo rectal explant model reveals potential opposing roles of Natural Killer cells and Marginal Zone-like B cells in HIV-1 infection. Sci Rep 2020; 10:20154. [PMID: 33214610 PMCID: PMC7677325 DOI: 10.1038/s41598-020-76976-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Our understanding of innate immune responses in human rectal mucosal tissues (RM) and their contributions to promoting or restricting HIV transmission is limited. We defined the RM composition of innate and innate-like cell subsets, including plasmacytoid dendritic cells; CD1c + myeloid DCs; neutrophils; macrophages; natural killer cells (NK); Marginal Zone-like B cells (MZB); γδ T cells; and mucosal-associated invariant T cells in RM from 69 HIV-negative men by flow cytometry. Associations between these cell subsets and HIV-1 replication in ex vivo RM explant challenge experiments revealed an inverse correlation between RM-NK and p24 production, in contrast to a positive association between RM-MZB and HIV replication. Comparison of RM and blood-derived MZB and NK illustrated qualitative and quantitative differences between tissue compartments. Additionally, 22 soluble molecules were measured in a subset of explant cultures (n = 26). Higher production of IL-17A, IFN-γ, IL-10, IP-10, GM-CSF, sFasL, Granzyme A, Granzyme B, Granulysin, and Perforin following infection positively correlated with HIV replication. These data show novel associations between MZB and NK cells and p24 production in RM and underscore the importance of inflammatory cytokines in mucosal HIV infection, demonstrating the likely critical role these innate immune responses play in early mucosal HIV replication in humans.
Collapse
|
213
|
Yeh TW, Okano T, Naruto T, Yamashita M, Okamura M, Tanita K, Du L, Pan-Hammarström Q, Mitsuiki N, Okada S, Kanegane H, Imai K, Morio T. APRIL-dependent lifelong plasmacyte maintenance and immunoglobulin production in humans. J Allergy Clin Immunol 2020; 146:1109-1120.e4. [DOI: 10.1016/j.jaci.2020.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
|
214
|
Rubio AJ, Porter T, Zhong X. Duality of B Cell-CXCL13 Axis in Tumor Immunology. Front Immunol 2020; 11:521110. [PMID: 33193299 PMCID: PMC7609404 DOI: 10.3389/fimmu.2020.521110] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor immunity is a rapidly evolving area of research consisting of many possible permutations of immune cell tumor interactions that are dependent upon cell type, tumor type, and stage in tumor progression. At the same time, the majority of cancer immunotherapies have been focused on modulating the T cell-mediated antitumor immune response and have largely ignored the potential utility that B cells possess with respect to tumor immunity. Therefore, this motivated an exploration into the role that B cells and their accompanying chemokine, CXCL13, play in tumor immunity across multiple tumor types. Both B cells and CXCL13 possess dualistic impacts on tumor progression and tumor immunity which is furthered detail in this review. Specifically, various B cells subtypes are able to suppress or enhance several important immunological functions. Paradoxically, CXCL13 has been shown to drive several pro-growth and invasive signaling pathways across multiple tumor types, while also, correlating with improved survival and immune cell tumor localization in other tumor types. Potential tools for better elucidating the mechanisms by which B cells and CXCL13 impact the antitumor immune response are also discussed. In addition, multiples strategies are proposed for modulating the B cell-CXCL13 axis for cancer immunotherapies.
Collapse
Affiliation(s)
- Angel J. Rubio
- Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, United States
| | - Tyrone Porter
- Department of Biomedical Engineering, University of Texas Austin, Austin, TX, United States
| | - Xuemei Zhong
- Hematology and Medical Oncology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
215
|
Casciola-Rosen L, Thiemann DR, Andrade F, Trejo Zambrano MI, Hooper JE, Leonard EK, Spangler JB, Cox AL, Machamer CE, Sauer L, Laeyendecker O, Garibaldi BT, Ray SC, Mecoli CA, Christopher-Stine L, Gutierrez-Alamillo L, Yang Q, Hines D, Clarke WA, Rothman R, Pekosz A, Fenstermacher KJ, Wang Z, Zeger SL, Rosen A. IgM autoantibodies recognizing ACE2 are associated with severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.13.20211664. [PMID: 33083808 PMCID: PMC7574257 DOI: 10.1101/2020.10.13.20211664] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 infection induces severe disease in a subpopulation of patients, but the underlying mechanisms remain unclear. We demonstrate robust IgM autoantibodies that recognize angiotensin converting enzyme-2 (ACE2) in 18/66 (27%) patients with severe COVID-19, which are rare (2/52; 3.8%) in hospitalized patients who are not ventilated. The antibodies do not undergo class-switching to IgG, suggesting a T-independent antibody response. Purified IgM from anti-ACE2 patients activates complement. Pathological analysis of lung obtained at autopsy shows endothelial cell staining for IgM in blood vessels in some patients. We propose that vascular endothelial ACE2 expression focuses the pathogenic effects of these autoantibodies on blood vessels, and contributes to the angiocentric pathology observed in some severe COVID-19 patients. These findings may have predictive and therapeutic implications.
Collapse
Affiliation(s)
- Livia Casciola-Rosen
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David R. Thiemann
- Department of Medicine, Divisioin of Cardiology, Jhohns Hopkins University School of Medicine, Baltimore, Maryland
| | - Felipe Andrade
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria Isabel Trejo Zambrano
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jody E. Hooper
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elissa K. Leonard
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jamie B. Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrea L. Cox
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carolyn E. Machamer
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lauren Sauer
- Johns Hopkins Hospital, Adult Emergency Department, Baltimore, Maryland
| | - Oliver Laeyendecker
- Division of Intramural Medicine, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian T. Garibaldi
- Johns Hopkins Biocontainment Unit, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stuart C. Ray
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher A. Mecoli
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lisa Christopher-Stine
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura Gutierrez-Alamillo
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qingyuan Yang
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Hines
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William A. Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard Rothman
- Johns Hopkins Hospital, Adult Emergency Department, Baltimore, Maryland
| | - Andrew Pekosz
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Katherine J. Fenstermacher
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Zitong Wang
- Department of Bioistatistics, Bloomberg School of Public Health, Baltimore, Maryland
| | - Scott L. Zeger
- Department of Bioistatistics, Bloomberg School of Public Health, Baltimore, Maryland
| | - Antony Rosen
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
216
|
Kobia FM, Preusse K, Dai Q, Weaver N, Hass MR, Chaturvedi P, Stein SJ, Pear WS, Yuan Z, Kovall RA, Kuang Y, Eafergen N, Sprinzak D, Gebelein B, Brunskill EW, Kopan R. Notch dimerization and gene dosage are important for normal heart development, intestinal stem cell maintenance, and splenic marginal zone B-cell homeostasis during mite infestation. PLoS Biol 2020; 18:e3000850. [PMID: 33017398 PMCID: PMC7561103 DOI: 10.1371/journal.pbio.3000850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/15/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cooperative DNA binding is a key feature of transcriptional regulation. Here we examined the role of cooperativity in Notch signaling by CRISPR-mediated engineering of mice in which neither Notch1 nor Notch2 can homo- or heterodimerize, essential for cooperative binding to sequence-paired sites (SPS) located near many Notch-regulated genes. Although most known Notch-dependent phenotypes were unaffected in Notch1/2 dimer-deficient mice, a subset of tissues proved highly sensitive to loss of cooperativity. These phenotypes include heart development, compromised viability in combination with low gene dose, and the gut, developing ulcerative colitis in response to 1% dextran sulfate sodium (DSS). The most striking phenotypes-gender imbalance and splenic marginal zone B-cell lymphoma-emerged in combination with gene dose reduction or when challenged by chronic fur mite infestation. This study highlights the role of the environment in malignancy and colitis and is consistent with Notch-dependent anti-parasite immune responses being compromised in Notch dimer-deficient animals.
Collapse
Affiliation(s)
- Francis M. Kobia
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kristina Preusse
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Quanhui Dai
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Nicholas Weaver
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Matthew R. Hass
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Praneet Chaturvedi
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sarah J. Stein
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Warren S. Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yi Kuang
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Natanel Eafergen
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences Tel Aviv University, Tel Aviv, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Eric W. Brunskill
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
217
|
Rohrbeck L, Adori M, Wang S, He C, Tibbitt CA, Chernyshev M, Sirel M, Ribacke U, Murrell B, Bohlooly-Y M, Karlsson MC, Karlsson Hedestam GB, Coquet JM. GPR43 regulates marginal zone B-cell responses to foreign and endogenous antigens. Immunol Cell Biol 2020; 99:234-243. [PMID: 32888232 PMCID: PMC7891568 DOI: 10.1111/imcb.12399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
Marginal zone (MZ) B cells are innate‐like B cells that produce polyreactive antibodies with an affinity for microbial molecular patterns and carbohydrate ligands. MZ B cells have been shown to be important in mediating immunity to various bacteria including Streptococcus pneumoniae and are also implicated in inflammatory syndromes including lupus erythematosus. The intestinal microbiota is responsible for producing short‐chain fatty acids, which can regulate immune cell function by several mechanisms including ligation of the G‐protein‐coupled receptor (GPR)43. Herein, we show that MZ B cells express Gpr43 messenger RNA and that the absence of this receptor impacts on MZ B‐cell surface marker expression and antibody production. In T‐cell‐independent responses to the hapten 4‐hydroxy‐3‐nitrophenylacetic acid (NP), mice deficient in GPR43 displayed higher serum titers of NP‐specific antibodies. Moreover, in response to a pneumococcal polysaccharide vaccine, GPR43‐deficient mice developed robust serum antibody responses and had markedly increased numbers of splenic antibody‐secreting cells, compared with control mice. Finally, serum immunoglobulin M autoantibodies to double‐stranded DNA and phosphatidylcholine were increased in resting 10–15‐week‐old mice lacking GPR43. Taken together, mice lacking GPR43 have heightened antibody responses to T‐cell‐independent antigens, which may be a result of impaired regulation of MZ B cells.
Collapse
Affiliation(s)
- Leona Rohrbeck
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Monika Adori
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Shan Wang
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Chenfei He
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Christopher A Tibbitt
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Madle Sirel
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mikael Ci Karlsson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
218
|
Grasseau A, Boudigou M, Le Pottier L, Chriti N, Cornec D, Pers JO, Renaudineau Y, Hillion S. Innate B Cells: the Archetype of Protective Immune Cells. Clin Rev Allergy Immunol 2020; 58:92-106. [PMID: 31183788 DOI: 10.1007/s12016-019-08748-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The innate B cell (IBC) population is heterogeneous and involved in the primary immune response. IBC functions include a high ability to produce natural antibodies with IgM isotype, the elimination of apoptotic cells, and a capacity to be cognate help to T cells. Among IBC subsets, B-1 cells and marginal zone B cells are the main producers of IgM, act as rapid immune responders that may relocate to follicular lymphoid and differentiate to cytokine and antibody-secreting cells shortly after infection. IBCs functions are highly dependent on their localization site and the nature of their B cell receptor repertoire, suggesting a high plasticity range of different immune responses. In this review, we will describe the nature and functions of the different innate-like B cell subsets, first in mice and then in humans. Besides this, we will emphasize the strong ability of these cells to undertake different protective functions from the first line of defense against pathogens to the regulatory role of the broader immune response.
Collapse
Affiliation(s)
- Alexis Grasseau
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Marina Boudigou
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Laëtitia Le Pottier
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Nedra Chriti
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Divi Cornec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Jacques-Olivier Pers
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Yves Renaudineau
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France.,Laboratory of Immunology and Immunotherapy, CHU Brest, Brest, France
| | - Sophie Hillion
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France. .,Laboratory of Immunology and Immunotherapy, CHU Brest, Brest, France.
| |
Collapse
|
219
|
Contributions of Major Cell Populations to Sjögren's Syndrome. J Clin Med 2020; 9:jcm9093057. [PMID: 32971904 PMCID: PMC7564211 DOI: 10.3390/jcm9093057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Sjögren’s syndrome (SS) is a female dominated autoimmune disease characterized by lymphocytic infiltration into salivary and lacrimal glands and subsequent exocrine glandular dysfunction. SS also may exhibit a broad array of extraglandular manifestations including an elevated incidence of non-Hodgkin’s B cell lymphoma. The etiology of SS remains poorly understood, yet progress has been made in identifying progressive stages of disease using preclinical mouse models. The roles played by immune cell subtypes within these stages of disease are becoming increasingly well understood, though significant gaps in knowledge still remain. There is evidence for distinct involvement from both innate and adaptive immune cells, where cells of the innate immune system establish a proinflammatory environment characterized by a type I interferon (IFN) signature that facilitates propagation of the disease by further activating T and B cell subsets to generate autoantibodies and participate in glandular destruction. This review will discuss the evidence for participation in disease pathogenesis by various classes of immune cells and glandular epithelial cells based upon data from both preclinical mouse models and human patients. Further examination of the contributions of glandular and immune cell subtypes to SS will be necessary to identify additional therapeutic targets that may lead to better management of the disease.
Collapse
|
220
|
Low-Avidity Autoantibodies against Bactericidal/Permeability-Increasing Protein Occur in Gram-Negative and Gram-Positive Bacteremia. Infect Immun 2020; 88:IAI.00444-20. [PMID: 32747603 PMCID: PMC7504969 DOI: 10.1128/iai.00444-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Antibody autoreactivity against bactericidal/permeability-increasing protein (BPI) is strongly associated with Pseudomonas aeruginosa infection in cystic fibrosis (CF), non-CF bronchiectasis (BE), and chronic obstructive pulmonary disease (COPD). We examined the pathogen-specific nature of this autoreactivity by examining antibodies to BPI in bacteremia patients. Antibodies to BPI and bacterial antigens were measured in sera by ELISA from five patient cohorts (n = 214). Antibody autoreactivity against bactericidal/permeability-increasing protein (BPI) is strongly associated with Pseudomonas aeruginosa infection in cystic fibrosis (CF), non-CF bronchiectasis (BE), and chronic obstructive pulmonary disease (COPD). We examined the pathogen-specific nature of this autoreactivity by examining antibodies to BPI in bacteremia patients. Antibodies to BPI and bacterial antigens were measured in sera by ELISA from five patient cohorts (n = 214). Antibody avidity was investigated. Bacteremic patient sera (n = 32) exhibited IgG antibody autoreactivity against BPI in 64.7% and 46.7% of patients with positive blood cultures for P. aeruginosa and Escherichia coli, respectively. Autoantibody titers correlated with IgG responses to bacterial extracts and lipopolysaccharide (LPS). A prospective cohort of bacteremic patient sera exhibited anti-BPI IgG responses in 23/154 (14.9%) patients with autoreactivity present at the time of positive blood cultures in patients with Gram-negative and Gram-positive bacteria, including 8/60 (13.3%) patients with Staphylococcus aureus. Chronic tissue infection with S. aureus was associated with BPI antibody autoreactivity in 2/15 patients (13.3%). Previously, we demonstrated that BPI autoreactivity in CF patient sera exhibits high avidity. Here, a similar pattern was seen in BE patient sera. In contrast, sera from patients with bacteremia exhibited low avidity. These data indicate that low-avidity IgG responses to BPI can arise acutely in response to bacteremia and that this association is not limited to P. aeruginosa. This is to be contrasted with chronic respiratory infection with P. aeruginosa, suggesting that either the chronicity or the site of infection selects for the generation of high-avidity responses, with biologic consequences for airway immunity.
Collapse
|
221
|
Karadimou G, Gisterå A, Gallina AL, Caravaca AS, Centa M, Salagianni M, Andreakos E, Hansson GK, Malin S, Olofsson PS, Paulsson-Berne G. Treatment with a Toll-like Receptor 7 ligand evokes protective immunity against atherosclerosis in hypercholesterolaemic mice. J Intern Med 2020; 288:321-334. [PMID: 32410352 DOI: 10.1111/joim.13085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The interplay between innate and adaptive immunity is central in life-threatening clinical complications of atherosclerosis such as myocardial infarction and stroke. The specific mechanisms involved and their protective versus detrimental effects in the disease process remain poorly understood. We have previously shown that higher levels of Toll-like receptor 7 (TLR7) expression in human atherosclerotic lesions are correlated with better patient outcome. OBJECTIVE In this study, we explored whether TLR7 activation can ameliorate disease in experimental atherosclerosis in mice. METHODS Apolipoprotein E deficient mice (Apoe-/- ) with established disease were injected for five weeks intraperitoneally with the TLR7 ligand R848. Local effects were evaluated by characterization of the lesion. Systemic effects of the treatment were investigated by immune composition analysis in the spleen and plasma measurements. RESULTS The in vivo treatment arrested lesion progression in the aorta. We also detected expansion of marginal zone B cells and Treg in the spleen together with increased plasma IgM antibodies against oxidized low-density lipoprotein (oxLDL) and reduced plasma cholesterol levels. These changes were accompanied by increased accumulation of IgM antibodies, decreased necrosis and fewer apoptotic cells in atherosclerotic lesions. CONCLUSIONS Our findings show that TLR7 stimulation could ameliorate atherosclerotic lesion burden and reduce plasma cholesterol in Apoe-/- mice. TLR7 stimulation was associated with an atheroprotective B-cell and Treg response, which may have systemic and local effects within lesions that could prevent arterial lipid accumulation and inflammation.
Collapse
Affiliation(s)
- G Karadimou
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - A Gisterå
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - A L Gallina
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - A S Caravaca
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - M Centa
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - M Salagianni
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - E Andreakos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - G K Hansson
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - S Malin
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - P S Olofsson
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - G Paulsson-Berne
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
222
|
Nicolai O, Pötschke C, Raafat D, van der Linde J, Quosdorf S, Laqua A, Heidecke CD, Berek C, Darisipudi MN, Binder CJ, Bröker BM. Oxidation-Specific Epitopes (OSEs) Dominate the B Cell Response in Murine Polymicrobial Sepsis. Front Immunol 2020; 11:1570. [PMID: 32849533 PMCID: PMC7412885 DOI: 10.3389/fimmu.2020.01570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/15/2020] [Indexed: 12/29/2022] Open
Abstract
In murine abdominal sepsis by colon ascendens stent peritonitis (CASP), a strong increase in serum IgM and IgG antibodies was observed, which reached maximum values 14 days following sepsis induction. The specificity of this antibody response was studied in serum and at the single cell level using a broad panel of bacterial, sepsis-unrelated as well as self-antigens. Whereas an antibacterial IgM/IgG response was rarely observed, studies at the single-cell level revealed that IgM antibodies, in particular, were largely polyreactive. Interestingly, at least 16% of the IgM mAbs and 20% of the IgG mAbs derived from post-septic mice showed specificity for oxidation-specific epitopes (OSEs), which are known targets of the innate/adaptive immune response. This identifies those self-antigens as the main target of B cell responses in sepsis.
Collapse
Affiliation(s)
- Oliver Nicolai
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christian Pötschke
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.,Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Julia van der Linde
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Quosdorf
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anna Laqua
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Claus-Dieter Heidecke
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Claudia Berek
- German Rheumatism Research Centre (DRFZ), Berlin, Germany
| | - Murthy N Darisipudi
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Barbara M Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
223
|
Mollaei M, Abbasi A, Hassan ZM, Pakravan N. The intrinsic and extrinsic elements regulating inflammation. Life Sci 2020; 260:118258. [PMID: 32818542 DOI: 10.1016/j.lfs.2020.118258] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Inflammation is a sophisticated biological tissue response to both extrinsic and intrinsic stimuli. Although the pathological aspects of inflammation are well appreciated, there are still rooms for understanding the physiological functions of the inflammation. Recent studies have focused on mechanisms, context and the role of physiological inflammation. Besides, there have been progress in the comprehension of commensal microbiota, immunometabolism, cancer and intracellular signaling events' roles that impact on the regulation of inflammation. Despite the fact that inflammatory responses are vital through tissue damage, understanding the mechanisms to turn off the finished or unnecessary inflammation is crucial for restoring homeostasis. Inflammation seems to be a smart process that acts like two edges of a sword, meaning that it has both protective and deleterious consequences. Knowing both edges and the regulation processes will help the future understanding and therapy for various diseases.
Collapse
Affiliation(s)
- M Mollaei
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iran.
| | - A Abbasi
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iran
| | - Z M Hassan
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iran
| | - N Pakravan
- Department of Immunology, School of Medicine, Alborz University of Medical Science, Iran
| |
Collapse
|
224
|
Neurological disorders-associated anti-glycosphingolipid IgG-antibodies display differentially restricted IgG subclass distribution. Sci Rep 2020; 10:13074. [PMID: 32753699 PMCID: PMC7403582 DOI: 10.1038/s41598-020-70063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/22/2020] [Indexed: 11/30/2022] Open
Abstract
Antibodies against several self-glycans on glycosphingolipids are frequently detected in different neurological disorders. Their pathogenic role is profusely documented, but the keys for their origin remain elusive. Additionally, antibodies recognizing non-self glycans appear in normal human serum during immune response to bacteria. Using HPTLC-immunostaining we aimed to characterize IgM and IgG subclass antibody responses against glycosphingolipids carrying self glycans (GM1/GM2/GM3/GD1a/GD1b/GD3/GT1b/GQ1b) and non-self glycans (Forssman/GA1/“A” blood group/Nt7) in sera from 27 randomly selected neurological disorder patients presenting IgG reactivity towards any of these antigens. Presence of IgG2 (p = 0.0001) and IgG1 (p = 0.0078) was more frequent for IgG antibodies against non-self glycans, along with less restricted antibody response (two or more simultaneous IgG subclasses). Contrariwise, IgG subclass distribution against self glycans showed clear dominance for IgG3 presence (p = 0.0017) and more restricted IgG-subclass distributions (i.e. a single IgG subclass, p = 0.0133). Interestingly, anti-self glycan IgG antibodies with simultaneous IgM presence had higher proportion of IgG2 (p = 0.0295). IgG subclass frequencies were skewed towards IgG1 (p = 0.0266) for “anti-self glycan A” subgroup (GM2/GM1/GD1b) and to IgG3 (p = 0.0007) for “anti-self glycan B” subgroup (GM3/GD1a/GD3/GT1b/GQ1b). Variations in players and/or antigenic presentation pathways supporting isotype (M-G) and IgG-subclass pattern differences in the humoral immune response against glycosphingolipids carrying non-self versus self-glycans are discussed.
Collapse
|
225
|
Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses 2020; 12:v12080788. [PMID: 32717815 PMCID: PMC7472090 DOI: 10.3390/v12080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
A common biologic property of the gammaherpesviruses Epstein–Barr Virus and Kaposi sarcoma herpesvirus is their use of B lymphocytes as a reservoir of latency in healthy individuals that can undergo oncogenic transformation later in life. Gammaherpesviruses (GHVs) employ an impressive arsenal of proteins and non-coding RNAs to reprogram lymphocytes for proliferative expansion. Within lymphoid tissues, the germinal center (GC) reaction is a hub of B cell proliferation and death. The goal of a GC is to generate and then select for a pool of immunoglobulin (Ig) genes that will provide a protective humoral adaptive immune response. B cells infected with GHVs are detected in GCs and bear the hallmark signatures of the mutagenic processes of somatic hypermutation and isotype class switching of the Ig genes. However, data also supports extrafollicular B cells as a reservoir engaged by GHVs. Next-generation sequencing technologies provide unprecedented detail of the Ig sequence that informs the natural history of infection at the single cell level. Here, we review recent reports from human and murine GHV systems that identify striking differences in the immunoglobulin repertoire of infected B cells compared to their uninfected counterparts. Implications for virus biology, GHV-associated cancers, and host immune dysfunction will be discussed.
Collapse
|
226
|
Marinkovic D, Marinkovic T. Putative role of marginal zone B cells in pathophysiological processes. Scand J Immunol 2020; 92:e12920. [PMID: 32594535 DOI: 10.1111/sji.12920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022]
Abstract
The maintenance of inner integrity of an organism is founded on the proper performance of two immunity branches, innate and adaptive immune responses. Recently, it became apparent that subset of splenic B cells named marginal zone B cells (MZB cells) exhibits unique developmental and functional features that bridge these two immunity branches. Strategically positioned at the site where blood and lymph are filtered, MZB cells represent a population of sentinels that rapidly proliferate and differentiate into IgM plasmablast cells when encountered with blood-borne, thymus-independent (TI) Ags. Moreover, MZB cells have intrinsic capability to induce potent CD4+ helper T cell response and cytokine production upon stimulation with soluble antigens. Due to their ability to overcome a time gap prior the establishment of the full adaptive response towards pathogens, MZB cells connect and direct innate and adaptive immunity. An additional interesting characteristic of MZB cells is capacity to function as regulatory cells in autoimmune processes. MZB cells may also contribute to the control of autoimmunity via the induction of tolerance by apoptotic cells. Importantly, in the clear association with inflammation and autoimmunity, MZB cells may transform into MALT lymphoma, representing a concurrence point for the infection, immunity and malignancy. This paper presents an insight into the complex biology of marginal zone B cells and their role in intertwining and directing innate and adaptive immune processes at the physiological and pathological level.
Collapse
Affiliation(s)
- Dragan Marinkovic
- Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
227
|
Moore DK, Leisching GR, Snyders CI, Gutschmidt A, van Rensburg IC, Loxton AG. Immunoglobulin profile and B-cell frequencies are altered with changes in the cellular microenvironment independent of the stimulation conditions. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:458-467. [PMID: 32639690 PMCID: PMC7416019 DOI: 10.1002/iid3.328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 12/19/2022]
Abstract
Introduction B‐cells are essential in the defense against Mycobacterium tuberculosis. Studies on isolated cells may not accurately reflect the responses that occur in vivo due to the presence of other cells. This study elucidated the influence of microenvironment complexity on B‐cell polarization and function in the context of tuberculosis disease. Methods B‐cell function was tested in whole blood, peripheral blood mononuclear cells (PBMCs), and as isolated cells. The different fractions were stimulated and the B‐cell phenotype and immunoglobulin profiles analyzed. Results The immunoglobulin profile and developmental B‐cell frequencies varied for each of the investigated sample types, while in an isolated cellular environment, secretion of immunoglobulin isotypes immunoglobulin A (IgA), IgG2, and IgG3 was hampered. The differences in the immunoglobulin profile highlight the importance of cell‐cell communication for B‐cell activation. Furthermore, a decrease in marginal zone B‐cell frequencies and an increase in T1 B‐cells was observed following cell isolation, indicating impaired B‐cell development in response to in vitro antigenic stimulation in isolation. Conclusion Our results suggest that humoral B‐cell function and development was impaired likely due to a lack of costimulatory signals from other cell types. Thus, B‐cell function should ideally be studied in a PBMC or whole blood fraction.
Collapse
Affiliation(s)
- Dannielle K Moore
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Gina R Leisching
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Candice I Snyders
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Andrea Gutschmidt
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Ilana C van Rensburg
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Andre G Loxton
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
228
|
|
229
|
Immunoglobulin M Paraproteinaemias. Cancers (Basel) 2020; 12:cancers12061688. [PMID: 32630470 PMCID: PMC7352433 DOI: 10.3390/cancers12061688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Monoclonal paraproteinaemia is an increasingly common reason for referral to haematology services. Paraproteinaemias may be associated with life-threatening haematologic malignancies but can also be an incidental finding requiring only observation. Immunoglobulin M (IgM) paraproteinaemias comprise 15–20% of monoclonal proteins but pose unique clinical challenges. IgM paraproteins are more commonly associated with lymphoplasmacytic lymphoma than multiple myeloma and can occur in a variety of other mature B-cell neoplasms. The large molecular weight of the IgM multimer leads to a spectrum of clinical manifestations more commonly seen with IgM paraproteins than others. The differential diagnosis of B-cell and plasma cell dyscrasias associated with IgM gammopathies can be challenging. Although the discovery of MYD88 L265P and other mutations has shed light on the molecular biology of IgM paraproteinaemias, clinical and histopathologic findings still play a vital role in the diagnostic process. IgM secreting clones are also associated with a number of “monoclonal gammopathy of clinical significance” entities. These disorders pose a novel challenge from both a diagnostic and therapeutic perspective. In this review we provide a clinical overview of IgM paraproteinaemias while discussing the key advances which may affect how we manage these patients in the future.
Collapse
|
230
|
Vanderbeck A, Maillard I. Notch signaling at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 109:535-548. [PMID: 32557824 DOI: 10.1002/jlb.1ri0520-138r] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is an evolutionarily conserved cell-to-cell signaling pathway that regulates cellular differentiation and function across multiple tissue types and developmental stages. In this review, we discuss our current understanding of Notch signaling in mammalian innate and adaptive immunity. The importance of Notch signaling is pervasive throughout the immune system, as it elicits lineage and context-dependent effects in a wide repertoire of cells. Although regulation of binary cell fate decisions encompasses many of the functions first ascribed to Notch in the immune system, recent advances in the field have refined and expanded our view of the Notch pathway beyond this initial concept. From establishing T cell identity in the thymus to regulating mature T cell function in the periphery, the Notch pathway is an essential, recurring signal for the T cell lineage. Among B cells, Notch signaling is required for the development and maintenance of marginal zone B cells in the spleen. Emerging roles for Notch signaling in innate and innate-like lineages such as classical dendritic cells and innate lymphoid cells are likewise coming into view. Lastly, we speculate on the molecular underpinnings that shape the activity and versatility of the Notch pathway.
Collapse
Affiliation(s)
- Ashley Vanderbeck
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Veterinary Medical Scientist Training Program, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Maillard
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
231
|
Planchais C, Rayes J, Delignat S, Pashova S, Varthaman A, Pashov A, Bayry J, Kaveri SV, Dimitrov JD, Lacroix-Desmazes S. Stimulation with FITC-labeled antigens confers B cells with regulatory properties. Cell Immunol 2020; 355:104151. [PMID: 32615414 DOI: 10.1016/j.cellimm.2020.104151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
B cells with regulatory properties (Bregs) were identified in human and in mice among different B-cell subsets. Their regulatory properties rely mainly on the production of anti-inflammatory cytokines, in particular IL10, IL-35 and TGFβ, and were extensively studied in mouse models of autoimmune and inflammatory diseases. However, the exact nature of the stimulatory signals conferring regulatory properties to B cells is still not clear. We serendipitously observed that fluorescein isothiocyanate (FITC) binds to a significant proportion of naïve mouse B cells. Binding of FITC to the B-cell surface implicated at least in part the B-cell receptor. It triggered IL-10 production and allowed the endocytosis of FITC-coupled antigens followed by their presentation to CD4+ T cells. In particular, B cells incubated with FITC-OVA polarized OTII T cells towards a Tr1/Th2 phenotype in vitro. Further, the adoptive transfer of B cells incubated with FITC-labeled myelin oligodendrocyte glycoprotein peptide protected mice from experimental autoimmune encephalomyelitis, a T-cell-dependent autoimmune model. Together, the data show that FITC-stimulated B cells polarize immune responses towards Tr1/Th2 and acquire immuno-modulatory properties.
Collapse
Affiliation(s)
- Cyril Planchais
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France.
| | - Julie Rayes
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Sandrine Delignat
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Shina Pashova
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Anastas Pashov
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jagadeesh Bayry
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Srinivas V Kaveri
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Jordan D Dimitrov
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Sebastien Lacroix-Desmazes
- Centre de recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
| |
Collapse
|
232
|
Radman M, Ferdousi A, Khorramdelazad H, Jalali P. Long-term impacts of tonsillectomy on children's immune functions. J Family Med Prim Care 2020; 9:1483-1487. [PMID: 32509637 PMCID: PMC7266207 DOI: 10.4103/jfmpc.jfmpc_935_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 01/20/2023] Open
Abstract
Background There exist a wide level of discrepancy regarding the role of tonsils and its indication among pediatricians and ENT specialists. This fact sometimes causes confusion and delay in making the right decisions by parents and specialists for appropriate treatment of patients. Objectives Thus, the aim of this study was to investigate the effects of long-term tonsillectomy on the immune system of patients. Methods In this case-control study we measured the status of immune system in 34 children (aged 9-15 years) following 4 to 6 years of tonsillectomy. We have also enrolled 30 healthy children with similar age group. Venous blood samples were taken and the serum levels of IgG, IgA, and IgM were detected along with expression of CD4, CD8, CD10 and CD56. Data were analyzed by SPSS version 18 software and a P < 0.05 was considered as significant. Results We found that the mean serum levels IgM, IgA, and IgG in the case group was significantly (P < 0.0001) lower than the control group. Whereby, the CD4, CD8 and CD56 expressions was examined, there was no significant difference in both groups while only CD10 expression was lower in tonssiloctomized patients (P = 0.108). Conclusion Overall, according to these findings, CD10 as a marker of B lymphocytes in children undergoing tonsillectomy was significantly less than those healthy children. This may indicate a decrease in B cells and further reduced antibody production in these patients.
Collapse
Affiliation(s)
- Masoud Radman
- Clinical Research Development Unit (CRDU), Moradi Hospital, Rafsanjan, Iran
| | - Asiyeh Ferdousi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan, Iran
| | - Pooneh Jalali
- Family Medicine Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
233
|
Zerra PE, Arthur CM, Chonat S, Maier CL, Mener A, Shin S, Allen JWL, Baldwin WH, Cox C, Verkerke H, Jajosky RP, Tormey CA, Meeks SL, Stowell SR. Fc Gamma Receptors and Complement Component 3 Facilitate Anti-fVIII Antibody Formation. Front Immunol 2020; 11:905. [PMID: 32582142 PMCID: PMC7295897 DOI: 10.3389/fimmu.2020.00905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/20/2020] [Indexed: 01/02/2023] Open
Abstract
Anti-factor VIII (fVIII) alloantibodies, which can develop in patients with hemophilia A, limit the therapeutic options and increase morbidity and mortality of these patients. However, the factors that influence anti-fVIII antibody development remain incompletely understood. Recent studies suggest that Fc gamma receptors (FcγRs) may facilitate recognition and uptake of fVIII by recently developed or pre-existing naturally occurring anti-fVIII antibodies, providing a mechanism whereby the immune system may recognize fVIII following infusion. However, the role of FcγRs in anti-fVIII antibody formation remains unknown. In order to define the influence of FcγRs on the development of anti-fVIII antibodies, fVIII was injected into WT or FcγR knockout recipients, followed by evaluation of anti-fVIII antibodies. Anti-fVIII antibodies were readily observed following fVIII injection into FcγR knockouts, with similar anti-fVIII antibody levels occurring in FcγR knockouts as detected in WT mice injected in parallel. As antibodies can also fix complement, providing a potential mechanism whereby anti-fVIII antibodies may influence anti-fVIII antibody formation independent of FcγRs, fVIII was also injected into complement component 3 (C3) knockout recipients in parallel. Similar to FcγR knockouts, C3 knockout recipients developed a robust response to fVIII, which was likewise similar to that observed in WT recipients. As FcγRs or C3 may compensate for each other in recipients only deficient in FcγRs or C3 alone, we generated mice deficient in both FcγRs and C3 to test for potential antibody effector redundancy in anti-fVIII antibody formation. Infusion of fVIII into FcγRs and C3 (FcγR × C3) double knockouts likewise induced anti-fVIII antibodies. However, unlike individual knockouts, anti-fVIII antibodies in FcγRs × C3 knockouts were initially lower than WT recipients, although anti-fVIII antibodies increased to WT levels following additional fVIII exposure. In contrast, infusion of RBCs expressing distinct alloantigens into FcγRs, C3 or FcγR × C3 knockout recipients either failed to change anti-RBC levels when compared to WT recipients or actually increased antibody responses, depending on the target antigen. Taken together, these results suggest FcγRs and C3 can differentially impact antibody formation following exposure to distinct alloantigens and that FcγRs and C3 work in concert to facilitate early anti-fVIII antibody formation.
Collapse
Affiliation(s)
- Patricia E Zerra
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States.,Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M Arthur
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Amanda Mener
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Sooncheon Shin
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Jerry William L Allen
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - W Hunter Baldwin
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Courtney Cox
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Hans Verkerke
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ryan P Jajosky
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher A Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States.,Pathology and Laboratory Medicine Service, VA Conneciticut Healthcare System, West Haven, CT, United States
| | - Shannon L Meeks
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
234
|
Mangge H, Prüller F, Schnedl W, Renner W, Almer G. Beyond Macrophages and T Cells: B Cells and Immunoglobulins Determine the Fate of the Atherosclerotic Plaque. Int J Mol Sci 2020; 21:ijms21114082. [PMID: 32521607 PMCID: PMC7312004 DOI: 10.3390/ijms21114082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis (AS) leading to myocardial infarction and stroke remains worldwide the main cause for mortality. Vulnerable atherosclerotic plaques are responsible for these life-threatening clinical endpoints. Atherosclerosis is a chronic, complex, inflammatory disease with interactions between metabolic dysfunction, dyslipidemia, disturbed microbiome, infectious triggers, vascular, and immune cells. Undoubtedly, the immune response is a most important piece of the pathological puzzle in AS. Although macrophages and T cells have been the focus of research in recent years, B cells producing antibodies and regulating T and natural killer (NKT) cell activation are more important than formerly thought. New results show that the B cells exert a prominent role with atherogenic and protective facets mediated by distinct B cell subsets and different immunoglobulin effects. These new insights come, amongst others, from observations of the effects of innovative B cell targeted therapies in autoimmune diseases like systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). These diseases associate with AS, and the beneficial side effects of B cell subset depleting (modifying) therapies on atherosclerotic concomitant disease, have been observed. Moreover, the CANTOS study (NCT01327846) showed impressive results of immune-mediated inflammation as a new promising target of action for the fight against atherosclerotic endpoints. This review will reflect the putative role of B cells in AS in an attempt to connect observations from animal models with the small spectrum of the thus far available human data. We will also discuss the clinical therapeutic potency of B cell modulations on the process of AS.
Collapse
Affiliation(s)
- Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (F.P.); (W.R.); (G.A.)
- Correspondence: ; Tel.: +43-664-3373531
| | - Florian Prüller
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (F.P.); (W.R.); (G.A.)
| | - Wolfgang Schnedl
- Department of Internal Medicine, Practice for General Internal Medicine, 8600 Bruck/Mur, Austria;
| | - Wilfried Renner
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (F.P.); (W.R.); (G.A.)
| | - Gunter Almer
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (F.P.); (W.R.); (G.A.)
| |
Collapse
|
235
|
Meryk A, Pangrazzi L, Hagen M, Hatzmann F, Jenewein B, Jakic B, Hermann-Kleiter N, Baier G, Jylhävä J, Hurme M, Trieb K, Grubeck-Loebenstein B. Fcμ receptor as a Costimulatory Molecule for T Cells. Cell Rep 2020; 26:2681-2691.e5. [PMID: 30840890 DOI: 10.1016/j.celrep.2019.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 11/17/2022] Open
Abstract
Fc receptor for IgM (FcμR)-deficient mice display dysregulated function of neutrophils, dendritic cells, and B cells. The relevance of FcμR to human T cells is still unknown. We show that FcμR is mostly stored inside the cell and that surface expression is tightly regulated. Decreased surface expression on T cells from elderly individuals is associated with alterations in the methylation pattern of the FCMR gene. Binding and internalization of IgM stimulate transport of FcμR to the cell surface to ensure sustained IgM uptake. Concurrently, IgM accumulates within the cell, and the surface expression of other receptors increases, among them the T cell receptor (TCR) and costimulatory molecules. This leads to enhanced TCR signaling, proliferation, and cytokine release, in response to low, but not high, doses of antigen. Our findings indicate that FcμR is an important regulator of T cell function and reveal an additional mode of interaction between B and T cells.
Collapse
Affiliation(s)
- Andreas Meryk
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria.
| | - Luca Pangrazzi
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Magdalena Hagen
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Florian Hatzmann
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Brigitte Jenewein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Bojana Jakic
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Gottfried Baier
- Division of Translational Cell Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Mikko Hurme
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
| | - Klemens Trieb
- Department of Orthopedic Surgery, Hospital Wels-Grieskirchen, 4600 Wels, Austria
| | - Beatrix Grubeck-Loebenstein
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
236
|
Nicolai O, Pötschke C, Schmoeckel K, Darisipudi MN, van der Linde J, Raafat D, Bröker BM. Antibody Production in Murine Polymicrobial Sepsis-Kinetics and Key Players. Front Immunol 2020; 11:828. [PMID: 32425951 PMCID: PMC7205023 DOI: 10.3389/fimmu.2020.00828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Although antigen-specific priming of antibody responses is impaired during sepsis, there is nevertheless a strong increase in IgM and IgG serum concentrations. Using colon ascendens stent peritonitis (CASP), a mouse model of polymicrobial abdominal sepsis, we observed substantial increases in IgM as well as IgG of all subclasses, starting at day 3 and peaking 2 weeks after sepsis induction. The dominant source of antibody-secreting cells was by far the spleen, with a minor contribution of the mesenteric lymph nodes. Remarkably, sepsis induction in splenectomized mice did not change the dynamics of the serum IgM/IgG reaction, indicating that the marginal zone B cells, which almost exclusively reside in the spleen, are dispensable in such a setting. Hence, in systemic bacterial infection, the function of the spleen as dominant niche of antibody-producing cells can be compensated by extra-splenic B cell populations as well as other lymphoid organs. Depletion of CD4+ T cells did not affect the IgM response, while it impaired IgG generation of all subclasses with the exception of IgG3. Taken together, our data demonstrate that the robust class-switched antibody response in sepsis encompasses both T cell-dependent and -independent components.
Collapse
Affiliation(s)
- Oliver Nicolai
- Immunology Department, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christian Pötschke
- Immunology Department, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Schmoeckel
- Immunology Department, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Murthy N Darisipudi
- Immunology Department, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Julia van der Linde
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Dina Raafat
- Immunology Department, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.,Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Barbara M Bröker
- Immunology Department, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
237
|
Liu Q, Su H, Bian X, Wang S, Kong Q. Live attenuated Salmonella Typhimurium with monophosphoryl lipid A retains ability to induce T-cell and humoral immune responses against heterologous polysaccharide of Shigella flexneri 2a. Int J Med Microbiol 2020; 310:151427. [PMID: 32654768 DOI: 10.1016/j.ijmm.2020.151427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/03/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022] Open
Abstract
Shigella flexneri 2a (Sf2a) is one of the most frequently isolated Shigella strains that causes the endemic shigellosis in developing countries. In this study, we used recombinant attenuated Salmonella vaccine (RASV) strains to deliver Sf2a O-antigen and characterized the immune responses induced by the vectored O-antigen. First, we identified genes sufficient for biosynthesis of Sf2a O-antigen. A plasmid containing the identified genes was then introduced into the RASV strains, which were manipulated to produce only the heterologous O-antigen and modified lipid A. After oral immunization of mice, we demonstrated that RASV strains could induce potent humoral immune responses as well as robust CD4+ T-cell responses against Sf2a Lipopolysaccharide (LPS) and protect mice against virulent Sf2a challenge. The induced serum antibodies mediated high levels of Shigella-specific serum bactericidal activity and C3 deposition. Moreover, the IgG+ B220low/int BM cell and T follicular helper (Tfh) cell responses could also be triggered effectively. The live attenuated Salmonella with the modified lipid A delivering Sf2a O-antigen polysaccharide showed the same ability to induce immune responses against Sf2a LPS as the strain with the original lipid A. These findings underscore the potential of RASV delivered Sf2a O-antigen for induction of robust CD4+ T-cell and IgG responses and warrant further studies toward the development of Shigella vaccine candidates with RASV strains.
Collapse
Affiliation(s)
- Qing Liu
- College of Animal Science and Technology, Southwest University, 400715, Chongqing, China
| | - Huali Su
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA
| | - Xiaoping Bian
- College of Animal Science and Technology, Southwest University, 400715, Chongqing, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, 400715, Chongqing, China; Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, 32611, FL, USA.
| |
Collapse
|
238
|
Bautista D, Vásquez C, Ayala-Ramírez P, Téllez-Sosa J, Godoy-Lozano E, Martínez-Barnetche J, Franco M, Angel J. Differential Expression of IgM and IgD Discriminates Two Subpopulations of Human Circulating IgM +IgD +CD27 + B Cells That Differ Phenotypically, Functionally, and Genetically. Front Immunol 2020; 11:736. [PMID: 32435242 PMCID: PMC7219516 DOI: 10.3389/fimmu.2020.00736] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/31/2020] [Indexed: 01/17/2023] Open
Abstract
The origin and function of blood IgM+IgD+CD27+ B cells is controversial, and they are considered a heterogeneous population. Previous staining of circulating B cells of healthy donors with rotavirus fluorescent virus-like particles allowed us to differentiate two subsets of IgM+IgD+CD27+: IgMhi and IgMlo B cells. Here, we confirmed this finding and compared the phenotype, transcriptome, in vitro function, and Ig gene repertoire of these two subsets. Eleven markers phenotypically discriminated both subsets (CD1c, CD69, IL21R, CD27, MTG, CD45RB, CD5, CD184, CD23, BAFFR, and CD38) with the IgMhi phenotypically resembling previously reported marginal zone B cells and the IgMlo resembling both naïve and memory B cells. Transcriptomic analysis showed that both subpopulations clustered close to germinal center-experienced IgM only B cells with a Principal Component Analysis, but differed in expression of 78 genes. Moreover, IgMhi B cells expressed genes characteristic of previously reported marginal zone B cells. After stimulation with CpG and cytokines, significantly (p < 0.05) higher frequencies (62.5%) of IgMhi B cells proliferated, compared with IgMlo B cells (35.37%), and differentiated to antibody secreting cells (14.22% for IgMhi and 7.19% for IgMlo). IgMhi B cells had significantly (p < 0.0007) higher frequencies of mutations in IGHV and IGKV regions, IgMlo B cells had higher usage of IGHJ6 genes (p < 0.0001), and both subsets differed in their HCDR3 properties. IgMhi B cells shared most of their shared IGH clonotypes with IgM only memory B cells, and IgMlo B cells with IgMhi B cells. These results support the notion that differential expression of IgM and IgD discriminates two subpopulations of human circulating IgM+IgD+CD27+ B cells, with the IgMhi B cells having similarities with previously described marginal zone B cells that passed through germinal centers, and the IgMlo B cells being the least differentiated amongst the IgM+CD27+ subsets.
Collapse
Affiliation(s)
- Diana Bautista
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Camilo Vásquez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Ayala-Ramírez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan Téllez-Sosa
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Ernestina Godoy-Lozano
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Manuel Franco
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juana Angel
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
239
|
Affiliation(s)
- E. Ashley Moseman
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
240
|
Lewis SM, Williams A, Eisenbarth SC. Structure and function of the immune system in the spleen. Sci Immunol 2020; 4:4/33/eaau6085. [PMID: 30824527 DOI: 10.1126/sciimmunol.aau6085] [Citation(s) in RCA: 564] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
The spleen is the largest secondary lymphoid organ in the body and, as such, hosts a wide range of immunologic functions alongside its roles in hematopoiesis and red blood cell clearance. The physical organization of the spleen allows it to filter blood of pathogens and abnormal cells and facilitate low-probability interactions between antigen-presenting cells (APCs) and cognate lymphocytes. APCs specific to the spleen regulate the T and B cell response to these antigenic targets in the blood. This review will focus on cell types, cell organization, and immunologic functions specific to the spleen and how these affect initiation of adaptive immunity to systemic blood-borne antigens. Potential differences in structure and function between mouse and human spleen will also be discussed.
Collapse
Affiliation(s)
- Steven M Lewis
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adam Williams
- Jackson Laboratory for Genomic Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA. .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
241
|
Gupta S, Agrawal S. In vitro Effects of CD8+ Regulatory T Cells on Human B Cell Subpopulations. Int Arch Allergy Immunol 2020; 181:476-480. [PMID: 32248193 DOI: 10.1159/000506806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/26/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND CD8+ regulatory T cells (CD8+ Tregs) are relatively recently described T cell subsets that have been shown to regulate various T cell responses and appear to play a role in autoimmunity. However, their effects on B cells have not been explored. OBJECTIVES In this investigation we examine the effect of CD8+ Tregs on various subsets of peripheral B cells include naïve B cells, transitional B cells, marginal zone B cells, IgM memory B cells, class switched memory B cells, and plasmablasts, and on the expression of B cell-activating factor receptor (BAFF-R). METHODS CD8+ T cells were first purified and then activated with anti-CD3/CD28 beads to generate CD8+ Tregs. Purified CD19+ B cells were cultured alone or with sorted CD8+ Tregs (CD8+CD183+CCR7+CD45RA-) and activated with anti-CD40 monoclonal antibody and CpG. B cell subsets and the expression of BAFF-R on naïve and memory B cells were analyzed using various monoclonal antibodies and corresponding control isotypes. Ten thousand cells were acquired and analyzed by FACSCalibur using the FlowJo software. RESULTS CD8+ Tregs selectively and significantly suppressed plasmablasts without any significant effect on other B cell subsets or on the expression of BAFF-R. CONCLUSION CD8+ Tregs may play a role in autoimmunity by regulating antibody production via suppression of plasmablasts.
Collapse
Affiliation(s)
- Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, School of Medicine, University of California at Irvine, Irvine, California, USA,
| | - Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, School of Medicine, University of California at Irvine, Irvine, California, USA
| |
Collapse
|
242
|
Jing Y, Dai X, Yang L, Kang D, Jiang P, Li N, Cheng J, Li J, Miller H, Ren B, Gong Q, Yin W, Liu Z, Mattila PK, Ning Q, Sun J, Yu B, Liu C. STING couples with PI3K to regulate actin reorganization during BCR activation. SCIENCE ADVANCES 2020; 6:eaax9455. [PMID: 32494627 PMCID: PMC7176427 DOI: 10.1126/sciadv.aax9455] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 01/24/2020] [Indexed: 05/10/2023]
Abstract
The adaptor protein, STING (stimulator of interferon genes), has been rarely studied in adaptive immunity. We used Sting KO mice and a patient's mutated STING cells to study the effect of STING deficiency on B cell development, differentiation, and BCR signaling. We found that STING deficiency promotes the differentiation of marginal zone B cells. STING is involved in BCR activation and negatively regulates the activation of CD19 and Btk but positively regulates the activation of SHIP. The activation of WASP and accumulation of F-actin were enhanced in Sting KO B cells upon BCR stimulation. Mechanistically, STING uses PI3K mediated by the CD19-Btk axis as a central hub for controlling the actin remodeling that, in turn, offers feedback to BCR signaling. Overall, our study provides a mechanism of how STING regulates BCR signaling via feedback from actin reorganization, which contributes to positive regulation of STING on the humoral immune response.
Collapse
Affiliation(s)
- Yukai Jing
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Dai
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Yang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqing Kang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Panpan Jiang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Li
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jiali Cheng
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Li
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Boxu Ren
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pieta K. Mattila
- Institute of Biomedicine, Unit of Pathology, and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai, China
| | - Bing Yu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Corresponding author. (B.Y.); (C.L.)
| | - Chaohong Liu
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Corresponding author. (B.Y.); (C.L.)
| |
Collapse
|
243
|
Isolation of Trypanosoma brucei brucei Infection-Derived Splenic Marginal Zone B Cells Based on CD1d High/B220 High Surface Expression in a Two-Step MACS-FACS Approach. Methods Mol Biol 2020. [PMID: 32221952 DOI: 10.1007/978-1-0716-0294-2_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Magnetic- and fluorescent-activated cell sorting (MACS and FACS) are used for isolation of distinct cell populations for subsequent studies including transcriptomics. The latter allows for the analysis of infection-induced alterations in gene expression profiles. MACS and FACS both use antibodies against cell surface molecules to isolate populations of interest. Standardized methods for both approaches exist for use in mouse models. These protocols, however, do not account for the fact that infection-associated immunopathology can significantly modulate the cell surface expression of targeted molecules. This is the case for Trypanosoma brucei brucei infection, where downregulation of CD23 surface expression on B cells has been reported. This hallmark of progressing infection interferes with the commercially available MACS technique for B cell purification, as CD23 expression is the target for the separation between Marginal Zone (MZ) and Follicular (Fo) B cells. Here, we provide a robust alternative method for isolation of infection-derived MZ B cells using CD1d and B220 surface molecules in a two-step MACS-FACS approach. The method yields 99% pure viable infection-derived MZ B cells, allowing extraction of a high quality total RNA suitable for subsequent RNA sequencing.
Collapse
|
244
|
Stranavova L, Hruba P, Slatinska J, Sawitzki B, Reinke P, Volk HD, Viklicky O. Dialysis therapy is associated with peripheral marginal zone B-cell augmentation. Transpl Immunol 2020; 60:101289. [PMID: 32229239 DOI: 10.1016/j.trim.2020.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
Abstract
Chronic kidney disease stage 5 (CKD5) dialysis patients who stay long term in uremic environment often exhibit several, poorly defined, immune impairments. In this study, we assessed peripheral virus-specific effector/memory cells and subpopulations of T, B and DC cells using ELISPOT and FACS methods in 74 low-risk kidney transplant candidates without anti-HLA antibodies, prior to transplantation in pre-emptive (never experienced dialysis) and dialysis cohorts. There was difference in circulating marginal zone B cells (MZB) (IgDhighCD27high) between dialysis patients and those receiving kidney grafts pre-emptively (P = .002). Patients treated on dialysis >12 months had also 4.2-fold greater risk of increased absolute numbers of MZB (95%CI:1.6-11.2; P = .004). There were no other differences in B-, T- and DC-cell subsets. Numbers of effector/memory T cells reactive to major opportunistic virus-specific antigens (CMV, BKV and EBV) were not affected by dialysis. Non-sensitised dialysis-treated patients displayed significantly more circulating MZB compared to those CKD5 patients that had never undergone dialysis therapy.
Collapse
Affiliation(s)
- Lucia Stranavova
- Transplant Laboratory, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Janka Slatinska
- Department of Nephrology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Birgit Sawitzki
- BIH Centre for Regenerative Therapies, Berlin Centre for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Petra Reinke
- BIH Centre for Regenerative Therapies, Berlin Centre for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- BIH Centre for Regenerative Therapies, Berlin Centre for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Ondrej Viklicky
- Transplant Laboratory, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic; Department of Nephrology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic.
| |
Collapse
|
245
|
Lettau M, Wiedemann A, Schrezenmeier EV, Giesecke-Thiel C, Dörner T. Human CD27+ memory B cells colonize a superficial follicular zone in the palatine tonsils with similarities to the spleen. A multicolor immunofluorescence study of lymphoid tissue. PLoS One 2020; 15:e0229778. [PMID: 32187186 PMCID: PMC7080255 DOI: 10.1371/journal.pone.0229778] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Memory B cell (mBC) induction and maintenance is one of the keys to long-term protective humoral immunity. MBCs are fundamental to successful medical interventions such as vaccinations and therapy in autoimmunity. However, their lifestyle and anatomic residence remain enigmatic in humans. Extrapolation from animal studies serves as a conceptual basis but might be misleading due to major anatomical distinctions between species. METHODS AND FINDINGS Multicolor immunofluorescence stainings on fixed and unfixed frozen tissue sections were established using primary antibodies coupled to haptens and secondary signal amplification. The simultaneous detection of five different fluorescence signals enabled the localization and characterization of human CD27+CD20+Ki67- mBCs for the first time within one section using laser scanning microscopy. As a result, human tonsillar mBCs were initially identified within their complex microenvironment and their relative location to naïve B cells, plasma cells and T cells could be directly studied and compared to the human splenic mBC niche. In all investigated tonsils (n = 15), mBCs appeared to be not only located in a so far subepithelial defined area but were also follicle associated with a previous undescribed gradual decline towards the follicular mantle comparable to human spleen. However, mBC areas around secondary follicles with large germinal centers (GCs) in tonsils showed interruptions and a general widening towards the epithelium while in spleen the mBC-containing marginal zones (MZ) around smaller GCs were relatively broad and symmetrical. Considerably fewer IgM+IgD+/- pre-switch compared to IgA+ or IgG+ post-switch mBCs were detected in tonsils in contrast to spleen. CONCLUSIONS This study extends existing insights into the anatomic residence of human mBCs showing structural similarities of the superficial follicular area in human spleen and tonsil. Our data support the debate of renaming the human splenic MZ to 'superficial zone' in order to be aware of the differences in rodents and, moreover, to consider this term equally for the human palatine tonsil.
Collapse
Affiliation(s)
- Marie Lettau
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Annika Wiedemann
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Eva Vanessa Schrezenmeier
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - Claudia Giesecke-Thiel
- Department of Rheumatology and Clinical Immunology, Formerly at the Charité University Medicine Berlin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- * E-mail:
| |
Collapse
|
246
|
Giordano D, Kuley R, Draves KE, Roe K, Holder U, Giltiay NV, Clark EA. BAFF Produced by Neutrophils and Dendritic Cells Is Regulated Differently and Has Distinct Roles in Antibody Responses and Protective Immunity against West Nile Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1508-1520. [PMID: 32034064 PMCID: PMC7357242 DOI: 10.4049/jimmunol.1901120] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
B cell activating factor (BAFF) is essential for B cells to develop and respond to Ags. Dysregulation of BAFF contributes to the development of some autoimmune diseases and malignancies. Little is known about when, where, and how BAFF is produced in vivo and about which BAFF-producing cells contribute to B cell responses. To better understand BAFF functions, we created BAFF reporter (BAFF-RFP) mice and Baff floxed (Bafffl/fl ) mice. Splenic and bone marrow neutrophils (Nphs) from BAFF-RFP mice expressed the highest constitutive levels of BAFF; other myeloid subsets, including conventional dendritic cells (cDCs) and monocyte (MO) subsets, expressed lower levels. Treatment of BAFF-RFP mice with polyinosinic:polycytidylic acid increased BAFF expression in splenic Ly6Chi inflammatory MOs, CD11bhi activated NK subset, and in bone marrow myeloid precursors. Postinfection with West Nile virus (WNV), BAFF increased in CD8- cDCs and Nphs, and BAFF+ CD11bhi NK cells expanded in draining lymph nodes. The cell- and tissue-specific increases in BAFF expression were dependent on type I IFN signaling. MAVS also was required or contributed to BAFF expression in dendritic cell and MO subsets, respectively. Mice with deletion of Baff in either cDCs or Nphs had reduced Ab responses after NP-Ficoll immunization; thus, BAFF produced by both cDCs and Nphs contributes to T cell-independent Ab responses. Conversely, mice with a cDC Baff deficiency had increased mortality after WNV infection and decreased WNV-specific IgG and neutralizing Ab responses. BAFF produced by Nphs and cDCs is regulated differently and has key roles in Ab responses and protective immunity.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Runa Kuley
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Kevin E Draves
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Kelsey Roe
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Ursula Holder
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA 98109; and
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109
| |
Collapse
|
247
|
Preite S, Gomez-Rodriguez J, Cannons JL, Schwartzberg PL. T and B-cell signaling in activated PI3K delta syndrome: From immunodeficiency to autoimmunity. Immunol Rev 2020; 291:154-173. [PMID: 31402502 DOI: 10.1111/imr.12790] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
Abstract
Phosphatidylinositol 3 kinases (PI3K) are a family of lipid kinases that are activated by a variety of cell-surface receptors, and regulate a wide range of downstream readouts affecting cellular metabolism, growth, survival, differentiation, adhesion, and migration. The importance of these lipid kinases in lymphocyte signaling has recently been highlighted by genetic analyses, including the recognition that both activating and inactivating mutations of the catalytic subunit of PI3Kδ, p110δ, lead to human primary immunodeficiencies. In this article, we discuss how studies on the human genetic disorder "Activated PI3K-delta syndrome" and mouse models of this disease (Pik3cdE1020K/+ mice) have provided fundamental insight into pathways regulated by PI3Kδ in T and B cells and their contribution to lymphocyte function and disease, including responses to commensal bacteria and the development of autoimmunity and tumors. We highlight critical roles of PI3Kδ in T follicular helper cells and the orchestration of the germinal center reaction, as well as in CD8+ T-cell function. We further present data demonstrating the ability of the AKT-resistant FOXO1AAA mutant to rescue IgG1 class switching defects in Pik3cdE1020K/+ B cells, as well as data supporting a role for PI3Kδ in promoting multiple T-helper effector cell lineages.
Collapse
Affiliation(s)
- Silvia Preite
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Julio Gomez-Rodriguez
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer L Cannons
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Pamela L Schwartzberg
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
248
|
Willard-Mack CL, Elmore SA, Hall WC, Harleman J, Kuper CF, Losco P, Rehg JE, Rühl-Fehlert C, Ward JM, Weinstock D, Bradley A, Hosokawa S, Pearse G, Mahler BW, Herbert RA, Keenan CM. Nonproliferative and Proliferative Lesions of the Rat and Mouse Hematolymphoid System. Toxicol Pathol 2020; 47:665-783. [PMID: 31526133 DOI: 10.1177/0192623319867053] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative changes in rats and mice. The purpose of this publication is to provide a standardized nomenclature for classifying changes observed in the hematolymphoid organs, including the bone marrow, thymus, spleen, lymph nodes, mucosa-associated lymphoid tissues, and other lymphoid tissues (serosa-associated lymphoid clusters and tertiary lymphoid structures) with color photomicrographs illustrating examples of the lesions. Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. The nomenclature for these organs is divided into 3 terminologies: descriptive, conventional, and enhanced. Three terms are listed for each diagnosis. The rationale for this approach and guidance for its application to toxicologic pathology are described in detail below.
Collapse
Affiliation(s)
| | - Susan A Elmore
- Thymus subgroup lead.,National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Johannes Harleman
- Lymph node subgroup lead.,Neoplasm subgroup leads.,Independent Consultant, Darmstadt, Germany
| | - C Frieke Kuper
- Associated lymphoid organs subgroup lead.,Independent Consultant, Utrecht, the Netherlands
| | - Patricia Losco
- General hematolymphoid subgroup lead.,Independent Consultant, West Chester, PA, USA
| | - Jerold E Rehg
- Spleen subgroup leads.,Neoplasm subgroup leads.,Saint Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jerrold M Ward
- Spleen subgroup leads.,Neoplasm subgroup leads.,Global VetPathology, Montgomery Village, MD, USA
| | | | - Alys Bradley
- Charles River Laboratories, Tranent, Scotland, United Kingdom
| | - Satoru Hosokawa
- Eisai Co, Ltd, Drug Safety Research Laboratories, Ibaraki, Japan
| | | | - Beth W Mahler
- Experimental Pathology Laboratories, Research Triangle Park, NC, USA
| | - Ronald A Herbert
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | |
Collapse
|
249
|
Cormier M, Batty P, Tarrant J, Lillicrap D. Advances in knowledge of inhibitor formation in severe haemophilia A. Br J Haematol 2020; 189:39-53. [DOI: 10.1111/bjh.16377] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matthew Cormier
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| | - Paul Batty
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| | - Julie Tarrant
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine Richardson Laboratory Queen’s University Kingston ON Canada
| |
Collapse
|
250
|
Masuda H, Nakamura T, Harashima H. Distribution of BCG-CWS-Loaded Nanoparticles in the Spleen After Intravenous Injection Affects Cytotoxic T Lymphocyte Activity. J Pharm Sci 2020; 109:1943-1950. [PMID: 32070704 DOI: 10.1016/j.xphs.2020.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 01/06/2023]
Abstract
Interest has developed in the bacillus Calmette-Guerin (BCG) cell wall skeleton (BCG-CWS) as a noninfectious adjuvant. Although BCG-CWS readily undergoes aggregation, in a previous study, we applied it to cancer immunotherapy via intravenous administration by encapsulating the BCG-CWS into nanoparticles (CWS-NPs). The CWS-NPs were taken up by major histocompatibility complex (MHC) class II+ (MHC-II+) cells and induced antigen-specific cytotoxic T lymphocyte (CTL) activity. However, the nature of the contribution of MHC-II+ cells to the CTL response continues to be unclear. In this study, we investigated the relationship between the distribution of CWS-NPs in the spleen and CTL activity. The main MHC-II+ cells that internalized the CWS-NPs were B cells. Decreasing the level of polyethylene glycol modification increased the uptake of CWS-NPs by B cells, leading to an increased CTL activity. A comparison of CWS-NPs with different uptake efficiencies into dendritic cells and B cells suggested that the DCs with internalized CWS-NPs may contribute to CTL activation compared with B cells. We succeeded in enhancing CTL activity by the CWS-NPs, and the findings reported herein should provide important information regarding target cells for the development of CWS-NP.
Collapse
Affiliation(s)
- Hideyuki Masuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|