201
|
Balasubramaniam L, Doostmohammadi A, Saw TB, Narayana GHNS, Mueller R, Dang T, Thomas M, Gupta S, Sonam S, Yap AS, Toyama Y, Mège RM, Yeomans JM, Ladoux B. Investigating the nature of active forces in tissues reveals how contractile cells can form extensile monolayers. NATURE MATERIALS 2021; 20:1156-1166. [PMID: 33603188 PMCID: PMC7611436 DOI: 10.1038/s41563-021-00919-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 12/23/2020] [Indexed: 05/24/2023]
Abstract
Actomyosin machinery endows cells with contractility at a single-cell level. However, within a monolayer, cells can be contractile or extensile based on the direction of pushing or pulling forces exerted by their neighbours or on the substrate. It has been shown that a monolayer of fibroblasts behaves as a contractile system while epithelial or neural progentior monolayers behave as an extensile system. Through a combination of cell culture experiments and in silico modelling, we reveal the mechanism behind this switch in extensile to contractile as the weakening of intercellular contacts. This switch promotes the build-up of tension at the cell-substrate interface through an increase in actin stress fibres and traction forces. This is accompanied by mechanotransductive changes in vinculin and YAP activation. We further show that contractile and extensile differences in cell activity sort cells in mixtures, uncovering a generic mechanism for pattern formation during cell competition, and morphogenesis.
Collapse
Affiliation(s)
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
| | - Thuan Beng Saw
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, Singapore
- National University of Singapore, Department of Biomedical Engineering, Singapore, Singapore
| | | | - Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Tien Dang
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France
| | - Minnah Thomas
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, Singapore
| | - Shafali Gupta
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Surabhi Sonam
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France
- D Y Patil International University, Pune, India
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yusuke Toyama
- Mechanobiology Institute (MBI), National University of Singapore, Singapore, Singapore
| | - René-Marc Mège
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France.
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
| | - Benoît Ladoux
- Université de Paris, CNRS, Institut Jacques Monod (IJM), Paris, France.
| |
Collapse
|
202
|
Paria D, Convertino A, Raj P, Glunde K, Chen Y, Barman I. Nanowire Assisted Mechanotyping of Cellular Metastatic Potential. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101638. [PMID: 34512229 PMCID: PMC8425187 DOI: 10.1002/adfm.202101638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 06/13/2023]
Abstract
Nanotechnology has provided tools for next generation biomedical devices which rely on nanostructure interfaces with living cells. In vitro biomimetic structures have enabled observation of cell response to various mechanical and chemical cues, and there is a growing interest in isolating and harnessing the specific cues that three-dimensional microenvironments can provide without the requirement for such culture and the experimental drawbacks associated with it. Here we report a randomly oriented gold coated Si nanowire substrate with patterned hydrophobic-hydrophilic areas for differentiation of isogenic breast cancer cells of varying metastatic potential. When considering synthetic surfaces for the study of cell-nanotopography interfaces, randomly oriented nanowires more closely resemble the isotropic architecture of natural extracellular matrix as compared to currently more widely used vertical nanowire arrays. In the study reported here, we show that primary cancer cells preferably attach to the hydrophilic region of randomly oriented nanowire substrate while secondary cancer cells do not adhere. Using machine learning analysis of fluorescence images, cells were found to spread and elongate on the nanowire substrates as compared to a flat substrate, where they mostly remain round, when neither surface was coated with extracellular matrix (ECM) proteins. Such platforms can not only be used for developing bioassays but also as stepping stones for tissue printing technologies where cells can be selectively patterned at desired locations.
Collapse
Affiliation(s)
- Debadrita Paria
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Annalisa Convertino
- Institute for Microelectronics and Microsystems, National Research Council, Roma, Italia
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kristine Glunde
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
203
|
Panzade S, Matis M. The Microtubule Minus-End Binding Protein Patronin Is Required for the Epithelial Remodeling in the Drosophila Abdomen. Front Cell Dev Biol 2021; 9:682083. [PMID: 34368132 PMCID: PMC8335404 DOI: 10.3389/fcell.2021.682083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
In the developing Drosophila abdomen, the epithelial tissue displays extensive cytoskeletal remodeling. In stark contrast to the spatio-temporal control of the actin cytoskeleton, the regulation of microtubule architecture during epithelial morphogenesis has remained opaque. In particular, its role in cell motility remains unclear. Here, we show that minus-end binding protein Patronin is required for organizing microtubule arrays in histoblast cells that form the Drosophila abdomen. Loss of Patronin results in a dorsal cleft, indicating the compromised function of histoblasts. We further show that Patronin is polarized in these cells and is required for the formation of highly dynamic non-centrosomal microtubules in the migrating histoblasts. Thus, our study demonstrates that regulation of microtubule cytoskeleton through Patronin mediates epithelium remodeling.
Collapse
Affiliation(s)
- Sadhana Panzade
- Interfaculty Centre 'Cells in Motion,' University of Münster, Münster, Germany.,Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
| | - Maja Matis
- Interfaculty Centre 'Cells in Motion,' University of Münster, Münster, Germany.,Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
| |
Collapse
|
204
|
Zhu X, Wang Z, Teng F. A review of regulated self-organizing approaches for tissue regeneration. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:63-78. [PMID: 34293337 DOI: 10.1016/j.pbiomolbio.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
Tissue and organ regeneration is the dynamic process by which a population of cells rearranges into a specific form with specific functions. Traditional tissue regeneration utilizes tissue grafting, cell implantation, and structured scaffolds to achieve clinical efficacy. However, tissue grafting methods face a shortage of donor tissue, while cell implantation may involve leakage of the implanted cells without a supportive 3D matrix. Cell migration, proliferation, and differentiation in structured scaffolds may disorganize and frustrate the artificially pre-designed structures, and sometimes involve immunogenic reactions. To overcome this limitation, the self-organizing properties and innate regenerative capability of tissue/organism formation in the absence of guidance by structured scaffolds has been investigated. This review emphasizes the growing subfield of the regulated self-organizing approach for neotissue formation and describes advances in the subfield using diverse, cutting-edge, inter-disciplinarity technologies. We cohesively summarize the directed self-organization of cells in the micro-engineered cell-ECM system and 3D/4D cell printing. Mathematical modeling of cellular self-organization is also discussed for providing rational guidance to intractable problems in tissue regeneration. It is envisioned that future self-organization approaches integrating biomathematics, micro-nano engineering, and gene circuits developed from synthetic biology will continue to work in concert with self-organizing morphogenesis to enhance rational control during self-organizing in tissue and organ regeneration.
Collapse
Affiliation(s)
- Xiaolu Zhu
- College of Mechanical & Electrical Engineering, Hohai University, Changzhou, Jiangsu, 213022, China; Changzhou Key Laboratory of Digital Manufacture Technology, Hohai University, Changzhou, Jiangsu, 213022, China; Jiangsu Key Laboratory of Special Robot Technology, Hohai University, Changzhou, Jiangsu, 213022, China.
| | - Zheng Wang
- College of Mechanical & Electrical Engineering, Hohai University, Changzhou, Jiangsu, 213022, China
| | - Fang Teng
- Department of Gynaecology and Obstetrics, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210004, China.
| |
Collapse
|
205
|
Novev JK, Heltberg ML, Jensen MH, Doostmohammadi A. Spatiotemporal model of cellular mechanotransduction via Rho and YAP. Integr Biol (Camb) 2021; 13:197-209. [PMID: 34278428 DOI: 10.1093/intbio/zyab012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 01/20/2023]
Abstract
How cells sense and respond to mechanical stimuli remains an open question. Recent advances have identified the translocation of Yes-associated protein (YAP) between nucleus and cytoplasm as a central mechanism for sensing mechanical forces and regulating mechanotransduction. We formulate a spatiotemporal model of the mechanotransduction signalling pathway that includes coupling of YAP with the cell force-generation machinery through the Rho family of GTPases. Considering the active and inactive forms of a single Rho protein (GTP/GDP-bound) and of YAP (non-phosphorylated/phosphorylated), we study the cross-talk between cell polarization due to active Rho and YAP activation through its nuclear localization. For fixed mechanical stimuli, our model predicts stationary nuclear-to-cytoplasmic YAP ratios consistent with experimental data at varying adhesive cell area. We further predict damped and even sustained oscillations in the YAP nuclear-to-cytoplasmic ratio by accounting for recently reported positive and negative YAP-Rho feedback. Extending the framework to time-varying mechanical stimuli that simulate cyclic stretching and compression, we show that the YAP nuclear-to-cytoplasmic ratio's time dependence follows that of the cyclic mechanical stimulus. The model presents one of the first frameworks for understanding spatiotemporal YAP mechanotransduction, providing several predictions of possible YAP localization dynamics, and suggesting new directions for experimental and theoretical studies.
Collapse
Affiliation(s)
- Javor K Novev
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Mathias L Heltberg
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark.,Laboratoire de Physique, Ecole Normale Superieure, Rue Lhomond 15, Paris 07505, France
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
206
|
Blackley DG, Cooper JH, Pokorska P, Ratheesh A. Mechanics of developmental migration. Semin Cell Dev Biol 2021; 120:66-74. [PMID: 34275746 DOI: 10.1016/j.semcdb.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/01/2023]
Abstract
The ability to migrate is a fundamental property of animal cells which is essential for development, homeostasis and disease progression. Migrating cells sense and respond to biochemical and mechanical cues by rapidly modifying their intrinsic repertoire of signalling molecules and by altering their force generating and transducing machinery. We have a wealth of information about the chemical cues and signalling responses that cells use during migration. Our understanding of the role of forces in cell migration is rapidly evolving but is still best understood in the context of cells migrating in 2D and 3D environments in vitro. Advances in live imaging of developing embryos combined with the use of experimental and theoretical tools to quantify and analyse forces in vivo, has begun to shed light on the role of mechanics in driving embryonic cell migration. In this review, we focus on the recent studies uncovering the physical basis of embryonic cell migration in vivo. We look at the physical basis of the classical steps of cell migration such as protrusion formation and cell body translocation and review the recent research on how these processes work in the complex 3D microenvironment of a developing organism.
Collapse
Affiliation(s)
- Deannah G Blackley
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jack H Cooper
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Paulina Pokorska
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Aparna Ratheesh
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
207
|
d’Alessandro J, Barbier--Chebbah A, Cellerin V, Benichou O, Mège RM, Voituriez R, Ladoux B. Cell migration guided by long-lived spatial memory. Nat Commun 2021; 12:4118. [PMID: 34226542 PMCID: PMC8257581 DOI: 10.1038/s41467-021-24249-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Living cells actively migrate in their environment to perform key biological functions-from unicellular organisms looking for food to single cells such as fibroblasts, leukocytes or cancer cells that can shape, patrol or invade tissues. Cell migration results from complex intracellular processes that enable cell self-propulsion, and has been shown to also integrate various chemical or physical extracellular signals. While it is established that cells can modify their environment by depositing biochemical signals or mechanically remodelling the extracellular matrix, the impact of such self-induced environmental perturbations on cell trajectories at various scales remains unexplored. Here, we show that cells can retrieve their path: by confining motile cells on 1D and 2D micropatterned surfaces, we demonstrate that they leave long-lived physicochemical footprints along their way, which determine their future path. On this basis, we argue that cell trajectories belong to the general class of self-interacting random walks, and show that self-interactions can rule large scale exploration by inducing long-lived ageing, subdiffusion and anomalous first-passage statistics. Altogether, our joint experimental and theoretical approach points to a generic coupling between motile cells and their environment, which endows cells with a spatial memory of their path and can dramatically change their space exploration.
Collapse
Affiliation(s)
- Joseph d’Alessandro
- grid.508487.60000 0004 7885 7602Université de Paris, CNRS, Institut Jacques Monod, Paris, F-75006 France
| | - Alex Barbier--Chebbah
- grid.462844.80000 0001 2308 1657Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, Paris, France
| | - Victor Cellerin
- grid.508487.60000 0004 7885 7602Université de Paris, CNRS, Institut Jacques Monod, Paris, F-75006 France
| | - Olivier Benichou
- grid.462844.80000 0001 2308 1657Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, Paris, France
| | - René Marc Mège
- grid.508487.60000 0004 7885 7602Université de Paris, CNRS, Institut Jacques Monod, Paris, F-75006 France
| | - Raphaël Voituriez
- grid.462844.80000 0001 2308 1657Laboratoire Jean Perrin and Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Sorbonne Université, Paris, France
| | - Benoît Ladoux
- grid.508487.60000 0004 7885 7602Université de Paris, CNRS, Institut Jacques Monod, Paris, F-75006 France
| |
Collapse
|
208
|
Inman A, Smutny M. Feeling the force: Multiscale force sensing and transduction at the cell-cell interface. Semin Cell Dev Biol 2021; 120:53-65. [PMID: 34238674 DOI: 10.1016/j.semcdb.2021.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022]
Abstract
A universal principle of all living cells is the ability to sense and respond to mechanical stimuli which is essential for many biological processes. Recent efforts have identified critical mechanosensitive molecules and response pathways involved in mechanotransduction during development and tissue homeostasis. Tissue-wide force transmission and local force sensing need to be spatiotemporally coordinated to precisely regulate essential processes during development such as tissue morphogenesis, patterning, cell migration and organogenesis. Understanding how cells identify and interpret extrinsic forces and integrate a specific response on cell and tissue level remains a major challenge. In this review we consider important cellular and physical factors in control of cell-cell mechanotransduction and discuss their significance for cell and developmental processes. We further highlight mechanosensitive macromolecules that are known to respond to external forces and present examples of how force responses can be integrated into cell and developmental programs.
Collapse
Affiliation(s)
- Angus Inman
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV47AL, UK
| | - Michael Smutny
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV47AL, UK.
| |
Collapse
|
209
|
Holcomb MC, Gao GJJ, Servati M, Schneider D, McNeely PK, Thomas JH, Blawzdziewicz J. Mechanical feedback and robustness of apical constrictions in Drosophila embryo ventral furrow formation. PLoS Comput Biol 2021; 17:e1009173. [PMID: 34228708 PMCID: PMC8284804 DOI: 10.1371/journal.pcbi.1009173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 07/16/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Formation of the ventral furrow in the Drosophila embryo relies on the apical constriction of cells in the ventral region to produce bending forces that drive tissue invagination. In our recent paper we observed that apical constrictions during the initial phase of ventral furrow formation produce elongated patterns of cellular constriction chains prior to invagination and argued that these are indicative of tensile stress feedback. Here, we quantitatively analyze the constriction patterns preceding ventral furrow formation and find that they are consistent with the predictions of our active-granular-fluid model of a monolayer of mechanically coupled stress-sensitive constricting particles. Our model shows that tensile feedback causes constriction chains to develop along underlying precursor tensile stress chains that gradually strengthen with subsequent cellular constrictions. As seen in both our model and available optogenetic experiments, this mechanism allows constriction chains to penetrate or circumvent zones of reduced cell contractility, thus increasing the robustness of ventral furrow formation to spatial variation of cell contractility by rescuing cellular constrictions in the disrupted regions.
Collapse
Affiliation(s)
- Michael C. Holcomb
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas, United States of America
| | - Guo-Jie Jason Gao
- Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu, Japan
| | - Mahsa Servati
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas, United States of America
| | - Dylan Schneider
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, United States of America
| | - Presley K. McNeely
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas, United States of America
| | - Jeffrey H. Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jerzy Blawzdziewicz
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas, United States of America
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
210
|
Qin L, Yang D, Yi W, Cao H, Xiao G. Roles of leader and follower cells in collective cell migration. Mol Biol Cell 2021; 32:1267-1272. [PMID: 34184941 PMCID: PMC8351552 DOI: 10.1091/mbc.e20-10-0681] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Collective cell migration is a widely observed phenomenon during animal development, tissue repair, and cancer metastasis. Considering its broad involvement in biological processes, it is essential to understand the basics behind the collective movement. Based on the topology of migrating populations, tissue-scale kinetics, called the “leader–follower” model, has been proposed for persistent directional collective movement. Extensive in vivo and in vitro studies reveal the characteristics of leader cells, as well as the special mechanisms leader cells employ for maintaining their positions in collective migration. However, follower cells have attracted increasing attention recently due to their important contributions to collective movement. In this Perspective, the current understanding of the molecular mechanisms behind the “leader–follower” model is reviewed with a special focus on the force transmission and diverse roles of leaders and followers during collective cell movement.
Collapse
Affiliation(s)
- Lei Qin
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China.,Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, China
| | - Dazhi Yang
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Weihong Yi
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, China
| |
Collapse
|
211
|
Kojima M, Sugimoto K, Kobayashi M, Ichikawa-Tomikawa N, Kashiwagi K, Watanabe T, Soeda S, Fujimori K, Chiba H. Aberrant Claudin-6-Adhesion Signaling Promotes Endometrial Cancer Progression via Estrogen Receptor α. Mol Cancer Res 2021; 19:1208-1220. [PMID: 33727343 DOI: 10.1158/1541-7786.mcr-20-0835] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/04/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Cell adhesion proteins not only maintain tissue integrity, but also possess signaling abilities to organize diverse cellular events in a variety of physiologic and pathologic processes; however, the underlying mechanism remains obscure. Among cell adhesion molecules, the claudin (CLDN) family is often aberrantly expressed in various cancers, but the biological relevance and molecular basis for this observation have not yet been established. Here, we show that high CLDN6 expression accelerates cellular proliferation and migration in two distinct human endometrial cancer cell lines in vitro. Using a xenograft model, we also revealed that aberrant CLDN6 expression promotes tumor growth and invasion in endometrial cancer tissues. The second extracellular domain and Y196/200 of CLDN6 were required to recruit and activate Src-family kinases (SFK) and to stimulate malignant phenotypes. Knockout and overexpression of ESR1 in endometrial carcinoma cells showed that the CLDN6-adhesion signal links to estrogen receptor α (ERα) to advance tumor progression. In particular, aberrant CLDN6-ERα signaling contributed to collective cell behaviors in the leading front of endometrial cancer cells. Importantly, we demonstrate that CLDN6/SFK/PI3K-dependent AKT and SGK (serum- and glucocorticoid-regulated kinase) signaling in endometrial cancer cells targets Ser518 in the human ERα to activate ERα transcriptional activity in a ligand-independent manner, thereby promoting tumor progression. Furthermore, CLDN6, at least in part, also regulated gene expression in an ERα-independent manner. IMPLICATIONS: The identification of this machinery highlights regulation of the transcription factors by cell adhesion to advance tumor progression.
Collapse
Affiliation(s)
- Manabu Kojima
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kotaro Sugimoto
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Makoto Kobayashi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoki Ichikawa-Tomikawa
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Korehito Kashiwagi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan.
| |
Collapse
|
212
|
Jiang K, Pichol-Thievend C, Neufeld Z, Francois M. Assessment of heterogeneity in collective endothelial cell behavior with multicolor clonal cell tracking to predict arteriovenous remodeling. Cell Rep 2021; 36:109395. [PMID: 34289351 DOI: 10.1016/j.celrep.2021.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022] Open
Abstract
Arteries and veins form in a stepwise process that combines vasculogenesis and sprouting angiogenesis. Despite extensive data on the mechanisms governing blood vessel assembly at the single-cell level, little is known about how collective cell migration contributes to the organization of the balanced distribution between arteries and veins. Here, we use an endothelial-specific zebrafish reporter, arteriobow, to label small cohorts of arterial cells and trace their progeny from early vasculogenesis throughout arteriovenous remodeling. We reveal that the genesis of arteries and veins relies on the coordination of 10 types of collective cell dynamics. Within these behavioral categories, we identify a heterogeneity of collective cell motion specific to either arterial or venous remodeling. Using pharmacological blockade, we further show that cell-intrinsic Notch signaling and cell-extrinsic blood flow act as regulators in maintaining the heterogeneity of collective endothelial cell behavior, which, in turn, instructs the future territory of arteriovenous remodeling.
Collapse
Affiliation(s)
- Keyi Jiang
- The David Richmond Laboratory for Cardiovascular Development, Gene Regulation and Editing, the Centenary Institute, Camperdown, 2006 NSW, Australia; Institute for Molecular Bioscience, the University of Queensland, St Lucia, 4072 QLD, Australia
| | - Cathy Pichol-Thievend
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, 4072 QLD, Australia; Tumor Microenvironment Laboratory, Institute Curie Research Center, Paris Saclay University, PSL Research University, Inserm U1021, CNRS, UMR3347 Orsay, France
| | - Zoltan Neufeld
- School of Mathematics and Physics, the University of Queensland, St Lucia, 4072 QLD, Australia
| | - Mathias Francois
- The David Richmond Laboratory for Cardiovascular Development, Gene Regulation and Editing, the Centenary Institute, Camperdown, 2006 NSW, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, 2006 NSW, Australia.
| |
Collapse
|
213
|
Dias Gomes M, Iden S. Orchestration of tissue-scale mechanics and fate decisions by polarity signalling. EMBO J 2021; 40:e106787. [PMID: 33998017 PMCID: PMC8204866 DOI: 10.15252/embj.2020106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic development relies on dynamic cell shape changes and segregation of fate determinants to achieve coordinated compartmentalization at larger scale. Studies in invertebrates have identified polarity programmes essential for morphogenesis; however, less is known about their contribution to adult tissue maintenance. While polarity-dependent fate decisions in mammals utilize molecular machineries similar to invertebrates, the hierarchies and effectors can differ widely. Recent studies in epithelial systems disclosed an intriguing interplay of polarity proteins, adhesion molecules and mechanochemical pathways in tissue organization. Based on major advances in biophysics, genome editing, high-resolution imaging and mathematical modelling, the cell polarity field has evolved to a remarkably multidisciplinary ground. Here, we review emerging concepts how polarity and cell fate are coupled, with emphasis on tissue-scale mechanisms, mechanobiology and mammalian models. Recent findings on the role of polarity signalling for tissue mechanics, micro-environmental functions and fate choices in health and disease will be summarized.
Collapse
Affiliation(s)
- Martim Dias Gomes
- CECAD Cluster of ExcellenceUniversity of CologneCologneGermany
- Cell and Developmental BiologyFaculty of MedicineCenter of Human and Molecular Biology (ZHMB)Saarland UniversityHomburgGermany
| | - Sandra Iden
- CECAD Cluster of ExcellenceUniversity of CologneCologneGermany
- Cell and Developmental BiologyFaculty of MedicineCenter of Human and Molecular Biology (ZHMB)Saarland UniversityHomburgGermany
- CMMCUniversity of CologneCologneGermany
| |
Collapse
|
214
|
Jain S, Ladoux B, Mège RM. Mechanical plasticity in collective cell migration. Curr Opin Cell Biol 2021; 72:54-62. [PMID: 34134013 DOI: 10.1016/j.ceb.2021.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/19/2023]
Abstract
Collective cell migration is crucial to maintain epithelium integrity during developmental and repair processes. It requires a tight regulation of mechanical coordination between neighboring cells. This coordination embraces different features including mechanical self-propulsion of individual cells within cellular colonies and large-scale force transmission through cell-cell junctions. This review discusses how the plasticity of biomechanical interactions at cell-cell contacts could help cellular systems to perform coordinated motions and adapt to the properties of the external environment.
Collapse
Affiliation(s)
- Shreyansh Jain
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Benoit Ladoux
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France.
| | - René-Marc Mège
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France.
| |
Collapse
|
215
|
Abdollahiyan P, Oroojalian F, Baradaran B, de la Guardia M, Mokhtarzadeh A. Advanced mechanotherapy: Biotensegrity for governing metastatic tumor cell fate via modulating the extracellular matrix. J Control Release 2021; 335:596-618. [PMID: 34097925 DOI: 10.1016/j.jconrel.2021.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022]
Abstract
Mechano-transduction is the procedure of mechanical stimulus translation via cells, among substrate shear flow, topography, and stiffness into a biochemical answer. TAZ and YAP are transcriptional coactivators which are recognized as relay proteins that promote mechano-transduction within the Hippo pathway. With regard to healthy cells in homeostasis, mechano-transduction regularly restricts proliferation, and TAZ and YAP are totally inactive. During cancer development a YAP/TAZ - stimulating positive response loop is formed between the growing tumor and the stiffening ECM. As tumor developments, local stromal and cancerous cells take advantage of mechanotransduction to enhance proliferation, induce their migratory into remote tissues, and promote chemotherapeutic resistance. As a newly progresses paradigm, nanoparticle-conjunctions (such as magnetic nanoparticles, and graphene derivatives nanoparticles) hold significant promises for remote regulation of cells and their relevant events at molecular scale. Despite outstanding developments in employing nanoparticles for drug targeting studies, the role of nanoparticles on cellular behaviors (proliferation, migration, and differentiation) has still required more evaluations in the field of mechanotherapy. In this paper, the in-depth contribution of mechano-transduction is discussed during tumor progression, and how these consequences can be evaluated in vitro.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
216
|
Zhang G, Wang Z, Han F, Jin G, Xu L, Xu H, Su H, Wang H, Le Y, Fu Y, Ju J, Li B, Hou R. Mechano-regulation of vascular network formation without branches in 3D bioprinted cell-laden hydrogel constructs. Biotechnol Bioeng 2021; 118:3787-3798. [PMID: 34110009 DOI: 10.1002/bit.27854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Restoration of a wound is a common surgical procedure in clinic. Currently, the skin required for clinical use is taken from the patient's own body. However, it can be difficult to obtain enough skin sources for large-sized wounds and thus surgeons have started using commercial skin substitutes. The current commercial skin, which includes epidermis substitute, dermis substitute, and bilateral skin substitute, has been popularized in clinic. However, the application is limited by the occurrence of ischemia necrosis after transplantation. Recent studies suggest the use of pre-vascularized skin substitutes for wound healing is a promising area in the research field of skin tissue engineering. Pre-vascularization can be induced by changes in cultivation periods, exertion of mechanical stimuli, or coculture with endothelial cells and various factors. However, few methods could control the formation of vascular branches in engineering tissue in a self-assembly way. In this study, we use three-dimensional (3D) printing technology to confirm that a mechanical force can control the growth of blood vessels in the direction of mechanical stimulation with no branches, and that Yes-associated protein activity is involved in the regulatory progress. In vivo experiments verified that the blood vessels successfully function for blood circulation, and maintain the same direction. Results provide a theoretical basis for products of pre-vascularized skin tissues and other organs created by 3D bioprinting.
Collapse
Affiliation(s)
- Guangliang Zhang
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Orthopaedic Surgery, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Zhan Wang
- Department of Internal Medicine Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Fengxuan Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Guangzhe Jin
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Xu
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Xu
- Department of Orthopaedic Surgery, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Hao Su
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jihui Ju
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Ruixing Hou
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
217
|
Berg IC, Mohagheghian E, Habing K, Wang N, Underhill GH. Microtissue Geometry and Cell-Generated Forces Drive Patterning of Liver Progenitor Cell Differentiation in 3D. Adv Healthc Mater 2021; 10:e2100223. [PMID: 33890430 PMCID: PMC8222189 DOI: 10.1002/adhm.202100223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/27/2021] [Indexed: 01/13/2023]
Abstract
3D microenvironments provide a unique opportunity to investigate the impact of intrinsic mechanical signaling on progenitor cell differentiation. Using a hydrogel-based microwell platform, arrays of 3D, multicellular microtissues in constrained geometries, including toroids and cylinders are produced. These generated distinct mechanical profiles to investigate the impact of geometry and stress on early liver progenitor cell fate using a model liver development system. Image segmentation allows the tracking of individual cell fate and the characterization of distinct patterning of hepatocytic makers to the outer shell of the microtissues, and the exclusion from the inner diameter surface of the toroids. Biliary markers are distributed throughout the interior regions of micropatterned tissues and are increased in toroidal tissues when compared with those in cylindrical tissues. Finite element models of predicted stress distributions, combined with mechanical measurements, demonstrates that intercellular tension correlates with increased hepatocytic fate, while compression correlates with decreased hepatocytic and increased biliary fate. This system, which integrates microfabrication, imaging, mechanical modeling, and quantitative analysis, demonstrates how microtissue geometry can drive patterning of mechanical stresses that regulate cell differentiation trajectories. This approach may serve as a platform for further investigation of signaling mechanisms in the liver and other developmental systems.
Collapse
Affiliation(s)
- Ian C. Berg
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| | - Erfan Mohagheghian
- University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering, Mechanical Engineering Building, 1206 W. Green St. MC 244, Urbana, IL, 61801, USA
| | - Krista Habing
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| | - Ning Wang
- University of Illinois at Urbana-Champaign Department of Mechanical Science and Engineering, Mechanical Engineering Building, 1206 W. Green St. MC 244, Urbana, IL, 61801, USA
| | - Gregory H. Underhill
- University of Illinois at Urbana-Champaign Department of Bioengineering, 1102 Everitt Lab, MC-278, 1406 W. Green Street, Urbana, IL 61801, USA
| |
Collapse
|
218
|
Lavrentovich OD. Design of nematic liquid crystals to control microscale dynamics. LIQUID CRYSTALS REVIEWS 2021; 8:59-129. [PMID: 34956738 PMCID: PMC8698256 DOI: 10.1080/21680396.2021.1919576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/11/2021] [Indexed: 05/25/2023]
Abstract
The dynamics of small particles, both living such as swimming bacteria and inanimate, such as colloidal spheres, has fascinated scientists for centuries. If one could learn how to control and streamline their chaotic motion, that would open technological opportunities in the transformation of stored or environmental energy into systematic motion, with applications in micro-robotics, transport of matter, guided morphogenesis. This review presents an approach to command microscale dynamics by replacing an isotropic medium with a liquid crystal. Orientational order and associated properties, such as elasticity, surface anchoring, and bulk anisotropy, enable new dynamic effects, ranging from the appearance and propagation of particle-like solitary waves to self-locomotion of an active droplet. By using photoalignment, the liquid crystal can be patterned into predesigned structures. In the presence of the electric field, these patterns enable the transport of solid and fluid particles through nonlinear electrokinetics rooted in anisotropy of conductivity and permittivity. Director patterns command the dynamics of swimming bacteria, guiding their trajectories, polarity of swimming, and distribution in space. This guidance is of a higher level of complexity than a simple following of the director by rod-like microorganisms. Namely, the director gradients mediate hydrodynamic interactions of bacteria to produce an active force and collective polar modes of swimming. The patterned director could also be engraved in a liquid crystal elastomer. When an elastomer coating is activated by heat or light, these patterns produce a deterministic surface topography. The director gradients define an activation force that shapes the elastomer in a manner similar to the active stresses triggering flows in active nematics. The patterned elastomer substrates could be used to define the orientation of cells in living tissues. The liquid-crystal guidance holds a major promise in achieving the goal of commanding microscale active flows.
Collapse
Affiliation(s)
- Oleg D Lavrentovich
- Advanced Materials and Liquid Crystal Institute, Department of Physics, Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
219
|
Dai G, Feinberg AW, Wan LQ. Recent Advances in Cellular and Molecular Bioengineering for Building and Translation of Biological Systems. Cell Mol Bioeng 2021; 14:293-308. [PMID: 34055096 PMCID: PMC8147909 DOI: 10.1007/s12195-021-00676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
In January of 2020, the Biomedical Engineering Society (BMES)- Cellular and Molecular Bioengineering (CMBE) conference was held in Puerto Rico and themed “Vision 2020: Emerging Technologies to Elucidate the Rule of Life.” The annual BME-CMBE conference gathered worldwide leaders and discussed successes and challenges in engineering biological systems and their translation. The goal of this report is to present the research frontiers in this field and provide perspectives on successful engineering and translation towards the clinic. We hope that this report serves as a constructive guide in shaping the future of research and translation of engineered biological systems.
Collapse
Affiliation(s)
- Guohao Dai
- Department of Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 224, Boston, MA 02115 USA
| | - Adam W Feinberg
- Departments of Biomedical Engineering & Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA
| | - Leo Q Wan
- Departments of Biomedical Engineering & Biological Sciences, Rensselaer Polytechnic Institute, Biotech 2147, 110 8th Street, Troy, NY 12180 USA
| |
Collapse
|
220
|
Ueda Y, Kimura-Yoshida C, Mochida K, Tsume M, Kameo Y, Adachi T, Lefebvre O, Hiramatsu R, Matsuo I. Intrauterine Pressures Adjusted by Reichert's Membrane Are Crucial for Early Mouse Morphogenesis. Cell Rep 2021; 31:107637. [PMID: 32433954 DOI: 10.1016/j.celrep.2020.107637] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022] Open
Abstract
Mammalian embryogenesis proceeds in utero with the support of nutrients and gases from maternal tissues. However, the contribution of the mechanical environment provided by the uterus to embryogenesis remains unaddressed. Notably, how intrauterine pressures are produced, accurately adjusted, and exerted on embryos are completely unknown. Here, we find that Reichert's membrane, a specialized basement membrane that wraps around the implanted mouse embryo, plays a crucial role as a shock absorber to protect embryos from intrauterine pressures. Notably, intrauterine pressures are produced by uterine smooth muscle contractions, showing the highest and most frequent periodic peaks just after implantation. Mechanistically, such pressures are adjusted within the sealed space between the embryo and uterus created by Reichert's membrane and are involved in egg-cylinder morphogenesis as an important biomechanical environment in utero. Thus, we propose the buffer space sealed by Reichert's membrane cushions and disperses intrauterine pressures exerted on embryos for egg-cylinder morphogenesis.
Collapse
Affiliation(s)
- Yoko Ueda
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Kyoko Mochida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Mami Tsume
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Yoshitaka Kameo
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Olivier Lefebvre
- INSERM UMR_S1109, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| | - Ryuji Hiramatsu
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan.
| |
Collapse
|
221
|
Li M, Xi N, Liu L. Peak force tapping atomic force microscopy for advancing cell and molecular biology. NANOSCALE 2021; 13:8358-8375. [PMID: 33913463 DOI: 10.1039/d1nr01303c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The advent of atomic force microscopy (AFM) provides an exciting tool to detect molecular and cellular behaviors under aqueous conditions. AFM is able to not only visualize the surface topography of the specimens, but also can quantify the mechanical properties of the specimens by force spectroscopy assay. Nevertheless, integrating AFM topographic imaging with force spectroscopy assay has long been limited due to the low spatiotemporal resolution. In recent years, the appearance of a new AFM imaging mode called peak force tapping (PFT) has shattered this limit. PFT allows AFM to simultaneously acquire the topography and mechanical properties of biological samples with unprecedented spatiotemporal resolution. The practical applications of PFT in the field of life sciences in the past decade have demonstrated the excellent capabilities of PFT in characterizing the fine structures and mechanics of living biological systems in their native states, offering novel possibilities to reveal the underlying mechanisms guiding physiological/pathological activities. In this paper, the recent progress in cell and molecular biology that has been made with the utilization of PFT is summarized, and future perspectives for further progression and biomedical applications of PFT are provided.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China and Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China and University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China and Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China and University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
222
|
Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids. Nat Commun 2021; 12:2759. [PMID: 33980857 PMCID: PMC8115695 DOI: 10.1038/s41467-021-22988-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/08/2021] [Indexed: 12/25/2022] Open
Abstract
Epithelial branch elongation is a central developmental process during branching morphogenesis in diverse organs. This fundamental growth process into large arborized epithelial networks is accompanied by structural reorganization of the surrounding extracellular matrix (ECM), well beyond its mechanical linear response regime. Here, we report that epithelial ductal elongation within human mammary organoid branches relies on the non-linear and plastic mechanical response of the surrounding collagen. Specifically, we demonstrate that collective back-and-forth motion of cells within the branches generates tension that is strong enough to induce a plastic reorganization of the surrounding collagen network which results in the formation of mechanically stable collagen cages. Such matrix encasing in turn directs further tension generation, branch outgrowth and plastic deformation of the matrix. The identified mechanical tension equilibrium sets a framework to understand how mechanical cues can direct ductal branch elongation. Mammary organoid growth from single primary human cells rely on distinct morphogenetic processes. Here, the authors observe by live cell imaging the importance of the plastic mechanical response of the extracellular matrix and cell migration for the underlying arborized structure formation process.
Collapse
|
223
|
Duclut C, Prost J, Jülicher F. Hydraulic and electric control of cell spheroids. Proc Natl Acad Sci U S A 2021; 118:e2021972118. [PMID: 33947815 PMCID: PMC8126836 DOI: 10.1073/pnas.2021972118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We use a theoretical approach to examine the effect of a radial fluid flow or electric current on the growth and homeostasis of a cell spheroid. Such conditions may be generated by a drain of micrometric diameter. To perform this analysis, we describe the tissue as a continuum. We include active mechanical, electric, and hydraulic components in the tissue material properties. We consider a spherical geometry and study the effect of the drain on the dynamics of the cell aggregate. We show that a steady fluid flow or electric current imposed by the drain could be able to significantly change the spheroid long-time state. In particular, our work suggests that a growing spheroid can systematically be driven to a shrinking state if an appropriate external field is applied. Order-of-magnitude estimates suggest that such fields are of the order of the indigenous ones. Similarities and differences with the case of tumors and embryo development are briefly discussed.
Collapse
Affiliation(s)
- Charlie Duclut
- Max-Planck-Institut für Physik Komplexer Systeme, 01187 Dresden, Germany
| | - Jacques Prost
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
- Mechanobiology Institute, National University of Singapore, 117411 Singapore, Singapore
| | - Frank Jülicher
- Max-Planck-Institut für Physik Komplexer Systeme, 01187 Dresden, Germany;
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
224
|
A junctional PACSIN2/EHD4/MICAL-L1 complex coordinates VE-cadherin trafficking for endothelial migration and angiogenesis. Nat Commun 2021; 12:2610. [PMID: 33972531 PMCID: PMC8110786 DOI: 10.1038/s41467-021-22873-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Angiogenic sprouting relies on collective migration and coordinated rearrangements of endothelial leader and follower cells. VE-cadherin-based adherens junctions have emerged as key cell-cell contacts that transmit forces between cells and trigger signals during collective cell migration in angiogenesis. However, the underlying molecular mechanisms that govern these processes and their functional importance for vascular development still remain unknown. We previously showed that the F-BAR protein PACSIN2 is recruited to tensile asymmetric adherens junctions between leader and follower cells. Here we report that PACSIN2 mediates the formation of endothelial sprouts during angiogenesis by coordinating collective migration. We show that PACSIN2 recruits the trafficking regulators EHD4 and MICAL-L1 to the rear end of asymmetric adherens junctions to form a recycling endosome-like tubular structure. The junctional PACSIN2/EHD4/MICAL-L1 complex controls local VE-cadherin trafficking and thereby coordinates polarized endothelial migration and angiogenesis. Our findings reveal a molecular event at force-dependent asymmetric adherens junctions that occurs during the tug-of-war between endothelial leader and follower cells, and allows for junction-based guidance during collective migration in angiogenesis. Communication between endothelial leader and follower cells during collective cell migration is crucial for vascular development. Here, the authors show that PACSIN2 guides collective cell migration and angiogenesis by recruiting a protein trafficking complex to asymmetric cell-cell junctions, controlling local junction plasticity.
Collapse
|
225
|
Yang G, Jiang F, Lu Y, Lin S, Liu C, Li A, Kaplan DL, Zhang S, He Y, Huang C, Zhang W, Jiang X. Rapid construction and enhanced vascularization of microtissue using a magnetic control method. Biofabrication 2021; 13. [PMID: 33967033 DOI: 10.1088/1758-5090/abe4c2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/09/2021] [Indexed: 12/25/2022]
Abstract
Stem cells play critical roles in tissue repair and regeneration. The construction of stem cell-derived microtissue is a promising strategy for transplanting cells into defects to improve tissue regeneration efficiency. However, rapidly constructing larger microtissues and promoting vascularization to ensure the cellular nutrient supply remain major challenges. Here, we have developed a magnetic device to rapidly construct and regulate millimeter-scale microtissues derived from magnetic nanoparticle-labeled cells. When the microtissue was cultured under a specific magnetic field, the shape of the microtissue could be changed. Importantly, cell proliferation was maintained, and angiogenesis was activated in the process of microtissue deformation. We developed a magnetic control method to treat microtissue, and the implanted microtissue showed excellent vascularizationin vivo. In brief, this magnetic control technology provides a promising strategy for vascularized regenerative medicine.
Collapse
Affiliation(s)
- Guangzheng Yang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, People's Republic of China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, People's Republic of China
| | - Fei Jiang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, People's Republic of China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, People's Republic of China.,Jiangsu Key Laboratory of Oral Diseases, Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yuezhi Lu
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, People's Republic of China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, People's Republic of China
| | - Sihan Lin
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, People's Republic of China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, People's Republic of China
| | - Chang Liu
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, People's Republic of China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, People's Republic of China
| | - Anshuo Li
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, People's Republic of China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, United States of America
| | - Shilei Zhang
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, People's Republic of China.,Department of Oral and Cranio-maxillofacial Surgery, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, People's Republic of China
| | - Yue He
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, People's Republic of China.,Department of Oral and Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, People's Republic of China
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, People's Republic of China
| | - Wenjie Zhang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, People's Republic of China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, People's Republic of China
| | - Xinquan Jiang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, People's Republic of China.,Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai 200011, People's Republic of China
| |
Collapse
|
226
|
Gorji A, Toh PJY, Ong HT, Toh YC, Toyama Y, Kanchanawong P. Enhancement of Endothelialization by Topographical Features Is Mediated by PTP1B-Dependent Endothelial Adherens Junctions Remodeling. ACS Biomater Sci Eng 2021; 7:2661-2675. [PMID: 33942605 DOI: 10.1021/acsbiomaterials.1c00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endothelial Cells (ECs) form cohesive cellular lining of the vasculature and play essential roles in both developmental processes and pathological conditions. Collective migration and proliferation of endothelial cells (ECs) are key processes underlying endothelialization of vessels as well as vascular graft, but the complex interplay of mechanical and biochemical signals regulating these processes are still not fully elucidated. While surface topography and biochemical modifications have been used to enhance endothelialization in vitro, thus far such single-modality modifications have met with limited success. As combination therapy that utilizes multiple modalities has shown improvement in addressing various intractable and complex biomedical conditions, here, we explore a combined strategy that utilizes topographical features in conjunction with pharmacological perturbations. We characterized EC behaviors in response to micrometer-scale grating topography in concert with pharmacological perturbations of endothelial adherens junctions (EAJ) regulators. We found that the protein tyrosine phosphatase, PTP1B, serves as a potent regulator of EAJ stability, with PTP1B inhibition synergizing with grating topographies to modulate EAJ rearrangement, thereby augmenting global EC monolayer sheet orientation, proliferation, connectivity, and collective cell migration. Our data delineates the crosstalk between cell-ECM topography sensing and cell-cell junction integrity maintenance and suggests that the combined use of grating topography and PTP1B inhibitor could be a promising strategy for promoting collective EC migration and proliferation.
Collapse
Affiliation(s)
- Azita Gorji
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore.,Institut Curie, Laboratoire Physico Chimie Curie, Institut Pierre-Gilles de Gennes, CNRS UMR168, Paris 75005, France
| | - Pearlyn Jia Ying Toh
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 117583 Republic of Singapore.,Institute for Health Innovation and Technology, National University of Singapore, 117599 Republic of Singapore.,The N.1 Institute for Health, National University of Singapore, 117456, Republic of Singapore.,NUS Tissue Engineering Programme, National University of Singapore, 117456, Republic of Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore.,Department of Biological Sciences, National University of Singapore, 117558, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore.,Department of Biomedical Engineering, National University of Singapore, 117583 Republic of Singapore
| |
Collapse
|
227
|
Regulation of collective cell polarity and migration using dynamically adhesive micropatterned substrates. Acta Biomater 2021; 126:291-300. [PMID: 33741539 DOI: 10.1016/j.actbio.2021.03.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Collective cell migration is a fundamental biological process in which groups of cells move together in a coordinated manner, and it is essential for tissue development and wound repair. However, the underlying mechanisms that orchestrate directionality in collectively migrating cells remain poorly understood. In this study, we employed dynamically adhesive micropatterned substrates to investigate the role of adhesive cues in directing epithelial migration. Our findings demonstrate that epithelial cells collectively polarize in response to asymmetric patterns of extracellular matrix (ECM), and the degree of polarization depends on the degree of asymmetry and requires calcium-dependent cell-cell adhesion. When released from the micropatterns, epithelial cells collectively migrate according to the direction of pre-established polarity, and cohesive migration specifically requires E-cadherin-containing adherens junctions. Finally, disruption of the microtubule network blocks collective polarization and functionally inhibits directed migration. Together, these results indicate that adhesive cues from the ECM guide collective epithelial polarity and migration, and this response depends on adherens junctions and microtubules. STATEMENT OF SIGNIFICANCE: This study employs a dynamically adhesive micropatterning platform to investigate the role of adhesive cues in directing the polarity and directional migration of epithelial cells. The findings demonstrate how asymmetric tissue geometry influences the collective directionality in simple epithelia and that this response is mediated by adherens junctions and the microtubule network. This work provides new insight into fundamental cellular processes involved in wound healing and has important implications for biomaterial and scaffold design.
Collapse
|
228
|
Correia CR, Bjørge IM, Nadine S, Mano JF. Minimalist Tissue Engineering Approaches Using Low Material-Based Bioengineered Systems. Adv Healthc Mater 2021; 10:e2002110. [PMID: 33709572 DOI: 10.1002/adhm.202002110] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/17/2021] [Indexed: 12/14/2022]
Abstract
From an "over-engineering" era in which biomaterials played a central role, now it is observed to the emergence of "developmental" tissue engineering (TE) strategies which rely on an integrative cell-material perspective that paves the way for cell self-organization. The current challenge is to engineer the microenvironment without hampering the spontaneous collective arrangement ability of cells, while simultaneously providing biochemical, geometrical, and biophysical cues that positively influence tissue healing. These efforts have resulted in the development of low-material based TE strategies focused on minimizing the amount of biomaterial provided to the living key players of the regenerative process. Through a "minimalist-engineering" approach, the main idea is to fine-tune the spatial balance occupied by the inanimate region of the regenerative niche toward maximum actuation of the key living components during the healing process.
Collapse
Affiliation(s)
- Clara R. Correia
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Isabel M. Bjørge
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Sara Nadine
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João F. Mano
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| |
Collapse
|
229
|
Jiang S, Li H, Zeng Q, Xiao Z, Zhang X, Xu M, He Y, Wei Y, Deng X. The Dynamic Counterbalance of RAC1-YAP/OB-Cadherin Coordinates Tissue Spreading with Stem Cell Fate Patterning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004000. [PMID: 34026448 PMCID: PMC8132063 DOI: 10.1002/advs.202004000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Tissue spreading represents a key morphogenetic feature of embryonic development and regenerative medicine. However, how molecular signaling orchestrates the spreading dynamics and cell fate commitment of multicellular tissue remains poorly understood. Here, it is demonstrated that the dynamic counterbalance between RAC1-YAP and OB-cadherin plays a key role in coordinating heterogeneous spreading dynamics with distinct cell fate patterning during collective spreading. The spatiotemporal evolution of individual stem cells in spheroids during collective spreading is mapped. Time-lapse cell migratory trajectory analysis combined with in situ cellular biomechanics detection reveal heterogeneous patterns of collective spreading characteristics, where the cells at the periphery are faster, stiffer, and directional compared to those in the center of the spheroid. Single-cell sequencing shows that the divergent spreading result in distinct cell fate patterning, where differentiation, proliferation, and metabolism are enhanced in peripheral cells. Molecular analysis demonstrates that the increased expression of RAC1-YAP rather than OB-cadherin facilitated cell spreading and induced differentiation, and vice versa. The in vivo wound healing experiment confirms the functional role of RAC1-YAP signaling in tissue spreading. These findings shed light on the mechanism of tissue morphogenesis in the progression of development and provide a practical strategy for desirable regenerative therapies.
Collapse
Affiliation(s)
- Shengjie Jiang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Hui Li
- School of Systems ScienceBeijing Normal UniversityBeijing100875P. R. China
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Qiang Zeng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Zuohui Xiao
- Beijing Laboratory of Biomedical Materials, Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterNational Engineering Laboratory for Digital and Material Technology of StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Mingming Xu
- Beijing Laboratory of Biomedical Materials, Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Ying He
- Beijing Laboratory of Biomedical Materials, Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Yan Wei
- Beijing Laboratory of Biomedical Materials, Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xuliang Deng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| |
Collapse
|
230
|
Yu J, Cai P, Zhang X, Zhao T, Liang L, Zhang S, Liu H, Chen X. Spatiotemporal Oscillation in Confined Epithelial Motion upon Fluid-to-Solid Transition. ACS NANO 2021; 15:7618-7627. [PMID: 33844497 DOI: 10.1021/acsnano.1c01165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluid-to-solid phase transition in multicellular assembly is crucial in many developmental biological processes, such as embryogenesis and morphogenesis. However, biomechanical studies in this area are limited, and little is known about factors governing the transition and how cell behaviors are regulated. Due to different stresses present, cells could behave distinctively depending on the nature of tissue. Here we report a fluid-to-solid transition in geometrically confined multicellular assemblies. Under circular confinement, Madin-Darby canine kidney (MDCK) monolayers undergo spatiotemporally oscillatory motions that are strongly dependent on the confinement size and distance from the periphery of the monolayers. Nanomechanical mapping reveals that epithelial tensional stress and traction forces on the substrate are both dependent on confinement size. The oscillation pattern and cellular nanomechanics profile appear well correlated with stress fiber assembly and cell polarization. These experimental observations imply that the confinement size-dependent surface tension regulates actin fiber assembly, cellular force generation, and cell polarization. Our analyses further suggest a characteristic confinement size (approximates to MDCK's natural correlation length) below which surface tension is sufficiently high and triggers a fluid-to-solid transition of the monolayers. Our findings may shed light on the geometrical and nanomechanical control of tissue morphogenesis and growth.
Collapse
Affiliation(s)
- Jing Yu
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Pingqiang Cai
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaoqian Zhang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tiankai Zhao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Linlin Liang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
231
|
Bose S, Dasbiswas K, Gopinath A. Matrix Stiffness Modulates Mechanical Interactions and Promotes Contact between Motile Cells. Biomedicines 2021; 9:biomedicines9040428. [PMID: 33920918 PMCID: PMC8077938 DOI: 10.3390/biomedicines9040428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023] Open
Abstract
The mechanical micro-environment of cells and tissues influences key aspects of cell structure and function, including cell motility. For proper tissue development, cells need to migrate, interact, and form contacts. Cells are known to exert contractile forces on underlying soft substrates and sense deformations in them. Here, we propose and analyze a minimal biophysical model for cell migration and long-range cell–cell interactions through mutual mechanical deformations of the substrate. We compute key metrics of cell motile behavior, such as the number of cell-cell contacts over a given time, the dispersion of cell trajectories, and the probability of permanent cell contact, and analyze how these depend on a cell motility parameter and substrate stiffness. Our results elucidate how cells may sense each other mechanically and generate coordinated movements and provide an extensible framework to further address both mechanical and short-range biophysical interactions.
Collapse
Affiliation(s)
- Subhaya Bose
- Department of Physics, University of California Merced, Merced, CA 95343, USA; (S.B.); (K.D.)
| | - Kinjal Dasbiswas
- Department of Physics, University of California Merced, Merced, CA 95343, USA; (S.B.); (K.D.)
| | - Arvind Gopinath
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA
- Correspondence:
| |
Collapse
|
232
|
Plan ELCVM, Yeomans JM, Doostmohammadi A. Activity pulses induce spontaneous flow reversals in viscoelastic environments. J R Soc Interface 2021; 18:20210100. [PMID: 33849330 PMCID: PMC8086915 DOI: 10.1098/rsif.2021.0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Complex interactions between cellular systems and their surrounding extracellular matrices are emerging as important mechanical regulators of cell functions, such as proliferation, motility and cell death, and such cellular systems are often characterized by pulsating actomyosin activities. Here, using an active gel model, we numerically explore spontaneous flow generation by activity pulses in the presence of a viscoelastic medium. The results show that cross-talk between the activity-induced deformations of the viscoelastic surroundings and the time-dependent response of the active medium to these deformations can lead to the reversal of spontaneously generated active flows. We explain the mechanism behind this phenomenon based on the interaction between the active flow and the viscoelastic medium. We show the importance of relaxation time scales of both the polymers and the active particles and provide a phase space over which such spontaneous flow reversals can be observed. Our results suggest new experiments investigating the role of controlled pulses of activity in living systems ensnared in complex mircoenvironments.
Collapse
Affiliation(s)
- Emmanuel L C Vi M Plan
- Institute of Theoretical and Applied Research, Duy Tan University, Ha Noi 100 000, Viet Nam.,Faculty of Natural Science, Duy Tan University, Da Nang 550 000, Viet Nam
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PU, UK
| | - Amin Doostmohammadi
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
233
|
Gaston C, De Beco S, Doss B, Pan M, Gauquelin E, D'Alessandro J, Lim CT, Ladoux B, Delacour D. EpCAM promotes endosomal modulation of the cortical RhoA zone for epithelial organization. Nat Commun 2021; 12:2226. [PMID: 33850145 PMCID: PMC8044225 DOI: 10.1038/s41467-021-22482-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 03/11/2021] [Indexed: 01/13/2023] Open
Abstract
At the basis of cell shape and behavior, the organization of actomyosin and its ability to generate forces are widely studied. However, the precise regulation of this contractile network in space and time is unclear. Here, we study the role of the epithelial-specific protein EpCAM, a contractility modulator, in cell shape and motility. We show that EpCAM is required for stress fiber generation and front-rear polarity acquisition at the single cell level. In fact, EpCAM participates in the remodeling of a transient zone of active RhoA at the cortex of spreading epithelial cells. EpCAM and RhoA route together through the Rab35/EHD1 fast recycling pathway. This endosomal pathway spatially organizes GTP-RhoA to fine tune the activity of actomyosin resulting in polarized cell shape and development of intracellular stiffness and traction forces. Impairment of GTP-RhoA endosomal trafficking either by silencing EpCAM or by expressing Rab35/EHD1 mutants prevents proper myosin-II activity, stress fiber formation and ultimately cell polarization. Collectively, this work shows that the coupling between co-trafficking of EpCAM and RhoA, and actomyosin rearrangement is pivotal for cell spreading, and advances our understanding of how biochemical and mechanical properties promote cell plasticity.
Collapse
Affiliation(s)
- Cécile Gaston
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Simon De Beco
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Bryant Doss
- Mechanobiology Institute, T-lab, Singapore, Singapore
| | - Meng Pan
- Mechanobiology Institute, T-lab, Singapore, Singapore
| | - Estelle Gauquelin
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Joseph D'Alessandro
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | | | - Benoit Ladoux
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Delphine Delacour
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France.
| |
Collapse
|
234
|
Li D, Colin-York H, Barbieri L, Javanmardi Y, Guo Y, Korobchevskaya K, Moeendarbary E, Li D, Fritzsche M. Astigmatic traction force microscopy (aTFM). Nat Commun 2021; 12:2168. [PMID: 33846322 PMCID: PMC8042066 DOI: 10.1038/s41467-021-22376-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/12/2021] [Indexed: 01/23/2023] Open
Abstract
Quantifying small, rapidly progressing three-dimensional forces generated by cells remains a major challenge towards a more complete understanding of mechanobiology. Traction force microscopy is one of the most broadly applied force probing technologies but ascertaining three-dimensional information typically necessitates slow, multi-frame z-stack acquisition with limited sensitivity. Here, by performing traction force microscopy using fast single-frame astigmatic imaging coupled with total internal reflection fluorescence microscopy we improve the temporal resolution of three-dimensional mechanical force quantification up to 10-fold compared to its related super-resolution modalities. 2.5D astigmatic traction force microscopy (aTFM) thus enables live-cell force measurements approaching physiological sensitivity.
Collapse
Affiliation(s)
- Di Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Liliana Barbieri
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, UK
| | - Yuting Guo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, UK.
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK.
- Rosalind Franklin Institute, Harwell Campus, Didcot, UK.
| |
Collapse
|
235
|
Espina JA, Marchant CL, Barriga EH. Durotaxis: the mechanical control of directed cell migration. FEBS J 2021; 289:2736-2754. [PMID: 33811732 PMCID: PMC9292038 DOI: 10.1111/febs.15862] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
Directed cell migration is essential for cells to efficiently migrate in physiological and pathological processes. While migrating in their native environment, cells interact with multiple types of cues, such as mechanical and chemical signals. The role of chemical guidance via chemotaxis has been studied in the past, the understanding of mechanical guidance of cell migration via durotaxis remained unclear until very recently. Nonetheless, durotaxis has become a topic of intensive research and several advances have been made in the study of mechanically guided cell migration across multiple fields. Thus, in this article we provide a state of the art about durotaxis by discussing in silico, in vitro and in vivo data. We also present insights on the general mechanisms by which cells sense, transduce and respond to environmental mechanics, to then contextualize these mechanisms in the process of durotaxis and explain how cells bias their migration in anisotropic substrates. Furthermore, we discuss what is known about durotaxis in vivo and we comment on how haptotaxis could arise from integrating durotaxis and chemotaxis in native environments.
Collapse
Affiliation(s)
- Jaime A Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Cristian L Marchant
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| |
Collapse
|
236
|
Vesperini D, Montalvo G, Qu B, Lautenschläger F. Characterization of immune cell migration using microfabrication. Biophys Rev 2021; 13:185-202. [PMID: 34290841 PMCID: PMC8285443 DOI: 10.1007/s12551-021-00787-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
The immune system provides our defense against pathogens and aberrant cells, including tumorigenic and infected cells. Motility is one of the fundamental characteristics that enable immune cells to find invading pathogens, control tissue damage, and eliminate primary developing tumors, even in the absence of external treatments. These processes are termed "immune surveillance." Migration disorders of immune cells are related to autoimmune diseases, chronic inflammation, and tumor evasion. It is therefore essential to characterize immune cell motility in different physiologically and pathologically relevant scenarios to understand the regulatory mechanisms of functionality of immune responses. This review is focused on immune cell migration, to define the underlying mechanisms and the corresponding investigative approaches. We highlight the challenges that immune cells encounter in vivo, and the microfabrication methods to mimic particular aspects of their microenvironment. We discuss the advantages and disadvantages of the proposed tools, and provide information on how to access them. Furthermore, we summarize the directional cues that regulate individual immune cell migration, and discuss the behavior of immune cells in a complex environment composed of multiple directional cues.
Collapse
Affiliation(s)
- Doriane Vesperini
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Galia Montalvo
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
- Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Franziska Lautenschläger
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
- Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
237
|
Ozawa M, Hiver S, Yamamoto T, Shibata T, Upadhyayula S, Mimori-Kiyosue Y, Takeichi M. Adherens junction regulates cryptic lamellipodia formation for epithelial cell migration. J Cell Biol 2021; 219:152072. [PMID: 32886101 PMCID: PMC7659716 DOI: 10.1083/jcb.202006196] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Collective migration of epithelial cells plays crucial roles in various biological processes such as cancer invasion. In migrating epithelial sheets, leader cells form lamellipodia to advance, and follower cells also form similar motile apparatus at cell-cell boundaries, which are called cryptic lamellipodia (c-lamellipodia). Using adenocarcinoma-derived epithelial cells, we investigated how c-lamellipodia form and found that they sporadically grew from around E-cadherin-based adherens junctions (AJs). WAVE and Arp2/3 complexes were localized along the AJs, and silencing them not only interfered with c-lamellipodia formation but also prevented follower cells from trailing the leaders. Disruption of AJs by removing αE-catenin resulted in uncontrolled c-lamellipodia growth, and this was brought about by myosin II activation and the resultant contraction of AJ-associated actomyosin cables. Additional observations indicated that c-lamellipodia tended to grow at mechanically weak sites of the junction. We conclude that AJs not only tie cells together but also support c-lamellipodia formation by recruiting actin regulators, enabling epithelial cells to undergo ordered collective migration.
Collapse
Affiliation(s)
- Masayuki Ozawa
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Sylvain Hiver
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takaki Yamamoto
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Srigokul Upadhyayula
- Advanced Bioimaging Center, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Yuko Mimori-Kiyosue
- Laboratory for Molecular and Cellular Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
238
|
Fischer LS, Rangarajan S, Sadhanasatish T, Grashoff C. Molecular Force Measurement with Tension Sensors. Annu Rev Biophys 2021; 50:595-616. [PMID: 33710908 DOI: 10.1146/annurev-biophys-101920-064756] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of cells to generate mechanical forces, but also to sense, adapt to, and respond to mechanical signals, is crucial for many developmental, postnatal homeostatic, and pathophysiological processes. However, the molecular mechanisms underlying cellular mechanotransduction have remained elusive for many decades, as techniques to visualize and quantify molecular forces across individual proteins in cells were missing. The development of genetically encoded molecular tension sensors now allows the quantification of piconewton-scale forces that act upon distinct molecules in living cells and even whole organisms. In this review, we discuss the physical principles, advantages, and limitations of this increasingly popular method. By highlighting current examples from the literature, we demonstrate how molecular tension sensors can be utilized to obtain access to previously unappreciated biophysical parameters that define the propagation of mechanical forces on molecular scales. We discuss how the methodology can be further developed and provide a perspective on how the technique could be applied to uncover entirely novel aspects of mechanobiology in the future.
Collapse
Affiliation(s)
- Lisa S Fischer
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| | - Srishti Rangarajan
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| | - Tanmay Sadhanasatish
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| | - Carsten Grashoff
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, Münster D-48149, Germany;
| |
Collapse
|
239
|
Nejad MR, Doostmohammadi A, Yeomans JM. Memory effects, arches and polar defect ordering at the cross-over from wet to dry active nematics. SOFT MATTER 2021; 17:2500-2511. [PMID: 33503081 DOI: 10.1039/d0sm01794a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We use analytic arguments and numerical solutions of the continuum, active nematohydrodynamic equations to study how friction alters the behaviour of active nematics. Concentrating on the case where there is nematic ordering in the passive limit, we show that, as the friction is increased, memory effects become more prominent and +1/2 topological defects leave increasingly persistent trails in the director field as they pass. The trails are preferential sites for defect formation and they tend to impose polar order on any new +1/2 defects. In the absence of noise and for high friction, it becomes very difficult to create defects, but trails formed by any defects present at the beginning of the simulations persist and organise into parallel arch-like patterns in the director field. We show aligned arches of equal width are approximate steady state solutions of the equations of motion which co-exist with the nematic state. We compare our results to other models in the literature, in particular dry systems with no hydrodynamics, where trails, arches and polar defect ordering have also been observed.
Collapse
Affiliation(s)
- Mehrana R Nejad
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| | | | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| |
Collapse
|
240
|
LSR Promotes Cell Proliferation and Invasion in Lung Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6651907. [PMID: 33763152 PMCID: PMC7964108 DOI: 10.1155/2021/6651907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
The lipolysis-stimulated lipoprotein receptor (LSR) displays an important regulatory role in cancer. However, the association between LSR and lung cancer is still elusive. Here, the candidate oncogene LSR on Ch.9q was obtained and assessed by bioinformatics analysis of The Cancer Genome Atlas (TCGA) dataset of lung cancer. We conducted clinical pathology and survival analysis based on the lung cancer database. We assessed the biological effects of LSR in lung cancer cells on cell proliferation. Our data indicated that LSR was upregulated in lung cancer cells. Meanwhile, LSR was identified in this study to be a poor prognostic factor, and its high expression exhibited relations with grades, stages, and nodal metastasis status. Using in vitro analysis, our data revealed that LSR could promote lung cancer progression by regulating cell proliferation, migration, and invasion. In our study, our data demonstrated that LSR was a tumor promoter for lung cancer and was a potential biomarker and target for lung cancer prognosis and treatment.
Collapse
|
241
|
Li M, Xi N, Wang YC, Liu LQ. Atomic force microscopy for revealing micro/nanoscale mechanics in tumor metastasis: from single cells to microenvironmental cues. Acta Pharmacol Sin 2021; 42:323-339. [PMID: 32807839 PMCID: PMC8027022 DOI: 10.1038/s41401-020-0494-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Mechanics are intrinsic properties which appears throughout the formation, development, and aging processes of biological systems. Mechanics have been shown to play important roles in regulating the development and metastasis of tumors, and understanding tumor mechanics has emerged as a promising way to reveal the underlying mechanisms guiding tumor behaviors. In particular, tumors are highly complex diseases associated with multifaceted factors, including alterations in cancerous cells, tissues, and organs as well as microenvironmental cues, indicating that investigating tumor mechanics on multiple levels is significantly helpful for comprehensively understanding the effects of mechanics on tumor progression. Recently, diverse techniques have been developed for probing the mechanics of tumors, among which atomic force microscopy (AFM) has appeared as an excellent platform enabling simultaneously characterizing the structures and mechanical properties of living biological systems ranging from individual molecules and cells to tissue samples with unprecedented spatiotemporal resolution, offering novel possibilities for understanding tumor physics and contributing much to the studies of cancer. In this review, we survey the recent progress that has been achieved with the use of AFM for revealing micro/nanoscale mechanics in tumor development and metastasis. Challenges and future progress are also discussed.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, China
| | - Yue-Chao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian-Qing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
242
|
Yasukuni R, Minamino D, Iino T, Araki T, Takao K, Yamada S, Bessho Y, Matsui T, Hosokawa Y. Pulsed laser activated impulse response encoder (PLAIRE): sensitive evaluation of surface cellular stiffness on zebrafish embryos. BIOMEDICAL OPTICS EXPRESS 2021; 12:1366-1374. [PMID: 33796359 PMCID: PMC7984775 DOI: 10.1364/boe.414338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Mechanical properties of cells and tissues closely link to their architectures and physiological functions. To obtain the mechanical information of submillimeter scale small biological objects, we recently focused on the object vibration responses when excited by a femtosecond laser-induced impulsive force. These responses are monitored by the motion of an AFM cantilever placed on top of a sample. In this paper, we examined the surface cellular stiffness of zebrafish embryos based on excited vibration forms in different cytoskeletal states. The vibration responses were more sensitive to their surface cellular stiffness in comparison to the Young's modulus obtained by a conventional AFM force curve measurement.
Collapse
Affiliation(s)
- Ryohei Yasukuni
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Daiki Minamino
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takanori Iino
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takashi Araki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kohei Takao
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Sohei Yamada
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yasumasa Bessho
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takaaki Matsui
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
243
|
Scheda R, Vitali S, Giampieri E, Pagnini G, Zironi I. Study of Wound Healing Dynamics by Single Pseudo-Particle Tracking in Phase Contrast Images Acquired in Time-Lapse. ENTROPY 2021; 23:e23030284. [PMID: 33652826 PMCID: PMC7996888 DOI: 10.3390/e23030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022]
Abstract
Cellular contacts modify the way cells migrate in a cohesive group with respect to a free single cell. The resulting motion is persistent and correlated, with cells’ velocities self-aligning in time. The presence of a dense agglomerate of cells makes the application of single particle tracking techniques to define cells dynamics difficult, especially in the case of phase contrast images. Here, we propose an original pipeline for the analysis of phase contrast images of the wound healing scratch assay acquired in time-lapse, with the aim of extracting single particle trajectories describing the dynamics of the wound closure. In such an approach, the membrane of the cells at the border of the wound is taken as a unicum, i.e., the wound edge, and the dynamics is described by the stochastic motion of an ensemble of points on such a membrane, i.e., pseudo-particles. For each single frame, the pipeline of analysis includes: first, a texture classification for separating the background from the cells and for identifying the wound edge; second, the computation of the coordinates of the ensemble of pseudo-particles, chosen to be uniformly distributed along the length of the wound edge. We show the results of this method applied to a glioma cell line (T98G) performing a wound healing scratch assay without external stimuli. We discuss the efficiency of the method to assess cell motility and possible applications to other experimental layouts, such as single cell motion. The pipeline is developed in the Python language and is available upon request.
Collapse
Affiliation(s)
- Riccardo Scheda
- DIFA-Physics and Astronomy Department, University of Bologna, Viale C. Berti Pichat 6/2, 40127 Bologna, Italy; (R.S.); (I.Z.)
| | - Silvia Vitali
- BCAM-Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Spain;
- Correspondence:
| | - Enrico Giampieri
- eDIMESlab, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy;
| | - Gianni Pagnini
- BCAM-Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Spain;
- Ikerbasque-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Isabella Zironi
- DIFA-Physics and Astronomy Department, University of Bologna, Viale C. Berti Pichat 6/2, 40127 Bologna, Italy; (R.S.); (I.Z.)
| |
Collapse
|
244
|
Lv Z, de-Carvalho J, Telley IA, Großhans J. Cytoskeletal mechanics and dynamics in the Drosophila syncytial embryo. J Cell Sci 2021; 134:134/4/jcs246496. [PMID: 33597155 DOI: 10.1242/jcs.246496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cell and tissue functions rely on the genetic programmes and cascades of biochemical signals. It has become evident during the past decade that the physical properties of soft material that govern the mechanics of cells and tissues play an important role in cellular function and morphology. The biophysical properties of cells and tissues are determined by the cytoskeleton, consisting of dynamic networks of F-actin and microtubules, molecular motors, crosslinkers and other associated proteins, among other factors such as cell-cell interactions. The Drosophila syncytial embryo represents a simple pseudo-tissue, with its nuclei orderly embedded in a structured cytoskeletal matrix at the embryonic cortex with no physical separation by cellular membranes. Here, we review the stereotypic dynamics and regulation of the cytoskeleton in Drosophila syncytial embryos and how cytoskeletal dynamics underlies biophysical properties and the emergence of collective features. We highlight the specific features and processes of syncytial embryos and discuss the applicability of biophysical approaches.
Collapse
Affiliation(s)
- Zhiyi Lv
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Jorge de-Carvalho
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, 2780-156 Oeiras, Portugal
| | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, 2780-156 Oeiras, Portugal
| | - Jörg Großhans
- Fachbereich Biologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
245
|
Abstract
Developing a method that can effectively define and sort cancer stem cells (CSCs) is extremely desirable. Mechanical stiffness is of paramount importance for a cell to differentiate and can reflect the differentiation state of cells. In line with this notion, cell softness is identified to be a unique marker for highly tumorigenic CSCs.
Collapse
Affiliation(s)
- Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Yuying Liu
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China.,Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
246
|
Connon CJ, Gouveia RM. Milliscale Substrate Curvature Promotes Myoblast Self-Organization and Differentiation. Adv Biol (Weinh) 2021; 5:e2000280. [PMID: 33852180 DOI: 10.1002/adbi.202000280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/23/2021] [Indexed: 11/06/2022]
Abstract
Biological tissues comprise complex structural environments known to influence cell behavior via multiple interdependent sensing and transduction mechanisms. Yet, and despite the predominantly nonplanar geometry of these environments, the impact of tissue-size (milliscale) curvature on cell behavior is largely overlooked or underestimated. This study explores how concave, hemicylinder-shaped surfaces 3-50 mm in diameter affect the migration, proliferation, orientation, and differentiation of C2C12 myoblasts. Notably, these milliscale cues significantly affect cell responses compared with planar substrates, with myoblasts grown on surfaces 7.5-15 mm in diameter showing prevalent migration and alignment parallel to the curvature axis. Moreover, surfaces within this curvature range promote myoblast differentiation and the formation of denser, more compact tissues comprising highly oriented multinucleated myotubes. Based on the similarity of effects, it is further proposed that myoblast susceptibility to substrate curvature depends on mechanotransduction signaling. This model thus supports the notion that cellular responses to substrate curvature and compliance share the same molecular pathways and that control of cell behavior can be achieved via modulation of either individual parameter or in combination. This correlation is relevant for elucidating how muscle tissue forms and heals, as well as for designing better biomaterials and more appropriate cell-surface interfaces.
Collapse
Affiliation(s)
- Che J Connon
- Tissue Engineering Lab Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ricardo M Gouveia
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
247
|
Bischoff MC, Lieb S, Renkawitz-Pohl R, Bogdan S. Filopodia-based contact stimulation of cell migration drives tissue morphogenesis. Nat Commun 2021; 12:791. [PMID: 33542237 PMCID: PMC7862658 DOI: 10.1038/s41467-020-20362-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Cells migrate collectively to form tissues and organs during morphogenesis. Contact inhibition of locomotion (CIL) drives collective migration by inhibiting lamellipodial protrusions at cell-cell contacts and promoting polarization at the leading edge. Here, we report a CIL-related collective cell behavior of myotubes that lack lamellipodial protrusions, but instead use filopodia to move as a cohesive cluster in a formin-dependent manner. We perform genetic, pharmacological and mechanical perturbation analyses to reveal the essential roles of Rac2, Cdc42 and Rho1 in myotube migration. These factors differentially control protrusion dynamics and cell-matrix adhesion formation. We also show that active Rho1 GTPase localizes at retracting free edge filopodia and that Rok-dependent actomyosin contractility does not mediate a contraction of protrusions at cell-cell contacts, but likely plays an important role in the constriction of supracellular actin cables. Based on these findings, we propose that contact-dependent asymmetry of cell-matrix adhesion drives directional movement, whereas contractile actin cables contribute to the integrity of the migrating cell cluster.
Collapse
Affiliation(s)
- Maik C Bischoff
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University, Marburg, Germany
| | - Sebastian Lieb
- Computer Graphics and Multimedia Programming, Philipps-University, Marburg, Germany
| | | | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University, Marburg, Germany.
| |
Collapse
|
248
|
Davidson JD, Vishwakarma M, Smith ML. Hierarchical Approach for Comparing Collective Behavior Across Scales: Cellular Systems to Honey Bee Colonies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.581222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
How individuals in a group lead to collective behavior is a fundamental question across biological systems, from cellular systems, to animal groups, to human organizations. Recent technological advancements have enabled an unprecedented increase in our ability to collect, quantify, and analyze how individual responses lead to group behavior. However, despite a wealth of data demonstrating that collective behavior exists across biological scales, it is difficult to make general statements that apply in different systems. In this perspective, we present a cohesive framework for comparing groups across different levels of biological organization, using an intermediate link of “collective mechanisms” that connects individual responses to group behavior. Using this approach we demonstrate that an effective way of comparing different groups is with an analysis hierarchy that asks complementary questions, including how individuals in a group implement various collective mechanisms, and how these various mechanisms are used to achieve group function. We apply this framework to compare two collective systems—cellular systems and honey bee colonies. Using a case study of a response to a disturbance, we compare and contrast collective mechanisms used in each system. We then discuss how inherent differences in group structure and physical constraints lead to different combinations of collective mechanisms to solve a particular problem. Together, we demonstrate how a hierarchical approach can be used to compare and contrast different systems, lead to new hypotheses in each system, and form a basis for common research questions in collective behavior.
Collapse
|
249
|
Zaitsev VY, Matveyev AL, Matveev LA, Sovetsky AA, Hepburn MS, Mowla A, Kennedy BF. Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances. JOURNAL OF BIOPHOTONICS 2021; 14:e202000257. [PMID: 32749033 DOI: 10.1002/jbio.202000257] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 05/20/2023]
Abstract
Quantitative mapping of deformation and elasticity in optical coherence tomography has attracted much attention of researchers during the last two decades. However, despite intense effort it took ~15 years to demonstrate optical coherence elastography (OCE) as a practically useful technique. Similarly to medical ultrasound, where elastography was first realized using the quasi-static compression principle and later shear-wave-based systems were developed, in OCE these two approaches also developed in parallel. However, although the compression OCE (C-OCE) was proposed historically earlier in the seminal paper by J. Schmitt in 1998, breakthroughs in quantitative mapping of genuine local strains and the Young's modulus in C-OCE have been reported only recently and have not yet obtained sufficient attention in reviews. In this overview, we focus on underlying principles of C-OCE; discuss various practical challenges in its realization and present examples of biomedical applications of C-OCE. The figure demonstrates OCE-visualization of complex transient strains in a corneal sample heated by an infrared laser beam.
Collapse
Affiliation(s)
- Vladimir Y Zaitsev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander L Matveyev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Lev A Matveev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander A Sovetsky
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
250
|
Yang BA, Westerhof TM, Sabin K, Merajver SD, Aguilar CA. Engineered Tools to Study Intercellular Communication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002825. [PMID: 33552865 PMCID: PMC7856891 DOI: 10.1002/advs.202002825] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Indexed: 05/08/2023]
Abstract
All multicellular organisms rely on intercellular communication networks to coordinate physiological functions. As members of a dynamic social network, each cell receives, processes, and redistributes biological information to define and maintain tissue homeostasis. Uncovering the molecular programs underlying these processes is critical for prevention of disease and aging and development of therapeutics. The study of intercellular communication requires techniques that reduce the scale and complexity of in vivo biological networks while resolving the molecular heterogeneity in "omic" layers that contribute to cell state and function. Recent advances in microengineering and high-throughput genomics offer unprecedented spatiotemporal control over cellular interactions and the ability to study intercellular communication in a high-throughput and mechanistic manner. Herein, this review discusses how salient engineered approaches and sequencing techniques can be applied to understand collective cell behavior and tissue functions.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| | - Trisha M. Westerhof
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
- Department of Internal MedicineDivision of Hematology/Oncology and Rogel Cancer Center1500 East Medical Center Drive, Rogel Cancer CenterAnn ArborMI7314USA
| | - Kaitlyn Sabin
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| | - Sofia D. Merajver
- Department of Internal MedicineDivision of Hematology/Oncology and Rogel Cancer Center1500 East Medical Center Drive, Rogel Cancer CenterAnn ArborMI7314USA
| | - Carlos A. Aguilar
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
- Program in Cellular and Molecular Biology2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| |
Collapse
|