201
|
Sun Q, Cai D, Liu D, Zhao X, Li R, Xu W, Xie B, Gou M, Wei K, Li Y, Huang J, Chi X, Wei P, Hao J, Guo X, Pan B, Fu Y, Ni L, Dong C. BCL6 promotes a stem-like CD8 + T cell program in cancer via antagonizing BLIMP1. Sci Immunol 2023; 8:eadh1306. [PMID: 37862431 DOI: 10.1126/sciimmunol.adh1306] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/30/2023] [Indexed: 10/22/2023]
Abstract
Overcoming CD8+ T cell exhaustion is critical in cancer immunotherapy. Recently, an intratumor stem/progenitor-like CD8+ T cell (Tprog cell) population that mediates the persistence of antitumor responses has been defined, which can further develop into a terminally differentiated CD8+ T cell (Tterm cell) subpopulation with potent cytotoxic functions. Tprog cells are the main responders to immune checkpoint blockade therapies, yet how extrinsic signals via transcription factors control Tprog cell generation and persistence in tumors is unclear. Here, we found that BCL6 inhibits tumor-specific Tterm cell generation from Tprog cell downstream of TCF1. We show that Bcl6 deficiency reduced the persistence of Tprog cells, without affecting their generation, thus abrogating long-term tumor control. High-level BCL6 expression was observed in tumor-specific T cells in draining lymph nodes (LNs) and was associated with T cell exhaustion. This was observed in TOX+TCF1+ Tprog cells in both LNs and tumors. BCL6 expression in CD8+ T cells was up-regulated by TGF-β-SMAD2 signaling but down-regulated by the IL-2-STAT5 pathway. Mechanistically, BCL6 transcriptionally repressed the expression of Tterm cell-associated genes and induced those of Tprog cell-related genes, in a manner antagonistic to BLIMP1. Prdm1 deficiency also promoted the Tprog cell program and greatly improved the efficacy of anti-PD-1 therapy. Thus, we identified the TGF-β-BCL6 and IL-2-BLIMP1 antagonistic pathways in regulation of antitumor CD8+ T cells, which may benefit the development of long-lasting and effective cancer immunotherapy.
Collapse
Affiliation(s)
- Qinli Sun
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dongli Cai
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Dingfeng Liu
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
- Department of Gynaecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ruifeng Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bowen Xie
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengting Gou
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| | - Kun Wei
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuling Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- College of Life Science and Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Tsinghua University, Beijing 100084, China
| | - Jinling Huang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinxin Chi
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Peng Wei
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Hao
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| | - Xinyi Guo
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| | - Birui Pan
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yujie Fu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Research Unit of Immune Regulation and Immune Diseases of Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| |
Collapse
|
202
|
Wu H, Zhao X, Hochrein SM, Eckstein M, Gubert GF, Knöpper K, Mansilla AM, Öner A, Doucet-Ladevèze R, Schmitz W, Ghesquière B, Theurich S, Dudek J, Gasteiger G, Zernecke A, Kobold S, Kastenmüller W, Vaeth M. Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming. Nat Commun 2023; 14:6858. [PMID: 37891230 PMCID: PMC10611730 DOI: 10.1038/s41467-023-42634-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
T cell exhaustion is a hallmark of cancer and persistent infections, marked by inhibitory receptor upregulation, diminished cytokine secretion, and impaired cytolytic activity. Terminally exhausted T cells are steadily replenished by a precursor population (Tpex), but the metabolic principles governing Tpex maintenance and the regulatory circuits that control their exhaustion remain incompletely understood. Using a combination of gene-deficient mice, single-cell transcriptomics, and metabolomic analyses, we show that mitochondrial insufficiency is a cell-intrinsic trigger that initiates the functional exhaustion of T cells. At the molecular level, we find that mitochondrial dysfunction causes redox stress, which inhibits the proteasomal degradation of hypoxia-inducible factor 1α (HIF-1α) and promotes the transcriptional and metabolic reprogramming of Tpex cells into terminally exhausted T cells. Our findings also bear clinical significance, as metabolic engineering of chimeric antigen receptor (CAR) T cells is a promising strategy to enhance the stemness and functionality of Tpex cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Wu
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Xiufeng Zhao
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Sophia M Hochrein
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Miriam Eckstein
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Gabriela F Gubert
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Konrad Knöpper
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Ana Maria Mansilla
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Arman Öner
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig Maximilians University (LMU) Munich, University Hospital, Munich, Germany
| | - Remi Doucet-Ladevèze
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium and Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Sebastian Theurich
- Ludwig Maximilians University (LMU) Munich, University Hospital, Department of Medicine III, Munich, Germany and LMU Gene Center, Cancer and Immunometabolism Research Group, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Hospital, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig Maximilians University (LMU) Munich, University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg, Germany.
| |
Collapse
|
203
|
Bulliard Y, Andersson BS, Baysal MA, Damiano J, Tsimberidou AM. Reprogramming T cell differentiation and exhaustion in CAR-T cell therapy. J Hematol Oncol 2023; 16:108. [PMID: 37880715 PMCID: PMC10601191 DOI: 10.1186/s13045-023-01504-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
T cell differentiation is a highly regulated, multi-step process necessary for the progressive establishment of effector functions, immunological memory, and long-term control of pathogens. In response to strong stimulation, as seen in severe or chronic infections or cancer, T cells acquire a state of hypo-responsiveness known as exhaustion, limiting their effector function. Recent advances in autologous chimeric antigen receptor (CAR)-T cell therapies have revolutionized the treatment of hematologic malignancies by taking advantage of the basic principles of T cell biology to engineer products that promote long-lasting T cell response. However, many patients' malignancies remain unresponsive to treatment or are prone to recur. Discoveries in T cell biology, including the identification of key regulators of differentiation and exhaustion, offer novel opportunities to have a durable impact on the fate of CAR-T cells after infusion. Such next-generation CAR-T cell therapies and their clinical implementation may result in the next leap forward in cancer treatment for selected patients. In this context, this review summarizes the foundational principles of T cell differentiation and exhaustion and describes how they can be utilized and targeted to further improve the design and efficacy of CAR-T cell therapies.
Collapse
Affiliation(s)
| | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Mehmet A Baysal
- Unit 455, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jason Damiano
- Appia Bio, 6160 Bristol Pkwy, Culver City, CA, 90230, USA
| | - Apostolia M Tsimberidou
- Unit 455, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
204
|
Blise KE, Sivagnanam S, Betts CB, Betre K, Kirchberger N, Tate B, Furth EE, Dias Costa A, Nowak JA, Wolpin BM, Vonderheide RH, Goecks J, Coussens LM, Byrne KT. Machine learning links T cell function and spatial localization to neoadjuvant immunotherapy and clinical outcome in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563335. [PMID: 37961410 PMCID: PMC10634700 DOI: 10.1101/2023.10.20.563335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Tumor molecular datasets are becoming increasingly complex, making it nearly impossible for humans alone to effectively analyze them. Here, we demonstrate the power of using machine learning to analyze a single-cell, spatial, and highly multiplexed proteomic dataset from human pancreatic cancer and reveal underlying biological mechanisms that may contribute to clinical outcome. A novel multiplex immunohistochemistry antibody panel was used to audit T cell functionality and spatial localization in resected tumors from treatment-naive patients with localized pancreatic ductal adenocarcinoma (PDAC) compared to a second cohort of patients treated with neoadjuvant agonistic CD40 (αCD40) monoclonal antibody therapy. In total, nearly 2.5 million cells from 306 tissue regions collected from 29 patients across both treatment cohorts were assayed, and more than 1,000 tumor microenvironment (TME) features were quantified. We then trained machine learning models to accurately predict αCD40 treatment status and disease-free survival (DFS) following αCD40 therapy based upon TME features. Through downstream interpretation of the machine learning models' predictions, we found αCD40 therapy to reduce canonical aspects of T cell exhaustion within the TME, as compared to treatment-naive TMEs. Using automated clustering approaches, we found improved DFS following αCD40 therapy to correlate with the increased presence of CD44+ CD4+ Th1 cells located specifically within cellular spatial neighborhoods characterized by increased T cell proliferation, antigen-experience, and cytotoxicity in immune aggregates. Overall, our results demonstrate the utility of machine learning in molecular cancer immunology applications, highlight the impact of αCD40 therapy on T cells within the TME, and identify potential candidate biomarkers of DFS for αCD40-treated patients with PDAC.
Collapse
Affiliation(s)
- Katie E. Blise
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Shamilene Sivagnanam
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
| | - Courtney B. Betts
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
- Current affiliation: Akoya Biosciences, 100 Campus Drive, 6th Floor, Marlborough, MA USA
| | - Konjit Betre
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
| | - Nell Kirchberger
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
| | - Benjamin Tate
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Immune Monitoring and Cancer Omics Services, Oregon Health & Science University, Portland, OR USA
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA USA
| | - Jonathan A. Nowak
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA USA
| | - Robert H. Vonderheide
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jeremy Goecks
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Current affiliation: Department of Machine Learning, H. Lee Moffitt Cancer Center, Tampa, FL USA
- Current affiliation: Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL USA
| | - Lisa M. Coussens
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
| | - Katelyn T. Byrne
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR USA
- Lead contact
| |
Collapse
|
205
|
Roy D, Gilmour C, Patnaik S, Wang LL. Combinatorial blockade for cancer immunotherapy: targeting emerging immune checkpoint receptors. Front Immunol 2023; 14:1264327. [PMID: 37928556 PMCID: PMC10620683 DOI: 10.3389/fimmu.2023.1264327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
The differentiation, survival, and effector function of tumor-specific CD8+ cytotoxic T cells lie at the center of antitumor immunity. Due to the lack of proper costimulation and the abundant immunosuppressive mechanisms, tumor-specific T cells show a lack of persistence and exhausted and dysfunctional phenotypes. Multiple coinhibitory receptors, such as PD-1, CTLA-4, VISTA, TIGIT, TIM-3, and LAG-3, contribute to dysfunctional CTLs and failed antitumor immunity. These coinhibitory receptors are collectively called immune checkpoint receptors (ICRs). Immune checkpoint inhibitors (ICIs) targeting these ICRs have become the cornerstone for cancer immunotherapy as they have established new clinical paradigms for an expanding range of previously untreatable cancers. Given the nonredundant yet convergent molecular pathways mediated by various ICRs, combinatorial immunotherapies are being tested to bring synergistic benefits to patients. In this review, we summarize the mechanisms of several emerging ICRs, including VISTA, TIGIT, TIM-3, and LAG-3, and the preclinical and clinical data supporting combinatorial strategies to improve existing ICI therapies.
Collapse
Affiliation(s)
- Dia Roy
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Cassandra Gilmour
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Sachin Patnaik
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Li Lily Wang
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
206
|
Kasmani MY, Topchyan P, Brown AK, Brown RJ, Wu X, Chen Y, Khatun A, Alson D, Wu Y, Burns R, Lin CW, Kudek MR, Sun J, Cui W. A spatial sequencing atlas of age-induced changes in the lung during influenza infection. Nat Commun 2023; 14:6597. [PMID: 37852965 PMCID: PMC10584893 DOI: 10.1038/s41467-023-42021-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/26/2023] [Indexed: 10/20/2023] Open
Abstract
Influenza virus infection causes increased morbidity and mortality in the elderly. Aging impairs the immune response to influenza, both intrinsically and because of altered interactions with endothelial and pulmonary epithelial cells. To characterize these changes, we performed single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and bulk RNA sequencing (bulk RNA-seq) on lung tissue from young and aged female mice at days 0, 3, and 9 post-influenza infection. Our analyses identified dozens of key genes differentially expressed in kinetic, age-dependent, and cell type-specific manners. Aged immune cells exhibited altered inflammatory, memory, and chemotactic profiles. Aged endothelial cells demonstrated characteristics of reduced vascular wound healing and a prothrombotic state. Spatial transcriptomics identified novel profibrotic and antifibrotic markers expressed by epithelial and non-epithelial cells, highlighting the complex networks that promote fibrosis in aged lungs. Bulk RNA-seq generated a timeline of global transcriptional activity, showing increased expression of genes involved in inflammation and coagulation in aged lungs. Our work provides an atlas of high-throughput sequencing methodologies that can be used to investigate age-related changes in the response to influenza virus, identify novel cell-cell interactions for further study, and ultimately uncover potential therapeutic targets to improve health outcomes in the elderly following influenza infection.
Collapse
Affiliation(s)
- Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Paytsar Topchyan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Ashley K Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Ryan J Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaopeng Wu
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Donia Alson
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, 22908, USA
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Chien-Wei Lin
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Matthew R Kudek
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA, 22908, USA
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Pathology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
207
|
Mitra A, Thompson B, Strange A, Amato CM, Vassallo M, Dolgalev I, Hester-McCullough J, Muramatsu T, Kimono D, Puranik AS, Weber JS, Woods D. A Population of Tumor-Infiltrating CD4+ T Cells Co-Expressing CD38 and CD39 Is Associated with Checkpoint Inhibitor Resistance. Clin Cancer Res 2023; 29:4242-4255. [PMID: 37505479 PMCID: PMC10592215 DOI: 10.1158/1078-0432.ccr-23-0653] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/21/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE We previously showed that elevated frequencies of peripheral blood CD3+CD4+CD127-GARP-CD38+CD39+ T cells were associated with checkpoint immunotherapy resistance in patients with metastatic melanoma. In the present study, we sought to further investigate this population of ectoenzyme-expressing T cells (Teee). EXPERIMENTAL DESIGN Teee derived from the peripheral blood of patients with metastatic melanoma were evaluated by bulk RNA-sequencing (RNA-seq) and flow cytometry. The presence of Teee in the tumor microenvironment was assessed using publically available single-cell RNA-seq datasets of melanoma, lung, and bladder cancers along with multispectral immunofluorescent imaging of melanoma patient formalin-fixed, paraffin-embedded specimens. Suppressive function of Teee was determined by an in vitro autologous suppression assay. RESULTS Teee had phenotypes associated with proliferation, apoptosis, exhaustion, and high expression of inhibitory molecules. Cells with a Teee gene signature were present in tumors of patients with melanoma, lung, and bladder cancers. CD4+ T cells co-expressing CD38 and CD39 in the tumor microenvironment were preferentially associated with Ki67- CD8+ T cells. Co-culture of patient Teee with autologous T cells resulted in decreased proliferation of target T cells. High baseline intratumoral frequencies of Teee were associated with checkpoint immunotherapy resistance and poor overall survival in patients with metastatic melanoma. CONCLUSIONS These results demonstrate that a novel population of CD4+ T cells co-expressing CD38 and CD39 is found both in the peripheral blood and tumor of patients with melanoma and is associated with checkpoint immunotherapy resistance.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Brian Thompson
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Ann Strange
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Carol M Amato
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Melinda Vassallo
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Igor Dolgalev
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | | | - Tomoaki Muramatsu
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Diana Kimono
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Amrutesh S Puranik
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| | - David Woods
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
208
|
Luo H, Wang W, Mai J, Yin R, Cai X, Li Q. The nexus of dynamic T cell states and immune checkpoint blockade therapy in the periphery and tumor microenvironment. Front Immunol 2023; 14:1267918. [PMID: 37881432 PMCID: PMC10597640 DOI: 10.3389/fimmu.2023.1267918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapies, that is, using monoclonal antibodies to reinvigorate tumor-reactive, antigen-specific T cells from the inhibitory effects of CTLA-4, PD-1 and PD-L1 immune checkpoints, have revolutionized the therapeutic landscape of modern oncology. However, only a subset of patients can benefit from the ICB therapy. Biomarkers associated with ICB response, resistance and prognosis have been subjected to intensive research in the past decade. Early studies focused on the analysis of tumor specimens and their residing microenvironment. However, biopsies can be challenging to obtain in clinical practice, and do not reflect the dynamic changes of immunological parameters during the ICB therapy. Recent studies have investigated profiles of antigen-specific T cells derived from the peripheral compartment using multi-omics approaches. By tracking the clonotype and diversity of tumor-reactive T cell receptor repertoire, these studies collectively establish that de novo priming of antigen-specific T cells in peripheral blood occurs throughout the course of ICB, whereas preexisting T cells prior to ICB are exhausted to various degrees. Here, we review what is known about ICB-induced T cell phenotypic and functional changes in cancer patients both within the tumor microenvironment and in the peripheral compartment. A better understanding of parameters influencing the response to ICBs will provide rationales for developing novel diagnostics and combinatorial therapeutic strategies to maximize the clinical efficacies of ICB therapies.
Collapse
Affiliation(s)
- Hong Luo
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiang Wang
- Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jia Mai
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rutie Yin
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuyu Cai
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qintong Li
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
209
|
Im SJ, Obeng RC, Nasti TH, McManus D, Kamphorst AO, Gunisetty S, Prokhnevska N, Carlisle JW, Yu K, Sica GL, Cardozo LE, Gonçalves ANA, Kissick HT, Nakaya HI, Ramalingam SS, Ahmed R. Characteristics and anatomic location of PD-1 +TCF1 + stem-like CD8 T cells in chronic viral infection and cancer. Proc Natl Acad Sci U S A 2023; 120:e2221985120. [PMID: 37782797 PMCID: PMC10576122 DOI: 10.1073/pnas.2221985120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/31/2023] [Indexed: 10/04/2023] Open
Abstract
CD8 T cells play an essential role in antitumor immunity and chronic viral infections. Recent findings have delineated the differentiation pathway of CD8 T cells in accordance with the progenitor-progeny relationship of TCF1+ stem-like and Tim-3+TCF1- more differentiated T cells. Here, we investigated the characteristics of stem-like and differentiated CD8 T cells isolated from several murine tumor models and human lung cancer samples in terms of phenotypic and transcriptional features as well as their location compared to virus-specific CD8 T cells in the chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. We found that CD8 tumor-infiltrating lymphocytes (TILs) in both murine and human tumors exhibited overall similar phenotypic and transcriptional characteristics compared to corresponding subsets in the spleen of chronically infected mice. Moreover, stem-like CD8 TILs exclusively responded and produced effector-like progeny CD8 T cells in vivo after antigenic restimulation, confirming their lineage relationship and the proliferative potential of stem-like CD8 TILs. Most importantly, similar to the preferential localization of PD-1+ stem-like CD8 T cells in T cell zones of the spleen during chronic LCMV infection, we found that the PD-1+ stem-like CD8 TILs in lung cancer samples are preferentially located not in the tumor parenchyma but in tertiary lymphoid structures (TLSs). The stem-like CD8 T cells are present in TLSs located within and at the periphery of the tumor, as well as in TLSs closely adjacent to the tumor parenchyma. These findings suggest that TLSs provide a protective niche to support the quiescence and maintenance of stem-like CD8 T cells in the tumor.
Collapse
Affiliation(s)
- Se Jin Im
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon16419, Republic of Korea
| | - Rebecca C. Obeng
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA30322
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH44106
| | - Tahseen H. Nasti
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
| | - Daniel McManus
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
| | - Alice O. Kamphorst
- Department of Immunology and Immunotherapy, Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Oncological Sciences, Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Sivaram Gunisetty
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
| | - Nataliya Prokhnevska
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Urology, Emory University School of Medicine, Atlanta, GA30322
| | - Jennifer W. Carlisle
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA30322
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA30322
| | - Ke Yu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA30322
| | - Gabriel L. Sica
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA30322
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA30322
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| | | | | | - Haydn T. Kissick
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Urology, Emory University School of Medicine, Atlanta, GA30322
| | | | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA30322
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA30322
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA30322
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA30322
| |
Collapse
|
210
|
Giles JR, Globig AM, Kaech SM, Wherry EJ. CD8 + T cells in the cancer-immunity cycle. Immunity 2023; 56:2231-2253. [PMID: 37820583 PMCID: PMC11237652 DOI: 10.1016/j.immuni.2023.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
CD8+ T cells are end effectors of cancer immunity. Most forms of effective cancer immunotherapy involve CD8+ T cell effector function. Here, we review the current understanding of T cell function in cancer, focusing on key CD8+ T cell subtypes and states. We discuss factors that influence CD8+ T cell differentiation and function in cancer through a framework that incorporates the classic three-signal model and a fourth signal-metabolism-and also consider the impact of the tumor microenvironment from a T cell perspective. We argue for the notion of immunotherapies as "pro-drugs" that act to augment or modulate T cells, which ultimately serve as the drug in vivo, and for the importance of overall immune health in cancer treatment and prevention. The progress in understanding T cell function in cancer has and will continue to improve harnessing of the immune system across broader tumor types to benefit more patients.
Collapse
Affiliation(s)
- Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna-Maria Globig
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
211
|
Ghorani E, Swanton C, Quezada SA. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 2023; 56:2270-2295. [PMID: 37820584 DOI: 10.1016/j.immuni.2023.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials.
Collapse
Affiliation(s)
- Ehsan Ghorani
- Cancer Immunology and Immunotherapy Unit, Department of Surgery and Cancer, Imperial College London, London, UK; Department of Medical Oncology, Imperial College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, London, UK.
| |
Collapse
|
212
|
Wu H, Weng GZ, Sun LN, Pan ZC, Zhang L, Chen Q, Shi CM. T Cell Invigoration is Associated with the Clinical Response to Anti-PD-1-Based Immunotherapy in Non-Small Cell Lung Cancer. Cancer Manag Res 2023; 15:1141-1153. [PMID: 37842130 PMCID: PMC10576507 DOI: 10.2147/cmar.s415629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/02/2023] [Indexed: 10/17/2023] Open
Abstract
Purpose Immune checkpoint inhibitors (ICIs) have been developed for clinical application and proven effective for non-small cell lung cancer (NSCLC). Blockade of the programmed cell death 1 (PD-1) protein can partially reinvigorate circulating exhausted-phenotype CD8+ T cells (Tex cells) in preclinical models, however the clinical implication in anti-PD-1-based immunotherapy in NSCLC is unknown. Methods Serum specimens were obtained before and during treatment from 145 patients with NSCLC patients who received anti-PD-1 treatment and their prognoses were followed-up. Indicators such as cell subpopulations, T cell invigoration were detected by clinical laboratory testing. Survival curves were estimated by the Kaplan-Meier method, Cox regression analysis was used to identify factors associated with prognoses of NSCLC patients. Results The expressions of Ki-67 in PD-1+/CD8+ T cells in most NSCLC patients (97 of 145 cases) increased after treatment. The responding Ki-67+/CD8+ T cell population was mainly CD45RAlo CD27hi, containing cells with high expression of CTLA-4, PD-1, and 2B4 and low expression of NKG2-D (P < 0.0001). The maximum fold change of Ki-67+/PD-1+/CD8+T cells in treatment cycles and the tumor burden determined by imaging may be associated with survival. Patients with higher Ki-67 expression on PD-1+CD8+ T-cells (pretreatment) had statistically significant increased progression-free survival (PFS). A Ki-67 expression to tumor burden ratio greater than 0.6 at the 1st cycle of anti-PD-1 immunotherapy was associated with improvement of PFS and overall survival (P < 0.05). Conclusion Activation of circulating Tex cells before or during therapy related to tumor burden may be associated with clinical efficacy of anti-PD-1 immune therapy in NSCLC.
Collapse
Affiliation(s)
- Hui Wu
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
- Department of Oncology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, Zhejiang, 323000, People’s Republic of China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, 350001, People’s Republic of China
| | - Gui Zhen Weng
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
| | - Li Na Sun
- Department of Oncology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Zhang Chi Pan
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
| | - Lu Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Qiang Chen
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, 350001, People’s Republic of China
| | - Chun Mei Shi
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People’s Republic of China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, 350001, People’s Republic of China
| |
Collapse
|
213
|
Collier JL, Pauken KE, Lee CA, Patterson DG, Markson SC, Conway TS, Fung ME, France JA, Mucciarone KN, Lian CG, Murphy GF, Sharpe AH. Single-cell profiling reveals unique features of diabetogenic T cells in anti-PD-1-induced type 1 diabetes mice. J Exp Med 2023; 220:e20221920. [PMID: 37432393 PMCID: PMC10336233 DOI: 10.1084/jem.20221920] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/28/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
Immune-related adverse events (irAEs) are a notable complication of PD-1 cancer immunotherapy. A better understanding of how these iatrogenic diseases compare with naturally arising autoimmune diseases is needed for treatment and monitoring of irAEs. We identified differences in anti-PD-1-induced type 1 diabetes (T1D) and spontaneous T1D in non-obese diabetic (NOD) mice by performing single-cell RNA-seq and TCR-seq on T cells from the pancreas, pancreas-draining lymph node (pLN), and blood of mice with PD-1-induced T1D or spontaneous T1D. In the pancreas, anti-PD-1 resulted in expansion of terminally exhausted/effector-like CD8+ T cells, an increase in T-bethi CD4+FoxP3- T cells, and a decrease in memory CD4+FoxP3- and CD8+ T cells in contrast to spontaneous T1D. Notably, anti-PD-1 caused increased TCR sharing between the pancreas and the periphery. Moreover, T cells in the blood of anti-PD-1-treated mice expressed markers that differed from spontaneous T1D, suggesting that the blood may provide a window to monitor irAEs rather than relying exclusively on the autoimmune target organ.
Collapse
Affiliation(s)
- Jenna L. Collier
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - Kristen E. Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Dillon G. Patterson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - Samuel C. Markson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - Thomas S. Conway
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - Megan E. Fung
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - Joshua A. France
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
214
|
Minogue E, Cunha PP, Wadsworth BJ, Grice GL, Sah-Teli SK, Hughes R, Bargiela D, Quaranta A, Zurita J, Antrobus R, Velica P, Barbieri L, Wheelock CE, Koivunen P, Nathan JA, Foskolou IP, Johnson RS. Glutarate regulates T cell metabolism and anti-tumour immunity. Nat Metab 2023; 5:1747-1764. [PMID: 37605057 PMCID: PMC10590756 DOI: 10.1038/s42255-023-00855-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/03/2023] [Indexed: 08/23/2023]
Abstract
T cell function and fate can be influenced by several metabolites: in some cases, acting through enzymatic inhibition of α-ketoglutarate-dependent dioxygenases, in others, through post-translational modification of lysines in important targets. We show here that glutarate, a product of amino acid catabolism, has the capacity to do both, and has potent effects on T cell function and differentiation. We found that glutarate exerts those effects both through α-ketoglutarate-dependent dioxygenase inhibition, and through direct regulation of T cell metabolism via glutarylation of the pyruvate dehydrogenase E2 subunit. Administration of diethyl glutarate, a cell-permeable form of glutarate, alters CD8+ T cell differentiation and increases cytotoxicity against target cells. In vivo administration of the compound is correlated with increased levels of both peripheral and intratumoural cytotoxic CD8+ T cells. These results demonstrate that glutarate is an important regulator of T cell metabolism and differentiation with a potential role in the improvement of T cell immunotherapy.
Collapse
Affiliation(s)
- Eleanor Minogue
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pedro P Cunha
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Brennan J Wadsworth
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Guinevere L Grice
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Shiv K Sah-Teli
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Centre for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Rob Hughes
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - David Bargiela
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alessandro Quaranta
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Javier Zurita
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Pedro Velica
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Barbieri
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Centre for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Iosifina P Foskolou
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
215
|
Chamoto K, Yaguchi T, Tajima M, Honjo T. Insights from a 30-year journey: function, regulation and therapeutic modulation of PD1. Nat Rev Immunol 2023; 23:682-695. [PMID: 37185300 DOI: 10.1038/s41577-023-00867-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
PD1 was originally discovered in 1992 as a molecule associated with activation-induced cell death in T cells. Over the past 30 years, it was found that PD1 has a critical role in avoiding overactivation-induced cell death and autoimmunity, whereas its inhibition unleashes anticancer immunity. Here, we outline the journey from the discovery of PD1 to its role as a breakthrough target in cancer immunotherapy. We describe its regulation and function and examine how a mechanistic understanding of PD1 signalling suggests a central function in setting the T cell activation threshold, thereby controlling T cell proliferation, differentiation, exhaustion and metabolic status. This threshold theory, in combination with new insights into T cell metabolism and a better understanding of immune cell modulation by the microbiota, can provide guidance for the development of efficient combination therapies. Moreover, we discuss the mechanisms underlying immune-related adverse events after PD1-targeted therapy and their possible treatment.
Collapse
Affiliation(s)
- Kenji Chamoto
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Yaguchi
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Tajima
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tasuku Honjo
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
216
|
Xie L, Fang J, Yu J, Zhang W, He Z, Ye L, Wang H. The role of CD4 + T cells in tumor and chronic viral immune responses. MedComm (Beijing) 2023; 4:e390. [PMID: 37829505 PMCID: PMC10565399 DOI: 10.1002/mco2.390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapies are mainly aimed to promote a CD8+ T cell response rather than a CD4+ T cell response as cytotoxic T lymphocytes (CTLs) can directly kill target cells. Recently, CD4+ T cells have received more attention due to their diverse roles in tumors and chronic viral infections. In antitumor and antichronic viral responses, CD4+ T cells relay help signals through dendritic cells to indirectly regulate CD8+ T cell response, interact with B cells or macrophages to indirectly modulate humoral immunity or macrophage polarization, and inhibit tumor blood vessel formation. Additionally, CD4+ T cells can also exhibit direct cytotoxicity toward target cells. However, regulatory T cells exhibit immunosuppression and CD4+ T cells become exhausted, which promote tumor progression and chronic viral persistence. Finally, we also outline immunotherapies based on CD4+ T cells, including adoptive cell transfer, vaccines, and immune checkpoint blockade. Overall, this review summarizes diverse roles of CD4+ T cells in the antitumor or protumor and chronic viral responses, and also highlights the immunotherapies based on CD4+ T cells, giving a better understanding of their roles in tumors and chronic viral infections.
Collapse
Affiliation(s)
- Luoyingzi Xie
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingyi Fang
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Juncheng Yu
- Department of Thoracic SurgeryXinqiao Hospital Third Military Medical University (Army Medical University)ChongqingChina
| | - Weinan Zhang
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Zhiqiang He
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Lilin Ye
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
| |
Collapse
|
217
|
Fu Y, Wang J, Liu C, Liao K, Gao X, Tang R, Fan B, Hong Y, Xiao N, Xiao C, Liu WH. Glycogen synthase kinase 3 controls T-cell exhaustion by regulating NFAT activation. Cell Mol Immunol 2023; 20:1127-1139. [PMID: 37553428 PMCID: PMC10541428 DOI: 10.1038/s41423-023-01075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Cellular immunity mediated by CD8+ T cells plays an indispensable role in bacterial and viral clearance and cancers. However, persistent antigen stimulation of CD8+ T cells leads to an exhausted or dysfunctional cellular state characterized by the loss of effector function and high expression of inhibitory receptors during chronic viral infection and in tumors. Numerous studies have shown that glycogen synthase kinase 3 (GSK3) controls the function and development of immune cells, but whether GSK3 affects CD8+ T cells is not clearly elucidated. Here, we demonstrate that mice with deletion of Gsk3α and Gsk3β in activated CD8+ T cells (DKO) exhibited decreased CTL differentiation and effector function during acute and chronic viral infection. In addition, DKO mice failed to control tumor growth due to the upregulated expression of inhibitory receptors and augmented T-cell exhaustion in tumor-infiltrating CD8+ T cells. Strikingly, anti-PD-1 immunotherapy substantially restored tumor rejection in DKO mice. Mechanistically, GSK3 regulates T-cell exhaustion by suppressing TCR-induced nuclear import of NFAT, thereby in turn dampening NFAT-mediated exhaustion-related gene expression, including TOX/TOX2 and PD-1. Thus, we uncovered the molecular mechanisms underlying GSK3 regulation of CTL differentiation and T-cell exhaustion in anti-tumor immune responses.
Collapse
Affiliation(s)
- Yubing Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Jinjia Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Chenfeng Liu
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei, 230031, Anhui, China
| | - Kunyu Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xianjun Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ronghan Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Binbin Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Changchun Xiao
- Sanofi Institute for Biomedical Research, Suzhou, Jiangsu, 215123, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Science, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
218
|
Globig AM, Zhao S, Roginsky J, Maltez VI, Guiza J, Avina-Ochoa N, Heeg M, Araujo Hoffmann F, Chaudhary O, Wang J, Senturk G, Chen D, O'Connor C, Pfaff S, Germain RN, Schalper KA, Emu B, Kaech SM. The β 1-adrenergic receptor links sympathetic nerves to T cell exhaustion. Nature 2023; 622:383-392. [PMID: 37731001 PMCID: PMC10871066 DOI: 10.1038/s41586-023-06568-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
CD8+ T cells are essential components of the immune response against viral infections and tumours, and are capable of eliminating infected and cancerous cells. However, when the antigen cannot be cleared, T cells enter a state known as exhaustion1. Although it is clear that chronic antigen contributes to CD8+ T cell exhaustion, less is known about how stress responses in tissues regulate T cell function. Here we show a new link between the stress-associated catecholamines and the progression of T cell exhaustion through the β1-adrenergic receptor ADRB1. We identify that exhausted CD8+ T cells increase ADRB1 expression and that exposure of ADRB1+ T cells to catecholamines suppresses their cytokine production and proliferation. Exhausted CD8+ T cells cluster around sympathetic nerves in an ADRB1-dependent manner. Ablation of β1-adrenergic signalling limits the progression of T cells towards the exhausted state in chronic infection and improves effector functions when combined with immune checkpoint blockade (ICB) in melanoma. In a pancreatic cancer model resistant to ICB, β-blockers and ICB synergize to boost CD8+ T cell responses and induce the development of tissue-resident memory-like T cells. Malignant disease is associated with increased catecholamine levels in patients2,3, and our results establish a connection between the sympathetic stress response, tissue innervation and T cell exhaustion. Here, we uncover a new mechanism by which blocking β-adrenergic signalling in CD8+ T cells rejuvenates anti-tumour functions.
Collapse
Affiliation(s)
- Anna-Maria Globig
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Steven Zhao
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jessica Roginsky
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Vivien I Maltez
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Juan Guiza
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Natalia Avina-Ochoa
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Maximilian Heeg
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Filipe Araujo Hoffmann
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Omkar Chaudhary
- Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Jiawei Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Gokhan Senturk
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dan Chen
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Carolyn O'Connor
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Samuel Pfaff
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Brinda Emu
- Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
219
|
Baumgartner CK, Ebrahimi-Nik H, Iracheta-Vellve A, Hamel KM, Olander KE, Davis TGR, McGuire KA, Halvorsen GT, Avila OI, Patel CH, Kim SY, Kammula AV, Muscato AJ, Halliwill K, Geda P, Klinge KL, Xiong Z, Duggan R, Mu L, Yeary MD, Patti JC, Balon TM, Mathew R, Backus C, Kennedy DE, Chen A, Longenecker K, Klahn JT, Hrusch CL, Krishnan N, Hutchins CW, Dunning JP, Bulic M, Tiwari P, Colvin KJ, Chuong CL, Kohnle IC, Rees MG, Boghossian A, Ronan M, Roth JA, Wu MJ, Suermondt JSMT, Knudsen NH, Cheruiyot CK, Sen DR, Griffin GK, Golub TR, El-Bardeesy N, Decker JH, Yang Y, Guffroy M, Fossey S, Trusk P, Sun IM, Liu Y, Qiu W, Sun Q, Paddock MN, Farney EP, Matulenko MA, Beauregard C, Frost JM, Yates KB, Kym PR, Manguso RT. The PTPN2/PTPN1 inhibitor ABBV-CLS-484 unleashes potent anti-tumour immunity. Nature 2023; 622:850-862. [PMID: 37794185 PMCID: PMC10599993 DOI: 10.1038/s41586-023-06575-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance1,2. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity3-6. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancing JAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes.
Collapse
Affiliation(s)
| | - Hakimeh Ebrahimi-Nik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Ohio State University Comprehensive Cancer Center and Pelotonia Institute for Immuno-Oncology, Columbus, OH, USA
| | - Arvin Iracheta-Vellve
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Pfizer, Groton, CT, USA
| | | | - Kira E Olander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas G R Davis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Omar I Avila
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Sarah Y Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ashwin V Kammula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Audrey J Muscato
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Prasanthi Geda
- AbbVie, North Chicago, IL, USA
- Bristol Myers Squibb, Summit, NJ, USA
| | | | - Zhaoming Xiong
- AbbVie, North Chicago, IL, USA
- Ipsen Biosciences, Cambridge, MA, USA
| | | | | | - Mitchell D Yeary
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - James C Patti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tyler M Balon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | - Navasona Krishnan
- AbbVie, North Chicago, IL, USA
- Monte Rosa Therapeutics, Boston, MA, USA
| | | | | | | | - Payal Tiwari
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kayla J Colvin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Cun Lan Chuong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ian C Kohnle
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Melissa Ronan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Meng-Ju Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Juliette S M T Suermondt
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nelson H Knudsen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Collins K Cheruiyot
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Debattama R Sen
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gabriel K Griffin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nabeel El-Bardeesy
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Yi Yang
- AbbVie, North Chicago, IL, USA
| | | | | | | | - Im-Meng Sun
- Calico Life Sciences, South San Francisco, CA, USA
| | - Yue Liu
- Calico Life Sciences, South San Francisco, CA, USA
| | - Wei Qiu
- AbbVie, North Chicago, IL, USA
| | - Qi Sun
- AbbVie, North Chicago, IL, USA
| | | | | | | | - Clay Beauregard
- Calico Life Sciences, South San Francisco, CA, USA
- Vir Biotechnology, San Francisco, CA, USA
| | | | - Kathleen B Yates
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | | | - Robert T Manguso
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
220
|
Cerella C, Dicato M, Diederich M. Enhancing personalized immune checkpoint therapy by immune archetyping and pharmacological targeting. Pharmacol Res 2023; 196:106914. [PMID: 37714393 DOI: 10.1016/j.phrs.2023.106914] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are an expanding class of immunotherapeutic agents with the potential to cure cancer. Despite the outstanding clinical response in patient subsets, most individuals become refractory or develop resistance. Patient stratification and personalized immunotherapies are limited by the absence of predictive response markers. Recent findings show that dominant patterns of immune cell composition, T-cell status and heterogeneity, and spatiotemporal distribution of immune cells within the tumor microenvironment (TME) are becoming essential determinants of prognosis and therapeutic response. In this context, ICIs also function as investigational tools and proof of concept, allowing the validation of the identified mechanisms. After reviewing the current state of ICIs, this article will explore new comprehensive predictive markers for ICIs based on recent discoveries. We will discuss the recent establishment of a classification of TMEs into immune archetypes as a tool for personalized immune profiling, allowing patient stratification before ICI treatment. We will discuss the developing comprehension of T-cell diversity and its role in shaping the immune profile of patients. We describe the potential of strategies that score the mutual spatiotemporal modulation between T-cells and other cellular components of the TME. Additionally, we will provide an overview of a range of synthetic and naturally occurring or derived small molecules. We will compare compounds that were recently identified by in silico prediction to wet lab-validated drug candidates with the potential to function as ICIs and/or modulators of the cellular components of the TME.
Collapse
Affiliation(s)
- Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210 Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
221
|
Zheng C, Snow BE, Elia AJ, Nechanitzky R, Dominguez-Brauer C, Liu S, Tong Y, Cox MA, Focaccia E, Wakeham AC, Haight J, Tobin C, Hodgson K, Gill KT, Ma W, Berger T, Heikenwälder M, Saunders ME, Fortin J, Leung SY, Mak TW. Tumor-specific cholinergic CD4 + T lymphocytes guide immunosurveillance of hepatocellular carcinoma. NATURE CANCER 2023; 4:1437-1454. [PMID: 37640929 PMCID: PMC10597839 DOI: 10.1038/s43018-023-00624-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Cholinergic nerves are involved in tumor progression and dissemination. In contrast to other visceral tissues, cholinergic innervation in the hepatic parenchyma is poorly detected. It remains unclear whether there is any form of cholinergic regulation of liver cancer. Here, we show that cholinergic T cells curtail the development of liver cancer by supporting antitumor immune responses. In a mouse multihit model of hepatocellular carcinoma (HCC), we observed activation of the adaptive immune response and induction of two populations of CD4+ T cells expressing choline acetyltransferase (ChAT), including regulatory T cells and dysfunctional PD-1+ T cells. Tumor antigens drove the clonal expansion of these cholinergic T cells in HCC. Genetic ablation of Chat in T cells led to an increased prevalence of preneoplastic cells and exacerbated liver cancer due to compromised antitumor immunity. Mechanistically, the cholinergic activity intrinsic in T cells constrained Ca2+-NFAT signaling induced by T cell antigen receptor engagement. Without this cholinergic modulation, hyperactivated CD25+ T regulatory cells and dysregulated PD-1+ T cells impaired HCC immunosurveillance. Our results unveil a previously unappreciated role for cholinergic T cells in liver cancer immunobiology.
Collapse
Affiliation(s)
- Chunxing Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Bryan E Snow
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Andrew J Elia
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Robert Nechanitzky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Shaofeng Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yin Tong
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Maureen A Cox
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Enrico Focaccia
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Chantal Tobin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kelsey Hodgson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kyle T Gill
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei Ma
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Thorsten Berger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- The M3 Research Center, Medical Faculty Tübingen, Tübingen, Germany
| | - Mary E Saunders
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jerome Fortin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Suet Yi Leung
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
222
|
Short S, Issa F. Research Highlights. Transplantation 2023; 107:2082-2083. [PMID: 37955397 DOI: 10.1097/tp.0000000000004806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Affiliation(s)
- Sarah Short
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
223
|
Hall MS, Teer JK, Yu X, Branthoover H, Snedal S, Rodriguez-Valentin M, Nagle L, Scott E, Schachner B, Innamarato P, Hall AM, Blauvelt J, Rich CJ, Richards AD, Ceccarelli J, Langer TJ, Yoder SJ, Beatty MS, Cox CA, Messina JL, Abate-Daga D, Mule JJ, Mullinax JE, Sarnaik AA, Pilon-Thomas S. Neoantigen-specific CD4 + tumor-infiltrating lymphocytes are potent effectors identified within adoptive cell therapy products for metastatic melanoma patients. J Immunother Cancer 2023; 11:e007288. [PMID: 37802604 PMCID: PMC10565316 DOI: 10.1136/jitc-2023-007288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) is a promising immunotherapeutic approach for patients with advanced solid tumors. While numerous advances have been made, the contribution of neoantigen-specific CD4+T cells within TIL infusion products remains underexplored and therefore offers a significant opportunity for progress. METHODS We analyzed infused TIL products from metastatic melanoma patients previously treated with ACT for the presence of neoantigen-specific T cells. TILs were enriched on reactivity to neoantigen peptides derived and prioritized from patient sample-directed mutanome analysis. Enriched TILs were further investigated to establish the clonal neoantigen response with respect to function, transcriptomics, and persistence following ACT. RESULTS We discovered that neoantigen-specific TIL clones were predominantly CD4+ T cells and were present in both therapeutic responders and non-responders. CD4+ TIL demonstrated an effector T cell response with cytotoxicity toward autologous tumor in a major histocompatibility complex class II-dependent manner. These results were validated by paired TCR and single cell RNA sequencing, which elucidated transcriptomic profiles distinct to neoantigen-specific CD4+ TIL. CONCLUSIONS Despite methods which often focus on CD8+T cells, our study supports the importance of prospective identification of neoantigen-specific CD4+ T cells within TIL products as they are a potent source of tumor-specific effectors. We further advocate for the inclusion of neoantigen-specific CD4+ TIL in future ACT protocols as a strategy to improve antitumor immunity.
Collapse
Affiliation(s)
- MacLean S Hall
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Holly Branthoover
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Sebastian Snedal
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | | - Luz Nagle
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ellen Scott
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ben Schachner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Patrick Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Amy M Hall
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jamie Blauvelt
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Carolyn J Rich
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Allison D Richards
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | | - T J Langer
- Turnstone Biologics, Inc, San Diego, California, USA
| | - Sean J Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Matthew S Beatty
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Cheryl A Cox
- Cell Therapies Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jane L Messina
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - James J Mule
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - John E Mullinax
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Sarcoma, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Amod A Sarnaik
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
224
|
Elliot TAE, Lecky DAJ, Bending D. T-cell response to checkpoint blockade immunotherapies: from fundamental mechanisms to treatment signatures. Essays Biochem 2023; 67:967-977. [PMID: 37386922 PMCID: PMC10539945 DOI: 10.1042/ebc20220247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
Immune checkpoint immunotherapies act to block inhibitory receptors on the surface of T cells and other cells of the immune system. This can increase activation of immune cells and promote tumour clearance. Whilst this is very effective in some types of cancer, significant proportions of patients do not respond to single-agent immunotherapy. To improve patient outcomes, we must first mechanistically understand what drives therapy resistance. Many studies have utilised genetic, transcriptional, and histological signatures to find correlates of effective responses to treatment. It is key that we understand pretreatment predictors of response, but also to understand how the immune system becomes treatment resistant during therapy. Here, we review our understanding of the T-cell signatures that are critical for response, how these immune signatures change during treatment, and how this information can be used to rationally design therapeutic strategies. We highlight how chronic antigen recognition drives heterogeneous T-cell exhaustion and the role of T-cell receptor (TCR) signal strength in exhausted T-cell differentiation and molecular response to therapy. We explore how dynamic changes in negative feedback pathways can promote resistance to single-agent therapy. We speculate that this resistance may be circumvented in the future through identifying the most effective combinations of immunotherapies to promote sustained and durable antitumour responses.
Collapse
Affiliation(s)
- Thomas A E Elliot
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - David A J Lecky
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
225
|
Ray A, Bassette M, Hu KH, Pass LF, Samad B, Combes A, Johri V, Davidson B, Hernandez G, Zaleta-Linares I, Krummel MF. Multimodal identification of rare potent effector CD8 T cells in solid tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559470. [PMID: 37808790 PMCID: PMC10557647 DOI: 10.1101/2023.09.26.559470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Antitumor immunity is driven by CD8 T cells, yet we lack signatures for the exceptional effectors in tumors, amongst the vast majority of CD8 T cells undergoing exhaustion. By leveraging the measurement of a canonical T cell activation protein (CD69) together with its RNA (Cd69), we found a larger classifier for TCR stimulation-driven effector states in vitro and in vivo. This revealed exceptional 'star' effectors-highly functional cells distinguished amidst progenitor and terminally exhausted cells. Although rare in growing mouse and human tumors, they are prominent in mice during T cell-mediated tumor clearance, where they engage with tumor antigen and are superior in tumor cell killing. Employing multimodal CITE-Seq allowed de novo identification of similar rare effectors amidst T cell populations in human cancer. The identification of rare and exceptional immune states provides rational avenues for enhancement of antitumor immunity.
Collapse
Affiliation(s)
- Arja Ray
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Molly Bassette
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Kenneth H Hu
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Lomax F Pass
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Bushra Samad
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
| | - Alexis Combes
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Vrinda Johri
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
| | - Brittany Davidson
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
- UCSF CoLabs, University of California, San Francisco, CA 94143, USA
| | - Grace Hernandez
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Itzia Zaleta-Linares
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, CA 94143, USA
- ImmunoX Initiative, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
226
|
Schardey J, Lu C, Neumann J, Wirth U, Li Q, Jiang T, Zimmermann P, Andrassy J, Bazhin AV, Werner J, Kühn F. Differential Immune Infiltration Profiles in Colitis-Associated Colorectal Cancer versus Sporadic Colorectal Cancer. Cancers (Basel) 2023; 15:4743. [PMID: 37835436 PMCID: PMC10571767 DOI: 10.3390/cancers15194743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Chronic inflammation is a significant factor in colorectal cancer (CRC) development, especially in colitis-associated CRC (CAC). T-cell exhaustion is known to influence inflammatory bowel disease (IBD) progression and antitumor immunity in IBD patients. This study aimed to identify unique immune infiltration characteristics in CAC patients. METHODS We studied 20 CAC and 20 sporadic CRC (sCRC) patients, who were matched by tumor stage, grade, and location. Immunohistochemical staining targeted various T-cell markers (CD3, CD4, CD8, and FOXP3), T-cell exhaustion markers (TOX and TIGIT), a B-cell marker (CD20), and a neutrophil marker (CD66b) in tumor and tumor-free mucosa from both groups. The quantification of the tumor immune stroma algorithm assessed immune-infiltrating cells. RESULTS CAC patients had significantly lower TOX+ cell infiltration than sCRC in tumors (p = 0.02) and paracancerous tissues (p < 0.01). Right-sided CAC showed increased infiltration of TOX+ cells (p = 0.01), FOXP3+ regulatory T-cells (p < 0.01), and CD20+ B-cells (p < 0.01) compared to left-sided CAC. In sCRC, higher tumor stages (III and IV) had significantly lower TIGIT+ infiltrate than stages I and II. In CAC, high CD3+ (p < 0.01) and CD20+ (p < 0.01) infiltrates correlated with improved overall survival. In sCRC, better survival was associated with decreased TIGIT+ cells (p < 0.038) and reduced CD8+ infiltrates (p = 0.02). CONCLUSION In CAC, high CD3+ and CD20+ infiltrates relate to improved survival, while this association is absent in sCRC. The study revealed marked differences in TIGIT and TOX expression, emphasizing distinctions between CAC and sCRC. T-cell exhaustion appears to have a different role in CAC development.
Collapse
Affiliation(s)
- Josefine Schardey
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Can Lu
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Clinical Research Center for CANCER & Cancer Center of Zhejiang University, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jens Neumann
- Department of Pathology, Ludwig-Maximilians University, 81377 Munich, Germany
| | - Ulrich Wirth
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Qiang Li
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Tianxiao Jiang
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Petra Zimmermann
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Joachim Andrassy
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| | - Florian Kühn
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Hospital Munich, 81377 Munich, Germany
| |
Collapse
|
227
|
Harro CM, Sprenger KB, Chaurio RA, Powers JJ, Innamarato P, Anadon CM, Zhang Y, Biswas S, Mandal G, Mine JA, Cortina C, Nagy MZ, Martin AL, Handley KF, Borjas GJ, Chen PL, Pinilla-Ibarz J, Sokol L, Yu X, Conejo-Garcia JR. Sézary syndrome originates from heavily mutated hematopoietic progenitors. Blood Adv 2023; 7:5586-5602. [PMID: 37531660 PMCID: PMC10514084 DOI: 10.1182/bloodadvances.2022008562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
The pathogenesis of cutaneous T-cell lymphoma (CTCL) remains unclear. Using single-cell RNA or T-cell receptor (TCR) sequencing of 32 619 CD3+CD4+ and CD26+/CD7+ and 29 932 CD3+CD4+ and CD26-/CD7- lymphocytes from the peripheral blood of 7 patients with CTCL, coupled to single-cell ATAC-sequencing of 26,411 CD3+CD4+ and CD26+/CD7+ and 33 841 CD3+CD4+ and CD26-/CD7- lymphocytes, we show that tumor cells in Sézary syndrome and mycosis fungoides (MF) exhibit different phenotypes and trajectories of differentiation. When compared to MF, Sézary cells exhibit narrower repertoires of TCRs and exhibit clonal enrichment. Surprisingly, we identified ≥200 mutations in hematopoietic stem cells from multiple patients with Sézary syndrome. Mutations in key oncogenes were also present in peripheral Sézary cells, which also showed the hallmarks of recent thymic egression. Together our data suggest that CTCL arises from mutated lymphocyte progenitors that acquire TCRs in the thymus, which complete their malignant transformation in the periphery.
Collapse
Affiliation(s)
- Carly M. Harro
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL
- Cancer Biology PhD Program, College of Arts and Sciences, University of South Florida, Tampa, FL
| | - Kimberly B. Sprenger
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Ricardo A. Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
| | - John J. Powers
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Patrick Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Carmen M. Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
| | - Yumeng Zhang
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Subir Biswas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Gunjan Mandal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| | - Jessica A. Mine
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
| | - Carla Cortina
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Mate Z. Nagy
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Alexandra L. Martin
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Katelyn F. Handley
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Gustavo J. Borjas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Pei-Ling Chen
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Javier Pinilla-Ibarz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Lubomir Sokol
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Jose R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| |
Collapse
|
228
|
Alchahin AM, Tsea I, Baryawno N. Recent Advances in Single-Cell RNA-Sequencing of Primary and Metastatic Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2023; 15:4734. [PMID: 37835428 PMCID: PMC10571653 DOI: 10.3390/cancers15194734] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Over the past two decades, significant progress has been made in the treatment of clear cell renal cell carcinoma (ccRCC), with a shift towards adopting new treatment approaches ranging from monotherapy to triple-combination therapy. This progress has been spearheaded by fundamental technological advancements that have allowed a deeper understanding of the various biological components of this cancer. In particular, the rapid commercialization of transcriptomics technologies, such as single-cell RNA-sequencing (scRNA-seq) methodologies, has played a crucial role in accelerating this understanding. Through precise measurements facilitated by these technologies, the research community has successfully identified and characterized diverse tumor, immune, and stromal cell populations, uncovering their interactions and pathways involved in disease progression. In localized ccRCC, patients have shown impressive response rates to treatment. However, despite the emerging findings and new knowledge provided in the field, there are still patients that do not respond to treatment, especially in advanced disease stages. One of the key challenges lies in the limited study of ccRCC metastases compared to localized cases. This knowledge gap may contribute to the relatively low survival rates and response rates observed in patients with metastatic ccRCC. To bridge this gap, we here delve into recent research utilizing scRNA-seq technologies in both primary and metastatic ccRCC. The goal of this review is to shed light on the current state of knowledge in the field, present existing treatment options, and emphasize the crucial steps needed to improve survival rates, particularly in cases of metastatic ccRCC.
Collapse
Affiliation(s)
| | | | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 10000-19999 Stockholm, Sweden; (A.M.A.); (I.T.)
| |
Collapse
|
229
|
Lee S, Lee K, Bae H, Lee K, Lee J, Ma J, Lee YJ, Lee BR, Park WY, Im SJ. Defining a TCF1-expressing progenitor allogeneic CD8 + T cell subset in acute graft-versus-host disease. Nat Commun 2023; 14:5869. [PMID: 37737221 PMCID: PMC10516895 DOI: 10.1038/s41467-023-41357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
Graft-versus-host disease (GvHD) is a severe complication of hematopoietic stem cell transplantation driven by activated allogeneic T cells. Here, we identify a distinct subset of T cell factor-1 (TCF1)+ CD8+ T cells in mouse allogeneic and xenogeneic transplant models of acute GvHD. These TCF1+ cells exhibit distinct characteristics compared to TCF1- cells, including lower expression of inhibitory receptors and higher expression of costimulatory molecules. Notably, the TCF1+ subset displays exclusive proliferative potential and could differentiate into TCF1- effector cells upon antigenic stimulation. Pathway analyses support the role of TCF1+ and TCF1- subsets as resource cells and effector cells, respectively. Furthermore, the TCF1+ CD8+ T cell subset is primarily present in the spleen and exhibits a resident phenotype. These findings provide insight into the differentiation of allogeneic and xenogeneic CD8+ T cells and have implications for the development of immunotherapeutic strategies targeting acute GvHD.
Collapse
Affiliation(s)
- Solhwi Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kunhee Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyeonjin Bae
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyungmin Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Junghwa Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Junhui Ma
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ye Ji Lee
- GENINUS Inc., Seoul, Republic of Korea
| | | | - Woong-Yang Park
- GENINUS Inc., Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Se Jin Im
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
230
|
Grayson JM, Short SM, Lee CJ, Park N, Marsac C, Sette A, Lindestam Arlehamn CS, Leng XI, Lockhart SN, Craft S. T cell exhaustion is associated with cognitive status and amyloid accumulation in Alzheimer's disease. Sci Rep 2023; 13:15779. [PMID: 37737298 PMCID: PMC10516910 DOI: 10.1038/s41598-023-42708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Studies over the last 100 years have suggested a link between inflammation, infectious disease, and Alzheimer's Disease (AD). Understanding how the immune system changes during the development of AD may facilitate new treatments. Here, we studied an aging cohort who had been assessed for AD pathology with amyloid positron emission tomography and cognitive testing, and conducted high dimensional flow cytometry on peripheral blood mononuclear and cerebrospinal fluid cells. Participants were assigned a classification of being amyloid negative cognitively normal, amyloid positive cognitively normal (APCN), or amyloid positive mild cognitive impairment (APMCI), an early stage of AD. We observed major alterations in the peripheral innate immune system including increased myeloid and plasmacytoid dendritic cells in the blood of APMCI participants. When the adaptive immune system was examined, amyloid positive participants, regardless of cognitive status, had increased CD3+ T cells. Further analyses of CD4+ and CD8+ T cells revealed that APMCI participants had an increase in more differentiated phenotype T cells, such as effector memory and effector memory CD45RA expressing (TEMRA), compared to those with normal cognition. When T cell function was measured, we observed that T cells from APCN participants had increased IFNγ+GzB- producing cells compared to the other participants. In contrast, we demonstrate that APMCI participants had a major increase in T cells that lacked cytokine production following restimulation and expressed increased levels of PD-1 and Tox, suggesting these are exhausted cells. Rejuvenation of these cells may provide a potential treatment for AD.
Collapse
Affiliation(s)
- Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, 525 Wake Forest Biotech Place, 525 Patterson Avenue Room 2N051, Winston-Salem, NC, 27101, USA.
| | - Samantha M Short
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, 525 Wake Forest Biotech Place, 525 Patterson Avenue Room 2N051, Winston-Salem, NC, 27101, USA
| | - C Jiah Lee
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, 525 Wake Forest Biotech Place, 525 Patterson Avenue Room 2N051, Winston-Salem, NC, 27101, USA
| | - Nuri Park
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, 525 Wake Forest Biotech Place, 525 Patterson Avenue Room 2N051, Winston-Salem, NC, 27101, USA
| | - Caitlyn Marsac
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, 525 Wake Forest Biotech Place, 525 Patterson Avenue Room 2N051, Winston-Salem, NC, 27101, USA
| | - Alessandro Sette
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | | - Xiaoyan I Leng
- Department of Biostatistics and Data Science, One Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Samuel N Lockhart
- Department of Internal Medicine-Geriatrics, One Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Suzanne Craft
- Department of Internal Medicine-Geriatrics, One Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
231
|
Zhao M, Li L, Kiernan CH, Castro Eiro MD, Dammeijer F, van Meurs M, Brouwers-Haspels I, Wilmsen MEP, Grashof DGB, van de Werken HJG, Hendriks RW, Aerts JG, Mueller YM, Katsikis PD. Overcoming immune checkpoint blockade resistance in solid tumors with intermittent ITK inhibition. Sci Rep 2023; 13:15678. [PMID: 37735204 PMCID: PMC10514027 DOI: 10.1038/s41598-023-42871-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Cytotoxic CD8 + T cell (CTL) exhaustion is driven by chronic antigen stimulation. Reversing CTL exhaustion with immune checkpoint blockade (ICB) has provided clinical benefits in different types of cancer. We, therefore, investigated whether modulating chronic antigen stimulation and T-cell receptor (TCR) signaling with an IL2-inducible T-cell kinase (ITK) inhibitor, could confer ICB responsiveness to ICB resistant solid tumors. In vivo intermittent treatment of 3 ICB-resistant solid tumor (melanoma, mesothelioma or pancreatic cancer) with ITK inhibitor significantly improved ICB therapy. ITK inhibition directly reinvigorate exhausted CTL in vitro as it enhanced cytokine production, decreased inhibitory receptor expression, and downregulated the transcription factor TOX. Our study demonstrates that intermittent ITK inhibition can be used to directly ameliorate CTL exhaustion and enhance immunotherapies even in solid tumors that are ICB resistant.
Collapse
Affiliation(s)
- Manzhi Zhao
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Ling Li
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Caoimhe H Kiernan
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Melisa D Castro Eiro
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Marjan van Meurs
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Inge Brouwers-Haspels
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Merel E P Wilmsen
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Dwin G B Grashof
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Joachim G Aerts
- Department of Pulmonary Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
232
|
Simmons T, Levy D. Modeling the Development of Cellular Exhaustion and Tumor-Immune Stalemate. Bull Math Biol 2023; 85:106. [PMID: 37733164 DOI: 10.1007/s11538-023-01207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
Cellular exhaustion in various immune cells develops in response to prolonged stimulation and overactivation during chronic infections and in cancer. Marked by an upregulation of inhibitory receptors and diminished effector functions, exhausted immune cells are unable to fully eradicate the antigen responsible for the overexposure. In cancer settings, this results in a relatively small but constant tumor burden known as a localized tumor-immune stalemate. In recent years, studies have elucidated key aspects of the development and progression of cellular exhaustion and have re-addressed previous misconceptions. Biological publications have also provided insight into the functional capabilities of exhausted cells. Complementing these findings, the model presented here serves as a mathematical framework for the establishment of cellular exhaustion and the development of the localized stalemate against a solid tumor. Analysis of this model indicates that this stalemate is stable and can handle small perturbations. Additionally, model analysis also provides insight into potential targets of future immunotherapy efforts.
Collapse
Affiliation(s)
- Tyler Simmons
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA.
| | - Doron Levy
- Department of Mathematics, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
233
|
Anderson-Crannage M, Ascensión AM, Ibanez-Solé O, Zhu H, Schaefer E, Ottomanelli D, Hochberg B, Pan J, Luo W, Tian M, Chu Y, Cairo MS, Izeta A, Liao Y. Inflammation-mediated fibroblast activation and immune dysregulation in collagen VII-deficient skin. Front Immunol 2023; 14:1211505. [PMID: 37809094 PMCID: PMC10557493 DOI: 10.3389/fimmu.2023.1211505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 10/10/2023] Open
Abstract
Inflammation is known to play a critical role in all stages of tumorigenesis; however, less is known about how it predisposes the tissue microenvironment preceding tumor formation. Recessive dystrophic epidermolysis bullosa (RDEB), a skin-blistering disease secondary to COL7A1 mutations and associated with chronic wounding, inflammation, fibrosis, and cutaneous squamous cell carcinoma (cSCC), models this dynamic. Here, we used single-cell RNA sequencing (scRNAseq) to analyze gene expression patterns in skin cells from a mouse model of RDEB. We uncovered a complex landscape within the RDEB dermal microenvironment that exhibited altered metabolism, enhanced angiogenesis, hyperproliferative keratinocytes, infiltration and activation of immune cell populations, and inflammatory fibroblast priming. We demonstrated the presence of activated neutrophil and Langerhans cell subpopulations and elevated expression of PD-1 and PD-L1 in T cells and antigen-presenting cells, respectively. Unsupervised clustering within the fibroblast population further revealed two differentiation pathways in RDEB fibroblasts, one toward myofibroblasts and the other toward a phenotype that shares the characteristics of inflammatory fibroblast subsets in other inflammatory diseases as well as the IL-1-induced inflammatory cancer-associated fibroblasts (iCAFs) reported in various cancer types. Quantitation of inflammatory cytokines indicated dynamic waves of IL-1α, TGF-β1, TNF, IL-6, and IFN-γ concentrations, along with dermal NF-κB activation preceding JAK/STAT signaling. We further demonstrated the divergent and overlapping roles of these cytokines in inducing inflammatory phenotypes in RDEB patients as well as RDEB mouse-derived fibroblasts together with their healthy controls. In summary, our data have suggested a potential role of inflammation, driven by the chronic release of inflammatory cytokines such as IL-1, in creating an immune-suppressed dermal microenvironment that underlies RDEB disease progression.
Collapse
Affiliation(s)
- Morgan Anderson-Crannage
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| | - Alex M. Ascensión
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
| | - Olga Ibanez-Solé
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
| | - Hongwen Zhu
- Department of Research & Development, Guizhou Atlasus Technology Co., Ltd., Guiyang, China
| | - Edo Schaefer
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Darcy Ottomanelli
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Bruno Hochberg
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Jian Pan
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Meijuan Tian
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
- Department of Medicine, New York Medical College, Valhalla, NY, United States
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Ander Izeta
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
- Department of Biomedical Engineering and Science, School of Engineering, Tecnun University of Navarra, San Sebastian, Spain
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
234
|
Garman B, Jiang C, Daouti S, Kumar S, Mehta P, Jacques MK, Menard L, Manjarrez-Orduno N, Dolfi S, Mukherjee P, Rai SC, Lako A, Koenitzer JD, David JM. Comprehensive immunophenotyping of solid tumor-infiltrating immune cells reveals the expression characteristics of LAG-3 and its ligands. Front Immunol 2023; 14:1151748. [PMID: 37795090 PMCID: PMC10546411 DOI: 10.3389/fimmu.2023.1151748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Background Immune cell expression profiling from patient samples is critical for the successful development of immuno-oncology agents and is useful to understand mechanism-of-action, to identify exploratory biomarkers predictive of response, and to guide treatment selection and combination therapy strategies. LAG-3 is an inhibitory immune checkpoint that can suppress antitumor T-cell responses and targeting LAG-3, in combination with PD-1, is a rational approach to enhance antitumor immunity that has recently demonstrated clinical success. Here, we sought to identify human immune cell subsets that express LAG-3 and its ligands, to characterize the marker expression profile of these subsets, and to investigate the potential relationship between LAG-3 expressing subsets and clinical outcomes to immuno-oncology therapies. Methods Comprehensive high-parameter immunophenotyping was performed using mass and flow cytometry of tumor-infiltrating lymphocytes (TILs) and peripheral blood mononuclear cells (PBMCs) from two independent cohorts of samples from patients with various solid tumor types. Profiling of circulating immune cells by single cell RNA-seq was conducted on samples from a clinical trial cohort of melanoma patients treated with immunotherapy. Results LAG-3 was most highly expressed by subsets of tumor-infiltrating CD8 T central memory (TCM) and effector memory (TEM) cells and was frequently co-expressed with PD-1. We determined that these PD-1+ LAG-3+ CD8 memory T cells exhibited a unique marker profile, with greater expression of activation (CD69, HLA-DR), inhibitory (TIM-3, TIGIT, CTLA-4) and stimulatory (4-1BB, ICOS) markers compared to cells that expressed only PD-1 or LAG-3, or that were negative for both checkpoints. In contrast to tumors, LAG-3 expression was more limited in circulating immune cells from healthy donors and solid tumor patients. Additionally, we found abundant expression of the LAG-3 ligands MHC-II and galectin-3 in diverse immune cell types, whereas FGL1 and LSECtin were minimally expressed by immune cells in the tumor microenvironment (TME). Lastly, we found an inverse relationship between baseline and on-treatment levels of circulating LAG3 transcript-expressing CD8 memory T cells and response to combination PD-1 and CTLA-4 blockade in a clinical trial cohort of melanoma patients profiled by scRNAseq. Conclusions These results provide insights into the nature of LAG-3- and ligand-expressing immune cells within the TME, and suggest a biological basis for informing mechanistic hypotheses, treatment selection strategies, and combination immunotherapy approaches to support continued development of dual PD-1 and LAG-3 blockade.
Collapse
Affiliation(s)
- Bradley Garman
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Can Jiang
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Sherif Daouti
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Sanah Kumar
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Priyanka Mehta
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Miye K. Jacques
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Laurence Menard
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | | | - Sonia Dolfi
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | - Piali Mukherjee
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
- Epigenomics Core Facility, Weill Cornell Medicine, New York City, NY, United States
| | | | - Ana Lako
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| | | | - Justin M. David
- Translational Medicine, Bristol Myers Squibb, Lawrenceville, NJ, United States
| |
Collapse
|
235
|
Blaeschke F, Chen YY, Apathy R, Daniel B, Chen AY, Chen PA, Sandor K, Zhang W, Li Z, Mowery CT, Yamamoto TN, Nyberg WA, To A, Yu R, Bueno R, Kim MC, Schmidt R, Goodman DB, Feuchtinger T, Eyquem J, Jimmie Ye C, Carnevale J, Satpathy AT, Shifrut E, Roth TL, Marson A. Modular pooled discovery of synthetic knockin sequences to program durable cell therapies. Cell 2023; 186:4216-4234.e33. [PMID: 37714135 PMCID: PMC10508323 DOI: 10.1016/j.cell.2023.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 04/22/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
Chronic stimulation can cause T cell dysfunction and limit the efficacy of cellular immunotherapies. Improved methods are required to compare large numbers of synthetic knockin (KI) sequences to reprogram cell functions. Here, we developed modular pooled KI screening (ModPoKI), an adaptable platform for modular construction of DNA KI libraries using barcoded multicistronic adaptors. We built two ModPoKI libraries of 100 transcription factors (TFs) and 129 natural and synthetic surface receptors (SRs). Over 30 ModPoKI screens across human TCR- and CAR-T cells in diverse conditions identified a transcription factor AP4 (TFAP4) construct that enhanced fitness of chronically stimulated CAR-T cells and anti-cancer function in vitro and in vivo. ModPoKI's modularity allowed us to generate an ∼10,000-member library of TF combinations. Non-viral KI of a combined BATF-TFAP4 polycistronic construct enhanced fitness. Overexpressed BATF and TFAP4 co-occupy and regulate key gene targets to reprogram T cell function. ModPoKI facilitates the discovery of complex gene constructs to program cellular functions.
Collapse
Affiliation(s)
- Franziska Blaeschke
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yan Yi Chen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ryan Apathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bence Daniel
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA; Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Andy Y Chen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Peixin Amy Chen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Katalin Sandor
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Wenxi Zhang
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cody T Mowery
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tori N Yamamoto
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - William A Nyberg
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Angela To
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ruby Yu
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Raymund Bueno
- Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Min Cheol Kim
- Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ralf Schmidt
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel B Goodman
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94129, USA
| | - Tobias Feuchtinger
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich 80337, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich 80336, Germany; National Center for Infection Research (DZIF), Munich 81377, Germany
| | - Justin Eyquem
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94129, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chun Jimmie Ye
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94129, USA; Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julia Carnevale
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94129, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ansuman T Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA; Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94129, USA; Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | - Eric Shifrut
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Theodore L Roth
- Department of Pathology, Stanford University, Stanford, CA 94305, USA.
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics (IHG), University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94129, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California Berkeley, Berkeley, CA 94720, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
236
|
Neubert EN, DeRogatis JM, Lewis SA, Viramontes KM, Ortega P, Henriquez ML, Buisson R, Messaoudi I, Tinoco R. HMGB2 regulates the differentiation and stemness of exhausted CD8 + T cells during chronic viral infection and cancer. Nat Commun 2023; 14:5631. [PMID: 37704621 PMCID: PMC10499904 DOI: 10.1038/s41467-023-41352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Chronic infections and cancers evade the host immune system through mechanisms that induce T cell exhaustion. The heterogeneity within the exhausted CD8+ T cell pool has revealed the importance of stem-like progenitor (Tpex) and terminal (Tex) exhausted T cells, although the mechanisms underlying their development are not fully known. Here we report High Mobility Group Box 2 (HMGB2) protein expression is upregulated and sustained in exhausted CD8+ T cells, and HMGB2 expression is critical for their differentiation. Through epigenetic and transcriptional programming, we identify HMGB2 as a cell-intrinsic regulator of the differentiation and maintenance of Tpex cells during chronic viral infection and in tumors. Despite Hmgb2-/- CD8+ T cells expressing TCF-1 and TOX, these master regulators were unable to sustain Tpex differentiation and long-term survival during persistent antigen. Furthermore, HMGB2 also had a cell-intrinsic function in the differentiation and function of memory CD8+ T cells after acute viral infection. Our findings show that HMGB2 is a key regulator of CD8+ T cells and may be an important molecular target for future T cell-based immunotherapies.
Collapse
Affiliation(s)
- Emily N Neubert
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA
| | - Julia M DeRogatis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Sloan A Lewis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Karla M Viramontes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Monique L Henriquez
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Rémi Buisson
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, 92697, USA
| | - Ilhem Messaoudi
- Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, 40536, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
- Center for Virus Research, University of California Irvine, Irvine, CA, 92697, USA.
- Institute for Immunology, University of California, Irvine, Irvine, CA, 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
237
|
Takata H, Mitchell JL, Pacheco J, Pagliuzza A, Pinyakorn S, Buranapraditkun S, Sacdalan C, Leyre L, Nathanson S, Kakazu JC, Intasan J, Prueksakaew P, Chomchey N, Phanuphak N, de Souza M, Haddad EK, Rolland M, Tovanabutra S, Vasan S, Hsu DC, Chomont N, Trautmann L. An active HIV reservoir during ART is associated with maintenance of HIV-specific CD8 + T cell magnitude and short-lived differentiation status. Cell Host Microbe 2023; 31:1494-1506.e4. [PMID: 37708852 PMCID: PMC10564289 DOI: 10.1016/j.chom.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Before initiation of antiretroviral therapy (ART), HIV-specific CD8+ T cells are dysfunctional and short lived. To better understand the relationship between the HIV reservoir in CD4+ T cells and the magnitude and differentiation status of HIV-specific CD8+ T cells, we investigated these cells from acute and chronic HIV-infected individuals after 2 years of ART. Although both the HIV reservoir and the CD8+ T cell responses declined significantly after 2 years of ART, sustained HIV-specific CD8+ T cell responses correlated with a greater reduction of integrated HIV provirus. However, the magnitude of CD8+ T cells specific for HIV Gag, Pol, Nef, and Vif proteins positively associated with the active reservoir size during ART, measured as cell-associated RNA. Importantly, high HIV DNA levels strongly associate with maintenance of short-lived HIV-specific CD8+ T cells, regardless of ART initiation time. Our data suggest that the active reservoir maintains HIV-specific CD8+ T cell magnitude but prevents their differentiation into functional cells.
Collapse
Affiliation(s)
- Hiroshi Takata
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Julie L Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Julian Pacheco
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Amélie Pagliuzza
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Suteeraporn Pinyakorn
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | | | - Carlo Sacdalan
- SEARCH Research Foundation, Bangkok, Thailand; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Louise Leyre
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Sam Nathanson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Juyeon C Kakazu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | | | | | | | | | | | - Elias K Haddad
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, PA 19102, USA
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Denise C Hsu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| |
Collapse
|
238
|
Li L, Zhao M, Kiernan CH, Castro Eiro MD, van Meurs M, Brouwers-Haspels I, Wilmsen MEP, Grashof DGB, van de Werken HJG, Hendriks RW, Mueller YM, Katsikis PD. Ibrutinib directly reduces CD8+T cell exhaustion independent of BTK. Front Immunol 2023; 14:1201415. [PMID: 37771591 PMCID: PMC10523025 DOI: 10.3389/fimmu.2023.1201415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Cytotoxic CD8+ T cell (CTL) exhaustion is a dysfunctional state of T cells triggered by persistent antigen stimulation, with the characteristics of increased inhibitory receptors, impaired cytokine production and a distinct transcriptional profile. Evidence from immune checkpoint blockade therapy supports that reversing T cell exhaustion is a promising strategy in cancer treatment. Ibrutinib, is a potent inhibitor of BTK, which has been approved for the treatment of chronic lymphocytic leukemia. Previous studies have reported improved function of T cells in ibrutinib long-term treated patients but the mechanism remains unclear. We investigated whether ibrutinib directly acts on CD8+ T cells and reinvigorates exhausted CTLs. Methods We used an established in vitro CTL exhaustion system to examine whether ibrutinib can directly ameliorate T cell exhaustion. Changes in inhibitory receptors, transcription factors, cytokine production and killing capacity of ibrutinib-treated exhausted CTLs were detected by flow cytometry. RNA-seq was performed to study transcriptional changes in these cells. Btk deficient mice were used to confirm that the effect of ibrutinib was independent of BTK expression. Results We found that ibrutinib reduced exhaustion-related features of CTLs in an in vitro CTL exhaustion system. These changes included decreased inhibitory receptor expression, enhanced cytokine production, and downregulation of the transcription factor TOX with upregulation of TCF1. RNA-seq further confirmed that ibrutinib directly reduced the exhaustion-related transcriptional profile of these cells. Importantly, using btk deficient mice we showed the effect of ibrutinib was independent of BTK expression, and therefore mediated by one of its other targets. Discussion Our study demonstrates that ibrutinib directly ameliorates CTL exhaustion, and provides evidence for its synergistic use with cancer immunotherapy.
Collapse
Affiliation(s)
- Ling Li
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Manzhi Zhao
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Caoimhe H. Kiernan
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Marjan van Meurs
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Merel E. P. Wilmsen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dwin G. B. Grashof
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Harmen J. G. van de Werken
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
- Cancer Computational Biology Center, Erasmus Medical Center (MC) Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yvonne M. Mueller
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter D. Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
239
|
Escobar G, Tooley K, Oliveras JP, Huang L, Cheng H, Bookstaver ML, Edwards C, Froimchuk E, Xue C, Mangani D, Krishnan RK, Hazel N, Rutigliani C, Jewell CM, Biasco L, Anderson AC. Tumor immunogenicity dictates reliance on TCF1 in CD8 + T cells for response to immunotherapy. Cancer Cell 2023; 41:1662-1679.e7. [PMID: 37625402 PMCID: PMC10529353 DOI: 10.1016/j.ccell.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/28/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Stem-like CD8+ T cells are regulated by T cell factor 1 (TCF1) and are considered requisite for immune checkpoint blockade (ICB) response. However, recent findings indicate that reliance on TCF1+CD8+ T cells for ICB efficacy may differ across tumor contexts. We find that TCF1 is essential for optimal priming of tumor antigen-specific CD8+ T cells and ICB response in poorly immunogenic tumors that accumulate TOX+ dysfunctional T cells, but is dispensable for T cell priming and therapy response in highly immunogenic tumors that efficiently expand transitory effectors. Importantly, improving T cell priming by vaccination or by enhancing antigen presentation on tumors rescues the defective responses of TCF1-deficient CD8+ T cells upon ICB in poorly immunogenic tumors. Our study highlights TCF1's role during the early stages of anti-tumor CD8+ T cell responses with important implications for guiding optimal therapeutic interventions in cancers with low TCF1+CD8+ T cells and low-neo-antigen expression.
Collapse
Affiliation(s)
- Giulia Escobar
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Katherine Tooley
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Joan Pagès Oliveras
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Linglin Huang
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Hanning Cheng
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Michelle L Bookstaver
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Eugene Froimchuk
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Chang Xue
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Davide Mangani
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Rajesh K Krishnan
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Natanael Hazel
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Carola Rutigliani
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Luca Biasco
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
240
|
Lan X, Zebley CC, Youngblood B. Cellular and molecular waypoints along the path of T cell exhaustion. Sci Immunol 2023; 8:eadg3868. [PMID: 37656775 PMCID: PMC10618911 DOI: 10.1126/sciimmunol.adg3868] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Thirty years of foundational research investigating molecular and cellular mechanisms promoting T cell exhaustion are now enabling rational design of T cell-based therapies for the treatment of chronic infections and cancer. Once described as a static cell fate, it is now well appreciated that the developmental path toward exhaustion is composed of a heterogeneous pool of cells with varying degrees of effector potential that ultimately converge on a terminally differentiated state. Recent description of the developmental stages along the differentiation trajectory of T cell exhaustion has provided insight into past immunotherapeutic success and future opportunities. Here, we discuss the hallmarks of distinct developmental stages occurring along the path to T cell dysfunction and the impact of these discrete CD8+ T cell fates on cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
241
|
Tremain AC, Wallace RP, Lorentz KM, Thornley TB, Antane JT, Raczy MR, Reda JW, Alpar AT, Slezak AJ, Watkins EA, Maulloo CD, Budina E, Solanki A, Nguyen M, Bischoff DJ, Harrington JL, Mishra R, Conley GP, Marlin R, Dereuddre-Bosquet N, Gallouët AS, LeGrand R, Wilson DS, Kontos S, Hubbell JA. Synthetically glycosylated antigens for the antigen-specific suppression of established immune responses. Nat Biomed Eng 2023; 7:1142-1155. [PMID: 37679570 DOI: 10.1038/s41551-023-01086-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Inducing antigen-specific tolerance during an established immune response typically requires non-specific immunosuppressive signalling molecules. Hence, standard treatments for autoimmunity trigger global immunosuppression. Here we show that established antigen-specific responses in effector T cells and memory T cells can be suppressed by a polymer glycosylated with N-acetylgalactosamine (pGal) and conjugated to the antigen via a self-immolative linker that allows for the dissociation of the antigen on endocytosis and its presentation in the immunoregulatory environment. We show that pGal-antigen therapy induces antigen-specific tolerance in a mouse model of experimental autoimmune encephalomyelitis (with programmed cell-death-1 and the co-inhibitory ligand CD276 driving the tolerogenic responses), as well as the suppression of antigen-specific responses to vaccination against a DNA-based simian immunodeficiency virus in non-human primates. Our findings show that pGal-antigen therapy invokes mechanisms of immune tolerance to resolve antigen-specific inflammatory T-cell responses and suggest that the therapy may be applicable across autoimmune diseases.
Collapse
Affiliation(s)
- Andrew C Tremain
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Rachel P Wallace
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | | | - Jennifer T Antane
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Michal R Raczy
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Joseph W Reda
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Aaron T Alpar
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Anna J Slezak
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Elyse A Watkins
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Chitavi D Maulloo
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Erica Budina
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Ani Solanki
- Animal Resources Center, University of Chicago, Chicago, IL, USA
| | - Mindy Nguyen
- Animal Resources Center, University of Chicago, Chicago, IL, USA
| | | | | | | | | | - Romain Marlin
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Anne-Sophie Gallouët
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Roger LeGrand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - D Scott Wilson
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA.
| | | | - Jeffrey A Hubbell
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
242
|
Dash B, Hogan PG. The road not taken en route to T cell exhaustion. Nat Immunol 2023; 24:1402-1404. [PMID: 37580606 PMCID: PMC10817209 DOI: 10.1038/s41590-023-01596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The first detailed investigation of CD8+ tumor-infiltrating T cell differentiation in the hours after cells enter a tumor has yielded an unexpected twist. Naive T cells veer away from effector fate and enter the path towards exhaustion much earlier than expected.
Collapse
Affiliation(s)
- Barsha Dash
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Patrick G Hogan
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Program in Immunology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
243
|
Chen Y, Xu Z, Sun H, Ouyang X, Han Y, Yu H, Wu N, Xie Y, Su B. Regulation of CD8 + T memory and exhaustion by the mTOR signals. Cell Mol Immunol 2023; 20:1023-1039. [PMID: 37582972 PMCID: PMC10468538 DOI: 10.1038/s41423-023-01064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/02/2023] [Indexed: 08/17/2023] Open
Abstract
CD8+ T cells are the key executioners of the adaptive immune arm, which mediates antitumor and antiviral immunity. Naïve CD8+ T cells develop in the thymus and are quickly activated in the periphery after encountering a cognate antigen, which induces these cells to proliferate and differentiate into effector cells that fight the initial infection. Simultaneously, a fraction of these cells become long-lived memory CD8+ T cells that combat future infections. Notably, the generation and maintenance of memory cells is profoundly affected by various in vivo conditions, such as the mode of primary activation (e.g., acute vs. chronic immunization) or fluctuations in host metabolic, inflammatory, or aging factors. Therefore, many T cells may be lost or become exhausted and no longer functional. Complicated intracellular signaling pathways, transcription factors, epigenetic modifications, and metabolic processes are involved in this process. Therefore, understanding the cellular and molecular basis for the generation and fate of memory and exhausted CD8+ cells is central for harnessing cellular immunity. In this review, we focus on mammalian target of rapamycin (mTOR), particularly signaling mediated by mTOR complex (mTORC) 2 in memory and exhausted CD8+ T cells at the molecular level.
Collapse
Affiliation(s)
- Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinxing Ouyang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Tumor Biology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuheng Han
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haihui Yu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiting Xie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Tumor Biology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
244
|
Le Moine M, Azouz A, Sanchez Sanchez G, Dejolier S, Nguyen M, Thomas S, Shala V, Dreidi H, Denanglaire S, Libert F, Vermijlen D, Andris F, Goriely S. Homeostatic PD-1 signaling restrains EOMES-dependent oligoclonal expansion of liver-resident CD8 T cells. Cell Rep 2023; 42:112876. [PMID: 37543948 DOI: 10.1016/j.celrep.2023.112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/02/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
The co-inhibitory programmed death (PD)-1 signaling pathway plays a major role in the context of tumor-specific T cell responses. Conversely, it also contributes to the maintenance of peripheral tolerance, as patients receiving anti-PD-1 treatment are prone to developing immune-related adverse events. Yet, the physiological role of the PD-1/PDL-1 axis in T cell homeostasis is still poorly understood. Herein, we show that under steady-state conditions, the absence of PD-1 signaling led to a preferential expansion of CD8+ T cells in the liver. These cells exhibit an oligoclonal T cell receptor (TCR) repertoire and a terminally differentiated exhaustion profile. The transcription factor EOMES is required for the clonal expansion and acquisition of this differentiation program. Finally, single-cell transcriptomics coupled with TCR repertoire analysis support the notion that these cells arise locally from liver-resident memory CD8+ T cells. Overall, we show a role for PD-1 signaling in liver memory T cell homeostasis.
Collapse
Affiliation(s)
- Marie Le Moine
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Guillem Sanchez Sanchez
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Department of Pharmacotherapy and Pharmaceutics, ULB, Brussels, Belgium
| | - Solange Dejolier
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Muriel Nguyen
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Séverine Thomas
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Valdrin Shala
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium
| | - Hacene Dreidi
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Sébastien Denanglaire
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Frédérick Libert
- Institute of Interdisciplinary Research (IRIBHM) and Brightcore, ULB, Brussels, Belgium
| | - David Vermijlen
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Department of Pharmacotherapy and Pharmaceutics, ULB, Brussels, Belgium; WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Fabienne Andris
- ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology (IMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), ULB, Brussels, Belgium; Immunobiology Lab, ULB, Gosselies, Belgium.
| |
Collapse
|
245
|
Wang W, Zhang Y, Zhang X, Li C, Yuan L, Zhang D, Zhao Y, Li X, Cheng J, Lin C, Zhao L, Wang J, Xu D, Yue X, Li W, Wen X, Jiang Z, Ding X, Salekdeh GH, Li F. Heritability and recursive influence of host genetics on the rumen microbiota drive body weight variance in male Hu sheep lambs. MICROBIOME 2023; 11:197. [PMID: 37644504 PMCID: PMC10463499 DOI: 10.1186/s40168-023-01642-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Heritable rumen microbiota is an important modulator of ruminant growth performance. However, no information exists to date on host genetics-rumen microbiota interactions and their association with phenotype in sheep. To solve this, we curated and analyzed whole-genome resequencing genotypes, 16S rumen-microbiota data, and longitudinal body weight (BW) phenotypes from 1150 sheep. RESULTS A variance component model indicated significant heritability of rumen microbial community diversity. Genome-wide association studies (GWAS) using microbial features as traits identified 411 loci-taxon significant associations (P < 10-8). We found a heritability of 39% for 180-day-old BW, while also the rumen microbiota likely played a significant role, explaining that 20% of the phenotypic variation. Microbiota-wide association studies (MWAS) and GWAS identified four marker genera (Bonferroni corrected P < 0.05) and five novel genetic variants (P < 10-8) that were significantly associated with BW. Integrative analysis identified the mediating role of marker genera in genotype influencing phenotype and unravelled that the same genetic markers have direct and indirect effects on sheep weight. CONCLUSIONS This study reveals a reciprocal interplay among host genetic variations, the rumen microbiota and the body weight traits of sheep. The information obtained provide insights into the diverse microbiota characteristics of rumen and may help in designing precision microbiota management strategies for controlling and manipulating sheep rumen microbiota to increase productivity. Video Abstract.
Collapse
Affiliation(s)
- Weimin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| | - Yukun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lvfeng Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730046, China
| | - Deyin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Yuan Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Xiaolong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Jiangbo Cheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Liming Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dan Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Wanhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Xiuxiu Wen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University (WSU), Pullman, WA, 99164, USA
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730050, China
| | | | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| |
Collapse
|
246
|
McClory SE, Bardhan O, Rome KS, Giles JR, Baxter AE, Xu L, Gimotty PA, Faryabi RB, Wherry EJ, Pear WS, Jordan MS. The pseudokinase Trib1 regulates the transition of exhausted T cells to a KLR + CD8 + effector state, and its deletion improves checkpoint blockade. Cell Rep 2023; 42:112905. [PMID: 37527035 PMCID: PMC10540077 DOI: 10.1016/j.celrep.2023.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/22/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023] Open
Abstract
CD8+ T cell exhaustion (TEX) impairs the ability of T cells to clear chronic infection or cancer. While TEX are hypofunctional, some TEX retain effector gene signatures, a feature associated with killer lectin-like receptor (KLR) expression. Although KLR+ TEX (TKLR) may improve control of chronic antigen, the signaling molecules regulating this population are poorly understood. Using single-cell RNA sequencing (scRNA-seq), flow cytometry, RNA velocity, and single-cell T cell receptor sequencing (scTCR-seq), we demonstrate that deleting the pseudokinase Trib1 shifts TEX toward CX3CR1+ intermediates with robust enrichment of TKLR via clonal T cell expansion. Adoptive transfer studies demonstrate this shift toward CD8+ TKLR in Trib1-deficient cells is CD8 intrinsic, while CD4-depletion studies demonstrate CD4+ T cells are required for improved viral control in Trib1 conditional knockout mice. Further, Trib1 loss augments anti-programmed death-ligand 1 (PD-L1) blockade to improve viral clearance. These data identify Trib1 as an important regulator of CD8+ TEX whose targeting enhances the TKLR effector state and improves checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Susan E McClory
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Oishi Bardhan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelly S Rome
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lanwei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Martha S Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
247
|
Wu JE, Manne S, Ngiow SF, Baxter AE, Huang H, Freilich E, Clark ML, Lee JH, Chen Z, Khan O, Staupe RP, Huang YJ, Shi J, Giles JR, Wherry EJ. In vitro modeling of CD8 + T cell exhaustion enables CRISPR screening to reveal a role for BHLHE40. Sci Immunol 2023; 8:eade3369. [PMID: 37595022 DOI: 10.1126/sciimmunol.ade3369] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 07/07/2023] [Indexed: 08/20/2023]
Abstract
Identifying molecular mechanisms of exhausted CD8 T cells (Tex) is a key goal of improving immunotherapy of cancer and other diseases. However, high-throughput interrogation of in vivo Tex can be costly and inefficient. In vitro models of Tex are easily customizable and quickly generate high cellular yield, enabling CRISPR screening and other high-throughput assays. We established an in vitro model of chronic stimulation and benchmarked key phenotypic, functional, transcriptional, and epigenetic features against bona fide in vivo Tex. We leveraged this model of in vitro chronic stimulation in combination with CRISPR screening to identify transcriptional regulators of T cell exhaustion. This approach identified several transcription factors, including BHLHE40. In vitro and in vivo validation defined a role for BHLHE40 in regulating a key differentiation checkpoint between progenitor and intermediate Tex subsets. By developing and benchmarking an in vitro model of Tex, then applying high-throughput CRISPR screening, we demonstrate the utility of mechanistically annotated in vitro models of Tex.
Collapse
Affiliation(s)
- Jennifer E Wu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hua Huang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Freilich
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan L Clark
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanna H Lee
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Khan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P Staupe
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yinghui J Huang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwei Shi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
248
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
249
|
Bossio SN, Abrate C, Tosello Boari J, Rodriguez C, Canale FP, Ramello MC, Brunotto V, Richer W, Rocha D, Sedlik C, Vincent-Salomon A, Borcoman E, Del Castillo A, Gruppi A, Fernandez E, Acosta Rodríguez EV, Piaggio E, Montes CL. CD39 + conventional CD4 + T cells with exhaustion traits and cytotoxic potential infiltrate tumors and expand upon CTLA-4 blockade. Oncoimmunology 2023; 12:2246319. [PMID: 37885970 PMCID: PMC10599196 DOI: 10.1080/2162402x.2023.2246319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/03/2023] [Accepted: 08/05/2023] [Indexed: 10/28/2023] Open
Abstract
Conventional CD4+ T (Tconv) lymphocytes play important roles in tumor immunity; however, their contribution to tumor elimination remains poorly understood. Here, we describe a subset of tumor-infiltrating Tconv cells characterized by the expression of CD39. In several mouse cancer models, we observed that CD39+ Tconv cells accumulated in tumors but were absent in lymphoid organs. Compared to tumor CD39- counterparts, CD39+ Tconv cells exhibited a cytotoxic and exhausted signature at the transcriptomic level, confirmed by high protein expression of inhibitory receptors and transcription factors related to the exhaustion. Additionally, CD39+ Tconv cells showed increased production of IFNγ , granzyme B, perforin and CD107a expression, but reduced production of TNF. Around 55% of OVA-specific Tconv from B16-OVA tumor-bearing mice, expressed CD39. In vivo CTLA-4 blockade induced the expansion of tumor CD39+ Tconv cells, which maintained their cytotoxic and exhausted features. In breast cancer patients, CD39+ Tconv cells were found in tumors and in metastatic lymph nodes but were less frequent in adjacent non-tumoral mammary tissue and not detected in non-metastatic lymph nodes and blood. Human tumor CD39+ Tconv cells constituted a heterogeneous cell population with features of exhaustion, high expression of inhibitory receptors and CD107a. We found that high CD4 and ENTPD1 (CD39) gene expression in human tumor tissues correlated with a higher overall survival rate in breast cancer patients. Our results identify CD39 as a biomarker of Tconv cells, with characteristics of both exhaustion and cytotoxic potential, and indicate CD39+ Tconv cells as players within the immune response against tumors.
Collapse
Affiliation(s)
- Sabrina N. Bossio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Carolina Abrate
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Jimena Tosello Boari
- Institut Curie Research Center, Translational Research Department, INSERM U932, PSL Research University, Paris, France
| | - Constanza Rodriguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Fernando P. Canale
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - María C. Ramello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Valentina Brunotto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Wilfrid Richer
- Institut Curie Research Center, Translational Research Department, INSERM U932, PSL Research University, Paris, France
| | - Dario Rocha
- Centro de Investigación y desarrollo en inmunología y enfermedades infecciosas (CIDIE-CONICET), Argentina
| | - Christine Sedlik
- Institut Curie Research Center, Translational Research Department, INSERM U932, PSL Research University, Paris, France
| | - Anne Vincent-Salomon
- Diagnostic and Theranostic Medicine Division, Institut Curie, PSL Research University, Paris, France
| | - Edith Borcoman
- Department of Medical Oncology, Institut Curie, Paris, France
| | | | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Elmer Fernandez
- Centro de Investigación y desarrollo en inmunología y enfermedades infecciosas (CIDIE-CONICET), Argentina
| | - Eva V. Acosta Rodríguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Eliane Piaggio
- Institut Curie Research Center, Translational Research Department, INSERM U932, PSL Research University, Paris, France
| | - Carolina L. Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| |
Collapse
|
250
|
Zhang Y, Hu J, Ji K, Jiang S, Dong Y, Sun L, Wang J, Hu G, Chen D, Chen K, Tao Z. CD39 inhibition and VISTA blockade may overcome radiotherapy resistance by targeting exhausted CD8+ T cells and immunosuppressive myeloid cells. Cell Rep Med 2023; 4:101151. [PMID: 37567173 PMCID: PMC10439278 DOI: 10.1016/j.xcrm.2023.101151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023]
Abstract
Although radiotherapy (RT) has achieved great success in the treatment of non-small cell lung cancer (NSCLC), local relapses still occur and abscopal effects are rarely seen even when it is combined with immune checkpoint blockers (ICBs). Here, we characterize the dynamic changes of tumor-infiltrating immune cells after RT in a therapy-resistant murine tumor model using single-cell transcriptomes and T cell receptor sequencing. At the early stage, the innate and adaptive immune systems are activated. At the late stage, however, the tumor immune microenvironment (TIME) shifts into immunosuppressive properties. Our study reveals that inhibition of CD39 combined with RT preferentially decreases the percentage of exhausted CD8+ T cells. Moreover, we find that the combination of V-domain immunoglobulin suppressor of T cell activation (VISTA) blockade and RT synergistically reduces immunosuppressive myeloid cells. Clinically, high VISTA expression is associated with poor prognosis in patients with NSCLC. Altogether, our data provide deep insight into acquired resistance to RT from an immune perspective and present rational combination strategies.
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Junyi Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Ji
- Department of Pain Relief, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Shengpeng Jiang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yang Dong
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lin Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jun Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Department of Radiation Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Department of Radiation Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China; Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|