201
|
Liang J, Li L, Li L, Zhou X, Zhang Z, Huang Y, Xiao X. Lipid metabolism reprogramming in head and neck cancer. Front Oncol 2023; 13:1271505. [PMID: 37927468 PMCID: PMC10622980 DOI: 10.3389/fonc.2023.1271505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Lipid metabolism reprogramming is one of the most prominent metabolic anomalies in cancer, wherein cancer cells undergo dysregulation of lipid metabolism to acquire adequate energy, cell membrane building blocks, as well as signaling molecules essential for cell proliferation, survival, invasion, and metastasis. These adaptations enable cancer cells to effectively respond to challenges posed by the tumor microenvironment, leading to cancer therapy resistance and poor cancer prognosis. Head and neck cancer, ranking as the seventh most prevalent cancer, exhibits numerous abnormalities in lipid metabolism. Nevertheless, the precise role of lipid metabolic rewiring in head and neck cancer remains unclear. In line with the LIPID MAPS Lipid Classification System and cancer risk factors, the present review delves into the dysregulated molecules and pathways participating in the process of lipid uptake, biosynthesis, transportation, and catabolism. We also present an overview of the latest advancements in understanding alterations in lipid metabolism and how they intersect with the carcinogenesis, development, treatment, and prognosis of head and neck cancer. By shedding light on the significance of metabolic therapy, we aspire to improve the overall prognosis and treatment outcomes of head and neck cancer patients.
Collapse
Affiliation(s)
- Jinfeng Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Limei Li
- Department of Pediatric Dentistry, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Yi Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| |
Collapse
|
202
|
Li F, Lin Y, Li R, Shen X, Xiang M, Xiong G, Zhang K, Xia T, Guo J, Miao Z, Liao Y, Zhang X, Xie L. Molecular targeted therapy for metastatic colorectal cancer: current and evolving approaches. Front Pharmacol 2023; 14:1165666. [PMID: 37927605 PMCID: PMC10622804 DOI: 10.3389/fphar.2023.1165666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Colorectal cancer (CRC) represents 10% of all cancer types, making it the third leading cause of cancer-related deaths globally. Metastasis is the primary factor causing mortality in CRC patients. Approximately 22% of CRC-related deaths have metastasis present at diagnosis, with approximately 70% of these cases recurring. Recently, with the application of novel targeted drugs, targeted therapy has become the first-line option for individualized and comprehensive treatment of CRC. The management of these patients remains a significant medical challenge. The most prevalent targeted therapies for CRC in clinical practice focus on anti-vascular endothelial growth factor and its receptor, epidermal growth factor receptor (EGFR), and multi-target kinase inhibitors. In the wake of advancements in precision diagnosis and widespread adoption of second-generation sequencing (NGS) technology, rare targets such as BRAF V600E mutation, KRAS mutation, HER2 overexpression/amplification, and MSI-H/dMMR in metastatic colorectal cancer (mCRC) are increasingly being discovered. Simultaneously, new therapeutic drugs targeting these mutations are being actively investigated. This article reviews the progress in clinical research for developing targeted therapeutics for CRC, in light of advances in precision medicine and discovery of new molecular target drugs.
Collapse
Affiliation(s)
- Furong Li
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Yanping Lin
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Rong Li
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Xin Shen
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Mengying Xiang
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Guangrui Xiong
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Ke Zhang
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Tingrong Xia
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Jiangyan Guo
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Zhonghui Miao
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Yedan Liao
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Xuan Zhang
- Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Lin Xie
- Department of Gastroenterology and Internal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
203
|
Mandrich L, Esposito AV, Costa S, Caputo E. Chemical Composition, Functional and Anticancer Properties of Carrot. Molecules 2023; 28:7161. [PMID: 37894640 PMCID: PMC10608851 DOI: 10.3390/molecules28207161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Plants are a valuable source of drugs for cancer treatment. Daucus carota has been investigated for its health properties. In particular, Daucus carota L. subsp. Sativus, the common edible carrot root, has been found to be rich in bioactive compounds such as carotenoids and dietary fiber and contains many other functional components with significant health-promoting features, while Daucus carota L. subsp. Carrot (Apiacae), also known as wild carrot, has been usually used for gastric ulcer therapy, diabetes, and muscle pain in Lebanon. Here, we review the chemical composition of Daucus carota L. and the functional properties of both edible and wild carrot subspecies. Then, we focus on compounds with anticancer characteristics identified in both Daucus carota subspecies, and we discuss their potential use in the development of novel anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Luigi Mandrich
- Research Institute on Terrestrial Ecosystems-IRET-CNR, Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Antonia Valeria Esposito
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.E.); (S.C.)
| | - Silvio Costa
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.E.); (S.C.)
| | - Emilia Caputo
- Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.E.); (S.C.)
| |
Collapse
|
204
|
Zhang J, Li M, Zhang L, Kuang T, Yu J, Wang W. Prognostic value of controlling nutritional status on clinical and survival outcomes in cancer patients treated with immunotherapy. Sci Rep 2023; 13:17715. [PMID: 37853186 PMCID: PMC10584918 DOI: 10.1038/s41598-023-45096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer is a leading cause of death globally. Immunotherapy has shown promise in treating various types of cancer, but its effectiveness varies among patients. The Controlling Nutritional Status (CONUT) score has been linked to the prognosis of different cancers. However, its predictive value for immunotherapy outcomes is not well understood. Our research represents the pioneering meta-study to examine the prognostic value of the CONUT score on cancer patients treated with an immune checkpoint inhibitor (ICI). A comprehensive literature search was conducted using various databases including PubMed, the Cochrane Library, EMBASE, and Google Scholar. The study was conducted until July 28, 2023. This analysis encompassed a comprehensive evaluation of various clinical outcomes, namely overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and disease control rate (DCR). 663 patients from 8 studies were included in this study. It showed that cancer patients with high CONUT score had poorer OS (HR: 1.94, 95% CI, 1.52-2.47, p < 0.001) and PFS (HR: 2.22, 95% CI, 1.48-3.31, p < 0.001), as well as worse ORR (OR: 0.46, 95% CI, 0.25-0.85, p = 0.013) and DCR (HR: 0.29, 95% CI, 0.14-0.59, p = 0.001). The CONUT score can predict the prognosis of tumor patients treated with ICIs.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Man Li
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Lilong Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Tianrui Kuang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Jia Yu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.
| |
Collapse
|
205
|
Flati I, Di Vito Nolfi M, Dall’Aglio F, Vecchiotti D, Verzella D, Alesse E, Capece D, Zazzeroni F. Molecular Mechanisms Underpinning Immunometabolic Reprogramming: How the Wind Changes during Cancer Progression. Genes (Basel) 2023; 14:1953. [PMID: 37895302 PMCID: PMC10606647 DOI: 10.3390/genes14101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Metabolism and the immunological state are intimately intertwined, as defense responses are bioenergetically expensive. Metabolic homeostasis is a key requirement for the proper function of immune cell subsets, and the perturbation of the immune-metabolic balance is a recurrent event in many human diseases, including cancer, due to nutrient fluctuation, hypoxia and additional metabolic changes occurring in the tumor microenvironment (TME). Although much remains to be understood in the field of immunometabolism, here, we report the current knowledge on both physiological and cancer-associated metabolic profiles of immune cells, and the main molecular circuits involved in their regulation, highlighting similarities and differences, and emphasizing immune metabolic liabilities that could be exploited in cancer therapy to overcome immune resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (I.F.); (M.D.V.N.); (F.D.); (D.V.); (D.V.); (E.A.); (F.Z.)
| | | |
Collapse
|
206
|
Wang Y, Cai L, Li H, Chen H, Yang T, Tan Y, Guo Z, Wang X. Overcoming Cancer Resistance to Platinum Drugs by Inhibiting Cholesterol Metabolism. Angew Chem Int Ed Engl 2023; 62:e202309043. [PMID: 37612842 DOI: 10.1002/anie.202309043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Drug resistance is a serious challenge for platinum anticancer drugs. Platinum complexes may get over the drug resistance via a distinct mechanism of action. Cholesterol is a key factor contributing to the drug resistance. Inhibiting cellular cholesterol synthesis and uptake provides an alternative strategy for cancer treatment. Platinum(IV) complexes FP and DFP with fenofibric acid as axial ligand(s) were designed to combat the drug resistance through regulating cholesterol metabolism besides damaging DNA. In addition to producing reactive oxygen species and active platinum(II) species to damage DNA, FP and DFP inhibited cellular cholesterol accumulation, promoted cholesterol efflux, upregulated peroxisome proliferator-activated receptor alpha (PPARα), induced caspase-1 activation and gasdermin D (GSDMD) cleavage, thus leading to both apoptosis and pyroptosis in cancer cells. The reduction of cholesterol significantly relieved the drug resistance of cancer cells. The double-acting mechanism gave the complexes strong anticancer activity in vitro and in vivo, particularly against cisplatin-resistant cancer cells.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Linxiang Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Hui Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Hanhua Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Tao Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yehong Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
207
|
Jin J, Zhao Q, Wei Z, Chen K, Su Y, Hu X, Peng X. Glycolysis-cholesterol metabolic axis in immuno-oncology microenvironment: emerging role in immune cells and immunosuppressive signaling. Cell Biosci 2023; 13:189. [PMID: 37828561 PMCID: PMC10571292 DOI: 10.1186/s13578-023-01138-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Cell proliferation and function require nutrients, energy, and biosynthesis activity to duplicate repertoires for each daughter. It is therefore not surprising that tumor microenvironment (TME) metabolic reprogramming primarily orchestrates the interaction between tumor and immune cells. Tumor metabolic reprogramming affords bioenergetic, signaling intermediates, and biosynthesis requirements for both malignant and immune cells. Different immune cell subsets are recruited into the TME, and these manifestations have distinct effects on tumor progression and therapeutic outcomes, especially the mutual contribution of glycolysis and cholesterol metabolism. In particularly, glycolysis-cholesterol metabolic axis interconnection plays a critical role in the TME modulation, and their changes in tumor metabolism appear to be a double-edged sword in regulating various immune cell responses and immunotherapy efficacy. Hence, we discussed the signature manifestation of the glycolysis-cholesterol metabolic axis and its pivotal role in tumor immune regulation. We also highlight how hypothetical combinations of immunotherapy and glycolysis/cholesterol-related metabolic interventions unleash the potential of anti-tumor immunotherapies, as well as developing more effective personalized treatment strategies.
Collapse
Affiliation(s)
- Jing Jin
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhigong Wei
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Keliang Chen
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yonglin Su
- Department of Rehabilitation, Cancer Center, West China Hospital, Sichuan University, Sichuan, People's Republic of China.
| | - Xiaolin Hu
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
208
|
Beton-Mysur K, Brożek-Płuska B. A new modality for cholesterol impact tracking in colon cancer development - Raman imaging, fluorescence and AFM studies combined with chemometric analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5199-5217. [PMID: 37781815 DOI: 10.1039/d3ay01040f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Obesity, alcohol consumption, smoking, high consumption of red or processed meat and a diet with low fibre, fruit, and vegetable intake increase CRC risk. Despite advances in surgery (the basic treatment for recovery), chemotherapy, and radiotherapy, CRC remains the second leading cause of cancer-related deaths in the world. Therefore the social importance of this problem stimulates research aimed at developing new tools for rapid CRC diagnosis and analysis of CRC risk factors. Considering the association between the cholesterol level and CRC, we hypothesize that cholesterol spectroscopic and AFM (atomic force microscopy) studies combined with chemometric analysis can be new, powerful tools used to visualize the cholesterol distribution, estimate cholesterol content and determine its influence on the biochemical and nanomechanical properties of colon cells. Our paper presents the analysis of human colon tissues: normal and cancer and human colon single cells normal CCD18-Co and cancer CaCo-2 in the physiological state and CaCo-2 upon mevastatin supplementation. Based on vibrational features we have shown that Raman spectroscopy and imaging allow cholesterol content in human colon tissues and human colon single cells of both types to be tracked and allow the effectiveness of mevastatin in the mevalonate pathway modulation and disruption of the cholesterol level to be proven. All observations have been confirmed by chemometric analysis including principal component analysis (PCA) and partial least squares discriminant analysis (PLSDA). The positive impact of statins on cholesterol content has also been studied by using fluorescence microscopy and atomic force microscopy (AFM). A significant increase in Young modulus as a mechanomarker for CaCo-2 human cancer colon cells upon mevastatin supplementation compared to CCD18-Co human normal colon cells was observed. This paper is one of the first reports about the use of Raman spectroscopic techniques in cholesterol investigations and the first one about cholesterol investigation using Raman spectroscopy (RS) on human cells ex vivo in the context of colon cancer development.
Collapse
Affiliation(s)
- K Beton-Mysur
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - B Brożek-Płuska
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
209
|
Lange SA, Schliemann C, Engelbertz C, Feld J, Makowski L, Gerß J, Dröge P, Ruhnke T, Günster C, Reinecke H, Köppe J. Survival of Patients with Acute Coronary Syndrome and Hematologic Malignancies-A Real-World Analysis. Cancers (Basel) 2023; 15:4966. [PMID: 37894332 PMCID: PMC10605274 DOI: 10.3390/cancers15204966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The impact of the encounter between coronary heart disease (CHD) and cancer, and in particular hematologic malignancies (HM), remains poorly understood. OBJECTIVE The aim of this analysis was to clarify how HM affects the prognosis of acute coronary syndrome (ACS). We analyzed German health insurance data from 11 regional Ortskrankenkassen (AOK) of patients hospitalized for ACS between January 2010 and December 2018, matched by age, sex and all comorbidities for short- and long-term survival and major adverse cardiac events (MACE). RESULTS Of 439,716 patients with ACS, 2104 (0.5%) also had an HM. Myelodysplastic/myeloproliferative disorders (27.7%), lymphocytic leukemias (24.8%), and multiple myeloma (22.4%) predominated. These patients were about 6 years older (78 vs. 72 years *). They had an ST-segment elevation myocardial infarction (STEMI, 18.2 vs. 34.9% *) less often and more often had a non-STEMI (NSTEMI, 81.8 vs. 65.1% *). With the exception of dyslipidemia, these patients had more concomitant and previous cardiovascular disease and a worse NYHA stage. They were less likely to undergo coronary angiography (65.3 vs. 71.6% *) and percutaneous coronary intervention (PCI, 44.3 vs. 52.0% *), although the number of bleeding events was not relevantly increased (p = 0.22). After adjustment for the patients' risk profile, the HM was associated with reduced long-term survival. However, this was not true for short-term survival. Here, there was no difference in the STEMI patients, * p < 0.001. CONCLUSION Survival in ACS and HM is significantly lower, possibly due to the avoidance of PCI because of a perceived increased risk of bleeding.
Collapse
Affiliation(s)
- Stefan A. Lange
- Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, D-48149 Muenster, Germany; (C.E.); (L.M.); (H.R.)
| | - Christoph Schliemann
- Department of Medicine A, University Hospital Muenster, D-48149 Muenster, Germany;
| | - Christiane Engelbertz
- Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, D-48149 Muenster, Germany; (C.E.); (L.M.); (H.R.)
| | - Jannik Feld
- Institute of Biostatistics and Clinical Research, University of Muenster, D-48149 Muenster, Germany; (J.F.); (J.G.); (J.K.)
| | - Lena Makowski
- Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, D-48149 Muenster, Germany; (C.E.); (L.M.); (H.R.)
| | - Joachim Gerß
- Institute of Biostatistics and Clinical Research, University of Muenster, D-48149 Muenster, Germany; (J.F.); (J.G.); (J.K.)
| | - Patrik Dröge
- AOK Research Institute (WIdO), D-10178 Berlin, Germany; (P.D.); (C.G.)
| | - Thomas Ruhnke
- AOK Research Institute (WIdO), D-10178 Berlin, Germany; (P.D.); (C.G.)
| | - Christian Günster
- AOK Research Institute (WIdO), D-10178 Berlin, Germany; (P.D.); (C.G.)
| | - Holger Reinecke
- Department of Cardiology I—Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Muenster, D-48149 Muenster, Germany; (C.E.); (L.M.); (H.R.)
| | - Jeanette Köppe
- Institute of Biostatistics and Clinical Research, University of Muenster, D-48149 Muenster, Germany; (J.F.); (J.G.); (J.K.)
| |
Collapse
|
210
|
Yin Y, He M, Huang Y, Xie X. Transcriptomic analysis identifies CYP27A1 as a diagnostic marker for the prognosis and immunity in lung adenocarcinoma. BMC Immunol 2023; 24:37. [PMID: 37817081 PMCID: PMC10565965 DOI: 10.1186/s12865-023-00572-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND The association between lipid metabolism disorder and carcinogenesis is well-established, but there is limited research on the connection between lipid metabolism-related genes (LRGs) and lung adenocarcinoma (LUAD). The objective of our research was to identify LRGs as the potential biomarkers for prognosis and assess their impact on immune cell infiltration in LUAD. METHODS We identified novel prognostic LRGs for LUAD patients via the bioinformatics analysis. CYP27A1 expression level was systematically evaluated via various databases, such as TCGA, UALCAN, and TIMER. Subsequently, LinkedOmics was utilized to perform the CYP27A1 co-expression network and GSEA. ssGSEA was conducted to assess the association between infiltration of immune cells and CYP27A1 expression. CYP27A1's expression level was validated by qRT-PCR analysis. RESULTS CYP27A1 expression was decreased in LUAD. Reduced CYP27A1 expression was linked to unfavorable prognosis in LUAD. Univariate and multivariate analyses indicated that CYP27A1 was an independent prognostic biomarker for LUAD patients. GSEA results revealed a positive correlation between CYP27A1 expression and immune-related pathways. Furthermore, CYP27A1 expression was positively correlated with the infiltration levels of most immune cells. CONCLUSION CYP27A1 is a potential biomarker for LUAD patients, and our findings provided a novel perspective to develop the prognostic marker for LUAD patients.
Collapse
Affiliation(s)
- Yi Yin
- Department of Medical Oncology, Clinical Oncology School of, Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Muqun He
- Department of Medical Oncology, Clinical Oncology School of, Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yunjian Huang
- Department of Medical Oncology, Clinical Oncology School of, Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xianhe Xie
- Department of Oncology, Molecular Oncology Research Institute, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
211
|
Song L, Wang S, Zhang X, Song N, Lu Y, Qin C. Bridging the gap between clear cell renal cell carcinoma and cutaneous melanoma: the role of SCARB1 in dysregulated cholesterol metabolism. Aging (Albany NY) 2023; 15:10370-10388. [PMID: 37801479 PMCID: PMC10599744 DOI: 10.18632/aging.205083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/22/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVE The metabolism of cholesterol has been found to be closely related to the proliferation, invasion, and metastasis of tumors. The purpose of this study was to investigate the correlation between cholesterol metabolic genes and the prognosis of clear cell renal cell carcinoma (ccRCC). METHODS Gene expression profiles and clinical information of individuals diagnosed with prevalent malignant tumors were obtained from the TCGA database. For survival analysis, Kaplan-Meier curves were used. Consensus clustering was utilized to identify distinct molecular clusters. LASSO regression analysis was utilized to construct a novel prognostic signature. Differential analysis was used to analyze the differences in gene expression and various evaluation indicators between different subgroups. RT-qPCR and Immunohistochemistry were performed to examine the gene expression. Small interfering RNA transfection, CCK-8, and clone formation assays were conducted to verify the function of the target gene in ccRCC cell lines. RESULTS Based on genes involved in cholesterol metabolism related to survival, two molecular ccRCC subtypes were identified with distinct clinical, immune, and biological features. A molecular signature which would be utilized to evaluate the prognosis and the immune status of the tumor microenvironment of ccRCC patients was also established. The SCARB1-mediated cholesterol-dependent metabolism occurred both in ccRCC and skin cutaneous melanoma. CONCLUSION A gene signature related to cholesterol metabolism was developed and validated to forecast the prognosis of ccRCC, demonstrating a correlation with immune infiltration. Cholesterol metabolic genes such as SCARB1, were expected to contribute to the diagnosis and precision treatment of both ccRCC and skin cutaneous melanoma.
Collapse
Affiliation(s)
- Lebin Song
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Wang
- Department of Urology, The State Key Lab of Reproductive, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xi Zhang
- Department of Urology, The State Key Lab of Reproductive, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ninghong Song
- Department of Urology, The State Key Lab of Reproductive, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chao Qin
- Department of Urology, The State Key Lab of Reproductive, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
212
|
Yadav P, Bandyopadhayaya S, Soni S, Saini S, Sharma LK, Shrivastava SK, Mandal CC. Simvastatin prevents BMP-2 driven cell migration and invasion by suppressing oncogenic DNMT1 expression in breast cancer cells. Gene 2023; 882:147636. [PMID: 37442305 DOI: 10.1016/j.gene.2023.147636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Both epigenetic and genetic changes in the cancer genome act simultaneously to promote tumor development and metastasis. Aberrant DNA methylation, a prime epigenetic event, is often observed in various cancer types. The elevated DNA methyltransferase 1 (DNMT1) enzyme creates DNA hypermethylation at CpG islands to drive oncogenic potential. This study emphasized to decipher the molecular mechanism of endogenous regulation of DNMT1 expression for finding upstream signaling molecules. Cancer database analyses found an upregulated DNMT1 expression in most cancer types including breast cancer. Overexpression of DNMT1 showed an increased cell migration, invasion, and stemness potential whereas 5-azacytidine (DNMT1 inhibitor) and siRNA mediated knockdown of DNMT1 exhibited inhibition of such cancer activities in breast cancer MDA-MB-231 and MCF-7 cells. Infact, cancer database analyses further found a positive correlation of DNMT1 transcript with both cholesterol pathway regulatory genes and BMP signaling molecules. Experimental observations documented that the cholesterol-lowering drug, simvastatin decreased DNMT1 transcript as well as protein, whereas BMP-2 treatment increased DNMT1 expression in breast cancer cells. In addition, expression of various key cholesterol regulatory genes was found to be upregulated in response to BMP-2 treatment. Moreover, simvastatin inhibited BMP-2 induced DNMT1 expression in breast cancer cells. Thus, this study for the first time reveals that both BMP-2 signaling and cholesterol pathways could regulate endogenous DNMT1 expression in cancer cells.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Sneha Soni
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Sunil Saini
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Lokendra K Sharma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, U.P., India
| | - Sandeep K Shrivastava
- Centre for Innovation, Research & Development, Dr. B. Lal Clinical Laboratory Pvt Ltd. Jaipur, Rajasthan, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
213
|
Li Z, Wang Y, Xing R, Zeng H, Yu XJ, Zhang YJ, Xu J, Zheng L. Cholesterol Efflux Drives the Generation of Immunosuppressive Macrophages to Promote the Progression of Human Hepatocellular Carcinoma. Cancer Immunol Res 2023; 11:1400-1413. [PMID: 37467346 DOI: 10.1158/2326-6066.cir-22-0907] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
Cholesterol is often enriched in tumor microenvironment (TME); however, its impact on disease progression varies in different tissues and cells. Monocytes/macrophages (Mφ) are major components and regulators of the TME and play pivotal roles in tumor progression and therapeutic responses. We aimed to investigate the profile, effects, and regulatory mechanisms of Mφ cholesterol metabolism in the context of human hepatocellular carcinoma (HCC). Here, we found that patients with high serum levels of cholesterol had shorter survival times and lower response rates to anti-PD-1 treatment. However, the cholesterol content in tumor-infiltrating monocytes/Mφ was significantly lower than that in their counterparts in paired nontumor tissues. The expression of the cholesterol efflux transporter, ABCA1, was upregulated in tumor monocytes/Mφ, and ABCA1 upregulation positively associated with decreased cellular cholesterol content and increased serum cholesterol levels. Mechanistically, autocrine cytokines from tumor-treated monocytes increased LXRα and ABCA1 expression, which led to the generation of immature and immunosuppressive Mφ. Although exogenous cholesterol alone had little direct effect on Mφ, it did act synergistically with tumor-derived factors to promote ABCA1 expression in Mφ with more immunosuppressive features. Moreover, high numbers of ABCA1+ Mφ in HCC tumors associated with reduced CD8+ T-cell infiltration and predicted poor clinical outcome for patients. Our results revealed that dysregulated cholesterol homeostasis, due to the collaborative effects of tumors and exogenous cholesterol, drives the generation of immunosuppressive Mφ. The selective modulation of cholesterol metabolism in Mφ may represent a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Zhixiong Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yongchun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Rui Xing
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Huilan Zeng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xing-Juan Yu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yao-Jun Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Limin Zheng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
214
|
Liu H, Shui IM, Keum N, Shen X, Wu K, Clinton SK, Cao Y, Song M, Zhang X, Platz EA, Giovannucci EL. Plasma total cholesterol concentration and risk of higher-grade prostate cancer: A nested case-control study and a dose-response meta-analysis. Int J Cancer 2023; 153:1337-1346. [PMID: 37306155 PMCID: PMC10527248 DOI: 10.1002/ijc.34621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
Our previous publication found an increased risk of higher-grade (Gleason sum ≥7) prostate cancer for men with high total cholesterol concentration (≥200 mg/dl) in the Health Professionals Follow-up Study (HPFS). With additional 568 prostate cancer cases, we are now able to investigate this association in more detail. For the nested case-control study, we included 1260 men newly diagnosed with prostate cancer between 1993 and 2004, and 1328 controls. For the meta-analyses, 23 articles studied the relationship between total cholesterol level and prostate cancer incidence were included. Logistic regression models and dose-response meta-analysis were performed. An increased risk of higher-grade (Gleason sum ≥4 + 3) prostate cancer for high vs low quartile of total cholesterol level was observed in the HPFS (ORmultivariable = 1.56; 95% CI = 1.01-2.40). This finding was compatible with the association noted in the meta-analysis of highest vs lowest group of total cholesterol level, which suggested a moderately increased risk of higher-grade prostate cancer (Pooled RR =1.21; 95%CI: 1.11-1.32). Moreover, the dose-response meta-analysis indicated that an increased risk of higher-grade prostate cancer occurred primarily at total cholesterol levels ≥200 mg/dl, where the RR was 1.04 (95%CI: 1.01-1.08) per 20 mg/dl increase in total cholesterol level. However, total cholesterol concentration was not associated with the risk of prostate cancer overall either in the HPFS or in the meta-analysis. Our primary finding, as well as the result of the meta-analysis suggested a modest increased risk of higher-grade prostate cancer, at total cholesterol concentrations exceeding 200 mg/dl.
Collapse
Affiliation(s)
- Hui Liu
- Central Lab, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Department of Nutrition, Harvard School of Public Health, Boston, MA, 02115, USA
| | | | - NaNa Keum
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Korea
| | - Xudan Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, China
| | - Kana Wu
- Department of Nutrition, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Steven K. Clinton
- Division of Public Health Sciences, Division of Medical Oncology, The James Cancer Hospital and The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Yin Cao
- Department of Surgery, Washington University School of Medicine, St Louis, MO, 63110, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xuehong Zhang
- Department of Nutrition, Harvard School of Public Health, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, 21205, USA
| | - Edward L. Giovannucci
- Department of Nutrition, Harvard School of Public Health, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
215
|
AiErken N, Shao N, Liu Y, Shi H, Shi Y, Yuan Z, Lin Y. Effect of Lipid Levels on Tumor-Infiltrating Lymphocytes and Prognosis in Patients with Triple-Negative Breast Cancer. Breast Care (Basel) 2023; 18:390-398. [PMID: 37901045 PMCID: PMC10601676 DOI: 10.1159/000531943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/20/2023] [Indexed: 10/31/2023] Open
Abstract
Objective Dyslipidemia can promote cell proliferation, malignant transformation, metastasis, and cancer recurrence. Moreover, it could also affect immune infiltration in the tumor microenvironment. Therefore, we aimed to explore the effects of lipid levels on tumor-infiltrating lymphocytes (TILs) and prognosis in patients with triple-negative breast cancer (TNBC). Methods Samples from 222 patients with TNBC from July 2007 to December 2019 were obtained from the tissue specimen banks in 3 hospitals. The blood samples were used to detect the levels of lipid levels such as apolipoprotein B (Apo B), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C). The TILs in the 222 TNBC tissues were detected using hematoxylin and eosin (H&E) staining, and the relationship between the lipid levels, clinical characteristics, and prognosis was analyzed. Results Among TNBC patients, the overall survival (OS) time and disease-free survival (DFS) time were lower in patients with high LDL-C levels than those with low LDL-C levels (p < 0.01, respectively). The DFS was shorter in patients with low stromal TIL (STIL) levels than those with moderate or high STIL levels (p = 0.023). Multifactor Cox regression analysis showed that LDL-C level, Apo B level, and lymphocyte-predominant breast cancer were independent risk factors for OS in TNBC patients. The number of positive lymph nodes, postoperative staging, and total amount of TILs were independent risk factors for DFS in TNBC patients. Conclusion The LDL-C and STIL levels were correlated with survival and prognosis in patients with TNBC.
Collapse
Affiliation(s)
- NiJiati AiErken
- Department of Breast and Thyroid Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuhong Liu
- Department of Breast and Thyroid Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yawei Shi
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongyu Yuan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
216
|
Liu L, Feng Y, Guo C, Weng S, Xu H, Xing Z, Zhang Y, Wang L, Han X. Multi-center validation of an immune-related lncRNA signature for predicting survival and immune status of patients with renal cell carcinoma: an integrating machine learning-derived study. J Cancer Res Clin Oncol 2023; 149:12115-12129. [PMID: 37423959 DOI: 10.1007/s00432-023-05107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been reported to play an important role in tumor immune modification. Nonetheless, the clinical implication of immune-associated lncRNAs in renal cell carcinoma (RCC) remains to be further explored. METHODS 76 combinations of machine learning algorithms were integrated to develop and validate a machine learning-derived immune-related lncRNA signature (MDILS) in five independent cohorts (n = 801). We collected 28 published signatures and collated clinical variables for comparison with MDILS to verify its efficacy. Subsequently, molecular mechanisms, immune status, mutation landscape, and pharmacological profile were further investigated in different stratified patients. RESULTS Patients with high MDILS displayed worse overall survival than those with low MDILS. The MDILS could independently predict overall survival and convey robust performance across five cohorts. MDILS has a significantly better performance compared with traditional clinical variables and 28 published signatures. Patients with low MDILS exhibited more abundant immune infiltration and higher potency of immunotherapeutic response, while patients with high MDILS might be more sensitive to multiple chemotherapeutic drugs (e.g., sunitinib and axitinib). CONCLUSION MDILS is a robust and promising tool to facilitate clinical decision-making and precision treatment of RCC.
Collapse
Affiliation(s)
- Long Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yi Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
217
|
Xiao MY, Li FF, Xie P, Qi YS, Xie JB, Pei WJ, Luo HT, Guo M, Gu YL, Piao XL. Gypenosides suppress hepatocellular carcinoma cells by blocking cholesterol biosynthesis through inhibition of MVA pathway enzyme HMGCS1. Chem Biol Interact 2023; 383:110674. [PMID: 37604220 DOI: 10.1016/j.cbi.2023.110674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/23/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high morbidity and mortality. Targeting abnormal cholesterol metabolism is a potential therapeutic direction. Therefore, more natural drugs targeting cholesterol in HCC need to be developed. Gypenosides (Gyp), the major constituent of Gynostemma pentaphyllum, has been demonstrated to have pharmacological properties on anti-cancer, anti-obesity, and hepatoprotective. We investigated whether Gyp, isolated and purified by our lab, could inhibit HCC progression by inhibiting cholesterol synthesis. The present research showed that Gyp inhibited proliferation and migration, and induced apoptosis in Huh-7 and Hep3B cells. Metabolomics, transcriptomics, and target prediction all suggested that lipid metabolism and cholesterol biosynthesis were the mechanisms of Gyp. Gyp could limit the production of cholesterol and target HMGCS1, the cholesterol synthesis-related protein. Downregulation of HMGCS1 could suppress the progression and abnormal cholesterol metabolism of HCC. In terms of mechanism, Gyp suppressed mevalonate (MVA) pathway mediated cholesterol synthesis by inhibiting HMGCS1 transcription factor SREBP2. And the high expression of HMGCS1 in HCC human specimens was correlated with poor clinical prognosis. The data suggested that Gyp could be a promising cholesterol-lowering drug for the prevention and treatment of HCC. And targeting SREBP2-HMGCS1 axis in MVA pathway might be an effective HCC therapeutic strategy.
Collapse
Affiliation(s)
- Man-Yu Xiao
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Fang-Fang Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Peng Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yan-Shuang Qi
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Jin-Bo Xie
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Wen-Jing Pei
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Hao-Tian Luo
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Mei Guo
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yu-Long Gu
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
218
|
Tian S, Li Y, Xu J, Zhang L, Zhang J, Lu J, Xu X, Luan X, Zhao J, Zhang W. COIMMR: a computational framework to reveal the contribution of herbal ingredients against human cancer via immune microenvironment and metabolic reprogramming. Brief Bioinform 2023; 24:bbad346. [PMID: 37816138 PMCID: PMC10564268 DOI: 10.1093/bib/bbad346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Immune evasion and metabolism reprogramming have been regarded as two vital hallmarks of the mechanism of carcinogenesis. Thus, targeting the immune microenvironment and the reprogrammed metabolic processes will aid in developing novel anti-cancer drugs. In recent decades, herbal medicine has been widely utilized to treat cancer through the modulation of the immune microenvironment and reprogrammed metabolic processes. However, labor-based herbal ingredient screening is time consuming, laborious and costly. Luckily, some computational approaches have been proposed to screen candidates for drug discovery rapidly. Yet, it has been challenging to develop methods to screen drug candidates exclusively targeting specific pathways, especially for herbal ingredients which exert anti-cancer effects by multiple targets, multiple pathways and synergistic ways. Meanwhile, currently employed approaches cannot quantify the contribution of the specific pathway to the overall curative effect of herbal ingredients. Hence, to address this problem, this study proposes a new computational framework to infer the contribution of the immune microenvironment and metabolic reprogramming (COIMMR) in herbal ingredients against human cancer and specifically screen herbal ingredients targeting the immune microenvironment and metabolic reprogramming. Finally, COIMMR was applied to identify isoliquiritigenin that specifically regulates the T cells in stomach adenocarcinoma and cephaelin hydrochloride that specifically targets metabolic reprogramming in low-grade glioma. The in silico results were further verified using in vitro experiments. Taken together, our approach opens new possibilities for repositioning drugs targeting immune and metabolic dysfunction in human cancer and provides new insights for drug development in other diseases. COIMMR is available at https://github.com/LYN2323/COIMMR.
Collapse
Affiliation(s)
- Saisai Tian
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yanan Li
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jia Xu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- College of Pharmacy, Henan University, Kaifeng 475000, China
| | - Lijun Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine
| | - Jinbo Zhang
- Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China Department of Pharmacy, Tianjin Rehabilitation Center of Joint Logistics Support Force, Tianjin, 300110, China
| | - Jinyuan Lu
- College of Pharmacy, Anhui University of Chinese Medicine, Anhui 230012, China
| | - Xike Xu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xin Luan
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine
| | - Jing Zhao
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine
| | - Weidong Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine
| |
Collapse
|
219
|
Meng X, Eslami Y, Derafsh E, Saihood A, Emtiazi N, Yasamineh S, Gholizadeh O, Pecho RDC. The roles of different microRNAs in the regulation of cholesterol in viral hepatitis. Cell Commun Signal 2023; 21:231. [PMID: 37710249 PMCID: PMC10500852 DOI: 10.1186/s12964-023-01250-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/30/2023] [Indexed: 09/16/2023] Open
Abstract
Cholesterol plays a significant role in stabilizing lipid or membrane rafts, which are specific cellular membrane structures. Cholesterol is involved in numerous cellular processes, including regulating virus entry into the host cell. Multiple viruses have been shown to rely on cholesterol for virus entry and/or morphogenesis. Research indicates that reprogramming of the host's lipid metabolism is associated with hepatitis B virus (HBV) and hepatitis C virus (HCV) infections in the progression to severe liver disease for viruses that cause chronic hepatitis. Moreover, knowing the precise mode of viral interaction with target cells sheds light on viral pathogenesis and aids in the development of vaccines and therapeutic targets. As a result, the area of cholesterol-lowering therapy is quickly evolving and has many novel antiviral targets and medications. It has been shown that microRNAs (miRNAs) either directly or indirectly target the viral genome, preventing viral replication. Moreover, miRNAs have recently been shown to be strong post-transcriptional regulators of the genes involved in lipid metabolism, particularly those involved in cholesterol homeostasis. As important regulators of lipid homeostasis in several viral infections, miRNAs have recently come to light. In addition, multiple studies demonstrated that during viral infection, miRNAs modulate several enzymes in the mevalonate/cholesterol pathway. As cholesterol metabolism is essential to the life cycle of viral hepatitis and other viruses, a sophisticated understanding of miRNA regulation may contribute to the development of a novel anti-HCV treatment. The mechanisms underlying the effectiveness of miRNAs as cholesterol regulators against viral hepatitis are explored in this review. Video Abstract.
Collapse
Affiliation(s)
- Xuan Meng
- Hepatobiliary Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002 China
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Derafsh
- Windsor University, School of Medicine, St. Kitts, Canada
| | - Anwar Saihood
- Department of Microbiology, college of medicine, University of Al-Qadisiyah, Baqubah, Iraq
| | - Nikoo Emtiazi
- Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
220
|
Qusairy Z, Gangloff A, Leung SOA. Dysregulation of Cholesterol Homeostasis in Ovarian Cancer. Curr Oncol 2023; 30:8386-8400. [PMID: 37754524 PMCID: PMC10527727 DOI: 10.3390/curroncol30090609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/28/2023] Open
Abstract
Cholesterol plays an essential role in maintaining the rigidity of cell membranes and signal transduction. Various investigations confirmed empirically that the dysregulation of cholesterol homeostasis positively correlates with tumor progression. More specifically, recent studies suggested the distinct role of cholesterol in ovarian cancer cell proliferation, metastasis and chemoresistance. In this review, we summarize the current findings that suggest the contribution of cholesterol homeostasis dysregulation to ovarian cancer progression and resistance to anti-cancer agents. We also discuss the therapeutic implications of cholesterol-lowering drugs in ovarian cancer.
Collapse
Affiliation(s)
- Zahraa Qusairy
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Anne Gangloff
- CHU de Québec-Université Laval Research Center, Québec City, QC G1V 4G2, Canada;
- Faculty of Medicine, Laval University, Québec City, QC G1V 0A6, Canada
| | - Shuk On Annie Leung
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
221
|
Hirtzel E, Edwards M, Freitas D, Liu Z, Wang F, Yan X. Aziridination-Assisted Mass Spectrometry of Nonpolar Sterol Lipids with Isomeric Resolution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1998-2005. [PMID: 37523498 PMCID: PMC10863044 DOI: 10.1021/jasms.3c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Characterization of nonpolar lipids is crucial due to their essential biological functions and ability to exist in various isomeric forms. In this study, we introduce the N-H aziridination method to target carbon-carbon double bonds (C═C bonds) in nonpolar sterol lipids. The resulting fragments are readily dissociated upon collision-induced dissociation, generating specific fragment ions for C═C bond position determination and fingerprint fragments for backbone characterization. This method significantly enhances lipid ionization efficiency, thereby improving the sensitivity and accuracy of nonpolar lipid analysis. We demonstrated that aziridination of sterols leads to distinctive fragmentation pathways for chain and ring C═C bonds, enabling the identification of sterol isomers such as desmosterol and 7-dehydrocholesterol. Furthermore, aziridination can assist in identifying the sterol backbone by providing fingerprint tandem mass spectra. We also demonstrated the quantitative capacity of this approach with a limit of detection of 10 nM in the solvent mixture of methanol and water. To test the feasibility of this method in complex biological samples, we used mouse prostate cancerous tissues and found significant differences in nonpolar lipid profiles between healthy and cancerous samples. The high efficiency and specificity of aziridination-assisted mass spectrometric analysis, as well as its quantitative analysis ability, make it highly suitable for broad applications in nonpolar lipid research.
Collapse
Affiliation(s)
- Erin Hirtzel
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Madison Edwards
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Dallas Freitas
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ziying Liu
- Center
for Translational Cancer Research, Texas
A&M University, Houston, Texas 77030, United States
| | - Fen Wang
- Center
for Translational Cancer Research, Texas
A&M University, Houston, Texas 77030, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
222
|
Laubach K, Turan T, Mathew R, Wilsbacher J, Engelhardt J, Samayoa J. Tumor-intrinsic metabolic reprogramming and how it drives resistance to anti-PD-1/PD-L1 treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:611-641. [PMID: 37842241 PMCID: PMC10571065 DOI: 10.20517/cdr.2023.60] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023]
Abstract
The development of immune checkpoint blockade (ICB) therapies has been instrumental in advancing the field of immunotherapy. Despite the prominence of these treatments, many patients exhibit primary or acquired resistance, rendering them ineffective. For example, anti-programmed cell death protein 1 (anti-PD-1)/anti-programmed cell death ligand 1 (anti-PD-L1) treatments are widely utilized across a range of cancer indications, but the response rate is only 10%-30%. As such, it is necessary for researchers to identify targets and develop drugs that can be used in combination with existing ICB therapies to overcome resistance. The intersection of cancer, metabolism, and the immune system has gained considerable traction in recent years as a way to comprehensively study the mechanisms that drive oncogenesis, immune evasion, and immunotherapy resistance. As a result, new research is continuously emerging in support of targeting metabolic pathways as an adjuvant to ICB to boost patient response and overcome resistance. Due to the plethora of studies in recent years highlighting this notion, this review will integrate the relevant articles that demonstrate how tumor-derived alterations in energy, amino acid, and lipid metabolism dysregulate anti-tumor immune responses and drive resistance to anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Kyra Laubach
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Tolga Turan
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Rebecca Mathew
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | | | | | - Josue Samayoa
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| |
Collapse
|
223
|
Yin J, Fu J, Shao Y, Xu J, Li H, Chen C, Zhao Y, Zheng Z, Yu C, Zheng L, Wang B. CYP51-mediated cholesterol biosynthesis is required for the proliferation of CD4 + T cells in Sjogren's syndrome. Clin Exp Med 2023; 23:1691-1711. [PMID: 36413274 DOI: 10.1007/s10238-022-00939-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022]
Abstract
CYtochrome P450, family 51 (CYP51) is an important enzyme for de novo cholesterol synthesis in mammalian cells. In the present study, we found that the expression of CYP51 positively correlated with CD4+ T cell activation both in vivo and in vitro. The addition of ketoconazole, a pharmacological inhibitor of CYP51, prevented the proliferation and activation of anti-CD3/CD28-expanded mouse CD4+ T cells in a dose-dependent fashion. Liquid chromatography-tandem mass spectrometry indicated an increase in levels of lanosterol in T cells treated with ketoconazole during activation. Ketoconazole-induced blockade of the cholesterol synthesis pathway also caused Sterol regulatory element binding protein 2 (SREBP2) activation in CD4+ T cells. Additionally, ketoconazole treatment elicited an integrated stress response in T cells that up-regulated activating transcription factor 4 (ATF4) and DNA-damage inducible transcript 3 (DDIT3/CHOP) at the translational level. Furthermore, treatment with ketoconazole significantly decreased the amount of CD4+ T cells infiltrating lesions in the submandibular glands of NOD/Ltj mice. In summary, our results suggest that CYP51 plays an essential role in the proliferation and survival of CD4+ T cells, which makes ketoconazole an inhibitor of CD4+ T cell proliferation and of the SS-like autoimmune response through regulating the biosynthesis of cholesterol and inducing the integrated stress response.
Collapse
Affiliation(s)
- Junhao Yin
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiayao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yanxiong Shao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiabao Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hui Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Changyu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yijie Zhao
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, 1258 Fuxin Zhong Road, Shanghai, China
| | - Zhanglong Zheng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chuangqi Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
224
|
Xiao M, Xu J, Wang W, Zhang B, Liu J, Li J, Xu H, Zhao Y, Yu X, Shi S. Functional significance of cholesterol metabolism in cancer: from threat to treatment. Exp Mol Med 2023; 55:1982-1995. [PMID: 37653037 PMCID: PMC10545798 DOI: 10.1038/s12276-023-01079-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 09/02/2023] Open
Abstract
Cholesterol is an essential structural component of membranes that contributes to membrane integrity and fluidity. Cholesterol homeostasis plays a critical role in the maintenance of cellular activities. Recently, increasing evidence has indicated that cholesterol is a major determinant by modulating cell signaling events governing the hallmarks of cancer. Numerous studies have shown the functional significance of cholesterol metabolism in tumorigenesis, cancer progression and metastasis through its regulatory effects on the immune response, ferroptosis, autophagy, cell stemness, and the DNA damage response. Here, we summarize recent literature describing cholesterol metabolism in cancer cells, including the cholesterol metabolism pathways and the mutual regulatory mechanisms involved in cancer progression and cholesterol metabolism. We also discuss various drugs targeting cholesterol metabolism to suggest new strategies for cancer treatment.
Collapse
Affiliation(s)
- Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jialin Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Hang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Yingjun Zhao
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
225
|
Zhao X, Guo B, Sun W, Yu J, Cui L. Targeting Squalene Epoxidase Confers Metabolic Vulnerability and Overcomes Chemoresistance in HNSCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206878. [PMID: 37490552 PMCID: PMC10520660 DOI: 10.1002/advs.202206878] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/08/2023] [Indexed: 07/27/2023]
Abstract
Cisplatin resistance poses a substantial hurdle in effectively treating head and neck squamous cell carcinoma (HNSCC). Utilizing multiple tumor models and examining an internal HNSCC cohort, squalene epoxidase (SQLE) is pinpointed as a key driver of chemoresistance and tumorigenesis, operating through a cholesterol-dependent pathway. Comprehensive transcriptomic analysis reveals that SQLE is essential for maintaining c-Myc transcriptional activity by stabilizing the c-Myc protein and averting its ubiquitin-mediated degradation. Mechanistic investigation demonstrates that SQLE inhibition diminishes Akt's binding affinity to lipid rafts via a cholesterol-dependent process, subsequently deactivating lipid raft-localized Akt, reducing GSK-3β phosphorylation at S9, and increasing c-Myc phosphorylation at T58, ultimately leading to c-Myc destabilization. Importantly, employing an Sqle conditional knockout mouse model, SQLE's critical role in HNSCC initiation and progression is established. The preclinical findings demonstrate the potent synergistic effects of combining terbinafine and cisplatin in arresting tumor growth. These discoveries not only provide novel insights into the underlying mechanisms of SQLE-mediated cisplatin resistance and tumorigenesis in HNSCC but also propose a promising therapeutic avenue for HNSCC patients unresponsive to conventional cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Xinyuan Zhao
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Bing Guo
- Department of Dentistrythe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Wenjuan Sun
- Department of StomatologyThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Jinhua Yu
- Department of EndodonticsJiangsu Key Laboratory of Oral DiseasesAffiliated Hospital of StomatologyNanjing Medical UniversityNanjing210029China
| | - Li Cui
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
- Division of Oral Biology and MedicineSchool of DentistryUniversity of California Los AngelesLos AngelesCA90095USA
| |
Collapse
|
226
|
Wang H, Wang Z, Zhang Z, Liu J, Hong L. β-Sitosterol as a Promising Anticancer Agent for Chemoprevention and Chemotherapy: Mechanisms of Action and Future Prospects. Adv Nutr 2023; 14:1085-1110. [PMID: 37247842 PMCID: PMC10509430 DOI: 10.1016/j.advnut.2023.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Cancer is one of the primary causes of death worldwide, and its incidence continues to increase yearly. Despite significant advances in research, the search for effective and nontoxic preventive and therapeutic agents remains greatly important. Cancer is a multimodal disease, where various mechanisms play significant roles in its occurrence and progression. This highlights the need for multitargeted approaches that are not only safe and inexpensive but also provide effective alternatives for current therapeutic regimens. β-Sitosterol (SIT), the most abundant phytosterol found in various plant foods, represents such an option. Preclinical evidence over the past few decades has overwhelmingly shown that SIT exhibits multiple anticancer activities against varied cancers, such as liver, cervical, colon, stomach, breast, lung, pancreatic, and prostate cancers, in addition to leukemia, multiple myeloma, melanoma, and fibrosarcoma. In this article, we present the latest advances and perspectives on SIT-systematically summarizing its antitumor mechanisms of action into 7 main sections and combining current challenges and prospects-for its use as a promising agent for cancer prevention and treatment. In particular, SIT plays a role in cancer prevention and treatment mainly by enhancing apoptosis, inducing cell cycle arrest, bidirectionally regulating oxidative stress, improving metabolic reprogramming, inhibiting invasion and metastasis, modulating immunity and inflammation, and combating drug resistance. Although SIT holds such great promise, the poor aqueous solubility and bioavailability coupled with low targeting efficacy limit its therapeutic efficacy and clinical application. Further research on novel drug delivery systems may improve these deficiencies. Overall, through complex and pleiotropic mechanisms, SIT has good potential for tumor chemoprevention and chemotherapy. However, no clinical trials have yet proven this potential. This review provides theoretical basis and rationality for the further design and conduct of clinical trials to confirm the anticancer activity of SIT.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihui Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
227
|
Hu C, Wu H, Zhu Q, Cao N, Wang H. Cholesterol metabolism in T-cell aging: Accomplices or victims. FASEB J 2023; 37:e23136. [PMID: 37584624 DOI: 10.1096/fj.202300515r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Aging has a significant impact on the function and metabolism of T cells. Cholesterol, the most important sterol in mammals, is known as the "gold of the body" because it maintains membrane fluidity, rigidity, and signal transduction while also serving as a precursor of oxysterols, bile acids, and steroid hormones. Cholesterol homeostasis is primarily controlled by uptake, biosynthesis, efflux, and regulatory mechanisms. Previous studies have suggested that there are reciprocal interactions between cholesterol metabolism and T lymphocytes. Here, we will summarize the most recent advances in the effects of cholesterol and its derivatives on T-cell aging. We will furthermore discuss interventions that might be used to help older individuals with immune deficiencies or diminishing immune competence.
Collapse
Affiliation(s)
- Cexun Hu
- Department of Clinical Genetics, Yueyang Maternal and Child Health-Care Hospital, Yueyang, P.R. China
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| | - Hongliang Wu
- Department of Clinical Genetics, Yueyang Maternal and Child Health-Care Hospital, Yueyang, P.R. China
| | - Qun Zhu
- Department of Clinical Genetics, Yueyang Maternal and Child Health-Care Hospital, Yueyang, P.R. China
| | - Na Cao
- Department of Hematology, Yueyang People's Hospital, Yueyang, P. R. China
- Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, P.R. China
| | - Hui Wang
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
| |
Collapse
|
228
|
Chen Y, Zhang J, Zhang Y, Zhu L. Effect of statin use on risk and mortality of gastric cancer: a meta-analysis. Anticancer Drugs 2023; 34:901-909. [PMID: 37227032 DOI: 10.1097/cad.0000000000001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The effect of statins on gastric cancer risk is still controversial. And studies on the association between statins and gastric cancer mortality are very limited. Therefore, we conducted this systemic review and meta-analysis to evaluate the association between the use of statin and gastric cancer. Searched studies were published before November 2022. Odds ratios (ORs)/relative risks (RRs) or hazard ratios (HRs) and their 95% confidence intervals (CIs) were computed using STATA 12.0 software. The study showed that the statin use group showed a significantly lower risk of gastric cancer, compared to no statin use group (OR/RR, 0.74; 95% CI: 0.67-0.80, P < 0.001). The study showed that the statin use group showed significantly lower all-cause mortality and cancer-specific mortality of gastric cancer, compared to no statin use group (all-cause mortality: HR, 0.70; 95% CI: 0.52-0.95, P = 0.021; cancer-specific mortality: HR, 0.70; 95% CI: 0.58-0.84, P < 0.001). Overall, results from this meta-analysis showed the protective effect of statins exposure on the risk and prognosis of gastric cancer; however, we still need more well designed, large-scale studies and randomized clinical trials to pinpoint the effect of statins on gastric cancer in future clinical practice.
Collapse
Affiliation(s)
- Yi Chen
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | | | | | | |
Collapse
|
229
|
Abstract
Cancer cells originate from a series of acquired genetic mutations that can drive their uncontrolled cell proliferation and immune evasion. Environmental factors, including the microorganisms that colonize the human body, can shift the metabolism, growth pattern and function of neoplastic cells and shape the tumour microenvironment. Dysbiosis of the gut microbiome is now recognized as a hallmark of cancer by the scientific community. However, only a few microorganisms have been identified that directly initiate tumorigenesis or skew the immune system to generate a tumour-permissive milieu. Over the past two decades, research on the human microbiome and its functionalities within and across individuals has revealed microbiota-focused strategies for health and disease. Here, we review the evolving understanding of the mechanisms by which the microbiota acts in cancer initiation, promotion and progression. We explore the roles of bacteria in gastrointestinal tract malignancies and cancers of the lung, breast and prostate. Finally, we discuss the promises and limitations of targeting or harnessing bacteria in personalized cancer prevention, diagnostics and treatment.
Collapse
Affiliation(s)
- Geniver El Tekle
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
230
|
Cheng Y, Yu H, Li K, Lv J, Zhuang J, Bai K, Wu Q, Yang X, Yang H, Lu Q. Hsa_circ_0003098 promotes bladder cancer progression via miR-377-5p/ACAT2 axis. Genomics 2023; 115:110692. [PMID: 37532090 DOI: 10.1016/j.ygeno.2023.110692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/20/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Accumulating evidence has proven that circRNAs play vital roles in tumor progression. Nevertheless, the mechanisms underlying circRNAs in bladder cancer (BCa) remain largely unknown. The purpose of this study was to identify the role and investigate the potential molecular mechanisms of hsa_circ_0003098 in BCa. We confirmed that hsa_circ_0003098 expression was significantly upregulated in BCa tissues, of which expression was remarkably associated with poor prognosis. Functionally, overexpression of hsa_circ_0003098 promoted BCa cell proliferation, migration, and invasion in vitro as well as tumor growth in vivo. Mechanistically, hsa_circ_0003098 promoted upregulation of ACAT2 expression and induced cholesteryl ester accumulation via acting as a sponge for miR-377-5p. Thus, hsa_circ_0003098 plays an oncogenic role in BCa and may serve as a potential biomarker and therapeutic target for BCa.
Collapse
Affiliation(s)
- Yidong Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China; Department of Urology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 21000, Jiangsu Province, PR China
| | - Hao Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China
| | - Kai Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China
| | - Jiancheng Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China
| | - Juntao Zhuang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China
| | - Kexin Bai
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China
| | - Qikai Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China
| | - Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China.
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China.
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 21000, Jiangsu Province, PR China.
| |
Collapse
|
231
|
Liu Z, Zheng X, Chen J, Zheng L, Ma Z, Chen L, Deng M, Tang H, Zhou L, Kang T, Wu Y, Liu Z. NFYC-37 promotes tumor growth by activating the mevalonate pathway in bladder cancer. Cell Rep 2023; 42:112963. [PMID: 37561631 DOI: 10.1016/j.celrep.2023.112963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/12/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Dysregulation of transcription is a hallmark of cancer, including bladder cancer (BLCA). CRISPR-Cas9 screening using a lentivirus library with single guide RNAs (sgRNAs) targeting human transcription factors and chromatin modifiers is used to reveal genes critical for the proliferation and survival of BLCA cells. As a result, the nuclear transcription factor Y subunit gamma (NFYC)-37, but not NFYC-50, is observed to promote cell proliferation and tumor growth in BLCA. Mechanistically, NFYC-37 interacts with CBP and SREBP2 to activate mevalonate pathway transcription, promoting cholesterol biosynthesis. However, NFYC-50 recruits more of the arginine methyltransferase CARM1 than NFYC-37 to methylate CBP, which prevents the CBP-SREBP2 interaction and subsequently inhibits the mevalonate pathway. Importantly, statins targeting the mevalonate pathway can suppress NFYC-37-induced cell proliferation and tumor growth, indicating the need for conducting a clinical trial with statins for treating patients with BLCA and high NFYC-37 levels, as most patients with BLCA have high NFYC-37 levels.
Collapse
Affiliation(s)
- Zefu Liu
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Xianchong Zheng
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Jiawei Chen
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Lisi Zheng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Zikun Ma
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Lei Chen
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Minhua Deng
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Huancheng Tang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Liwen Zhou
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Tiebang Kang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China.
| | - Yuanzhong Wu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China.
| | - Zhuowei Liu
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Urology, Sun Yat-sen University Cancer Center Gansu Hospital, Lanzhou 730000, Gansu, China.
| |
Collapse
|
232
|
Bao C, Wu T, Zhu S, Wang X, Zhang Y, Wang X, Yang L, He C. Regulation of cholesterol homeostasis in osteoporosis mechanisms and therapeutics. Clin Sci (Lond) 2023; 137:1131-1143. [PMID: 37553962 DOI: 10.1042/cs20220752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023]
Abstract
Osteoporosis is a metabolic bone disease that affects hundreds of millions of people worldwide and is characterized by excessive loss of bone protein and mineral content. The incidence and mortality of osteoporosis increase with age, creating a significant medical and economic burden globally. The importance of cholesterol levels has been reported in the development of diseases including osteoporosis. It is important to note that key enzymes and molecules involved in cholesterol homeostasis are closely related to bone formation. Excessive cholesterol may cause osteoporosis, cholesterol and its metabolites affect bone homeostasis by regulating the proliferation and stimulation of osteoblasts and osteoclasts. Therefore, antagonism of elevated cholesterol levels may be a potential strategy to prevent osteoporosis. There is sufficient evidence to support the use of bisphosphonates and statin drugs for osteoporosis in the clinic. Therefore, in view of the aggravation of the aging problem, we summarize the intracellular mechanism of cholesterol homeostasis and its relationship with osteoporosis (including cholesterol and cholesterol oxidation products (COPs) in osteoporosis). Furthermore, the current clinical cholesterol-lowering drugs for osteoporosis were also summarized, as are new and promising therapies (cell-based therapies (e.g., stem cells) and biomaterial-delivered target drug therapies for osteoporosis as well).
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Tao Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Siyi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoyi Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yujia Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiangxiu Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Lin Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
233
|
Feng T, Hou P, Mu S, Fang Y, Li X, Li Z, Wang D, Chen L, Lu L, Lin K, Wang S. Identification of cholesterol metabolism-related subtypes in nonfunctioning pituitary neuroendocrine tumors and analysis of immune infiltration. Lipids Health Dis 2023; 22:127. [PMID: 37563740 PMCID: PMC10413501 DOI: 10.1186/s12944-023-01883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the role of cholesterol metabolism-related genes in nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs) invading the cavernous sinus and analyze the differences in immune cell infiltration between invasive and noninvasive NF-PitNETs. METHODS First, a retrospective analysis of single-center clinical data was performed. Second, the immune cell infiltration between invasive and noninvasive NF-PitNETs in the GSE169498 dataset was further analyzed, and statistically different cholesterol metabolism-related gene expression matrices were obtained from the dataset. The hub cholesterol metabolism-related genes in NF-PitNETs were screened by constructing machine learning models. In accordance with the hub gene, 73 cases of NF-PitNETs were clustered into two subtypes, and the functional differences and immune cell infiltration between the two subtypes were further analyzed. RESULTS The clinical data of 146 NF-PitNETs were evaluated, and the results showed that the cholesterol (P = 0.034) between invasive and noninvasive NF-PitNETs significantly differed. After binary logistic analysis, cholesterol was found to be an independent risk factor for cavernous sinus invasion (CSI) in NF-PitNETs. Bioinformatics analysis found three immune cells between invasive and noninvasive NF-PitNETs were statistically significant in the GSE169498 dataset, and 34 cholesterol metabolism-related genes with differences between the two groups were obtained 12 hub genes were selected by crossing the two machine learning algorithm results. Subsequently, cholesterol metabolism-related subgroups, A and B, were obtained by unsupervised hierarchical clustering analysis. The results showed that 12 immune cells infiltrated differentially between the two subgroups. The chi-square test revealed that the two subgroups had statistically significance in the invasive and noninvasive samples (P = 0.001). KEGG enrichment analysis showed that the differentially expressed genes were mainly enriched in the neural ligand-receptor pathway. GSVA analysis showed that the mTORC signaling pathway was upregulated and played an important role in the two-cluster comparison. CONCLUSION By clinical data and bioinformatics analysis, cholesterol metabolism-related genes may promote the infiltration abundance of immune cells in NF-PitNETs and the invasion of cavernous sinuses by NF-PitNETs through the mTOR signaling pathway. This study provides a new perspective to explore the pathogenesis of cavernous sinus invasion by NF-PitNETs and determine potential therapeutic targets for this disease.
Collapse
Grants
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
Collapse
Affiliation(s)
- Tianshun Feng
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
| | - Pengwei Hou
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shuwen Mu
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yi Fang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxiong Li
- Department of General Surgery, School of Medicine, Dongfang Affiliated Hospital of Xiamen University, Xiamen University, Fuzhou, China
| | - Ziqi Li
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
| | - Di Wang
- Department of Molecular Pathology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Li Chen
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lingling Lu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Kunzhe Lin
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shousen Wang
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China.
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
234
|
Singh P, Sreekumar A, Badhulika S. Tin oxide-polyaniline nanocomposite modified nickel foam for highly selective and sensitive detection of cholesterol in simulated blood serum samples. NANOTECHNOLOGY 2023; 34:435501. [PMID: 37551658 DOI: 10.1088/1361-6528/acea2a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Cholesterol (CH) is a vital diagnostic marker for a variety of diseases, making its detection crucial in biological applications including clinical practice. In this work, we report the synthesis of tin oxide-polyaniline nanocomposite-modified nickel foam (SnO2-PANI/NF) for non-enzymatic detection of CH in simulated human blood serum. SnO2was synthesized via the hydrothermal method, followed by the synthesis of SnO2-PANI nanocomposite throughin situchemical polymerization of aniline using ammonium persulfate as the oxidizing agent. Morphological studies display agglomerated SnO2-PANI, which possess diameters ranging from an average particle size of ∼50 to ∼500 nm, and the XRD analysis revealed the tetragonal structure of the SnO2-PANI nanocomposite. Optimization studies demonstrating the effect of pH and weight percentage are performed to improve the electrocatalytic performance of the sensor. The non-enzymatic SnO2-PANI/NF sensor exhibits a linear range of 1-100μM with a sensitivity of 300μAμM-1/cm-2towards CH sensing and a low limit of detection of 0.25μM (=3 S m-1). SnO2-PANI/NF facilitates the electrooxidation of CH to form cholestenone by accepting electrons generated during the reaction and transferring them to the nickel foam electrode via Fe (III)/Fe (IV) conversion, resulting in an increased electrochemical current response. The SnO2-PANI/NF sensor demonstrated excellent selectivity against interfering species such as Na+, Cl-, K+, glucose, ascorbic acid, and SO42-. The sensor successfully determined the concentration of CH in simulated blood serum samples, demonstrating SnO2-PANI as a potential platform for a variety of electrochemical-based bioanalytical applications.
Collapse
Affiliation(s)
- Pratiksha Singh
- School of Nanotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (RGPV), Bhopal, (M.P.), 462033, India
| | - Anjali Sreekumar
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| |
Collapse
|
235
|
Xiao Y, Yu TJ, Xu Y, Ding R, Wang YP, Jiang YZ, Shao ZM. Emerging therapies in cancer metabolism. Cell Metab 2023; 35:1283-1303. [PMID: 37557070 DOI: 10.1016/j.cmet.2023.07.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Metabolic reprogramming in cancer is not only a biological hallmark but also reveals treatment vulnerabilities. Numerous metabolic molecules have shown promise as treatment targets to impede tumor progression in preclinical studies, with some advancing to clinical trials. However, the intricacy and adaptability of metabolic networks hinder the effectiveness of metabolic therapies. This review summarizes the metabolic targets for cancer treatment and provides an overview of the current status of clinical trials targeting cancer metabolism. Additionally, we decipher crucial factors that limit the efficacy of metabolism-based therapies and propose future directions. With advances in integrating multi-omics, single-cell, and spatial technologies, as well as the ability to track metabolic adaptation more precisely and dynamically, clinicians can personalize metabolic therapies for improved cancer treatment.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tian-Jian Yu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rui Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
236
|
Cai Y, Cheng Y, Wang Z, Li L, Qian Z, Xia W, Yu W. A novel metabolic subtype with S100A7 high expression represents poor prognosis and immuno-suppressive tumor microenvironment in bladder cancer. BMC Cancer 2023; 23:725. [PMID: 37543645 PMCID: PMC10403905 DOI: 10.1186/s12885-023-11182-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Bladder cancer (BLCA) represents a highly heterogeneous disease characterized by distinct histological, molecular, and clinical features, whose tumorigenesis and progression require aberrant metabolic reprogramming of tumor cells. However, current studies have not expounded systematically and comprehensively on the metabolic heterogeneity of BLCA. METHODS The UCSC XENA portal was searched to obtain the expression profiles and clinical annotations of BLCA patients in the TCGA cohort. A total of 1,640 metabolic-related genes were downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Then, consensus clustering was performed to divide the BLCA patients into two metabolic subtypes according to the expression of metabolic-related genes. Kaplan-Meier analysis was used to measure the prognostic values of the metabolic subtypes. Subsequently, comparing the immune-related characteristics between the two metabolic subtypes to describe the immunological difference. Then, the Scissor algorithm was applied to link the metabolic phenotypes and single-cell transcriptome datasets to determine the biomarkers associated with metabolic subtypes and prognosis. Finally, the clinical cohort included 63 BLCA and 16 para-cancerous samples was used to validate the prognostic value and immunological correlation of the biomarker. RESULTS BLCA patients were classified into two heterogeneous metabolic-related subtypes (MRSs) with distinct features: MRS1, the subtype with no active metabolic characteristics but an immune infiltration microenvironment; and MRS2, the lipogenic subtype with upregulated lipid metabolism. These two subtypes had distinct prognoses, molecular subtypes distributions, and activations of therapy-related pathways. MRS1 BLCAs preferred to be immuno-suppressive and up-regulated immune checkpoints expression, suggesting the well-therapeutic response of MRS1 patients to immunotherapy. Based on the Scissor algorithm, we found that S100A7 both specifically up-regulated in the MRS1 phenotype and MRS1-tumor cells, and positively correlated with immunological characteristics. In addition, in the clinical cohort included 63 BLCA and 16 para-cancerous samples, S100A7 was obviously associated with poor prognosis and enhanced PD-L1 expression. CONCLUSIONS The metabolic subtype with S100A7 high expression recognizes the immuno-suppressive tumor microenvironment and predicts well therapeutic response of immunotherapy in BLCA. The study provides new insights into the prognostic and therapeutic value of metabolic heterogeneity in BLCA.
Collapse
Affiliation(s)
- Yun Cai
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, China
| | - Yifei Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyu Wang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lu Li
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, China
| | - Zhengtao Qian
- Department of Clinical laboratory, Changshu Medicine Examination Institute, No.36, Qingduntang Road, Suzhou, 215500, China.
| | - Wei Xia
- Department of IntensiveCareUnit, TheAffiliated Wuxi People's Hospital of NanjingMedicalUniversity, Wuxi, China.
- Department of Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023, China.
| | - Weiwei Yu
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299, Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
237
|
Xu R, Song J, Ruze R, Chen Y, Yin X, Wang C, Zhao Y. SQLE promotes pancreatic cancer growth by attenuating ER stress and activating lipid rafts-regulated Src/PI3K/Akt signaling pathway. Cell Death Dis 2023; 14:497. [PMID: 37542052 PMCID: PMC10403582 DOI: 10.1038/s41419-023-05987-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
Pancreatic cancer (PC), a highly lethal malignancy, commonly exhibits metabolic reprogramming that results in therapeutic vulnerabilities. Nevertheless, the mechanisms underlying the impacts of aberrant cholesterol metabolism on PC development and progression remain elusive. In this study, we found that squalene epoxidase (SQLE) is a crucial mediator of cholesterol metabolism in PC growth. We observed a profound upregulation of SQLE in PC tissues, and its high expression was correlated with poor patient outcomes. Our functional experiments demonstrated that SQLE facilitated cell proliferation, induced cell cycle progression, and inhibited apoptosis in vitro, while promoting tumor growth in vivo. Mechanistically, SQLE was found to have a dual role. First, its inhibition led to squalene accumulation-induced endoplasmic reticulum (ER) stress and subsequent apoptosis. Second, it enhanced de novo cholesterol biosynthesis and maintained lipid raft stability, thereby activating the Src/PI3K/Akt signaling pathway. Significantly, employing SQLE inhibitors effectively suppressed PC cell proliferation and xenograft tumor growth. In summary, this study reveals SQLE as a novel oncogene that promotes PC growth by mitigating ER stress and activating lipid raft-regulated Src/PI3K/Akt signaling pathway, highlighting the potential of SQLE as a therapeutic target for PC.
Collapse
Affiliation(s)
- Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P. R. China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P. R. China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
| | - Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P. R. China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P. R. China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P. R. China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P. R. China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P. R. China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China.
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P. R. China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P. R. China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China.
| |
Collapse
|
238
|
Huang Y, Zhang Y, Zhou Q, Teng Y, Sui M, Zhang F. Combined immune and DDR pathway classifier: A novel pathway-based classification aimed at tailoring personalized therapies for acute myeloid leukemia patients. Comput Biol Med 2023; 162:107093. [PMID: 37269679 DOI: 10.1016/j.compbiomed.2023.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/07/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Acute myeloid leukemia (AML) constitutes a group of lethal hematological malignancies with high heterogeneity, resulting in widely variable outcomes of targeted therapy and immunotherapy. A better basic understanding of the molecular pathways of AML would help greatly in tailoring treatments to patients. Here, we propose a novel subtyping protocol for AML combination therapy. Three datasets, namely, the TCGA-LAML, BeatAML and Leucegene datasets, were used in this study. Single-sample GSEA (ssGSEA) was performed to calculate the expression scores of 15 pathways, including immune-related, stromal-related, DNA damage repair (DDR)-related and oncogenic pathways. The consensus clustering was used to classify AML based on pathway score data. We identified four phenotypic clusters-IM+DDR-, IM-DDR-, IM-DDR+ and IM+DDR+-representing distinct pathway expression profiles. The IM+DDR- subtype exhibited the most robust immune function, and patients of IM+DDR- subtype were likely to derive the greatest benefit from immunotherapy. Patients in IM+DDR+ subtype had the second highest immune scores and the highest DDR scores, suggesting that combination therapy (immune + DDR-targeted therapy) is the optimal treatment. For patients of IM-DDR- subtype, we recommend the combination of venetoclax and PHA-665752. A-674563 and dovitinib could be combined with DDR inhibitors to treat patients in IM-DDR+ subtype. Moreover, single-cell analysis revealed that there are more immune cells clustered in the IM+DDR- subtype and higher number of monocyte-like cells, which exert immunosuppressive effects, in the IM+DDR+ subtype. These findings can be applied for molecular stratification of patients and might contribute to the development of personalized targeted therapies for AML.
Collapse
Affiliation(s)
- Yue Huang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150081, China
| | - Ying Zhang
- Beidahuang Industry Group General Hospital, Harbin, 150001, China
| | - Qi Zhou
- Scientific Research Management Office, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Yueqiu Teng
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Meijuan Sui
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Fan Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
239
|
Loh NY, Rosoff D, Noordam R, Christodoulides C. Investigating the impact of metabolic syndrome traits on telomere length: a Mendelian randomization study. Obesity (Silver Spring) 2023; 31:2189-2198. [PMID: 37415075 PMCID: PMC10658743 DOI: 10.1002/oby.23810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVE Observational studies have reported bidirectional associations between metabolic syndrome (MetS) traits and short leukocyte telomere length (LTL), a TL marker in somatic tissues and a proposed risk factor for age-related degenerative diseases. However, in Mendelian randomization studies, longer LTL has been paradoxically associated with higher MetS risk. This study investigated the hypothesis that shorter LTL might be a consequence of metabolic dysfunction. METHODS This study undertook univariable and multivariable Mendelian randomization. As instrumental variables for MetS traits, all of the genome-wide significant independent signals identified in genome-wide association studies for anthropometric, glycemic, lipid, and blood pressure traits conducted in European individuals were used. Summary-level data for LTL were obtained from a genome-wide association study conducted in the UK Biobank. RESULTS Higher BMI was associated with shorter LTL (β = -0.039, 95% CI: -0.058 to -0.020, p = 5 × 10-5 ) equivalent to 1.70 years of age-related LTL change. In contrast, higher low-density lipoprotein cholesterol was associated with longer LTL (β = 0.022, 95% CI: 0.007 to 0.037, p = 0.003) equivalent to 0.96 years of age-related LTL change. Mechanistically, increased low-grade systemic inflammation, as measured by circulating C-reactive protein, and lower circulating linoleic acid levels might link higher BMI to shorter LTL. CONCLUSIONS Overweight and obesity might promote the development of aging-related degenerative diseases by accelerating telomere shortening.
Collapse
Affiliation(s)
- Nellie Y. Loh
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Daniel Rosoff
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and GeriatricsLeiden University Medical CenterLeidenthe Netherlands
| | - Constantinos Christodoulides
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- National Institute for Health Research, Oxford Biomedical Research CentreOxford University Hospitals National Health Service Foundation TrustOxfordUK
| |
Collapse
|
240
|
Kennewick KT, Bensinger SJ. Decoding the crosstalk between mevalonate metabolism and T cell function. Immunol Rev 2023; 317:71-94. [PMID: 36999733 DOI: 10.1111/imr.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
The mevalonate pathway is an essential metabolic pathway in T cells regulating development, proliferation, survival, differentiation, and effector functions. The mevalonate pathway is a complex, branched pathway composed of many enzymes that ultimately generate cholesterol and nonsterol isoprenoids. T cells must tightly control metabolic flux through the branches of the mevalonate pathway to ensure sufficient isoprenoids and cholesterol are available to meet cellular demands. Unbalanced metabolite flux through the sterol or the nonsterol isoprenoid branch is metabolically inefficient and can have deleterious consequences for T cell fate and function. Accordingly, there is tight regulatory control over metabolic flux through the branches of this essential lipid synthetic pathway. In this review we provide an overview of how the branches of the mevalonate pathway are regulated in T cells and discuss our current understanding of the relationship between mevalonate metabolism, cholesterol homeostasis and T cell function.
Collapse
Affiliation(s)
- Kelly T Kennewick
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Steven J Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| |
Collapse
|
241
|
Xiao C, Xiong W, Xu Y, Zou J, Zeng Y, Liu J, Peng Y, Hu C, Wu F. Immunometabolism: a new dimension in immunotherapy resistance. Front Med 2023; 17:585-616. [PMID: 37725232 DOI: 10.1007/s11684-023-1012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/19/2023] [Indexed: 09/21/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated unparalleled clinical responses and revolutionized the paradigm of tumor treatment, while substantial patients remain unresponsive or develop resistance to ICIs as a single agent, which is traceable to cellular metabolic dysfunction. Although dysregulated metabolism has long been adjudged as a hallmark of tumor, it is now increasingly accepted that metabolic reprogramming is not exclusive to tumor cells but is also characteristic of immunocytes. Correspondingly, people used to pay more attention to the effect of tumor cell metabolism on immunocytes, but in practice immunocytes interact intimately with their own metabolic function in a way that has never been realized before during their activation and differentiation, which opens up a whole new frontier called immunometabolism. The metabolic intervention for tumor-infiltrating immunocytes could offer fresh opportunities to break the resistance and ameliorate existing ICI immunotherapy, whose crux might be to ascertain synergistic combinations of metabolic intervention with ICIs to reap synergic benefits and facilitate an adjusted anti-tumor immune response. Herein, we elaborate potential mechanisms underlying immunotherapy resistance from a novel dimension of metabolic reprogramming in diverse tumor-infiltrating immunocytes, and related metabolic intervention in the hope of offering a reference for targeting metabolic vulnerabilities to circumvent immunotherapeutic resistance.
Collapse
Affiliation(s)
- Chaoyue Xiao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yiting Xu
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Ji'an Zou
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Junqi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yurong Peng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
242
|
Skorda A, Lauridsen AR, Wu C, Huang J, Mrackova M, Winther NI, Jank V, Sztupinszki Z, Strauss R, Bilgin M, Maeda K, Liu B, Luo Y, Jäättelä M, Kallunki T. Activation of invasion by oncogenic reprogramming of cholesterol metabolism via increased NPC1 expression and macropinocytosis. Oncogene 2023; 42:2495-2506. [PMID: 37420029 PMCID: PMC10421736 DOI: 10.1038/s41388-023-02771-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Cancer cells are dependent on cholesterol, and they possess strictly controlled cholesterol homeostasis mechanisms. These allow them to smoothly switch between cholesterol synthesis and uptake to fulfill their needs and to adapt environmental changes. Here we describe a mechanism of how cancer cells employ oncogenic growth factor signaling to promote uptake and utilization of extracellular cholesterol via Myeloid Zinc Finger 1 (MZF1)-mediated Niemann Pick C1 (NPC1) expression and upregulated macropinocytosis. Expression of p95ErbB2, highly oncogenic, standard-treatment resistant form of ErbB2 mobilizes lysosomes and activates EGFR, invasion and macropinocytosis. This is connected to a metabolic shift from cholesterol synthesis to uptake due to macropinocytosis-enabled flow of extracellular cholesterol. NPC1 increase facilitates extracellular cholesterol uptake and is necessary for the invasion of ErbB2 expressing breast cancer spheroids and ovarian cancer organoids, indicating a regulatory role for NPC1 in the process. The ability to obtain cholesterol as a byproduct of increased macropinocytosis allows cancer cells to direct the resources needed for the energy-consuming cholesterol synthesis towards other activities such as invasion. These results demonstrate that macropinocytosis is not only an alternative energy source for cancer cells but also an efficient way to provide building material, such as cholesterol, for its macromolecules and membranes.
Collapse
Affiliation(s)
- Aikaterini Skorda
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Anna Røssberg Lauridsen
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Chengnan Wu
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Jinrong Huang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Monika Mrackova
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Nuggi Ingholt Winther
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Vanessa Jank
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Zsofia Sztupinszki
- Translational Cancer Genomics, Danish Cancer Institute, Copenhagen, Denmark
| | - Robert Strauss
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Mesut Bilgin
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen, Denmark
| | - Bin Liu
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuula Kallunki
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
243
|
Bintener T, Pacheco MP, Philippidou D, Margue C, Kishk A, Del Mistro G, Di Leo L, Moscardó Garcia M, Halder R, Sinkkonen L, De Zio D, Kreis S, Kulms D, Sauter T. Metabolic modelling-based in silico drug target prediction identifies six novel repurposable drugs for melanoma. Cell Death Dis 2023; 14:468. [PMID: 37495601 PMCID: PMC10372000 DOI: 10.1038/s41419-023-05955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Despite high initial response rates to targeted kinase inhibitors, the majority of patients suffering from metastatic melanoma present with high relapse rates, demanding for alternative therapeutic options. We have previously developed a drug repurposing workflow to identify metabolic drug targets that, if depleted, inhibit the growth of cancer cells without harming healthy tissues. In the current study, we have applied a refined version of the workflow to specifically predict both, common essential genes across various cancer types, and melanoma-specific essential genes that could potentially be used as drug targets for melanoma treatment. The in silico single gene deletion step was adapted to simulate the knock-out of all targets of a drug on an objective function such as growth or energy balance. Based on publicly available, and in-house, large-scale transcriptomic data metabolic models for melanoma were reconstructed enabling the prediction of 28 candidate drugs and estimating their respective efficacy. Twelve highly efficacious drugs with low half-maximal inhibitory concentration values for the treatment of other cancers, which are not yet approved for melanoma treatment, were used for in vitro validation using melanoma cell lines. Combination of the top 4 out of 6 promising candidate drugs with BRAF or MEK inhibitors, partially showed synergistic growth inhibition compared to individual BRAF/MEK inhibition. Hence, the repurposing of drugs may enable an increase in therapeutic options e.g., for non-responders or upon acquired resistance to conventional melanoma treatments.
Collapse
Affiliation(s)
- Tamara Bintener
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Ali Kishk
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Greta Del Mistro
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumour Diseases, TU-Dresden, Dresden, Germany
| | - Luca Di Leo
- Melanoma Research Team, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Moscardó Garcia
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Daniela De Zio
- Melanoma Research Team, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumour Diseases, TU-Dresden, Dresden, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
244
|
Tao R, Huang R, Yang J, Wang J, Wang K. Comprehensive analysis of the clinical and biological significances of cholesterol metabolism in lower-grade gliomas. BMC Cancer 2023; 23:692. [PMID: 37488496 PMCID: PMC10364387 DOI: 10.1186/s12885-023-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND As a component of membrane lipids and the precursor of oxysterols and steroid hormones, reprogrammed cholesterol metabolism contributes to the initiation and progression of multiple cancers. Thus, we aim to further investigate the significances of cholesterol metabolism in lower-grade gliomas (LGGs). METHODS The present study included 413 LGG samples from TCGA RNA-seq dataset (training cohort) and 172 LGG samples from CGGA RNA-seq dataset (validation cohort). The cholesterol metabolism-related signature was identified by the LASSO regression model. Bioinformatics analyses were performed to explore the functional roles of this signature in LGGs. Kaplan-Meier and Cox regression analyses were enrolled to estimate prognostic value of the risk signature. RESULTS Our findings suggested that cholesterol metabolism was tightly associated clinicopathologic features and genomic alterations of LGGs. Bioinformatics analyses revealed that cholesterol metabolism played a key role in immunosuppression of LGGs, mainly by promoting macrophages polarization and T cell exhaustion. Kaplan-Meier curve and Cox regression analysis showed that cholesterol metabolism was an independent prognostic indicator for LGG patients. To improve the clinical application value of the risk signature, we also constructed a nomogram model to predict the 1-, 3- and 5-year survival of LGG patients. CONCLUSION The cholesterol metabolism was powerful prognostic indicator and could serve as a promising target to enhance personalized treatment of LGGs.
Collapse
Affiliation(s)
- Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ruoyu Huang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Jingchen Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Kuanyu Wang
- Department of stereotactic radiosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
245
|
Zheng Q, Kawaguchi M, Mikami H, Diao P, Zhang X, Zhang Z, Nakajima T, Iwadare T, Kimura T, Nakayama J, Tanaka N. Establishment of Novel Mouse Model of Dietary NASH Rapidly Progressing into Liver Cirrhosis and Tumors. Cancers (Basel) 2023; 15:3744. [PMID: 37509405 PMCID: PMC10378543 DOI: 10.3390/cancers15143744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH), which is the most severe manifestation of non-alcoholic fatty liver disease (NAFLD), has been recognized as a major hepatocellular carcinoma (HCC) catalyst. However, the molecular mechanism of NASH-liver fibrosis-HCC sequence remains unclear and a specific and effective treatment for NASH has not yet been established. The progress in this field depends on the availability of reliable preclinical models which show the steady progression to NASH, liver cirrhosis, and HCC. However, most of the NASH mouse models that have been described to date develop NASH generally for more than 24 weeks and there is an uncertainty of HCC development. To overcome such shortcomings of experimental NASH studies, we established a novel NASH-HCC mouse model with very high reproducibility, generality, and convenience. We treated male C57BL/6J mice with a newly developed choline-deficient and methionine-restricted high-fat diet, named OYC-NASH2 diet, for 60 weeks. Treatment of OYC-NASH2 diet for 3 weeks revealed marked steatosis, lobular inflammation, and fibrosis, histologically diagnosed as NASH. Liver cirrhosis was observed in all mice with 48-week treatment. Liver nodules emerged at 12 weeks of the treatment, > 2 mm diameter liver tumors developed in all mice at 24 weeks of the treatment and HCC appeared after 36-week treatment. In conclusion, our rapidly progressive and highly reproducible NASH-liver cirrhosis-HCC model is helpful for preclinical development and research on the pathogenesis of human NAFLD-NASH-HCC. Our mouse model would be useful for the development of novel chemicals for NASH-HCC-targeted therapies.
Collapse
Affiliation(s)
- Qianqian Zheng
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | | | - Hayato Mikami
- Oriental Yeast Co., Ltd., Itabashi, Tokyo 174-8505, Japan
| | - Pan Diao
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Xuguang Zhang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Zhe Zhang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Takanobu Iwadare
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Takefumi Kimura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
- International Relations Office, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
246
|
Katsi V, Papakonstantinou I, Tsioufis K. Atherosclerosis, Diabetes Mellitus, and Cancer: Common Epidemiology, Shared Mechanisms, and Future Management. Int J Mol Sci 2023; 24:11786. [PMID: 37511551 PMCID: PMC10381022 DOI: 10.3390/ijms241411786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The involvement of cardiovascular disease in cancer onset and development represents a contemporary interest in basic science. It has been recognized, from the most recent research, that metabolic syndrome-related conditions, ranging from atherosclerosis to diabetes, elicit many pathways regulating lipid metabolism and lipid signaling that are also linked to the same framework of multiple potential mechanisms for inducing cancer. Otherwise, dyslipidemia and endothelial cell dysfunction in atherosclerosis may present common or even interdependent changes, similar to oncogenic molecules elevated in many forms of cancer. However, whether endothelial cell dysfunction in atherosclerotic disease provides signals that promote the pre-clinical onset and proliferation of malignant cells is an issue that requires further understanding, even though more questions are presented with every answer. Here, we highlight the molecular mechanisms that point to a causal link between lipid metabolism and glucose homeostasis in metabolic syndrome-related atherosclerotic disease with the development of cancer. The knowledge of these breakthrough mechanisms may pave the way for the application of new therapeutic targets and for implementing interventions in clinical practice.
Collapse
Affiliation(s)
- Vasiliki Katsi
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
| | | | - Konstantinos Tsioufis
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
247
|
Wang S, Yan W, Kong L, Zuo S, Wu J, Zhu C, Huang H, He B, Dong J, Wei J. Oncolytic viruses engineered to enforce cholesterol efflux restore tumor-associated macrophage phagocytosis and anti-tumor immunity in glioblastoma. Nat Commun 2023; 14:4367. [PMID: 37474548 PMCID: PMC10359270 DOI: 10.1038/s41467-023-39683-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
The codependency of cholesterol metabolism sustains the malignant progression of glioblastoma (GBM) and effective therapeutics remain scarce. In orthotopic GBM models in male mice, we identify that codependent cholesterol metabolism in tumors induces phagocytic dysfunction in monocyte-derived tumor-associated macrophages (TAMs), resulting in disease progression. Manipulating cholesterol efflux with apolipoprotein A1 (ApoA1), a cholesterol reverse transporter, restores TAM phagocytosis and reactivates TAM-T cell antitumor immunity. Cholesterol metabolomics analysis of in vivo-sorted TAMs further reveals that ApoA1 mediates lipid-related metabolic remodeling and lowers 7-ketocholesterol levels, which directly inhibits tumor necrosis factor signaling in TAMs through mitochondrial translation inhibition. An ApoA1-armed oncolytic adenovirus is also developed, which restores antitumor immunity and elicits long-term tumor-specific immune surveillance. Our findings provide insight into the mechanisms by which cholesterol metabolism impairs antitumor immunity in GBM and offer an immunometabolic approach to target cholesterol disturbances in GBM.
Collapse
Affiliation(s)
- Shiqun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wei Yan
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hang Zhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Shuguang Zuo
- Liuzhou Key Laboratory of Molecular Diagnosis, Guangxi Key Laboratory of Molecular Diagnosis and Application, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Jingyi Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chunxiao Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang, China
| | - Huaping Huang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hang Zhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bohao He
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jie Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| | - Jiwu Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
248
|
Ying H, Li ZQ, Li MP, Liu WC. Metabolism and senescence in the immune microenvironment of osteosarcoma: focus on new therapeutic strategies. Front Endocrinol (Lausanne) 2023; 14:1217669. [PMID: 37497349 PMCID: PMC10366376 DOI: 10.3389/fendo.2023.1217669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Osteosarcoma is a highly aggressive and metastatic malignant tumor. It has the highest incidence of all malignant bone tumors and is one of the most common solid tumors in children and adolescents. Osteosarcoma tissues are often richly infiltrated with inflammatory cells, including tumor-associated macrophages, lymphocytes, and dendritic cells, forming a complex immune microenvironment. The expression of immune checkpoint molecules is also high in osteosarcoma tissues, which may be involved in the mechanism of anti-tumor immune escape. Metabolism and senescence are closely related to the immune microenvironment, and disturbances in metabolism and senescence may have important effects on the immune microenvironment, thereby affecting immune cell function and immune responses. Metabolic modulation and anti-senescence therapy are gaining the attention of researchers as emerging immunotherapeutic strategies for tumors. Through an in-depth study of the interconnection of metabolism and anti- senescence in the tumor immune microenvironment and its regulatory mechanism on immune cell function and immune response, more precise therapeutic strategies can be developed. Combined with the screening and application of biomarkers, personalized treatment can be achieved to improve therapeutic efficacy and provide a scientific basis for clinical decision-making. Metabolic modulation and anti- senescence therapy can also be combined with other immunotherapy approaches, such as immune checkpoint inhibitors and tumor vaccines, to form a multi-level and multi-dimensional immunotherapy strategy, thus further enhancing the effect of immunotherapy. Multidisciplinary cooperation and integrated treatment can optimize the treatment plan and maximize the survival rate and quality of life of patients. Future research and clinical practice will further advance this field, promising more effective treatment options for patients with osteosarcoma. In this review, we reviewed metabolic and senescence characteristics in the immune microenvironment of osteosarcoma and related immunotherapies, and provide a reference for development of more personalized and effective therapeutic strategies.
Collapse
Affiliation(s)
- Hui Ying
- Department of Emergency Trauma Surgery, Ganzhou People’s Hospital, Ganzhou, China
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Zhi-Qiang Li
- Department of Emergency Trauma Surgery, Ganzhou People’s Hospital, Ganzhou, China
- Department of Spine Surgery, Ganzhou People’s Hospital, Ganzhou, China
| | - Meng-Pan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen-Cai Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
249
|
Li Y, Zhang Y, Zhou Z, Shang L, Huang Y, Lu X, Cheng S. Predictive value of controlling nutritional status score in postoperative recurrence and metastasis of breast cancer patients with HER2-low expression. Front Oncol 2023; 13:1116631. [PMID: 37492470 PMCID: PMC10365291 DOI: 10.3389/fonc.2023.1116631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Background To investigate the predictive value of controlling nutritional status (CONUT) score in Postoperative Recurrence and Metastasis of Breast Cancer Patients with HER2-Low Expression. Methods The clinicopathological data of 697 female breast cancer patients who pathology confirmed invasive ductal carcinoma and surgery in Harbin Medical University Tumor Hospital from January 2014 to January 2017 were retrospectively analyzed. The relationship between CONUT score and various clinicopathological factors as well as prognosis was evaluated. Results Based on the cut-off point of ROC curve, compared with the low CONUT score group, the high CONUT score group had worse 5-year RFS. In subgroup analysis, compared with the low CONUT group, the high CONUT group had worse prognosis at different TNM stages. Univariate and multivariate results showed that the low CONUT score group had better overall survival and recurrence-free survival than the high CONUT group. Conclusion CONUT score is an independent predictor of postoperative recurrence and metastasis in HER2-low breast cancer patients. It is may be used as an effective tool to predict the recurrence and metastasis of HER2-low breast cancer.
Collapse
Affiliation(s)
- Yue Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yue Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhaoyue Zhou
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lingmin Shang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanxi Huang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiangshi Lu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shaoqiang Cheng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
250
|
Liu C, Chen H, Hu B, Shi J, Chen Y, Huang K. New insights into the therapeutic potentials of statins in cancer. Front Pharmacol 2023; 14:1188926. [PMID: 37484027 PMCID: PMC10359995 DOI: 10.3389/fphar.2023.1188926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
The widespread clinical use of statins has contributed to significant reductions of cardiovascular morbidity and mortality. Increasing preclinical and epidemiological evidences have revealed that dyslipidemia is an important risk factor for carcinogenesis, invasion and metastasis, and that statins as powerful inhibitor of HMG-CoA reductase can exert prevention and intervention effects on cancers, and promote sensitivity to anti-cancer drugs. The anti-cancer mechanisms of statins include not only inhibition of cholesterol biosynthesis, but also their pleiotropic effects in modulating angiogenesis, apoptosis, autophagy, tumor metastasis, and tumor microenvironment. Moreover, recent clinical studies have provided growing insights into the therapeutic potentials of statins and the feasibility of combining statins with other anti-cancer agents. Here, we provide an updated review on the application potential of statins in cancer prevention and treatment and summarize the underneath mechanisms, with focuses on data from clinical studies.
Collapse
Affiliation(s)
- Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Bicheng Hu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajian Shi
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Tongji-RongCheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|