201
|
Ogino Y, Kuraku S, Ishibashi H, Miyakawa H, Sumiya E, Miyagawa S, Matsubara H, Yamada G, Baker ME, Iguchi T. Neofunctionalization of Androgen Receptor by Gain-of-Function Mutations in Teleost Fish Lineage. Mol Biol Evol 2015; 33:228-44. [PMID: 26507457 DOI: 10.1093/molbev/msv218] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Steroid hormone receptor family provides an example of evolution of diverse transcription factors through whole-genome duplication (WGD). However, little is known about how their functions have been evolved after the duplication. Teleosts present a good model to investigate an accurate evolutionary history of protein function after WGD, because a teleost-specific WGD (TSGD) resulted in a variety of duplicated genes in modern fishes. This study focused on the evolution of androgen receptor (AR) gene, as two distinct paralogs, ARα and ARβ, have evolved in teleost lineage after TSGD. ARα showed a unique intracellular localization with a higher transactivation response than that of ARβ. Using site-directed mutagenesis and computational prediction of protein-ligand interactions, we identified two key substitutions generating a new functionality of euteleost ARα. The substitution in the hinge region contributes to the unique intracellular localization of ARα. The substitution on helices 10/11 in the ligand-binding domain possibly modulates hydrogen bonds that stabilize the receptor-ligand complex leading to the higher transactivation response of ARα. These substitutions were conserved in Acanthomorpha (spiny-rayed fish) ARαs, but not in an earlier branching lineage among teleosts, Japanese eel. Insertion of these substitutions into ARs from Japanese eel recapitulates the evolutionary novelty of euteleost ARα. These findings together indicate that the substitutions generating a new functionality of teleost ARα were fixed in teleost genome after the divergence of the Elopomorpha lineage. Our findings provide a molecular explanation for an adaptation process leading to generation of the hyperactive AR subtype after TSGD.
Collapse
Affiliation(s)
- Yukiko Ogino
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Hiroshi Ishibashi
- Department of Life Environmental Conservation, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Hitoshi Miyakawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Eri Sumiya
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Shinichi Miyagawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Hajime Matsubara
- Department of Aquatic Biology, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | | | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
202
|
Mcnair A, Lokman PM, Closs GP, Nakagawa S. ECOLOGICAL AND EVOLUTIONARY APPLICATIONS FOR ENVIRONMENTAL SEX REVERSAL OF FISH. QUARTERLY REVIEW OF BIOLOGY 2015; 90:23-44. [PMID: 26434164 DOI: 10.1086/679762] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Environmental sex reversal (ESR), which results in a mismatch between genotypic and phenotypic sex, is well documented in numerous fish species and may be induced by chemical exposure. Historically, research involving piscine ESR has been carried out with a view to improving profitability in aquaculture or to elucidate the processes governing sex determination and sexual differentiation. However, recent studies in evolution and ecology suggest research on ESR now has much wider applications and ramifications. We begin with an overview of ESR in fish and a brief review of the traditional applications thereof. We then discuss ESR and its potential demographic consequences in wild populations. Theory even suggests sex-reversed fish may be purposefully released to manipulate population dynamics. We suggest new research directions that may prove fruitful in understanding how ESR at the individual level translates to population-level processes. In the latter portion of the review we focus on evolutionary applications of ESR. Sex-reversal studies from the aquaculture literature provide insight in to the evolvability of determinants of sexual phenotype. Additionally, induced sex reversal can provide information about the evolution of sex chromosomes and sex-linked traits. Recently, naturally occurring ESR has been implicated as a mechanism contributing to the evolution of sex chromosomes.
Collapse
|
203
|
Hassinen M, Haverinen J, Vornanen M. Molecular basis and drug sensitivity of the delayed rectifier (IKr) in the fish heart. Comp Biochem Physiol C Toxicol Pharmacol 2015. [PMID: 26215639 DOI: 10.1016/j.cbpc.2015.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fishes are increasingly used as models for human cardiac diseases, creating a need for a better understanding of the molecular basis of fish cardiac ion currents. To this end we cloned KCNH6 channel of the crucian carp (Carassius carassius) that produces the rapid component of the delayed rectifier K(+) current (IKr), the main repolarising current of the fish heart. KCNH6 (ccErg2) was the main isoform of the Kv11 potassium channel family with relative transcript levels of 98.9% and 99.6% in crucian carp atrium and ventricle, respectively. KCNH2 (ccErg1), an orthologue to human cardiac Erg (Herg) channel, was only slightly expressed in the crucian carp heart. The native atrial IKr and the cloned ccErg2 were inhibited by similar concentrations of verapamil, terfenadine and KB-R7943 (P>0.05), while the atrial IKr was about an order of magnitude more sensitive to E-4031 than ccErg2 (P<0.05) suggesting that some accessory β-subunits may be involved. Sensitivity of the crucian carp atrial IKr to E-4031, terfenadine and KB-R7943 was similar to what has been reported for the Herg channel. In contrast, the sensitivity of the crucian carp IKr to verapamil was approximately 30 times higher than the previously reported values for the Herg current. In conclusion, the cardiac IKr is produced by non-orthologous gene products in fish (Erg2) and mammalian hearts (Erg1) and some marked differences exist in drug sensitivity between fish and mammalian Erg1/2 which need to be taken into account when using fish heart as a model for human heart.
Collapse
Affiliation(s)
- Minna Hassinen
- University of Eastern Finland, Department of Biology, P.O. Box 111, 80101 Joensuu, Finland.
| | - Jaakko Haverinen
- University of Eastern Finland, Department of Biology, P.O. Box 111, 80101 Joensuu, Finland
| | - Matti Vornanen
- University of Eastern Finland, Department of Biology, P.O. Box 111, 80101 Joensuu, Finland
| |
Collapse
|
204
|
Evolution of Vertebrate Adam Genes; Duplication of Testicular Adams from Ancient Adam9/9-like Loci. PLoS One 2015; 10:e0136281. [PMID: 26308360 PMCID: PMC4550289 DOI: 10.1371/journal.pone.0136281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 08/02/2015] [Indexed: 01/20/2023] Open
Abstract
Members of the disintegrin metalloproteinase (ADAM) family have important functions in regulating cell-cell and cell-matrix interactions as well as cell signaling. There are two major types of ADAMs: the somatic ADAMs (sADAMs) that have a significant presence in somatic tissues, and the testicular ADAMs (tADAMs) that are expressed predominantly in the testis. Genes encoding tADAMs can be further divided into two groups: group I (intronless) and group II (intron-containing). To date, tAdams have only been reported in placental mammals, and their evolutionary origin and relationship to sAdams remain largely unknown. Using phylogenetic and syntenic tools, we analyzed the Adam genes in various vertebrates ranging from fishes to placental mammals. Our analyses reveal duplication and loss of some sAdams in certain vertebrate species. In particular, there exists an Adam9-like gene in non-mammalian vertebrates but not mammals. We also identified putative group I and group II tAdams in all amniote species that have been examined. These tAdam homologues are more closely related to Adams 9 and 9-like than to other sAdams. In all amniote species examined, group II tAdams lie in close vicinity to Adam9 and hence likely arose from tandem duplication, whereas group I tAdams likely originated through retroposition because of their lack of introns. Clusters of multiple group I tAdams are also common, suggesting tandem duplication after retroposition. Therefore, Adam9/9-like and some of the derived tAdam loci are likely preferred targets for tandem duplication and/or retroposition. Consistent with this hypothesis, we identified a young retroposed gene that duplicated recently from Adam9 in the opossum. As a result of gene duplication, some tAdams were pseudogenized in certain species, whereas others acquired new expression patterns and functions. The rapid duplication of Adam genes has a major contribution to the diversity of ADAMs in various vertebrate species.
Collapse
|
205
|
Palfree RGE, Bennett HPJ, Bateman A. The Evolution of the Secreted Regulatory Protein Progranulin. PLoS One 2015; 10:e0133749. [PMID: 26248158 PMCID: PMC4527844 DOI: 10.1371/journal.pone.0133749] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022] Open
Abstract
Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i): the origins of metazoan progranulins (ii): the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii): the evolution of granulin module architectures of vertebrate progranulins (iv): the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl-terminus. Polypeptide sequence conservation of mammalian granulin modules identified potential structure-activity relationships that may be informative in designing progranulin based therapeutics.
Collapse
Affiliation(s)
- Roger G. E. Palfree
- Endocrine Research Laboratory, Experimental Therapeutics and Metabolism, Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Hugh P. J. Bennett
- Endocrine Research Laboratory, Experimental Therapeutics and Metabolism, Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Andrew Bateman
- Endocrine Research Laboratory, Experimental Therapeutics and Metabolism, Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
206
|
de Oliveira EA, Bertollo LAC, Yano CF, Liehr T, Cioffi MDB. Comparative cytogenetics in the genus Hoplias (Characiformes, Erythrinidae) highlights contrasting karyotype evolution among congeneric species. Mol Cytogenet 2015; 8:56. [PMID: 26225139 PMCID: PMC4518567 DOI: 10.1186/s13039-015-0161-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/14/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Erythrinidae fish family contains three genera, Hoplias, Erythrinus and Hoplerythrinus widely distributed in Neotropical region. Remarkably, species from this family are characterized by an extensive karyotype diversity, with 2n ranging from 39 to 54 chromosomes and the occurrence of single and/or multiple sex chromosome systems in some species. However, inside the Hoplias genus, while H. malabaricus was subject of many studies, the cytogenetics of other congeneric species remains poorly explored. In this study, we have investigated chromosomal characteristics of four Hoplias species, namely H. lacerdae, H. brasiliensis, H. intermedius and H. aimara. We used conventional staining techniques (C-banding, Ag-impregnation and CMA3 -fluorescence) as well as fluorescence in situ hybridization (FISH) with minor and major rDNA and microsatellite DNAs as probes in order to analyze the karyotype evolution within the genus. RESULTS All species showed invariably 2n = 50 chromosomes and practically identical karyotypes dominated only by meta- and submetacentric chromosomes, the absence of heteromorphic sex chromosomes, similar pattern of C-positive heterochromatin blocks and homologous Ag-NOR-bearing pairs. The cytogenetic mapping of five repetitive DNA sequences revealed some particular interspecific differences between them. However, the examined chromosomal characteristics indicate that their speciation was not associated with major changes in their karyotypes. CONCLUSION Such conserved karyotypes contrasts with the extensive karyotype diversity that has been observed in other Erythrinidae species, particularly in the congeneric species H. malabaricus. Nevertheless, what forces drive such particularly different modes of karyotype evolution among closely related species? Different life styles, population structure and inner chromosomal characteristics related to similar cases in other vertebrate groups can also account for the contrasting modes of karyotype evolution in Hoplias genus.
Collapse
Affiliation(s)
- Ezequiel Aguiar de Oliveira
- />Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP Brazil
- />SEDUC-MT, Cuiabá, MT Brazil
| | | | - Cassia Fernanda Yano
- />Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP Brazil
| | - Thomas Liehr
- />Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Marcelo de Bello Cioffi
- />Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP Brazil
| |
Collapse
|
207
|
Gonen S, Bishop SC, Houston RD. Exploring the utility of cross-laboratory RAD-sequencing datasets for phylogenetic analysis. BMC Res Notes 2015; 8:299. [PMID: 26152111 PMCID: PMC4495686 DOI: 10.1186/s13104-015-1261-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Restriction site-Associated DNA sequencing (RAD-Seq) is widely applied to generate genome-wide sequence and genetic marker datasets. RAD-Seq has been extensively utilised, both at the population level and across species, for example in the construction of phylogenetic trees. However, the consistency of RAD-Seq data generated in different laboratories, and the potential use of cross-species orthologous RAD loci in the estimation of genetic relationships, have not been widely investigated. This study describes the use of SbfI RAD-Seq data for the estimation of evolutionary relationships amongst ten teleost fish species, using previously established phylogeny as a benchmark. RESULTS The number of orthologous SbfI RAD loci identified decreased with increasing evolutionary distance between the species, with several thousand loci conserved across five salmonid species (divergence ~50 MY), and several hundred conserved across the more distantly related teleost species (divergence ~100-360 MY). The majority (>70%) of loci identified between the more distantly related species were genic in origin, suggesting that the bias of SbfI towards genic regions is useful for identifying distant orthologs. Interspecific single nucleotide variants at each orthologous RAD locus were identified. Evolutionary relationships estimated using concatenated sequences of interspecific variants were congruent with previously published phylogenies, even for distantly (divergence up to ~360 MY) related species. CONCLUSION Overall, this study has demonstrated that orthologous SbfI RAD loci can be identified across closely and distantly related species. This has positive implications for the repeatability of SbfI RAD-Seq and its potential to address research questions beyond the scope of the original studies. Furthermore, the concordance in tree topologies and relationships estimated in this study with published teleost phylogenies suggests that similar meta-datasets could be utilised in the prediction of evolutionary relationships across populations and species with readily available RAD-Seq datasets, but for which relationships remain uncharacterised.
Collapse
Affiliation(s)
- Serap Gonen
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK.
| | - Stephen C Bishop
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK.
| | - Ross D Houston
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, Scotland, UK.
| |
Collapse
|
208
|
Hassinen M, Haverinen J, Hardy ME, Shiels HA, Vornanen M. Inward rectifier potassium current (I K1) and Kir2 composition of the zebrafish (Danio rerio) heart. Pflugers Arch 2015; 467:2437-46. [PMID: 25991088 DOI: 10.1007/s00424-015-1710-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 11/24/2022]
Abstract
Electrophysiological properties and molecular background of the zebrafish (Danio rerio) cardiac inward rectifier current (IK1) were examined. Ventricular myocytes of zebrafish have a robust (-6.7 ± 1.2 pA pF(-1) at -120 mV) strongly rectifying and Ba(2+)-sensitive (IC50 = 3.8 μM) IK1. Transcripts of six Kir2 channels (drKir2.1a, drKir2.1b, drKir2.2a, drKir2.2b, drKir2.3, and drKir2.4) were expressed in the zebrafish heart. drKir2.4 and drKir2.2a were the dominant isoforms in both the ventricle (92.9 ± 1.5 and 6.3 ± 1.5%) and the atrium (28.9 ± 2.9 and 64.7 ± 3.0%). The remaining four channels comprised together less than 1 and 7 % of the total transcripts in ventricle and atrium, respectively. The four main gene products (drKir2.1a, drKir2.2a, drKir2.2b, drKir2.4) were cloned, sequenced, and expressed in HEK cells for electrophysiological characterization. drKir2.1a was the most weakly rectifying (passed more outward current) and drKir2.2b the most strongly rectifying (passed less outward current) channel, whilst drKir2.2a and drKir2.4 were intermediate between the two. In regard to sensitivity to Ba(2+) block, drKir2.4 was the most sensitive (IC50 = 1.8 μM) and drKir2.1a the least sensitive channel (IC50 = 132 μM). These findings indicate that the Kir2 isoform composition of the zebrafish heart markedly differs from that of mammalian hearts. Furthermore orthologous Kir2 channels (Kir2.1 and Kir2.4) of zebrafish and mammals show striking differences in Ba(2+)-sensitivity. Structural and functional differences needs to be taken into account when zebrafish is used as a model for human cardiac electrophysiology, cardiac diseases, and in screening cardioactive substances.
Collapse
Affiliation(s)
- Minna Hassinen
- Department of Biology, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland.
| | - Jaakko Haverinen
- Department of Biology, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland
| | - Matt E Hardy
- Faculty of Life Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Holly A Shiels
- Faculty of Life Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Matti Vornanen
- Department of Biology, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland
| |
Collapse
|
209
|
Lee PT, Zou J, Holland JW, Martin SAM, Scott CJW, Kanellos T, Secombes CJ. Functional characterisation of a TLR accessory protein, UNC93B1, in Atlantic salmon (Salmo salar). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 50:38-48. [PMID: 25576824 DOI: 10.1016/j.dci.2014.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
Toll-like receptors (TLRs) are indispensable components of the innate immune system, which recognise conserved pathogen associated molecular patterns (PAMPs) and induce a series of defensive immune responses to protect the host. Biosynthesis, localisation and activation of TLRs are dependent on TLR accessory proteins. In this study, we identified the accessory protein, UNC93B1, from Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs aided by the conserved gene synteny of genes flanking UNC93B1 in fish, birds and mammals. Phylogenetic analysis showed that salmon UNC93B1 grouped with other vertebrate UNC93B1 molecules, and had highest amino acid identity and similarity to zebrafish UNC93B1. The salmon UNC93B1 gene organisation was also similar in structure to mammalian UNC93B1. Our gene expression studies revealed that salmon UNC93B1 was more highly expressed in spleen, liver and gill tissues but was expressed at a lower level in head kidney tissue in post-smolts relative to parr. Moreover, salmon UNC93B1 mRNA transcripts were up-regulated in vivo in spleen tissue from polyI:C treated salmon and in vitro in polyI:C or IFNγ stimulated Salmon Head Kidney-1 (SHK-1) cells. Initial studies into the functional role of salmon UNC93B1 in fish TLR signalling found that both wild type salmon UNC93B1 and a molecule with a site-directed mutation (H424R) co-immunoprecipitated with salmon TLR19, TLR20a and TLR20d. Overall, these data illustrate the potential importance of UNC93B1 as an accessory protein in fish TLR signalling.
Collapse
Affiliation(s)
- P T Lee
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - J Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - J W Holland
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - S A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - C J W Scott
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - T Kanellos
- Animal Health Division, Zoetis, 23-25 avenue du Dr. Lannelongue, Paris Cedex 14 75668, France
| | - C J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| |
Collapse
|
210
|
Modulation of immune response by organophosphorus pesticides: fishes as a potential model in immunotoxicology. J Immunol Res 2015; 2015:213836. [PMID: 25973431 PMCID: PMC4417994 DOI: 10.1155/2015/213836] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023] Open
Abstract
Immune response is modulated by different substances that are present in the environment. Nevertheless, some of these may cause an immunotoxic effect. In this paper, the effect of organophosphorus pesticides (frequent substances spilled in aquatic ecosystems) on the immune system of fishes and in immunotoxicology is reviewed. Furthermore, some cellular and molecular mechanisms that might be involved in immunoregulation mechanisms of organophosphorus pesticides are discussed.
Collapse
|
211
|
Molecular and functional characterization of seven Na+/K+-ATPase β subunit paralogs in Senegalese sole (Solea senegalensis Kaup, 1858). Comp Biochem Physiol B Biochem Mol Biol 2015; 182:14-26. [DOI: 10.1016/j.cbpb.2014.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/24/2014] [Accepted: 11/29/2014] [Indexed: 11/22/2022]
|
212
|
Elvitigala DAS, Premachandra HKA, Yeo SY, Choi CY, Whang I, Lee J. Molecular profile and expressional modulation of a Toll like receptor-1 homolog from rock bream (Oplegnathus fasciatus). Genes Genomics 2015. [DOI: 10.1007/s13258-015-0275-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
213
|
Next-generation sequencing detects repetitive elements expansion in giant genomes of annual killifish genus Austrolebias (Cyprinodontiformes, Rivulidae). Genetica 2015; 143:353-60. [PMID: 25792372 DOI: 10.1007/s10709-015-9834-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
Among Neotropical fish fauna, the South American killifish genus Austrolebias (Cyprinodontiformes: Rivulidae) constitutes an excellent model to study the genomic evolutionary processes underlying speciation events. Recently, unusually large genome size has been described in 16 species of this genus, with an average DNA content of about 5.95 ± 0.45 pg per diploid cell (mean C-value of about 2.98 pg). In the present paper we explore the possible origin of this unparallel genomic increase by means of comparative analysis of the repetitive components using NGS (454-Roche) technology in the lowest and highest Rivulidae genomes. Here, we provide the first annotated Rivulidae-repeated sequences composition and their relative repetitive fraction in both genomes. Remarkably, the genomic proportion of the moderately repetitive DNA in Austrolebias charrua genome represents approximately twice (45%) of the repetitive components of the highly related rivulinae taxon Cynopoecilus melanotaenia (25%). Present work provides evidence about the impact of the repeat families that could be distinctly proliferated among sublineages within Rivulidae fish group, explaining the great genome size differences encompassing the differentiation and speciation events in this family.
Collapse
|
214
|
Vanneste K, Maere S, Van de Peer Y. Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0353. [PMID: 24958926 PMCID: PMC4071526 DOI: 10.1098/rstb.2013.0353] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genome sequencing has demonstrated that besides frequent small-scale duplications, large-scale duplication events such as whole genome duplications (WGDs) are found on many branches of the evolutionary tree of life. Especially in the plant lineage, there is evidence for recurrent WGDs, and the ancestor of all angiosperms was in fact most likely a polyploid species. The number of WGDs found in sequenced plant genomes allows us to investigate questions about the roles of WGDs that were hitherto impossible to address. An intriguing observation is that many plant WGDs seem associated with periods of increased environmental stress and/or fluctuations, a trend that is evident for both present-day polyploids and palaeopolyploids formed around the Cretaceous–Palaeogene (K–Pg) extinction at 66 Ma. Here, we revisit the WGDs in plants that mark the K–Pg boundary, and discuss some specific examples of biological innovations and/or diversifications that may be linked to these WGDs. We review evidence for the processes that could have contributed to increased polyploid establishment at the K–Pg boundary, and discuss the implications on subsequent plant evolution in the Cenozoic.
Collapse
Affiliation(s)
- Kevin Vanneste
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Steven Maere
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Genomics Research Institute (GRI), University of Pretoria, 0028 Pretoria, South Africa
| |
Collapse
|
215
|
Stekhoven FMAHS, van der Velde G, Lee TH, Bottrill AR. Proteomic study of the brackish water mussel Mytilopsis leucophaeata. Zool Stud 2015; 54:e22. [PMID: 31966109 PMCID: PMC6661436 DOI: 10.1186/s40555-014-0081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 12/10/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND We encountered the opportunity to study proteochemically a brackish water invertebrate animal, Mytilopsis leucophaeata, belonging to the bivalves which stem from the second half of the Cambrian Period (about 510 million years ago). This way, we were able to compare it with the vertebrate animal, the frilled shark (Chlamydoselachus anguineus) that stems from a much later period of geologic time (Permian: 245-286 MYA). RESULTS The mussel contains a well-adapted system of protein synthesis on the ER, protein folding on the ER, protein trafficking via COPI or clathrin-coated vesicles from endoplasmic reticulum (ER) to Golgi and plasmalemma, an equally well-developed system of actin filaments that with myosin forms the transport system for vesicular proteins and tubulin, which is also involved in ATP-driven vesicular protein transport via microtubules or transport of chromosomes in mitosis and meiosis. A few of the systems that we could not detect in M. leucophaeata in comparison with C. anguineus are the synaptic vesicle cycle components as synaptobrevin, cellubrevin (v-snare) and synaptosomal associated protein 25-A (t-snare), although one component: Ras-related protein (O-Rab1) could be involved in synaptic vesicle traffic. Another component that we did not find in M. leucophaeata was Rab11 that is involved in the tubulovesicular recycling process of H+/K+-ATPase in C. anguineus. We have not been able to trace the H+/K+-ATPase of M. leucophaeata, but Na+/K+-ATPase was present. Furthermore, we have studied the increase of percent protein expression between 1,070 MYA (the generation of the Amoeba Dictyostelium discoideum) and present (the generation of the mammal Sus scrofa = wild boar). In this time span, three proteomic uprises did occur: 600 to 500 MYA, 47.5 to 4.75 MYA, and 1.4 to 0 MYA. The first uprise covers the generation of bivalves, the second covers gold fish, chicken, brine shrimp, house mouse, rabbit, Japanese medaka and Rattus norvegicus, and the third covers cow, chimpanzee, Homo sapiens, dog, goat, Puccinia graminis and wild boar. We hypothesise that the latter two uprises are related to geological and climate changes and their compensation in protein function expression. CONCLUSIONS The proteomic and evolutionary data demonstrate that M. leucophaeata is a highly educatioanal animal to study.
Collapse
Affiliation(s)
- Feico MAH Schuurmans Stekhoven
- Department of Animal Ecology and Ecophysiology, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Gerard van der Velde
- Department of Animal Ecology and Ecophysiology, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Naturalis Biodiversity Center, P.O. Box 9517,2300RA Leiden, The Netherlands
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | - Andrew R Bottrill
- Protein and Nucleic Acid Chemistry Laboratory, Proteomics Facility, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
216
|
Haug MF, Gesemann M, Lazović V, Neuhauss SCF. Eumetazoan cryptochrome phylogeny and evolution. Genome Biol Evol 2015; 7:601-19. [PMID: 25601102 PMCID: PMC4350181 DOI: 10.1093/gbe/evv010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cryptochromes (Crys) are light sensing receptors that are present in all eukaryotes. They mainly absorb light in the UV/blue spectrum. The extant Crys consist of two subfamilies, which are descendants of photolyases but are now involved in the regulation of circadian rhythms. So far, knowledge about the evolution, phylogeny, and expression of cry genes is still scarce. The inclusion of cry sequences from a wide range of bilaterian species allowed us to analyze their phylogeny in detail, identifying six major Cry subgroups. Selective gene inactivations and stabilizations in multiple chordate as well as arthropod lineages suggest several sub- and/or neofunctionalization events. An expression study performed in zebrafish, the model organism harboring the largest amount of crys, showed indeed only partially overlapping expression of paralogous mRNA, supporting gene sub- and/or neofunctionalization. Moreover, the daily cry expression in the adult zebrafish retina indicated varying oscillation patterns in different cell types. Our extensive phylogenetic analysis provides for the first time an overview of cry evolutionary history. Although several, especially parasitic or blind species, have lost all cry genes, crustaceans have retained up to three crys, teleosts possess up to seven, and tetrapods up to four crys. The broad and cyclic expression pattern of all cry transcripts in zebrafish retinal layers implies an involvement in retinal circadian processes and supports the hypothesis of several autonomous circadian clocks present in the vertebrate retina.
Collapse
Affiliation(s)
- Marion F Haug
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Matthias Gesemann
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Viktor Lazović
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Switzerland
| |
Collapse
|
217
|
Chalopin D, Naville M, Plard F, Galiana D, Volff JN. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol 2015; 7:567-80. [PMID: 25577199 PMCID: PMC4350176 DOI: 10.1093/gbe/evv005] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are major components of vertebrate genomes, with major roles in genome architecture and evolution. In order to characterize both common patterns and lineage-specific differences in TE content and TE evolution, we have compared the mobilomes of 23 vertebrate genomes, including 10 actinopterygian fish, 11 sarcopterygians, and 2 nonbony vertebrates. We found important variations in TE content (from 6% in the pufferfish tetraodon to 55% in zebrafish), with a more important relative contribution of TEs to genome size in fish than in mammals. Some TE superfamilies were found to be widespread in vertebrates, but most elements showed a more patchy distribution, indicative of multiple events of loss or gain. Interestingly, loss of major TE families was observed during the evolution of the sarcopterygian lineage, with a particularly strong reduction in TE diversity in birds and mammals. Phylogenetic trends in TE composition and activity were detected: Teleost fish genomes are dominated by DNA transposons and contain few ancient TE copies, while mammalian genomes have been predominantly shaped by nonlong terminal repeat retrotransposons, along with the persistence of older sequences. Differences were also found within lineages: The medaka fish genome underwent more recent TE amplification than the related platyfish, as observed for LINE retrotransposons in the mouse compared with the human genome. This study allows the identification of putative cases of horizontal transfer of TEs, and to tentatively infer the composition of the ancestral vertebrate mobilome. Taken together, the results obtained highlight the importance of TEs in the structure and evolution of vertebrate genomes, and demonstrate their major impact on genome diversity both between and within lineages.
Collapse
Affiliation(s)
- Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard Lyon 1, Lyon Cedex 07, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard Lyon 1, Lyon Cedex 07, France
| | - Floriane Plard
- Laboratoire "Biométrie et Biologie Évolutive," Unité Mixte de Recherche 5558, Université Claude Bernard Lyon 1, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard Lyon 1, Lyon Cedex 07, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard Lyon 1, Lyon Cedex 07, France
| |
Collapse
|
218
|
Salmerón C, Johansson M, Angotzi AR, Rønnestad I, Jönsson E, Björnsson BT, Gutiérrez J, Navarro I, Capilla E. Effects of nutritional status on plasma leptin levels and in vitro regulation of adipocyte leptin expression and secretion in rainbow trout. Gen Comp Endocrinol 2015; 210:114-23. [PMID: 25448259 DOI: 10.1016/j.ygcen.2014.10.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/01/2014] [Accepted: 10/31/2014] [Indexed: 11/17/2022]
Abstract
As leptin has a key role on appetite, knowledge about leptin regulation is important in order to understand the control of energy balance. We aimed to explore the modulatory effects of adiposity on plasma leptin levels in vivo and the role of potential regulators on leptin expression and secretion in rainbow trout adipocytes in vitro. Fish were fed a regular diet twice daily ad libitum or a high-energy diet once daily at two ration levels; satiation (SA group) or restricted (RE group) to 25% of satiation, for 8weeks. RE fish had significantly reduced growth (p<0.001) and adipose tissue weight (p<0.001), and higher plasma leptin levels (p=0.022) compared with SA fish. Moreover, plasma leptin levels negatively correlated with mesenteric fat index (p=0.009). Adipocytes isolated from the different fish were treated with insulin, ghrelin, leucine, eicosapentaenoic acid or left untreated (control). In adipocytes from fish fed regular diet, insulin and ghrelin increased leptin secretion dose-dependently (p=0.002; p=0.033, respectively). Leptin secretion in control adipocytes was significantly higher in RE than in SA fish (p=0.022) in agreement with the in vivo findings, indicating that adipose tissue may contribute to the circulating leptin levels. No treatment effects were observed in adipocytes from the high-energy diet groups, neither in leptin expression nor secretion, except that leptin secretion was significantly reduced by leucine in RE fish adipocytes (p=0.025). Overall, these data show that the regulation of leptin in rainbow trout adipocytes by hormones and nutrients seems to be on secretion, rather than at the transcriptional level.
Collapse
Affiliation(s)
- Cristina Salmerón
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Marcus Johansson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, 40590 Gothenburg, Sweden
| | - Anna R Angotzi
- Department of Biology, University of Bergen, Bergen 5020, Norway
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, Bergen 5020, Norway
| | - Elisabeth Jönsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, 40590 Gothenburg, Sweden
| | - Björn Thrandur Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, 40590 Gothenburg, Sweden
| | - Joaquim Gutiérrez
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Isabel Navarro
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Encarnación Capilla
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
219
|
Gaston KA, Lauer TE. Morphometric variation in bluegill Lepomis macrochirus and green sunfish Lepomis cyanellus in lentic and lotic systems. JOURNAL OF FISH BIOLOGY 2015; 86:317-332. [PMID: 25425144 DOI: 10.1111/jfb.12581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
Bluegill Lepomis macrochirus and green sunfish Lepomis cyanellus were examined using geometric morphometrics to evaluate the variation in morphology between fishes that reside in lentic (e.g. lakes) and lotic (e.g. streams) ecosystems. Live fishes were collected from reservoirs and rivers in central Indiana, while additional fishes were sampled from museum collections at Ball State University and the Illinois Natural History Survey. Male and female L. macrochirus and female L. cyanellus from lentic systems display a deeper body than those from lotic systems, while no differences were found in male L. cyanellus morphometry. A deeper body promotes greater manoeuverability, typically desirable in lentic systems. In contrast, the more streamlined body of the fishes found in lotic systems reduces drag as it contends with flowing water, ultimately maximizing energy efficiency. The absence of morphological differences, such as those found in male L. cyanellus, may be caused by fish occupying both lentic and lotic systems, from the population not having been present in the body of water long enough to display any adaptations, or from a lack of statistical power caused by the small sample size.
Collapse
Affiliation(s)
- K A Gaston
- Department of Biology, Cooper Life Science Building, CL 121, Ball State University, Muncie, IN, 47306, U.S.A
| | | |
Collapse
|
220
|
Cardoso JCR, Félix RC, Bergqvist CA, Larhammar D. New insights into the evolution of vertebrate CRH (corticotropin-releasing hormone) and invertebrate DH44 (diuretic hormone 44) receptors in metazoans. Gen Comp Endocrinol 2014; 209:162-70. [PMID: 25230393 DOI: 10.1016/j.ygcen.2014.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/04/2014] [Accepted: 09/06/2014] [Indexed: 11/24/2022]
Abstract
The corticotropin releasing hormone receptors (CRHR) and the arthropod diuretic hormone 44 receptors (DH44R) are structurally and functionally related members of the G protein-coupled receptors (GPCR) of the secretin-like receptor superfamily. We show here that they derive from a bilaterian predecessor. In protostomes, the receptor became DH44R that has been identified and functionally characterised in several arthropods but the gene seems to be absent from nematode genomes. Duplicate DH44R genes (DH44 R1 and DH44R2) have been described in some arthropods resulting from lineage-specific duplications. Recently, CRHR-DH44R-like receptors have been identified in the genomes of some lophotrochozoans (molluscs, which have a lineage-specific gene duplication, and annelids) as well as representatives of early diverging deuterostomes. Vertebrates have previously been reported to have two CRHR receptors that were named CRHR1 and CRHR2. To resolve their origin we have analysed recently assembled genomes from representatives of early vertebrate divergencies including elephant shark, spotted gar and coelacanth. We show here by analysis of synteny conservation that the two CRHR genes arose from a common ancestral gene in the early vertebrate tetraploidizations (2R) approximately 500 million years ago. Subsequently, the teleost-specific tetraploidization (3R) resulted in a duplicate of CRHR1 that has been lost in some teleost lineages. These results help distinguish orthology and paralogy relationships and will allow studies of functional conservation and changes during evolution of the individual members of the receptor family and their multiple native peptide agonists.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Christina A Bergqvist
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, 75124 Uppsala, Sweden.
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, 75124 Uppsala, Sweden.
| |
Collapse
|
221
|
Lee PT, Zou J, Holland JW, Martin SAM, Collet B, Kanellos T, Secombes CJ. Identification and characterisation of TLR18-21 genes in Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2014; 41:549-559. [PMID: 25450999 DOI: 10.1016/j.fsi.2014.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
Teleost fish possess many types of toll-like receptor (TLR) some of which exist in other vertebrate groups and some that do not (ie so-called "fish-specific" TLRs). In this study, we identified in Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs seven TLRs that are not found in mammals, including six types of fish-specific TLRs (one TLR18, one TLR19, and four TLR20 members (two of which are putative soluble forms (s)) and one TLR21. Phylogenetic analysis revealed that teleost TLR19-21 are closely related with murine TLR11-TLR13, whilst teleost TLR18 groups with mammalian TLR1, 2, 6 and 10. A typical TLR protein domain structure was found in all these TLRs with the exception of TLR20b(s) and TLR20c(s). TLR-GFP expression plasmids transfected into SHK-1 cells showed that salmon TLR19, TLR20a and TLR20d were preferentially localised to the intracellular compartment. Real time PCR analysis suggested that salmon TLR19-TLR21 are mainly expressed in immune related organs, such as spleen, head kidney and gills, while TLR18 transcripts are more abundant in muscle. In vitro stimulation of primary head kidney cells with type I IFN, IFNγ and IL-1β had no impact on TLR expression. Infectious salmon anaemia virus (ISAV) infection, in vivo, down-regulated TLR20a, TLR20b(s), TLR20d and TLR21 in infected salmon kidney tissue. In contrast, up-regulation of TLR19 and TLR20a expression was found in posterior kidney in rainbow trout with clinical proliferative kidney disease (PKD).
Collapse
Affiliation(s)
- P T Lee
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - J Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - J W Holland
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - S A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - B Collet
- Marine Scotland, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - T Kanellos
- Zoetis International Service, 23-25 Avenue du Dr. Lannelongue 75668 Paris Cedex 14, France
| | - C J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
222
|
Kollitz EM, Hawkins MB, Whitfield GK, Kullman SW. Functional diversification of vitamin D receptor paralogs in teleost fish after a whole genome duplication event. Endocrinology 2014; 155:4641-54. [PMID: 25279795 PMCID: PMC4239418 DOI: 10.1210/en.2014-1505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The diversity and success of teleost fishes (Actinopterygii) has been attributed to three successive rounds of whole-genome duplication (WGD). WGDs provide a source of raw genetic material for evolutionary forces to act upon, resulting in the divergence of genes with altered or novel functions. The retention of multiple gene pairs (paralogs) in teleosts provides a unique opportunity to study how genes diversify and evolve after a WGD. This study examines the hypothesis that vitamin D receptor (VDR) paralogs (VDRα and VDRβ) from two distantly related teleost orders have undergone functional divergence subsequent to the teleost-specific WGD. VDRα and VDRβ paralogs were cloned from the Japanese medaka (Beloniformes) and the zebrafish (Cypriniformes). Initial transactivation studies using 1α, 25-dihydroxyvitamin D3 revealed that although VDRα and VDRβ maintain similar ligand potency, the maximum efficacy of VDRβ was significantly attenuated compared with VDRα in both species. Subsequent analyses revealed that VDRα and VDRβ maintain highly similar ligand affinities; however, VDRα demonstrated preferential DNA binding compared with VDRβ. Protein-protein interactions between the VDR paralogs and essential nuclear receptor coactivators were investigated using transactivation and mammalian two-hybrid assays. Our results imply that functional differences between VDRα and VDRβ occurred early in teleost evolution because they are conserved between distantly related species. Our results further suggest that the observed differences may be associated with differential protein-protein interactions between the VDR paralogs and coactivators. We speculate that the observed functional differences are due to subtle ligand-induced conformational differences between the two paralogs, leading to divergent downstream functions.
Collapse
Affiliation(s)
- Erin M Kollitz
- Program in Environmental and Molecular Toxicology Department of Biological Sciences (E.M.K., S.W.K.), and Department of Biological Sciences (M.B.H.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Basic Medical Sciences (G.K.W.), The University of Arizona College of Medicine, Phoenix, Arizona 85004
| | | | | | | |
Collapse
|
223
|
Cardoso JCR, Félix RC, Trindade M, Power DM. Fish genomes provide novel insights into the evolution of vertebrate secretin receptors and their ligand. Gen Comp Endocrinol 2014; 209:82-92. [PMID: 24906176 DOI: 10.1016/j.ygcen.2014.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 01/21/2023]
Abstract
The secretin receptor (SCTR) is a member of Class 2 subfamily B1 GPCRs and part of the PAC1/VPAC receptor subfamily. This receptor has long been known in mammals but has only recently been identified in other vertebrates including teleosts, from which it was previously considered to be absent. The ligand for SCTR in mammals is secretin (SCT), an important gastrointestinal peptide, which in teleosts has not yet been isolated, or the gene identified. This study revises the evolutionary model previously proposed for the secretin-GPCRs in metazoan by analysing in detail the fishes, the most successful of the extant vertebrates. All the Actinopterygii genomes analysed and the Chondrichthyes and Sarcopterygii fish possess a SCTR gene that shares conserved sequence, structure and synteny with the tetrapod homologue. Phylogenetic clustering and gene environment comparisons revealed that fish and tetrapod SCTR shared a common origin and diverged early from the PAC1/VPAC subfamily group. In teleosts SCTR duplicated as a result of the fish specific whole genome duplication but in all the teleost genomes analysed, with the exception of tilapia (Oreochromis niloticus), one of the duplicates was lost. The function of SCTR in teleosts is unknown but quantitative PCR revealed that in both sea bass (Dicentrarchus labrax) and tilapia (Oreochromis mossambicus) transcript abundance is high in the gastrointestinal tract suggesting it may intervene in similar processes to those in mammals. In contrast, no gene encoding the ligand SCT was identified in the ray-finned fishes (Actinopterygii) although it was present in the coelacanth (lobe finned fish, Sarcopterygii) and in the elephant shark (holocephalian). The genes in linkage with SCT in tetrapods and coelacanth were also identified in ray-finned fishes supporting the idea that it was lost from their genome. At present SCTR remains an orphan receptor in ray-finned fishes and it will be of interest in the future to establish why SCT was lost and which ligand substitutes for it so that full characterization of the receptor can occur.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Marlene Trindade
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
224
|
Horn T, Adel S, Schumann R, Sur S, Kakularam KR, Polamarasetty A, Redanna P, Kuhn H, Heydeck D. Evolutionary aspects of lipoxygenases and genetic diversity of human leukotriene signaling. Prog Lipid Res 2014; 57:13-39. [PMID: 25435097 PMCID: PMC7112624 DOI: 10.1016/j.plipres.2014.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022]
Abstract
Leukotrienes are pro-inflammatory lipid mediators, which are biosynthesized via the lipoxygenase pathway of the arachidonic acid cascade. Lipoxygenases form a family of lipid peroxidizing enzymes and human lipoxygenase isoforms have been implicated in the pathogenesis of inflammatory, hyperproliferative (cancer) and neurodegenerative diseases. Lipoxygenases are not restricted to humans but also occur in a large number of pro- and eucaryotic organisms. Lipoxygenase-like sequences have been identified in the three domains of life (bacteria, archaea, eucarya) but because of lacking functional data the occurrence of catalytically active lipoxygenases in archaea still remains an open question. Although the physiological and/or pathophysiological functions of various lipoxygenase isoforms have been studied throughout the last three decades there is no unifying concept for the biological importance of these enzymes. In this review we are summarizing the current knowledge on the distribution of lipoxygenases in living single and multicellular organisms with particular emphasis to higher vertebrates and will also focus on the genetic diversity of enzymes and receptors involved in human leukotriene signaling.
Collapse
Affiliation(s)
- Thomas Horn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany; Department of Chemistry and Biochemistry, University of California - Santa Cruz, 1156 High Street, 95064 Santa Cruz, USA
| | - Susan Adel
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Ralf Schumann
- Institute of Microbiology, Charité - University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Saubashya Sur
- Institute of Microbiology, Charité - University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Kumar Reddy Kakularam
- Department of Animal Sciences, School of Life Science, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Aparoy Polamarasetty
- School of Life Sciences, University of Himachal Pradesh, Dharamshala, Himachal Pradesh 176215, India
| | - Pallu Redanna
- Department of Animal Sciences, School of Life Science, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India; National Institute of Animal Biotechnology, Miyapur, Hyderabad 500049, Telangana, India
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
225
|
Detection of alternative splice and gene duplication by RNA sequencing in Japanese flounder, Paralichthys olivaceus. G3-GENES GENOMES GENETICS 2014; 4:2419-24. [PMID: 25512620 PMCID: PMC4267937 DOI: 10.1534/g3.114.012138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Japanese flounder (Paralichthys olivaceus) is one of the economic important fish in China. Sexual dimorphism, especially the different growth rates and body sizes between two sexes, makes this fish a good model to investigate mechanisms responsible for such dimorphism for both fundamental questions in evolution and applied topics in aquaculture. However, the lack of “omics” data has hindered the process. The recent advent of RNA-sequencing technology provides a robust tool to further study characteristics of genomes of nonmodel species. Here, we performed de novo transcriptome sequencing for a double haploid Japanese flounder individual using Illumina sequencing. A single lane of paired-end sequencing produced more than 27 million reads. These reads were assembled into 107,318 nonredundant transcripts, half of which (51,563; 48.1%) were annotated by blastx to public protein database. A total of 1051 genes that had potential alternative splicings were detected by Chrysalis implemented in Trinity software. Four of 10 randomly picked genes were verified truly containing alternative splicing by cloning and Sanger sequencing. Notably, using a doubled haploid Japanese flounder individual allow us to analyze gene duplicates. In total, 3940 “single-nucleotide polymorphisms” were detected form 1859 genes, which may have happened gene duplicates. This study lays the foundation for structural and functional genomics studies in Japanese flounder.
Collapse
|
226
|
Hu G, Lin C, He M, Wong AOL. Neurokinin B and reproductive functions: "KNDy neuron" model in mammals and the emerging story in fish. Gen Comp Endocrinol 2014; 208:94-108. [PMID: 25172151 DOI: 10.1016/j.ygcen.2014.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 12/13/2022]
Abstract
In mammals, neurokinin B (NKB), the gene product of the tachykinin family member TAC3, is known to be a key regulator for episodic release of luteinizing hormone (LH). Its regulatory actions are mediated by a subpopulation of kisspeptin neurons within the arcuate nucleus with co-expression of NKB and dynorphin A (commonly called the "KNDy neurons"). By forming an "autosynaptic feedback loop" within the hypothalamus, the KNDy neurons can modulate gonadotropin-releasing hormone (GnRH) pulsatility and subsequent LH release in the pituitary. NKB regulation of LH secretion has been recently demonstrated in zebrafish, suggesting that the reproductive functions of NKB may be conserved from fish to mammals. Interestingly, the TAC3 genes in fish not only encode the mature peptide of NKB but also a novel tachykinin-like peptide, namely NKB-related peptide (or neurokinin F). Recent studies in zebrafish also reveal that the neuroanatomy of TAC3/kisspeptin system within the fish brain is quite different from that of mammals. In this article, the current ideas of "KNDy neuron" model for GnRH regulation and steroid feedback, other reproductive functions of NKB including its local actions in the gonad and placenta, the revised model of tachykinin evolution from invertebrates to vertebrates, as well as the emerging story of the two TAC3 gene products in fish, NKB and NKB-related peptide, will be reviewed with stress on the areas with interesting questions for future investigations.
Collapse
Affiliation(s)
- Guangfu Hu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chengyuan Lin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mulan He
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Anderson O L Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
227
|
Physical mapping of the 5S and 18S rDNA in ten species of Hypostomus Lacépède 1803 (Siluriformes: Loricariidae): evolutionary tendencies in the genus. ScientificWorldJournal 2014; 2014:943825. [PMID: 25405240 PMCID: PMC4227443 DOI: 10.1155/2014/943825] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/24/2014] [Indexed: 11/29/2022] Open
Abstract
Hypostomus is a diverse group with unclear aspects regarding its biology, including the mechanisms that led to chromosome diversification within the group. Fluorescence in situ hybridization (FISH) with 5S and 18S rDNA probes was performed on ten Hypostomini species. Hypostomus faveolus, H. cochliodon, H. albopunctatus, H. aff. paulinus, and H. topavae had only one chromosome pair with 18S rDNA sites, while H. ancistroides, H. commersoni, H. hermanni, H. regani, and H. strigaticeps had multiple 18S rDNA sites. Regarding the 5S rDNA genes, H. ancistroides, H. regani, H. albopunctatus, H. aff. paulinus, and H. topavae had 5S rDNA sites on only one chromosome pair and H. faveolus, H. cochliodon, H. commersoni, H. hermanni, and H. strigaticeps had multiple 5S rDNA sites. Most species had 18S rDNA sites in the telomeric region of the chromosomes. All species but H. cochliodon had 5S rDNA in the centromeric/pericentromeric region of one metacentric pair. Obtained results are discussed based on existent phylogenies for the genus, with comments on possible dispersion mechanisms to justify the variability of the rDNA sites in Hypostomus.
Collapse
|
228
|
Palacios-Prado N, Huetteroth W, Pereda AE. Hemichannel composition and electrical synaptic transmission: molecular diversity and its implications for electrical rectification. Front Cell Neurosci 2014; 8:324. [PMID: 25360082 PMCID: PMC4197764 DOI: 10.3389/fncel.2014.00324] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/26/2014] [Indexed: 11/29/2022] Open
Abstract
Unapposed hemichannels (HCs) formed by hexamers of gap junction proteins are now known to be involved in various cellular processes under both physiological and pathological conditions. On the other hand, less is known regarding how differences in the molecular composition of HCs impact electrical synaptic transmission between neurons when they form intercellular heterotypic gap junctions (GJs). Here we review data indicating that molecular differences between apposed HCs at electrical synapses are generally associated with rectification of electrical transmission. Furthermore, this association has been observed at both innexin and connexin (Cx) based electrical synapses. We discuss the possible molecular mechanisms underlying electrical rectification, as well as the potential contribution of intracellular soluble factors to this phenomenon. We conclude that asymmetries in molecular composition and sensitivity to cellular factors of each contributing hemichannel can profoundly influence the transmission of electrical signals, endowing electrical synapses with more complex functional properties.
Collapse
Affiliation(s)
- Nicolás Palacios-Prado
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA ; Marine Biological Laboratory, Woods Hole Massachusetts, MA, USA
| | - Wolf Huetteroth
- Marine Biological Laboratory, Woods Hole Massachusetts, MA, USA ; Department of Neurobiology, University of Konstanz Konstanz, Germany
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA ; Marine Biological Laboratory, Woods Hole Massachusetts, MA, USA
| |
Collapse
|
229
|
Lin F, Wu H, Chen H, Xin Z, Yuan D, Wang T, Liu J, Gao Y, Zhang X, Zhou C, Wei R, Chen D, Yang S, Wang Y, Pu Y, Li Z. Molecular and physiological evidences for the role in appetite regulation of apelin and its receptor APJ in Ya-fish (Schizothorax prenanti). Mol Cell Endocrinol 2014; 396:46-57. [PMID: 25150624 DOI: 10.1016/j.mce.2014.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
Apelin is a recently discovered peptide produced by several tissues with diverse physiological actions mediated by its receptor APJ. In order to better understand the role of apelin in the regulation of appetite in fish, we cloned the cDNAs encoding apelin and APJ, and investigated their mRNA distributions in Ya-fish (Schizothorax prenanti) tissues. We also assessed the effects of different nutritional status on apelin and APJ mRNAs abundance. Apelin and APJ mRNAs were ubiquitously expressed in all tissues tested, relatively high expression levels were detected in the heart, spleen, hypothalamus and kidney. Short-term fasting significant increased APJ mRNA expression, but no significant difference between fasted fish and fed control on 5- and 7-day. Meanwhile, apelin mRNA expression consistently increased during the 7-day food deprivation. In order to further characterize apelin in fish, we performed intraperitoneal (i.p.) injection of apelin-13 and examined food intake of the injected fish. Apelin injected at a dose of 100 ng/g body weight induced a significant increase in food intake compared to saline injected fish. Our results suggest that apelin acts as an orexigenic factor in Ya-fish. Their widespread distributions also suggest that apelin and APJ might play multiple physiological regulating roles in fish.
Collapse
Affiliation(s)
- Fangjun Lin
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Hongwei Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Zhiming Xin
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Dengyue Yuan
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Tao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Ju Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Yundi Gao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Chaowei Zhou
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Rongbin Wei
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Shiyong Yang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Yan Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Yundan Pu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China.
| |
Collapse
|
230
|
Sun L, Liu S, Wang R, Li C, Zhang J, Liu Z. Pathogen recognition receptors in channel catfish: IV. Identification, phylogeny and expression analysis of peptidoglycan recognition proteins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:291-299. [PMID: 24814805 DOI: 10.1016/j.dci.2014.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) can recognize bacterial cell wall (peptidoglycan) and activate innate immune system. In addition to its function as pathogen recognition receptors (PRRs), PGRPs are also involved in directly killing bacteria, and regulating multiple signaling pathways. Recently, we have reported catfish PRRs including nucleotide-binding domain, leucine-rich repeat containing receptors (NLRs), retinoic acid inducible gene I (RIG-I) like receptors (RLRs), and Toll-like receptors (TLRs). In this study, we identified and characterized the PGRP gene family in channel catfish which included two members, PGLYRP-5 and PGLYRP-6. Phylogenetic analysis, syntenic analysis and protein structural analysis were conducted to determine their identities and evolutionary relationships. In order to gain insight into the roles of PGRPs in catfish innate immune responses, quantitative real-time PCR was used to investigate the expression profiles in catfish healthy tissues and after bacterial infection. Both PGLYRP-5 and PGLYRP-6 were ubiquitously expressed in all 12 healthy tissues, and most highly expressed in gill and spleen, respectively. Distinct expression patterns were observed for PGRPs after infection with Edwardsiella ictaluri and Flavobacterium columnare, both Gram-negative bacteria. After infection with E. ictaluri, both PGLYRP-5 and PGLYRP-6 were significantly down-regulated at a certain time-point, while both genes were generally up-regulated in the gill after infection with F. columnare. Collectively, these findings suggested that PGRPs may play complex roles in the host immune response to bacterial pathogens in catfish.
Collapse
Affiliation(s)
- Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Ruijia Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Chao Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA.
| |
Collapse
|
231
|
Ren L, Tan XJ, Xiong YF, Xu K, Zhou Y, Zhong H, Liu Y, Hong YH, Liu SJ. Transcriptome analysis reveals positive selection on the divergent between topmouth culter and zebrafish. Gene 2014; 552:265-71. [PMID: 25267534 DOI: 10.1016/j.gene.2014.09.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/29/2014] [Accepted: 09/25/2014] [Indexed: 11/16/2022]
Abstract
The topmouth culter (Erythroculter ilishaeformis) is a predatory cyprinid fish that distributes widely in the East Asia. Here we report the liver transcriptome in this organism as a model of predatory fish. Sequencing of 5 Gb raw reads led to 27,741 unigenes and produced 11,131 annotatable genes. A total of 7093 (63.7%) genes were found to have putative functions by gene ontology analysis. Importantly, a blast search revealed 4033 culter genes that were orthologous to the zebrafish. Extracted from 38 candidate positive selection genes, 4 genes exhibit strong positive selection based on the ratio of nonsynonymous (Ka) to synonymous substitutions (Ks). In addition, the four genes also indicated the strong positive selection by comparing them between blunt snout bream (Megalobrama amblycephala) and zebrafish. These genes were involved in activator of gene expression, metabolic processes and development. The transcriptome variation may be reflective of natural selection in the early life history of Cyprinidae. Based on Ks ratios, date of the separation between topmouth culter and zebrafish is approximately 64 million years ago. We conclude that natural selection acts in diversifying the genomes between topmouth culter and zebrafish.
Collapse
Affiliation(s)
- Li Ren
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xing-Jun Tan
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Ya-Feng Xiong
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Kang Xu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yi Zhou
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Huan Zhong
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yun Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yun-Han Hong
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Shao-Jun Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
232
|
Mastretta-Yanes A, Zamudio S, Jorgensen TH, Arrigo N, Alvarez N, Piñero D, Emerson BC. Gene duplication, population genomics, and species-level differentiation within a tropical mountain shrub. Genome Biol Evol 2014; 6:2611-24. [PMID: 25223767 PMCID: PMC4224332 DOI: 10.1093/gbe/evu205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Gene duplication leads to paralogy, which complicates the de novo assembly of genotyping-by-sequencing (GBS) data. The issue of paralogous genes is exacerbated in plants, because they are particularly prone to gene duplication events. Paralogs are normally filtered from GBS data before undertaking population genomics or phylogenetic analyses. However, gene duplication plays an important role in the functional diversification of genes and it can also lead to the formation of postzygotic barriers. Using populations and closely related species of a tropical mountain shrub, we examine 1) the genomic differentiation produced by putative orthologs, and 2) the distribution of recent gene duplication among lineages and geography. We find high differentiation among populations from isolated mountain peaks and species-level differentiation within what is morphologically described as a single species. The inferred distribution of paralogs among populations is congruent with taxonomy and shows that GBS could be used to examine recent gene duplication as a source of genomic differentiation of nonmodel species.
Collapse
Affiliation(s)
- Alicia Mastretta-Yanes
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Sergio Zamudio
- Centro Regional del Bajío, Instituto de Ecología A. C., Pátzcuaro, Michoacán, México
| | | | - Nils Arrigo
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, Switzerland
| | - Nadir Alvarez
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, Switzerland
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico
| | - Brent C Emerson
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
233
|
Rhee JS, Lee JS. Whole genome data for omics-based research on the self-fertilizing fish Kryptolebias marmoratus. MARINE POLLUTION BULLETIN 2014; 85:532-541. [PMID: 24759509 DOI: 10.1016/j.marpolbul.2014.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
Genome resources have advantages for understanding diverse areas such as biological patterns and functioning of organisms. Omics platforms are useful approaches for the study of organs and organisms. These approaches can be powerful screening tools for whole genome, proteome, and metabolome profiling, and can be used to understand molecular changes in response to internal and external stimuli. This methodology has been applied successfully in freshwater model fish such as the zebrafish Danio rerio and the Japanese medaka Oryzias latipes in research areas such as basic physiology, developmental biology, genetics, and environmental biology. However, information is still scarce about model fish that inhabit brackish water or seawater. To develop the self-fertilizing killifish Kryptolebias marmoratus as a potential model species with unique characteristics and research merits, we obtained genomic information about K. marmoratus. We address ways to use these data for genome-based molecular mechanistic studies. We review the current state of genome information on K. marmoratus to initiate omics approaches. We evaluate the potential applications of integrated omics platforms for future studies in environmental science, developmental biology, and biomedical research. We conclude that information about the K. marmoratus genome will provide a better understanding of the molecular functions of genes, proteins, and metabolites that are involved in the biological functions of this species. Omics platforms, particularly combined technologies that make effective use of bioinformatics, will provide powerful tools for hypothesis-driven investigations and discovery-driven discussions on diverse aspects of this species and on fish and vertebrates in general.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Marine Science, College of Natural Science, Incheon National University, Incheon 406-772, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
234
|
Glasauer SMK, Neuhauss SCF. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics 2014; 289:1045-60. [PMID: 25092473 DOI: 10.1007/s00438-014-0889-2] [Citation(s) in RCA: 525] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/15/2014] [Indexed: 12/18/2022]
Abstract
Whole-genome duplication (WGD) events have shaped the history of many evolutionary lineages. One such duplication has been implicated in the evolution of teleost fishes, by far the most species-rich vertebrate clade. After initial controversy, there is now solid evidence that such event took place in the common ancestor of all extant teleosts. It is termed teleost-specific (TS) WGD. After WGD, duplicate genes have different fates. The most likely outcome is non-functionalization of one duplicate gene due to the lack of selective constraint on preserving both. Mechanisms that act on preservation of duplicates are subfunctionalization (partitioning of ancestral gene functions on the duplicates), neofunctionalization (assigning a novel function to one of the duplicates) and dosage selection (preserving genes to maintain dosage balance between interconnected components). Since the frequency of these mechanisms is influenced by the genes' properties, there are over-retained classes of genes, such as highly expressed ones and genes involved in neural function. The consequences of the TS-WGD, especially its impact on the massive radiation of teleosts, have been matter of controversial debate. It is evident that gene duplications are crucial for generating complexity and that WGDs provide large amounts of raw material for evolutionary adaptation and innovation. However, it is less clear whether the TS-WGD is directly linked to the evolutionary success of teleosts and their radiation. Recent studies let us conclude that TS-WGD has been important in generating teleost complexity, but that more recent ecological adaptations only marginally related to TS-WGD might have even contributed more to diversification. It is likely, however, that TS-WGD provided teleosts with diversification potential that can become effective much later, such as during phases of environmental change.
Collapse
Affiliation(s)
- Stella M K Glasauer
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | |
Collapse
|
235
|
Fuentes EN, Zuloaga R, Valdes JA, Molina A, Alvarez M. Skeletal muscle plasticity induced by seasonal acclimatization involves IGF1 signaling: implications in ribosomal biogenesis and protein synthesis. Comp Biochem Physiol B Biochem Mol Biol 2014; 176:48-57. [PMID: 25088252 DOI: 10.1016/j.cbpb.2014.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/11/2014] [Accepted: 07/22/2014] [Indexed: 12/15/2022]
Abstract
One of the most fundamental biological processes in living organisms that are affected by environmental fluctuations is growth. In fish, skeletal muscle accounts for the largest proportion of body mass, and the growth of this tissue is mainly controlled by the insulin-like growth factor (IGF) system. By using the carp (Cyprinus carpio), a fish that inhabits extreme conditions during winter and summer, we assessed the skeletal muscle plasticity induced by seasonal acclimatization and the relation of IGF signaling with protein synthesis and ribosomal biogenesis. The expression of igf1 in muscle decreased during winter in comparison with summer, whereas the expression for both paralogues of igf2 did not change significantly between seasons. The expression of igf1 receptor a (igf1ra), but not of igf1rb, was down-regulated in muscle during the winter as compared to the summer. A decrease in protein contents and protein phosphorylation for IGF signaling molecules in muscle was observed in winter-acclimatized carp. This was related with a decreased expression in muscle for markers of myogenesis (myoblast determination factor (myod), myogenic factor 5 (myf5), and myogenin (myog)); protein synthesis (myosin heavy chain (mhc) and myosin light chain (mlc3 and mlc1b)); and ribosomal biogenesis (pre-rRNA and ribosomal proteins). IGF signaling, and key markers of ribosomal biogenesis, protein synthesis, and myogenesis were affected by seasonal acclimatization, with differential regulation in gene expression and signaling pathway activation observed in muscle between both seasons. This suggests that these molecules are responsible for the muscle plasticity induced by seasonal acclimatization in carp.
Collapse
Affiliation(s)
- Eduardo N Fuentes
- Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| | - Rodrigo Zuloaga
- Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago, Chile
| | - Juan Antonio Valdes
- Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. Republica 217, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Marco Alvarez
- Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile; Laboratorio de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Quillota 980, Viña del Mar, Chile.
| |
Collapse
|
236
|
Ahn DH, Shin SC, Park H. Characterization of Toll-like receptor gene expression and the pathogen agonist response in the antarctic bullhead notothen Notothenia coriiceps. Immunogenetics 2014; 66:563-73. [PMID: 25073429 DOI: 10.1007/s00251-014-0792-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/22/2014] [Indexed: 12/28/2022]
Abstract
Notothenia coriiceps, a typical Antarctic notothenioid teleost, has evolved to adapt to the extreme Antarctic marine environment. We previously reported an extensive analysis of the Antarctic notothenioid transcriptome. In this study, we focused on a key component of the innate immune system, the Toll-like receptors (TLRs). We cloned the full-length sequence of 12 TLRs of N. coriiceps. The N. coriiceps transcriptome for TLR homologue (ncTLR) genes encode a typical TLR structure, with multiple extracellular leucine-rich regions and an intracellular Toll/IL-1 receptor (TIR) domain. Using phylogenetic analysis, we established that all of the cloned ncTLR genes could be classified into the same orthologous clade with other teleost TLRs. ncTLRs were widely expressed in various organs, with the highest expression levels observed in immune-related tissues, such as the skin, spleen, and kidney. A subset of the ncTLR genes was expressed at higher levels in fish exposed to pathogen-mimicking agonists, heat-killed Escherichia coli, and polyinosinic-polycytidylic acid (poly(I:C)). However, the mechanism involved in the upregulation of TLR expression following pathogen exposure in fish is currently unknown. Further research is required to elucidate these mechanisms and to thereby increase our understanding of vertebrate immune system evolution.
Collapse
Affiliation(s)
- Do Hwan Ahn
- Division of Polar Life Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon, 406-840, South Korea
| | | | | |
Collapse
|
237
|
Lee JH, Pooley NJ, Mohd-Adnan A, Martin SAM. Cloning and characterisation of multiple ferritin isoforms in the Atlantic salmon (Salmo salar). PLoS One 2014; 9:e103729. [PMID: 25078784 PMCID: PMC4117605 DOI: 10.1371/journal.pone.0103729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/06/2014] [Indexed: 12/21/2022] Open
Abstract
Ferritin is a highly-conserved iron-storage protein that has also been identified as an acute phase protein within the innate immune system. The iron-storage function is mediated through complementary roles played by heavy (H)-chain subunit as well as the light (L) in mammals or middle (M)-chain in teleosts, respectively. In this study, we report the identification of five ferritin subunits (H1, H2, M1, M2, M3) in the Atlantic salmon that were supported by the presence of iron-regulatory regions, gene structure, conserved domains and phylogenetic analysis. Tissue distribution analysis across eight different tissues showed that each of these isoforms is differentially expressed. We also examined the expression of the ferritin isoforms in the liver and kidney of juvenile Atlantic salmon that was challenged with Aeromonas salmonicida as well as in muscle cell culture stimulated with interleukin-1β. We found that each isoform displayed unique expression profiles, and in certain conditions the expressions between the isoforms were completely diametrical to each other. Our study is the first report of multiple ferritin isoforms from both the H- and M-chains in a vertebrate species, as well as ferritin isoforms that showed decreased expression in response to infection. Taken together, the results of our study suggest the possibility of functional differences between the H- and M-chain isoforms in terms of tissue localisation, transcriptional response to bacterial exposure and stimulation by specific immune factors.
Collapse
Affiliation(s)
- Jun-Hoe Lee
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- School of Biosciences and Biotechnology, Faculty of Science & Technology, University of Kebangsaan, Selangor, Malaysia
| | - Nicholas J. Pooley
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Adura Mohd-Adnan
- School of Biosciences and Biotechnology, Faculty of Science & Technology, University of Kebangsaan, Selangor, Malaysia
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Selangor, Malaysia
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
238
|
Zou J, Gorgoglione B, Taylor NGH, Summathed T, Lee PT, Panigrahi A, Genet C, Chen YM, Chen TY, Ul Hassan M, Mughal SM, Boudinot P, Secombes CJ. Salmonids have an extraordinary complex type I IFN system: characterization of the IFN locus in rainbow trout oncorhynchus mykiss reveals two novel IFN subgroups. THE JOURNAL OF IMMUNOLOGY 2014; 193:2273-86. [PMID: 25080482 DOI: 10.4049/jimmunol.1301796] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fish type I IFNs are classified into two groups with two (group I) or four (group II) cysteines in the mature peptide and can be further divided into four subgroups, termed IFN-a, -b, -c, and -d. Salmonids possess all four subgroups, whereas other teleost species have one or more but not all groups. In this study, we have discovered two further subgroups (IFN-e and -f) in rainbow trout Oncorhynchus mykiss and analyzed the expression of all six subgroups in rainbow trout and brown trout Salmo trutta. In rainbow trout RTG-2 and RTS-11 cells, polyinosinic-polycytidylic acid stimulation resulted in early activation of IFN-d, whereas the IFN-e subgroup containing the highest number of members showed weak induction. In contrast with the cell lines, remarkable induction of IFN-a, -b, and -c was detected in primary head kidney leukocytes after polyinosinic-polycytidylic acid treatment, whereas a moderate increase of IFNs was observed after stimulation with resiquimod. Infection of brown trout with hemorrhagic septicemia virus resulted in early induction of IFN-d, -e, and -f and a marked increase of IFN-b and IFN-c expression in kidney and spleen. IFN transcripts were found to be strongly correlated with the viral burden and with marker genes of the IFN antiviral cascade. The results demonstrate that the IFN system of salmonids is far more complex than previously realized, and in-depth research is required to fully understand its regulation and function.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom;
| | - Bartolomeo Gorgoglione
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset DT48 UB, United Kingdom
| | - Nicholas G H Taylor
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset DT48 UB, United Kingdom
| | - Thitiya Summathed
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Po-Tsang Lee
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Akshaya Panigrahi
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Carine Genet
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1313, Unité de Génétique Animale et Biologie Intégrative, Jouy-en-Josas Cedex 78352, France
| | - Young-Mao Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Tzong-Yueh Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Mahmood Ul Hassan
- Zoology Department, Government College University, Lahore 54000, Pakistan
| | - Sharif M Mughal
- Faculty of Fisheries and Wild Life, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; and
| | - Pierre Boudinot
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas Cedex 78352, France
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom;
| |
Collapse
|
239
|
Miyagawa S, Lange A, Tohyama S, Ogino Y, Mizutani T, Kobayashi T, Tatarazako N, Tyler CR, Iguchi T. Characterization ofOryzias latipesglucocorticoid receptors and their unique response to progestins. J Appl Toxicol 2014; 35:302-9. [DOI: 10.1002/jat.3020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Shinichi Miyagawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology; The Graduate University for Advanced Studies (SOKENDAI); Okazaki Aichi 444-8787 Japan
| | - Anke Lange
- Biosciences, College of Life and Environmental Sciences; University of Exeter; Stocker Road Exeter EX4 4QD UK
| | - Saki Tohyama
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology; The Graduate University for Advanced Studies (SOKENDAI); Okazaki Aichi 444-8787 Japan
- Graduate School of Nutritional and Environmental Sciences; University of Shizuoka; Shizuoka 422-8526 Japan
| | - Yukiko Ogino
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology; The Graduate University for Advanced Studies (SOKENDAI); Okazaki Aichi 444-8787 Japan
| | - Takeshi Mizutani
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology; The Graduate University for Advanced Studies (SOKENDAI); Okazaki Aichi 444-8787 Japan
| | - Tohru Kobayashi
- Graduate School of Nutritional and Environmental Sciences; University of Shizuoka; Shizuoka 422-8526 Japan
| | - Norihisa Tatarazako
- Environmental Quality Measurement Section, Research Center for Environmental Risk; National Institute for Environmental Studies; 16-2 Onogawa Tsukuba Ibaraki 305-8506 Japan
| | - Charles R. Tyler
- Biosciences, College of Life and Environmental Sciences; University of Exeter; Stocker Road Exeter EX4 4QD UK
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology; The Graduate University for Advanced Studies (SOKENDAI); Okazaki Aichi 444-8787 Japan
| |
Collapse
|
240
|
Gorissen M, Flik G. Leptin in teleostean fish, towards the origins of leptin physiology. J Chem Neuroanat 2014; 61-62:200-6. [PMID: 24977940 DOI: 10.1016/j.jchemneu.2014.06.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 12/28/2022]
Abstract
Teleostean leptin was first cloned in 2005, more than a decade after the discovery of mammalian leptin. The reason for this delay lies in the very poor primary sequence conservation (∼13-25%) between mammalian and fish leptins. These low sequence conservations indicate a high degree of molecular evolvability and warrant a search for different and original functions of leptin in teleosts. Indeed, new and original insights are obtained because of the unique phylogenetic position of teleostean fish as the earliest vertebrates and because of their ectothermy, which means that teleosts are more flexible in changing their metabolism than mammals and leptin could play a role in this flexibility. Research during the last decade reveals that leptin is a truly pleiotropic hormone in fish and mammals alike, with functions among others in the regulation of food intake and body weight, development, but also in the regulation of the stress axis and acclimation processes to for instance low oxygen levels in the water. In this review, we provide an overview of the teleostean leptin work done in the last ten years, and demonstrate that the power of a comparative approach leads to new insights on the origins of leptin physiology.
Collapse
Affiliation(s)
- Marnix Gorissen
- Department of Animal Physiology , Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| | - Gert Flik
- Department of Animal Physiology , Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| |
Collapse
|
241
|
Molecular characterization and transcriptional regulation of the Na +/K+ ATPase α subunit isoforms during development and salinity challenge in a teleost fish, the Senegalese sole (Solea senegalensis). Comp Biochem Physiol B Biochem Mol Biol 2014; 175:23-38. [PMID: 24947209 DOI: 10.1016/j.cbpb.2014.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/28/2014] [Accepted: 06/06/2014] [Indexed: 01/12/2023]
Abstract
In the present work, five genes encoding different Na(+),K(+) ATPase (NKA) α-isoforms in the teleost Solea senegalensis are described for the first time. Sequence analysis of predicted polypeptides revealed a high degree of conservation across teleosts and mammals. Phylogenetic analysis clustered the five genes into three main clades: α1 (designated atp1a1a and atp1a1b), α2 (designated atp1a2) and α3 (designated atp1a3a and atp1a3b) isoforms. Transcriptional analysis in larvae showed distinct expression profiles during development. In juvenile tissues, the atp1a1a gene was highly expressed in osmoregulatory organs, atp1a2 in skeletal muscle, atp1a1b in brain and heart and atp1a3a and atp1a3b mainly in brain. Quantification of mRNA abundance after a salinity challenge showed that atp1a1a transcript levels increased significantly in the gill of soles transferred to high salinity water (60 ppt). In contrast, atp1a3a transcripts increased at low salinity (5 ppt). In situ hybridization (ISH) analysis revealed that the number of ionocytes expressing atp1a1a transcripts in the primary gill filaments was higher at 35 and 60 ppt than at 5 ppt and remained undetectable or at very low levels in the lamellae at 5 and 35 ppt but increased at 60 ppt. Immunohistochemistry showed a higher number of positive cells in the lamellae. Whole-mount analysis of atp1a1a mRNA in young sole larvae revealed that it was localized in gut, pronephric tubule, gill, otic vesicle, yolk sac ionocytes and chordacentrum. Moreover, atp1a1a mRNAs increased at mouth opening (3 DPH) in larvae incubated at 36 ppt with a greater signal in gills.
Collapse
|
242
|
Bisazza A, Agrillo C, Lucon-Xiccato T. Extensive training extends numerical abilities of guppies. Anim Cogn 2014; 17:1413-9. [PMID: 24859818 DOI: 10.1007/s10071-014-0759-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 11/28/2022]
Abstract
Recent studies on animal mathematical abilities suggest that all vertebrates show comparable abilities when they are given spontaneous preference tests, such as selecting the larger number of food items, but that mammals and birds generally achieve much better performance than fish when tested with training procedures. At least part of these differences might be due to the fact that fish are usually trained with only one or two dozen trials while extensive training, sometimes with thousands of trials, is normally performed in studies of mammals and birds. To test this hypothesis, female guppies were trained on four consecutive numerical discriminations of increasing difficulty (from 2 vs. 3 to 5 vs. 6 items), with up to 120 trials with each discrimination. Five out of eight subjects discriminated all contrasts up to 4 versus 5 objects at levels significantly better than chance, a much higher limit than the 2 versus 3 limit previously reported in studies that provided fish with only short training sequences. Our findings indicate that the difference in numerical cognition between teleosts and warm-blooded vertebrates might be smaller than previously supposed.
Collapse
Affiliation(s)
- Angelo Bisazza
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padua, Italy
| | | | | |
Collapse
|
243
|
Yi M, Chen F, Luo M, Cheng Y, Zhao H, Cheng H, Zhou R. Rapid evolution of piRNA pathway in the teleost fish: implication for an adaptation to transposon diversity. Genome Biol Evol 2014; 6:1393-407. [PMID: 24846630 PMCID: PMC4079211 DOI: 10.1093/gbe/evu105] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Piwi-interacting RNA (piRNA) pathway is responsible for germline specification, gametogenesis, transposon silencing, and genome integrity. Transposable elements can disrupt genome and its functions. However, piRNA pathway evolution and its adaptation to transposon diversity in the teleost fish remain unknown. This article unveils evolutionary scene of piRNA pathway and its association with diverse transposons by systematically comparative analysis on diverse teleost fish genomes. Selective pressure analysis on piRNA pathway and miRNA/siRNA (microRNA/small interfering RNA) pathway genes between teleosts and mammals showed an accelerated evolution of piRNA pathway genes in the teleost lineages, and positive selection on functional PAZ (Piwi/Ago/Zwille) and Tudor domains involved in the Piwi-piRNA/Tudor interaction, suggesting that the amino acid substitutions are adaptive to their functions in piRNA pathway in the teleost fish species. Notably five piRNA pathway genes evolved faster in the swamp eel, a kind of protogynous hermaphrodite fish, than the other teleosts, indicating a differential evolution of piRNA pathway between the swamp eel and other gonochoristic fishes. In addition, genome-wide analysis showed higher diversity of transposons in the teleost fish species compared with mammals. Our results suggest that rapidly evolved piRNA pathway in the teleost fish is likely to be involved in the adaption to transposon diversity.
Collapse
Affiliation(s)
- Minhan Yi
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Feng Chen
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Majing Luo
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yibin Cheng
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Huabin Zhao
- Department of Zoology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hanhua Cheng
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
244
|
Polinski M, Bridle A, Neumann L, Nowak B. Preliminary evidence of transcriptional immunomodulation by praziquantel in bluefin tuna and Atlantic salmon in vitro cultures. FISH & SHELLFISH IMMUNOLOGY 2014; 38:42-46. [PMID: 24632044 DOI: 10.1016/j.fsi.2014.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/04/2014] [Accepted: 02/28/2014] [Indexed: 06/03/2023]
Abstract
Praziquantel (PZQ), long-used in veterinary and human medicine for the treatment of helminth parasites, is known to enhance humoral and cellular immune responsiveness in mammals but has unknown direct immunomodulatory capabilities in fish. In the present study, we examined the ability of PZQ to induce gene transcriptional changes in immune-competent primary tissue/organ cultures of two highly important yet evolutionarily discrete fish species--Southern bluefin tuna Thunnus maccoyii and Atlantic salmon Salmo salar. These cultures consisted of mixed blood cell population for both species, as well as intestinal explants from bluefin. Although expression profiles varied between species and tissue/organ type, PZQ induced both T-cell receptor (more than twofold) and IL-8 transcriptional expression (more than fourfold). Additionally, increased expression of other inflammatory cytokines including IL-1β was detected in blood cell cultures from both species, and a general pattern of heightened antiviral signaling was observed. Specifically, elevated transcription of Type I (IFNα) and Type II (IFNγ) interferon in Atlantic salmon blood cultures along with elevated expression of MHC class I in blood cultures of both species. These findings provide preliminary evidence for direct immunomodulation by PZQ in fish and insight into its potential capacity as an immune stimulant/adjuvant in the rapidly expanding aquaculture industry.
Collapse
Affiliation(s)
- Mark Polinski
- National Centre for Marine Conservation and Resource Sustainability, Australian Maritime College, University of Tasmania, Launceston, Australia.
| | - Andrew Bridle
- National Centre for Marine Conservation and Resource Sustainability, Australian Maritime College, University of Tasmania, Launceston, Australia
| | - Lukas Neumann
- National Centre for Marine Conservation and Resource Sustainability, Australian Maritime College, University of Tasmania, Launceston, Australia
| | - Barbara Nowak
- National Centre for Marine Conservation and Resource Sustainability, Australian Maritime College, University of Tasmania, Launceston, Australia
| |
Collapse
|
245
|
Silva IAL, Cox CJ, Leite RB, Cancela ML, Conceição N. Evolutionary conservation of TFIIH subunits: implications for the use of zebrafish as a model to study TFIIH function and regulation. Comp Biochem Physiol B Biochem Mol Biol 2014; 172-173:9-20. [PMID: 24731924 DOI: 10.1016/j.cbpb.2014.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 11/28/2022]
Abstract
Transcriptional factor IIH (TFIIH) is involved in cell cycle regulation, nucleotide excision repair, and gene transcription. Mutations in three of its subunits, XPB, XPD, and TTDA, lead to human recessive genetic disorders such as trichothiodystrophy and xeroderma pigmentosum, the latter of which is sometimes associated with Cockayne's syndrome. In the present study, we investigate the sequence conservation of TFIIH subunits among several teleost fish species and compare their characteristics and putative regulation by transcription factors to those of human and zebrafish. We report the following findings: (i) comparisons among protein sequences revealed a high sequence identity for each TFIIH subunit analysed; (ii) among transcription factors identified as putative regulators, OCT1 and AP1 have the highest binding-site frequencies in the promoters of TFIIH genes, and (iii) TFIIH genes have alternatively spliced isoforms. Finally, we compared the protein primary structure in human and zebrafish of XPD and XPB - two important ATP-dependent helicases that catalyse the unwinding of the DNA duplex at promoters during transcription - highlighting the conservation of domain regions such as the helicase domains. Our study suggests that zebrafish, a widely used model for many human diseases, could also act as an important model to study the function of TFIIH complex in repair and transcription regulation in humans.
Collapse
Affiliation(s)
- I A L Silva
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal; Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - C J Cox
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - R B Leite
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - M L Cancela
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal; Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - N Conceição
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
| |
Collapse
|
246
|
Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci 2014; 15:250-63. [PMID: 24619342 DOI: 10.1038/nrn3708] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brain function relies on the ability of neurons to communicate with each other. Interneuronal communication primarily takes place at synapses, where information from one neuron is rapidly conveyed to a second neuron. There are two main modalities of synaptic transmission: chemical and electrical. Far from functioning independently and serving unrelated functions, mounting evidence indicates that these two modalities of synaptic transmission closely interact, both during development and in the adult brain. Rather than conceiving synaptic transmission as either chemical or electrical, this article emphasizes the notion that synaptic transmission is both chemical and electrical, and that interactions between these two forms of interneuronal communication might be required for normal brain development and function.
Collapse
|
247
|
Gonen S, Lowe NR, Cezard T, Gharbi K, Bishop SC, Houston RD. Linkage maps of the Atlantic salmon (Salmo salar) genome derived from RAD sequencing. BMC Genomics 2014; 15:166. [PMID: 24571138 PMCID: PMC4028894 DOI: 10.1186/1471-2164-15-166] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/18/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Genetic linkage maps are useful tools for mapping quantitative trait loci (QTL) influencing variation in traits of interest in a population. Genotyping-by-sequencing approaches such as Restriction-site Associated DNA sequencing (RAD-Seq) now enable the rapid discovery and genotyping of genome-wide SNP markers suitable for the development of dense SNP linkage maps, including in non-model organisms such as Atlantic salmon (Salmo salar). This paper describes the development and characterisation of a high density SNP linkage map based on SbfI RAD-Seq SNP markers from two Atlantic salmon reference families. RESULTS Approximately 6,000 SNPs were assigned to 29 linkage groups, utilising markers from known genomic locations as anchors. Linkage maps were then constructed for the four mapping parents separately. Overall map lengths were comparable between male and female parents, but the distribution of the SNPs showed sex-specific patterns with a greater degree of clustering of sire-segregating SNPs to single chromosome regions. The maps were integrated with the Atlantic salmon draft reference genome contigs, allowing the unique assignment of ~4,000 contigs to a linkage group. 112 genome contigs mapped to two or more linkage groups, highlighting regions of putative homeology within the salmon genome. A comparative genomics analysis with the stickleback reference genome identified putative genes closely linked to approximately half of the ordered SNPs and demonstrated blocks of orthology between the Atlantic salmon and stickleback genomes. A subset of 47 RAD-Seq SNPs were successfully validated using a high-throughput genotyping assay, with a correspondence of 97% between the two assays. CONCLUSIONS This Atlantic salmon RAD-Seq linkage map is a resource for salmonid genomics research as genotyping-by-sequencing becomes increasingly common. This is aided by the integration of the SbfI RAD-Seq SNPs with existing reference maps and the draft reference genome, as well as the identification of putative genes proximal to the SNPs. Differences in the distribution of recombination events between the sexes is evident, and regions of homeology have been identified which are reflective of the recent salmonid whole genome duplication.
Collapse
Affiliation(s)
- Serap Gonen
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, Scotland, UK
| | - Natalie R Lowe
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, Scotland, UK
| | - Timothé Cezard
- Edinburgh Genomics, Ashworth Laboratories, King’s Buildings, University of Edinburgh, Edinburgh EH9 3JT, Scotland, UK
| | - Karim Gharbi
- Edinburgh Genomics, Ashworth Laboratories, King’s Buildings, University of Edinburgh, Edinburgh EH9 3JT, Scotland, UK
| | - Stephen C Bishop
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, Scotland, UK
| | - Ross D Houston
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, Scotland, UK
| |
Collapse
|
248
|
Zhu L, Yan Z, Feng M, Peng D, Guo Y, Hu X, Ren L, Sun Y. Identification of sturgeon IgD bridges the evolutionary gap between elasmobranchs and teleosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:138-147. [PMID: 24001581 DOI: 10.1016/j.dci.2013.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
IgD has been found in almost all jawed vertebrates, including cartilaginous and teleost fish. However, IgD is missing in acipenseriformes, a branch that is evolutionarily positioned between elasmobranchs and teleost fish. Here, by analyzing transcriptome data, we identified a transcriptionally active IgD-encoding gene in the Siberian sturgeon (Acipenser baerii). Phylogenetic analysis indicated that it is orthologous to mammalian IgD and closely related to the IgD of other fish. The lengths of sturgeon membrane-bound IgD transcripts ranged from 1.2kb to 6.2kb, encoding 3-19 CH domains. As in teleosts, the first CH domain of the sturgeon IgD transcript is also derived from μCH1 by RNA splicing. However, the variable region of the expressed sturgeon IgD shows limited V(D)J usage. In addition to IgD, three IgM variants were also identified in this species, whereas no IgT/Z-encoding genes were observed. This study bridges the gap in Ig evolution between elasmobranchs and teleosts and provides significant insight into the early evolution of immunoglobulins.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Pickart MA, Klee EW. Zebrafish approaches enhance the translational research tackle box. Transl Res 2014; 163:65-78. [PMID: 24269745 DOI: 10.1016/j.trsl.2013.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 01/08/2023]
Abstract
During the past few decades, zebrafish (Danio rerio) have been a workhorse for developmental biology and genetics. Concurrently, zebrafish have proved highly accessible and effective for translational research by providing a vertebrate animal model useful for gene discovery, disease modeling, chemical genetic screening, and other medically relevant studies. Key resources such as an annotated and complete genome sequence, and diverse tools for genetic manipulation continue to spur broad use of zebrafish. Thus, the purpose of this introductory review is to provide a window into the unique characteristics and diverse uses of zebrafish and to highlight in particular the increasing relevance of zebrafish as a translational animal model. This is accomplished by reviewing broad considerations of anatomic and physiological conservation, approaches for disease modeling and creation, general laboratory methods, genetic tools, genome conservation, and diverse opportunities for functional validation. Additional commentary throughout the review also guides the reader to the 4 new reviews found elsewhere in this special issue that showcase the many unique ways the zebrafish is improving understanding of renal regeneration, mitochondrial disease, dyslipidemia, and aging, for example. With many other possible approaches and a rapidly increasing number of medically relevant reports, zebrafish approaches enhance significantly the tools available for translational research and are actively improving the understanding of human disease.
Collapse
Affiliation(s)
| | - Eric W Klee
- Mayo Clinic, College of Medicine, Rochester, Minn
| |
Collapse
|
250
|
Mennigen JA, Martyniuk CJ, Seiliez I, Panserat S, Skiba-Cassy S. Metabolic consequences of microRNA-122 inhibition in rainbow trout, Oncorhynchus mykiss. BMC Genomics 2014; 15:70. [PMID: 24467738 PMCID: PMC3914182 DOI: 10.1186/1471-2164-15-70] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 01/22/2014] [Indexed: 01/31/2023] Open
Abstract
Background MicroRNAs (miRNAs) are small regulatory molecules which post-transcriptionally regulate mRNA stability and translation. Several microRNAs have received attention due to their role as key metabolic regulators. In spite of the high evolutionary conservation of several miRNAs, the role of miRNAs in lower taxa of vertebrates has not been studied with regard to metabolism. The liver-specific and highly abundant miRNA-122 is one of the most widely studied miRNA in mammals, where it has been implicated in the control of hepatic lipid metabolism. Following our identification of acute postprandial, nutritional and endocrine regulation of hepatic miRNA-122 isomiRNA expression in rainbow trout, we used complementary in silico and in vivo approaches to study the role of miRNA-122 in rainbow trout metabolism. We hypothesized that the role of miRNA-122 in regulating lipid metabolism in rainbow trout is conserved to that in mammals and that modulation of miRNA-122 function would result in altered lipid homeostasis and secondarily altered glucose homeostasis, since lipogenesis has been suggested to act as glucose sink in trout. Results Our results show that miRNA-122 was functionally inhibited in vivo in the liver. Postprandial glucose concentrations increased significantly in rainbow trout injected with a miRNA-122 inhibitor, and this effect correlated with decreases in hepatic FAS protein abundance, indicative of altered lipogenic potential. Additionally, miRNA-122 inhibition resulted in a 20% decrease in plasma cholesterol concentration, an effect associated with increased expression of genes involved in cholesterol degradation and excretion. Conclusions Overall evidence suggests that miRNA-122 may have evolved in early vertebrates to support liver-specific metabolic functions. Nevertheless, our data also indicate that metabolic consequences of miRNA-122 inhibition may differ quantitatively between vertebrate species and that distinct direct molecular targets of miRNA-122 may mediate metabolic effects between vertebrate species, indicating that miRNA-122 - mRNA target relationships may have undergone species-specific evolutionary changes.
Collapse
Affiliation(s)
| | | | | | | | - Sandrine Skiba-Cassy
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle F-64310, France.
| |
Collapse
|