201
|
Schloesser RJ, Huang J, Klein PS, Manji HK. Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 2008; 33:110-33. [PMID: 17912251 DOI: 10.1038/sj.npp.1301575] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bipolar disorder (BPD) is characterized by recurrent episodes of disturbed affect including mania and depression as well as changes in psychovegetative function, cognitive performance, and general health. A growing body of data suggests that BPD arises from abnormalities in synaptic and neuronal plasticity cascades, leading to aberrant information processing in critical synapses and circuits. Thus, these illnesses can best be conceptualized as genetically influenced disorders of synapses and circuits rather than simply as deficits or excesses in individual neurotransmitters. In addition, commonly used mood-stabilizing drugs that are effective in treating BPD have been shown to target intracellular signaling pathways that control synaptic plasticity and cellular resilience. In this article we draw on clinical, preclinical, neuroimaging, and post-mortem data to discuss the neurobiology of BPD within a conceptual framework while highlighting the role of neuroplasticity in the pathophysiology and treatment of this disorder.
Collapse
Affiliation(s)
- Robert J Schloesser
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Program, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
202
|
Bian Q, Shi T, Chuang DM, Qian Y. Lithium reduces ischemia-induced hippocampal CA1 damage and behavioral deficits in gerbils. Brain Res 2007; 1184:270-6. [DOI: 10.1016/j.brainres.2007.09.054] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/12/2007] [Accepted: 09/15/2007] [Indexed: 10/22/2022]
|
203
|
Ikeda M. [Effects of mood stabilizer on the circadian system: possible implication for abnormalities in mood disorders]. Nihon Yakurigaku Zasshi 2007; 130:469-476. [PMID: 18079597 DOI: 10.1254/fpj.130.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
204
|
Wang JF. Defects of mitochondrial electron transport chain in bipolar disorder: implications for mood-stabilizing treatment. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2007; 52:753-62. [PMID: 18186175 DOI: 10.1177/070674370705201202] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Converging lines of evidence indicate that defects in the mitochondrial electron transport chain (ETC) are associated with bipolar disorder (BD), and that mood-stabilizing drugs produce neuroprotective effects. Our objective is to review the most recent findings regarding this research. METHOD We searched MEDLINE and have reviewed here the most recently published articles. RESULTS There are deletions, mutation, and decreased expression of mitochondrial ETC complexes in BD. Because ETC is a major source of reactive oxygen species, these factors, along with decreased expression of antioxidant enzymes in BD, suggest the presence of oxidative damage in this disorder. Numerous recent studies have shown that mood-stabilizing drugs produce neuroprotective effects against oxidative damage and increase expression and activities of endogenous antioxidant enzymes in the rat brain. CONCLUSION These findings indicate that the process of oxidative damage could be a significant therapeutic target for the treatment of BD with mood-stabilizing drugs.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Department of Psychiatry, University of British Columbia, Vancouver.
| |
Collapse
|
205
|
Post RM. Role of BDNF in bipolar and unipolar disorder: clinical and theoretical implications. J Psychiatr Res 2007; 41:979-90. [PMID: 17239400 DOI: 10.1016/j.jpsychires.2006.09.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 09/16/2006] [Accepted: 09/21/2006] [Indexed: 01/16/2023]
Abstract
A number of lines of converging evidence suggest that brain-derived neurotrophic factor (BDNF) may play a role in the onset and treatment of bipolar disorder. We review pertinent data on BDNF from several different areas of preclinical and clinical investigation that suggest novel theoretical and treatment implications for the recurrent affective disorders. Data from several recent studies have also converged showing that the val66met allele of BDNF, a common single nucleotide polymorphism (SNP), is associated with selective minor deficits in cognitive functioning in subjects with schizophrenia, bipolar illness, and normal controls. Yet, paradoxically, the better functioning val66val allele of BDNF appears to be associated with an increased risk for bipolar disorder and perhaps early onset or rapid cycling. All the primary antidepressant modalities, as well as the mood stabilizers lithium and valproate, increase BDNF. Stressors decrease BDNF and this effect can be blocked by antidepressants. Serum BDNF is low in proportion to the severity of mania and depression and increases with clinical improvement. Assessment of the val66val BDNF allele and a range of other SNPs as potential vulnerability factors for bipolar illness and its early onset could facilitate studies of early intervention, help reduce long delays between the onset of first symptoms and the first treatment, and help in the prediction of individual patient's likelihood of responding to a given treatment.
Collapse
|
206
|
McColl G, Killilea DW, Hubbard AE, Vantipalli MC, Melov S, Lithgow GJ. Pharmacogenetic analysis of lithium-induced delayed aging in Caenorhabditis elegans. J Biol Chem 2007; 283:350-357. [PMID: 17959600 DOI: 10.1074/jbc.m705028200] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lithium (Li(+)) has been used to treat mood affect disorders, including bipolar, for decades. This drug is neuroprotective and has several identified molecular targets. However, it has a narrow therapeutic range and the one or more underlying mechanisms of its therapeutic action are not understood. Here we describe a pharmacogenetic study of Li(+) in the nematode Caenorhabditis elegans. Exposure to Li(+) at clinically relevant concentrations throughout adulthood increases survival during normal aging (up to 46% median increase). Longevity is extended via a novel mechanism with altered expression of genes encoding nucleosome-associated functions. Li(+) treatment results in reduced expression of the worm ortholog of LSD-1 (T08D10.2), a histone demethylase; knockdown by RNA interference of T08D10.2 is sufficient to extend longevity ( approximately 25% median increase), suggesting Li(+) regulates survival by modulating histone methylation and chromatin structure.
Collapse
Affiliation(s)
- Gawain McColl
- Buck Institute for Age Research, Novato, California 94945, the.
| | - David W Killilea
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, Oakland, California 94609, and the
| | - Alan E Hubbard
- School of Public Health, University of California, Berkeley California 94720
| | | | - Simon Melov
- Buck Institute for Age Research, Novato, California 94945, the
| | | |
Collapse
|
207
|
Nakamura M, Salisbury DF, Hirayasu Y, Bouix S, Pohl KM, Yoshida T, Koo MS, Shenton ME, McCarley RW. Neocortical gray matter volume in first-episode schizophrenia and first-episode affective psychosis: a cross-sectional and longitudinal MRI study. Biol Psychiatry 2007; 62:773-83. [PMID: 17586477 PMCID: PMC2782514 DOI: 10.1016/j.biopsych.2007.03.030] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 02/21/2007] [Accepted: 03/19/2007] [Indexed: 11/21/2022]
Abstract
BACKGROUND Overall neocortical gray matter (NCGM) volume has not been studied in first-episode schizophrenia (FESZ) at first hospitalization or longitudinally to evaluate progression, nor has it been compared with first-episode affective psychosis (FEAFF). METHODS Expectation-maximization/atlas-based magnetic resonance imaging (MRI) tissue segmentation into gray matter, white matter (WM), or cerebrospinal fluid (CSF) at first hospitalization of 29 FESZ and 34 FEAFF, plus 36 matched healthy control subjects (HC), and, longitudinally approximately 1.5 years later, of 17 FESZ, 21 FEAFF, and 26 HC was done. Manual editing separated NCGM and its lobar parcellation, cerebral WM (CWM), lateral ventricles (LV), and sulcal CSF (SCSF). RESULTS At first hospitalization, FESZ and FEAFF showed smaller NCGM volumes and larger SCSF and LV than HC. Longitudinally, FESZ showed NCGM volume reduction (-1.7%), localized to frontal (-2.4%) and temporal (-2.6%) regions, and enlargement of SCSF (7.2%) and LV (10.4%). Poorer outcome was associated with these LV and NCGM changes. FEAFF showed longitudinal NCGM volume increases (3.6%) associated with lithium or valproate administration but without clinical correlations and regional localization. CONCLUSIONS Longitudinal NCGM volume reduction and CSF component enlargement in FESZ are compatible with post-onset progression. Longitudinal NCGM volume increase in FEAFF may reflect neurotrophic effects of mood stabilizers.
Collapse
Affiliation(s)
- Motoaki Nakamura
- Clinical Neuroscience Division, Laboratory of Neuroscience, Veterans Affairs Boston Healthcare System, Brockton Division, Boston, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Mazza M, Di Nicola M, Della Marca G, Janiri L, Bria P, Mazza S. Bipolar disorder and epilepsy: a bidirectional relation? Neurobiological underpinnings, current hypotheses, and future research directions. Neuroscientist 2007; 13:392-404. [PMID: 17644769 DOI: 10.1177/10738584070130041101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A number of studies have demonstrated that affective disorders in epilepsy represent a common psychiatric comorbidity; however, most of the classic neuropsychiatric literature focuses on depression, which is actually prominent, but little is known about bipolar depression, and very little about mania, in epilepsy. Biochemical, structural, and functional abnormalities in primary bipolar disorder could also occur secondary to seizure disorders. The kindling paradigm, invoked as a model for understanding seizure disorders, has also been applied to the episodic nature of bipolar disorder. In bipolar patients, changes in second-messenger systems, such as G-proteins, phosphatidylinositol, protein kinase C, myristoylated alanine-rich C kinase substrate, or calcium activity have been described, along with changes in c-fos expression. Common mechanisms at the level of ion channels might include the antikindling and the calcium-antagonistic and potassium outward current-modulating properties of antiepileptic drugs. All these lines of research appear to be converging on a richer understanding of neurobiological underpinnings between bipolar disorder and epilepsy. Mania, which is the other side of the coin in affective disorders, may represent a privileged window into the neurobiology of mood regulation and the neurobiology of epilepsy itself. Future research on intracellular mechanisms might become decisive for a better understanding of the similarities between these two disorders.
Collapse
Affiliation(s)
- Marianna Mazza
- Institute of Psychiatry, Bipolar Disorders Unit, Catholic University of Sacred Heart, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
209
|
So J, Warsh JJ, Li PP. Impaired endoplasmic reticulum stress response in B-lymphoblasts from patients with bipolar-I disorder. Biol Psychiatry 2007; 62:141-7. [PMID: 17217928 DOI: 10.1016/j.biopsych.2006.10.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/11/2006] [Accepted: 10/12/2006] [Indexed: 01/19/2023]
Abstract
BACKGROUND Aberrant intracellular calcium (Ca2+) signaling in patients with bipolar-I disorder (BD-I) suggests disturbed endoplasmic reticulum (ER) function in BD. We examined whether the ER stress response is altered in BD-I patients and the relationship to basal intracellular Ca2+ levels ([Ca2+]B), in B lymphoblasts (BLCLs) from BD-I patients. METHODS Endoplasmic reticulum stress-induced X-box binding protein 1 (XBP1), C/EBP homologous protein (CHOP), and GRP78 expression in BLCLs from BD-I subjects stratified on elevated or normal [Ca2+]B and control subjects were determined by real-time quantitative reverse transcription polymerase chain reaction. The XBP1 -116C/G polymorphism, which impairs the XBP1 loop in the ER stress response, were genotyped with a TaqMan-based assay. RESULTS Compared with control subjects, thapsigargin- and tunicamycin-induced increases in XBP1 and CHOP but not GRP78 messenger RNA levels were significantly lower in BD-I patients. However, induction of these genes did not differ significantly in the two BD-I subgroups stratified on [Ca2+]B. Furthermore, the attenuated XBP1 induction cannot be explained solely by differences of XBP1 -116C/G genotype frequency. CONCLUSIONS Our findings suggest that the ER stress response is impaired in BD-I patients but irrespective of altered intracellular Ca2+ homeostasis as reflected in elevated [Ca2+]B. Moreover, an effect of XBP1 -116C/G polymorphism could not account for the attenuated XBP1 induction in bipolar-I disorder observed in this study.
Collapse
Affiliation(s)
- Jonathan So
- Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
210
|
Chuang DM, Manji HK. In search of the Holy Grail for the treatment of neurodegenerative disorders: has a simple cation been overlooked? Biol Psychiatry 2007; 62:4-6. [PMID: 17572175 PMCID: PMC1949906 DOI: 10.1016/j.biopsych.2007.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 04/09/2007] [Indexed: 01/13/2023]
Affiliation(s)
- De-Maw Chuang
- Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1363, USA.
| | | |
Collapse
|
211
|
Bearden CE, Thompson PM, Dalwani M, Hayashi KM, Lee AD, Nicoletti M, Trakhtenbroit M, Glahn DC, Brambilla P, Sassi RB, Mallinger AG, Frank E, Kupfer DJ, Soares JC. Greater cortical gray matter density in lithium-treated patients with bipolar disorder. Biol Psychiatry 2007; 62:7-16. [PMID: 17240360 PMCID: PMC3586797 DOI: 10.1016/j.biopsych.2006.10.027] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 07/11/2006] [Accepted: 10/04/2006] [Indexed: 01/08/2023]
Abstract
BACKGROUND The neurobiological underpinnings of bipolar disorder are not well understood. Previous neuroimaging findings have been inconsistent; however, new methods for three-dimensional (3-D) computational image analysis may better characterize neuroanatomic changes than standard volumetric measures. METHODS We used high-resolution magnetic resonance imaging and cortical pattern matching methods to map gray matter differences in 28 adults with bipolar disorder, 70% of whom were lithium-treated (mean age = 36.1 +/- 10.5; 13 female subject), and 28 healthy control subjects (mean age = 35.9 +/- 8.5; 11 female subjects). Detailed spatial analyses of gray matter density (GMD) were conducted by measuring local proportions of gray matter at thousands of homologous cortical locations. RESULTS Gray matter density was significantly greater in bipolar patients relative to control subjects in diffuse cortical regions. Greatest differences were found in bilateral cingulate and paralimbic cortices, brain regions critical for attentional, motivational, and emotional modulation. Secondary region of interest (ROI) analyses indicated significantly greater GMD in the right anterior cingulate among lithium-treated bipolar patients (n = 20) relative to those not taking lithium (n = 8). CONCLUSIONS These brain maps are consistent with previous voxel-based morphometry reports of greater GMD in portions of the anterior limbic network in bipolar patients and suggest neurotrophic effects of lithium as a possible etiology of these neuroanatomic differences.
Collapse
Affiliation(s)
- Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Bachmann RF, Schloesser RJ, Gould TD, Manji HK. Mood stabilizers target cellular plasticity and resilience cascades: implications for the development of novel therapeutics. Mol Neurobiol 2007; 32:173-202. [PMID: 16215281 DOI: 10.1385/mn:32:2:173] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bipolar disorder is a devastating disease with a lifetime incidence of about 1% in the general population. Suicide is the cause of death in 10 to 15% of patients and in addition to suicide, mood disorders are associated with many other harmful health effects. Mood stabilizers are medications used to treat bipolar disorder. In addition to their therapeutic effects for the treatment of acute manic episodes, mood stabilizers are useful as prophylaxis against future episodes and as adjunctive antidepressant medications. The most established and investigated mood-stabilizing drugs are lithium and valproate but other anticonvulsants (such as carbamazepine and lamotrigine) and antipsychotics are also considered as mood stabilizers. Despite the efficacy of these diverse medications, their mechanisms of action remain, to a great extent, unknown. Lithium's inhibition of some enzymes, such as inositol monophosphatase and glycogen synthase kinase-3, probably results in its mood-stabilizing effects. Valproate may share its anticonvulsant target with its mood-stabilizing target or may act through other mechanisms. It has been shown that lithium, valproate, and/or carbamazepine regulate numerous factors involved in cell survival pathways, including cyclic adenine monophospate response element-binding protein, brain-derived neurotrophic factor, bcl-2, and mitogen-activated protein kinases. These drugs have been suggested to have neurotrophic and neuroprotective properties that ameliorate impairments of cellular plasticity and resilience underlying the pathophysiology of mood disorders. This article also discusses approaches to develop novel treatments specifically for bipolar disorder.
Collapse
Affiliation(s)
- Rosilla F Bachmann
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
213
|
Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 2007; 321:892-901. [PMID: 17371805 DOI: 10.1124/jpet.107.120188] [Citation(s) in RCA: 437] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The pathophysiology of cerebral ischemia involves multiple mechanisms including neuroinflammation mediated by activated microglia and infiltrating macrophages/monocytes. The present study employed a rat permanent middle cerebral artery occlusion (pMCAO) model to study effects of histone deacetylase (HDAC) inhibition on ischemia-induced brain infarction, neuroinflammation, gene expression, and neurological deficits. We found that post-pMCAO injections with HDAC inhibitors, valproic acid (VPA), sodium butyrate (SB), or trichostatin A (TSA), decreased brain infarct volume. Postinsult treatment with VPA or SB also suppressed microglial activation, reduced the number of microglia, and inhibited other inflammatory markers in the ischemic brain. The reduction in levels of acetylated histone H3 in the ischemic brain was prevented by treatment with VPA, SB, or TSA. Moreover, injections with HDAC inhibitors superinduced heat-shock protein 70 and blocked pMCAO-induced down-regulation of phospho-Akt, as well as ischemia-elicited up-regulation of p53, inducible nitric oxide synthase, and cyclooxygenase-2. The motor, sensory, and reflex performance of pMCAO rats was improved by VPA, SB, or TSA treatment. The beneficial effects of SB and VPA in reducing brain infarct volume and neurological deficits occurred when either drug was administrated at least 3 h after ischemic onset, and the behavioral improvement was long-lasting. Together, our results demonstrate robust neuroprotective effects of HDAC inhibitors against cerebral ischemia-induced brain injury. The neuroprotection probably involves multiple mechanisms including suppression of ischemia-induced cerebral inflammation. Given that there is no effective treatment for stroke, HDAC inhibitors, such as VPA, SB, and TSA, should be evaluated for their potential use for clinical trials in stroke patients.
Collapse
Affiliation(s)
- Hyeon Ju Kim
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Building 10, Bethesda, MD 20892-1363, USA
| | | | | | | | | | | |
Collapse
|
214
|
Abstract
Multiple lines of evidence, such as impaired energy metabolism in the brain detected by magnetic resonance spectroscopy, a possible role of maternal inheritance, co-morbidity with mitochondrial diseases, the effects of mood stabilisers on mitochondria, increased mitochondrial DNA (mtDNA) deletion in the brain, and association with mtDNA mutations/polymorphisms or nuclear-encoded mitochondrial genes, suggest that mitochondrial dysfunction is an important component of bipolar disorder. Global reduction of mitochondria-related gene expression in the postmortem brains of patients with bipolar disorder may also be an indicator, but such findings are affected by sample pH and thus need to be interpreted with caution. A recently developed animal model carrying mtDNA deletion in neurons suggested that accumulation of mtDNA deletions causes bipolar disorder-like phenotypes. The next step in the study of mitochondrial dysfunction in bipolar disorder should be clarification of how mitochondrial dysfunction, a nonspecific risk factor, can cause specific symptoms of bipolar disorder. Two hypothetical mechanisms are mtDNA neuroplasticity and nonvisual photoreception impairment. Further study of mitochondrial dysfunction in bipolar disorder is expected to be useful for the development of new mood stabilisers.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan.
| |
Collapse
|
215
|
Bezchlibnyk YB, Xu L, Wang JF, Young LT. Decreased expression of insulin-like growth factor binding protein 2 in the prefrontal cortex of subjects with bipolar disorder and its regulation by lithium treatment. Brain Res 2007; 1147:213-7. [PMID: 17395163 DOI: 10.1016/j.brainres.2007.01.147] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 10/04/2006] [Accepted: 01/11/2007] [Indexed: 11/25/2022]
Abstract
Insulin-like growth factors (IGFs) regulate cellular proliferation and death, and their bioactivity is controlled by IGF binding proteins (IGFBPs). Since IGFBP-2 is the major brain resident IGFBP, and we have demonstrated lithium-mediated changes in its mRNA and protein levels in neuronal cultures, we examined IGFBP-2 expression in prefrontal cortex postmortem brain tissue from subjects with mood disorders. We found decreased IGFBP-2 expression in bipolar disorder patients compared with controls; this was especially pronounced in subjects not treated with lithium. These results suggest a role for IGFBPs in the etiology and pharmacotherapy of mood disorders.
Collapse
Affiliation(s)
- Yarema B Bezchlibnyk
- The Vivian Rakoff Mood Disorders Lab, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | | |
Collapse
|
216
|
Watase K, Gatchel JR, Sun Y, Emamian E, Atkinson R, Richman R, Mizusawa H, Orr HT, Shaw C, Zoghbi HY. Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med 2007; 4:e182. [PMID: 17535104 PMCID: PMC1880853 DOI: 10.1371/journal.pmed.0040182] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Accepted: 03/30/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disorder characterized by progressive motor and cognitive dysfunction. Caused by an expanded polyglutamine tract in ataxin 1 (ATXN1), SCA1 pathogenesis involves a multifactorial process that likely begins with misfolding of ATXN1, which has functional consequences on its interactions, leading to transcriptional dysregulation. Because lithium has been shown to exert neuroprotective effects in a variety of conditions, possibly by affecting gene expression, we tested the efficacy of lithium treatment in a knock-in mouse model of SCA1 (Sca1(154Q/2Q) mice) that replicates many features of the human disease. METHODS AND FINDINGS Sca1(154Q/2Q) mice and their wild-type littermates were fed either regular chow or chow that contained 0.2% lithium carbonate. Dietary lithium carbonate supplementation resulted in improvement of motor coordination, learning, and memory in Sca1(154Q/2Q) mice. Importantly, motor improvement was seen when treatment was initiated both presymptomatically and after symptom onset. Neuropathologically, lithium treatment attenuated the reduction of dendritic branching in mutant hippocampal pyramidal neurons. We also report that lithium treatment restored the levels of isoprenylcysteine carboxyl methyltransferase (Icmt; alternatively, Pccmt), down-regulation of which is an early marker of mutant ATXN1 toxicity. CONCLUSIONS The effect of lithium on a marker altered early in the course of SCA1 pathogenesis, coupled with its positive effect on multiple behavioral measures and hippocampal neuropathology in an authentic disease model, make it an excellent candidate treatment for human SCA1 patients.
Collapse
Affiliation(s)
- Kei Watase
- 21st Century COE program on Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer R Gatchel
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yaling Sun
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Effat Emamian
- Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Richard Atkinson
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ronald Richman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hidehiro Mizusawa
- 21st Century COE program on Brain Integration and Its Disorders, Tokyo Medical and Dental University, Tokyo, Japan
| | - Harry T Orr
- Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Chad Shaw
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
217
|
Azab AN, Greenberg ML. Anticonvulsant efficacy of valproate-like carboxylic acids: a potential target for anti-bipolar therapy. Bipolar Disord 2007; 9:197-205. [PMID: 17430293 DOI: 10.1111/j.1399-5618.2007.00351.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Bipolar disorder (BPD) is a severe and chronic illness, with a lifetime prevalence of approximately 1.5%. Despite the availability of some mood stabilizing drugs including lithium, valproate (valproic acid), lamotrigine and carbamazepine, BPD is characterized by high rates of recurrence, as treatment with these and other drugs is ineffective for and not well-tolerated by a significant percentage of patients. Most drugs currently used for the maintenance treatment of BPD are anticonvulsants (e.g., valproate, carbamazepine and lamotrigine). OBJECTIVES The aim of this paper is to review the studies characterizing the anticonvulsant efficacy of valproate-like carboxylic acids and related compounds, some of which may have potential for the treatment of manic-depressive illness. RESULTS The data reviewed herein demonstrate clearly that some dietary fatty acids and other valproate-like carboxylic acids exhibit potent anticonvulsant activity, and may thus be candidates for mood stabilizing treatment options for BPD.
Collapse
Affiliation(s)
- Abed N Azab
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
218
|
Cui J, Shao L, Young LT, Wang JF. Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience 2007; 144:1447-53. [PMID: 17184924 DOI: 10.1016/j.neuroscience.2006.11.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 10/18/2006] [Accepted: 11/08/2006] [Indexed: 12/30/2022]
Abstract
Mood stabilizing drugs lithium and valproate are the most commonly used treatments for bipolar disorder. Previous studies in our laboratory indicate that chronic treatment with lithium and valproate inhibits oxidative damage in primary cultured rat cerebral cortical cells. Glutathione, as the major antioxidant in the brain, plays a key role in defending against oxidative damage. The purpose of this study was to determine the role of glutathione in the neuroprotective effects of lithium and valproate against oxidative damage. We found that chronic treatment with lithium and valproate inhibited reactive oxygen metabolite H(2)O(2)-induced cell death in primary cultured rat cerebral cortical cells, while buthionine sulfoximine, an inhibitor of glutathione rate-limiting synthesis enzyme glutamate-cysteine ligase, reduced the neuroprotective effect of lithium and valproate against H(2)O(2)-induced cell death. Further, we found that chronic treatment with lithium and valproate increased glutathione levels in primary cultured rat cerebral cortical cells and that the effects of lithium and valproate on glutathione levels were dose-dependent in human neuroblastoma SH-SY5Y cells. Chronic treatment with lithium and valproate also increased the expression of glutamate-cysteine ligase in both rat cerebral cortical cells and SH-SY5Y cells. In addition, chronic treatment with other mood stabilizing drugs lamotrigine and carbamazepine, but not antidepressants desipramine and fluoxetine, increased both glutathione levels and the expression of glutamate-cysteine ligase in SH-SY5Y cells. These results suggest that glutathione plays an important role in the neuroprotective effects of lithium and valproate, and that glutathione may be a common target for mood stabilizing drugs.
Collapse
Affiliation(s)
- J Cui
- The Vivian Rakoff Mood Disorders Laboratory, Centre for Addiction and Mental Health, 250 College Street, 11th floor, Toronto, Ontario, Canada M5T 1R8
| | | | | | | |
Collapse
|
219
|
Kato T, Kubota M, Kasahara T. Animal models of bipolar disorder. Neurosci Biobehav Rev 2007; 31:832-42. [PMID: 17466374 DOI: 10.1016/j.neubiorev.2007.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 03/06/2007] [Accepted: 03/13/2007] [Indexed: 12/31/2022]
Abstract
Animal models of human diseases should meet three sets of criteria: construct validity, face validity, and predictive validity. To date, several putative animal models of bipolar disorder have been reported. They are classified into various categories: pharmacological models, nutritional models, environmental models, and genetic models. None of them, however, totally fulfills the three validity criteria, and thus may not be useful for drug development. Mounting evidence suggests that mitochondrial dysfunction has a role in bipolar disorder. To test whether accumulation of mtDNA deletions in the brain can cause bipolar disorder, we generated transgenic mice with neuron-specific expression of mutant Polg (D181A). These mice showed altered diurnal activity rhythm and periodic activity change associated with the estrous cycle. These phenotypes were worsened by administration of a tricyclic antidepressant, but improved after lithium treatment. This mouse model of bipolar disorder potentially fulfills the three validity criteria, and therefore might be used for future drug development studies.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
220
|
Schloesser RJ, Chen G, Manji HK. Neurogenesis and Neuroenhancement in the Pathophysiology and Treatment of Bipolar Disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 77:143-78. [PMID: 17178474 DOI: 10.1016/s0074-7742(06)77005-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robert J Schloesser
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Research Program National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
221
|
|
222
|
Huang HC, O’Brien WT, Klein PS. Targeting glycogen synthase kinase-3 in Alzheimer's disease. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.ddstr.2006.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
223
|
Chen PS, Peng GS, Li G, Yang S, Wu X, Wang CC, Wilson B, Lu RB, Gean PW, Chuang DM, Hong JS. Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 2006; 11:1116-25. [PMID: 16969367 DOI: 10.1038/sj.mp.4001893] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Valproate (VPA), one of the mood stabilizers and antiepileptic drugs, was recently found to inhibit histone deacetylases (HDAC). Increasing reports demonstrate that VPA has neurotrophic effects in diverse cell types including midbrain dopaminergic (DA) neurons. However, the origin and nature of the mediator of the neurotrophic effects are unclear. We have previously demonstrated that VPA prolongs the survival of midbrain DA neurons in lipopolysaccharide (LPS)-treated neuron-glia cultures through the inhibition of the release of pro-inflammatory factors from microglia. In this study, we report that VPA upregulates the expression of neurotrophic factors, including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) from astrocytes and these effects may play a major role in mediating VPA-induced neurotrophic effects on DA neurons. Moreover, VPA pretreatment protects midbrain DA neurons from LPS or 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity. Our study identifies astrocyte as a novel target for VPA to induce neurotrophic and neuroprotective actions in rat midbrain and shows a potential new role of cellular interactions between DA neurons and astrocytes. The neurotrophic and neuroprotective effects of VPA also suggest a utility of this drug for treating neurodegenerative disorders including Parkinson's disease. Moreover, the neurotrophic effects of VPA may contribute to the therapeutic action of this drug in treating bipolar mood disorder that involves a loss of neurons and glia in discrete brain areas.
Collapse
Affiliation(s)
- P-S Chen
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Tsaltas E, Kontis D, Boulougouris V, Papakosta VM, Giannou H, Poulopoulou C, Soldatos C. Enhancing effects of chronic lithium on memory in the rat. Behav Brain Res 2006; 177:51-60. [PMID: 17141335 DOI: 10.1016/j.bbr.2006.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 10/30/2006] [Accepted: 11/02/2006] [Indexed: 11/27/2022]
Abstract
BACKGROUND In spite of recent enrichment of neurochemical and behavioural data establishing a neuroprotective role for lithium, its primary effects on cognitive functioning remain ambiguous. This study examines chronic lithium effects on spatial working memory and long-term retention. METHODS In three discrete experiments, rats subjected to 30 daily intraperitoneal injections (2mmol/kg) of lithium (lithium groups: serum lithium=0.5+/-0.4mEq/l, 12h post-injection) or saline (controls) were trained in 0-s delay T-maze alternation and then tested in 30-, 45- and 60-s delay alternation (Experiments 1, 2, 3, respectively). Animals from Experiment 1 were further tested in one-trial step-through passive avoidance under mild shock parameters (0.5mA, 1s). Retention was assessed 6h later. Daily lithium or saline injections continued throughout behavioural testing. RESULTS Lithium animals were indistinguishable from controls during 0-delay alternation baseline (Experiments 1-3, accuracy>88%) but showed significantly higher accuracy than controls at 30- and 45-s delays (93% versus 85% and 92% versus 82%, Experiments 1 and 2, respectively). At 60-s delay (Experiment 3) this beneficial effect of lithium was no longer apparent (lithium and control accuracy=78%). In Experiment 4, the shock used did not support 6-h passive avoidance retention in controls, whereas lithium animals showed significant step-through latency increases. CONCLUSIONS Chronic lithium enhanced spatial working memory and promoted long-term retention of a weak aversive contingency. The results suggest that lithium may have potential as a cognitive enhancer.
Collapse
Affiliation(s)
- Eleftheria Tsaltas
- Athens University Medical School, Department of Psychiatry, Experimental Psychology Laboratory, Eginition Hospital, 74, Vas. Sofias Avenue, 115 28 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
225
|
Emerging Novel Treatments for Severe Mood Disorders Involving Cellular Plasticity Cascades. ACTA ACUST UNITED AC 2006; 4:181-190. [PMID: 25620894 DOI: 10.1007/bf02629394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mood disorders are the most prevalent psychiatric disorders. Despite recent advances in the understanding of therapeutically relevant biochemical pathways associated with mood regulation, patients with bipolar disorder and major depression present high rates of recurrences, residual symptoms, and pharmacologic refractoriness. Increasing evidence supports the observations that mood disorders are accompanied by regional brain volumetric reductions accompanied by cellular atrophy/loss. In this paper, we review and critique the data suggesting that neurotrophic signaling cascades may play a role in the pathophysiology and treatment of mood disorders. This suggests that effective treatments will need to provide both trophic and neurochemical support, which serves to enhance and maintain normal synaptic connectivity, thereby allowing the chemical signal to reinstate optimal functioning of critical circuits necessary for normal affective functioning. For many refractory patients, drugs mimicking "traditional" strategies, which directly or indirectly alter monoaminergic levels, may be of limited benefit. Newer "plasticity enhancing" strategies that may have utility in the treatment of mood disorders include inhibitors of glutamate release, NMDA antagonists, AMPA potentiators, cAMP phosphodiesterase inhibitors, and glucocorticoid receptor antagonists.
Collapse
|
226
|
Karlovic D, Jakopec S, Dubravcic K, Batinic D, Buljan D, Osmak M. Lithium increases expression of p21WAF/Cip1 and survivin in human glioblastoma cells. Cell Biol Toxicol 2006; 23:83-90. [PMID: 17103031 DOI: 10.1007/s10565-006-0126-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 08/17/2006] [Indexed: 11/30/2022]
Abstract
Lithium is the most widely prescribed mood stabilizer, but the precise molecular mechanisms underlying its therapeutic function are not yet fully elucidated. Recent preclinical and clinical evidence indicates its neuroprotective and neurotrophic effects. As a tight coupling of function and metabolism in the central nervous system between glial cells and neurons has recently been detected, lithium's effect on glial cells may participate also in the total beneficial effects of this drug. The aim of the present study was to analyze molecular mechanisms induced in human glioblastoma A1235 cells by the treatment with lithium, especially its influence on the expression of apoptosis-related genes. Lower levels of lithium (0.5 mmol/L and 2 mmol/L) did not cause any cytotoxicity or changes in the cell cycle phase distribution following 72 h incubation. However, a higher dose (20 mmol/L) was cytostatic for glioblastoma cells, and caused accumulation of cells in G(2)/M phase of the cell cycle. The treatment with lithium did not alter the levels of Bcl-2 or procaspase-3 and did not cleave PARP, but increased the levels of p21(WAF/Cip1) and survivin. Thus, increased expression of p21(WAF/Cip1) (a protein with antiapoptotic function), and survivin (a protein that supports the growth of cells by suppression of apoptosis and promotion of cell proliferation) may be the early events in the long-term cell response to lithium that are involved in the beneficial effects of this drug.
Collapse
Affiliation(s)
- D Karlovic
- Department of Psychiatry, Sisters of Mercy, University Hospital, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
227
|
Terao T, Nakano H, Inoue Y, Okamoto T, Nakamura J, Iwata N. Lithium and dementia: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:1125-8. [PMID: 16753246 DOI: 10.1016/j.pnpbp.2006.04.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 02/28/2006] [Accepted: 04/21/2006] [Indexed: 11/28/2022]
Abstract
Recent studies have shown that lithium may block the accumulation of amyloid-beta (Abeta) peptides and to inhibit the hyperphosphorylation of tau via the inhibition of GSK-3alpha in the brain of mice. The purpose of the present study is to examine whether lithium could potentially be effective for the prevention of Alzheimer's disease. We investigated the clinical records of 1,423 outpatients at a university psychiatric outpatient clinic and classified patients according to the following criteria: (a) absence of a diagnosis of dementia, (b) age 60 years or older, and (c) lithium had been prescribed and/or was currently prescribed. We compared these patients with randomly selected age and gender matched control group who had never been prescribed lithium. Despite no significant difference in MMSE scores between the lithium group, which consisted of patients receiving lithium treatment, and the control group, those who had previously received lithium and/or were currently prescribed lithium had significantly better MMSE scores than the control patients. The findings provide partial evidence to support the contention that lithium could offer hope as a preventive treatment for Alzheimer's disease. Further prospective studies with a large number of patients are warranted to investigate this potentially important effect.
Collapse
Affiliation(s)
- Takeshi Terao
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan.
| | | | | | | | | | | |
Collapse
|
228
|
Beurel E, Jope RS. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 2006; 79:173-89. [PMID: 16935409 PMCID: PMC1618798 DOI: 10.1016/j.pneurobio.2006.07.006] [Citation(s) in RCA: 450] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/14/2006] [Accepted: 07/17/2006] [Indexed: 12/21/2022]
Abstract
Few things can be considered to be more important to a cell than its threshold for apoptotic cell death, which can be modulated up or down, but rarely in both directions, by a single enzyme. Therefore, it came as quite a surprise to find that one enzyme, glycogen synthase kinase-3 (GSK3), has the perplexing capacity to either increase or decrease the apoptotic threshold. These apparently paradoxical effects now are known to be due to GSK3 oppositely regulating the two major apoptotic signaling pathways. GSK3 promotes cell death caused by the mitochondrial intrinsic apoptotic pathway, but inhibits the death receptor-mediated extrinsic apoptotic signaling pathway. Intrinsic apoptotic signaling, activated by cell damage, is promoted by GSK3 by facilitation of signals that cause disruption of mitochondria and by regulation of transcription factors that control the expression of anti- or pro-apoptotic proteins. The extrinsic apoptotic pathway entails extracellular ligands stimulating cell-surface death receptors that initiate apoptosis by activating caspase-8, and this early step in extrinsic apoptotic signaling is inhibited by GSK3. Thus, GSK3 modulates key steps in each of the two major pathways of apoptosis, but in opposite directions. Consequently, inhibitors of GSK3 provide protection from intrinsic apoptosis signaling but potentiate extrinsic apoptosis signaling. Studies of this eccentric ability of GSK3 to oppositely influence two types of apoptotic signaling have shed light on important regulatory mechanisms in apoptosis and provide the foundation for designing the rational use of GSK3 inhibitors for therapeutic interventions.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Neurobiology, Sparks Center 1057, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | |
Collapse
|
229
|
Krebs M, Leopold K, Hinzpeter A, Schaefer M. Neuroprotective agents in schizophrenia and affective disorders. Expert Opin Pharmacother 2006; 7:837-48. [PMID: 16634707 DOI: 10.1517/14656566.7.7.837] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
With the exception of dementia, the use of neuroprotective agents in psychiatric disorders is not yet well established. However, recent data from brain imaging studies and clinical trials support the view that neurodegenerative mechanisms may play a role in the pathophysiology of schizophrenia and affective disorders. Further evidence for the use of neuroprotective agents can be drawn from the findings that second-generation antipsychotics, mood stabilizers and antidepressants have been shown to have neuroprotective effects in vitro and in vivo. Neuroprotective agents as add-on therapies (e.g., modafinil, erythropoietin, glycine, D-serine, memantine and celecoxib) are currently being evaluated in schizophrenia and related disorders. This paper reviews the current options for neuroprotective treatment approaches focusing on schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Michael Krebs
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Schumannstr. 20/21, D-10117 Berlin, Germany.
| | | | | | | |
Collapse
|
230
|
Xu XH, Zhang HL, Han R, Gu ZL, Qin ZH. Enhancement of neuroprotection and heat shock protein induction by combined prostaglandin A1 and lithium in rodent models of focal ischemia. Brain Res 2006; 1102:154-62. [PMID: 16797496 DOI: 10.1016/j.brainres.2006.04.111] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 04/20/2006] [Accepted: 04/27/2006] [Indexed: 12/20/2022]
Abstract
Both prostaglandin A(1) (PGA(1)) and lithium have been reported to protect neurons against excitotoxic and ischemic injury. The present study was undertaken to examine the effects of lithium and PGA1 on heat shock proteins (HSP) and the growth arrest and DNA-damage-inducible gene (GADD153) and to evaluate if lithium could potentiate PGA(1)'s neuroprotective effects against cerebral ischemia. Rats were pretreated with a subcutaneous injection of lithium for 2 days and a single intracerebral ventricle administration of PGA(1) 15 min before ischemic insult. Brain ischemia was induced by a permanent middle cerebral artery occlusion. The infarct volume, motor behavior deficits and brain edema were analyzed 24 h after ischemic insult. The result showed that PGA(1) significantly reduced infarct volume, neurological deficits and brain edema. Except for neurological deficit, lithium enhanced PGA(1)'s neuroprotection. The neuroprotective effects of PGA(1) were associated with an up-regulation of cytoprotective heat shock proteins HSP70 and GRP78 in the ischemic brain hemisphere as determined by immunoblotting and immunofluorescence. The induction of HSP70 and GRP78 was enhanced by lithium. However, although the expression of GADD153 was enhanced significantly after pMCAO, it was not influenced by either PGA(1) or lithium or their combination. These studies suggest that lithium can potentiate PGA(1)'s neuroprotective effects and thus may have potential clinical value for the treatment of stroke in combination with other neuroprotective agents.
Collapse
Affiliation(s)
- Xi-Hui Xu
- Department of Pharmacology, Soochow University School of Medicine, Suzhou-Singopore Industrial Park, Suzhou, China
| | | | | | | | | |
Collapse
|
231
|
Leng Y, Chuang DM. Endogenous alpha-synuclein is induced by valproic acid through histone deacetylase inhibition and participates in neuroprotection against glutamate-induced excitotoxicity. J Neurosci 2006; 26:7502-12. [PMID: 16837598 PMCID: PMC6674182 DOI: 10.1523/jneurosci.0096-06.2006] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence suggests that alpha-synuclein (alpha-syn), which is traditionally thought to have a pathophysiological role in neurodegenerative diseases, can have neuroprotective effects. This study aimed to investigate whether endogenous alpha-syn in neurons can be induced by valproic acid (VPA), a mood-stabilizer, anticonvulsant and histone deacetylase (HDAC) inhibitor, and if so, whether the alpha-syn induction is neuroprotective. VPA treatment of rat cerebellar granule cells caused a robust dose- and time-dependent increase in levels of alpha-syn protein and mRNA and in the intensity of alpha-syn immunostaining. Knockdown of VPA-induced alpha-syn overexpression with alpha-syn antisense oligonucleotides or siRNA completely blocked VPA-induced neuroprotection. alpha-Syn knockdown also exacerbated glutamate neurotoxicity, stimulated the expression of the proapoptotic gene ubiquitin-conjugating enzyme E2N, and downregulated the expression of the anti-apoptotic gene Bcl-2. Induction of alpha-syn by VPA was associated with inhibition of HDAC activity, resulting in hyperacetylation of histone H3 in the alpha-syn promoter and a marked increase in alpha-syn promoter activity. Moreover, VPA-induced alpha-syn induction and neuroprotection were mimicked by HDAC inhibitors sodium 4-phenylbutyrate and trichostatin A (TSA). alpha-syn was also induced by VPA in rat cerebral cortical neurons. Additionally, treatment of rats with VPA, sodium butyrate, or TSA markedly increased alpha-syn protein levels in the cortex and cerebellum. Together, our results demonstrate for the first time that VPA induces alpha-syn in neurons through inhibition of HDAC and that this alpha-syn induction is critically involved in neuroprotection against glutamate excitotoxicity. Clinically, VPA may represent a suitable treatment for excitotoxicity-related neurodegenerative diseases.
Collapse
|
232
|
Azab AN, Greenberg ML. Lipid connection to bipolar disorder. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.4.505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bipolar disorder is a severe and chronic illness affecting approximately 1.5% of the American population. Despite the availability of mood bipolarstabilizers such as lithium, valproate, carbamazepine and lamotrigine, bipolar disorder is characterized by high rates of recurrence, as treatment with these and other drugs is ineffective for and not tolerated by a significant percentage of patients. Several hypotheses have been postulated to explain the mechanism(s) of action of mood stabilizers. However, the biological and molecular bases of the disease are not fully understood, hampering the development of more effective and safer drugs. A large body of evidence associates lipids (cholesterol, phospholipids and fatty acids) with the mechanism and pathology of bipolar disorder. The purpose of this paper is to review the lipid connection to bipolar disorder.
Collapse
Affiliation(s)
- Abed N Azab
- Wayne State University, Department of Biological Sciences, Detroit, MI 48202, USA
| | - Miriam L Greenberg
- Wayne State University, Department of Biological Sciences, Detroit, MI 48202, USA
| |
Collapse
|
233
|
Einat H, Manji HK. Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Biol Psychiatry 2006; 59:1160-71. [PMID: 16457783 DOI: 10.1016/j.biopsych.2005.11.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/11/2005] [Accepted: 11/17/2005] [Indexed: 11/28/2022]
Abstract
BACKGROUND Despite extensive research, the molecular/cellular underpinnings of bipolar disorder (BD) remain to be fully elucidated. Recent data has demonstrated that mood stabilizers exert major effects on signaling that regulate cellular plasticity; however, a direct extrapolation to mechanisms of disease demands proof that manipulation of candidate genes, proteins, or pathways result in relevant behavioral changes. METHODS We critique and evaluate the behavioral changes induced by manipulation of cellular plasticity cascades implicated in BD. RESULTS Not surprisingly, the behavioral data suggest that several important signaling molecules might play important roles in mediating facets of the complex symptomatology of BD. Notably, the protein kinase C and extracellular signal-regulated kinase cascades might play important roles in the antimanic effects of mood stabilizers, whereas glycogen synthase kinase (GSK)-3 might mediate facets of lithium's antimanic/antidepressant actions. Glucocorticoid receptor (GR) modulation also seems to be capable to inducing affective-like changes observed in mood disorders. And Bcl-2, amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors, and inositol homeostasis represent important pharmacological targets for mood stabilizers, but additional behavioral research is needed to more fully delineate their behavioral effects. CONCLUSIONS Behavioral data support the notion that regulation of cellular plasticity is involved in affective-like behavioral changes observed in BD. These findings are leading to the development of novel therapeutics for this devastating illness.
Collapse
Affiliation(s)
- Haim Einat
- College of Pharmacy, Duluth, University of Minnesota, 55812, USA.
| | | |
Collapse
|
234
|
Zarate CA, Singh J, Manji HK. Cellular plasticity cascades: targets for the development of novel therapeutics for bipolar disorder. Biol Psychiatry 2006; 59:1006-20. [PMID: 16487491 DOI: 10.1016/j.biopsych.2005.10.021] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/06/2005] [Accepted: 10/19/2005] [Indexed: 01/23/2023]
Abstract
For a number of patients with bipolar disorder, current pharmacotherapy is generally insufficient. Despite adequate treatment, patients continue to have recurrent mood episodes, residual symptoms, functional impairment, psychosocial disability, and significant medical and psychiatric comorbidity. Drug development for bipolar disorder may occur through one of two approaches: the first is by understanding the therapeutically relevant biochemical targets of currently effective medications. Two promising direct targets of lithium and valproate are glycogen synthase kinase-3 and histone deacetylase. The second path results from our understanding that severe mood disorders, although not classical neurodegenerative disorders, are associated with regional impairments of structural plasticity and cellular resilience. This suggests that effective treatments will need to provide both trophic and neurochemical support, which serves to enhance and maintain normal synaptic connectivity, thereby allowing the chemical signal to reinstate the optimal functioning of critical circuits necessary for normal affective functioning. For many refractory patients, drugs mimicking "traditional" strategies, which directly or indirectly alter monoaminergic levels, may be of limited benefit. Newer "plasticity enhancing" strategies that may have utility in the treatment of mood disorders include inhibitors of glutamate release, N-methyl-D-aspartate antagonists, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid potentiators, cyclic adenosine monophosphate phosphodiesterase inhibitors, and glucocorticoid receptor antagonists.
Collapse
Affiliation(s)
- Carlos A Zarate
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Research Program, National Institute of Mental Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
235
|
Chen G, Manji HK. The extracellular signal-regulated kinase pathway: an emerging promising target for mood stabilizers. Curr Opin Psychiatry 2006; 19:313-23. [PMID: 16612219 DOI: 10.1097/01.yco.0000218604.63463.cd] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW There exists a growing appreciation that, though not classical neurodegenerative disorders, severe mood disorders are associated with regional impairments of structural plasticity and cellular resilience. Exciting recent data suggest that synaptic plasticity probably is involved in mechanisms of actions of mood stabilizers and antidepressants. Notably, the extracellular signal-regulated kinase pathway is a critical 'plasticity pathway' in the brain. The present review summarizes neurobiological, pharmacological, and behavioral data on the role of the extracellular signal-regulated kinase pathway in regulating some of the symptoms of bipolar disorder and as a therapeutically relevant target for mood stabilizers. RECENT FINDINGS The extracellular signal-regulated kinase pathway is known to mediate neurotrophic actions and synaptic plasticity. Treatment with lithium and valproate activates the extracellular signal-regulated kinase pathway in cultured cells and in prefrontal cortex and hippocampus. In addition, lithium or valproate treatment promotes neurogenesis, neurite growth, and cell survival. The extracellular signal-regulated kinase pathway is also targeted by antipsychotics. Modulation of the central nervous system extracellular signal-regulated kinase pathway induces animal behavioral alterations reminiscent of manic symptoms; these complex behaviors probably depend on the effects of extracellular signal-regulated kinase on discrete brain regions and the presence of other interacting molecules. SUMMARY The extracellular signal-regulated kinase pathway may represent a novel target for the development of improved therapeutics for bipolar disorder.
Collapse
Affiliation(s)
- Guang Chen
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, Maryland 20892-3711, USA.
| | | |
Collapse
|
236
|
Blair IP, Chetcuti AF, Badenhop RF, Scimone A, Moses MJ, Adams LJ, Craddock N, Green E, Kirov G, Owen MJ, Kwok JBJ, Donald JA, Mitchell PB, Schofield PR. Positional cloning, association analysis and expression studies provide convergent evidence that the cadherin gene FAT contains a bipolar disorder susceptibility allele. Mol Psychiatry 2006; 11:372-83. [PMID: 16402135 DOI: 10.1038/sj.mp.4001784] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A susceptibility locus for bipolar disorder was previously localized to chromosome 4q35 by genetic linkage analysis. We have applied a positional cloning strategy, combined with association analysis and provide evidence that a cadherin gene, FAT, confers susceptibility to bipolar disorder in four independent cohorts (allelic P-values range from 0.003 to 0.024). In two case-control cohorts, association was identified among bipolar cases with a family history of psychiatric illness, whereas in two cohorts of parent-proband trios, association was identified among bipolar cases who had exhibited psychosis. Pooled analysis of the case-control cohort data further supported association (P=0.0002, summary odds ratio=2.31, 95% CI: 1.49-3.59). We localized the bipolar-associated region of the FAT gene to an interval that encodes an intracellular EVH1 domain, a domain that interacts with Ena/VASP proteins, as well as putative beta-catenin binding sites. Expression of Fat, Catnb (beta-catenin), and the three genes (Enah, Evl and Vasp) encoding the Ena/VASP proteins, were investigated in mice following administration of the mood-stabilizing drugs, lithium and valproate. Fat was shown to be significantly downregulated (P=0.027), and Catnb and Enah were significantly upregulated (P=0.0003 and 0.005, respectively), in response to therapeutic doses of lithium. Using a protein interaction map, the expression of genes encoding murine homologs of the FAT (ft)-interacting proteins was investigated. Of 14 interacting molecules that showed expression following microarray analysis (including several members of the Wnt signaling pathway), eight showed significantly altered expression in response to therapeutic doses of lithium (binomial P=0.004). Together, these data provide convergent evidence that FAT and its protein partners may be components of a molecular pathway involved in susceptibility to bipolar disorder.
Collapse
Affiliation(s)
- I P Blair
- Neurobiology Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Kalkman HO. The role of the phosphatidylinositide 3-kinase–protein kinase B pathway in schizophrenia. Pharmacol Ther 2006; 110:117-34. [PMID: 16434104 DOI: 10.1016/j.pharmthera.2005.10.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 10/26/2005] [Indexed: 01/05/2023]
Abstract
Neuroanatomical studies of brains from schizophrenic patients report evidence for neuronal dystrophy, while in genetic studies in schizophrenia there is evidence for mutations in growth factors and the downstream enzymes phosphatidylinositide 3-kinase (PI3K) and protein kinase B (PKB). Since the PI3K-PKB pathway is involved in cellular growth and proliferation, reduced activity of this cascade in schizophrenia could at least partly explain the neuronal dystrophy. Risk factors for schizophrenia, such as corticosteroids and cannabis, suppress the activity of the PI3K-PKB pathway. Conversely, estrogen and vitamin D, 2 factors with a moderate protective activity in schizophrenia, electroconvulsive shock therapy, and chronic treatment with antipsychotic compounds stimulate the pathway. Reduced activity of the PI3K-PKB pathway makes the brain more susceptible to virus infections, anoxia, and obstetric complications (recognized risk factors for schizophrenia), whereas a diminution of growth factor levels towards the end of puberty could contribute to an increase in schizophrenia symptoms observed around that time. On the other hand, constitutive (over)activation of the PI3K-PKB pathway increases cancer risk. Consequently, the presumed hypoactivity of the PI3K-PKB cascade might provide a partial explanation for the remarkable epidemiological finding of a reduced cancer rate in schizophrenic patients. Recognition of the role of a dysfunctional PI3K-PKB pathway in schizophrenia might help in the discovery of hitherto undetected causative gene mutations and could also lead to novel therapeutic approaches. However, a major challenge that remains to be solved is how the PI3K-PKB pathway can be activated without increasing the risk of cancer.
Collapse
Affiliation(s)
- Hans O Kalkman
- Neuroscience Research, Novartis Institutes of Biomedical Research Basel, Building WSJ-360.4.05, Novartis Pharma AG, CH4002 Basel, Switzerland.
| |
Collapse
|
238
|
Zhou R, Gray NA, Yuan P, Li X, Chen J, Chen G, Damschroder-Williams P, Du J, Zhang L, Manji HK. The anti-apoptotic, glucocorticoid receptor cochaperone protein BAG-1 is a long-term target for the actions of mood stabilizers. J Neurosci 2006; 25:4493-502. [PMID: 15872096 PMCID: PMC6725025 DOI: 10.1523/jneurosci.4530-04.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increasing data suggest that impairments of cellular plasticity/resilience underlie the pathophysiology of bipolar disorder. A series of microarray studies with validating criteria have recently revealed a common, novel target for the long-term actions of the structurally highly dissimilar mood stabilizers lithium and valproate: BAG-1 [BCL-2 (B-cell CLL/lymphoma 2)-associated athanogene]. Because BAG-1 attenuates glucocorticoid receptor (GR) nuclear translocation, activates ERK (extracellular signal-regulated kinase) MAP (mitogen-activated protein) kinases, and potentiates anti-apoptotic functions of BCL-2, extensive additional studies were undertaken. Chronic administration of both agents at therapeutic doses increased the expression of BAG-1 in rat hippocampus. Furthermore, these findings were validated at the protein level, and the effects were seen in a time frame consistent with therapeutic effects and were specific for mood stabilizers. Functional studies showed that either lithium or valproate, at therapeutically relevant levels, inhibited dexamethasone-induced GR nuclear translocation and inhibited GR transcriptional activity. Furthermore, small interfering RNA studies showed that these inhibitory effects on GR activity were mediated, at least in part, through BAG-1. The observation that BAG-1 inhibits glucocorticoid activation suggests that mood stabilizers may counteract the deleterious effects of hypercortisolemia seen in bipolar disorder by upregulating BAG-1. Additionally, these studies suggest that regulation of GR-mediated plasticity may play a role in the treatment of bipolar disorder and raise the possibility that agents affecting BAG-1 more directly may represent novel therapies for this devastating illness.
Collapse
Affiliation(s)
- Rulun Zhou
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
BUSH AL, HYSON RL. Lithium increases bcl-2 expression in chick cochlear nucleus and protects against deafferentation-induced cell death. Neuroscience 2006; 138:1341-9. [PMID: 16413133 PMCID: PMC1847354 DOI: 10.1016/j.neuroscience.2005.11.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 11/12/2005] [Accepted: 11/20/2005] [Indexed: 11/20/2022]
Abstract
Approximately 20-30% of neurons in the avian cochlear nucleus (nucleus magnocellularis) die following deafferentation (i.e. deafness produced by cochlea removal) and the remaining neurons show a decrease in soma size. Cell death is generally accepted to be a highly regulated process involving various pro-survival and pro-death molecules. One treatment that has been shown to modify the expression of these molecules is chronic administration of lithium. The present experiments examined whether lithium treatment can protect neurons from deafferentation-induced cell death. Post-hatch chicks were treated with LiCl or saline for 17 consecutive days, beginning on the day of hatching. On the 17th day, a unilateral cochlea ablation was performed. Five days following surgery, the nucleus magnocellularis neurons were counted stereologically on opposite sides of the same brains. Lithium reduced deafferentation-induced cell death by more than 50% (9.8% cell death as compared with 22.4% in saline-treated subjects). Lithium did not affect cell number on the intact side of the brain. Lithium also did not prevent the deafferentation-induced decrease in soma size, suggesting a dissociation between the mechanisms involved in the afferent control of soma size and those involved in the afferent control of cell viability. A possible mechanism for lithium's neuroprotective influence was examined in a second set of subjects. Previous studies suggest that the pro-survival molecule, bcl-2, may play a role in regulating cell death following deafferentation. Tissues from lithium- and saline-treated subjects were examined using immunocytochemistry. Chronic administration of lithium dramatically increased the expression of bcl-2 protein in nucleus magnocellularis neurons. These data suggest that lithium may impart its neuroprotective effect by altering the expression of molecules that regulate cell death.
Collapse
Affiliation(s)
| | - R. L. HYSON
- *Corresponding author. Tel: +1-850-644-1200; fax: +1-850-644-7739. E-mail address: (R. L. Hyson)
| |
Collapse
|
240
|
Shi Y, Azab AN, Thompson MN, Greenberg ML. Inositol phosphates and phosphoinositides in health and disease. Subcell Biochem 2006; 39:265-92. [PMID: 17121279 DOI: 10.1007/0-387-27600-9_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the past two decades, considerable progress has been made toward understanding inositol phosphates and PI metabolism. However, there is still much to learn. The present challenge is to understand how inositol phosphates and PIs are compartmentalized, identify new targets of inositol phosphates and PIs, and elucidate the mechanisms underlying spatial and temporal regulation of the enzymes that metabolize inositol phosphates and PIs. Answers to these questions will help clarify the mechanisms of the diseases associated with these molecules and identify new possibilities for drug design.
Collapse
Affiliation(s)
- Yihui Shi
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
241
|
de Vasconcellos APS, Zugno AI, Dos Santos AHDP, Nietto FB, Crema LM, Gonçalves M, Franzon R, de Souza Wyse AT, da Rocha ER, Dalmaz C. Na+,K(+)-ATPase activity is reduced in hippocampus of rats submitted to an experimental model of depression: effect of chronic lithium treatment and possible involvement in learning deficits. Neurobiol Learn Mem 2005; 84:102-10. [PMID: 15961330 DOI: 10.1016/j.nlm.2005.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2005] [Revised: 05/03/2005] [Accepted: 05/05/2005] [Indexed: 11/26/2022]
Abstract
This study was undertaken to verify the effects of chronic stress and lithium treatments on the hippocampal Na+,K(+)-ATPase activity of rats, as well as to investigate the effects of stress interruption and post-stress lithium treatment on this enzyme activity and on spatial memory. Two experiments were carried out; in the first experiment, adult male Wistar rats were divided into two groups: control and submitted to a chronic variate stress paradigm, and subdivided into treated or not with LiCl. After 40 days of treatment, rats were killed, and Na+,K(+)-ATPase activity was determined. In the second experiment, rats were stressed during 40 days, and their performance was evaluated in the Water Maze task. The stressed group was then subdivided into four groups, with continued or interrupted stress treatment and treated or not with lithium for 30 additional days. After a second evaluation of performance in the Water Maze, rats were killed and Na+,K(+)-ATPase activity was also measured. Results showed an impairment in Na+,K(+)-ATPase activity and in Water Maze performance of chronically stressed rats, which were prevented by lithium treatment and reversed by lithium treatment and by stress interruption. These results suggest that the modulation of Na+,K(+)-ATPase activity may be one of the mechanisms of action of lithium in the treatment of mood disorders.
Collapse
|
242
|
Abstract
Tissue engineering approaches for expanding, differentiating and engrafting embryonic or adult stem cells have significant potential for tissue repair but harnessing endogenous stem cell populations offers numerous advantages over these approaches. There has been rapid basic biological progress in the identification of stem cell niches throughout the body and the molecular factors that regulate their function. These niches represent novel therapeutic targets and efforts to use them involve the familiar challenges of delivering molecular medicines in vivo. Here we review recent progress in the use of genes, proteins and small molecules for in situ stem cell control and manipulation, with a focus on using stem cells of the central nervous system for neuroregeneration.
Collapse
Affiliation(s)
- Smita Agrawal
- Department of Chemical Engineering and The Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720-1462, USA
| | | |
Collapse
|
243
|
Shao L, Young LT, Wang JF. Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry 2005; 58:879-84. [PMID: 16005436 DOI: 10.1016/j.biopsych.2005.04.052] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/25/2005] [Accepted: 04/28/2005] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent studies indicate that chronic treatment with the mood-stabilizing drugs lithium and valproate produces a neuroprotective effect against excitotoxicity. In this study, we aimed to determine whether inhibiting oxidative damage plays a role in a neuroprotective effect of lithium and valproate against excitotoxicity. METHODS Intracellular free calcium concentration was measured with the fluorescent calcium ion indicator fluo-3. Malondialdehyde, an end product derived from peroxidation of polyunsaturated fatty acid, and protein carbonyls were used to assess oxidative damage to lipid and protein. Excitotoxicity was assayed by measuring cell viability with the MTT [3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide] method and by measuring deoxyribonucleic acid (DNA) fragmentation with TUNEL (terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling) staining. RESULTS We found that chronic treatment with lithium and valproate at their therapeutically relevant concentrations significantly inhibited the glutamate-induced increase of intracellular free calcium concentration, lipid peroxidation, protein oxidation, DNA fragmentation, and cell death in primary cultured rat cerebral cortical cells. This treatment had no effect on basal intracellular free calcium concentration, lipid peroxidation, protein oxidation, DNA fragmentation, and cell death. CONCLUSIONS Our results suggest that chronic treatment with lithium and valproate inhibits oxidative damage to lipid and protein and in turn produces a neuroprotective effect against excitotoxicity.
Collapse
Affiliation(s)
- Li Shao
- The Vivian Rakoff Mood Disorders Laboratory, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
244
|
Dokucu ME, Yu L, Taghert PH. Lithium- and valproate-induced alterations in circadian locomotor behavior in Drosophila. Neuropsychopharmacology 2005; 30:2216-24. [PMID: 15956996 DOI: 10.1038/sj.npp.1300764] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lithium and valproate are commonly used mood stabilizers, but their action pathways are not clearly understood. They also suffer from multiple toxic effects that limit their utility. Elucidating their action mechanisms could lead to newer agents and better understanding of the etiopathogenesis of bipolar disorder. We have expanded the study of signaling mechanisms of lithium and valproate by using Drosophila circadian locomotor activity as a robust behavioral assay that is amenable to genetic manipulations. We demonstrate that lithium affects the circadian system of Drosophila similarly to what has been reported in the mammalian studies. We show that lithium and valproate share effects on the circadian locomotor activity of Drosophila: they lengthen the period of circadian rhythms and increase arrhythmicity. Valproate exerts these effects in a weaker fashion than does lithium. We also tested the circadian alterations in multiple mutant lines of Drosophila bearing defects in the GSK-3beta gene and other clock genes in response to lithium administration. We show that lithium partially rescues the shortening of circadian period when the GSK-3beta gene is overexpressed only in specific circadian pacemaker neurons, thus implicating GSK-3beta as a component in lithium's effect on the circadian oscillator. Moreover, lithium also lengthens the period in GSK-3beta heterozygous mutants and doubletime long mutants. These results establish a basis for using Drosophila genetics to investigate more fully lithium and valproate action mechanisms.
Collapse
Affiliation(s)
- Mehmet E Dokucu
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
| | | | | |
Collapse
|
245
|
|
246
|
Pan T, Li X, Xie W, Jankovic J, Le W. Valproic acid-mediated Hsp70 induction and anti-apoptotic neuroprotection in SH-SY5Y cells. FEBS Lett 2005; 579:6716-20. [PMID: 16313906 DOI: 10.1016/j.febslet.2005.10.067] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 10/27/2005] [Accepted: 10/27/2005] [Indexed: 11/25/2022]
Abstract
Valproic acid (VPA), an anticonvulsant and mood-stabilizing drug, has been reported to exert neuroprotection against a variety of insults. We now show that VPA attenuates rotenone (a potent complex I inhibitor)-induced apoptosis through the induction of heat shock protein 70, which may interact with apoptotic-protease-activating factor 1. Activation of p-Akt, p-Bcl-2, as well as p-Erk1/2 by VPA may be co-contributors to the protection.
Collapse
Affiliation(s)
- Tianhong Pan
- Parkinson Disease Research Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
247
|
Liang ZQ, Wang XX, Wang Y, Chuang DM, DiFiglia M, Chase TN, Qin ZH. Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity. Neurobiol Dis 2005; 20:562-73. [PMID: 15922606 DOI: 10.1016/j.nbd.2005.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 03/08/2005] [Accepted: 04/07/2005] [Indexed: 11/29/2022] Open
Abstract
The present studies evaluated the potential contribution of Bcl-2, p53, and c-Myc to the differential vulnerability of striatal neurons to the excitotoxin quinolinic acid (QA). In normal rat striatum, Bcl-2 immunoreactivity (Bcl-2-i) was most intense in large aspiny interneurons including choline acetyltransferase positive (CAT+) and parvalbumin positive (PARV+) neurons, but low in a majority of medium-sized neurons. In human brain, intense Bcl-2-i was seen in large striatal neurons but not in medium-sized spiny projection neurons. QA produced degeneration of numerous medium-sized neurons, but not those enriched in Bcl-2-i. Many Bcl-2-i-enriched interneurons including those with CAT+ and PARV+ survived QA injection, while medium-sized neurons labeled for calbindin D-28K (CAL D-28+) did not. In addition, proapoptotic proteins p53-i and c-Myc-i were robustly induced in medium-sized neurons, but not in most large neurons. The selective vulnerability of striatal medium spiny neurons to degeneration in a rodent model of Huntington's disease appears to correlate with their low levels of Bcl-2-i and high levels of induced p53-i and c-Myc-i.
Collapse
Affiliation(s)
- Zhong-Qin Liang
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215007, P.R. China
| | | | | | | | | | | | | |
Collapse
|
248
|
Umbach JA, Zhao Y, Gundersen CB. Lithium enhances secretion from large dense-core vesicles in nerve growth factor-differentiated PC12 cells. J Neurochem 2005; 94:1306-14. [PMID: 16111479 DOI: 10.1111/j.1471-4159.2005.03277.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considerable attention has been focused on the therapeutic role of lithium (Li) in bipolar disorders. Although no consensus has emerged, Li presumably influences the behavior of neurons that regulate mood and behavior. Using PC12 cells to study cellular and molecular actions of Li, we previously reported that Li modulates the expression of proteins associated with large dense-core vesicles (LDCVs; organelles typically containing monoamines, neuropeptides and other cargo proteins). The current investigation indicates that this enhanced expression of LDCV proteins correlates with an altered secretory phenotype in Li-treated cells. Immunoblotting detects significant increases in the cellular content and secretion of the LDCV cargo proteins chromogranin B and secretogranin II. Amperometry reveals an increase of spike number elicited by K+-depolarization of Li-treated cells but no change of spike amplitude or kinetics. Electron microscopy reveals no significant change in LDCV number per unit area in Li-treated cells. However, there is a significant increase (about 15%) in the diameter of LDCVs after Li. Thus, Li induces changes in the properties of LDCVs that culminate in augmented regulated secretion in nerve growth factor-differentiated PC12 cells. These results extend our understanding of Li-dependent changes of cellular function that may be germane to the therapeutic action of Li.
Collapse
Affiliation(s)
- Joy A Umbach
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-177019, USA.
| | | | | |
Collapse
|
249
|
Castro LMR, Gallant M, Niles LP. Novel targets for valproic acid: up-regulation of melatonin receptors and neurotrophic factors in C6 glioma cells. J Neurochem 2005; 95:1227-36. [PMID: 16313512 DOI: 10.1111/j.1471-4159.2005.03457.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Valproic acid (VPA) is a potent anti-epileptic and effective mood stabilizer. It is known that VPA enhances central GABAergic activity and activates the mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) pathway. It can also inhibit various isoforms of the enzyme, histone deacetylase (HDAC), which is associated with modulation of gene transcription. Recent in vivo studies indicate a neuroprotective role for VPA, which has been found to up-regulate the expression of brain-derived neurotrophic factor (BDNF) in the rat brain. Given the interaction between the pineal hormone, melatonin, and GABAergic systems in the central nervous system, the effects of VPA on the expression of the mammalian melatonin receptor subtypes, MT1 and MT2, were examined in rat C6 glioma cells. The effects of VPA on the expression of glial cell line-derived neurotrophic factor (GDNF) and BDNF were also examined. RT-PCR studies revealed a significant induction of melatonin MT1 receptor mRNA in C6 cells following treatment with 3 or 5 mm VPA for 24 h or 5 mm VPA for 48 h. Western analysis and immunocytochemical detection confirmed that the VPA-induced increase in MT1 mRNA results in up-regulation of MT1 protein expression. Blockade of the MAPK-ERK pathway by PD98059 enhanced the effect of VPA on MT1 expression, suggesting a negative role for this pathway in MT1 receptor regulation. In addition, significant increases in BDNF, GDNF and HDAC mRNA expression were observed after treatment with VPA for 24 or 48 h. Taken together, the present findings suggest that the neuroprotective properties of VPA involve modulation of neurotrophic factors and receptors for melatonin, which is also thought to play a role in neuroprotection. Moreover, the foregoing suggests that combinations of VPA and melatonin could provide novel therapeutic strategies in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Lyda M Rincón Castro
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
250
|
Bosetti F, Bell JM, Manickam P. Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Res Bull 2005; 65:331-8. [PMID: 15811599 DOI: 10.1016/j.brainresbull.2005.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 01/05/2005] [Accepted: 01/07/2005] [Indexed: 11/25/2022]
Abstract
Valproic acid has been used to treat mania and bipolar disorder, but its mechanism of action is not agreed on. We used rat genome U34A Affymetrix oligonucleotide microarrays, containing 8799 known probesets, to determine the effect of 30-day daily intraperitoneal administration of valproate (200mg/kg) on rat brain gene expression. We found 87 down-regulated genes and 34 up-regulated genes of at least a 1.4-fold change in valproate-treated compared to control rats. The experiments were done on five independent samples for each group, each in duplicate. The genes affected are known to be involved in a variety of pathways, including synaptic transmission, ion channels and transport, G-protein signaling, lipid, glucose and amino-acid metabolism, transcriptional and translational regulation, phosphoinositol cycle, protein kinases and phosphatases, and apoptosis. Our results suggest that the therapeutic effect of valproate may involve the modulation of multiple signaling pathways.
Collapse
Affiliation(s)
- Francesca Bosetti
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Bldg. 10, Rm. 6N202, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|