201
|
Muramatsu J, Arihara Y, Yoshida M, Kubo T, Nakamura H, Ishikawa K, Fujita H, Sugita S, Konno T, Kojima T, Kawano Y, Kobune M, Takada K. Gap junction beta-4 accelerates cell cycle progression and metastasis through MET-AKT activation in pancreatic cancer. Cancer Sci 2024; 115:1564-1575. [PMID: 38342100 PMCID: PMC11093205 DOI: 10.1111/cas.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024] Open
Abstract
Despite continuing advances in the development of effective new therapies, including immunotherapies, the prognosis of pancreatic cancer remains extremely poor. Gap junction proteins have become attractive targets for potential cancer therapy. However, the role of gap junction beta-4 (GJB4) protein remains unexplored in pancreatic cancer. Through bioinformatic analyses we discovered pancreatic cancer tissues showed higher levels of GJB4 transcripts compared to normal pancreatic tissues and this had a negative effect on overall survival in patients that had pancreatic cancer. The high expression of nuclear GJB4 was identified as a negative prognostic factor in such patients. Knockdown of GJB4 in cultured pancreatic cancer cells resulted in G0/G1 arrest followed by decreased cell proliferation and suppression of metastatic potential. The overexpression of GJB4 accelerated cell proliferation, migration, and invasion in a SUIT-2 cell line, whereas MET inhibitor canceled the acceleration. GJB4 suppression with siRNA significantly inhibited tumor growth in a mouse xenograft model. Mechanistically, suppression of GJB4 inhibited MET-AKT activities. Such data suggest that targeting the GJB4-MET axis could represent a promising new therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Joji Muramatsu
- Department of Medical OncologySapporo Medical University School of MedicineSapporoJapan
| | - Yohei Arihara
- Department of Medical OncologySapporo Medical University School of MedicineSapporoJapan
| | - Makoto Yoshida
- Department of Medical OncologySapporo Medical University School of MedicineSapporoJapan
| | - Tomohiro Kubo
- Department of Medical OncologySapporo Medical University School of MedicineSapporoJapan
| | - Hajime Nakamura
- Department of Medical OncologySapporo Medical University School of MedicineSapporoJapan
| | - Kazuma Ishikawa
- Department of Medical OncologySapporo Medical University School of MedicineSapporoJapan
| | - Hiromi Fujita
- Department of Surgical PathologySapporo Medical University School of MedicineSapporoJapan
| | - Shintaro Sugita
- Department of Surgical PathologySapporo Medical University School of MedicineSapporoJapan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontiers MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontiers MedicineSapporo Medical University School of MedicineSapporoJapan
| | - Yutaka Kawano
- Department of Community Medicine and Medical ScienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Masayoshi Kobune
- Department of HematologySapporo Medical University School of MedicineSapporoJapan
| | - Kohichi Takada
- Department of Medical OncologySapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
202
|
Werner W, Kuzminskaya M, Lurje I, Tacke F, Hammerich L. Overcoming Resistance to Immune Checkpoint Blockade in Liver Cancer with Combination Therapy: Stronger Together? Semin Liver Dis 2024; 44:159-179. [PMID: 38806159 PMCID: PMC11245330 DOI: 10.1055/a-2334-8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Primary liver cancer, represented mainly by hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (CCA), is one of the most common and deadliest tumors worldwide. While surgical resection or liver transplantation are the best option in early disease stages, these tumors often present in advanced stages and systemic treatment is required to improve survival time. The emergence of immune checkpoint inhibitor (ICI) therapy has had a positive impact especially on the treatment of advanced cancers, thereby establishing immunotherapy as part of first-line treatment in HCC and CCA. Nevertheless, low response rates reflect on the usually cold or immunosuppressed tumor microenvironment of primary liver cancer. In this review, we aim to summarize mechanisms of resistance leading to tumor immune escape with a special focus on the composition of tumor microenvironment in both HCC and CCA, also reflecting on recent important developments in ICI combination therapy. Furthermore, we discuss how combination of ICIs with established primary liver cancer treatments (e.g. multikinase inhibitors and chemotherapy) as well as more complex combinations with state-of-the-art therapeutic concepts may reshape the tumor microenvironment, leading to higher response rates and long-lasting antitumor immunity for primary liver cancer patients.
Collapse
Affiliation(s)
- Wiebke Werner
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Maria Kuzminskaya
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
203
|
Teishima J, Hara T, Tobe T, Hirata J, Ueki H, Wakita N, Shiraishi Y, Okamura Y, Bando Y, Terakawa T, Furukawa J, Harada KI, Nakano Y, Fujisawa M. Therapeutic outcome of combination therapy using immune-checkpoint inhibitors and tyrosine kinase inhibitors for metastatic non-clear-cell renal cell carcinoma. Can Urol Assoc J 2024; 18:E162-E166. [PMID: 38319607 PMCID: PMC11152592 DOI: 10.5489/cuaj.8548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
INTRODUCTION We aimed to clarify the therapeutic outcome of combination therapy using immune-checkpoint inhibitors (ICIs) and/or tyrosine kinase inhibitors (TKIs) for meta-static non-clear-cell renal cell carcinoma (nccRCC). METHODS We have been retrospectively investigating the therapeutic efficacy and prognosis in 36 patients with metastatic nccRCC undergoing combination therapy using two ICIs, ipilimumab plus nivolumab (ICI-ICI), and ICI plus TKI (ICI-TKI), at Kobe University and affiliated institutions since 2018. Progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and adverse event (AE) were compared. RESULTS The first-line regimen was ICI-ICI in 26 cases and ICI-TKI in 10 cases. The ORRs in the ICI-ICI and ICI-TKI groups were 34.6 and 30.0%, respectively (p=0.9433). The 50% PFS for the ICI-TKI group was 9.7 months, significantly longer than that for the ICI-ICI group (4.6 months, p=0.0499), and there was no significant difference in OS between groups (p=0.3984). There was no significant difference in the occurrence rate of AE for below grade 2 (p=0.8535), nor above grade 3 (p=0.3786) between the ICI-ICI and ICI-TKI groups. CONCLUSIONS From our analysis of real-world data, a better outcome of PFS was expected in the ICI-TKI group compared with that in the ICI-ICI group, while there was no significant difference in OS or ORR.
Collapse
Affiliation(s)
- Jun Teishima
- Department of Surgery, Division of Urology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Takuto Hara
- Department of Surgery, Division of Urology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Taisuke Tobe
- Department of Surgery, Division of Urology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Junichiro Hirata
- Department of Surgery, Division of Urology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Hideto Ueki
- Department of Surgery, Division of Urology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Naoto Wakita
- Department of Surgery, Division of Urology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Yusuke Shiraishi
- Department of Surgery, Division of Urology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Yasuyoshi Okamura
- Department of Surgery, Division of Urology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Yukari Bando
- Department of Surgery, Division of Urology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Tomoaki Terakawa
- Department of Surgery, Division of Urology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Junya Furukawa
- Department of Surgery, Division of Urology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Ken-ichi Harada
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuzo Nakano
- Department of Surgery, Division of Urology, Kobe University, Graduate School of Medicine, Kobe, Japan
| | - Masato Fujisawa
- Department of Surgery, Division of Urology, Kobe University, Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
204
|
Goodstein T, Goldberg I, Acikgoz Y, Hasanov E, Srinivasan R, Singer EA. Special populations in metastatic renal cell carcinoma. Curr Opin Oncol 2024; 36:186-194. [PMID: 38573208 DOI: 10.1097/cco.0000000000001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW This review focuses on special populations poorly represented in current evidence-based practice for metastatic renal cell carcinoma (mRCC). This includes the elderly and frail, patients on immunosuppression or with autoimmune diseases, patients with brain, liver, and/or bone metastases, and RCC with sarcomatoid features. RECENT FINDINGS Certain populations are poorly represented in current trials for mRCC. Patients with central nervous system (CNS) metastases are often excluded from first-line therapy trials. Modern doublet systemic therapy appears to benefit patients with bone or liver metastases, but data supporting this conclusion is not robust. Post-hoc analyses on patients with sarcomatoid differentiation have shown improved response to modern doublet therapy over historical treatments. The elderly are underrepresented in current clinical trials, and most trials exclude all but high-performing (nonfrail) patients, though true frailty is likely poorly captured using the current widely adopted indices. It is difficult to make conclusions about the efficacy of modern therapy in these populations from subgroup analyses. Data from trials on other malignancies in patients with autoimmune diseases or solid organ transplant recipients on immunosuppression suggest that immune checkpoint inhibitors (ICIs) may still have benefit, though at the risk of disease flare or organ rejection. The efficacy of ICIs has not been demonstrated specifically for RCC in this group of patients. SUMMARY The elderly, frail, and immunosuppressed, those with tumors having aggressive histologic features, and patients with brain, bone, and/or liver metastases represent the populations least understood in the modern era of RCC treatment.
Collapse
Affiliation(s)
- Taylor Goodstein
- Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ilana Goldberg
- Division of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Yusuf Acikgoz
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Elshad Hasanov
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ramaprasad Srinivasan
- Molecular Therapeutics Section, Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric A Singer
- Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
205
|
Matsushita Y, Kojima T, Osawa T, Sazuka T, Hatakeyama S, Goto K, Numakura K, Yamana K, Kandori S, Fujita K, Ueda K, Tanaka H, Tomida R, Kurahashi T, Bando Y, Nishiyama N, Kimura T, Yamashita S, Kitamura H, Miyake H. Prognostic outcomes in patients with metastatic renal cell carcinoma receiving second-line treatment with tyrosine kinase inhibitor following first-line immune-oncology combination therapy. Int J Urol 2024; 31:526-533. [PMID: 38240169 DOI: 10.1111/iju.15396] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/04/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVES This study aimed to assess the prognostic outcomes in mRCC patients receiving second-line TKI following first-line IO combination therapy. METHODS This study retrospectively included 243 mRCC patients receiving second-line TKI after first-line IO combination therapy: nivolumab plus ipilimumab (n = 189, IO-IO group) and either pembrolizumab plus axitinib or avelumab plus axitinib (n = 54, IO-TKI group). Oncological outcomes between the two groups were compared, and prognostication systems were developed for these patients. RESULTS In the IO-IO and IO-TKI groups, the objective response rates to second-line TKI were 34.4% and 25.9% (p = 0.26), the median PFS periods were 9.7 and 7.1 months (p = 0.79), and the median OS periods after the introduction of second-line TKI were 23.1 and 33.5 months (p = 0.93), respectively. Among the several factors examined, non-CCRCC, high CRP, and low albumin levels were identified as independent predictors of both poor PFS and OS by multivariate analyses. It was possible to precisely classify the patients into 3 risk groups regarding both PFS and OS according to the positive numbers of the independent prognostic factors. Furthermore, the c-indices of this study were superior to those of previous systems as follows: 0.75, 0.64, and 0.61 for PFS prediction and 0.76, 0.70, and 0.65 for OS prediction by the present, IMDC, and MSKCC systems, respectively. CONCLUSIONS There were no significant differences in the prognostic outcomes after introducing second-line TKI between the IO-IO and IO-TKI groups, and the histopathology, CRP and albumin levels had independent impacts on the prognosis in mRCC patients receiving second-line TKI, irrespective of first-line IO combination therapies.
Collapse
Affiliation(s)
- Yuto Matsushita
- Department of Urology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takahiro Kojima
- Department of Urology, Aichi Cancer Center, Nagoya, Aichi, Japan
| | - Takahiro Osawa
- Department of Renal and Genitourinary Surgery, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomokazu Sazuka
- Department of Urology, Graduate School of Medicine and School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Kazuyuki Numakura
- Department of Urology, Akita University Graduate School of Medicine, Akita, Akita, Japan
| | - Kazutoshi Yamana
- Department of Urology and Molecular Oncology, Niigata University Graduate school of medical and dental sciences, Niigata, Niigata, Japan
| | - Shuya Kandori
- Department of Urology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Kosuke Ueda
- Department of Urology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hajime Tanaka
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryotaro Tomida
- Department of Urology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Tokushima, Japan
| | - Toshifumi Kurahashi
- Department of Urology, Hyogo Prefectural Cancer Center, Akashi, Hyogo, Japan
| | - Yukari Bando
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Naotaka Nishiyama
- Department of Urology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shimpei Yamashita
- Department of Urology, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Hiroshi Kitamura
- Department of Urology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Hideaki Miyake
- Department of Urology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
206
|
Roskoski R. Combination immune checkpoint and targeted protein kinase inhibitors for the treatment of renal cell carcinomas. Pharmacol Res 2024; 203:107181. [PMID: 38614375 DOI: 10.1016/j.phrs.2024.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Kidney cancers comprise about 3% of all new malignancies in the United States. Renal cell carcinomas (RCCs) are the most common type of renal malignancy making up about 85% of kidney cancer cases. Signs and symptoms of renal cell carcinomas can result from local tumor growth, paraneoplastic syndromes, or distant metastases. The classic triad of presentation with flank pain, hematuria, and a palpable abdominal mass occurs in fewer than 10% of patients. Most diagnoses result from incidental imaging findings (ultrasonography or abdominal CT imaging) performed for another reason. Localized disease is treated by partial nephrectomy, total nephrectomy, or ablation (tumor destruction with heat or cold). When the tumors have metastasized, systemic therapy with protein-tyrosine kinase antagonists including sorafenib, sunitinib, pazopanib, and tivozanib that target vascular endothelial, platelet-derived, fibroblast, hepatocyte, and stem cell factor growth factor receptors (VEGFR, PDGFR, FGFR, MET, and Kit) were prescribed after 2005. The monoclonal antibody immune checkpoint inhibitor nivolumab (targeting programed cell death protein 1, PD1) was approved for the treatment of RCCs in 2015. It is usually used now in combination with ipilimumab (targeting CTLA-4) or cabozantinib (a multikinase blocker). Other combination therapies include pembrolizumab (targeting PD1) and axitinib (a VEGFR and PDGFR blocker) or lenvatinib (a multikinase inhibitor). Since the KEYNOTE-426 clinical trial, the use of immune checkpoint inhibitors in combination with protein-tyrosine kinase inhibitors is now the standard of care for most patients with metastatic renal cell carcinomas and monotherapies are used only in those individuals who cannot receive or tolerate immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
207
|
Kang Y, Li H, Liu Y, Li Z. Regulation of VEGF-A expression and VEGF-A-targeted therapy in malignant tumors. J Cancer Res Clin Oncol 2024; 150:221. [PMID: 38687357 PMCID: PMC11061008 DOI: 10.1007/s00432-024-05714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Vascular endothelial growth factor A (VEGF-A), a highly conserved dimeric glycoprotein, is a key regulatory gene and a marker molecule of angiogenesis. The upregulation of VEGF-A facilitates the process of tumor vascularization, thereby fostering the initiation and progression of malignant neoplasms. Many genes can adjust the angiogenesis of tumors by changing the expression of VEGF-A. In addition, VEGF-A also exhibits immune regulatory properties, which directly or indirectly suppresses the antitumor activity of immune cells. The emergence of VEGF-A-targeted therapy alone or in rational combinations has revolutionized the treatment of various cancers. This review discusses how diverse mechanisms in various tumors regulate VEGF-A expression to promote tumor angiogenesis and the role of VEGF-A in tumor immune microenvironment. The application of drugs targeting VEGF-A in tumor therapy is also summarized including antibody molecule drugs and traditional Chinese medicine.
Collapse
Affiliation(s)
- Yan Kang
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Huiting Li
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yiping Liu
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, National Clinical Research Center for Geriatric Disorders, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
208
|
Barata P, Gulati S, Elliott A, Hammers HJ, Burgess E, Gartrell BA, Darabi S, Bilen MA, Basu A, Geynisman DM, Dawson NA, Zibelman MR, Zhang T, Wei S, Ryan CJ, Heath EI, Poorman KA, Nabhan C, McKay RR. Renal cell carcinoma histologic subtypes exhibit distinct transcriptional profiles. J Clin Invest 2024; 134:e178915. [PMID: 38652565 PMCID: PMC11142736 DOI: 10.1172/jci178915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Molecular profiling of clear cell renal cell carcinoma (ccRCC) tumors of patients in a clinical trial has identified distinct transcriptomic signatures with predictive value, yet data in non-clear cell variants (nccRCC) are lacking. We examined the transcriptional profiles of RCC tumors representing key molecular pathways, from a multi-institutional, real-world patient cohort, including ccRCC and centrally reviewed nccRCC samples. ccRCC had increased angiogenesis signature scores compared with the heterogeneous group of nccRCC tumors, while cell cycle, fatty acid oxidation/AMPK signaling, and fatty acid synthesis/pentose phosphate signature scores were increased in one or more nccRCC subtypes. Among both ccRCC and nccRCC tumors, T effector scores statistically correlated with increased immune cell infiltration and were more commonly associated with immunotherapy-related markers (PD-L1+/TMBhi/MSIhi). In conclusion, this study provides evidence of differential gene transcriptional profiles among ccRCC versus nccRCC tumors, providing insights for optimizing personalized and histology-specific therapeutic strategies for patients with advanced RCC.
Collapse
Affiliation(s)
- Pedro Barata
- Tulane Medical School, New Orleans, Louisiana, USA
- University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | | | | | - Hans J. Hammers
- Kidney Cancer Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Earle Burgess
- Levine Cancer Institute Atrium Health, Charlotte, North Carolina, USA
| | - Benjamin A. Gartrell
- Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sourat Darabi
- Hoag Memorial Presbyterian Hospital, Newport Beach, California, USA
| | - Mehmet A. Bilen
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Arnab Basu
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Nancy A. Dawson
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | - Tian Zhang
- Kidney Cancer Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shuanzeng Wei
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | - Elisabeth I. Heath
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | | | | | - Rana R. McKay
- Moores Cancer Center, UCSD, San Diego, California, USA
| |
Collapse
|
209
|
Wang S, Lv H, Yu J, Chen M. Immune-related adverse events associated with first-line immune checkpoint inhibitors for metastatic renal cell carcinoma: A systematic review and network meta-analysis. Int Immunopharmacol 2024; 131:111884. [PMID: 38518592 DOI: 10.1016/j.intimp.2024.111884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND In the realm of metastatic renal cell carcinoma (mRCC), the introduction of immune checkpoint inhibitors (ICIs) has revolutionized treatment paradigms. Despite their effectiveness, the comprehensive safety profile of these therapies remains inadequately explored. This network meta-analysis aims to comparing the safety profiles of ICI-based treatments in mRCC, offering vital insights that could lead to the optimization of treatment strategies and improvement of patient care. METHODS We conducted a comprehensive search of PubMed, Cochrane Library, Embase, Web of Science, ClinicalTrials.gov, Google Schola, OpenGrey and Scopus through November 1, 2023. The risk of bias assessment was performed using the Risk of Bias version 2 tool. RESULTS Seven randomized controlled trials (RCTs) with a total of 5976 patients were included for data analysis. The risk of bias results showed that all RCTs were considered "some concerns". The probability of hypothyroidism (surface under the cumulative ranking curve (SUCRA) = 0.981), hyperthyroidism (SUCRA = 0.983) and dermatologic immune-related adverse events (irAEs) (SUCRA = 0.955) in the Nivolumab + Cabozantinib ranked the first. The Avelumab + Axitinib had the highest incidence of adrenal insufficiency (AI) (SUCRA = 0.976), hepatitis (SUCRA = 0.937) and colitis (SUCRA = 0.864). The Nivolumab + Ipilimumab exhibited the highest incidence of pneumonitis (SUCRA = 0.755). Pembrolizumab + Lenvatinib had the highest incidence of nephritic irAEs (SUCRA = 0.788). The ICI-based group showed a higher incidence of hypothyroidism, hyperthyroidism, dermatologic irAEs, hepatitis and nephritic irAEs than sunitinib. However, the confidence in the evidence regarding the impact of ICI-based treatments on AI, pneumonia, and colitis remains limited. CONCLUSION The analysis focused on the probability of irAEs occurrence in each system when mRCC patients were treated with different ICI-based therapies, potentially offering significant value for guiding clinical prevention, early diagnosis, and management of irAEs. The limitations of the study included the potential heterogeneity and low certainty of part of the evidence.
Collapse
Affiliation(s)
- Shan Wang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongwei Lv
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miao Chen
- Emergency department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
210
|
Shenoy NK. Derivative survival analyses: Analysis methods to derive survival outcomes for the remainder patient cohort without individual patient data. Cell Rep Med 2024; 5:101500. [PMID: 38582084 PMCID: PMC11031426 DOI: 10.1016/j.xcrm.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/28/2023] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
It is not uncommon for industry-sponsored randomized controlled trials to publish survival curves/data for the overall patient cohort("A+B") and for a favorable subgroup ("A") pre-specified or post hoc, but not the survival curves/data for the remainder cohort("B"). Consequently, following regulatory approval of the intervention treatment for the overall patient population if the primary endpoint is met, it is common for cancer patients representing the remainder cohort (B) to be treated as per the results of the overall cohort (A+B). To overcome this important issue in clinical decision-making, this study aimed to identify methods to accurately derive the survival curves and/or hazard ratio (95% confidence interval) for the remainder cohort (B), utilizing published curves and hazard ratios (95% confidence intervals) of the overall (A+B) and favorable subgroup (A) cohorts. The analysis methods (method I and method II) presented here, termed "derivative survival analyses," enable accurate assessment of survival outcomes in the remainder cohort without individual patient data.
Collapse
Affiliation(s)
- Niraj K Shenoy
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
211
|
Xie H, Wang S, Niu D, Yang C, Bai H, Lei T, Liu H. A bibliometric analysis of the research landscape on vascular normalization in cancer. Heliyon 2024; 10:e29199. [PMID: 38617971 PMCID: PMC11015447 DOI: 10.1016/j.heliyon.2024.e29199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024] Open
Abstract
Tumor vascular normalization profoundly affects the advancement of cancer therapy. Currently, with the rapid increase in research on tumor vascular normalization, few analytical and descriptive studies have investigated the trends in its development, key research power, present research hotspots, and future outlooks. In this study, articles and reviews published between January 1, 2003, and October 29, 2022 were retrieved from Web of Science database. Subsequently, published research trends, countries/regions, institutions, authors, journals, references, and keywords were analyzed based on traditional bibliometric laws (such as Price's exponential growth, Bradford's, Lotka's, and Zipf's). Our results showed that the last two decades have seen an increase in tumor vascular normalization research. USA emerged as the preeminent contributor to the field, boasting the highest H-index and accruing the greatest quantity of publications and citations. Among institutions, Massachusetts General Hospital and Harvard University made significant contributions, and Professor RK Jain was identified as a key leader in this field. Out of 583 academic journals, Cancer Research and Clinical Cancer Research published the most articles on vascular normalization. The research focal points in the field primarily include immunotherapy, tumor microenvironments, nanomedicine, and emerging frontier themes such as metabolism and mechanomedicine. Concurrently, the challenges of vascular normalization in cancer are discussed as well. In conclusion, the study presented a thorough analysis of the literature covering the past 20 years on vascular normalization in cancer, highlighting leading countries, institutions, authors, journals, and the emerging research focal points in this field. Future studies will advance the ongoing efforts in the field of tumor vascular normalization, aiming to enhance our ability to effectively manage and treat cancer.
Collapse
Affiliation(s)
- Hanghang Xie
- Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Shan Wang
- Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Dongling Niu
- Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Chao Yang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Hongmei Bai
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Ting Lei
- Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Hongli Liu
- Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| |
Collapse
|
212
|
Lin L, Gong S, Deng C, Zhang G, Wu J. PTK6: An emerging biomarker for prognosis and immunotherapeutic response in clear cell renal carcinoma (KIRC). Heliyon 2024; 10:e29001. [PMID: 38596018 PMCID: PMC11002233 DOI: 10.1016/j.heliyon.2024.e29001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Kidney renal clear cell carcinoma (KIRC), one of the most prevalent form of kidney carcinoma, is highly aggressive cancer known for significant immune infiltration and high mortality rates. The absence of sensitivity to traditional therapy has spurred the search for new treatments. Protein Tyrosine Kinase 6 (PTK6) is implicated in promoting cancer growth, spread, and metastasis. Our review of The Cancer Genome Atlas database revealed PTK6 overexpression in KIRC, though its specific role in this cancer type was unclear. We investigated PTK6's cancer-promoting roles in KIRC using the database and confirmed our findings with patient-derived tissues. Our analysis showed that elevated PTK6 expression is linked to worse outcomes and higher levels of immune infiltration. It also correlates positively with neo-antigens (NEO) and DNA ploidy changes in KIRC. This research delves into PTK6's role in KIRC development, suggesting PTK6 as a possible biomarker for prognosis and treatment in KIRC.
Collapse
Affiliation(s)
- Lizhen Lin
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siming Gong
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Deng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guanxiong Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China
- Furong Laboratory, Changsha, Hunan, China
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
213
|
Yang S, Yang X, Hou Z, Zhu L, Yao Z, Zhang Y, Chen Y, Teng J, Fang C, Chen S, Jia M, Liu Z, Kang S, Chen Y, Li G, Niu Y, Cai Q. Rationale for immune checkpoint inhibitors plus targeted therapy for advanced renal cell carcinoma. Heliyon 2024; 10:e29215. [PMID: 38623200 PMCID: PMC11016731 DOI: 10.1016/j.heliyon.2024.e29215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Renal cell carcinoma (RCC) is a frequent urological malignancy characterized by a high rate of metastasis and lethality. The treatment strategy for advanced RCC has moved through multiple iterations over the past three decades. Initially, cytokine treatment was the only systemic treatment option for patients with RCC. With the development of medicine, antiangiogenic agents targeting vascular endothelial growth factor and mammalian target of rapamycin and immunotherapy, immune checkpoint inhibitors (ICIs) have emerged and received several achievements in the therapeutics of advanced RCC. However, ICIs have still not brought completely satisfactory results due to drug resistance and undesirable side effects. For the past years, the interests form researchers have been attracted by the combination of ICIs and targeted therapy for advanced RCC and the angiogenesis and immunogenic tumor microenvironmental variations in RCC. Therefore, we emphasize the potential principle and the clinical progress of ICIs combined with targeted treatment of advanced RCC, and summarize the future direction.
Collapse
Affiliation(s)
- Siwei Yang
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xianrui Yang
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zekai Hou
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Liang Zhu
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhili Yao
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | | | - Yanzhuo Chen
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jie Teng
- Affiliated Hospital of Hebei University, Baoding, China
| | - Cheng Fang
- Taihe County People's Hospital, Anhui, China
| | - Songmao Chen
- Department of Urology, Fujian Provincial Hospital, Fujian, China
- Provincial Clinical Medical College of Fujian Medical University, Fujian, China
| | - Mingfei Jia
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Hebei, China
| | - Zhifei Liu
- Department of Urology, Tangshan People's Hospital, Hebei, China
| | - Shaosan Kang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Hebei, China
| | - Yegang Chen
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gang Li
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qiliang Cai
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
214
|
Soares A, Monteiro FSM, da Trindade KM, Silva AGE, Cardoso APG, Sasse AD, Fay AP, Carneiro APCD, Alencar Junior AM, de Andrade Mota AC, Santucci B, da Motta Girardi D, Herchenhorn D, Araújo DV, Jardim DL, Bastos DA, Rosa DR, Schutz FA, Kater FR, da Silva Marinho F, Maluf FC, de Oliveira FNG, Vidigal F, Morbeck IAP, Rinck Júnior JA, Costa LAGA, Maia MCDF, Zereu M, Freitas MRP, Dias MSF, Tariki MS, Muniz P, Beato PMM, Lages PSM, Velho PI, de Carvalho RS, Mariano RC, de Araújo Cavallero SR, Oliveira TM, Souza VC, Smaletz O, de Cássio Zequi S. Advanced renal cell carcinoma management: the Latin American Cooperative Oncology Group (LACOG) and the Latin American Renal Cancer Group (LARCG) consensus update. J Cancer Res Clin Oncol 2024; 150:183. [PMID: 38594593 PMCID: PMC11003910 DOI: 10.1007/s00432-024-05663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/22/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE Renal cell carcinoma is an aggressive disease with a high mortality rate. Management has drastically changed with the new era of immunotherapy, and novel strategies are being developed; however, identifying systemic treatments is still challenging. This paper presents an update of the expert panel consensus from the Latin American Cooperative Oncology Group and the Latin American Renal Cancer Group on advanced renal cell carcinoma management in Brazil. METHODS A panel of 34 oncologists and experts in renal cell carcinoma discussed and voted on the best options for managing advanced disease in Brazil, including systemic treatment of early and metastatic renal cell carcinoma as well as nonclear cell tumours. The results were compared with the literature and graded according to the level of evidence. RESULTS Adjuvant treatments benefit patients with a high risk of recurrence after surgery, and the agents used are pembrolizumab and sunitinib, with a preference for pembrolizumab. Neoadjuvant treatment is exceptional, even in initially unresectable cases. First-line treatment is mainly based on tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs); the choice of treatment is based on the International Metastatic Database Consortium (IMCD) risk score. Patients at favourable risk receive ICIs in combination with TKIs. Patients classified as intermediate or poor risk receive ICIs, without preference for ICI + ICIs or ICI + TKIs. Data on nonclear cell renal cancer treatment are limited. Active surveillance has a place in treating favourable-risk patients. Either denosumab or zoledronic acid can be used for treating metastatic bone disease. CONCLUSION Immunotherapy and targeted therapy are the standards of care for advanced disease. The utilization and sequencing of these therapeutic agents hinge upon individual risk scores and responses to previous treatments. This consensus reflects a commitment to informed decision-making, drawn from professional expertise and evidence in the medical literature.
Collapse
Affiliation(s)
- Andrey Soares
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil.
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
- Centro Paulista de Oncologia/Oncoclínicas, São Paulo, SP, Brazil.
| | - Fernando Sabino Marques Monteiro
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Hospital Sírio-Libanês, Brasília, DF, Brazil
| | - Karine Martins da Trindade
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Oncologia D'Or, Fortaleza, CE, Brazil
| | - Adriano Gonçalves E Silva
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Instituto do Câncer e Transplante de Curitiba/PR (ICTr Curitiba), Curitiba, PR, Brazil
| | - Ana Paula Garcia Cardoso
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - André Deeke Sasse
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Grupo SONHE de Campinas, Campinas, SP, Brazil
| | - André P Fay
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Escola de Medicina da Pontifícia, Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - André Paternò Castello Dias Carneiro
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Hospital Municipal Vila Santa Catarina, São Paulo, SP, Brazil
| | - Antonio Machado Alencar Junior
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Hospital São Domingos, São Luís, MA, Brazil
- Dasa Oncologia, Brasília, DF, Brazil
- Hospital Universitário da Universidade Federal do Maranhão (UFMA), São Luís, MA, Brazil
| | - Augusto César de Andrade Mota
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Clínica AMO-DASA, Feira de Santana, BA, Brazil
| | - Bruno Santucci
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Instituto Paulista de Cancerologia, São Paulo, SP, Brazil
| | - Daniel da Motta Girardi
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Hospital Sírio-Libanês, Brasília, DF, Brazil
| | - Daniel Herchenhorn
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Oncologia D'Or, Rio de Janeiro, RJ, Brazil
| | - Daniel Vilarim Araújo
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Hospital de Base de São José do Rio Preto/SP, São José do Rio Preto, São Paulo, SP, Brazil
| | - Denis Leonardo Jardim
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Grupo Oncoclínicas, São Paulo, São Paulo, SP, Brazil
| | - Diogo Assed Bastos
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Hospital Sirio-Libanês de São Paulo, São Paulo, SP, Brazil
| | - Diogo Rodrigues Rosa
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Grupo Oncoclínicas, Rio de Janeiro, RJ, Brazil
| | - Fabio A Schutz
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Beneficência Portuguesa de São Paulo, São Paulo, SP, Brazil
| | - Fábio Roberto Kater
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Beneficência Portuguesa de São Paulo, São Paulo, SP, Brazil
| | - Felipe da Silva Marinho
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Grupo Oncoclínicas, Recife, PE, Brazil
| | - Fernando Cotait Maluf
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Beneficência Portuguesa de São Paulo, São Paulo, SP, Brazil
| | - Fernando Nunes Galvão de Oliveira
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Grupo Oncoclínicas, Salvador, BA, Brazil
| | - Fernando Vidigal
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Dasa Oncologia, Brasília, DF, Brazil
| | - Igor Alexandre Protzner Morbeck
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Grupo Oncoclínicas, Brasília, DF, Brazil
| | - Jose Augusto Rinck Júnior
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- AC Camargo Cancer Center, São Paulo, SP, Brazil
| | - Leonardo Atem G A Costa
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Oncologia D'Or, Fortaleza, CE, Brazil
| | - Manuel Caitano Dias Ferreira Maia
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Hospital do Câncer Porto Dias, Belém, PA, Brazil
| | - Manuela Zereu
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Marcelo Roberto Pereira Freitas
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Centro Especializado de Oncologia de Florianópolis, Florianópolis, SC, Brazil
| | - Mariane Sousa Fontes Dias
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Grupo Oncoclínicas, Rio de Janeiro, RJ, Brazil
| | - Milena Shizue Tariki
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- AC Camargo Cancer Center, São Paulo, SP, Brazil
| | - Pamela Muniz
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Grupo Oncoclínicas, São Paulo, São Paulo, SP, Brazil
- Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Patrícia Medeiros Milhomem Beato
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Hospital Amaral Carvalho, Jaú, SP, Brazil
| | - Paulo Sérgio Moraes Lages
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Grupo Oncoclínicas, Brasília, DF, Brazil
| | - Pedro Isaacsson Velho
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
- Johns Hopkins University, Baltimore, MD, USA
| | - Ricardo Saraiva de Carvalho
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Beneficência Portuguesa de São Paulo, São Paulo, SP, Brazil
| | - Rodrigo Coutinho Mariano
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Beneficência Portuguesa de São Paulo, São Paulo, SP, Brazil
| | - Sandro Roberto de Araújo Cavallero
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Hospital Adventista de Belém, Belém, PA, Brazil
| | - Thiago Martins Oliveira
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Hospital São Rafael, Salvador, BA, Brazil
| | - Vinicius Carrera Souza
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Instituto D'Or de Ensino e Pesquisa, Salvador, BA, Brazil
| | - Oren Smaletz
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Av. Brigadeiro Faria Lima, Vila Olímpia, São Paulo, SP, 4300, Brazil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Stênio de Cássio Zequi
- AC Camargo Cancer Center, São Paulo, SP, Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, AC Camargo Cancer Center, São Paulo, SP, Brazil
| |
Collapse
|
215
|
Wang Y, Chen X, Tang N, Guo M, Ai D. Boosting Clear Cell Renal Carcinoma-Specific Drug Discovery Using a Deep Learning Algorithm and Single-Cell Analysis. Int J Mol Sci 2024; 25:4134. [PMID: 38612943 PMCID: PMC11012314 DOI: 10.3390/ijms25074134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Clear cell renal carcinoma (ccRCC), the most common subtype of renal cell carcinoma, has the high heterogeneity of a highly complex tumor microenvironment. Existing clinical intervention strategies, such as target therapy and immunotherapy, have failed to achieve good therapeutic effects. In this article, single-cell transcriptome sequencing (scRNA-seq) data from six patients downloaded from the GEO database were adopted to describe the tumor microenvironment (TME) of ccRCC, including its T cells, tumor-associated macrophages (TAMs), endothelial cells (ECs), and cancer-associated fibroblasts (CAFs). Based on the differential typing of the TME, we identified tumor cell-specific regulatory programs that are mediated by three key transcription factors (TFs), whilst the TF EPAS1/HIF-2α was identified via drug virtual screening through our analysis of ccRCC's protein structure. Then, a combined deep graph neural network and machine learning algorithm were used to select anti-ccRCC compounds from bioactive compound libraries, including the FDA-approved drug library, natural product library, and human endogenous metabolite compound library. Finally, five compounds were obtained, including two FDA-approved drugs (flufenamic acid and fludarabine), one endogenous metabolite, one immunology/inflammation-related compound, and one inhibitor of DNA methyltransferase (N4-methylcytidine, a cytosine nucleoside analogue that, like zebularine, has the mechanism of inhibiting DNA methyltransferase). Based on the tumor microenvironment characteristics of ccRCC, five ccRCC-specific compounds were identified, which would give direction of the clinical treatment for ccRCC patients.
Collapse
Affiliation(s)
| | | | | | | | - Dongmei Ai
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.W.); (X.C.); (N.T.); (M.G.)
| |
Collapse
|
216
|
Perrino M, Voulaz E, Balin S, Cazzato G, Fontana E, Franzese S, Defendi M, De Vincenzo F, Cordua N, Tamma R, Borea F, Aliprandi M, Airoldi M, Cecchi LG, Fazio R, Alloisio M, Marulli G, Santoro A, Di Tommaso L, Ingravallo G, Russo L, Da Rin G, Villa A, Della Bella S, Zucali PA, Mavilio D. Autoimmunity in thymic epithelial tumors: a not yet clarified pathologic paradigm associated with several unmet clinical needs. Front Immunol 2024; 15:1288045. [PMID: 38629065 PMCID: PMC11018877 DOI: 10.3389/fimmu.2024.1288045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/29/2024] [Indexed: 04/19/2024] Open
Abstract
Thymic epithelial tumors (TETs) are rare mediastinal cancers originating from the thymus, classified in two main histotypes: thymoma and thymic carcinoma (TC). TETs affect a primary lymphoid organ playing a critical role in keeping T-cell homeostasis and ensuring an adequate immunological tolerance against "self". In particular, thymomas and not TC are frequently associated with autoimmune diseases (ADs), with Myasthenia Gravis being the most common AD present in 30% of patients with thymoma. This comorbidity, in addition to negatively affecting the quality and duration of patients' life, reduces the spectrum of the available therapeutic options. Indeed, the presence of autoimmunity represents an exclusion criteria for the administration of the newest immunotherapeutic treatments with checkpoint inhibitors. The pathophysiological correlation between TETs and autoimmunity remains a mystery. Several studies have demonstrated the presence of a residual and active thymopoiesis in adult patients affected by thymomas, especially in mixed and lymphocytic-rich thymomas, currently known as type AB and B thymomas. The aim of this review is to provide the state of art in regard to the histological features of the different TET histotype, to the role of the different immune cells infiltrating tumor microenvironments and their impact in the break of central immunologic thymic tolerance in thymomas. We discuss here both cellular and molecular immunologic mechanisms inducing the onset of autoimmunity in TETs, limiting the portfolio of therapeutic strategies against TETs and greatly impacting the prognosis of associated autoimmune diseases.
Collapse
Affiliation(s)
- Matteo Perrino
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Emanuele Voulaz
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Simone Balin
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Gerardo Cazzato
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Elena Fontana
- Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council (CNR), Milan, Italy
- Human Genome and Biomedical Technologies Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Martina Defendi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Fabio De Vincenzo
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Nadia Cordua
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberto Tamma
- Section of Human Anatomy and Histology, Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari “Aldo Moro”, Bari, Italy
| | - Federica Borea
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marta Aliprandi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marco Airoldi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luigi Giovanni Cecchi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberta Fazio
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marco Alloisio
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giuseppe Marulli
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Armando Santoro
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Laura Russo
- Clinical Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giorgio Da Rin
- Clinical Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Anna Villa
- Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council (CNR), Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paolo Andrea Zucali
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
217
|
Tucci M, Cosmai L, Pirovano M, Campisi I, Re SGV, Porta C, Gallieni M, Piergiorgio M. How to deal with renal toxicities from immune-based combination treatments in metastatic renal cell carcinoma. A nephrological consultation for Oncologists. Cancer Treat Rev 2024; 125:102692. [PMID: 38492515 DOI: 10.1016/j.ctrv.2024.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 03/18/2024]
Abstract
We are witnessing a revolution in the treatment of metastatic renal cell carcinoma (mRCC). Indeed, several immune-based combinations (ICI [immune checkpoint inhibitor] + ICI, or ICI + antiangiogenic agents) have been approved as first-line therapy for mRCC after demonstrating superior efficacy over the previous standard. Despite all the improvements made, safety remains a critical issue, adverse events (AEs) being the main reason for drug discontinuations or dose reductions, ultimately resulting in an increased risk of losing efficacy. Thus, a good understanding of the AEs associated with the use of immune-based combinations, their prevention, and management, are key in order to maximize therapeutic effectiveness. Among these AEs, renal ones are relatively frequent, but always difficult to be diagnosed, not to take into account that it is often difficult to determine which drug is to blame for such toxicities. Chronic kidney disease (CKD) is a common finding in patients with RCC, either as a pre-existing condition and/or as a consequence of cancer and its treatment; furthermore, CKD, especially in advanced stages and in patients undergoing dialysis, may influence the pharmacokinetics and pharmacodynamics properties of anticancer agents. Finally, managing cancer therapy in kidney transplanted patients is another challenge. In this review, we discuss the therapy management of immune-based combinations in patients with CKD, on dialysis, or transplanted, as well as their renal toxicities, with a focus on their prevention, detection and practical management, taking into account the crucial role of the consulting nephrologist within the multidisciplinary care of these patients.
Collapse
Affiliation(s)
- Marcello Tucci
- Division of Medical Oncology, "Cardinal Massaia" Hospital, Asti, Italy
| | - Laura Cosmai
- Onconephrology Outpatient Clinic, ASST Fatebenefratelli-Sacco, Milan, Italy; Division of Nephrology and Dialysis, ASST Fatebenefratelli-Sacco, Milan, Italy.
| | - Marta Pirovano
- Onconephrology Outpatient Clinic, ASST Fatebenefratelli-Sacco, Milan, Italy; Division of Nephrology and Dialysis, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Ilaria Campisi
- Department of Oncology, University of Turin, Turin, Italy.
| | - Sartò Giulia Vanessa Re
- Onconephrology Outpatient Clinic, ASST Fatebenefratelli-Sacco, Milan, Italy; Division of Nephrology and Dialysis, ASST Fatebenefratelli-Sacco, Milan, Italy.
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy; Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy.
| | - Maurizio Gallieni
- Division of Nephrology and Dialysis, ASST Fatebenefratelli-Sacco, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| | - Messa Piergiorgio
- Division of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
218
|
Sindhu KK, Dovey Z, Thompson M, Nehlsen AD, Skalina KA, Malachowska B, Hasan S, Guha C, Tang J, Salgado LR. The potential role of precision medicine to alleviate racial disparities in prostate, bladder and renal urological cancer care. BJUI COMPASS 2024; 5:405-425. [PMID: 38633827 PMCID: PMC11019243 DOI: 10.1002/bco2.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 04/19/2024] Open
Abstract
Background Racial disparities in oncological outcomes resulting from differences in social determinants of health (SDOH) and tumour biology are well described in prostate cancer (PCa) but similar inequities exist in bladder (BCa) and renal cancers (RCCs). Precision medicine (PM) aims to provide personalized treatment based on individual patient characteristics and has the potential to reduce these inequities in GU cancers. Objective This article aims to review the current evidence outlining racial disparities in GU cancers and explore studies demonstrating improved oncological outcomes when PM is applied to racially diverse patient populations. Evidence acquisition Evidence was obtained from Pubmed and Web of Science using keywords prostate, bladder and renal cancer, racial disparity and precision medicine. Because limited studies were found, preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were not applied but rather related articles were studied to explore existing debates, identify the current status and speculate on future applications. Results Evidence suggests addressing SDOH for PCa can reverse racial inequities in oncological outcomes but differences in incidence remain. Similar disparities in BCa and RCC are seen, and it would be reasonable to suggest achieving parity in SDOH for all races would do the same. Research applying a PM approach to different ethnicities is lacking although in African Americans (AAs) with metastatic castrate-resistant prostate cancer (mCRPCa) better outcomes have been shown with androgen receptor inhibitors, radium-223 and sipuleucel. Exploiting the abscopal effect with targeted radiation therapy (RT) and immunotherapy has promise but requires further study, as does defining actionable mutations in specific patient groups to tailor treatments as appropriate. Conclusion For all GU cancers, the historical underrepresentation of ethnic minorities in clinical trials still exists and there is an urgent need for recruitment strategies to address this. PM is a promising development with the potential to reduce inequities in GU cancers, however, both improved understanding of race-specific tumour biology, and enhanced recruitment of minority populations into clinical trials are required. Without this, the benefits of PM will be limited.
Collapse
Affiliation(s)
- Kunal K. Sindhu
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Zachary Dovey
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Marcher Thompson
- Department of Radiation OncologyAIS Cancer Center/Adventist HealthBakersfieldCAUSA
| | - Anthony D. Nehlsen
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Karin A. Skalina
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNYUSA
| | - Beata Malachowska
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNYUSA
| | - Shaakir Hasan
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNYUSA
| | - Chandan Guha
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNYUSA
| | - Justin Tang
- Department of Radiation OncologyMontefiore Medical Center/Albert Einstein College of MedicineBronxNYUSA
| | - Lucas Resende Salgado
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
219
|
Borcinova M, Bartolini R, Foley LK, Novak V, Taborska P, Stakheev D, Rataj M, Smrz D, Fialova M, Hacek J, Komarc M, Vesely S, Babjuk M, Striz I, Bartunkova J, Buchler T, Ozaniak Strizova Z. Distinct leukocyte populations and cytokine secretion profiles define tumoral and peritumoral areas in renal cell carcinoma. Transl Oncol 2024; 42:101891. [PMID: 38310685 PMCID: PMC10862072 DOI: 10.1016/j.tranon.2024.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/17/2023] [Accepted: 01/23/2024] [Indexed: 02/06/2024] Open
Abstract
Renal cell carcinoma (RCC) is a common malignancy frequently diagnosed at the metastatic stage. We performed a comprehensive analysis of the tumor immune microenvironment (TIME) in RCC patients, including the peritumoral tissue microenvironment, to characterize the phenotypic patterns and functional characteristics of infiltrating immune cells. T cells from various compartments (peripheral blood, tumor, peritumoral area, and adjacent healthy renal tissue) were assessed using flow cytometry and Luminex analyses, both before and after T cell-specific stimulation, to evaluate activation status and migratory potential. Our findings demonstrated that tumor-infiltrating lymphocytes (TILs) exhibited heightened cytokine production compared to peritumoral T cells (pTILs), acting as the primary source of cytotoxic markers (IFN-γ, granzyme B, and FasL). CD8+ T cells primarily employed Fas Ligand for cytotoxicity, while CD4+ T cells relied on CD107a. In addition, a statistically significant negative correlation between patient mortality and the presence of CD4+CD107+ pTILs was demonstrated. The engagement with the PD-1/PD-L1 pathway was also more evident in CD4+ and CD8+ pTILs as opposed to TILs. PD-L1 expression in the non-leukocyte fraction of the tumor tissue was relatively lower than in their leukocytic counterparts and upon stimulation, peripheral blood T cells displayed much stronger responses to stimulation than TILs and pTILs. Our results suggest that tumor and peritumoral T cells exhibit limited responsiveness to additional activation signals, while peripheral T cells retain their capacity to respond to stimulatory signals.
Collapse
Affiliation(s)
- Martina Borcinova
- Gynecologic Oncology Centre, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Robin Bartolini
- Lausanne Center for Immuno-oncology Toxicities (LCIT), Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK
| | - Vojtech Novak
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Dmitry Stakheev
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Michal Rataj
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Martina Fialova
- Department of Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jaromir Hacek
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Komarc
- Department of Methodology, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Stepan Vesely
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Marek Babjuk
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ilja Striz
- Department of Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Zuzana Ozaniak Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
220
|
Hong H, Shi X, Ou W, Ou P. Prognostic biomarker CPEB3 and its associations with immune infiltration in clear cell renal cell carcinoma. Biomed Rep 2024; 20:63. [PMID: 38476610 PMCID: PMC10928475 DOI: 10.3892/br.2024.1751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/17/2024] [Indexed: 03/14/2024] Open
Abstract
The role and underlying mechanism of cytoplasmic polyadenylation element binding protein 3 (CPEB3) in clear cell renal cell carcinoma [ccRCC progression remain poorly characterized. The present study was designed to evaluate the role of CPEB3 in ccRCC and its clinical associations. The overall response rate of first-line therapies (ICIs combined with VEGFR-TKIs or ICI combination) for ccRCC] is 42.0-59.3%, so a number of patients with ccRCC do not benefit from these therapies. To avoid immunosurveillance and immune killing, tumor cells decrease immunogenicity and recruit immunosuppressive cells such as regulatory T cells (Tregs). Tregs inhibit the development of anti-tumor immunity, thereby hindering immune surveillance of cancer and preventing effective anti-tumor immune response in tumor-bearing hosts. The present study analyzed clinical specimens from patients ccRCC and then examined the role of CPEB3 in ccRCC via bioinformatics analysis. CPEB3 expression was significantly reduced in ccRCC compared with normal tissue and low CPEB3 expression was associated with poor overall survival. Moreover, CPEB3 expression was an independent predictor of survival. CPEB3 expression was positively associated with immune biomarkers [CD274, programmed cell death 1 ligand 2, Hepatitis a virus cellular receptor 2, Chemokine (C-X-C motif) ligand (CXCL)9, CXCL10, Inducible T cell costimulatory, CD40, CD80 and CD38] that improve the outcome of anti-tumor immune responses. CPEB3 expression in ccRCC also affected the status of 24 types of infiltrating immune cell, of which Tregs were the most significantly negatively correlated cell type. CPEB3 may serve as a prognostic biomarker in ccRCC and its mechanism may be related to the regulation of Tregs.
Collapse
Affiliation(s)
- Hualan Hong
- Department of Medical Oncology, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
- Department of Medical Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Xi Shi
- Department of Medical Oncology, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
- Department of Medical Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Wenyong Ou
- Department of Surgery 1, Longyan People Hospital, Longyan, Fujian 364000, P.R. China
| | - Pengju Ou
- Department of Medical Oncology, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
- Department of Medical Affairs, Guangzhou Lupeng Pharmaceutical Co., Ltd. Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
221
|
Riveiro-Barciela M, Carballal S, Díaz-González Á, Mañosa M, Gallego-Plazas J, Cubiella J, Jiménez-Fonseca P, Varela M, Menchén L, Sangro B, Fernández-Montes A, Mesonero F, Rodríguez-Gandía MÁ, Rivera F, Londoño MC. Management of liver and gastrointestinal toxicity induced by immune checkpoint inhibitors: Position statement of the AEEH-AEG-SEPD-SEOM-GETECCU. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:401-432. [PMID: 38228461 DOI: 10.1016/j.gastrohep.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 01/18/2024]
Abstract
The development of the immune checkpoint inhibitors (ICI) is one of the most remarkable achievements in cancer therapy in recent years. However, their exponential use has led to an increase in immune-related adverse events (irAEs). Gastrointestinal and liver events encompass hepatitis, colitis and upper digestive tract symptoms accounting for the most common irAEs, with incidence rates varying from 2% to 40%, the latter in patients undergoing combined ICIs therapy. Based on the current scientific evidence derived from both randomized clinical trials and real-world studies, this statement document provides recommendations on the diagnosis, treatment and prognosis of the gastrointestinal and hepatic ICI-induced adverse events.
Collapse
Affiliation(s)
- Mar Riveiro-Barciela
- Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Universitat Autònoma de Barcelona (UAB), Department of Medicine, Spain.
| | - Sabela Carballal
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Gastroenterology Department, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Universitat de Barcelona, Spain
| | - Álvaro Díaz-González
- Gastroenterology Department, Grupo de Investigación Clínica y Traslacional en Enfermedades Digestivas, Instituto de Investigación Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Míriam Mañosa
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Joaquín Cubiella
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Gastroenterology Department, Hospital Universitario de Ourense, Grupo de Investigación en Oncología Digestiva-Ourense, Spain
| | - Paula Jiménez-Fonseca
- Medical Oncology Department, Hospital Universitario Central de Asturias, ISPA, Oviedo, Spain
| | - María Varela
- Gastroenterology Department, Hospital Universitario Central de Asturias, IUOPA, ISPA, FINBA, University of Oviedo, Oviedo, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo - CEIMI, Instituto de Investigación Sanitaria Gregorio, Marañón, Spain; Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Bruno Sangro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Liver Unit, Cancer Center Clinica Universidad de Navarra, Pamplona-Madrid, Spain
| | - Ana Fernández-Montes
- Medical Oncology Department, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Francisco Mesonero
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain; Universidad de Alcalá de Henares, Spain
| | - Miguel Ángel Rodríguez-Gandía
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | - Fernando Rivera
- Medical Oncology Department, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - María-Carlota Londoño
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Universitat de Barcelona, Spain; Liver Unit, Hospital Clínic Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Spain
| |
Collapse
|
222
|
Starzer AM, Wolff L, Popov P, Kiesewetter B, Preusser M, Berghoff AS. The more the merrier? Evidence and efficacy of immune checkpoint- and tyrosine kinase inhibitor combinations in advanced solid cancers. Cancer Treat Rev 2024; 125:102718. [PMID: 38521009 DOI: 10.1016/j.ctrv.2024.102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
Immune checkpoint inhibitors (ICI) and tyrosine kinase inhibitors (TKI) have gained therapeutical significance in cancer therapy over the last years. Due to the high efficacy of each substance group, additive or complementary effects are considered, and combinations are the subject of multiple prospective trials in different tumor entities. The majority of available data results from clinical phase I and II trials. Although regarded as well-tolerated therapies ICI-TKI combinations have higher toxicities compared to monotherapies of one of the substance classes and some combinations were shown to be excessively toxic leading to discontinuation of trials. So far, ICI-TKI combinations with nivolumab + cabozantinib, pembrolizumab + axitinib, avelumab + axitinib, pembrolizumab + lenvatinib have been approved in advanced renal cell (RCC), with pembrolizumab + lenvatinib in endometrial carcinoma and with camrelizumab + rivoceranib in hepatocellular carcinoma (HCC). Several ICI-TKI combinations are currently investigated in phase I to III trials in various other cancer entities. Further, the optimal sequence of ICI-TKI combinations is an important subject of investigation, as cross-resistances between the substance classes were observed. This review reports on clinical trials with ICI-TKI combinations in different cancer entities, their efficacy and toxicity.
Collapse
Affiliation(s)
- Angelika M Starzer
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ladislaia Wolff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Petar Popov
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesewetter
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
223
|
Benelli ND, Brandon I, Hew KE. Immune Checkpoint Inhibitors: A Narrative Review on PD-1/PD-L1 Blockade Mechanism, Efficacy, and Safety Profile in Treating Malignancy. Cureus 2024; 16:e58138. [PMID: 38738146 PMCID: PMC11088937 DOI: 10.7759/cureus.58138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Checkpoint inhibitors have been implicated in the treatment of several cancers due to their ability to exploit the immune system's regulatory pathways. This article serves to emphasize the importance of these immunotherapeutic agents and provide further insight into their mechanisms, efficacies, and safety profiles. The main agents in question include programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1). Several literature sources were found to assess the use of these inhibitors in cancers involving the lung, breast, and skin. Several peer-reviewed systematic reviews and the outcomes of clinical trials are combined within this article to support the use and further investigation of these agents in treating neoplasms. Further research into these forms of therapy underscores the revolutionary advancement of oncological interventions, which is important given the rising incidence of neoplasms within populations.
Collapse
Affiliation(s)
- Nicolas D Benelli
- Internal Medicine, St. George's University School of Medicine, St. George's, GRD
| | - Ian Brandon
- Family Medicine, Baptist Health South Florida, Miami, USA
| | - Karina E Hew
- Gynecologic Oncology, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| |
Collapse
|
224
|
Rankin S, Elyan B, Jones R, Venugopal B, Mark PB, Lees JS, Petrie MC, Lang NN. Cardiovascular Eligibility Criteria and Adverse Event Reporting in Combined Immune Checkpoint and VEGF Inhibitor Trials. JACC CardioOncol 2024; 6:267-279. [PMID: 38774021 PMCID: PMC11103039 DOI: 10.1016/j.jaccao.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/12/2023] [Indexed: 05/24/2024] Open
Abstract
Background Combination therapy with immune checkpoint inhibitors (ICIs) and vascular endothelial growth factor inhibitors (VEGFIs) has improved cancer outcomes and is increasingly used. These drug classes are associated with cardiovascular toxicities when used alone, but heterogeneity in trial design and reporting may limit knowledge of toxicities in patients receiving these in combination. Objectives The aim of this study was to assess consistency and clarity in definitions and reporting of cardiovascular eligibility criteria, baseline characteristics, and cardiovascular adverse events in ICI and VEGFI combination trials. Methods A scoping review was conducted of phase 2 to 4 randomized controlled trials of ICI and VEGFI combination therapy for solid tumors. Trial cardiovascular eligibility criteria and baseline cardiovascular characteristic reporting in trial publications was assessed, and cardiovascular adverse event definitions and reporting criteria were also examined. Results Seventeen trials (N = 10,313; published 2018-2022) were included. There were multiple cardiovascular exclusion criteria in 15 trials. No primary trial publication reported baseline cardiovascular characteristics. Thirteen trials excluded patients with prior heart failure, myocardial infarction, hypertension, or stroke. There was heterogeneity in defining cardiovascular conditions. "Grade 1 to 4" cardiovascular adverse events were reported when incidence was ≥5% to 25% in 15 trials. Incident hypertension was recorded in all trials, but other cardiovascular events were not consistently reported. No trial specifically noted the absence of cardiovascular events. Conclusions In ICI and VEGFI combination trials, there is heterogeneity in cardiovascular exclusion criteria, reporting of baseline characteristics, and reporting of cardiovascular adverse events. This limits an optimal understanding of the incidence and severity of events relating to these combinations. Better standardization of these elements should be pursued. (Exclusions and Representation of Patients With Kidney Disease and Cardiovascular Disease in Drug Trials of the Novel Systemic Anti-Cancer Therapies VEGF-Signalling Pathway Inhibitors Alone or in Combination With Immune Checkpoint Inhibitors; CRD42022337942).
Collapse
Affiliation(s)
- Stephen Rankin
- School of Cardiovascular and Metabolic Health, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, United Kingdom
- NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Benjamin Elyan
- School of Cardiovascular and Metabolic Health, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, United Kingdom
- NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Robert Jones
- NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
- School of Cancer Sciences, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Balaji Venugopal
- NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
- School of Cancer Sciences, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Patrick B. Mark
- School of Cardiovascular and Metabolic Health, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, United Kingdom
- NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Jennifer S. Lees
- School of Cardiovascular and Metabolic Health, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, United Kingdom
- NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Mark C. Petrie
- School of Cardiovascular and Metabolic Health, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, United Kingdom
- NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Ninian N. Lang
- School of Cardiovascular and Metabolic Health, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, United Kingdom
- NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| |
Collapse
|
225
|
Ishihara H, Nemoto Y, Tachibana H, Ikeda T, Fukuda H, Yoshida K, Kobayashi H, Iizuka J, Shimmura H, Hashimoto Y, Kondo T, Takagi T. Association Between Kidney Function and Outcomes Following Immune Checkpoint Inhibitor-Based Combination Therapy in Patients With Advanced Renal Cell Carcinoma. Clin Genitourin Cancer 2024; 22:549-557.e5. [PMID: 38281878 DOI: 10.1016/j.clgc.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND It remains unclear whether kidney function affects outcomes following immune checkpoint inhibitor (ICI)-based combination therapy for advanced renal cell carcinoma (RCC). METHODS We retrospectively evaluated data of 167 patients with advanced RCC, including 98 who received ICI dual combination therapy (ie, immunotherapy [IO]-IO) and 69 who received ICI combined with tyrosine kinase inhibitor (TKI) (ie, IO-TKI). In each regimen, treatment profiles were assessed according to the grade of chronic kidney disease (CKD) as defined by the KDIGO 2012 criteria. RESULTS Of the 98 patients who received IO-IO, 31 (32%), 30 (31%), 15 (15%), and 22 (22%) had CKD G1/2, G3a, G3b, and G4/5, respectively. Of the 69 patients who received IO-TKI, 18 (26%), 25 (36%), and 26 (38%) had G1/2, G3a, and G3b/4/5, respectively. Regarding efficacy, progression-free survival, overall survival, or objective response rate was not different according to the CKD grade in both treatment groups (P > .05). Regarding safety, the rate of adverse events, treatment interruption, or corticosteroid administration was not different according to the CKD grade in the IO-IO group (P > .05), whereas in the IO-TKI group, the incidence of grade ≥ 3 adverse events were significantly higher (P = .0292), and the rates of ICI interruption (P = .0353) and corticosteroid administration (P = .0685) increased, according to the CKD grade. CONCLUSION There is a differential safety but comparable efficacy profile between the IO-IO and IO-TKI regimens in patients with CKD. Further prospective studies are required to confirm these findings.
Collapse
Affiliation(s)
- Hiroki Ishihara
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan.
| | - Yuki Nemoto
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan; Department of Urology, Tokyo Women's Medical University Adachi Medical Center, Adachi-ku, Tokyo, Japan; Department of Urology, Saiseikai Kawaguchi General Hospital, Kawaguchi, Saitama, Japan
| | | | - Takashi Ikeda
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hironori Fukuda
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Kazuhiko Yoshida
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hirohito Kobayashi
- Department of Urology, Tokyo Women's Medical University Adachi Medical Center, Adachi-ku, Tokyo, Japan
| | - Junpei Iizuka
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | | | - Yasunobu Hashimoto
- Department of Urology, Saiseikai Kawaguchi General Hospital, Kawaguchi, Saitama, Japan
| | - Tsunenori Kondo
- Department of Urology, Tokyo Women's Medical University Adachi Medical Center, Adachi-ku, Tokyo, Japan
| | - Toshio Takagi
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
226
|
Ishihara H, Omae K, Nemoto Y, Ishiyama R, Tachibana H, Nishimura K, Ikeda T, Kobari Y, Fukuda H, Yoshida K, Shimmura H, Hashimoto Y, Iizuka J, Kondo T, Takagi T. First-line dual immune checkpoint inhibitor therapies versus combination therapies comprising immune checkpoint inhibitors and tyrosine kinase inhibitors for advanced renal cell carcinoma: a comparative analysis of the effectiveness using real-world data. Int J Clin Oncol 2024; 29:473-480. [PMID: 38345708 DOI: 10.1007/s10147-024-02471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND There are few comparative studies on dual immune checkpoint inhibitors (ICIs) (i.e., IO-IO) and combination therapies comprising ICIs plus tyrosine kinase inhibitors (TKIs) (i.e., IO-TKI) for advanced renal cell carcinoma (RCC), especially in real-world settings. METHODS We retrospectively evaluated data of 175 patients with IMDC intermediate-risk or poor-risk RCC; as first-line therapy, 103 received IO-IO, and 72 received IO-TKI. An inverse probability of treatment weighting (IPTW) analysis was conducted to balance patients' backgrounds in the IO-IO and IO-TKI groups. RESULTS Based on the IPTW analysis, progression-free survival (PFS) was longer in the IO-TKI group than in the IO-IO group (median: 15.6 vs. 8.3 months; p = 0.0386). In contrast, overall survival was not different between groups (median: 46.7 vs. 49.0 months; p = 0.465). Although the IPTW-adjusted objective response rate was not significantly different (51.2% vs. 43.9%; p = 0.359), the progressive disease rate as the best overall response was lower in the IO-TKI group than in the IO-IO group (3.3% vs. 27.4%; p < 0.0001). Regarding the safety profile, the treatment interruption rate was higher in the IO-TKI group than in the IO-IO group (70.3% vs. 49.2%; p = 0.005). In contrast, the IO-IO group had a higher corticosteroid administration rate (43.3% vs. 20.3%; p = 0.001). CONCLUSION IO-TKI therapy exhibited superior effectiveness over IO-IO therapy in terms of PFS improvement and immediate disease progression prevention and was associated with a higher risk of treatment interruption and a lower risk of needing corticosteroids.
Collapse
Affiliation(s)
- Hiroki Ishihara
- Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, Japan.
| | - Kenji Omae
- Department of Innovative Research and Education for Clinicians and Trainees (DiRECT), Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima, Fukushima, Japan
| | - Yuki Nemoto
- Department of Urology, Tokyo Women's Medical University Adachi Medical Center, 4-33-1 Kouhoku, Adachi-Ku, Tokyo, Japan
| | - Ryo Ishiyama
- Department of Urology, Saiseikai Kazo Hospital, 1680 Kamitakayanagi, Kazo, Saitama, Japan
| | - Hidekazu Tachibana
- Department of Urology, Saiseikai Kazo Hospital, 1680 Kamitakayanagi, Kazo, Saitama, Japan
| | - Koichi Nishimura
- Department of Urology, Tokyo Women's Medical University Adachi Medical Center, 4-33-1 Kouhoku, Adachi-Ku, Tokyo, Japan
| | - Takashi Ikeda
- Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, Japan
| | - Yuki Kobari
- Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, Japan
| | - Hironori Fukuda
- Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, Japan
| | - Kazuhiko Yoshida
- Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, Japan
| | - Hiroaki Shimmura
- Department of Urology, Jyoban Hospital, Uenodai 57, Joban Kamiyunagayamachi, Iwaki, Fukushima, Japan
| | - Yasunobu Hashimoto
- Department of Urology, Saiseikai Kawaguchi General Hospital, 5-11-5 Nishikawaguchi, Kawaguchi, Saitama, Japan
| | - Junpei Iizuka
- Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, Japan
| | - Tsunenori Kondo
- Department of Urology, Tokyo Women's Medical University Adachi Medical Center, 4-33-1 Kouhoku, Adachi-Ku, Tokyo, Japan
| | - Toshio Takagi
- Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, Japan
| |
Collapse
|
227
|
Di Marco A, Artioli G, Favaretto A, Cavasin N, Basso U. Multiorgan failure caused by pembrolizumab and axitinib in a woman affected by metastatic clear cell renal cell carcinoma: A case report and literature review. Medicine (Baltimore) 2024; 103:e37606. [PMID: 38552059 PMCID: PMC10977559 DOI: 10.1097/md.0000000000037606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
RATIONALE Treatment with a combination of immune checkpoint inhibitors (ICIs) (pembrolizumab or nivolumab) and oral Tyrosine Kinase Inhibitors (TKI) targeting angiogenesis (axitinib, cabozantinib or lenvatinib) has shown benefits in terms of efficacy and survival in metastatic renal cell carcinoma (mRCC), with a favorable toxicity profile. However, some rare and serious treatment-related adverse events can be difficult to manage. PATIENT CONCERNS Here we report the first case of an mRCC patient who, after only 2 administrations of pembrolizumab-axitinib, experienced severe multiorgan failure (MOF) with heart failure, oliguria and acute hepatitis requiring aggressive supportive treatment in intensive care unit. DIAGNOSES A diagnosis of severe MOF induced by pembrolizumab plus axitinib was considered. INTERVENTIONS The patient was treated with dobutamine, levosimendan along with high-dose steroids under continuous cardiologic monitoring. OUTCOMES After treatment, the patient had a full recovery and was discharged from the hospital. LESSONS We reviewed all the other cases of MOF reported during treatment with combined ICI-TKI in cancer patients in order to summarize incidence, clinical manifestations and management with a specific focus on the need for prompt recognition and aggressive management under multidisciplinary care.
Collapse
Affiliation(s)
- Andrea Di Marco
- Medical Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Grazia Artioli
- Department of Medical Oncology, AULSS 2 Marca Trevigiana, Ca’ Foncello Hospital, Treviso, Italy
| | - Adolfo Favaretto
- Department of Medical Oncology, AULSS 2 Marca Trevigiana, Ca’ Foncello Hospital, Treviso, Italy
| | - Nicolò Cavasin
- Medical Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Umberto Basso
- Medical Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV IRCCS, Padua, Italy
| |
Collapse
|
228
|
Lai GS, Li JR, Wang SS, Chen CS, Yang CK, Lin CY, Hung SC, Chiu KY, Yang SF. Outcome benefits of upfront cytoreductive nephrectomy for patients with metastatic renal cell carcinoma: An analysis of the TriNetX database. PLoS One 2024; 19:e0299102. [PMID: 38547226 PMCID: PMC10977795 DOI: 10.1371/journal.pone.0299102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/05/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND The role of upfront cytoreductive nephrectomy remains debatable in the present era of tyrosine kinase inhibitors and immune checkpoint inhibitors. Here, we aimed to evaluate the outcomes of metastatic renal cell carcinoma patients treated with upfront CN and modern systemic therapies. METHODS Using the TriNetX network database, we identified patients, in the period from 2008 to 2022, who were diagnosed with metastatic renal cell carcinoma, receiving first-line systemic therapies with tyrosine kinase inhibitors or immune checkpoint inhibitors. Their overall survivals were evaluated using the Kaplan-Meier method as well as multivariable regressions. RESULTS We identified 11,094 patients with metastatic renal cell carcinoma. Of them, 2,914 (43%) patients in the tyrosine kinase inhibitor cohort (n = 6,779), and 1,884 (43.7%) in the immune checkpoint inhibitors cohort (n = 4315) underwent upfront cytoreductive nephrectomy. Those receiving upfront cytoreductive nephrectomy showed survival advantages with either tyrosine kinase inhibitor (Hazard ratio 0.722, 95% Confidence interval 0.67-0.73, p<0.001) or immune checkpoint inhibitors (Hazard ratio 65.1, 95% Confidence interval 0.59-0.71, p<0.001). In multivariable analysis, upfront cytoreductive nephrectomy was a factor for improved OS in both cohorts: tyrosine kinase inhibitors (Hazard ratio 0.623, 95% Confidence interval 0.56-0.694, p<0.001) and immune checkpoint inhibitors cohort (Hazard ratio 0.688, 95% Confidence interval 0.607-0.779, p<0.001). CONCLUSIONS Upfront cytoreductive nephrectomy was associated with an improved overall survival for patients with metastatic renal cell carcinoma receiving either first-line tyrosine kinase inhibitors or immune checkpoint inhibitors. Our results support a clinical role of upfront cytoreductive nephrectomy in the modern era.
Collapse
Affiliation(s)
- Gu-Shun Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Division of Urology, Taichung Veterans General Hospital, Taichung, Tawan
| | - Jian-Ri Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Division of Urology, Taichung Veterans General Hospital, Taichung, Tawan
- Department of Medicine and Nursing, Hungkuang University, Taichung, Taiwan
| | - Shian-Shiang Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Division of Urology, Taichung Veterans General Hospital, Taichung, Tawan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chuan-Shu Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Division of Urology, Taichung Veterans General Hospital, Taichung, Tawan
| | - Chun-Kuang Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Division of Urology, Taichung Veterans General Hospital, Taichung, Tawan
| | - Chia-Yen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Division of Urology, Taichung Veterans General Hospital, Taichung, Tawan
| | - Sheng-Chun Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Division of Urology, Taichung Veterans General Hospital, Taichung, Tawan
| | - Kun-Yuan Chiu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Division of Urology, Taichung Veterans General Hospital, Taichung, Tawan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
229
|
Chen X, Xu H, Chen X, Xu T, Tian Y, Wang D, Guo F, Wang K, Jin G, Li X, Wang R, Li F, Ding Y, Tang J, Fang Y, Zhao J, Liu L, Ma L, Meng L, Hou Z, Zheng R, Liu Y, Guan N, Zhang B, Tong S, Chen S, Li X, Shu Y. First-line camrelizumab (a PD-1 inhibitor) plus apatinib (an VEGFR-2 inhibitor) and chemotherapy for advanced gastric cancer (SPACE): a phase 1 study. Signal Transduct Target Ther 2024; 9:73. [PMID: 38528050 PMCID: PMC10963362 DOI: 10.1038/s41392-024-01773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/27/2024] Open
Abstract
Patients with advanced gastric cancer typically face a grim prognosis. This phase 1a (dose escalation) and phase 1b (dose expansion) study investigated safety and efficacy of first-line camrelizumab plus apatinib and chemotherapy for advanced gastric or gastroesophageal junction adenocarcinoma. The primary endpoints included maximum tolerated dose (MTD) in phase 1a and objective response rate (ORR) across phase 1a and 1b. Phase 1a tested three dose regimens of camrelizumab, apatinib, oxaliplatin, and S-1. Dose regimen 1: camrelizumab 200 mg on day 1, apatinib 250 mg every other day, oxaliplatin 100 mg/m² on day 1, and S-1 40 mg twice a day on days 1-14. Dose regimen 2: same as dose regimen 1, but oxaliplatin 130 mg/m². Dose regimen 3: same as dose regimen 2, but apatinib 250 mg daily. Thirty-four patients were included (9 in phase 1a, 25 in phase 1b). No dose-limiting toxicities occurred so no MTD was identified. Dose 3 was set for the recommended phase 2 doses and administered in phase 1b. The confirmed ORR was 76.5% (95% CI 58.8-89.3). The median progression-free survival was 8.4 months (95% CI 5.9-not evaluable [NE]), and the median overall survival (OS) was not mature (11.6-NE). Ten patients underwent surgery after treatment and the multidisciplinary team evaluation. Among 24 patients without surgery, the median OS was 19.6 months (7.8-NE). Eighteen patients (52.9%) developed grade ≥ 3 treatment-emergent adverse events. Camrelizumab plus apatinib and chemotherapy showed favorable clinical outcomes and manageable safety for untreated advanced gastric cancer (ChiCTR2000034109).
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Gusu School, Nanjing medical University, Suzhou, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Xu
- Department of General surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiaobing Chen
- Department of Oncology, Henan Cancer Hospital Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer & Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yitong Tian
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Deqiang Wang
- Department of Oncology, Digestive Disease Institute & Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Guo
- Department of Oncology, Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Kangxin Wang
- Department of Oncology, Nanjing PuKou People's Hospital, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Rong Wang
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Fengyuan Li
- Department of General surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yongbin Ding
- Department of general surgery, Jurong Branch hospital of Jiangsu Province People Hospital, Jurong, China
| | - Jie Tang
- Department of Medical Oncology, Liyang People's Hospital, Liyang, China
| | - Yueyu Fang
- Department of Oncology, Nanjing PuKou People's Hospital, Nanjing, China
| | - Jing Zhao
- Department of Oncology, Henan Cancer Hospital Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Liu
- Department of radiology, Nanjing PuKou People's Hospital, Nanjing, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lijuan Meng
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zhiguo Hou
- Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | | | - Yang Liu
- Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | - Ni Guan
- Jiangsu Hengrui Pharmaceuticals, Shanghai, China
| | - Bei Zhang
- Department of Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Shuang Tong
- Department of Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Shiqing Chen
- Department of Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Xing Li
- Shanghai OrigiMed Co., Ltd., Shanghai, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
- Gusu School, Nanjing medical University, Suzhou, China.
| |
Collapse
|
230
|
Wang J, Lin J, Wang J, Wang Y, Zhu Y, Xu X, Guo J. Effect of Annexin A2 on prognosis and sensitivity to immune checkpoint plus tyrosine kinase inhibition in metastatic renal cell carcinoma. Discov Oncol 2024; 15:86. [PMID: 38519766 PMCID: PMC10959890 DOI: 10.1007/s12672-024-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Immunotherapy (IO) plus tyrosine kinase inhibitor (TKI) therapy is the first-line recommendation for advanced renal cell carcinoma (RCC), but no biomarker has been approved for it. Annexin A2 (ANXA2) can induce immune escape in tumors. METHODS Two independent cohorts of advanced RCC treated by IO + TKI were utilized for survival analysis (ZS-MRCC, n = 45; Javelin-101, n = 726). ANXA2 expression was determined by RNA-sequencing. The impact of ANXA2 on the tumor microenvironment was assessed by RNA-sequencing, flow cytometry and immunohistochemistry in two localized RCC datasets (ZS-HRRCC, n = 40; TCGA-KIRC, n = 530). RESULTS ANXA2 was upregulated in non-responders of IO + TKI therapy (p = 0.027). High-ANXA2 group showed poor progression-free survival (PFS) in both the ZS-MRCC cohort (HR, 2.348; 95% CI 1.084-5.085; P = 0.025) and the Javelin-101 cohort (HR, 1.472; 95% CI 1.043-2.077; P = 0.027). Multivariate Cox regression determined ANXA2 as an independent prognostic factor (HR, 2.619; 95% CI 1.194-5.746; P = 0.016). High-ANXA2 was correlated with decreased proportion of granzyme B+ CD8+ T cells (Spearman's ρ = - 0.40, P = 0.01), and increased TIM-3+ (Spearman's ρ = 0.43, P < 0.001) and CTLA4+ (Spearman's ρ = 0.49, P < 0.001) tumor-infiltrating lymphocytes. A random forest (RF) score was further build by integrating ANXA2 and immune genes, which stratified patients who would benefit from IO + TKI therapy (low-RF score, IO + TKI vs TKI, HR = 0.453, 95% CI 0.328-0.626; high-RF score, IO + TKI vs TKI, HR = 0.877, 95% CI 0.661-1.165; interaction P = 0.003). CONCLUSIONS Upregulated ANXA2 was associated with poor PFS and therapeutic resistance in RCC treated by IO + TKI therapy, and related with T cell exhaustion. The integrated RF score could stratify patients who would benefit from IO + TKI therapy.
Collapse
Affiliation(s)
- Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China
| | - Jinglai Lin
- Department of Urology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Jiahao Wang
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China
| | - Ying Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| | - Xianglai Xu
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
231
|
Ueda K, Uemura K, Ito N, Sakai Y, Ohnishi S, Suekane H, Kurose H, Hiroshige T, Chikui K, Nishihara K, Nakiri M, Suekane S, Ogasawara S, Yano H, Igawa T. Soluble Immune Checkpoint Molecules as Predictors of Efficacy in Immuno-Oncology Combination Therapy in Advanced Renal Cell Carcinoma. Curr Oncol 2024; 31:1701-1712. [PMID: 38668032 PMCID: PMC11049572 DOI: 10.3390/curroncol31040129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Immuno-oncology (IO) combination therapy is the first-line treatment for advanced renal cell carcinoma (RCC). However, biomarkers for predicting the response to IO combination therapy are lacking. Here, we investigated the association between the expression of soluble immune checkpoint molecules and the therapeutic efficacy of IO combination therapy in advanced RCC. The expression of soluble programmed cell death-1 (sPD-1), soluble programmed cell death ligand-1 (sPD-L1), soluble PD-L2 (sPD-L2), and lymphocyte activation gene-3 (sLAG-3) was assessed in plasma samples from 42 patients with advanced RCC who received first-line IO combination therapy. All IMDC risk classifications were represented among the patients, including 14.3, 57.1, and 28.6% with favorable, intermediate, and poor risk, respectively. Univariate analysis revealed that prior nephrectomy, sPD-L2 levels, and sLAG-3 levels were significant factors affecting progression-free survival (PFS), whereas multivariate analyses suggested that sPD-L2 and sLAG-3 levels were independent prognostic factors for PFS. In a univariate analysis of the overall survival, prior nephrectomy and sPD-L2 levels were significant factors; no significant differences were observed in the multivariate analysis. No significant correlation was observed between the sPD-L2 and sLAG-3 levels and PD-L2 and LAG-3 expression via immunohistochemistry. In conclusion, sPD-L2 and sLAG-3 expression may serve as a potential biomarker for predicting IO combination therapy efficacy.
Collapse
Affiliation(s)
- Kosuke Ueda
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Keiichiro Uemura
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Naoki Ito
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Yuya Sakai
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Satoshi Ohnishi
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Hiroki Suekane
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Hirofumi Kurose
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Tasuku Hiroshige
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Katsuaki Chikui
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Kiyoaki Nishihara
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Makoto Nakiri
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Shigetaka Suekane
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, Kurume 830-0011, Japan; (S.O.); (H.Y.)
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume 830-0011, Japan; (S.O.); (H.Y.)
| | - Tsukasa Igawa
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| |
Collapse
|
232
|
Montemagno C, Jacquel A, Pandiani C, Rastoin O, Dawaliby R, Schmitt T, Bourgoin M, Palenzuela H, Rossi AL, Ambrosetti D, Durivault J, Luciano F, Borchiellini D, Le Du J, Gonçalves LCP, Auberger P, Benhida R, Kinget L, Beuselinck B, Ronco C, Pagès G, Dufies M. Unveiling CXCR2 as a promising therapeutic target in renal cell carcinoma: exploring the immunotherapeutic paradigm shift through its inhibition by RCT001. J Exp Clin Cancer Res 2024; 43:86. [PMID: 38504270 PMCID: PMC10949812 DOI: 10.1186/s13046-024-02984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND In clear cell renal cell carcinoma (ccRCC), first-line treatment combines nivolumab (anti-PD-1) and ipilimumab (anti-CTLA4), yielding long-term remissions but with only a 40% success rate. Our study explored the potential of enhancing ccRCC treatment by concurrently using CXCR2 inhibitors alongside immunotherapies. METHODS We analyzed ELR + CXCL levels and their correlation with patient survival during immunotherapy. RCT001, a unique CXCR2 inhibitor, was examined for its mechanism of action, particularly its effects on human primary macrophages. We tested the synergistic impact of RCT001 in combination with immunotherapies in both mouse models of ccRCC and human ccRCC in the presence of human PBMC. RESUTS Elevated ELR + CXCL cytokine levels were found to correlate with reduced overall survival during immunotherapy. RCT001, our optimized compound, acted as an inverse agonist, effectively inhibiting angiogenesis and reducing viability of primary ccRCC cells. It redirected M2-like macrophages without affecting M1-like macrophage polarization directed against the tumor. In mouse models, RCT001 enhanced the efficacy of anti-CTLA4 + anti-PD1 by inhibiting tumor-associated M2 macrophages and tumor-associated neutrophils. It also impacted the activation of CD4 T lymphocytes, reducing immune-tolerant lymphocytes while increasing activated natural killer and dendritic cells. Similar effectiveness was observed in human RCC tumors when RCT001 was combined with anti-PD-1 treatment. CONCLUSIONS RCT001, by inhibiting CXCR2 through its unique mechanism, effectively suppresses ccRCC cell proliferation, angiogenesis, and M2 macrophage polarization. This optimization potentiates the efficacy of immunotherapy and holds promise for significantly improving the survival prospects of metastatic ccRCC patients.
Collapse
Affiliation(s)
| | | | - Charlotte Pandiani
- Institute for Research On Cancer and Aging (IRCAN), UMR 7284 and INSERM U1081, Université Côte d'Azur, CNRS, 33 Avenue de Valombrose, 06107, Nice, France
| | | | | | | | | | | | - Anne-Laure Rossi
- Institute for Research On Cancer and Aging (IRCAN), UMR 7284 and INSERM U1081, Université Côte d'Azur, CNRS, 33 Avenue de Valombrose, 06107, Nice, France
| | - Damien Ambrosetti
- Department of Pathology, Université Côte d'Azur, CHU Nice, Nice, France
| | - Jerome Durivault
- Biomedical Department, Centre Scientifique de Monaco (CSM), 98000, Monaco, Monaco
| | - Frederic Luciano
- Institute for Research On Cancer and Aging (IRCAN), UMR 7284 and INSERM U1081, Université Côte d'Azur, CNRS, 33 Avenue de Valombrose, 06107, Nice, France
| | - Delphine Borchiellini
- Centre Antoine Lacassagne, Department of Medical Oncology, Université Côte d'Azur, Nice, France
| | | | | | | | - Rachid Benhida
- Roca Therapeutics, 06000, Nice, France
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France
| | - Lisa Kinget
- Department of General Medical Oncology, University Hospitals Leuven, 3000, Louvain, Belgium
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000, Louvain, Belgium
| | - Benoit Beuselinck
- Department of General Medical Oncology, University Hospitals Leuven, 3000, Louvain, Belgium
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000, Louvain, Belgium
| | - Cyril Ronco
- Roca Therapeutics, 06000, Nice, France
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France
- Institut Universitaire de France (IUF), Paris, France
| | - Gilles Pagès
- Institute for Research On Cancer and Aging (IRCAN), UMR 7284 and INSERM U1081, Université Côte d'Azur, CNRS, 33 Avenue de Valombrose, 06107, Nice, France.
- Roca Therapeutics, 06000, Nice, France.
| | - Maeva Dufies
- Institute for Research On Cancer and Aging (IRCAN), UMR 7284 and INSERM U1081, Université Côte d'Azur, CNRS, 33 Avenue de Valombrose, 06107, Nice, France.
- Roca Therapeutics, 06000, Nice, France.
| |
Collapse
|
233
|
Chen R, Wu J, Che Y, Jiao Y, Sun H, Zhao Y, Chen P, Meng L, Zhao T. Machine learning-driven prognostic analysis of cuproptosis and disulfidptosis-related lncRNAs in clear cell renal cell carcinoma: a step towards precision oncology. Eur J Med Res 2024; 29:176. [PMID: 38491523 PMCID: PMC10943875 DOI: 10.1186/s40001-024-01763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs-ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT-that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis.
Collapse
Affiliation(s)
- Ronghui Chen
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
- Department of Oncology, People's Hospital of Rizhao, Rizhao, 276826, China
| | - Jun Wu
- Department of Oncology, People's Hospital of Rizhao, Rizhao, 276826, China
| | - Yinwei Che
- Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People's Hospital of Rizhao, Rizhao, 276826, Shandong, China
| | - Yuzhuo Jiao
- Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People's Hospital of Rizhao, Rizhao, 276826, Shandong, China
| | - Huashan Sun
- Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People's Hospital of Rizhao, Rizhao, 276826, Shandong, China
| | - Yinuo Zhao
- Department of Pathology, People's Hospital of Rizhao, Rizhao, 276826, China
| | - Pingping Chen
- Department of Pathology, People's Hospital of Rizhao, Rizhao, 276826, China
| | - Lingxin Meng
- Department of Oncology, People's Hospital of Rizhao, Rizhao, 276826, China.
| | - Tao Zhao
- Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People's Hospital of Rizhao, Rizhao, 276826, Shandong, China
| |
Collapse
|
234
|
Wang K, Yan T, Guo D, Sun S, Liu Y, Liu Q, Wang G, Chen J, Du J. Identification of key immune cells infiltrated in lung adenocarcinoma microenvironment and their related long noncoding RNA. iScience 2024; 27:109220. [PMID: 38433921 PMCID: PMC10907860 DOI: 10.1016/j.isci.2024.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/31/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
LncRNA associated with immune cell infiltration in tumor microenvironment (TME) may be a potential therapeutic target for lung adenocarcinoma. We established a machine learning (ML) model based on 3896 samples characterized by the degree of immune cell infiltration, and further screened the key lncRNA. In vitro experiments were applied to validate the prediction. Treg is the key immune cell in the TME of lung adenocarcinoma, and the degree of infiltration is negatively correlated with the prognosis. PCBP1-AS1 may affect the infiltration of Tregs by regulating the TGF-β pathway, which is a potential predictor of clinical response to immunotherapy. PCBP1-AS1 regulates cell proliferation, cell cycle, invasion, migration, and apoptosis in lung adenocarcinoma. The results of clinical sample staining and in vitro experiments showed that PCBP1-AS1 was negatively correlated with Treg infiltration and TGF-β expression. Tregs and related lncRNA PCBP1-AS1 can be used as targets for the diagnosis and treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Healthcare Respiratory Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Tao Yan
- Lung Transplantation Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Deyu Guo
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shijie Sun
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yong Liu
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qiang Liu
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Guanghui Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jingyu Chen
- Lung Transplantation Center, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
235
|
Xu Y, Miller CP, Xue J, Zheng Y, Warren EH, Tykodi SS, Akilesh S. Single cell atlas of kidney cancer endothelial cells reveals distinct expression profiles and phenotypes. BJC REPORTS 2024; 2:23. [PMID: 39516665 PMCID: PMC11524058 DOI: 10.1038/s44276-024-00047-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Tumor endothelial cells (TECs) represent the primary interface between the tumor microenvironment and circulating immune cells, however their phenotypes are incompletely understood in highly vascularized clear cell renal cell carcinoma (ccRCC). METHODS We purified tumor and matched normal endothelial cells (NECs) from ccRCC specimens and performed single-cell RNA-sequencing to create a reference-quality atlas available as a searchable web resource for gene expression patterns. We established paired primary TECs and NECs cultures for ex vivo functional testing. RESULTS TECs from multiple donors shared a common phenotype with increased expression of pathways related to extracellular matrix regulation, cell-cell communication, and insulin-like growth factor signaling. This phenotype was shared with hepatocellular carcinoma associated TECs, suggesting convergent TEC phenotypes between unrelated tumors. Cultured TECs stably maintained a core program of differentially regulated genes which promoted resistance to apoptosis after vascular endothelial growth factor removal and increased adhesiveness to subsets of immune cells including regulatory T-cells. CONCLUSIONS Our studies demonstrate that TECs have a distinct phenotype that is shared by TECs from different tumor types and stable in ex vivo culture. The distinct adhesive interaction of TECs with immune cells raises the possibility of their modulation to improve immune cell-based therapies for RCC.
Collapse
Affiliation(s)
- Yuexin Xu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Chris P Miller
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jun Xue
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Edus H Warren
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, USA
| | - Scott S Tykodi
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Kidney Research Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
236
|
Peng X, Huang X, Lulu TB, Jia W, Zhang S, Cohen L, Huang S, Fan J, Chen X, Liu S, Wang Y, Wang K, Isoyama S, Dan S, Wang F, Zhang Z, Elkabets M, Kong D. A novel pan-PI3K inhibitor KTC1101 synergizes with anti-PD-1 therapy by targeting tumor suppression and immune activation. Mol Cancer 2024; 23:54. [PMID: 38486218 PMCID: PMC10938783 DOI: 10.1186/s12943-024-01978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Phosphoinositide 3-kinases (PI3Ks) are critical regulators of diverse cellular functions and have emerged as promising targets in cancer therapy. Despite significant progress, existing PI3K inhibitors encounter various challenges such as suboptimal bioavailability, potential off-target effects, restricted therapeutic indices, and cancer-acquired resistance. Hence, novel inhibitors that overcome some of these challenges are needed. Here, we describe the characterization of KTC1101, a novel pan-PI3K inhibitor that simultaneously targets tumor cell proliferation and the tumor microenvironment. Our studies demonstrate that KTC1101 significantly increases the anti-PD-1 efficacy in multiple pre-clinical mouse models. METHODS KTC1101 was synthesized and characterized employing chemical synthesis, molecular modeling, Nuclear Magnetic Resonance (NMR), and mass spectrometry. Its target specificity was confirmed through the kinase assay, JFCR39 COMPARE analysis, and RNA-Seq analysis. Metabolic stability was verified via liver microsome and plasma assays, pharmacokinetics determined by LC-MS/MS, and safety profile established through acute toxicity assays to determine the LD50. The antiproliferative effects of KTC1101 were evaluated in a panel of cancer cell lines and further validated in diverse BALB/c nude mouse xenograft, NSG mouse xenograft and syngeneic mouse models. The KTC1101 treatment effect on the immune response was assessed through comprehensive RNA-Seq, flow cytometry, and immunohistochemistry, with molecular pathways investigated via Western blot, ELISA, and qRT-PCR. RESULTS KTC1101 demonstrated strong inhibition of cancer cell growth in vitro and significantly impeded tumor progression in vivo. It effectively modulated the Tumor Microenvironment (TME), characterized by increased infiltration of CD8+ T cells and innate immune cells. An intermittent dosing regimen of KTC1101 enhanced these effects. Notably, KTC1101 synergized with anti-PD-1 therapy, significantly boosting antitumor immunity and extending survival in preclinical models. CONCLUSION KTC1101's dual mechanism of action-directly inhibiting tumor cell growth and dynamically enhancing the immune response- represents a significant advancement in cancer treatment strategies. These findings support incorporating KTC1101 into future oncologic regimens to improve the efficacy of immunotherapy combinations.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xin Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Talal Ben Lulu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Wenqing Jia
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Shaolu Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Limor Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Shengfan Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Jindian Fan
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xi Chen
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Shanshan Liu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Yongzhe Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Kailin Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Sho Isoyama
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhe Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
237
|
Xiong L, Zhang Y, Wang J, Yu M, Huang L, Hou Y, Li G, Wang L, Li Y. Novel small molecule inhibitors targeting renal cell carcinoma: Status, challenges, future directions. Eur J Med Chem 2024; 267:116158. [PMID: 38278080 DOI: 10.1016/j.ejmech.2024.116158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Renal cell carcinoma (RCC) is the most common renal malignancy with a rapidly increasing morbidity and mortality rate gradually. RCC has a high mortality rate and an extremely poor prognosis. Despite numerous treatment strategies, RCC is resistant to conventional radiotherapy and chemotherapy. In addition, the limited clinical efficacy and inevitable resistance of multiple agents suggest an unmet clinical need. Therefore, there is an urgent need to develop novel anti-RCC candidates. Nowadays many promising results have been achieved with the development of novel small molecule inhibitors against RCC. This paper reviews the recent research progress of novel small molecule inhibitors targeting RCC. It is focusing on the structural optimization process and conformational relationships of small molecule inhibitors, as well as the potential mechanisms and anticancer activities for the treatment of RCC. To provide a theoretical basis for promoting the clinical translation of novel small molecule inhibitors, we discussed their application prospects and future development directions. It could be capable of improving the clinical efficacy of RCC and improving the therapy resistance for RCC.
Collapse
Affiliation(s)
- Lin Xiong
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Ya Zhang
- College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Min Yu
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Liming Huang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Yanpei Hou
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Guisen Li
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Li Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Yi Li
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
238
|
Fukushima T, Kobatake K, Miura K, Takemoto K, Yamanaka R, Tasaka R, Kohada Y, Miyamoto S, Sekino Y, Kitano H, Goto K, Ikeda K, Goriki A, Hieda K, Kaminuma O, Hinata N. Nesprin1 Deficiency Is Associated with Poor Prognosis of Renal Cell Carcinoma and Resistance to Sunitinib Treatment. Oncology 2024; 102:868-879. [PMID: 38442705 DOI: 10.1159/000536539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/20/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Nuclear envelope spectrin repeat protein (Nesprin) 1 encoded by SYNE1, crucially regulates the morphology and functions of the cell. Mutations in the SYNE1 gene are associated with various diseases; however, their significance in renal cell carcinoma (RCC) remains unknown. In this study, we have investigated the association of SYNE1/Nesprin1 with the progression and prognosis of clear cell RCC (ccRCC). METHODS In silico analyses of publicly available datasets of patients with RCC were performed. Based on the cohort data, Nesprin1 expression in nephrectomized tissue samples acquired from patients with ccRCC was analyzed using immunohistochemical staining. The invasion, migration, and proliferation of the SYNE1-knockdown human RCC cell lines were analyzed in vitro; moreover, RNA sequencing and gene set enrichment analysis were conducted to study the molecular mechanism underlying the association of SYNE1/Nesprin1 with prognosis of RCC. RESULTS Patients with RCC-associated SYNE1 gene mutations exhibited significantly worse overall and progression-free survivals. Patients with Nesprin1-negative ccRCC tumors exhibit significantly poorer overall, cancer-specific, and recurrence-free survival rates than those recorded in the Nesprin1-positive group. SYNE1 knockdown enhanced the invasion and migration of RCC cells; however, it did not influence the proliferation of cells. RNA sequencing and gene set enrichment analysis revealed that SYNE1 knockdown significantly altered the expression of genes associated with oxidative phosphorylation. Consistently, patients with RCC exhibiting low SYNE1 expression, who were treated with the vascular endothelial growth factor receptor inhibitor sunitinib, had worse progression-free survival. CONCLUSIONS The results indicate that the expression of SYNE1/Nesprin1 and SYNE1 mutations in patients with RCC are closely linked to their prognosis and responsiveness to sunitinib treatment.
Collapse
Affiliation(s)
- Takafumi Fukushima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan,
| | - Kohei Kobatake
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kento Miura
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kenshiro Takemoto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryoken Yamanaka
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ryo Tasaka
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Kohada
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shunsuke Miyamoto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Kitano
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenichiro Ikeda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akihiro Goriki
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Hieda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Osamu Kaminuma
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
239
|
Wilbur HC, Azad NS. Immunotherapy for the treatment of biliary tract cancer: an evolving landscape. Ther Adv Med Oncol 2024; 16:17588359241235799. [PMID: 38449562 PMCID: PMC10916472 DOI: 10.1177/17588359241235799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Biliary tract cancers (BTCs), consisting of intrahepatic and extrahepatic cholangiocarcinoma and gallbladder cancer, are an aggressive, heterogeneous malignancy. They are most often diagnosed in the locally advanced or metastatic setting, at which point treatment consists of systemic therapy or best supportive care. Our understanding of the tumor microenvironment and the molecular classification has led to the identification of targetable mutations, such as isocitrate dehydrogenase 1 and fibroblast growth factor receptor 2. Despite the identification of these genomic alterations, until recently, little advancement had been made in the first-line setting for advanced BTC. While immunotherapy (IO) has revolutionized the treatment of many malignancies, the use of IO in BTC had yielded limited results prior to TOPAZ-1. In this review, we discuss the systemic therapeutic advances for BTC over the past decade, the rationale for immunotherapy in BTC, prior trials utilizing IO in BTC, and current and emerging immune-based therapeutic options. We further analyze the culmination of these advances, which resulted in the approval of durvalumab with gemcitabine and cisplatin for the first-line treatment of BTC per TOPAZ-1. We also discuss the results of KEYNOTE-966, which similarly reported improved clinical outcomes with the use of pembrolizumab in combination with gemcitabine and cisplatin.
Collapse
Affiliation(s)
- Helen Catherine Wilbur
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Nilofer S. Azad
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 N. Broadway, Baltimore, MD 21287, USA
| |
Collapse
|
240
|
Elkrief A, Waters NR, Smith N, Dai A, Slingerland J, Aleynick N, Febles B, Gogia P, Socci ND, Lumish M, Giardina PA, Chaft JE, Eng J, Motzer RJ, Mendelsohn RB, Markey KA, Zhuang M, Li Y, Yang Z, Hollmann TJ, Rudin CM, van den Brink MR, Shia J, DeWolf S, Schoenfeld AJ, Hellmann MD, Babady NE, Faleck DM, Peled JU. Immune-Related Colitis Is Associated with Fecal Microbial Dysbiosis and Can Be Mitigated by Fecal Microbiota Transplantation. Cancer Immunol Res 2024; 12:308-321. [PMID: 38108398 PMCID: PMC10932930 DOI: 10.1158/2326-6066.cir-23-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/08/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Colitis induced by treatment with immune-checkpoint inhibitors (ICI), termed irColitis, is a substantial cause of morbidity complicating cancer treatment. We hypothesized that abnormal fecal microbiome features would be present at the time of irColitis onset and that restoring the microbiome with fecal transplant from a healthy donor would mitigate disease severity. Herein, we present fecal microbiota profiles from 18 patients with irColitis from a single center, 5 of whom were treated with healthy-donor fecal microbial transplantation (FMT). Although fecal samples collected at onset of irColitis had comparable α-diversity to that of comparator groups with gastrointestinal symptoms, irColitis was characterized by fecal microbial dysbiosis. Abundances of Proteobacteria were associated with irColitis in multivariable analyses. Five patients with irColitis refractory to steroids and biologic anti-inflammatory agents received healthy-donor FMT, with initial clinical improvement in irColitis symptoms observed in four of five patients. Two subsequently exhibited recurrence of irColitis symptoms following courses of antibiotics. Both received a second "salvage" FMT that was, again, followed by clinical improvement of irColitis. In summary, we observed distinct microbial community changes that were present at the time of irColitis onset. FMT was followed by clinical improvements in several cases of steroid- and biologic-agent-refractory irColitis. Strategies to restore or prevent microbiome dysbiosis in the context of immunotherapy toxicities should be further explored in prospective clinical trials.
Collapse
Affiliation(s)
- Arielle Elkrief
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas R. Waters
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Natalie Smith
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Angel Dai
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John Slingerland
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nathan Aleynick
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Binita Febles
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pooja Gogia
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nicholas D. Socci
- Bioinformatics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Melissa Lumish
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Paul A. Giardina
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jamie E. Chaft
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Juliana Eng
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Robert J. Motzer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Robin B. Mendelsohn
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Kate A. Markey
- Fred Hutchinson Cancer Center, Seattle, Washington; Division of Medical Oncology, University of Washington, Seattle, Washington
| | - Mingqiang Zhuang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yanyun Li
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhifan Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Travis J. Hollmann
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Charles M. Rudin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Marcel R.M. van den Brink
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jinru Shia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Adam J. Schoenfeld
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Matthew D. Hellmann
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - N. Esther Babady
- Clinical Microbiology Service, Department of Pathology and Laboratory Medicine and the Infectious Disease Service, Department of Medicine Memorial Sloan Kettering Cancer Center, New York, NY
| | - David M. Faleck
- Gastroenterology, Hepatology & Nutrition Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Jonathan U. Peled
- Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
241
|
Al-Ezzi E, Mittal A, Veitch ZW, Zahralliyali A, Mejia NMD, Abdeljalil O, Alqaisi H, Kumar V, Hansen AR, Fallah-Rad N, Sridhar SS. The Survival Outcomes of the Metastatic Nonclear Cell Renal Cell Carcinoma in the Immunotherapy Era: Princess Margaret Cancer Centre Experience. J Kidney Cancer VHL 2024; 11:41-48. [PMID: 38450000 PMCID: PMC10915653 DOI: 10.15586/jkcvhl.v11i1.307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024] Open
Abstract
Immunotherapy (IO) with or without targeted therapy (TT) is the standard treatment for patients with metastatic clear cell renal cell carcinoma (RCC). The evidence supporting their use in metastatic nonclear cell renal cell carcinoma (nccRCC) subtypes is based on small prospective trials and retrospective analyses. Here, we report survival outcomes for patients with metastatic nccRCC treated with IO and/or TT at the Princess Margaret Cancer Centre, Toronto, ON, Canada. Demographics, disease characteristics, and survival outcomes were collected retrospectively. Overall (OS), progression-free survival (PFS), and objective response rates (ORR) were calculated. We identified 69 patients with metastatic nccRCC treated with IO and/or TT as the first-line treatment, and 36 (52.1%) patients as the second-line treatment. Median OS of the first line IO recipients (n = 12) and non-IO recipients (n = 57) was not reached (NR) and 17.2 months (95% confidence interval (95% CI): 7.3-27.0; P = 0.23), respectively. Median PFS of first-line IO recipients and non-IO recipients was NR and 4.7 months (95% CI: 3.7-5.6; P = 0.019), respectively. The ORR of IO recipients versus non-IO recipients was 50% versus 12.3% (P = 0.007). Median OS of the second-line IO recipients (n = 8) and non-IO recipients (n = 28) was NR and 6.3 months (95% CI: 3.2-9.3; P = 0.003), respectively. Median PFS of second-line IO recipients and non-IO recipients was 4.8 months (95% CI: 2.7-6.8) and 2.8 months (95% CI: 1.8-3.7; P = 0.014), respectively. ORR of IO recipients and non-IO recipients was 37.5% and 3.5%, respectively; P = 0.028. While the number of patients included in our retrospective review was small, our analysis suggested that patients with nccRCC have improved survival outcomes with IO treatment. Validation of prospective dataset is required before widespread clinical utilization.
Collapse
Affiliation(s)
- Esmail Al-Ezzi
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Abhenil Mittal
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Zachary W. Veitch
- Division of Medical Oncology and Hematology, Royal Victoria Hospital, Barrie, ON, Canada
| | - Amer Zahralliyali
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nely Mercy Diaz Mejia
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Osama Abdeljalil
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Husam Alqaisi
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Vikaash Kumar
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aaron R. Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Cancer Services, Princess Alexandra Hospital, Metro South Health, Brisbane, QLD 4113, Australia
| | - Nazanin Fallah-Rad
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Srikala S. Sridhar
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
242
|
Choueiri TK, Donahue AC, Braun DA, Rini BI, Powles T, Haanen JB, Larkin J, Mu XJ, Pu J, Teresi RE, di Pietro A, Robbins PB, Motzer RJ. Integrative Analyses of Tumor and Peripheral Biomarkers in the Treatment of Advanced Renal Cell Carcinoma. Cancer Discov 2024; 14:406-423. [PMID: 38385846 PMCID: PMC10905671 DOI: 10.1158/2159-8290.cd-23-0680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/22/2023] [Accepted: 12/21/2023] [Indexed: 02/23/2024]
Abstract
The phase III JAVELIN Renal 101 trial demonstrated prolonged progression-free survival (PFS) in patients (N = 886) with advanced renal cell carcinoma treated with first-line avelumab + axitinib (A+Ax) versus sunitinib. We report novel findings from integrated analyses of longitudinal blood samples and baseline tumor tissue. PFS was associated with elevated lymphocyte levels in the sunitinib arm and an abundance of innate immune subsets in the A+Ax arm. Treatment with A+Ax led to greater T-cell repertoire modulation and less change in T-cell numbers versus sunitinib. In the A+Ax arm, patients with tumors harboring mutations in ≥2 of 10 previously identified PFS-associated genes (double mutants) had distinct circulating and tumor-infiltrating immunologic profiles versus those with wild-type or single-mutant tumors, suggesting a role for non-T-cell-mediated and non-natural killer cell-mediated mechanisms in double-mutant tumors. We provide evidence for different immunomodulatory mechanisms based on treatment (A+Ax vs. sunitinib) and tumor molecular subtypes. SIGNIFICANCE Our findings provide novel insights into the different immunomodulatory mechanisms governing responses in patients treated with avelumab (PD-L1 inhibitor) + axitinib or sunitinib (both VEGF inhibitors), highlighting the contribution of tumor biology to the complexity of the roles and interactions of infiltrating immune cells in response to these treatment regimens. This article is featured in Selected Articles from This Issue, p. 384.
Collapse
Affiliation(s)
- Toni K. Choueiri
- The Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - David A. Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Brian I. Rini
- Hematology Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Thomas Powles
- Department of Genitourinary Oncology, Barts Cancer Institute, Experimental Cancer Medicine Centre, Queen Mary University of London, St Bartholomew's Hospital, London, United Kingdom
| | - John B.A.G. Haanen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - James Larkin
- Department of Medical Oncology, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Jie Pu
- Pfizer, La Jolla, California
| | | | | | | | - Robert J. Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
243
|
Kato T, Nakano Y, Hongo F, Katano H, Miyagawa T, Ueda K, Azuma H, Nozawa M, Hinata N, Hori J, Otoshi T, Shimizu N, Aizawa M, Osada S, Matsui A, Oya M, Eto M, Tomita Y, Shinohara N, Uemura H. Real-world outcomes of avelumab plus axitinib as first-line therapy in patients with advanced renal cell carcinoma in Japan: A multicenter, retrospective, observational study (J-DART). Int J Urol 2024; 31:265-272. [PMID: 38110838 PMCID: PMC11524108 DOI: 10.1111/iju.15345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVES In the phase 3 JAVELIN Renal 101 trial in patients with advanced renal cell carcinoma (aRCC), objective response rate (ORR) and progression-free survival (PFS) were significantly improved in patients treated with first-line avelumab plus axitinib vs sunitinib. Here we evaluate real-world outcomes with first-line avelumab plus axitinib in Japanese patients with aRCC. METHODS In this multicenter, noninterventional, retrospective study, clinical data from patients with aRCC treated with first-line avelumab plus axitinib between December 2019 and December 2020 in Japan were reviewed. Endpoints included ORR and PFS per investigator assessment, and time to treatment discontinuation (TTD). RESULTS Data from 48 patients (median age, 69 years) from 12 sites were analyzed. Median follow-up was 10.4 months (range, 2.6-16.5), and median duration of treatment was 7.4 months (range, 0.5-16.5). International Metastatic RCC Database Consortium risk category was favorable, intermediate, or poor in 16.7%, 54.2%, and 29.2% of patients, respectively. The ORR was 48.8% (95% CI, 33.3%-64.5%), including complete response in 3/43 patients (7.0%). Thirteen patients (27.1%) had disease progression or died, and median PFS was 15.3 months (95% CI, 9.7 months - not estimable). At data cutoff, 24 patients (50.0%) were still receiving avelumab plus axitinib, and median TTD was 15.2 months (95% CI, 7.4 months - not estimable). Three patients (6.3%) received high-dose corticosteroid treatment for immune-related adverse events, and 8 (16.7%) received treatment for infusion-related reactions. CONCLUSIONS We report the first real-world evidence of the effectiveness and tolerability of first-line avelumab plus axitinib in Japanese patients with aRCC. Results were comparable with the JAVELIN Renal 101 trial.
Collapse
Affiliation(s)
- Taigo Kato
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yuzo Nakano
- Department of UrologyKobe University Graduate School of MedicineKobeJapan
| | - Fumiya Hongo
- Department of UrologyKyoto Prefectural University of MedicineKyotoJapan
| | - Hidenori Katano
- Department of UrologyIwamizawa Municipal General HospitalIwamizawaJapan
| | - Tomoaki Miyagawa
- Department of UrologyJichi Medical University Saitama Medical CenterSaitamaJapan
| | - Kosuke Ueda
- Department of UrologyKurume University School of MedicineKurumeJapan
| | - Haruhito Azuma
- Department of UrologyOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Masahiro Nozawa
- Department of UrologyKindai University Faculty of MedicineOsakasayamaJapan
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Junichi Hori
- Department of Renal and Urologic SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Taiyo Otoshi
- Department of UrologyOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Nobuaki Shimizu
- Department of UrologyGunma Prefectural Cancer CenterOtaJapan
| | - Mana Aizawa
- Biometrics and Data Management, Pfizer R&D JapanTokyoJapan
| | - Shingo Osada
- Oncology Medical Affairs, Pfizer Japan, Inc.TokyoJapan
| | - Akiko Matsui
- Oncology Medical Affairs, Pfizer Japan, Inc.TokyoJapan
| | - Mototsugu Oya
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshihiko Tomita
- Departments of Urology and Molecular OncologyNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
| | - Nobuo Shinohara
- Department of Urology, Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Hirotsugu Uemura
- Department of UrologyKindai University Faculty of MedicineOsakasayamaJapan
| |
Collapse
|
244
|
Cimadamore A, Franzese C, Di Loreto C, Blanca A, Lopez-Beltran A, Crestani A, Giannarini G, Tan PH, Carneiro BA, El-Deiry WS, Montironi R, Cheng L. Predictive and prognostic biomarkers in urological tumours. Pathology 2024; 56:228-238. [PMID: 38199927 DOI: 10.1016/j.pathol.2023.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 01/12/2024]
Abstract
Advancements in cutting-edge molecular profiling techniques, such as next-generation sequencing and bioinformatic analytic tools, have allowed researchers to examine tumour biology in detail and stratify patients based on factors linked with clinical outcome and response to therapy. This manuscript highlights the most relevant prognostic and predictive biomarkers in kidney, bladder, prostate and testicular cancers with recognised impact in clinical practice. In bladder and prostate cancer, new genetic acquisitions concerning the biology of tumours have modified the therapeutic scenario and led to the approval of target directed therapies, increasing the quality of patient care. Thus, it has become of paramount importance to choose adequate molecular tests, i.e., FGFR screening for urothelial cancer and BRCA1-2 alterations for prostate cancer, to guide the treatment plan for patients. While no tissue or blood-based biomarkers are currently used in routine clinical practice for renal cell carcinoma and testicular cancers, the field is quickly expanding. In kidney tumours, gene expression signatures might be the key to identify patients who will respond better to immunotherapy or anti-angiogenic drugs. In testicular germ cell tumours, the use of microRNA has outperformed conventional serum biomarkers in the diagnosis of primary tumours, prediction of chemoresistance, follow-up monitoring, and relapse prediction.
Collapse
Affiliation(s)
- Alessia Cimadamore
- Institute of Pathological Anatomy, Department of Medicine (DAME), Udine University, Udine, Italy.
| | - Carmine Franzese
- Department of Urology, Ospedale Santa Maria Della Misericordia di Udine, Udine, Italy
| | - Carla Di Loreto
- Institute of Pathological Anatomy, Department of Medicine (DAME), Udine University, Udine, Italy
| | - Ana Blanca
- Maimonides Biomedical Research Institute of Cordoba, Department of Urology, University Hospital of Reina Sofia, UCO, Cordoba, Spain
| | | | - Alessandro Crestani
- Department of Urology, Ospedale Santa Maria Della Misericordia di Udine, Udine, Italy
| | - Gianluca Giannarini
- Department of Urology, Ospedale Santa Maria Della Misericordia di Udine, Udine, Italy
| | | | - Benedito A Carneiro
- The Legorreta Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Lifespan Academic Medical Center, Providence, RI, USA
| | - Wafik S El-Deiry
- The Legorreta Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Lifespan Academic Medical Center, Providence, RI, USA
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Department of Clinical and Molecular Sciences, Polytechnic University of the Marche Region, Ancona, Italy
| | - Liang Cheng
- The Legorreta Cancer Center at Brown University, Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Lifespan Academic Medical Center, Providence, RI, USA.
| |
Collapse
|
245
|
Hu J, Wang SG, Hou Y, Chen Z, Liu L, Li R, Li N, Zhou L, Yang Y, Wang L, Wang L, Yang X, Lei Y, Deng C, Li Y, Deng Z, Ding Y, Kuang Y, Yao Z, Xun Y, Li F, Li H, Hu J, Liu Z, Wang T, Hao Y, Jiao X, Guan W, Tao Z, Ren S, Chen K. Multi-omic profiling of clear cell renal cell carcinoma identifies metabolic reprogramming associated with disease progression. Nat Genet 2024; 56:442-457. [PMID: 38361033 PMCID: PMC10937392 DOI: 10.1038/s41588-024-01662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a complex disease with remarkable immune and metabolic heterogeneity. Here we perform genomic, transcriptomic, proteomic, metabolomic and spatial transcriptomic and metabolomic analyses on 100 patients with ccRCC from the Tongji Hospital RCC (TJ-RCC) cohort. Our analysis identifies four ccRCC subtypes including De-clear cell differentiated (DCCD)-ccRCC, a subtype with distinctive metabolic features. DCCD cancer cells are characterized by fewer lipid droplets, reduced metabolic activity, enhanced nutrient uptake capability and a high proliferation rate, leading to poor prognosis. Using single-cell and spatial trajectory analysis, we demonstrate that DCCD is a common mode of ccRCC progression. Even among stage I patients, DCCD is associated with worse outcomes and higher recurrence rate, suggesting that it cannot be cured by nephrectomy alone. Our study also suggests a treatment strategy based on subtype-specific immune cell infiltration that could guide the clinical management of ccRCC.
Collapse
Affiliation(s)
- Junyi Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Hou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lilong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi Li
- Shanghai Luming Biotech, Shanghai, China
| | - Nisha Li
- Shanghai Luming Biotech, Shanghai, China
- Shanghai OE Biotech, Shanghai, China
| | - Lijie Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Yang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liping Wang
- Department of Pathology, Baylor Scott & White Medical Center, Temple, TX, USA
| | - Liang Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichen Lei
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqi Deng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyao Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhong Ding
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingchun Kuang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhipeng Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Philadelphia, PA, USA
| | - Wei Guan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shancheng Ren
- Department of Urology, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
246
|
Buchler T, Poprach A. Planned Discontinuation of Tyrosine Kinase Inhibitor Therapy in Metastatic Renal Cell Carcinoma: Lessons for the Era of Immunotherapy. Target Oncol 2024; 19:175-180. [PMID: 38308662 PMCID: PMC10963498 DOI: 10.1007/s11523-023-01031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/05/2024]
Abstract
Several regimens combining immunotherapy and tyrosine kinase inhibitors (TKIs) have recently been validated for the first-line treatment of patients with metastatic renal cell carcinoma (mRCC). While immunotherapy is typically discontinued after 2 years in patients who neither progress nor experience limiting toxicity, according to the protocols of most recent phase III clinical trials, TKIs are to be continued until disease progression or the emergence of limiting toxicity. However, the prolonged use of TKIs is associated with significant toxicity and financial costs. This has sparked considerable debate about whether TKIs can be safely discontinued, particularly in mRCC patients who have achieved a verified complete response. This concise review examines the available evidence on TKI discontinuation in the context of mRCC management.
Collapse
Affiliation(s)
- Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic.
- Department of Comprehensive Cancer Care and Faculty of Medicine, Masaryk Memorial Cancer Institute and Masaryk University, Brno, Czech Republic.
| | - Alexandr Poprach
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic
| |
Collapse
|
247
|
Miyake M. Editorial Comment from Dr Miyake to Real-world outcomes of avelumab plus axitinib as first-line therapy in patients with advanced renal cell carcinoma in Japan: A multicenter, retrospective, observational study (J-DART). Int J Urol 2024; 31:273. [PMID: 38173077 DOI: 10.1111/iju.15384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Affiliation(s)
- Makito Miyake
- Department of Urology, Nara Medical University, Nara, Japan
| |
Collapse
|
248
|
Clark GC, Lai A, Agarwal A, Liu Z, Wang XY. Biopterin metabolism and nitric oxide recoupling in cancer. Front Oncol 2024; 13:1321326. [PMID: 38469569 PMCID: PMC10925643 DOI: 10.3389/fonc.2023.1321326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/26/2023] [Indexed: 03/13/2024] Open
Abstract
Tetrahydrobiopterin is a cofactor necessary for the activity of several enzymes, the most studied of which is nitric oxide synthase. The role of this cofactor-enzyme relationship in vascular biology is well established. Recently, tetrahydrobiopterin metabolism has received increasing attention in the field of cancer immunology and immunotherapy due to its involvement in the cytotoxic T cell response. Past research has demonstrated that when the availability of BH4 is low, as it is in chronic inflammatory conditions and tumors, electron transfer in the active site of nitric oxide synthase becomes uncoupled from the oxidation of arginine. This results in the production of radical species that are capable of a direct attack on tetrahydrobiopterin, further depleting its local availability. This feedforward loop may act like a molecular switch, reinforcing low tetrahydrobiopterin levels leading to altered NO signaling, restrained immune effector activity, and perpetual vascular inflammation within the tumor microenvironment. In this review, we discuss the evidence for this underappreciated mechanism in different aspects of tumor progression and therapeutic responses. Furthermore, we discuss the preclinical evidence supporting a clinical role for tetrahydrobiopterin supplementation to enhance immunotherapy and radiotherapy for solid tumors and the potential safety concerns.
Collapse
Affiliation(s)
- Gene Chatman Clark
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Alan Lai
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Zheng Liu
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Xiang-Yang Wang
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
249
|
Hata K, Nakamura K, Maeda S, Maeda M, Fujio Y, Hirobe S. Infusion-Related Reactions Subsequent to Avelumab, Durvalumab, and Atezolizumab Administration: A Retrospective Observational Study. Clin Pract 2024; 14:377-387. [PMID: 38525708 PMCID: PMC10961686 DOI: 10.3390/clinpract14020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Avelumab, durvalumab, and atezolizumab are anti-programmed death-ligand 1 (PD-L1) antibodies approved for clinical application in Japan. Despite targeting the same molecule, avelumab elicits a different frequency of infusion-related reactions (IRRs) compared with durvalumab and atezolizumab, leading to differences in premedication recommendations. This study aimed to collect information to verify the relationship during IRRs and the characteristics of antibody molecules, by investigating the frequency of IRRs caused by three types of antibodies and the actual status of prophylactic measures. METHODS This single-center, retrospective observational study collected the medical records of 73 patients who received avelumab, durvalumab, or atezolizumab at Osaka University Hospital. RESULTS The frequency of IRRs was 50.0% (12/24) for avelumab, 31.0% (8/27) for durvalumab, and 18.2% (4/22) for atezolizumab. The IRRs were grade 2 in seven patients and grade 1 in five patients treated with avelumab, grade 2 in six patients and grade 1 in two patients treated with durvalumab, and grade 1 in all patients treated with atezolizumab. Among patients in whom symptoms were observed during the first administration, measures were taken to prevent IRRs for the second administration, but cases were confirmed in which symptoms reappeared, especially in patients who received durvalumab. CONCLUSION Our findings indicate that the frequency of IRRs due to anti-PD-L1 antibodies is higher than that previously reported in clinical trials and different modifications in antibody molecules may affect the difference in IRR frequency.
Collapse
Affiliation(s)
- Keiko Hata
- Laboratory of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan
| | - Keina Nakamura
- Laboratory of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan
| | - Shinichiro Maeda
- Laboratory of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan
- Department of Pharmacy, Osaka University Hospital, Suita 565-0871, Japan
| | - Makiko Maeda
- Laboratory of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan
- Laboratory of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan
| | - Sachiko Hirobe
- Laboratory of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Japan
- Department of Pharmacy, Osaka University Hospital, Suita 565-0871, Japan
- Laboratory of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
250
|
Shimizu T, Miyake M, Nishimura N, Yoshida T, Itami Y, Tachibana A, Omori C, Oda Y, Kohashi M, Tomizawa M, Onishi K, Hori S, Morizawa Y, Dotoh D, Nakai Y, Torimoto K, Tanaka N, Fujimoto K. Impact of Complete Surgical Resection of Metastatic Lesions in Patients with Advanced Renal Cell Carcinoma in the Era of Tyrosine Kinase Inhibitors and Immune Checkpoint Inhibitors. Cancers (Basel) 2024; 16:841. [PMID: 38398232 PMCID: PMC10886671 DOI: 10.3390/cancers16040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Complete metastasectomy (CM) in metastatic renal cell carcinoma (mRCC) has demonstrated efficacy in the cytokine era, but its effectiveness in the era of tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) remains unclear. A multi-institutional database included clinicopathological data of 367 patients with mRCC. Patients were divided into two groups: the CM group and the non-CM group. These two groups were compared before and after propensity score matching (PSM). Cox proportional hazard models were used to detect factors associated with disease-free survival (DFS) and overall survival (OS) from mRCC diagnosis. The CM group showed a significant association with longer overall survival compared to the non-CM group in the PSM-unadjusted cohorts (p < 0.001, hazard ratio 0.49, 95% confidence interval 0.35-0.69), but no superiority was noted in the adjusted cohorts. The median DFS after CM was 24 months, with no significant differences based on relapse timing. Notably, the international metastatic RCC database consortium risk categories and metastatic burden were associated with DFS. This study supports the potential of CM in mRCC management during the TKI/ICI era, although limitations including sample size and selection bias need to be considered.
Collapse
Affiliation(s)
- Takuto Shimizu
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Nobutaka Nishimura
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Takanori Yoshida
- Department of Urology, Nara Prefecture Seiwa Medical Center, Ikoma, Nara 636-0802, Japan
| | - Yoshitaka Itami
- Department of Urology, Tane General Hospital, Osaka, Osaka 550-0025, Japan
| | - Akira Tachibana
- Department of Urology, Hoshigaoka Medical Center, Hirakata, Osaka 573-8511, Japan
| | - Chihiro Omori
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
- Department of Urology, Nara Prefecture General Medical Center, Nara, Nara 630-8581, Japan
| | - Yuki Oda
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Mikiko Kohashi
- Department of Urology, Nara City Hospital, Nara, Nara 630-8305, Japan
| | - Mitsuru Tomizawa
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Kenta Onishi
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Daisuke Dotoh
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Kazumasa Torimoto
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Nobumichi Tanaka
- Department of Prostate Brachytherapy, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| |
Collapse
|