201
|
Wu C, Tu YB, Li Z, Li YF. Highly selective carbamate-based butyrylcholinesterase inhibitors derived from a naturally occurring pyranoisoflavone. Bioorg Chem 2019; 88:102949. [DOI: 10.1016/j.bioorg.2019.102949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 01/19/2023]
|
202
|
Chlorella sorokiniana and Chlorella minutissima exhibit antioxidant potentials, inhibit cholinesterases and modulate disaggregation of β-amyloid fibrils. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
203
|
Makhaeva GF, Rudakova EV, Kovaleva NV, Lushchekina SV, Boltneva NP, Proshin AN, Shchegolkov EV, Burgart YV, Saloutin VI. Cholinesterase and carboxylesterase inhibitors as pharmacological agents. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2507-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
204
|
Sieteiglesias V, González-Burgos E, Bermejo-Bescós P, Divakar PK, Gómez-Serranillos MP. Lichens of Parmelioid Clade as Promising Multitarget Neuroprotective Agents. Chem Res Toxicol 2019; 32:1165-1177. [PMID: 31125207 DOI: 10.1021/acs.chemrestox.9b00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease are multifactorial disorders which are increasing in incidence and prevalence over the world without existing effective therapies. The search for new multitarget compounds is the latter therapeutic strategy to address these pathological conditions. Lichens have an important and unknown therapeutic value attributed to their unique secondary metabolites. The aim of this study is to evaluate for the first time the in vitro neuroprotective activities and molecular mechanisms underlying methanol extracts of lichens of the parmelioid clade and to characterize major bioactive secondary metabolites responsible for their pharmacological actions. Of the 15 parmelioid lichen species, our results showed that Parmotrema perlatum and Hypotrachyna formosana methanol extracts exhibited high antioxidant activity as evidenced in ORAC, DPPH, and FRAP assays. Then, SH-SY5Y cells were pretreated with methanol extracts (24 h) followed by Fenton reagent exposure (2 h). Pretreatments with these two more antioxidant methanol lichen extracts increased cell viability, reduced intracellular ROS, prevented oxidative stress biomarkers accumulation, and upregulated antioxidant enzyme (CAT, SOD, GR, and GPx) activity compared to Fenton reagent cells. The neuroprotective activity was much higher for H. formosana than for P. perlatum, even equal to or higher than Trolox (reference compound). Moreover, H. formosana extracts inhibited both AChE and BuChE activities in a concentration dependent manner, and P. perlatum only showed concentration dependent activity against AChE. Finally, chemical composition analysis using TLC and HPLC methods revealed that physodic acid, lividic acid, and lichexanthone are major secondary metabolites in H. formosana and stictic acid and constictic acid are in P. perlatum. These results demonstrated that P. perlatum and, specially, H. formosana are promising multitargeted neuroprotective agents due to their antioxidant and AChE and BuChE inhibition activities.
Collapse
Affiliation(s)
- Víctor Sieteiglesias
- Department of Pharmacology, Pharmacognosy and Botanical, Faculty of Pharmacy , Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, Ciudad Universitaria , 28040 , Madrid , Spain
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botanical, Faculty of Pharmacy , Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, Ciudad Universitaria , 28040 , Madrid , Spain
| | - Paloma Bermejo-Bescós
- Department of Pharmacology, Pharmacognosy and Botanical, Faculty of Pharmacy , Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, Ciudad Universitaria , 28040 , Madrid , Spain
| | - Pradeep K Divakar
- Department of Pharmacology, Pharmacognosy and Botanical, Faculty of Pharmacy , Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, Ciudad Universitaria , 28040 , Madrid , Spain
| | - María Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botanical, Faculty of Pharmacy , Universidad Complutense de Madrid, Plaza Ramon y Cajal s/n, Ciudad Universitaria , 28040 , Madrid , Spain
| |
Collapse
|
205
|
Son M, Lee H, Jeon C, Kang Y, Park C, Lee KW, Park JH. Tryptamine–Triazole Hybrid Compounds for Selective Butyrylcholinesterase Inhibition. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Minky Son
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Systems and Synthetic Agrobiotech Center (SSAC)Research Institute of Natural Science (RINS), Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Haneul Lee
- Department of Chemical & Biological EngineeringHanbat National University Daejeon 34158 South Korea
| | - Cheolmin Jeon
- Department of Chemical & Biological EngineeringHanbat National University Daejeon 34158 South Korea
| | - Yujung Kang
- Department of Chemical & Biological EngineeringHanbat National University Daejeon 34158 South Korea
| | - Chanin Park
- Department of Chemical & Biological EngineeringHanbat National University Daejeon 34158 South Korea
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Systems and Synthetic Agrobiotech Center (SSAC)Research Institute of Natural Science (RINS), Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Jeong Ho Park
- Department of Chemical & Biological EngineeringHanbat National University Daejeon 34158 South Korea
| |
Collapse
|
206
|
Zhu J, Wang LN, Cai R, Geng SQ, Dong YF, Liu YM. Design, synthesis, evaluation and molecular modeling study of 4-N-phenylaminoquinolines for Alzheimer disease treatment. Bioorg Med Chem Lett 2019; 29:1325-1329. [DOI: 10.1016/j.bmcl.2019.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/22/2019] [Accepted: 03/30/2019] [Indexed: 12/12/2022]
|
207
|
Purgatorio R, de Candia M, Catto M, Carrieri A, Pisani L, De Palma A, Toma M, Ivanova OA, Voskressensky LG, Altomare CD. Investigating 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole as scaffold of butyrylcholinesterase-selective inhibitors with additional neuroprotective activities for Alzheimer's disease. Eur J Med Chem 2019; 177:414-424. [PMID: 31158754 DOI: 10.1016/j.ejmech.2019.05.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Due to the role of butyrylcholinesterase (BChE) in acetylcholine hydrolysis in the late stages of the Alzheimer's disease (AD), inhibitors of butyrylcholinesterase (BChE) have been recently envisaged, besides acetylcholinesterase (AChE) inhibitors, as candidates for treating mild-to-moderate AD. Herein, synthesis and AChE/BChE inhibition activity of some twenty derivatives of 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole (HHAI) is reported. Most of the newly synthesized HHAI derivatives achieved the inhibition of both ChE isoforms with IC50s in the micromolar range, with a structure-dependent selectivity toward BChE. Apparently, molecular volume and lipophilicity do increase selectivity toward BChE, and indeed the N2-(4-phenylbutyl) HHAI derivative 15d, which behaves as a mixed-type inhibitor, resulted the most potent (IC50 0.17 μM) and selective (>100-fold) inhibitor toward either horse serum and human BChE. Moreover, 15d inhibited in vitro self-induced aggregation of neurotoxic amyloid-β (Aβ) peptide and displayed neuroprotective effects in neuroblastoma SH-SY5Y cell line, significantly recovering (P < 0.001) cell viability when impaired by Aβ1-42 and hydrogen peroxide insults. Overall, this study highlighted HHAI as useful and versatile scaffold for developing new small molecules targeting some enzymes and biochemical pathways involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Rosa Purgatorio
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Marco Catto
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Maddalena Toma
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Olga A Ivanova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russian Federation
| | - Leonid G Voskressensky
- Organic Chemistry Department, RUDN University, Miklukho-Maklai St, 6, Moscow, 117198, Russian Federation
| | - Cosimo D Altomare
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
208
|
Riazimontazer E, Sadeghpour H, Nadri H, Sakhteman A, Tüylü Küçükkılınç T, Miri R, Edraki N. Design, synthesis and biological activity of novel tacrine-isatin Schiff base hybrid derivatives. Bioorg Chem 2019; 89:103006. [PMID: 31158577 DOI: 10.1016/j.bioorg.2019.103006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/10/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022]
Abstract
A series of novel tacrine-isatin Schiff base hybrid derivatives (7a-p) were designed, synthesized and evaluated as multi-target candidates against Alzheimer's disease (AD). The biological assays indicated that most of these compounds displayed potent inhibitory activity toward acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) and specific selectivity for AChE over BuChE. It was also found that they act as excellent metal chelators. The compounds 7k and 7m were found to be good inhibitors of AChE-induced amyloid-beta (Aβ) aggregation. Most of the compounds inhibited AChE with the IC50 values, ranging from 0.42 nM to 79.66 nM. Amongst them, 7k, 7m and 7p, all with a 6 carbon linker between tacrine and isatin Schiff base exhibited the strongest inhibitory activity against AChE with IC50 values of 0.42 nM, 0.62 nM and 0.95 nM, respectively. They were 92-, 62- and 41-fold more active than tacrine (IC50 = 38.72 nM) toward AChE. Most of the compounds also showed a potent BuChE inhibition among which 7d with an IC50 value of 0.11 nM for BuChE is the most potent one (56-fold more potent than that of tacrine (IC50 = 6.21 nM)). In addition, most compounds exhibited the highest metal chelating property. Kinetic and molecular modeling studies revealed that 7k is a mixed-type inhibitor, capable of binding to catalytic and peripheral site of AChE. Our findings make this hybrid scaffold an excellent candidate to modify current drugs in treating Alzheimer's disease (AD).
Collapse
Affiliation(s)
- E Riazimontazer
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - H Sadeghpour
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - H Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - A Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - T Tüylü Küçükkılınç
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, Sihhiye-Ankara, Turkey
| | - R Miri
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
209
|
|
210
|
de Castro AA, Soares FV, Pereira AF, Polisel DA, Caetano MS, Leal DHS, da Cunha EFF, Nepovimova E, Kuca K, Ramalho TC. Non-conventional compounds with potential therapeutic effects against Alzheimer’s disease. Expert Rev Neurother 2019; 19:375-395. [DOI: 10.1080/14737175.2019.1608823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexandre A. de Castro
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Flávia V. Soares
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Ander F. Pereira
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Daniel A. Polisel
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Melissa S. Caetano
- Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Daniel H. S. Leal
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Health Sciences, Federal University of Espírito Santo, São Mateus, Brazil
| | - Elaine F. F. da Cunha
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Teodorico C. Ramalho
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
211
|
Seidl C, Vilela AFL, Lima JM, Leme GM, Cardoso CL. A novel on-flow mass spectrometry-based dual enzyme assay. Anal Chim Acta 2019; 1072:81-86. [PMID: 31146868 DOI: 10.1016/j.aca.2019.04.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022]
Abstract
This work describes a new simultaneous on-flow dual parallel enzyme assay based on immobilized enzyme reactors (ICERs) with mass spectrometry detection. The novelty of this work relies on the fact that two different enzymes can be screened at the same time with only one single sample injection and in less than 6 min. The system consisted of two immobilized capillary enzyme reactors (ICERs). More specifically, the ICERs comprised two different enzymes that were accommodated in parallel and were placed between a liquid chromatography (LC) system and a mass spectrometer (MS). The resulting system could be adapted to other types of enzyme reactors with different supports. All the elements in the system were interfaced by means of two 10-port/two-position switching valves. Different tubing dimensions allowed us to monitor the activity of each enzyme independently during the same analysis. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) bioreactors were chosen as proof of concept. Acetylcholine (ACh) was used as substrate; the area of its protonated enzymatic hydrolysis product ion, choline, [M+H]+m/z 104.0, was monitored in the presence and absence of the standard cholinesterase inhibitor galantamine. This method proved to be an interesting tool for fast, simultaneous, and independent label-free dual enzyme inhibitor assay.
Collapse
Affiliation(s)
- Claudia Seidl
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-90, Brazil
| | - Adriana Ferreira Lopes Vilela
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-90, Brazil
| | - Juliana Maria Lima
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-90, Brazil
| | - Gabriel Mazzi Leme
- SEPARARE Núcleo de Pesquisa Em Cromatografia, Departamento de Química, Universidade Federal de São Carlos, Caixa Postal 676, São Carlos, 13565-905, Brazil
| | - Carmen Lúcia Cardoso
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-90, Brazil.
| |
Collapse
|
212
|
Meden A, Knez D, Jukič M, Brazzolotto X, Gršič M, Pišlar A, Zahirović A, Kos J, Nachon F, Svete J, Gobec S, Grošelj U. Tryptophan-derived butyrylcholinesterase inhibitors as promising leads against Alzheimer's disease. Chem Commun (Camb) 2019; 55:3765-3768. [PMID: 30864579 DOI: 10.1039/c9cc01330j] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have identified tryptophan-based selective nanomolar butyrylcholinesterase (BChE) inhibitors. They are defined according to their chemical modularity, novel binding mode revealed by five solved crystal structures with human BChE, low cytotoxicity, and predicted permeability of the blood-brain barrier. Altogether, these factors indicate their potential as unique lead compounds for symptomatic therapy against Alzheimer's disease.
Collapse
Affiliation(s)
- AnŽe Meden
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Alvarado W, Bremer PL, Choy A, Dinh HN, Eung A, Gonzalez J, Ly P, Tran T, Nakayama K, Schwans JP, Sorin EJ. Understanding the enzyme-ligand complex: insights from all-atom simulations of butyrylcholinesterase inhibition. J Biomol Struct Dyn 2019; 38:1028-1041. [PMID: 30909811 DOI: 10.1080/07391102.2019.1596836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
All-atom molecular dynamics simulations of butyrylcholinesterase (BChE) sans inhibitor and in complex with each of 15 dialkyl phenyl phosphate derivatives were conducted to characterize inhibitor binding modes and strengths. Each system was sampled on the 250 ns timescale in explicit ionic solvent, for a total of over 4 μs of simulation time. A K-means algorithm was used to cluster the resulting structures into distinct binding modes, which were further characterized based on atomic-level contacts between inhibitor chemical groups and active site residues. Comparison of experimentally observed inhibition constants (KI) with the resulting contact tables provides structural explanations for relative binding coefficients and highlights several notable interaction motifs. These include ubiquitous contact between glycines in the oxyanion hole and the inhibitor phosphate group; a sterically driven binding preference for positional isomers that extend aromaticity; a stereochemical binding preference for choline-containing inhibitors, which mimic natural BChE substrates; and the mechanically induced opening of the omega loop region to fully expose the active site gorge in the presence of choline-containing inhibitors. Taken together, these observations can greatly inform future design of BChE inhibitors, and the approach reported herein is generalizable to other enzyme-inhibitor systems and similar complexes that depend on non-covalent molecular recognition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Walter Alvarado
- Department of Physics & Astronomy, California State University Long Beach, Long Beach, CA, USA
| | - Parker Ladd Bremer
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Angela Choy
- Department of Chemical Engineering, California State University Long Beach, Long Beach, CA, USA
| | - Helen N Dinh
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Aingty Eung
- Department of Computer Engineering & Computer Science, California State University Long Beach, Long Beach, CA, USA
| | - Jeannette Gonzalez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Phillippe Ly
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Trina Tran
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Kensaku Nakayama
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Jason P Schwans
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| | - Eric J Sorin
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA, USA
| |
Collapse
|
214
|
AlFadly ED, Elzahhar PA, Tramarin A, Elkazaz S, Shaltout H, Abu-Serie MM, Janockova J, Soukup O, Ghareeb DA, El-Yazbi AF, Rafeh RW, Bakkar NMZ, Kobeissy F, Iriepa I, Moraleda I, Saudi MN, Bartolini M, Belal AS. Tackling neuroinflammation and cholinergic deficit in Alzheimer's disease: Multi-target inhibitors of cholinesterases, cyclooxygenase-2 and 15-lipoxygenase. Eur J Med Chem 2019; 167:161-186. [DOI: 10.1016/j.ejmech.2019.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022]
|
215
|
Novel tacrine-tryptophan hybrids: Multi-target directed ligands as potential treatment for Alzheimer's disease. Eur J Med Chem 2019; 168:491-514. [DOI: 10.1016/j.ejmech.2019.02.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/28/2022]
|
216
|
Barré A, Azzouz R, Gembus V, Papamicaël C, Levacher V. Design, Synthesis, and In Vitro Biological Activities of a Bio-Oxidizable Prodrug to Deliver Both ChEs and DYRK1A Inhibitors for AD Therapy. Molecules 2019; 24:E1264. [PMID: 30939771 PMCID: PMC6479981 DOI: 10.3390/molecules24071264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 01/28/2023] Open
Abstract
Despite their side effects, cholinesterase (ChE) inhibitors remain the only approved drugs to treat Alzheimer's disease patients, along with the N-methyl-d-aspartate (NMDA) receptor antagonist memantine. In the last few years, the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) has also been studied as a promising target for the development of new drugs for this pathology. In this context, and based on our previous characterization of bio-oxidizable prodrugs of potent acetylcholinesterase (AChE) inhibitors, we envisioned a strategy involving the synthesis of a bio-oxidizable prodrug of both ChE and DYRK1A inhibitors. To this end, we fixed our interest on a known potent inhibitor of DYRK1A, namely INDY. The designed prodrug of both ChE and DYRK1A inhibitors was successfully synthesized, connecting both inhibitors by a carbonate link. This prodrug and its corresponding drug were then evaluated as ChEs and DYRK1A inhibitors. Remarkably, in vitro results were in accordance with the starting hypothesis, showing a relative inactivity of the prodrug against DYRK1A and ChEs and a potent inhibition of ChEs by the oxidized form. Molecular docking and kinetic studies of ChE inhibition by the active compound are also discussed in this report.
Collapse
Affiliation(s)
- Anaïs Barré
- VFP Therapies R&D; 1 rue Tesnière, 76130 Mont Saint-Aignan, France.
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Rabah Azzouz
- VFP Therapies R&D; 1 rue Tesnière, 76130 Mont Saint-Aignan, France.
| | - Vincent Gembus
- VFP Therapies R&D; 1 rue Tesnière, 76130 Mont Saint-Aignan, France.
| | - Cyril Papamicaël
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Vincent Levacher
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| |
Collapse
|
217
|
Lu X, Yang H, Li Q, Chen Y, Li Q, Zhou Y, Feng F, Liu W, Guo Q, Sun H. Expansion of the scaffold diversity for the development of highly selective butyrylcholinesterase (BChE) inhibitors: Discovery of new hits through the pharmacophore model generation, virtual screening and molecular dynamics simulation. Bioorg Chem 2019; 85:117-127. [DOI: 10.1016/j.bioorg.2018.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
|
218
|
Loesche A, Köwitsch A, Lucas SD, Al-Halabi Z, Sippl W, Al-Harrasi A, Csuk R. Ursolic and oleanolic acid derivatives with cholinesterase inhibiting potential. Bioorg Chem 2019; 85:23-32. [PMID: 30599410 DOI: 10.1016/j.bioorg.2018.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 02/02/2023]
Abstract
Triterpenoids are in the focus of scientific interest, and they were evaluated for many pharmacological applications among them their ability to act as inhibitors of cholinesterases. These inhibitors are still of interest as drugs that improve the life quality of patients suffering from age-related dementia illnesses especially of Alzheimer's disease. Herein, we prepared several derivatives of ursolic and oleanolic acid and screened them in Ellman's assays for their ability to inhibit acetylcholinesterase and/or butyrylcholinesterase, and for each of the active compounds the type of inhibition was determined. As a result, several compounds were shown as good inhibitors for acetylcholinesterase and butyrylcholinesterase even in a micromolar range. An ursolic acid derived hydroxyl-propinyl derivative 10 was a competitive inhibitor for butyrylcholinesterase with an inhibition constant of Ki = 4.29 μM, and therefore being twice as active as gold standard galantamine hydrobromide. The best inhibitor for acetylcholinesterase, however, was 2-methyl-3-oxo-methyl-ursoloate (18), acting as a mixed-type inhibitor showing Ki = 1.72 µM and Ki' = 1.28 μM, respectively.
Collapse
Affiliation(s)
- Anne Loesche
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Alexander Köwitsch
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Susana D Lucas
- Universidade de Lisboa, Faculdade de Farmácio, Instituto de Investigacao do Medicamento (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Zayan Al-Halabi
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Wolfgang Sippl
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- University of Nizwa, Chair of Oman's Medicinal Plants and Marine Natural Products, PO Box 33, Birkat Al-Mauz, Nizwa, Oman
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
219
|
Design, synthesis, in vivo and in vitro studies of 1,2,3,4-tetrahydro-9H-carbazole derivatives, highly selective and potent butyrylcholinesterase inhibitors. Mol Divers 2019; 24:211-223. [DOI: 10.1007/s11030-019-09943-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/20/2019] [Indexed: 11/26/2022]
|
220
|
Highly potent and selective aryl-1,2,3-triazolyl benzylpiperidine inhibitors toward butyrylcholinesterase in Alzheimer's disease. Bioorg Med Chem 2019; 27:931-943. [DOI: 10.1016/j.bmc.2018.12.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022]
|
221
|
Olasehinde TA, Mabinya LV, Olaniran AO, Okoh AI. Chemical characterization of sulfated polysaccharides from Gracilaria gracilis and Ulva lactuca and their radical scavenging, metal chelating, and cholinesterase inhibitory activities. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1573831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Tosin A. Olasehinde
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa
| | - Leonard V. Mabinya
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, South Africa
| | - Ademola O. Olaniran
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Anthony I. Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa
| |
Collapse
|
222
|
Inhibition of β-site amyloid precursor protein cleaving enzyme 1 and cholinesterases by pterosins via a specific structure-activity relationship with a strong BBB permeability. Exp Mol Med 2019; 51:1-18. [PMID: 30755593 PMCID: PMC6372667 DOI: 10.1038/s12276-019-0205-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023] Open
Abstract
We extracted 15 pterosin derivatives from Pteridium aquilinum that inhibited β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and cholinesterases involved in the pathogenesis of Alzheimer's disease (AD). (2R)-Pterosin B inhibited BACE1, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with an IC50 of 29.6, 16.2 and 48.1 µM, respectively. The Ki values and binding energies (kcal/mol) between pterosins and BACE1, AChE, and BChE corresponded to the respective IC50 values. (2R)-Pterosin B was a noncompetitive inhibitor against human BACE1 and BChE as well as a mixed-type inhibitor against AChE, binding to the active sites of the corresponding enzymes. Molecular docking simulation of mixed-type and noncompetitive inhibitors for BACE1, AChE, and BChE indicated novel binding site-directed inhibition of the enzymes by pterosins and the structure-activity relationship. (2R)-Pterosin B exhibited a strong BBB permeability with an effective permeability (Pe) of 60.3×10-6 cm/s on PAMPA-BBB. (2R)-Pterosin B and (2R,3 R)-pteroside C significantly decreased the secretion of Aβ peptides from neuroblastoma cells that overexpressed human β-amyloid precursor protein at 500 μM. Conclusively, our study suggested that several pterosins are potential scaffolds for multitarget-directed ligands (MTDLs) for AD therapeutics.
Collapse
|
223
|
|
224
|
Xia CL, Tang GH, Guo YQ, Xu YK, Huang ZS, Yin S. Mulberry Diels-Alder-type adducts from Morus alba as multi-targeted agents for Alzheimer's disease. PHYTOCHEMISTRY 2019; 157:82-91. [PMID: 30390605 DOI: 10.1016/j.phytochem.2018.10.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/09/2018] [Accepted: 10/26/2018] [Indexed: 05/18/2023]
Abstract
Mulberry Diels-Alder-type adducts (MDAAs) are a group of structurally unique natural products biosynthetically derived from the intermolecular [4 + 2] cycloaddition of a dehydroprenylphenol and a chalcone. In the current study, ten MDAAs, including an undescribed one, inethermulberrofuran C, were isolated from the root bark of Morus alba. The anti-Alzheimer's disease (anti-AD) properties of these isolates were systematically screened for a series of potential targets (Aβ self-aggregation, tau aggregation, and ChEs) as well as the anti-neuroinflammatory and neuroprotective activities. Four compounds, mulberrofuran C, mulberrofuran K, mulberrofuran G, and isomulberrofuran G, turned out to be potent multi-targeted agents for AD. Among them, mulberrofuran K with a good blood-brain barrier (BBB) permeability (8.7 ± 0.3 × 10-6 cm/s) was selected as a promising candidate for further mechanism study in glutamate-induced HT22 cell model, which showed its neuroprotective ability on up-regulation of the glutathione (GSH) level and suppression of the reactive oxygen species (ROS) production.
Collapse
Affiliation(s)
- Chun-Li Xia
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Yan-Qiong Guo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - You-Kai Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China.
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
225
|
Fan D, Liu L, Wu Z, Cao M. Combating Neurodegenerative Diseases with the Plant Alkaloid Berberine: Molecular Mechanisms and Therapeutic Potential. Curr Neuropharmacol 2019; 17:563-579. [PMID: 29676231 PMCID: PMC6712296 DOI: 10.2174/1570159x16666180419141613] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases are among the most serious health problems affecting millions of people worldwide. Such diseases are characterized by a progressive degeneration and / or death of neurons in the central nervous system. Currently, there are no therapeutic approaches to cure or even halt the progression of neurodegenerative diseases. During the last two decades, much attention has been paid to the neuroprotective and anti-neurodegenerative activities of compounds isolated from natural products with high efficacy and low toxicity. Accumulating evidence indicates that berberine, an isoquinoline alkaloid isolated from traditional Chinese medicinal herbs, may act as a promising anti-neurodegenerative agent by inhibiting the activity of the most important pathogenic enzymes, ameliorating intracellular oxidative stress, attenuating neuroinflammation, triggering autophagy and protecting neurons against apoptotic cell death. This review attempts to summarize the current state of knowledge regarding the therapeutic potential of berberine against neurodegenerative diseases, with a focus on the molecular mechanisms that underlie its effects on Alzheimer's, Parkinson's and Huntington's diseases.
Collapse
Affiliation(s)
| | | | - Zhengzhi Wu
- Address correspondence to these authors at the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China;, E-mail: and Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China; E-mail:
| | - Meiqun Cao
- Address correspondence to these authors at the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China;, E-mail: and Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China; E-mail:
| |
Collapse
|
226
|
Jismy B, Akssira M, Knez D, Guillaumet G, Gobec S, Abarbri M. Efficient synthesis and preliminary biological evaluations of trifluoromethylated imidazo[1,2-a]pyrimidines and benzimidazo[1,2-a]pyrimidines. NEW J CHEM 2019. [DOI: 10.1039/c9nj01982k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluoromethylated imidazo[1,2-a]pyrimidines and benzimidazo[1,2-a]pyrimidines were synthesized through Michael addition/intramolecular cyclization reaction by condensation of 2-amino imidazole derivatives with ethyl 4,4,4-trifluorobut-2-ynate and using C–O bond activation.
Collapse
Affiliation(s)
- Badr Jismy
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E)
- EA 6299
- Avenue Monge Faculté des Sciences
- Parc de Grandmont
- 37200 Tours
| | - Mohamed Akssira
- Laboratoire de Chimie Physique & de Chimie Bioorganique
- URAC 22
- Université Hassan II de Casablanca
- 28800 Mohammedia
- Morocco
| | - Damijan Knez
- University of Ljubljana
- Faculty of Pharmacy
- 1000 Ljubljana
- Slovenia
| | - Gérald Guillaumet
- Institut de Chimie Organique et Analytique (ICOA)
- Université d’Orléans
- UMR CNRS 7311
- 45067 Orléans Cedex 2
- France
| | - Stanislav Gobec
- University of Ljubljana
- Faculty of Pharmacy
- 1000 Ljubljana
- Slovenia
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E)
- EA 6299
- Avenue Monge Faculté des Sciences
- Parc de Grandmont
- 37200 Tours
| |
Collapse
|
227
|
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2018; 174:53-89. [PMID: 30599179 DOI: 10.1016/j.pneurobio.2018.12.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/04/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
AD is a progressive neurodegenerative disorder and a leading cause of dementia in an aging population worldwide. The enormous challenge which AD possesses to global healthcare makes it as urgent as ever for the researchers to develop innovative treatment strategies to fight this disease. An in-depth analysis of the extensive available data associated with the AD is needed for a more comprehensive understanding of underlying molecular mechanisms and pathophysiological pathways associated with the onset and progression of the AD. The currently understood pathological and biochemical manifestations include cholinergic, Aβ, tau, excitotoxicity, oxidative stress, ApoE, CREB signaling pathways, insulin resistance, etc. However, these hypotheses have been criticized with several conflicting reports for their involvement in the disease progression. Several issues need to be addressed such as benefits to cost ratio with cholinesterase therapy, the dilemma of AChE selectivity over BChE, BBB permeability of peptidic BACE-1 inhibitors, hurdles related to the implementation of vaccination and immunization therapy, and clinical failure of candidates related to newly available targets. The present review provides an insight to the different molecular mechanisms involved in the development and progression of the AD and potential therapeutic strategies, enlightening perceptions into structural information of conventional and novel targets along with the successful applications of computational approaches for the design of target-specific inhibitors.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pavan Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Seth
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Prabhash Nath Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Anupam G Banerjee
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
228
|
Designing Hybrids Targeting the Cholinergic System by Modulating the Muscarinic and Nicotinic Receptors: A Concept to Treat Alzheimer's Disease. Molecules 2018; 23:molecules23123230. [PMID: 30544533 PMCID: PMC6320942 DOI: 10.3390/molecules23123230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023] Open
Abstract
The cholinergic hypothesis has been reported first being the cause of memory dysfunction in the Alzheimer's disease. Researchers around the globe have focused their attention on understanding the mechanisms of how this complicated system contributes to processes such as learning, memory, disorientation, linguistic problems, and behavioral issues in the indicated chronic neurodegenerative disease. The present review reports recent updates in hybrid molecule design as a strategy for selectively addressing multiple target proteins involved in Alzheimer's disease (AD) and the study of their therapeutic relevance. The rationale and the design of the bifunctional compounds will be discussed in order to understand their potential as tools to investigate the role of the cholinergic system in AD.
Collapse
|
229
|
Markowicz-Piasecka M, Huttunen KM, Sikora J. Metformin and its sulphonamide derivative simultaneously potentiateanti-cholinesterase activity of donepezil and inhibit beta-amyloid aggregation. J Enzyme Inhib Med Chem 2018; 33:1309-1322. [PMID: 30251898 PMCID: PMC6161601 DOI: 10.1080/14756366.2018.1499627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 02/09/2023] Open
Abstract
The aim of this study was to assess in vitro the effects of sulphenamide and sulphonamide derivatives of metformin on the activity of human acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), establish the type of inhibition, and assess the potential synergism between biguanides and donepezil towards both cholinesterases (ChEs) and the effects on the β-amyloid aggregation. Sulphonamide 5 with para-trifluoromethyl- and ortho-nitro substituents in aromatic ring inhibited AChE in a mixed-type manner at micromolar concentrations (IC50 = 212.5 ± 48.3 µmol/L). The binary mixtures of donepezil and biguanides produce an anti-AChE effect, which was greater than either compound had alone. A combination of donepezil and sulphonamide 5 improved the IC50 value by 170 times. Compound 5 at 200 µmol/L inhibited Aβ aggregation by ∼20%. In conclusion, para-trifluoromethyl-ortho-nitro-benzenesulphonamide presents highly beneficial anti-AChE and anti-Aβ aggregation properties which could serve as a promising starting point for the design and development of novel biguanide-based candidates for AD treatment.
Collapse
Affiliation(s)
- Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Lodz, Poland
| | - Kristiina M. Huttunen
- Faculty of Health Sciences, School Of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
230
|
Jing L, Wu G, Kang D, Zhou Z, Song Y, Liu X, Zhan P. Contemporary medicinal-chemistry strategies for the discovery of selective butyrylcholinesterase inhibitors. Drug Discov Today 2018; 24:629-635. [PMID: 30503804 DOI: 10.1016/j.drudis.2018.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/25/2018] [Accepted: 11/15/2018] [Indexed: 01/02/2023]
Abstract
Butyrylcholinesterase (BChE) is considered a promising drug target for the treatment of moderate to severe Alzheimer's disease (AD). Here, we review medicinal-chemistry strategies that are currently available for the discovery of selective BChE inhibitors.
Collapse
Affiliation(s)
- Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong 250012, PR China
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong 250012, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong 250012, PR China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong 250012, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong 250012, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong 250012, PR China.
| |
Collapse
|
231
|
Cheng ZQ, Zhu KK, Zhang J, Song JL, Muehlmann LA, Jiang CS, Liu CL, Zhang H. Molecular-docking-guided design and synthesis of new IAA-tacrine hybrids as multifunctional AChE/BChE inhibitors. Bioorg Chem 2018; 83:277-288. [PMID: 30391700 DOI: 10.1016/j.bioorg.2018.10.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 11/30/2022]
Abstract
A series of new indole-3-acetic acid (IAA)-tacrine hybrids as dual acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) inhibitors were designed and prepared based on the molecular docking mode of AChE with an IAA derivative (1a), a moderate AChE inhibitor identified by screening our compound library for anti-Alzheimer's disease (AD) drug leads. The enzyme assay results revealed that some hybrids, e.g. 5d and 5e, displayed potent dual in vitro inhibitory activities against AChE/BChE with IC50 values in low nanomolar range. Molecular modeling studies in tandem with kinetic analysis suggest that these hybrids target both catalytic active site and peripheral anionic site of cholinesterase (ChE). Molecular dynamic simulations and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) calculations indicate that 5e has more potent binding affinity than hit 1a, which may explain the stronger inhibitory effect of 5e on AChE. Furthermore, their predicted pharmacokinetic properties and in vitro influences on mouse brain neural network electrical activity were discussed. Taken together, compound 5e can be highlighted as a lead compound worthy of further optimization for designing new anti-AD drugs.
Collapse
Affiliation(s)
- Zhi-Qiang Cheng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jia-Li Song
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Luis Alexandre Muehlmann
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; Faculty of Ceilandia, University of Brasília, Brasilia 72220275, Brazil
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Chang-Liang Liu
- Cambrian Discovery Inc., Dover, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
232
|
Qiu GL, He SS, Chen SC, Li B, Wu HH, Zhang J, Tang WJ. Design, synthesis and biological evaluation of tricyclic pyrazolo[1,5-c][1,3]benzoxazin-5(5H)-one scaffolds as selective BuChE inhibitors. J Enzyme Inhib Med Chem 2018; 33:1506-1515. [PMID: 30284486 PMCID: PMC6179045 DOI: 10.1080/14756366.2018.1488696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Based on the structural analysis of tricyclic scaffolds as butyrylcholinesterase (BuChE) inhibitors, a series of pyrazolo[1,5-c][1,3]benzoxazin-5(5H)-one derivatives were designed, synthesized and evaluated for their acetylcholinesterase (AChE) and BuChE inhibitory activity. Compounds with 5-carbonyl and 7- or/and 9-halogen substitutions showed potential BuChE inhibitory activity, among which compounds 6a, 6c and 6g showed the best BuChE inhibition (IC50 = 1.06, 1.63 and 1.63 µM, respectively). The structure–activity relationship showed that the 5-carbonyl and halogen substituents significantly influenced BuChE activity. Compounds 6a and 6g were found nontoxic, lipophilic and exhibited remarkable neuroprotective activity and mixed-type inhibition against BuChE (Ki = 7.46 and 3.09 µM, respectively). Docking studies revealed that compound 6a can be accommodated into BuChE via five hydrogen bonds, one Pi–Sigma interaction and three Pi–Alkyl interactions.
Collapse
Affiliation(s)
- Guo-Liang Qiu
- a School of Pharmacy , Anhui Medical University , Hefei , PR China
| | - Shao-Sheng He
- a School of Pharmacy , Anhui Medical University , Hefei , PR China.,b Lujiang County People's Hospital , Lujiang , Anhui , PR China
| | - Shi-Chao Chen
- a School of Pharmacy , Anhui Medical University , Hefei , PR China
| | - Bo Li
- a School of Pharmacy , Anhui Medical University , Hefei , PR China
| | - Hui-Hui Wu
- c Anhui Prevention and Treatment Center for Occupational Disease , Hefei , PR China
| | - Jing Zhang
- c Anhui Prevention and Treatment Center for Occupational Disease , Hefei , PR China
| | - Wen-Jian Tang
- a School of Pharmacy , Anhui Medical University , Hefei , PR China
| |
Collapse
|
233
|
Łozińska I, Świerczyńska A, Molęda Z, Hartman AM, Hirsch AKH, Czarnocki Z. Donepezil-melatonin hybrids as butyrylcholinesterase inhibitors: Improving binding affinity through varying mode of linking fragments. Arch Pharm (Weinheim) 2018; 351:e1800194. [DOI: 10.1002/ardp.201800194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Iwona Łozińska
- Faculty of Chemistry; University of Warsaw; Warsaw Poland
| | | | - Zuzanna Molęda
- Faculty of Chemistry; University of Warsaw; Warsaw Poland
| | - Alwin M. Hartman
- Department of Drug Design and Optimization; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI); Saarbrücken Germany
| | - Anna K. H. Hirsch
- Department of Drug Design and Optimization; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI); Saarbrücken Germany
- Department of Pharmacy, Medicinal Chemistry; Saarland University; Saarbrücken Germany
| | | |
Collapse
|
234
|
Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer's disease. Eur J Med Chem 2018; 158:463-477. [PMID: 30243151 DOI: 10.1016/j.ejmech.2018.09.031] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/03/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in elderly people. Considering the multifactorial nature of AD, the concept of multi-target-directed ligands (MTDLs) has recently emerged as a new strategy for designing therapeutic agents on AD. MTDLs are confirmed to simultaneously affect diverse targets which contribute to etiology of AD. As the most potent approved drug, donepezil affects various events of AD, like inhibiting cholinesterases activities, anti-Aβ aggregation, anti-oxidative stress et al. Modifications of donepezil or hybrids with pharmacophores of donepezil in recent five years are summarized in this article. On the basis of case studies, our concerns and opinions about development of donepezil derivatives, designing of MTDLs, and perspectives for AD treatments are discussed in final part.
Collapse
|
235
|
Llorent-Martínez EJ, Zengin G, Ortega-Barrales P, Zakariyyah Aumeeruddy M, Locatelli M, Mollica A, Mahomoodally MF. Characterization of the Phytochemical Profiles and Biological Activities of Ajuga chamaepitys subsp. chia var. chia and Ajuga bombycina by High-Performance Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry (HPLC–ESI–MSn). ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1500581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | | | | | - Marcello Locatelli
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Adriano Mollica
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | | |
Collapse
|
236
|
Design, synthesis, and biological evaluation of selective and potent Carbazole-based butyrylcholinesterase inhibitors. Bioorg Med Chem 2018; 26:4952-4962. [DOI: 10.1016/j.bmc.2018.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
|
237
|
New cholinesterase inhibitors for Alzheimer's disease: Structure activity relationship, kinetics and molecular docking studies of 1–butanoyl–3–arylthiourea derivatives. Int J Biol Macromol 2018; 116:144-150. [DOI: 10.1016/j.ijbiomac.2018.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/30/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022]
|
238
|
Cheng ZQ, Song JL, Zhu K, Zhang J, Jiang CS, Zhang H. Total Synthesis of Pulmonarin B and Design of Brominated Phenylacetic Acid/Tacrine Hybrids: Marine Pharmacophore Inspired Discovery of New ChE and Aβ Aggregation Inhibitors. Mar Drugs 2018; 16:md16090293. [PMID: 30134630 PMCID: PMC6164518 DOI: 10.3390/md16090293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/13/2018] [Accepted: 08/18/2018] [Indexed: 02/03/2023] Open
Abstract
A marine natural product, pulmonarin B (1), and a series of related tacrine hybrid analogues were synthesized and evaluated as cholinesterase (ChE) inhibitors. The in vitro ChE assay results revealed that 1 showed moderate dual acetylcholinesterase (AChE)/ butyrylcholinesterase (BChE) inhibitory activity, while the hybrid 12j proved to be the most potent dual inhibitor among the designed derivatives, being almost as active as tacrine. Molecular modeling studies together with kinetic analysis suggested that 12j interacted with both the catalytic active site and peripheral anionic site of AChE. Compounds 1 and 12j could also inhibit self-induced and AChE-induced Aβ aggregation. In addition, the cell-based assay against the human hepatoma cell line (HepG2) revealed that 1 and 12j did not show significant hepatotoxicity compared with tacrine and donepezil. Taken together, the present study confirmed that compound 1 was a potential anti-Alzheimer's disease (AD) hit, and 12j could be highlighted as a multifunctional lead compound for anti-AD drug development.
Collapse
Affiliation(s)
- Zhi-Qiang Cheng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Jia-Li Song
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Kongkai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Juan Zhang
- School of Biological Sciences, University of Brasília, Brasília 72220-275, Brazil.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
239
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
240
|
Synthesis, molecular docking, and biological activity of 2-vinyl chromones: Toward selective butyrylcholinesterase inhibitors for potential Alzheimer's disease therapeutics. Bioorg Med Chem 2018; 26:4716-4725. [PMID: 30104121 DOI: 10.1016/j.bmc.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
Abstract
We investigated the biological activity of a series of substituted chromeno[3,2-c]pyridines, including compounds previously synthesized by our group and novel compounds whose syntheses are reported here. Tandem transformation of their tetrahydropyridine ring under the action of activated alkynes yielding 2-vinylsubstituted chromones was used to prepare nitrogen-containing derivatives of a biologically active chromone system. The inhibitory activity of these chromone derivatives against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterase (CaE) was investigated using the methods of enzyme kinetics and molecular docking. Antioxidant (antiradical) activity of the compounds was assessed in the ABTS assay. The results demonstrated that a subset of the studied chromone derivatives selectively inhibit BChE but do not exhibit antiradical activity. In addition, the results of molecular docking effectively explained the observed features in the efficacy, selectivity, and mechanism of BChE inhibition by the chromone derivatives.
Collapse
|
241
|
Zhu Y, Liu W, Qi S, Wang H, Wang Y, Deng G, Zhang Y, Li S, Ma C, Wang Y, Cheng X, Wang C. Stereoselective glucuronidation metabolism, pharmacokinetics, anti-amnesic pharmacodynamics, and toxic properties of vasicine enantiomers in vitro and in vivo. Eur J Pharm Sci 2018; 123:459-474. [PMID: 30077712 DOI: 10.1016/j.ejps.2018.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 01/05/2023]
Abstract
Vasicine (VAS) is a potential natural cholinesterase inhibitor for treatment of Alzheimer's disease. Due to one chiral centre (C-3) presenting in molecule, VAS has two enantiomers, d-vasicine (d-VAS) and l-vasicine (l-VAS). The study was undertaken to investigate the stereoselective glucuronidation metabolism, pharmacokinetics, anti-amnesic effect and acute toxicity of VAS enantiomers. In results, the glucuronidation metabolic rate of l-VAS was faster than d-VAS in human liver microsomes and isoenzymes tests, and it was proved that the UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B15 were the major metabolic enzymes for glucuronidation of l-VAS, while only UGT1A9 for d-VAS, which take responsibility of the significantly less metabolic affinity of d-VAS than l-VAS in HLM and rhUGT1A9. The plasma exposure of d-VAS in rats was 1.3-fold and 1.6-fold higher than that of l-VAS after intravenous and oral administration of d-VAS and l-VAS, respectively. And the plasma exposure of the major glucuronidation metabolite d-VASG was one of tenth of l-VASG or more less, no matter by intravenous or oral administration. Both d-VAS and l-VAS were exhibited promising acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, and the BChE inhibitory activity of d-VAS with IC50 of 0.03 ± 0.001 μM was significantly stronger than that of l-VAS with IC50 of 0.98 ± 0.19 μM. The molecular docking results indicated that d-VAS and l-VAS could bind to the catalytic active site (CAS position) either of human AChE and BChE, and the BChE combing ability of d-VAS (the score of GBI/WAS dG -7.398) was stronger than that of l-VAS (the score of GBI/WAS dG -7.135). Both d-VAS and l-VAS could improving the learning and memory on scopolamine-induced memory deficits in mice. The content of acetylcholine (ACh) after oral administration d-VAS increased more than that of l-VAS in mice cortex, through inhibiting cholinesterase (ChE) and increasing choline acetyltransferase (ChAT). In addition, the LD50 value of d-VAS (282.51 mg·kg-1) was slight lower than l-VAS (319.75 mg·kg-1). These results indicated that VAS enantiomers displayed significantly stereoselective metabolic, pharmacokinetics, anti-amnesic effect and toxic properties in vitro and in vivo. The d-VAS might be the dominant configuration for treating Alzheimer's disease.
Collapse
Affiliation(s)
- Yudan Zhu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Wei Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Shenglan Qi
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Hanxue Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Yuwen Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Gang Deng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Yunpeng Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Chao Ma
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Yongli Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
242
|
Sharma A, Kshetrimayum C, Sadhu HG, Kumar S. Arsenic-induced oxidative stress, cholinesterase activity in the brain of Swiss albino mice, and its amelioration by antioxidants Vitamin E and Coenzyme Q10. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23946-23953. [PMID: 29948670 DOI: 10.1007/s11356-018-2398-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Arsenic toxicity becomes one of the major public health issues in several countries. Chronic and acute exposure to arsenic has been reported to be toxic to various systems of the human body and also observed in controlled experimental studies. The study was conducted to evaluate the neurotoxic effect of arsenic in Swiss albino mice and its amelioration by Vitamin E, Coenzyme Q10 and their combination. Swiss albino mice were treated with arsenic of 136 ppm for 15 days. The daily dose is 1/3 of LD 50 (acute) reported dose of arsenic. Thereafter, the animals were maintained either on drinking water or treated with Vitamin E (50 mg/kg bwt), Coenzyme Q10 (10 mg/kg bwt), and their combination by i.p.daily for 15 days. After the treatment, animals were sacrificed. The weight of the brain was marginally lower (ns), in arsenic-treated group as compared to control and antioxidant-protected groups. The LPO (lipid peroxidation) level was higher in arsenic-treated group, and this elevation was checked to some extent by the selected antioxidants which were statistically significant in combination of antioxidant-protected group. A significant reduction was found in GSH (reduced glutathione) level in the brain of arsenic-treated mice whereas GSH level was considerably higher in antioxidant-protected groups. Further, total thiol and total protein level were lower in arsenic-treated group. However, total thiol was significantly higher in antioxidant-protected groups. CAT (catalase) activity was significantly lower while SOD (superoxide dismutase) activity was marginally lowered in arsenic-treated group, and it was slightly higher in antioxidant-protected groups. Further, reduction in AChE (acetylcholinesterase) and BChE (butyrylcholinesterase) and motor coordination activity were also observed in arsenic-treated groups. Whereas, a higher AChE, BChE, and motor coordination activity was observed in antioxidant-protected group. These data indicate a positive role of selected antioxidant against the toxicity of arsenic in the brain of mice.
Collapse
Affiliation(s)
- Anupama Sharma
- Division of Reproductive and Cytotoxicology, ICMR- National Institute of Occupational Health, Meghani nagar, Ahmedabad, 380016, India
| | - Chaoba Kshetrimayum
- Division of Reproductive and Cytotoxicology, ICMR- National Institute of Occupational Health, Meghani nagar, Ahmedabad, 380016, India
| | - Harsiddha G Sadhu
- Division of Reproductive and Cytotoxicology, ICMR- National Institute of Occupational Health, Meghani nagar, Ahmedabad, 380016, India
| | - Sunil Kumar
- Division of Reproductive and Cytotoxicology, ICMR- National Institute of Occupational Health, Meghani nagar, Ahmedabad, 380016, India.
| |
Collapse
|
243
|
|
244
|
Exploiting the Chalcone Scaffold to Develop Multifunctional Agents for Alzheimer's Disease. Molecules 2018; 23:molecules23081902. [PMID: 30061534 PMCID: PMC6222323 DOI: 10.3390/molecules23081902] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease still represents an untreated multifaceted pathology, and drugs able to stop or reverse its progression are urgently needed. In this paper, a series of naturally inspired chalcone-based derivatives were designed as structural simplification of our previously reported benzofuran lead compound, aiming at targeting both acetyl (AChE)- and butyryl (BuChE) cholinesterases that, despite having been studied for years, still deserve considerable attention. In addition, the new compounds could also modulate different pathways involved in disease progression, due to the peculiar trans-α,β-unsaturated ketone in the chalcone framework. All molecules presented in this study were evaluated for cholinesterase inhibition on the human enzymes and for antioxidant and neuroprotective activities on a SH-SY5Y cell line. The results proved that almost all the new compounds were low micromolar inhibitors, showing different selectivity depending on the appended substituent; some of them were also effective antioxidant and neuroprotective agents. In particular, compound 4, endowed with dual AChE/BuChE inhibitory activity, was able to decrease ROS formation and increase GSH levels, resulting in enhanced antioxidant endogenous defense. Moreover, this compound also proved to counteract the neurotoxicity elicited by Aβ1⁻42 oligomers, showing a promising neuroprotective potential.
Collapse
|
245
|
Knez D, Coquelle N, Pišlar A, Žakelj S, Jukič M, Sova M, Mravljak J, Nachon F, Brazzolotto X, Kos J, Colletier JP, Gobec S. Multi-target-directed ligands for treating Alzheimer's disease: Butyrylcholinesterase inhibitors displaying antioxidant and neuroprotective activities. Eur J Med Chem 2018; 156:598-617. [PMID: 30031971 DOI: 10.1016/j.ejmech.2018.07.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022]
Abstract
The limited clinical efficacy of current symptomatic treatment and minute effect on progression of Alzheimer's disease has shifted the research focus from single targets towards multi-target-directed ligands. Here, a potent selective inhibitor of human butyrylcholinesterase was used as the starting point to develop a new series of multifunctional ligands. A focused library of derivatives was designed and synthesised that showed both butyrylcholinesterase inhibition and good antioxidant activity as determined by the DPPH assay. The crystal structure of compound 11 in complex with butyrylcholinesterase revealed the molecular basis for its low nanomolar inhibition of butyrylcholinesterase (Ki = 1.09 ± 0.12 nM). In addition, compounds 8 and 11 show metal-chelating properties, and reduce the redox activity of chelated Cu2+ ions in a Cu-ascorbate redox system. Compounds 8 and 11 decrease intracellular levels of reactive oxygen species, and are not substrates of the active efflux transport system, as determined in Caco2 cells. Compound 11 also protects neuroblastoma SH-SY5Y cells from toxic Aβ1-42 species. These data indicate that compounds 8 and 11 are promising multifunctional lead ligands for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Nicolas Coquelle
- University Grenoble Alpes, IBS, F-38044, Grenoble, France; CNRS, IBS, F-38044, Grenoble, France; CEA, IBS, F-38044, Grenoble, France
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Simon Žakelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Marko Jukič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Janez Mravljak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Florian Nachon
- Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Xavier Brazzolotto
- Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Jacques-Philippe Colletier
- University Grenoble Alpes, IBS, F-38044, Grenoble, France; CNRS, IBS, F-38044, Grenoble, France; CEA, IBS, F-38044, Grenoble, France
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
246
|
Kamal MA, Shakil S, Nawaz MS, Yu QS, Tweedie D, Tan Y, Qu X, Greig NH. Inhibition of Butyrylcholinesterase with Fluorobenzylcymserine, An Experimental Alzheimer's Drug Candidate: Validation of Enzoinformatics Results by Classical and Innovative Enzyme Kinetic Analyses. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2018; 16:820-827. [PMID: 28176640 DOI: 10.2174/1871527316666170207160606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/03/2016] [Accepted: 08/30/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Selective butyrylcholinesterase (BuChE)-inhibition, increases acetylcholine (ACh) levels. In rodents, this inhibition is known to boost cognition. Also, this occurs without the typical unwanted adverse effects of acetylcholinesterase-inhibitors or AChE-Is. The novel compound, fluorobenzylcymserine (FBC), is derived from our effort to design a selective BuChE-inhibitor. Also, we wanted to check whether butyrylcholinesterase-inhibitors (BuChE-Is) possessed an edge over AChE-Is in Alzheimer's disease (AD) in terms of efficacy and/or tolerance. METHOD FBC was synthesized as reported earlier while enzymatic activity of BuChE was calculated by Ellman-technique. Molecular docking was performed using Autodock4.2. We applied classical as well as innovative analyses of enzyme-kinetics for exploring "FBC:human BuChE-interaction". The mode of inhibition and kinetic parameters were also determined. RESULTS Docking results displayed two strong interacting sites for FBC. One of these binding sites was previously identified as a deep narrow groove having polar aromatic residues while a second site was identified during this study which displayed better interaction and was lined with aliphatic and sulphur containing residues. At low concentrations of BuChE, the IC50 was found to be very low i.e. 4.79 and 6.10 nM for 12 and 36 µg, respectively, whereas it increased exponentially by increasing the units of BuChE. CONCLUSION These analyses indicate that FBC is an interesting AD drug candidate that could provide a potent and partial mixed type of inhibition of human BuChE.
Collapse
Affiliation(s)
- Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah. Saudi Arabia
| | - Shazi Shakil
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah. Saudi Arabia
| | - Muhammad S Nawaz
- Department of Biological Science, COMSATS, Islamabad, Pakistan; 4Novel Global Community Educational Foundation, New South Wales. Australia
| | - Qian-Sheng Yu
- Drug Design & Development Section, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224. United States
| | - David Tweedie
- Drug Design & Development Section, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224. United States
| | - Y Tan
- Department of Medical & Molecular Biosciences, Faculty of Science, University of Technology, Sydney, NSW. Australia
| | - Xianqin Qu
- Department of Medical & Molecular Biosciences, Faculty of Science, University of Technology, Sydney, NSW. Australia
| | - Nigel H Greig
- Drug Design & Development Section, Gerontology Research Center, Room 4B02, 5600 Nathan Shock Dr., Baltimore, MD 21224. United States
| |
Collapse
|
247
|
Oboh G, Ademosun AO, Ogunsuyi OB, Oyedola ET, Olasehinde TA, Oyeleye SI. In vitro anticholinesterase, antimonoamine oxidase and antioxidant properties of alkaloid extracts from kola nuts (Cola acuminata and Cola nitida). ACTA ACUST UNITED AC 2018; 16:jcim-2016-0155. [DOI: 10.1515/jcim-2016-0155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/26/2018] [Indexed: 02/06/2023]
Abstract
Abstract
Background
The development of cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors for management of neurodegenerative diseases such as Alzheimer’s disease (AD) has come with their undesirable side effects. Hence, research for potent but natural ChE and MAO inhibitors with little or no side effects is essential. This study investigated the potentials of alkaloid extracts from two Cola species as nutraceuticals for prevention and management of AD.
Methods
Alkaloid extracts were obtained from two Cola species (Cola nitida [KN] and Cola acuminata [KA]) by solvent extraction method. The extracts were characterized for their alkaloid contents using gas chromatography (GC). The effects of the extracts on ChE and MAO activities were investigated in vitro. Also, the extracts’ ability to inhibit Fe2+-induced lipid peroxidation in rat brain homogenate, scavenge DPPH and OH radicals, as well as chelate Fe2+ were determined.
Results
GC characterization revealed the presence of augustamine and undulatine as the predominant alkaloids in the extracts. There was no significant (P > 0.05) difference in the inhibitory effects of the extracts on ChE activities. However, KA extract exhibited significantly higher (P < 0.05) MAO inhibitory effect than KN. Also, KA extract inhibited Fe2+- induced malondialdehyde (MDA) production in rat brain homogenate more significantly than KN, while there was no significant difference in DPPH and OH radicals scavenging, as well as Fe2+-chelating abilities of the extracts.
Conclusions
Our findings revealed that KN and KA alkaloid extracts exhibited significant effect in vitro on biological pathways that may contribute to neuroprotection for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Department of Biochemistry, Functional Foods and Nutraceuticals Unit , Federal University of Technology , Akure , Nigeria
| | - Ayokunle O. Ademosun
- Department of Biochemistry, Functional Foods and Nutraceuticals Unit , Federal University of Technology , Akure , Nigeria
| | - Opeyemi B. Ogunsuyi
- Department of Biomedical Technology , The Federal University of Technology Akure P.M.B 704 , Akure , Nigeria
- Department of Biochemistry, Functional Foods and Nutraceuticals Unit , Federal University of Technology , Akure , Nigeria
| | - Esther T. Oyedola
- Department of Biochemistry, Functional Foods and Nutraceuticals Unit , Federal University of Technology , Akure , Nigeria
| | - Tosin A. Olasehinde
- Department of Biochemistry, Functional Foods and Nutraceuticals Unit , Federal University of Technology , Akure , Nigeria
| | - Sunday I. Oyeleye
- Department of Biochemistry, Functional Foods and Nutraceuticals Unit , Federal University of Technology , Akure , Nigeria
| |
Collapse
|
248
|
Design, synthesis and biological evaluation of benzofuran appended benzothiazepine derivatives as inhibitors of butyrylcholinesterase and antimicrobial agents. Bioorg Med Chem 2018; 26:3076-3095. [PMID: 29866481 DOI: 10.1016/j.bmc.2018.02.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/17/2018] [Accepted: 02/27/2018] [Indexed: 01/10/2023]
|
249
|
Zhao Y, Ye F, Xu J, Liao Q, Chen L, Zhang W, Sun H, Liu W, Feng F, Qu W. Design, synthesis and evaluation of novel bivalent β-carboline derivatives as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem 2018; 26:3812-3824. [PMID: 29960728 DOI: 10.1016/j.bmc.2018.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 10/14/2022]
Abstract
To develop potent multi-target ligands against Alzheimer's disease (AD), a series of novel bivalent β-carboline derivatives were designed, synthesized, and evaluated. In vitro studies revealed these compounds exhibited good multifunctional activities. In particular, compounds 8f and 8g showed the good selectivity potency on BuChE inhibition (IC50 = 1.7 and 2.7 μM, respectively), Aβ1-42 disaggregation and neuroprotection. Compared with the positive control resveratrol, 8f and 8g showed better activity in inhibiting Aβ1-42 aggregation, with inhibitory rate 82.7% and 85.7% at 25 μM, respectively. Moreover, compounds 8e, 8f and 8g displayed excellent neuroprotective activity by ameliorating the impairment induced by H2O2, okadaic acid (OA) and Aβ1-42 without cytotoxicity in SH-SY5Y cells. Thus, the present study evidently showed that compounds 8f and 8g are potent multi-functional agents against AD and might serve as promising lead candidates for further development.
Collapse
Affiliation(s)
- Yifan Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Ye
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qinghong Liao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Weijia Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China.
| | - Wei Qu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
250
|
Andrisano V, Naldi M, De Simone A, Bartolini M. A patent review of butyrylcholinesterase inhibitors and reactivators 2010-2017. Expert Opin Ther Pat 2018; 28:455-465. [PMID: 29757691 DOI: 10.1080/13543776.2018.1476494] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Butyrylcholinesterase (BuChE) has obtained a renewed interest as therapeutic target in Alzheimer's disease (AD), when changes in BuChE activity and expression along disease progression were highlighted as well as correlation between BuChE levels and cognitive function. AREAS COVERED During the last eight years, fourteen patents on BuChE inhibitors (BuChEI) have been submitted. Only three of them relate to BuChE selective inhibitors, while four of them focus on multitarget inhibitors which address different key pathological factors other than BuChE. Two patents report on non-selective acetylcholinesterase (AChE)/BuChE inhibitors, while four patents deal with natural compounds and their derivatives. One patent relates to antitoxic agents to treat exposure to ChEI pesticides and nerve agents. EXPERT OPINION Increasing evidence supports BuChE as a more beneficial target in moderate-to-severe forms of AD in comparison to the well-known AChE. However, hitting a single pathological target is likely not sufficient to halt the disease progression. Therefore, patented BuChE inhibitors with a multifunctional profile may open new therapeutic avenues, since the additional activities could reinforce the therapeutic effects. Unfortunately, in vivo studies are limited and key parameters, such as ADMET data, are missing. This lack of information makes difficult to forecast the development of patented BuChEIs into effective drug candidates.
Collapse
Affiliation(s)
- Vincenza Andrisano
- a Department for Life Quality Studies , Alma Mater Studiorum Università di Bologna , Rimini , Italy
| | - Marina Naldi
- b Department of Pharmacy and Biotechnology , Alma Mater Studiorum Università di Bologna , Bologna , Italy
| | - Angela De Simone
- a Department for Life Quality Studies , Alma Mater Studiorum Università di Bologna , Rimini , Italy
| | - Manuela Bartolini
- b Department of Pharmacy and Biotechnology , Alma Mater Studiorum Università di Bologna , Bologna , Italy
| |
Collapse
|