201
|
Perera TH, Lu X, Howell SM, Kurosu YE, Smith Callahan LA. Combination of IKVAV, LRE, and GPQGIWGQ Bioactive Signaling Peptides Increases Human Induced Pluripotent Stem Cell Derived Neural Stem Cells Extracellular Matrix Remodeling and Neurite Extension. ACTA ACUST UNITED AC 2020; 4:e2000084. [PMID: 32597036 DOI: 10.1002/adbi.202000084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Extracellular matrix (ECM) remodeling is emerging as a modulator of neural maturation and axon extension. Most studies have used rodent cells to develop matrices capable of manipulating extracellular matrix remodeling for regenerative applications. However, clinically relevant human induced pluripotent stem cell derived neural stem cells (hNSC) do not always behave in a similar manner as rodent cells. In this study, hNSC response to a hyaluronic acid matrix with laminin derived IKVAV and LRE peptide signaling that has previously shown to promote ECM remodeling and neurite extension by mouse embryonic stem cells is examined. The addition of enzymatically degradable cross linker GPQGIWGQ to the IKVAV and LRE containing hyaluronic acid matrix is necessary to promote neurite extension, hyaluronic acid degradation, and gelatinase expression over hyaluronic acid matrices containing GPQGIWGQ, IKVAV and LRE, or no peptides. Changes in peptide content alters a number of matrix properties that can contribute to the cellular response, but increases in mesh size are not observed with cross linker cleavage in this study. Overall, these data imply a complex interaction between IKVAV, LRE, and GPQGIWGQ to modulate hNSC behavior.
Collapse
Affiliation(s)
- T Hiran Perera
- Vivian L. Smith Department of Neurosurgery & Center for Stem Cells and Regenerative Medicine, McGovern Medical School, 1825 Pressler Suite 630F, Houston, TX, 77030, USA
| | - Xi Lu
- Vivian L. Smith Department of Neurosurgery & Center for Stem Cells and Regenerative Medicine, McGovern Medical School, 1825 Pressler Suite 630F, Houston, TX, 77030, USA
| | - Skyler M Howell
- Vivian L. Smith Department of Neurosurgery & Center for Stem Cells and Regenerative Medicine, McGovern Medical School, 1825 Pressler Suite 630F, Houston, TX, 77030, USA
| | - Yuki E Kurosu
- Vivian L. Smith Department of Neurosurgery & Center for Stem Cells and Regenerative Medicine, McGovern Medical School, 1825 Pressler Suite 630F, Houston, TX, 77030, USA
| | - Laura A Smith Callahan
- Vivian L. Smith Department of Neurosurgery & Center for Stem Cells and Regenerative Medicine, McGovern Medical School, 1825 Pressler Suite 630F, Houston, TX, 77030, USA
| |
Collapse
|
202
|
He W, Reaume M, Hennenfent M, Lee BP, Rajachar R. Biomimetic hydrogels with spatial- and temporal-controlled chemical cues for tissue engineering. Biomater Sci 2020; 8:3248-3269. [PMID: 32490441 PMCID: PMC7323904 DOI: 10.1039/d0bm00263a] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomimetic hydrogels have emerged as the most useful tissue engineering scaffold materials. Their versatile chemistry can recapitulate multiple physical and chemical features to integrate cells, scaffolds, and signaling molecules for tissue regeneration. Due to their highly hydrophilic nature hydrogels can recreate nutrient-rich aqueous environments for cells. Soluble regulatory molecules can be incorporated to guide cell proliferation and differentiation. Importantly, the controlled dynamic parameters and spatial distribution of chemical cues in hydrogel scaffolds are critical for cell-cell communication, cell-scaffold interaction, and morphogenesis. Herein, we review biomimetic hydrogels that provide cells with spatiotemporally controlled chemical cues as tissue engineering scaffolds. Specifically, hydrogels with temporally controlled growth factor-release abilities, spatially controlled conjugated bioactive molecules/motifs, and targeting delivery and reload properties for tissue engineering applications are discussed in detail. Examples of hydrogels that possess clinically favorable properties, such as injectability, self-healing ability, stimulus-responsiveness, and pro-remodeling features, are also covered.
Collapse
Affiliation(s)
- Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
- FM Wound Care, LLC, Hancock, MI 49930, USA
| | - Max Reaume
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Maureen Hennenfent
- Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Rupak Rajachar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
203
|
Gordon E, Schimmel L, Frye M. The Importance of Mechanical Forces for in vitro Endothelial Cell Biology. Front Physiol 2020; 11:684. [PMID: 32625119 PMCID: PMC7314997 DOI: 10.3389/fphys.2020.00684] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Blood and lymphatic vessels are lined by endothelial cells which constantly interact with their luminal and abluminal extracellular environments. These interactions confer physical forces on the endothelium, such as shear stress, stretch and stiffness, to mediate biological responses. These physical forces are often altered during disease, driving abnormal endothelial cell behavior and pathology. Therefore, it is critical that we understand the mechanisms by which endothelial cells respond to physical forces. Traditionally, endothelial cells in culture are grown in the absence of flow on stiff substrates such as plastic or glass. These cells are not subjected to the physical forces that endothelial cells endure in vivo, thus the results of these experiments often do not mimic those observed in the body. The field of vascular biology now realize that an intricate analysis of endothelial signaling mechanisms requires complex in vitro systems to mimic in vivo conditions. Here, we will review what is known about the mechanical forces that guide endothelial cell behavior and then discuss the advancements in endothelial cell culture models designed to better mimic the in vivo vascular microenvironment. A wider application of these technologies will provide more biologically relevant information from cultured cells which will be reproducible to conditions found in the body.
Collapse
Affiliation(s)
- Emma Gordon
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lilian Schimmel
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
204
|
Boffito M, Torchio A, Tonda-Turo C, Laurano R, Gisbert-Garzarán M, Berkmann JC, Cassino C, Manzano M, Duda GN, Vallet-Regí M, Schmidt-Bleek K, Ciardelli G. Hybrid Injectable Sol-Gel Systems Based on Thermo-Sensitive Polyurethane Hydrogels Carrying pH-Sensitive Mesoporous Silica Nanoparticles for the Controlled and Triggered Release of Therapeutic Agents. Front Bioeng Biotechnol 2020; 8:384. [PMID: 32509740 PMCID: PMC7248334 DOI: 10.3389/fbioe.2020.00384] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/07/2020] [Indexed: 01/25/2023] Open
Abstract
Injectable therapeutic formulations locally releasing their cargo with tunable kinetics in response to external biochemical/physical cues are gaining interest in the scientific community, with the aim to overcome the cons of traditional administration routes. In this work, we proposed an alternative solution to this challenging goal by combining thermo-sensitive hydrogels based on custom-made amphiphilic poly(ether urethane)s (PEUs) and mesoporous silica nanoparticles coated with a self-immolative polymer sensitive to acid pH (MSN-CS-SIP). By exploiting PEU chemical versatility, Boc-protected amino groups were introduced as PEU building block (PEU-Boc), which were then subjected to a deprotection reaction to expose pendant primary amines along the polymer backbone (PEU-NH2, 3E18 -NH2/gPEU-NH2) with the aim to accelerate system response to external acid pH environment. Then, thermo-sensitive hydrogels were designed (15% w/v) showing fast gelation in physiological conditions (approximately 5 min), while no significant changes in gelation temperature and kinetics were induced by the Boc-deprotection. Conversely, free amines in PEU-NH2 effectively enhanced and accelerated acid pH transfer (pH 5) through hydrogel thickness (PEU-Boc and PEU-NH2 gels covered approximately 42 and 52% of the pH delta between their initial pH and the pH of the surrounding buffer within 30 min incubation, respectively). MSN-CS-SIP carrying a fluorescent cargo as model drug (MSN-CS-SIP-Ru) were then encapsulated within the hydrogels with no significant effects on their thermo-sensitivity. Injectability and in situ gelation at 37°C were demonstrated ex vivo through sub-cutaneous injection in rodents. Moreover, MSN-CS-SIP-Ru-loaded gels turned out to be detectable through the skin by IVIS imaging. Cargo acid pH-triggered delivery from PEU-Boc and PEU-NH2 gels was finally demonstrated through drug release tests in neutral and acid pH environments (in acid pH environment approximately 2-fold higher cargo release). Additionally, acid-triggered payload release from PEU-NH2 gels was significantly higher compared to PEU-Boc systems at 3 and 4 days incubation. The herein designed hybrid injectable formulations could thus represent a significant step forward in the development of multi-stimuli sensitive drug carriers. Indeed, being able to adapt their behavior in response to biochemical cues from the surrounding physio-pathological environment, these formulations can effectively trigger the release of their payload according to therapeutic needs.
Collapse
Affiliation(s)
- Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Alessandro Torchio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Surgical Sciences, Università degli Studi di Torino, Turin, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Rossella Laurano
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Surgical Sciences, Università degli Studi di Torino, Turin, Italy
| | - Miguel Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria del Hospital, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Julia C. Berkmann
- Julius Wolff Institut, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Miguel Manzano
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria del Hospital, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Georg N. Duda
- Julius Wolff Institut, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria del Hospital, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Katharina Schmidt-Bleek
- Julius Wolff Institut, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
205
|
|
206
|
McCune JA, Mommer S, Parkins CC, Scherman OA. Design Principles for Aqueous Interactive Materials: Lessons from Small Molecules and Stimuli-Responsive Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906890. [PMID: 32227391 DOI: 10.1002/adma.201906890] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Interactive materials are at the forefront of current materials research with few examples in the literature. Researchers are inspired by nature to develop materials that can modulate and adapt their behavior in accordance with their surroundings. Stimuli-responsive systems have been developed over the past decades which, although often described as "smart," lack the ability to act autonomously. Nevertheless, these systems attract attention on account of the resultant materials' ability to change their properties in a predicable manner. These materials find application in a plethora of areas including drug delivery, artificial muscles, etc. Stimuli-responsive materials are serving as the precursors for next-generation interactive materials. Interest in these systems has resulted in a library of well-developed chemical motifs; however, there is a fundamental gap between stimuli-responsive and interactive materials. In this perspective, current state-of-the-art stimuli-responsive materials are outlined with a specific emphasis on aqueous macroscopic interactive materials. Compartmentalization, critical for achieving interactivity, relies on hydrophobic, hydrophilic, supramolecular, and ionic interactions, which are commonly present in aqueous systems and enable complex self-assembly processes. Relevant examples of aqueous interactive materials that do exist are given, and design principles to realize the next generation of materials with embedded autonomous function are suggested.
Collapse
Affiliation(s)
- Jade A McCune
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Stefan Mommer
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher C Parkins
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
207
|
In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomater 2020; 108:326-336. [PMID: 32160962 DOI: 10.1016/j.actbio.2020.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
Gene delivery offers promising outcomes for functional recovery or regeneration of lost tissues at cellular and tissue levels. However, more efficient carriers are needed to safely and locally delivery of genetic materials. Herein, we demonstrate microfluidic-assisted synthesis of plasmid DNA (pDNA)-based nanocomplexe (NC) platforms for bone tissue regeneration. pDNA encoding human bone morphogenesis protein-2 (BMP-2) was used as a gene of interest. Formation and fine-tuning of nanocomplexes (NCs) between pDNA and chitosan (CS) as carriers were performed using a micromixer platform. Flow characteristics were adjusted to tune mixing time and consequently size, zeta potential, and compactness of assembled NCs. Subsequently, NCs were immobilized on a nanofibrous Poly(ε-caprolactone) (PCL) scaffold functionalized with metalloprotease-sensitive peptide (MMP-sensitive). This construct can provide an environmental-sensitive and localized gene delivery platform. Osteogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs) was studied using chemical and biological assays. The presented results converge to indicate a great potential of the developed methodology for in situ bone tissue engineering using immobilized microfluidic-synthesized gene delivery nanocomplexes, which is readily expandable in the field of regenerative nanomedicine. STATEMENT OF SIGNIFICANCE: In this study, we demonstrate microfluidic-assisted synthesis of plasmid DNA (pDNA)-based nanocomplexes (NCs) platforms for bone tissue regeneration. We used pDNA encoding human bone morphogenesis protein-2 (BMP-2) as the gene of interest. Using micromixer platform nanocomplexes (NCs) between pDNA and chitosan (CS) were fabricated and optimized. NCs were immobilized on a nanofibrous polycaprolactone scaffold functionalized with metalloprotease-sensitive peptide. In vitro and in vivo assays confirmed the osteogenic differentiation of mesenchymal stem cells (MSCs). The obtained data indicated great potential of the developed methodology for in situ bone tissue engineering using immobilized microfluidic-synthesized gene delivery nanocomplexes, which is readily expandable in the field of regenerative nanomedicine.
Collapse
|
208
|
Dong Y, Cui M, Qu J, Wang X, Kwon SH, Barrera J, Elvassore N, Gurtner GC. Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Acta Biomater 2020; 108:56-66. [PMID: 32251786 DOI: 10.1016/j.actbio.2020.03.040] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
Injury to the skin from severe burns can cause debilitating physical and psychosocial distress to the patients. Upon healing, deep dermal burns often result in devastating hypertrophic scar formation. For many decades, stem cell-based therapies have shown significant potential in improving wound healing. However, current cell delivery methods are often insufficient to maintain cell viability in a harmful burn wound environment to promote skin regeneration. In this study, we developed an enhanced approach to deliver adipose-derived stem cells (ASCs) for the treatment of burn wounds, using an in-situ-formed hydrogel system comprised of a hyperbranched poly(ethylene glycol) diacrylate (HB-PEGDA) polymer, a commercially available thiol-functionalized hyaluronic acid (HA-SH) and a short RGD peptide. Stable hydrogels with tunable swelling and mechanical properties form within five minutes under physiological conditions via the Michael-type addition reaction. Combining with RGD peptide, as a cell adhesion motif, significantly alters the cellular morphology, enhances cell proliferation, and increases the paracrine activity of angiogenesis and tissue remodeling growth factors and cytokines. Bioluminescence imaging of luciferase+ ASCs indicated that the hydrogel protected the implanted cells from the harmful wound environment in burns. Hydrogel-ASC treatment significantly enhanced neovascularization, accelerated wound closure and reduced the scar formation. Our findings suggest that PEG-HA-RGD-based hydrogel provides an effective niche capable of augmenting the regenerative potential of ASCs and promoting burn wound healing. STATEMENT OF SIGNIFICANCE: Burn injury is one of the most devastating injures, and patients suffer from many complications and post-burn scar formation despite modern therapies. Here, we designed a conformable hydrogel-based stem cell delivery platform that allows rapid in-situ gelation upon contact with wounds. Adipose-derived stem cells were encapsulated into a PEG-HA-RGD hydrogels. Introducing of RGD motif significantly improved the cellular morphology, proliferation, and secretion of angiogenesis and remodeling cytokines. A deep second-degree burn murine model was utilized to evaluate in-vivo cell retention and therapeutic effect of the hydrogel-ASC-based therapy on burn wound healing. Our hydrogel remarkably improved ASCs viability in burn wounds and the hydrogel-ASC treatment enhanced the neovascularization, promoted wound closure, and reduced scar formation.
Collapse
Affiliation(s)
- Yixiao Dong
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China; Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States; The Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| | - Meihua Cui
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Ju Qu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xuechun Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Sun Hyung Kwon
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Janos Barrera
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Nicola Elvassore
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Geoffrey C Gurtner
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
209
|
Morshedloo F, Khoshfetrat AB, Kazemi D, Ahmadian M. Gelatin improves peroxidase-mediated alginate hydrogel characteristics as a potential injectable hydrogel for soft tissue engineering applications. J Biomed Mater Res B Appl Biomater 2020; 108:2950-2960. [PMID: 32351038 DOI: 10.1002/jbm.b.34625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/27/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
To develop an efficient injectable alginate-based hydrogel for soft tissue engineering applications, phenol moiety (Ph) was introduced into alginate (Alg-Ph), and the influence of gelatin as cell adhesive molecule was evaluated on the peroxidase-mediated alginate hydrogel properties and cultured chondrocytic cell behavior. Addition of gelatin (1.5% w/v) to Alg-Ph (1.5% w/v) hydrogels (Alg-Ph/gelatin) regulated characteristics of the enzymatically gellable alginate hydrogel with increasing gelation time to 5.1 min (76%). Swelling ratio and degradation rates of the Alg-Ph/gelatin hydrogel also increased 60 and 100%, respectively, while the mechanical strength value was 35% less than the Alg-Ph hydrogel. Scanning electron microscopy images showed that the addition of gelatin could also increase uniformity of pore sizes inside the Alg-Ph/gelatin hydrogels. The chondrocyte cells maintained their original phenotype and revealed statistically more metabolic activities in the Alg-Ph/gelatin hydrogel. Hydrogels subscutaneously implanted in rats could also be identified readily without complete absorption and signs of toxicity or any untoward reactions after 1 month. Viable chondrocyte cells inside globular aggregates were seen as red colored areas in the cell-laden hydrogels. The study demonstrates that enzymatically gellable alginate/gelatin hydrogel has fair potential as a natural-based injectable hydrogel for soft tissue engineering applications.
Collapse
Affiliation(s)
- Fatemeh Morshedloo
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran.,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran.,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran
| | - Davoud Kazemi
- Department of Veterinary Clinical Sciences, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Mehri Ahmadian
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran.,Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
210
|
Lim KS, Galarraga JH, Cui X, Lindberg GCJ, Burdick JA, Woodfield TBF. Fundamentals and Applications of Photo-Cross-Linking in Bioprinting. Chem Rev 2020; 120:10662-10694. [DOI: 10.1021/acs.chemrev.9b00812] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Khoon S. Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| | - Jonathan H. Galarraga
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| | - Gabriella C. J. Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tim B. F. Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| |
Collapse
|
211
|
Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020; 21:1968-1994. [PMID: 32227919 DOI: 10.1021/acs.biomac.0c00045] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic 3D extracellular matrices (ECMs) find application in cell studies, regenerative medicine, and drug discovery. While cells cultured in a monolayer may exhibit unnatural behavior and develop very different phenotypes and genotypes than in vivo, great efforts in materials chemistry have been devoted to reproducing in vitro behavior in in vivo cell microenvironments. This requires fine-tuning the biochemical and structural actors in synthetic ECMs. This review will present the fundamentals of the ECM, cover the chemical and structural features of the scaffolds used to generate ECM mimics, discuss the nature of the signaling biomolecules required and exploited to generate bioresponsive cell microenvironments able to induce a specific cell fate, and highlight the synthetic strategies involved in creating functional 3D ECM mimics.
Collapse
Affiliation(s)
- Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, , 92296 Châtenay-Malabry, France
| | - Sofia Magli
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Linda Rabbachin
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Susanna Sampaolesi
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
212
|
Tirella A, Mattei G, La Marca M, Ahluwalia A, Tirelli N. Functionalized Enzyme-Responsive Biomaterials to Model Tissue Stiffening in vitro. Front Bioeng Biotechnol 2020; 8:208. [PMID: 32322576 PMCID: PMC7156543 DOI: 10.3389/fbioe.2020.00208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/02/2020] [Indexed: 01/02/2023] Open
Abstract
The mechanical properties of the cellular microenvironment play a crucial role in modulating cell function, and many pathophysiological processes are accompanied by variations in extracellular matrix (ECM) stiffness. Lysyl oxidase (LOx) is one of the enzymes involved in several ECM-stiffening processes. Here, we engineered poly(ethylene glycol) (PEG)-based hydrogels with controlled mechanical properties in the range typical of soft tissues. These hydrogels were functionalized featuring free primary amines, which allows an additional chemical LOx-responsive behavior with increase in crosslinks and hydrogel elastic modulus, mimicking biological ECM-stiffening mechanisms. Hydrogels with elastic moduli in the range of 0.5-4 kPa were obtained after a first photopolymerization step. The increase in elastic modulus of the functionalized and enzyme-responsive hydrogels was also characterized after the second-step enzymatic reaction, recording an increase in hydrogel stiffness up to 0.5 kPa after incubation with LOx. Finally, hydrogel precursors containing HepG2 (bioinks) were used to form three-dimensional (3D) in vitro models to mimic hepatic tissue and test PEG-based hydrogel biocompatibility. Hepatic functional markers were measured up to 7 days of culture, suggesting further use of such 3D models to study cell mechanobiology and response to dynamic variation of hydrogels stiffness. The results show that the functionalized hydrogels presented in this work match the mechanical properties of soft tissues, allow dynamic variations of hydrogel stiffness, and can be used to mimic changes in the microenvironment properties of soft tissues typical of inflammation and pathological changes at early stages (e.g., fibrosis, cancer).
Collapse
Affiliation(s)
- Annalisa Tirella
- BioEngineered Systems Lab, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Giorgio Mattei
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | | | - Arti Ahluwalia
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Research Centre “E. Piaggio”, University of Pisa, Pisa, Italy
| | - Nicola Tirelli
- North West Centre of Advanced Drug Delivery (NoWCADD), Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
213
|
Wong SW, Lenzini S, Cooper MH, Mooney DJ, Shin JW. Soft extracellular matrix enhances inflammatory activation of mesenchymal stromal cells to induce monocyte production and trafficking. SCIENCE ADVANCES 2020; 6:eaaw0158. [PMID: 32284989 PMCID: PMC7141831 DOI: 10.1126/sciadv.aaw0158] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/14/2020] [Indexed: 05/17/2023]
Abstract
Mesenchymal stromal cells (MSCs) modulate immune cells to ameliorate multiple inflammatory pathologies. Biophysical signals that regulate this process are poorly defined. By engineering hydrogels with tunable biophysical parameters relevant to bone marrow where MSCs naturally reside, we show that soft extracellular matrix maximizes the ability of MSCs to produce paracrine factors that have been implicated in monocyte production and chemotaxis upon inflammatory stimulation by tumor necrosis factor-α (TNFα). Soft matrix increases clustering of TNF receptors, thereby enhancing NF-κB activation and downstream gene expression. Actin polymerization and lipid rafts, but not myosin-II contractility, regulate mechanosensitive activation of MSCs by TNFα. We functionally demonstrate that human MSCs primed with TNFα in soft matrix enhance production of human monocytes in marrow of xenografted mice and increase trafficking of monocytes via CCL2. The results suggest the importance of biophysical signaling in tuning inflammatory activation of stromal cells to control the innate immune system.
Collapse
Affiliation(s)
- Sing Wan Wong
- Department of Pharmacology and Department of Bioengineering, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Stephen Lenzini
- Department of Pharmacology and Department of Bioengineering, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Madeline H. Cooper
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - David J. Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jae-Won Shin
- Department of Pharmacology and Department of Bioengineering, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| |
Collapse
|
214
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
215
|
Ao Q, Wang S, He Q, Ten H, Oyama K, Ito A, He J, Javed R, Wang A, Matsuno A. Fibrin Glue/Fibronectin/Heparin-Based Delivery System of BMP2 Induces Osteogenesis in MC3T3-E1 Cells and Bone Formation in Rat Calvarial Critical-Sized Defects. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13400-13410. [PMID: 32091872 DOI: 10.1021/acsami.0c01371] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bone morphogenetic proteins (BMPs) have been used to promote bone formation in many clinical scenarios. However, the BMPs are inherently unstable in vivo and therefore need to be combined with carriers for controlled delivery. In this study, an innovative and efficient fibrin glue/fibronectin/heparin (FG/Fn/Hep)-based delivery system was developed for controlled release of BMP2. The incorporation of heparin can significantly slow the release of BMP2 without substantially affecting the structure and stiffness of the FG/Fn. The BMP2 release from the FG/Fn/Hep-BMP2 hydrogel is largely dominated by hydrogel degradation rather than simple diffusion. In vitro release experiments and MC3T3-E1 cell induction experiments showed that BMP2 can be released steadily and can induce MC3T3-E1 cells to differentiate into osteoblasts efficiently. This process is characterized by the significantly increased expression of calcium deposits, alkaline phosphatase, runt-related transcription factor-2, osteopontin, osteocalcin, and collagen I in comparison with the negative control. In vivo assessments revealed that the FG/Fn/Hep-BMP2 hydrogel significantly promotes bone regeneration in a rat calvarial critical-sized defect model. Our investigation indicates that FG/Fn/Hep-BMP2 hydrogel holds promise to be used as an alternative biomaterial for the repair of bone defects.
Collapse
Affiliation(s)
- Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shilin Wang
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China
| | - Qing He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hirotomo Ten
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo 163-8001, Japan
| | - Kenichi Oyama
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo 163-8001, Japan
| | - Akihiro Ito
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo 163-8001, Japan
| | - Jing He
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
| | - Akira Matsuno
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo 163-8001, Japan
| |
Collapse
|
216
|
Yu W, Xue B, Zhu Z, Shen Z, Qin M, Wang W, Cao Y. Strong and Injectable Hydrogels Based on Multivalent Metal Ion-Peptide Cross-linking. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-9100-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
217
|
Paez JI, Farrukh A, Valbuena-Mendoza R, Włodarczyk-Biegun MK, Del Campo A. Thiol-Methylsulfone-Based Hydrogels for 3D Cell Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8062-8072. [PMID: 31999422 DOI: 10.1021/acsami.0c00709] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thiol-maleimide and thiol-vinylsulfone cross-linked hydrogels are widely used systems in 3D culture models, in spite of presenting uncomfortable reaction kinetics for cell encapsulation: too fast (seconds for thiol-maleimide) or too slow (minutes-hours for thiol-vinylsulfone). Here, we introduce the thiol-methylsulfone reaction as alternative cross-linking chemistry for cell encapsulation, particularized for PEG-hydrogels. The thiol-methylsulfone reaction occurs at high conversion and at intermediate reaction speed (seconds-minutes) under physiological pH range. These properties allow easy mixing of hydrogel precursors and cells to render homogeneous cell-laden gels at comfortable experimental time scales. The resulting hydrogels are cytocompatible and show comparable hydrolytic stability to thiol-vinylsulfone gels. They allow direct bioconjugation of thiol-derivatized ligands and tunable degradation kinetics by cross-linking with degradable peptide sequences. 3D cell culture of two cell types, fibroblasts and human umbilical vein endothelial cells (HUVECs), is demonstrated.
Collapse
Affiliation(s)
- Julieta I Paez
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
| | - Aleeza Farrukh
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
| | - Rocío Valbuena-Mendoza
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
- Saarland University , Chemistry Department , 66123 Saarbrücken , Germany
| | | | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
- Saarland University , Chemistry Department , 66123 Saarbrücken , Germany
| |
Collapse
|
218
|
Hwang J, Sullivan MO, Kiick KL. Targeted Drug Delivery via the Use of ECM-Mimetic Materials. Front Bioeng Biotechnol 2020; 8:69. [PMID: 32133350 PMCID: PMC7040483 DOI: 10.3389/fbioe.2020.00069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
The use of drug delivery vehicles to improve the efficacy of drugs and to target their action at effective concentrations over desired periods of time has been an active topic of research and clinical investigation for decades. Both synthetic and natural drug delivery materials have facilitated locally controlled as well as targeted drug delivery. Extracellular matrix (ECM) molecules have generated widespread interest as drug delivery materials owing to the various biological functions of ECM. Hydrogels created using ECM molecules can provide not only biochemical and structural support to cells, but also spatial and temporal control over the release of therapeutic agents, including small molecules, biomacromolecules, and cells. In addition, the modification of drug delivery carriers with ECM fragments used as cell-binding ligands has facilitated cell-targeted delivery and improved the therapeutic efficiency of drugs through interaction with highly expressed cellular receptors for ECM. The combination of ECM-derived hydrogels and ECM-derived ligand approaches shows synergistic effects, leading to a great promise for the delivery of intracellular drugs, which require specific endocytic pathways for maximal effectiveness. In this review, we provide an overview of cellular receptors that interact with ECM molecules and discuss examples of selected ECM components that have been applied for drug delivery in both local and systemic platforms. Finally, we highlight the potential impacts of utilizing the interaction between ECM components and cellular receptors for intracellular delivery, particularly in tissue regeneration applications.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Millicent O. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
219
|
Callmann CE, Thompson MP, Gianneschi NC. Poly(peptide): Synthesis, Structure, and Function of Peptide-Polymer Amphiphiles and Protein-like Polymers. Acc Chem Res 2020; 53:400-413. [PMID: 31967781 PMCID: PMC11042489 DOI: 10.1021/acs.accounts.9b00518] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this Account, we describe the organization of functional peptides as densely arrayed side chains on polymer scaffolds which we introduce as a new class of material called poly(peptide). We describe two general classes of poly(peptide): (1) Peptide-Polymer Amphiphiles (PPAs), which consist of block copolymers with a dense grouping of peptides arrayed as the side chains of the hydrophilic block and connected to a hydrophobic block that drives micelle assembly, and (2) Protein-like Polymers (PLPs), wherein peptide-brush polymers are composed from monomers, each containing a peptide side chain. Peptides organized in this manner imbue polymers or polymeric nanoparticles with a range of functional qualities inherent to their specific sequence. Therefore, polymers or nanoparticles otherwise lacking bioactivity or responsiveness to stimuli, once linked to a peptide of choice, can now bind proteins, enter cells and tissues, have controlled and switchable biodistribution patterns, and be enzyme substrates (e.g., for kinases, phosphatases, proteases). Indeed, where peptide substrates are incorporated, kinetically or thermodynamically driven morphological transitions can be enzymatically induced in the polymeric material. Synergistically, the polymer enforces changes in peptide activity and function by virtue of packing and constraining the peptide. The scaffold can protect peptides from proteolysis, change the pharmacokinetic profile of an intravenously injected peptide, increase the cellular uptake of an otherwise cell impermeable therapeutic peptide, or change peptide substrate activity entirely. Moreover, in addition to the sequence-controlled peptides (generated by solid phase synthesis), the polymer can carry its own sequence-dependent information, especially through living polymerization strategies allowing well-defined blocks and terminal labels (e.g., dyes, contrast agents, charged moieties). Hence, the two elements, peptide and polymer, cooperate to yield materials with unique function and properties quite apart from each alone. Herein, we describe the development of synthetic strategies for accessing these classes of biomolecule polymer conjugates. We discuss the utility of poly(peptide)-based materials in a range of biomedical applications, including imaging of diseased tissues (myocardial infarction and cancer), delivering small molecule drugs to tumors with high specificity, imparting cell permeability to otherwise impermeable peptides, protecting bioactive peptides from proteolysis in harsh conditions (e.g., stomach acid and whole blood), and transporting proteins into traditionally difficult-to-transfect cell types, including stem cells. Poly(peptide) materials offer new properties to both the constituent peptides and to the polymers, which can be tuned by the design of the oligopeptide sequence, degree of polymerization, peptide arrangement on the polymer backbone, and polymer backbone chemistry. These properties establish this approach as valuable for the development of peptides as medicines and materials in a range of settings.
Collapse
Affiliation(s)
- Cassandra E. Callmann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, and Pharmacology, International Institute of Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew P. Thompson
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, and Pharmacology, International Institute of Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C. Gianneschi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, and Pharmacology, International Institute of Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
220
|
Winter RL, Tian Y, Caldwell FJ, Seeto WJ, Koehler JW, Pascoe DA, Fan S, Gaillard P, Lipke EA, Wooldridge AA. Cell engraftment, vascularization, and inflammation after treatment of equine distal limb wounds with endothelial colony forming cells encapsulated within hydrogel microspheres. BMC Vet Res 2020; 16:43. [PMID: 32019556 PMCID: PMC7001230 DOI: 10.1186/s12917-020-2269-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endothelial colony forming cells (ECFCs) may be useful therapeutically in conditions with poor blood supply, such as distal limb wounds in the horse. Encapsulation of ECFCs into injectable hydrogel microspheres may ensure cell survival and cell localization to improve neovascularization and healing. Autologous ECFCs were isolated from 6 horses, labeled with quantum nanodots (QD), and a subset were encapsulated in poly(ethylene) glycol fibrinogen microspheres (PEG-Fb MS). Full-thickness dermal wounds were created on each distal limb and injected with empty PEG-Fb MS, serum, ECFCs, or ECFCs encapsulated into PEG- Fb MS (ECFC/MS). Analysis included wound surface area (WSA), granulation tissue scoring (GS), thermography, collagen density staining, and immunohistochemical staining for endothelial and inflammatory cells. The purpose of this study was to track cell location and evaluate wound vascularization and inflammatory response after injection of ECFC/MS or naked ECFCs in equine distal limb wounds. RESULTS ECFCs were found near and within newly formed blood vessels up to 3 weeks after injection. ECFC and ECFC/MS groups had the greatest blood vessel quantity at week 1 in the wound periphery. Wounds treated with ECFCs and ECFC/MS had the lowest density of neutrophils and macrophages at week 4. There were no significant effects of ECFC or ECFC/MS treatment on other measured parameters. CONCLUSIONS Injection of microsphere encapsulated ECFCs was practical for clinical use and well-tolerated. The positive ECFC treatment effects on blood vessel density and wound inflammation warrant further investigation.
Collapse
Affiliation(s)
- Randolph L. Winter
- Department of Clinical Sciences, Auburn University, Auburn, AL USA
- Department of Clinical Sciences, Ohio State University, Columbus, OH USA
| | - Yuan Tian
- Department of Chemical Engineering, Auburn University, Auburn, AL USA
| | - Fred J. Caldwell
- Department of Clinical Sciences, Auburn University, Auburn, AL USA
| | - Wen J. Seeto
- Department of Chemical Engineering, Auburn University, Auburn, AL USA
| | - Jey W. Koehler
- Department of Pathobiology, Auburn University, Auburn, AL USA
| | | | - Shirley Fan
- Department of Mathematics, Auburn University, Auburn, AL USA
| | | | | | | |
Collapse
|
221
|
Liu S, Cao H, Guo R, Li H, Lu C, Yang G, Nie J, Wang F, Dong N, Shi J, Shi F. Effects of the proportion of two different cross-linkers on the material and biological properties of enzymatically degradable PEG hydrogels. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2019.109067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
222
|
He YJ, Santana MF, Moucka M, Quirk J, Shuaibi A, Pimentel MB, Grossman S, Rashid MM, Cinar A, Georgiadis JG, Vaicik M, Kawaji K, Venerus DC, Papavasiliou G. Immobilized RGD concentration and proteolytic degradation synergistically enhance vascular sprouting within hydrogel scaffolds of varying modulus. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2020; 31:324-349. [PMID: 31774730 PMCID: PMC7185153 DOI: 10.1080/09205063.2019.1692640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
Abstract
Insufficient vascularization limits the volume and complexity of engineered tissue. The formation of new blood vessels (neovascularization) is regulated by a complex interplay of cellular interactions with biochemical and biophysical signals provided by the extracellular matrix (ECM) necessitating the development of biomaterial approaches that enable systematic modulation in matrix properties. To address this need poly(ethylene) glycol-based hydrogel scaffolds were engineered with a range of decoupled and combined variations in integrin-binding peptide (RGD) ligand concentration, elastic modulus and proteolytic degradation rate using free-radical polymerization chemistry. The modularity of this system enabled a full factorial experimental design to simultaneously investigate the individual and interaction effects of these matrix cues on vascular sprout formation in 3 D culture. Enhancements in scaffold proteolytic degradation rate promoted significant increases in vascular sprout length and junction number while increases in modulus significantly and negatively impacted vascular sprouting. We also observed that individual variations in immobilized RGD concentration did not significantly impact 3 D vascular sprouting. Our findings revealed a previously unidentified and optimized combination whereby increases in both immobilized RGD concentration and proteolytic degradation rate resulted in significant and synergistic enhancements in 3 D vascular spouting. The above-mentioned findings would have been challenging to uncover using one-factor-at-time experimental analyses.
Collapse
Affiliation(s)
- Yusheng J. He
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - Martin F. Santana
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - Madison Moucka
- Department of Biomedical Engineering, Texas A & M University, College Station, TX
| | - Jack Quirk
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - Asma Shuaibi
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - Marja B. Pimentel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - Sophie Grossman
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - Mudassir M. Rashid
- Department Chemical and Biological Engineering Department, Illinois Institute of Technology, Chicago, IL
| | - Ali Cinar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
- Department Chemical and Biological Engineering Department, Illinois Institute of Technology, Chicago, IL
| | - John G. Georgiadis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - Marcella Vaicik
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - Keigo Kawaji
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| | - David C. Venerus
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ
| | - Georgia Papavasiliou
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL
| |
Collapse
|
223
|
Cembran A, Bruggeman KF, Williams RJ, Parish CL, Nisbet DR. Biomimetic Materials and Their Utility in Modeling the 3-Dimensional Neural Environment. iScience 2020; 23:100788. [PMID: 31954980 PMCID: PMC6970178 DOI: 10.1016/j.isci.2019.100788] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/30/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
The brain is a complex 3-dimensional structure, the organization of which provides a local environment that directly influences the survival, proliferation, differentiation, migration, and plasticity of neurons. To probe the effects of damage and disease on these cells, a synthetic environment is needed. Three-dimensional culturing of stem cells, neural progenitors, and neurons within fabricated biomaterials has demonstrated superior biomimetic properties over conventional 2-dimensional cultureware, offering direct recapitulation of both cell-cell and cell-extracellular matrix interactions. Within this review we address the benefits of deploying biomaterials as advanced cell culture tools capable of influencing neuronal fate and as in vitro models of the native in vivo microenvironment. We highlight recent and promising biomaterials approaches toward understanding neural network and their function relevant to neurodevelopment and provide our perspective on how these materials can be engineered and programmed to study both the healthy and diseased nervous system.
Collapse
Affiliation(s)
- Arianna Cembran
- Laboratory of Advanced Biomaterials, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2600, Australia
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2600, Australia
| | | | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
224
|
Browne S, Hossainy S, Healy K. Hyaluronic Acid Macromer Molecular Weight Dictates the Biophysical Properties and in Vitro Cellular Response to Semisynthetic Hydrogels. ACS Biomater Sci Eng 2020; 6:1135-1143. [PMID: 33464856 DOI: 10.1021/acsbiomaterials.9b01419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In situ-forming hydrogels present a promising approach for minimally invasive cell transplantation and tissue regeneration. Among prospective materials, hyaluronic acid (HyA) has displayed great potential, owing to its inherent biocompatibility, biodegradation, and ease of chemical modification. However, current studies in the literature use a broad range of HyA macromer molecular weights (MWs) from <100 kDa to 1 MDa with no consensus regarding an optimal MW for a specific application. We investigated the effects of different HyA macromer MWs on key biophysical properties of semisynthetic hydrogels, such as viscosity, gelation time, shear storage modulus, molecular diffusion, and degradation. Using higher-MW HyA macromers leads to quicker gelation times and stiffer, more stable hydrogels with smaller mesh sizes. Assessment of the potential for HyA hydrogels to support network formation by encapsulated vascular cells derived from human-induced pluripotent stem cells reveals key differences between HyA hydrogels dependent on macromer MW. These effects must be considered holistically to address the multifaceted, nonmonotonic nature of HyA MW on hydrogel behavior. Our study identified an intermediate HyA macromer MW of 500 kDa as providing optimal conditions for a readily injectable, in situ-forming hydrogel with appropriate biophysical properties to promote vascular cell spreading and sustain vascular network formation in vitro.
Collapse
|
225
|
Rukmani SJ, Anstine DM, Munasinghe A, Colina CM. An Insight into Structural and Mechanical Properties of Ideal‐Networked Poly(Ethylene Glycol)–Peptide Hydrogels from Molecular Dynamics Simulations. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shalini J. Rukmani
- Department of Materials Science and EngineeringUniversity of Florida Gainesville FL 32611 USA
- George and Josephine Butler Polymer Research LaboratoryDepartment of ChemistryUniversity of Florida Gainesville FL 32611 USA
| | - Dylan M. Anstine
- Department of Materials Science and EngineeringUniversity of Florida Gainesville FL 32611 USA
- George and Josephine Butler Polymer Research LaboratoryDepartment of ChemistryUniversity of Florida Gainesville FL 32611 USA
| | - Aravinda Munasinghe
- George and Josephine Butler Polymer Research LaboratoryDepartment of ChemistryUniversity of Florida Gainesville FL 32611 USA
- Department of ChemistryUniversity of Florida Gainesville FL 32611 USA
| | - Coray M. Colina
- Department of Materials Science and EngineeringUniversity of Florida Gainesville FL 32611 USA
- George and Josephine Butler Polymer Research LaboratoryDepartment of ChemistryUniversity of Florida Gainesville FL 32611 USA
- Department of ChemistryUniversity of Florida Gainesville FL 32611 USA
| |
Collapse
|
226
|
Spicer CD. Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym Chem 2020; 11:184-219. [DOI: 10.1039/c9py01021a] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
We explore the design and synthesis of hydrogel scaffolds for tissue engineering from the perspective of the underlying polymer chemistry. The key polymers, properties and architectures used, and their effect on tissue growth are discussed.
Collapse
|
227
|
Surface-Immobilized Biomolecules. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
228
|
Belleghem SMV, Mahadik B, Snodderly KL, Fisher JP. Overview of Tissue Engineering Concepts and Applications. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
229
|
Zhan H, Jiang S, Jonker AM, Pijpers IAB, Löwik DWPM. Self-recovering dual cross-linked hydrogels based on bioorthogonal click chemistry and ionic interactions. J Mater Chem B 2020; 8:5912-5920. [DOI: 10.1039/d0tb01042a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biocompatible, injectable and high water-swollen nature of dual cross-linked hydrogels makes them a popular candidate to imitate the extracellular matrix (ECM) for tissue engineering both in vitro and in vivo.
Collapse
Affiliation(s)
- Henan Zhan
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Bio-organic Chemistry
- 6525 AJ Nijmegen
- The Netherlands
| | - Shanshan Jiang
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Bio-organic Chemistry
- 6525 AJ Nijmegen
- The Netherlands
| | - Anika M. Jonker
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Bio-organic Chemistry
- 6525 AJ Nijmegen
- The Netherlands
| | - Imke A. B. Pijpers
- Eindhoven University of Technology
- Department of Biomedical Engineering
- Bio-organic Chemistry
- 5612 AE Eindhoven
- The Netherlands
| | - Dennis W. P. M. Löwik
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Bio-organic Chemistry
- 6525 AJ Nijmegen
- The Netherlands
| |
Collapse
|
230
|
Schutrum BE, Whitman MA, Fischbach C. Biomaterials-Based Model Systems to Study Tumor–Microenvironment Interactions. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
231
|
Abstract
Stereolithography (SLA) 3D bioprinting has emerged as a prominent bioprinting method addressing the requirements of complex tissue fabrication. This chapter addresses the advancement in SLA 3D bioprinting in concurrent with the development of novel photocrosslinkable biomaterials with enhanced physical and chemical properties. We discuss the cytocompatible photoinitiators operating in the wide spectrum of the ultraviolet (UV) and the visible light and high-resolution dynamic mask projection systems with a suitable illumination source. The potential of SLA 3D bioprinting has been explored in various themes, like bone and neural tissue engineering and in the development of controlled microenvironments to study cell behavior. The flexible design and versatility of SLA bioprinting makes it an attractive bioprinting process with myriad possibilities and clinical applications.
Collapse
Affiliation(s)
- Hitendra Kumar
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Keekyoung Kim
- School of Engineering, University of British Columbia, Kelowna, BC, Canada.
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
232
|
Luo J, Sun F. Calcium-responsive hydrogels enabled by inducible protein–protein interactions. Polym Chem 2020. [DOI: 10.1039/d0py00423e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Creation of an entirely protein-based calcium-responsive hydrogel enabled by genetically encoded click chemistry (GECC) and inducible protein–protein interactions.
Collapse
Affiliation(s)
- Jiren Luo
- Department of Chemical and Biological Engineering
- The Hong Kong University of Science and Technology
- Kowloon
- China
| | - Fei Sun
- Department of Chemical and Biological Engineering
- The Hong Kong University of Science and Technology
- Kowloon
- China
- HKUST Shenzhen Research Institute
| |
Collapse
|
233
|
Han WM, Jang YC, García AJ. The Extracellular Matrix and Cell–Biomaterial Interactions. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
234
|
Blatchley MR, Gerecht S. Reconstructing the Vascular Developmental Milieu In Vitro. Trends Cell Biol 2020; 30:15-31. [DOI: 10.1016/j.tcb.2019.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
|
235
|
Barros D, Amaral IF, Pêgo AP. Laminin-Inspired Cell-Instructive Microenvironments for Neural Stem Cells. Biomacromolecules 2019; 21:276-293. [PMID: 31789020 DOI: 10.1021/acs.biomac.9b01319] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Laminin is a heterotrimeric glycoprotein with a key role in the formation and maintenance of the basement membrane architecture and properties, as well as on the modulation of several biological functions, including cell adhesion, migration, differentiation and matrix-mediated signaling. In the central nervous system (CNS), laminin is differentially expressed during development and homeostasis, with an impact on the modulation of cell function and fate. Within neurogenic niches, laminin is one of the most important and well described extracellular matrix (ECM) proteins. Specifically, efforts have been made to understand laminin assembly, domain architecture, and interaction of its different bioactive domains with cell surface receptors, soluble signaling molecules, and ECM proteins, to gain insight into the role of this ECM protein and its receptors on the modulation of neurogenesis, both in homeostasis and during repair. This is also expected to provide a rational basis for the design of biomaterial-based matrices mirroring the biological properties of the basement membrane of neural stem cell niches, for application in neural tissue repair and cell transplantation. This review provides a general overview of laminin structure and domain architecture, as well as the main biological functions mediated by this heterotrimeric glycoprotein. The expression and distribution of laminin in the CNS and, more specifically, its role within adult neural stem cell niches is summarized. Additionally, a detailed overview on the use of full-length laminin and laminin derived peptide/recombinant laminin fragments for the development of hydrogels for mimicking the neurogenic niche microenvironment is given. Finally, the main challenges associated with the development of laminin-inspired hydrogels and the hurdles to overcome for these to progress from bench to bedside are discussed.
Collapse
Affiliation(s)
- Daniela Barros
- i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto (UPorto) , Porto 4200-153 , Portugal.,INEB - Instituto de Engenharia Biomédica , UPorto , Porto 4200-153 , Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar , UPorto , Porto 4200-153 , Portugal
| | - Isabel F Amaral
- i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto (UPorto) , Porto 4200-153 , Portugal.,INEB - Instituto de Engenharia Biomédica , UPorto , Porto 4200-153 , Portugal.,FEUP - Faculdade de Engenharia , UPorto , Porto 4200-153 , Portugal
| | - Ana P Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto (UPorto) , Porto 4200-153 , Portugal.,INEB - Instituto de Engenharia Biomédica , UPorto , Porto 4200-153 , Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar , UPorto , Porto 4200-153 , Portugal.,FEUP - Faculdade de Engenharia , UPorto , Porto 4200-153 , Portugal
| |
Collapse
|
236
|
Bosak A, Kwan MWC, Willenberg A, Perle KMDL, Weinstein D, Hines RB, Schultz GS, Ross EA, Willenberg BJ. Capillary alginate gel (Capgel™) for the treatment of full-thickness dermal wounds in a hypoxic mouse model. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1534112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Alexander Bosak
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Michael W. C. Kwan
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Alicia Willenberg
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Krista M. D. La Perle
- Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, Ohio, USA
| | - David Weinstein
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Robert B. Hines
- Department of Population Health Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Gregory S. Schultz
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Edward A. Ross
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Bradley J. Willenberg
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida, USA
- Saisijin Biotech, LLC, St. Cloud, Florida, USA
| |
Collapse
|
237
|
Simultaneous nano- and microscale structural control of injectable hydrogels via the assembly of nanofibrous protein microparticles for tissue regeneration. Biomaterials 2019; 223:119458. [DOI: 10.1016/j.biomaterials.2019.119458] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 01/11/2023]
|
238
|
Juliar BA, Beamish JA, Busch ME, Cleveland DS, Nimmagadda L, Putnam AJ. Cell-mediated matrix stiffening accompanies capillary morphogenesis in ultra-soft amorphous hydrogels. Biomaterials 2019; 230:119634. [PMID: 31776019 DOI: 10.1016/j.biomaterials.2019.119634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
There is a critical need for biomaterials that support robust neovascularization for a wide-range of clinical applications. Here we report how cells alter tissue-level mechanical properties during capillary morphogenesis using a model of endothelial-stromal cell co-culture within poly(ethylene glycol) (PEG) based hydrogels. After a week of culture, we observed substantial stiffening in hydrogels with very soft initial properties. Endothelial cells or stromal cells alone, however, failed to induce hydrogel stiffening. This stiffening tightly correlated with degree of vessel formation but not with hydrogel compaction or cellular proliferation. Despite a lack of fibrillar architecture within the PEG hydrogels, cell-generated contractile forces were essential for hydrogel stiffening. Upregulation of alpha smooth muscle actin and collagen-1 was also correlated with enhanced vessel formation and hydrogel stiffening. Blocking cell-mediated hydrogel degradation abolished stiffening, demonstrating that matrix metalloproteinase (MMP)-mediated remodeling is required for stiffening to occur. These results highlight the dynamic reciprocity between cells and their mechanical microenvironment during capillary morphogenesis and provide important insights for the rational design of materials for vasculogenic applications.
Collapse
Affiliation(s)
- Benjamin A Juliar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Megan E Busch
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - David S Cleveland
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Likitha Nimmagadda
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
239
|
Mejías JC, Roy K. In-vitro and in-vivo characterization of a multi-stage enzyme-responsive nanoparticle-in-microgel pulmonary drug delivery system. J Control Release 2019; 316:393-403. [PMID: 31715279 DOI: 10.1016/j.jconrel.2019.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/29/2019] [Indexed: 12/19/2022]
Abstract
Although the lung is an obvious target for site-specific delivery of many therapeutics for respiratory airway diseases such as asthma, COPD, and cystic fibrosis, novel strategies are needed to avoid key physiologic barriers for efficient delivery and controlled release of therapeutics to the lungs. Specifically, deposition into the deep lung requires particles with a 1-5μm aerodynamic diameter; however, particles with a geometric diameter less than 6μm are rapidly cleared by alveolar macrophages. Additionally, epithelial, endothelial, and fibroblast cells prefer smaller (< 300nm) nanoparticles for efficient endocytosis. Here we address these contradictory design requirements by using a nanoparticle-inside-microgel system (Nano-in-Microgel). Using an improved maleimide-thiol based Michael Addition during (water-in-oil) Emulsion (MADE) method, we fabricated both trypsin-responsive and neutrophil elastase-responsive polymeric Nano-in-Microgel to show the versatility of the system in easily exchanging enzyme-responsive crosslinkers for disease-specific proteases. By varying the initial macromer concentration, from 20 to 50% w/v, the size distribution means ranged from 4-8μm, enzymatic degradation of the microgels is within 30min, and in vitro macrophage phagocytosis is lower for the higher % w/v. We further demonstrated that in vivo lung delivery of the multi-stage carriers through the pulmonary route yields particle retention up to several hours and followed by clearance within in naïve mice. Our results provide a further understanding of how enzymatically-degradable multi-stage polymeric carriers can be used for pulmonary drug delivery.
Collapse
Affiliation(s)
- Joscelyn C Mejías
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
| |
Collapse
|
240
|
Growth factors with enhanced syndecan binding generate tonic signalling and promote tissue healing. Nat Biomed Eng 2019; 4:463-475. [PMID: 31685999 DOI: 10.1038/s41551-019-0469-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 09/20/2019] [Indexed: 12/31/2022]
Abstract
Growth factors can stimulate tissue regeneration, but the side effects and low effectiveness associated with suboptimal delivery systems have impeded their use in translational regenerative medicine. Physiologically, growth factor interactions with the extracellular matrix control their bioavailability and spatiotemporal cellular signalling. Growth factor signalling is also controlled at the cell surface level via binding to heparan sulfate proteoglycans, such as syndecans. Here we show that vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) that were engineered to have a syndecan-binding sequence trigger sustained low-intensity signalling (tonic signalling) and reduce the desensitization of growth factor receptors. We also show in mouse models that tonic signalling leads to superior morphogenetic activity, with syndecan-binding growth factors inducing greater bone regeneration and wound repair than wild-type growth factors, as well as reduced tumour growth (associated with PDGF-BB delivery) and vascular permeability (triggered by VEGF-A). Tonic signalling via syndecan binding may also enhance the regenerative capacity of other growth factors.
Collapse
|
241
|
Beamish JA, Juliar BA, Cleveland DS, Busch ME, Nimmagadda L, Putnam AJ. Deciphering the relative roles of matrix metalloproteinase- and plasmin-mediated matrix degradation during capillary morphogenesis using engineered hydrogels. J Biomed Mater Res B Appl Biomater 2019; 107:2507-2516. [PMID: 30784190 PMCID: PMC6699943 DOI: 10.1002/jbm.b.34341] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/09/2019] [Accepted: 01/26/2019] [Indexed: 12/20/2022]
Abstract
Extracellular matrix (ECM) remodeling is essential for the process of capillary morphogenesis. Here we employed synthetic poly(ethylene glycol) (PEG) hydrogels engineered with proteolytic specificity to either matrix metalloproteinases (MMPs), plasmin, or both to investigate the relative contributions of MMP- and plasmin-mediated ECM remodeling to vessel formation in a 3D-model of capillary self-assembly analogous to vasculogenesis. We first demonstrated a role for both MMP- and plasmin-mediated mechanisms of ECM remodeling in an endothelial-fibroblast co-culture model of vasculogenesis in fibrin hydrogels using inhibitors of MMPs and plasmin. When this co-culture model was employed in engineered PEG hydrogels with selective protease sensitivity, we observed robust capillary morphogenesis only in MMP-sensitive matrices. Fibroblast spreading in plasmin-selective hydrogels confirmed this difference was due to protease preference by endothelial cells, not due to limitations of the matrix itself. In hydrogels engineered with crosslinks that were dually susceptible to MMPs and plasmin, capillary morphogenesis was unchanged. These findings highlight the critical importance of MMP-mediated degradation during vasculogenesis and provide strong evidence to justify the preferential selection of MMP-degradable peptide crosslinkers in synthetic hydrogels used to study vascular morphogenesis and promote vascularization. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2507-2516, 2019.
Collapse
Affiliation(s)
- Jeffrey A. Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Benjamin A. Juliar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - David S. Cleveland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Megan E. Busch
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Likitha Nimmagadda
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
242
|
Donnelly H, Salmeron-Sanchez M, Dalby MJ. Designing stem cell niches for differentiation and self-renewal. J R Soc Interface 2019; 15:rsif.2018.0388. [PMID: 30158185 PMCID: PMC6127175 DOI: 10.1098/rsif.2018.0388] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells, characterized by their ability to differentiate into skeletal tissues and self-renew, hold great promise for both regenerative medicine and novel therapeutic discovery. However, their regenerative capacity is retained only when in contact with their specialized microenvironment, termed the stem cell niche Niches provide structural and functional cues that are both biochemical and biophysical, stem cells integrate this complex array of signals with intrinsic regulatory networks to meet physiological demands. Although, some of these regulatory mechanisms remain poorly understood or difficult to harness with traditional culture systems. Biomaterial strategies are being developed that aim to recapitulate stem cell niches, by engineering microenvironments with physiological-like niche properties that aim to elucidate stem cell-regulatory mechanisms, and to harness their regenerative capacity in vitro In the future, engineered niches will prove important tools for both regenerative medicine and therapeutic discoveries.
Collapse
Affiliation(s)
- Hannah Donnelly
- The Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Matthew J Dalby
- The Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
243
|
Ren Y, Zhang H, Qin W, Du B, Liu L, Yang J. A collagen mimetic peptide-modified hyaluronic acid hydrogel system with enzymatically mediated degradation for mesenchymal stem cell differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110276. [PMID: 31923951 DOI: 10.1016/j.msec.2019.110276] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023]
Abstract
We have successfully designed and synthesized a biomimetic hydrogel system with maleimide-modified hyaluronic acid (HA) as the backbone and conjugated it to the collagen mimetic peptide (GPO)8-CG-RGDS. The matrix metalloproteinase (MMP)-sensitive peptide GCRDGPQGI↓WGQDRCG was the cross-linker. HA has high biocompatibility, low immunogenicity, and the capacity to interact with extracellular molecules. Recent studies have found that matrix metalloproteinases (MMPs) are involved in regulating the differentiation of bone mesenchymal stem cells and play a pivotal role in cartilage formation. (GPO)8-CG-RGDS has a natural collagen partial structure that follows the (Gly-Xaa-Yaa)n sequence, which is controllable in quality and can mimic the structure and biological activity of natural collagen. We found that combining this CMP with a MMP-sensitive peptide may have the potential to induce the differentiation of BMSCs into cartilage and inhibit the hypertrophic phenotype during differentiation. This design allows HA hydrogels to not only bind RGD sequences but also graft other functional peptide sequences to achieve a highly flexible platform with potential for multiple biomedical applications.
Collapse
Affiliation(s)
- Ying Ren
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Han Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Wenjuan Qin
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Bo Du
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Lingrong Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China.
| | - Jing Yang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China.
| |
Collapse
|
244
|
Chokoza C, Gustafsson CA, Goetsch KP, Zilla P, Thierfelder N, Pisano F, Mura M, Gnecchi M, Bezuidenhout D, Davies NH. Tuning Tissue Ingrowth into Proangiogenic Hydrogels via Dual Modality Degradation. ACS Biomater Sci Eng 2019; 5:5430-5438. [PMID: 33464063 DOI: 10.1021/acsbiomaterials.9b01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The potential to control the rate of replacement of a biodegradable implant by a tissue would be advantageous. Here, we demonstrate that tissue invasion can be tuned through the novel approach of overlaying an enzymatically degradable hydrogel with an increasingly hydrolytically degradable environment. Poly(ethylene glycol) (PEG) hydrogels were formed from varying proportions of PEG-vinyl sulfone and PEG-acrylate (PEG-AC) monomers via a Michael-type addition reaction with a dithiol-containing matrix-metalloproteinase-susceptible peptide cross-linker. Swelling studies showed that PEG hydrogels with similar initial stiffnesses degraded more rapidly as the PEG-AC content increased. The replacement of subcutaneously implanted PEG hydrogels was also found to be proportional to their PEG-AC content. In addition, it would in many instances be desirable that these materials have the ability to stimulate their neovascularization. These hydrogels contained covalently bound heparin, and it was shown that a formulation of the hydrogel that allowed tissue replacement to occur over 1 month could trap and release growth factors and increase neovascularization by 50% over that time.
Collapse
Affiliation(s)
| | | | | | | | - Nikolaus Thierfelder
- Department of Cardiac Surgery, Ludwig-Maximilians University Munich, Leopoldstraße 13, 80802 Munich, Germany
| | - Federica Pisano
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Manuela Mura
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Massimiliano Gnecchi
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | | | | |
Collapse
|
245
|
Severn CE, Eissa AM, Langford CR, Parker A, Walker M, Dobbe JGG, Streekstra GJ, Cameron NR, Toye AM. Ex vivo culture of adult CD34 + stem cells using functional highly porous polymer scaffolds to establish biomimicry of the bone marrow niche. Biomaterials 2019; 225:119533. [PMID: 31610389 DOI: 10.1016/j.biomaterials.2019.119533] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
Haematopoiesis, the process of blood production, occurs from a tiny contingent of haematopoietic stem cells (HSC) in highly specialised three-dimensional niches located within the bone marrow. When haematopoiesis is replicated using in vitro two-dimensional culture, HSCs rapidly differentiate, limiting self-renewal. Emulsion-templated highly porous polyHIPE foam scaffolds were chosen to mimic the honeycomb architecture of human bone. The unmodified polyHIPE material supports haematopoietic stem and progenitor cell (HSPC) culture, with successful culture of erythroid progenitors and neutrophils within the scaffolds. Using erythroid culture methodology, the CD34+ population was maintained for 28 days with continual release of erythroid progenitors. These cells are shown to spontaneously repopulate the scaffolds, and the accumulated egress can be expanded and grown at large scale to reticulocytes. We next show that the polyHIPE scaffolds can be successfully functionalised using activated BM(PEG)2 (1,8-bismaleimido-diethyleneglycol) and then a Jagged-1 peptide attached in an attempt to facilitate notch signalling. Although Jagged-1 peptide had no detectable effect, the BM(PEG)2 alone significantly increased cell egress when compared to controls, without depleting the scaffold population. This work highlights polyHIPE as a novel functionalisable material for mimicking the bone marrow, and also that PEG can influence HSPC behaviour within scaffolds.
Collapse
Affiliation(s)
- C E Severn
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK; National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK
| | - A M Eissa
- Department of Polymers, Chemical Industries Research Division, National Research Centre, El Bohouth St. 33, Dokki, Giza, 12622, Cairo, Egypt; School of Engineering, University of Warwick, Coventry, CV4 7AL, UK; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - C R Langford
- Department of Materials Science and Engineering, Monash University, Clayton, 3800, Victoria, Australia
| | - A Parker
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - M Walker
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - J G G Dobbe
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - G J Streekstra
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - N R Cameron
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK; Department of Materials Science and Engineering, Monash University, Clayton, 3800, Victoria, Australia
| | - A M Toye
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK; National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Red Blood Cell Products, University of Bristol, UK.
| |
Collapse
|
246
|
Shi Y, Ferreira DS, Banerjee J, Pickford AR, Azevedo HS. Tuning the matrix metalloproteinase-1 degradability of peptide amphiphile nanofibers through supramolecular engineering. Biomater Sci 2019; 7:5132-5142. [PMID: 31576824 DOI: 10.1039/c9bm00949c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of endopeptidases capable of degrading extracellular matrix (ECM) components. They are known to play crucial roles during the ECM turnover in both physiological and pathological processes. As such, their activities are utilized as biological stimuli to engineer MMP-responsive peptide-based biomaterials such as self-assembled peptide amphiphiles (PAs). Although previous studies have unveiled the role of PAs secondary structure on the mechanical and biological properties of their self-assembled nanostructures, the effect on the degradability of their assemblies by MMP-1 has not been reported. Herein, a series of PAs are designed and synthesized, all comprising the same MMP-1 cleavable domain but with variable structural segments, to decipher the role of PA's secondary structure on the MMP-1 degradability of their assemblies. This study reveals a correlation between the MMP-1 degradation efficiency and the β-sheet content of the self-assembled PA nanofibers, with the MMP-1 cleavability being significantly reduced in the PA nanofibers with stronger β-sheet characteristics. These results shed light on the role of supramolecular cohesion in PA assemblies on their hydrolysis by MMP-1 and open up the possibility to control the degradation rate of PA-based nanostructures by MMP-1 through tweaking their molecular sequences.
Collapse
Affiliation(s)
- Yejiao Shi
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary, University of London, E1 4NS, UK.
| | - Daniela S Ferreira
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary, University of London, E1 4NS, UK.
| | - Jayati Banerjee
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary, University of London, E1 4NS, UK.
| | - Andrew R Pickford
- Centre for Enzyme Innovation & School of Biological Sciences, University of Portsmouth, PO1 2DY, UK
| | - Helena S Azevedo
- School of Engineering and Materials Science & Institute of Bioengineering, Queen Mary, University of London, E1 4NS, UK.
| |
Collapse
|
247
|
Francesko A, Petkova P, Tzanov T. Hydrogel Dressings for Advanced Wound Management. Curr Med Chem 2019; 25:5782-5797. [PMID: 28933299 DOI: 10.2174/0929867324666170920161246] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/08/2017] [Accepted: 08/25/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Composed in a large extent of water and due to their nonadhesiveness, hydrogels found their way to the wound dressing market as materials that provide a moisture environment for healing while being comfortable to the patient. Hydrogels' exploitation is constantly increasing after evidences of their even broader therapeutic potential due to resemblance to dermal tissue and ability to induce partial skin regeneration. The innovation in advanced wound care is further directed to the development of so-called active dressings, where hydrogels are combined with components that enhance the primary purpose of providing a beneficial environment for wound healing. OBJECTIVE The objective of this review is to concisely describe the relevance of hydrogel dressings as platforms for delivery of active molecules for improved management of difficult- to-treat wounds. The emphasis is on the most recent advances in development of stimuli- responsive hydrogels, which allow for control over wound healing efficiency in response to different external modalities. Novel strategies for monitoring of the wound status and healing progress based on incorporation of sensor molecules into the hydrogel platforms are also discussed.
Collapse
Affiliation(s)
| | - Petya Petkova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| |
Collapse
|
248
|
Hubka KM, Carson DD, Harrington DA, Farach-Carson MC. Perlecan domain I gradients establish stable biomimetic heparin binding growth factor gradients for cell migration in hydrogels. Acta Biomater 2019; 97:385-398. [PMID: 31351252 DOI: 10.1016/j.actbio.2019.07.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Growth factor gradients orchestrate many biological processes including organogenesis, wound healing, cancer invasion, and metastasis. Heparin-binding growth factor (HBGF) gradients are established in living systems by proteoglycans including the extracellular matrix heparan sulfate proteoglycan, perlecan/HSPG2. Three potential HBGF-binding glycosaminoglycan attachment sites occur in N-terminal domain I of perlecan's five domains. Our overarching goal was to form stable, biomimetic non-covalently bound HBGF gradients surrounding cells encapsulated in hyaluronate-based hydrogels by first establishing perlecan domain I (PlnD1) gradients. A versatile multichannel gradient maker device (MGMD) was designed and 3D printed, then used to create desired gradients of microparticles in hydrogels. Next, we used the device to covalently incorporate gradients of PEGylated PlnD1 in hydrogels with high-low-high or high-medium-low concentrations across the hydrogel width. Fluorescently-labeled fibroblast growth factor-2 was delivered to hydrogels in phosphate-buffered saline and allowed to electrostatically bind to the covalently pre-incorporated PlnD1, producing stable non-covalent HBGF gradients. To test cell viability after flow through the MGMD, delicate primary human salivary stem/progenitor cells were encapsulated in gradient hydrogels where they showed high viability and continued to grow. Next, to test migratory behavior in response to HBGF gradients, two cell types, preosteoblastic MC3T3-E1 cell line and breast cancer cell line MDA-MB-231 were encapsulated in or adjacent to PlnD1-modified hydrogels. Both cell lines migrated toward HBGFs bound to PlnD1. We conclude that establishing covalently-bound PlnD1 gradients in hydrogels provides a new means to establish physiologically-relevant gradients of HBGFs that are useful for a variety of applications in tissue engineering and cancer biology. STATEMENT OF SIGNIFICANCE: Gradients of heparin binding growth factors (HBGFs) direct cell behavior in living systems. HBGFs bind electrostatically to gradients of HS proteoglycans in the extracellular matrix creating HBGF gradients. We recreated HBGF gradients in physiological hyaluronate-based hydrogels using a 3D-printed multichannel gradient maker device (MGMD) that created gradients of HS proteoglycan-derived perlecan/HSPG2 domain I. We demonstrated the ability of a variety of cells, including primary salivary stem/progenitor cells, pre-osteoblastic cells and an invasive breast cancer cell line, to be co-encapsulated in gradient hydrogels by flowing them together through the MGMD. The versatile device and the ability to create HBGF gradients in hydrogels for a variety of applications is innovative and of broad utility in both cancer biology and tissue engineering applications.
Collapse
Affiliation(s)
- Kelsea M Hubka
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, TX 77005, USA; Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge Street Room 4401, Houston, TX 77054, USA.
| | - Daniel D Carson
- Department of Biosciences, Rice University, MS-140, P.O. Box 1892, Houston, TX 77251, USA; Department of Genetics, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Daniel A Harrington
- Department of Biosciences, Rice University, MS-140, P.O. Box 1892, Houston, TX 77251, USA; Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge Street Room 4401, Houston, TX 77054, USA.
| | - Mary C Farach-Carson
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, TX 77005, USA; Department of Biosciences, Rice University, MS-140, P.O. Box 1892, Houston, TX 77251, USA; Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge Street Room 4401, Houston, TX 77054, USA.
| |
Collapse
|
249
|
Li W, Tao C, Wang J, Le Y, Zhang J. MMP-responsive in situ forming hydrogel loaded with doxorubicin-encapsulated biodegradable micelles for local chemotherapy of oral squamous cell carcinoma. RSC Adv 2019; 9:31264-31273. [PMID: 35527962 PMCID: PMC9072589 DOI: 10.1039/c9ra04343h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
The complex construction within the oral cavity causes incomplete surgical resection of oral squamous cell carcinoma (OSCC) that may enhance the risk of recurrence and metastasis in the treatment. In situ forming injectable hydrogels with minimally invasive procedures, encapsulation stability and stimuli-responsive degradation have emerged as promising carriers for local drug delivery. In this study, doxorubicin (DOX) was first encapsulated in biodegradable poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) (PDLLA-PEG-PDLLA) micelles and then loaded into an in situ injectable hyaluronic acid (HA) hydrogel, which was cross-linked by a matrix metalloproteinase-2 (MMP-2)-responsive peptide (GCRDGPQGIWGQDRCG) through a Michael addition reaction. In vitro studies demonstrated that the HA hydrogel had a sensitive MMP-2-responsive drug release profile. Investigations including MTT, live-dead, apoptosis, and wound healing assays illustrated that DOX micelle-loaded HA hydrogels exhibited outstanding cytotoxicity against squamous carcinoma cells (SCC-15). Furthermore, by in vivo studies, we also proved that HA hydrogels degraded faster in the tumor site than in normal tissue, which led to a local sustained release of DOX-loaded micelles and tumor growth inhibition of oral squamous cell carcinoma (OSCC) without any damage to the organs. Therefore, this work provides a remarkable drug delivery platform for local chemotherapy and other applications.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 PR China
| | - Cheng Tao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 PR China
| | - Jiexin Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 PR China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology Beijing 100029 PR China
| | - Yuan Le
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology Beijing 100029 PR China
| | - Jianjun Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 PR China
| |
Collapse
|
250
|
Young SA, Riahinezhad H, Amsden BG. In situ-forming, mechanically resilient hydrogels for cell delivery. J Mater Chem B 2019; 7:5742-5761. [PMID: 31531443 DOI: 10.1039/c9tb01398a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Injectable, in situ-forming hydrogels can improve cell delivery in tissue engineering applications by facilitating minimally invasive delivery to irregular defect sites and improving cell retention and survival. Tissues targeted for cell delivery often undergo diverse mechanical loading including high stress, high strain, and repetitive loading conditions. This review focuses on the development of hydrogel systems that meet the requirements of mechanical resiliency, cytocompatibility, and injectability for such applications. First, we describe the most important design considerations for maintaining the viability and function of encapsulated cells, for reproducing the target tissue morphology, and for achieving degradation profiles that facilitate tissue replacement. Models describing the relationships between hydrogel structure and mechanical properties are described, focusing on design principles necessary for producing mechanically resilient hydrogels. The advantages and limitations of current strategies for preparing cytocompatible, injectable, and mechanically resilient hydrogels are reviewed, including double networks, nanocomposites, and high molecular weight amphiphilic copolymer networks. Finally, challenges and opportunities are outlined to guide future research in this developing field.
Collapse
Affiliation(s)
- Stuart A Young
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| | - Hossein Riahinezhad
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| |
Collapse
|