201
|
Li Y, Li L, Hölscher C. Incretin-based therapy for type 2 diabetes mellitus is promising for treating neurodegenerative diseases. Rev Neurosci 2018; 27:689-711. [PMID: 27276528 DOI: 10.1515/revneuro-2016-0018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
Incretin hormones include glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Due to their promising action on insulinotropic secretion and improving insulin resistance (IR), incretin-based therapies have become a new class of antidiabetic agents for the treatment of type 2 diabetes mellitus (T2DM). Recently, the links between neurodegenerative diseases and T2DM have been identified in a number of studies, which suggested that shared mechanisms, such as insulin dysregulation or IR, may underlie these conditions. Therefore, the effects of incretins in neurodegenerative diseases have been extensively investigated. Protease-resistant long-lasting GLP-1 mimetics such as lixisenatide, liraglutide, and exenatide not only have demonstrated promising effects for treating neurodegenerative diseases in preclinical studies but also have shown first positive results in Alzheimer's disease (AD) and Parkinson's disease (PD) patients in clinical trials. Furthermore, the effects of other related incretin-based therapies such as GIP agonists, dipeptidyl peptidase-IV (DPP-IV) inhibitors, oxyntomodulin (OXM), dual GLP-1/GIP, and triple GLP-1/GIP/glucagon receptor agonists on neurodegenerative diseases have been tested in preclinical studies. Incretin-based therapies are a promising approach for treating neurodegenerative diseases.
Collapse
|
202
|
SMPL Synaptic Membranes: Nanodisc-Mediated Synaptic Membrane Mimetics Expand the Toolkit for Drug Discovery and the Molecular Cell Biology of Synapses. NEUROMETHODS 2018. [DOI: 10.1007/978-1-4939-8739-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
203
|
de Godoy MA, Saraiva LM, de Carvalho LRP, Vasconcelos-Dos-Santos A, Beiral HJV, Ramos AB, Silva LRDP, Leal RB, Monteiro VHS, Braga CV, de Araujo-Silva CA, Sinis LC, Bodart-Santos V, Kasai-Brunswick TH, Alcantara CDL, Lima APCA, da Cunha-E Silva NL, Galina A, Vieyra A, De Felice FG, Mendez-Otero R, Ferreira ST. Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. J Biol Chem 2017; 293:1957-1975. [PMID: 29284679 DOI: 10.1074/jbc.m117.807180] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a disabling and highly prevalent neurodegenerative condition, for which there are no effective therapies. Soluble oligomers of the amyloid-β peptide (AβOs) are thought to be proximal neurotoxins involved in early neuronal oxidative stress and synapse damage, ultimately leading to neurodegeneration and memory impairment in AD. The aim of the current study was to evaluate the neuroprotective potential of mesenchymal stem cells (MSCs) against the deleterious impact of AβOs on hippocampal neurons. To this end, we established transwell cocultures of rat hippocampal neurons and MSCs. We show that MSCs and MSC-derived extracellular vesicles protect neurons against AβO-induced oxidative stress and synapse damage, revealed by loss of pre- and postsynaptic markers. Protection by MSCs entails three complementary mechanisms: 1) internalization and degradation of AβOs; 2) release of extracellular vesicles containing active catalase; and 3) selective secretion of interleukin-6, interleukin-10, and vascular endothelial growth factor to the medium. Results support the notion that MSCs may represent a promising alternative for cell-based therapies in AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Renata B Leal
- From the Institute of Biophysics Carlos Chagas Filho
| | | | | | | | | | | | | | | | | | | | - Antonio Galina
- the Institute of Medical Biochemistry Leopoldo de Meis, and
| | - Adalberto Vieyra
- From the Institute of Biophysics Carlos Chagas Filho.,the National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | | | | | - Sergio T Ferreira
- From the Institute of Biophysics Carlos Chagas Filho, .,the Institute of Medical Biochemistry Leopoldo de Meis, and
| |
Collapse
|
204
|
Christopher L, Napolioni V, Khan RR, Han SS, Greicius MD. A variant in PPP4R3A protects against alzheimer-related metabolic decline. Ann Neurol 2017; 82:900-911. [PMID: 29130521 DOI: 10.1002/ana.25094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/18/2017] [Accepted: 11/05/2017] [Indexed: 11/05/2022]
Abstract
OBJECTIVES A reduction in glucose metabolism in the posterior cingulate cortex (PCC) predicts conversion to Alzheimer's disease (AD) and tracks disease progression, signifying its importance in AD. We aimed to use decline in PCC glucose metabolism as a proxy for the development and progression of AD to discover common genetic variants associated with disease vulnerability. METHODS We performed a genome-wide association study (GWAS) of decline in PCC fludeoxyglucose F 18 ([18 F] FDG) positron emission tomography measured in Alzheimer's Disease Neuroimaging Initiative participants (n = 606). We then performed follow-up analyses to assess the impact of significant single-nucleotide polymorphisms (SNPs) on disease risk and longitudinal cognitive performance in a large independent data set (n = 870). Last, we assessed whether significant SNP influence gene expression using two RNA sequencing data sets (n = 210 and n = 159). RESULTS We demonstrate a novel genome-wide significant association between rs2273647-T in the gene, PPP4R3A, and reduced [18 F] FDG decline (p = 4.44 × 10-8 ). In a follow-up analysis using an independent data set, we demonstrate a protective effect of this variant against risk of conversion to MCI or AD (p = 0.038) and against cognitive decline in individuals who develop dementia (p = 3.41 × 10-15 ). Furthermore, this variant is associated with altered gene expression in peripheral blood and altered PPPP4R3A transcript expression in temporal cortex, suggesting a role at the molecular level. INTERPRETATIONS PPP4R3A is a gene involved in AD risk and progression. Given the protective effect of this variant, PPP4R3A should be further investigated as a gene of interest in neurodegenerative diseases and as a potential target for AD therapies. Ann Neurol 2017;82:900-911.
Collapse
Affiliation(s)
- Leigh Christopher
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA
| | - Valerio Napolioni
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA
| | - Raiyan R Khan
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA
| | - Summer S Han
- Quantitative Sciences Unit, Stanford Center for Biomedical Research (BMIR), Neurosurgery and Medicine, Stanford University, Stanford, CA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA
| | | |
Collapse
|
205
|
Zolochevska O, Taglialatela G. Non-Demented Individuals with Alzheimer's Disease Neuropathology: Resistance to Cognitive Decline May Reveal New Treatment Strategies. Curr Pharm Des 2017; 22:4063-8. [PMID: 27189599 DOI: 10.2174/1381612822666160518142110] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/17/2016] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a terminal neurodegenerative disorder that is characterized by accumulation of amyloid plaques and neurofibrillary tangles in the central nervous system. However, certain individuals remain cognitively intact despite manifestation of substantial plaques and tangles consistent with what would be normally associated with fully symptomatic AD. Mechanisms that allow these subjects to escape dementia remain unresolved and understanding such protective biological processes could reveal novel targets for the development of effective treatments for AD. In this review article we discuss potential compensatory mechanisms that allow these individuals to remain cognitively intact despite the typical AD neuropathology.
Collapse
Affiliation(s)
- Olga Zolochevska
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, USA.
| | | |
Collapse
|
206
|
Wijesekara N, Gonçalves RA, De Felice FG, Fraser PE. Impaired peripheral glucose homeostasis and Alzheimer's disease. Neuropharmacology 2017; 136:172-181. [PMID: 29169962 DOI: 10.1016/j.neuropharm.2017.11.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/12/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Recent studies suggest that metabolic disturbances, particularly type 2 diabetes (T2D) increase the risk of cognitive decline and AD. AD is also a risk factor for T2D, and a growing body of evidence indicates that these diseases are connected both at clinical and molecular levels. In T2D, peripheral insulin resistance, hyperglycemia and eventually insulin deficiency develops, leading to an overall decline in tissue health. More recently, brain insulin resistance has been shown to be a key feature of AD that is linked to neuronal dysfunction and cognitive impairment. Furthermore, both AD and T2D are amyloidogenic diseases, with abnormal aggregation of amyloid-β peptide (Aβ) and islet amyloid polypeptide (IAPP) respectively contributing to cellular death and disease pathogenesis. Emerging data suggests that Aβ may have peripheral effects including its co-deposition in the pancreas. In this review, we discuss how peripheral effects of Aβ and metabolic disturbances may impact AD pathogenesis. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Nadeeja Wijesekara
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada.
| | - Rafaella Araujo Gonçalves
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, Toronto, Ontario, M5T 2S8, Canada; Department of Medical Biophysics, University of Toronto, Canada.
| |
Collapse
|
207
|
Kamei N. Nose-to-Brain Delivery of Peptide Drugs Enhanced by Coadministration of Cell-penetrating Peptides: Therapeutic Potential for Dementia. YAKUGAKU ZASSHI 2017; 137:1247-1253. [PMID: 28966266 DOI: 10.1248/yakushi.17-00138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent reports suggest that peptide drugs such as insulin have the potential to serve as therapeutics in neurodegenerative diseases such as Alzheimer's disease. However, the transport of these drugs to the therapeutic target, the brain, is significantly hindered by the blood-brain barrier (BBB). Intranasal administration appears to be an ideal solution for drug delivery to the brain, bypassing the BBB, however the entry of peptide drugs into neuronal and epithelial cells in the olfactory mucosa remains low. In this study, we therefore examined whether intranasal coadministration of cell-penetrating peptides (CPPs) could improve nose-to-brain drug transport. In both mice and rats, we found that direct transport of insulin into the brain was significantly facilitated when coadministered with amphipathic CPP penetratin, and eventually insulin reached the deeper regions of the brain such as the hippocampus. In the mouse line senescence-accelerated mouse prone-8 (SAMP8), spatial learning tests demonstrated that long-term intranasal coadministration of insulin with penetratin improved mild memory loss in the early stages of dementia. In contrast, the severe cognitive dysfunction in the aged SAMP8 mice was preserved despite intranasal coadministration of insulin with penetratin. The immunohistological examination of the hippocampus suggested that enhanced nose-to-brain delivery of insulin had a partial neuroprotective effect but unexpectedly increased amyloid β plaque deposition. In conclusion, intranasal coadministration of insulin with CPPs has the potential to serve as a therapeutic for mild cognitive dysfunction. To identify suitable pharmacotherapy for dementia with severe pathology, further studies of nose-to-brain delivery of molecularly appropriate biopharmaceuticals are necessary.
Collapse
Affiliation(s)
- Noriyasu Kamei
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
208
|
Vieira MNN, Lima-Filho RAS, De Felice FG. Connecting Alzheimer's disease to diabetes: Underlying mechanisms and potential therapeutic targets. Neuropharmacology 2017; 136:160-171. [PMID: 29129775 DOI: 10.1016/j.neuropharm.2017.11.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a risk factor for type 2 diabetes and vice versa, and a growing body of evidence indicates that these diseases are connected both at epidemiological, clinical and molecular levels. Recent studies have begun to reveal common pathogenic mechanisms shared by AD and type 2 diabetes. Impaired neuronal insulin signaling and endoplasmic reticulum (ER) stress are present in animal models of AD, similar to observations in peripheral tissue in T2D. These findings shed light into novel diabetes-related mechanisms leading to brain dysfunction in AD. Here, we review the literature on selected mechanisms shared between these diseases and discuss how the identification of such mechanisms may lead to novel therapeutic targets in AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Marcelo N N Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Ricardo A S Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
209
|
Mohamed A, Viveiros A, Williams K, Posse de Chaves E. Aβ inhibits SREBP-2 activation through Akt inhibition. J Lipid Res 2017; 59:1-13. [PMID: 29122977 PMCID: PMC5748492 DOI: 10.1194/jlr.m076703] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/21/2017] [Indexed: 12/20/2022] Open
Abstract
We previously demonstrated that oligomeric amyloid β42 (oAβ42) inhibits the mevalonate pathway impairing cholesterol synthesis and protein prenylation. Enzymes of the mevalonate pathway are regulated by the transcription factor SREBP-2. Here, we show that in several neuronal types challenged with oAβ42, SREBP-2 activation is reduced. Moreover, SREBP-2 activation is also decreased in the brain cortex of the Alzheimer's disease (AD) mouse model, TgCRND8, suggesting that SREBP-2 may be affected in vivo early in the disease. We demonstrate that oAβ42 does not affect enzymatic cleavage of SREBP-2 per se, but may impair SREBP-2 transport from the endoplasmic reticulum (ER) to the Golgi. Trafficking of SREBP-2 from the ER to the Golgi requires protein kinase B (Akt) activation. oAβ42 significantly reduces Akt phosphorylation and this decrease is responsible for the decline in SREBP-2 activation. Overexpression of constitutively active Akt prevents the effect of oAβ42 on SREBP-2 and the downstream inhibition of cholesterol synthesis and protein prenylation. Our work provides a novel mechanistic link between Aβ and the mevalonate pathway, which will impact the views on issues related to cholesterol, isoprenoids, and statins in AD. We also identify SREBP-2 as an indirect target of Akt in neurons, which may play a role in the cross-talk between AD and diabetes.
Collapse
Affiliation(s)
- Amany Mohamed
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anissa Viveiros
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kathleen Williams
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Elena Posse de Chaves
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
210
|
Byun MS, Kim HJ, Yi D, Choi HJ, Baek H, Lee JH, Choe YM, Sohn BK, Lee JY, Lee Y, Ko H, Kim YK, Lee YS, Sohn CH, Woo JI, Lee DY. Differential effects of blood insulin and HbA1c on cerebral amyloid burden and neurodegeneration in nondiabetic cognitively normal older adults. Neurobiol Aging 2017; 59:15-21. [DOI: 10.1016/j.neurobiolaging.2017.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023]
|
211
|
Neth BJ, Craft S. Insulin Resistance and Alzheimer's Disease: Bioenergetic Linkages. Front Aging Neurosci 2017; 9:345. [PMID: 29163128 PMCID: PMC5671587 DOI: 10.3389/fnagi.2017.00345] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a well-established feature of Alzheimer's disease (AD), evidenced by brain glucose hypometabolism that can be observed potentially decades prior to the development of AD symptoms. Furthermore, there is mounting support for an association between metabolic disease and the development of AD and related dementias. Individuals with insulin resistance, type 2 diabetes mellitus (T2D), hyperlipidemia, obesity, or other metabolic disease may have increased risk for the development of AD and similar conditions, such as vascular dementia. This association may in part be due to the systemic mitochondrial dysfunction that is common to these pathologies. Accumulating evidence suggests that mitochondrial dysfunction is a significant feature of AD and may play a fundamental role in its pathogenesis. In fact, aging itself presents a unique challenge due to inherent mitochondrial dysfunction and prevalence of chronic metabolic disease. Despite the progress made in understanding the pathogenesis of AD and in the development of potential therapies, at present we remain without a disease-modifying treatment. In this review, we will discuss insulin resistance as a contributing factor to the pathogenesis of AD, as well as the metabolic and bioenergetic disruptions linking insulin resistance and AD. We will also focus on potential neuroimaging tools for the study of the metabolic dysfunction commonly seen in AD with hopes of developing therapeutic and preventative targets.
Collapse
Affiliation(s)
- Bryan J Neth
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
212
|
Wang H, Sun X, Zhang N, Ji Z, Ma Z, Fu Q, Qu R, Ma S. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway. Physiol Behav 2017; 182:93-100. [PMID: 28988132 DOI: 10.1016/j.physbeh.2017.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 01/03/2023]
Abstract
Cognitive impairment has been recognized as a typical characteristic of neurodegenerative disease in diabetes mellitus (DM) and this cognitive dysfunction may be a risk factor for Alzheimer's disease (AD). Ferulic acid, a phenolic compound commonly found in a range of plants, has emerged various properties including anti-inflammatory and neuroprotective effects. In the present study, the protective activities and relevant mechanisms of ferulic acid were evaluated in diabetic rats with cognitive deficits, which were induced by a high-glucose-fat (HGF) diet and low dose of streptozotocin (STZ). It was observed that ferulic acid significantly increased body weight and decreased blood glucose levels. Meanwhile, ferulic acid could markedly ameliorate spatial memory of diabetic rats in Morris water maze (MWM) and decrease AD-like pathologic changes (Aβ deposition and Tau phosphorylation) in the hippocampus, which might be correlated with the inhibition of inflammatory cytokines release and reduction of protein tyrosine phosphatase 1B (PTP1B) expression. Moreover, the levels of brain insulin signal molecules p-IRS, p-Akt and p-GSK3β were also investigated. We found that ferulic acid administration restored the alterations in insulin signaling. In conclusion, ferulic acid exhibited beneficial effects on diabetes-induced cognition lesions, which was involved in the regulation of PTP1B and insulin signaling pathway. We suppose that PTP1B inhibition may represent a promising approach to correct abnormal signaling linked to diabetes-induced cognitive impairment.
Collapse
Affiliation(s)
- Hao Wang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceeutical University, 639, Longmian Road, Nanjing 211198, China
| | - Xiaoxu Sun
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceeutical University, 639, Longmian Road, Nanjing 211198, China
| | - Ning Zhang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceeutical University, 639, Longmian Road, Nanjing 211198, China
| | - Zhouye Ji
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceeutical University, 639, Longmian Road, Nanjing 211198, China
| | - Zhanqiang Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceeutical University, 639, Longmian Road, Nanjing 211198, China
| | - Qiang Fu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceeutical University, 639, Longmian Road, Nanjing 211198, China
| | - Rong Qu
- Department of Pharmacology of Traditional Chinese Medical Formulae, Nanjing University of Traditional Chinese Medicine, 138, Xianlin Road, Nanjing 210029, China
| | - Shiping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceeutical University, 639, Longmian Road, Nanjing 211198, China.
| |
Collapse
|
213
|
Bloom GS, Lazo JS, Norambuena A. Reduced brain insulin signaling: A seminal process in Alzheimer's disease pathogenesis. Neuropharmacology 2017; 136:192-195. [PMID: 28965829 DOI: 10.1016/j.neuropharm.2017.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 01/12/2023]
Abstract
The synaptic dysfunction and death of neurons that mediate memory and cognition account together for the behavioral symptoms of Alzheimer's disease (AD). Reduced insulin signaling in the brain is a hallmark of AD patients, even in the absence of systemic type 1 or type 2 diabetes, prompting some researchers to refer to AD as brain-specific, or type 3 diabetes. A key question that arises about this signature feature of AD is "how, if at all, does the brain's impaired ability to utilize insulin contribute to the behavioral deficits associated with AD?" The fact that type 2 diabetes is a risk factor for AD suggests a causative role for impaired insulin responsiveness in AD pathogenesis, but how that might occur at a detailed molecular level had been elusive. Here we review recent findings that mechanistically link soluble forms of amyloid-β (Aβ) and tau, the respective building blocks of the amyloid plaques and neurofibrillary tangles that accumulate in the brains of AD patients, with neuronal decline that is associated with poor insulin responsiveness and may begin long before AD symptoms become evident. We discuss how Aβ and tau work coordinately to deprive neurons of functionally accessible insulin receptors and dysregulate normal signaling by the protein kinase, mTOR. Finally, we suggest how newly gained knowledge about pathogenic signaling caused by reduced brain insulin signaling might be exploited for improved early detection and therapeutic intervention for AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- George S Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.
| | - John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA; Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Andrés Norambuena
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
214
|
Engin AB, Engin ED, Karakus R, Aral A, Gulbahar O, Engin A. N-Methyl-D aspartate receptor-mediated effect on glucose transporter-3 levels of high glucose exposed-SH-SY5Y dopaminergic neurons. Food Chem Toxicol 2017; 109:465-471. [PMID: 28951307 DOI: 10.1016/j.fct.2017.09.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 11/29/2022]
Abstract
High glucose and insulin lead to neuronal insulin resistance. Glucose transport into the neurons is achieved by regulatory induction of surface glucose transporter-3 (GLUT3) instead of the insulin. N-methyl-D aspartate (NMDA) receptor activity increases GLUT3 expression. This study explored whether an endogenous NMDA receptor antagonist, kynurenic acid (KynA) affects the neuronal cell viability at high glucose concentrations. SH-SY5Y neuroblastoma cells were exposed to 150-250 mg/dL glucose and 40 μU/mL insulin. In KynA and N-nitro-l-arginine methyl ester (L-NAME) supplemented cultures, oxidative stress, mitochondrial metabolic activity (MTT), nitric oxide as nitrite+nitrate (NOx) and GLUT3 were determined at the end of 24 and 48-h incubation periods. Viable cells were counted by trypan blue dye. High glucose-exposed SH-SY5Y cells showed two-times more GLUT3 expression at second 24-h period. While GLUT3-stimulated glucose transport and oxidative stress was increased, total mitochondrial metabolic activity was significantly reduced. Insulin supplementation to high glucose decreased NOx synthesis and GLUT3 levels, in contrast oxidative stress increased three-fold. KynA significantly reduced oxidative stress, and increased MTT by regulating NOx production and GLUT3 expression. KynA is a noteworthy compound, as an endogenous, specific NMDA receptor antagonist; it significantly reduces oxidative stress, while increasing cell viability at high glucose and insulin concentrations.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Hipodrom, Ankara, Turkey.
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Tandogan, Ankara, Turkey
| | - Resul Karakus
- Gazi University, Faculty of Medicine, Department of Immunology, Besevler, Ankara, Turkey
| | - Arzu Aral
- Gazi University, Faculty of Medicine, Department of Immunology, Besevler, Ankara, Turkey
| | - Ozlem Gulbahar
- Gazi University, Faculty of Medicine, Department of Biochemistry, Besevler, Ankara, Turkey
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Besevler, Ankara, Turkey
| |
Collapse
|
215
|
Sebollela A, Cline EN, Popova I, Luo K, Sun X, Ahn J, Barcelos MA, Bezerra VN, Lyra E Silva NM, Patel J, Pinheiro NR, Qin LA, Kamel JM, Weng A, DiNunno N, Bebenek AM, Velasco PT, Viola KL, Lacor PN, Ferreira ST, Klein WL. A human scFv antibody that targets and neutralizes high molecular weight pathogenic amyloid-β oligomers. J Neurochem 2017; 142:934-947. [PMID: 28670737 PMCID: PMC5752625 DOI: 10.1111/jnc.14118] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 12/21/2022]
Abstract
Brain accumulation of soluble oligomers of the amyloid-β peptide (AβOs) is increasingly considered a key early event in the pathogenesis of Alzheimer's disease (AD). A variety of AβO species have been identified, both in vitro and in vivo, ranging from dimers to 24mers and higher order oligomers. However, there is no consensus in the literature regarding which AβO species are most germane to AD pathogenesis. Antibodies capable of specifically recognizing defined subpopulations of AβOs would be a valuable asset in the identification, isolation, and characterization of AD-relevant AβO species. Here, we report the characterization of a human single chain antibody fragment (scFv) denoted NUsc1, one of a number of scFvs we have identified that stringently distinguish AβOs from both monomeric and fibrillar Aβ. NUsc1 readily detected AβOs previously bound to dendrites in cultured hippocampal neurons. In addition, NUsc1 blocked AβO binding and reduced AβO-induced neuronal oxidative stress and tau hyperphosphorylation in cultured neurons. NUsc1 further distinguished brain extracts from AD-transgenic mice from wild type (WT) mice, and detected endogenous AβOs in fixed AD brain tissue and AD brain extracts. Biochemical analyses indicated that NUsc1 targets a subpopulation of AβOs with apparent molecular mass greater than 50 kDa. Results indicate that NUsc1 targets a particular AβO species relevant to AD pathogenesis, and suggest that NUsc1 may constitute an effective tool for AD diagnostics and therapeutics.
Collapse
Affiliation(s)
- Adriano Sebollela
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Erika N Cline
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Izolda Popova
- Recombinant Protein Production Core (rPPC), Northwestern University, Evanston, Illinois, USA
| | - Kevin Luo
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Xiaoxia Sun
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Jay Ahn
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Milena A Barcelos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vanessa N Bezerra
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Natalia M Lyra E Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jason Patel
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Nathalia R Pinheiro
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lei A Qin
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Josette M Kamel
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Anthea Weng
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Nadia DiNunno
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Adrian M Bebenek
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
- Illinois Math and Science Academy, Aurora, Illinois, USA
| | - Pauline T Velasco
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Kirsten L Viola
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Pascale N Lacor
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - William L Klein
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
216
|
Pardeshi R, Bolshette N, Gadhave K, Ahire A, Ahmed S, Cassano T, Gupta VB, Lahkar M. Insulin signaling: An opportunistic target to minify the risk of Alzheimer's disease. Psychoneuroendocrinology 2017. [PMID: 28624654 DOI: 10.1016/j.psyneuen.2017.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is progressive neurodegenerative disorder characterized by accumulation of senile plaques, neurofibrillary tangles (NFT) and neurodegeneration. The diabetes mellitus (DM) is one of the risk factors for AD pathogenesis by impairment in insulin signaling and glucose metabolism in central as well as peripheral system. Insulin resistance, impaired glucose and lipid metabolism are leading to the Aβ (Aβ) aggregation, Tau phosphorylation, mitochondrial dysfunction, oxidative stress, protein misfolding, memory impairment and also mark over Aβ transport through central to peripheral and vice versa. Several pathways, like enzymatic degradation of Aβ, forkhead box protein O1 (FOXO) signaling, insulin signaling shared common pathological mechanism for both AD and DM. Recent evidence showed that hyperinsulinemia and hyperglycemia affect the onset and progression of AD differently. Some researchers have suggested that hyperglycemia influences vascular tone, while hyperinsulinemia may underlie mitochondrial deficit. The objective of this review is to determine whether existing evidence supports the concept that impairment in insulin signaling and glucose metabolism play an important role in pathogenesis of AD. In the first part of this review, we tried to explain the interconnecting link between AD and DM, whereas the second part includes more information on insulin resistance and its involvement in AD pathogenesis. In the final part of this review, we have focused more toward the AD treatment by targeting insulin signaling like anti-diabetic, antioxidant, nutraceuticals and dietary supplements. To date, more researches should be done in this field in order to explore the pathways in insulin signaling, which might ameliorate the treatment options and reduce the risk of AD due to DM.
Collapse
Affiliation(s)
- Rohit Pardeshi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Nityanand Bolshette
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Kundlik Gadhave
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Ashutosh Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Sahabuddin Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy
| | - Veer Bala Gupta
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith-Cowan University, Joondalup, WA 6027, Australia
| | - Mangala Lahkar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India; Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India; Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India.
| |
Collapse
|
217
|
Pitt J, Wilcox KC, Tortelli V, Diniz LP, Oliveira MS, Dobbins C, Yu XW, Nandamuri S, Gomes FCA, DiNunno N, Viola KL, De Felice FG, Ferreira ST, Klein WL. Neuroprotective astrocyte-derived insulin/insulin-like growth factor 1 stimulates endocytic processing and extracellular release of neuron-bound Aβ oligomers. Mol Biol Cell 2017; 28:2623-2636. [PMID: 28963439 PMCID: PMC5620371 DOI: 10.1091/mbc.e17-06-0416] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
Synaptopathy underlying memory deficits in Alzheimer's disease (AD) is increasingly thought to be instigated by toxic oligomers of the amyloid beta peptide (AβOs). Given the long latency and incomplete penetrance of AD dementia with respect to Aβ pathology, we hypothesized that factors present in the CNS may physiologically protect neurons from the deleterious impact of AβOs. Here we employed physically separated neuron-astrocyte cocultures to investigate potential non-cell autonomous neuroprotective factors influencing AβO toxicity. Neurons cultivated in the absence of an astrocyte feeder layer showed abundant AβO binding to dendritic processes and associated synapse deterioration. In contrast, neurons in the presence of astrocytes showed markedly reduced AβO binding and synaptopathy. Results identified the protective factors released by astrocytes as insulin and insulin-like growth factor-1 (IGF1). The protective mechanism involved release of newly bound AβOs into the extracellular medium dependent upon trafficking that was sensitive to exosome pathway inhibitors. Delaying insulin treatment led to AβO binding that was no longer releasable. The neuroprotective potential of astrocytes was itself sensitive to chronic AβO exposure, which reduced insulin/IGF1 expression. Our findings support the idea that physiological protection against synaptotoxic AβOs can be mediated by astrocyte-derived insulin/IGF1, but that this protection itself is vulnerable to AβO buildup.
Collapse
Affiliation(s)
- Jason Pitt
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Kyle C Wilcox
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Vanessa Tortelli
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil
| | - Luan Pereira Diniz
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil
| | - Maira S Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil
| | - Cassandra Dobbins
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Xiao-Wen Yu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Sathwik Nandamuri
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Flávia C A Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil
| | - Nadia DiNunno
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Kirsten L Viola
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil.,Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil
| | - William L Klein
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
218
|
The Effects of Peripheral and Central High Insulin on Brain Insulin Signaling and Amyloid-β in Young and Old APP/PS1 Mice. J Neurosci 2017; 36:11704-11715. [PMID: 27852778 DOI: 10.1523/jneurosci.2119-16.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/13/2016] [Accepted: 09/25/2016] [Indexed: 12/19/2022] Open
Abstract
Hyperinsulinemia is a risk factor for late-onset Alzheimer's disease (AD). In vitro experiments describe potential connections between insulin, insulin signaling, and amyloid-β (Aβ), but in vivo experiments are needed to validate these relationships under physiological conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake, behaving APPswe/PS1dE9 transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial fluid (ISF) and plasma Aβ compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently increased, but ISF Aβ was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma Aβ, whereas direct delivery of insulin to the hippocampus significantly increased tissue insulin and insulin signaling, with no effect on Aβ in old mice. These results suggest that the brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate Aβ in vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma Aβ in young and old mice, independent of neuronal insulin signaling. SIGNIFICANCE STATEMENT The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulinemia and AD. In vitro experiments have found direct connections between high insulin and extracellular Aβ, but these mechanisms presume that peripheral high insulin elevates brain insulin significantly. We found that physiological hyperinsulinemia in awake, behaving mice does not increase CNS insulin to an appreciable level yet modestly increases extracellular Aβ. We also found that the brain of aged APP/PS1 mice was not insulin resistant, contrary to the current state of the literature. These results further elucidate the relationship between insulin, the brain, and AD and its conflicting roles as both a risk factor and potential treatment.
Collapse
|
219
|
Li L. The Molecular Mechanism of Glucagon-Like Peptide-1 Therapy in Alzheimer's Disease, Based on a Mechanistic Target of Rapamycin Pathway. CNS Drugs 2017; 31:535-549. [PMID: 28540646 DOI: 10.1007/s40263-017-0431-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is an important molecule that connects aging, lifespan, energy balance, glucose and lipid metabolism, and neurodegeneration. Rapamycin exerts effects in numerous biological activities via its target protein, playing a key role in energy balance, regulation of autophagy, extension of lifespan, immunosuppression, and protection against neurodegeneration. There are many similar pathophysiological processes and molecular pathways between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM), and pharmacologic agents used to treat T2DM, including glucagon-like peptide-1 (GLP-1) analogs, seem to be beneficial for AD. mTOR mediates the effects of GLP-1 analogs in the treatment of T2DM; hence, I hypothesize that mTOR is a key molecule for mediating the protective effects of GLP-1 for AD.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
220
|
Wang H, Muiznieks LD, Ghosh P, Williams D, Solarski M, Fang A, Ruiz-Riquelme A, Pomès R, Watts JC, Chakrabartty A, Wille H, Sharpe S, Schmitt-Ulms G. Somatostatin binds to the human amyloid β peptide and favors the formation of distinct oligomers. eLife 2017. [PMID: 28650319 PMCID: PMC5505701 DOI: 10.7554/elife.28401] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The amyloid β peptide (Aβ) is a key player in the etiology of Alzheimer disease (AD), yet a systematic investigation of its molecular interactions has not been reported. Here we identified by quantitative mass spectrometry proteins in human brain extract that bind to oligomeric Aβ1-42 (oAβ1-42) and/or monomeric Aβ1-42 (mAβ1-42) baits. Remarkably, the cyclic neuroendocrine peptide somatostatin-14 (SST14) was observed to be the most selectively enriched oAβ1-42 binder. The binding interface comprises a central tryptophan within SST14 and the N-terminus of Aβ1-42. The presence of SST14 inhibited Aβ aggregation and masked the ability of several antibodies to detect Aβ. Notably, Aβ1-42, but not Aβ1-40, formed in the presence of SST14 oligomeric assemblies of 50 to 60 kDa that were visualized by gel electrophoresis, nanoparticle tracking analysis and electron microscopy. These findings may be relevant for Aβ-directed diagnostics and may signify a role of SST14 in the etiology of AD. DOI:http://dx.doi.org/10.7554/eLife.28401.001 Treating Alzheimer’s disease and related dementias is one of the major challenges currently facing healthcare providers worldwide. A hallmark of the disease is the formation of large deposits of a specific molecule, known as amyloid beta (Aβ), in the brain. However, more and more research suggests that smaller and particularly toxic amyloid beta clumps – often referred to as oligomeric Aβ – appear as an early sign of Alzheimer’s disease. To understand how the formation of these smaller amyloid beta clumps triggers other aspects of the disease, it is important to identify molecules in the human brain that oligomeric Aβ binds to. To this end, Wang et al. attached amyloid beta or oligomeric Aβ molecules to microscopically small beads. The beads were then exposed to human brain extracts in a test tube, which allowed molecules in the extracts to bind to the amyloid beta or oligomeric Aβ. The samples were then spun at high speed, meaning that the beads and any other molecules bound to them sunk and formed pellets at the bottom of the tubes. Each pellet was then analyzed to see which molecules it contained. The experiments identified more than a hundred human brain proteins that can bind to amyloid beta. One of them, known as somatostatin, selectively binds to oligomeric Aβ. Wang et al. were able to determine the structural features of somatostatin that control this binding. Finally, in further experiments performed in test tubes, Wang et al. noticed that smaller oligomeric Aβ clumps were more likely to form than larger amyloid beta deposits when somatostatin was present. This could signify a previously unrecognized role of somatostatin in the development of Alzheimer’s disease. Further studies are now needed to confirm whether the presence of somatostatin in the brain favors the formation of smaller, toxic oligomeric Aβ clumps over large innocuous amyloid beta deposits. If so, new treatments could be developed that aim to reduce oligomeric Aβ levels in the brain by preventing somatostatin from interacting with amyloid beta molecules. Wang et al. also suggest that somatostatin could be used in diagnostic tests to detect abnormal levels of oligomeric Aβ in the brain or body fluids of people who have Alzheimer’s disease. DOI:http://dx.doi.org/10.7554/eLife.28401.002
Collapse
Affiliation(s)
- Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Lisa D Muiznieks
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Punam Ghosh
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Michael Solarski
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Andrew Fang
- Department of Biochemistry, University of Alberta, Edmonton, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Alejandro Ruiz-Riquelme
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Régis Pomès
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Avi Chakrabartty
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Simon Sharpe
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
221
|
Astrocyte Transforming Growth Factor Beta 1 Protects Synapses against Aβ Oligomers in Alzheimer's Disease Model. J Neurosci 2017; 37:6797-6809. [PMID: 28607171 DOI: 10.1523/jneurosci.3351-16.2017] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/28/2017] [Accepted: 05/31/2017] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive decline, increasingly attributed to neuronal dysfunction induced by amyloid-β oligomers (AβOs). Although the impact of AβOs on neurons has been extensively studied, only recently have the possible effects of AβOs on astrocytes begun to be investigated. Given the key roles of astrocytes in synapse formation, plasticity, and function, we sought to investigate the impact of AβOs on astrocytes, and to determine whether this impact is related to the deleterious actions of AβOs on synapses. We found that AβOs interact with astrocytes, cause astrocyte activation and trigger abnormal generation of reactive oxygen species, which is accompanied by impairment of astrocyte neuroprotective potential in vitro We further show that both murine and human astrocyte conditioned media (CM) increase synapse density, reduce AβOs binding, and prevent AβO-induced synapse loss in cultured hippocampal neurons. Both a neutralizing anti-transforming growth factor-β1 (TGF-β1) antibody and siRNA-mediated knockdown of TGF-β1, previously identified as an important synaptogenic factor secreted by astrocytes, abrogated the protective action of astrocyte CM against AβO-induced synapse loss. Notably, TGF-β1 prevented hippocampal dendritic spine loss and memory impairment in mice that received an intracerebroventricular infusion of AβOs. Results suggest that astrocyte-derived TGF-β1 is part of an endogenous mechanism that protects synapses against AβOs. By demonstrating that AβOs decrease astrocyte ability to protect synapses, our results unravel a new mechanism underlying the synaptotoxic action of AβOs in AD.SIGNIFICANCE STATEMENT Alzheimer's disease is characterized by progressive cognitive decline, mainly attributed to synaptotoxicity of the amyloid-β oligomers (AβOs). Here, we investigated the impact of AβOs in astrocytes, a less known subject. We show that astrocytes prevent synapse loss induced by AβOs, via production of transforming growth factor-β1 (TGF-β1). We found that AβOs trigger morphological and functional alterations in astrocytes, and impair their neuroprotective potential. Notably, TGF-β1 reduced hippocampal dendritic spine loss and memory impairment in mice that received intracerebroventricular infusions of AβOs. Our results describe a new mechanism underlying the toxicity of AβOs and indicate novel therapeutic targets for Alzheimer's disease, mainly focused on TGF-β1 and astrocytes.
Collapse
|
222
|
Farzampour S, Majdi A, Sadigh-Eteghad S. Intranasal insulin treatment improves memory and learning in a rat amyloid-beta model of Alzheimer's disease. Physiol Int 2017; 103:344-353. [PMID: 28229638 DOI: 10.1556/2060.103.2016.3.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recently, insulin has been used as a pro-cognitive agent for the potential treatment of Alzheimer's disease (AD), because of its ability to cross the brain-blood barrier (BBB) by a saturable transport system. This study has been designed to evaluate the effects of intranasal insulin regimen, as a bypass system of BBB, on spatial memory in amyloid-beta (Aβ) model of AD in rat. Unilateral infusion of Aβ25-35 (10 nmol/2 µl/rat) into the lateral ventricular region of brain was used to produce a rat model of AD. After a 24-h recovery period, rats received insulin or vehicle via intraperitoneal or intranasal route (0.1, 0.2, and 0.3 IU) for 14 days. Memory function in rats was assessed by Morris water maze test, with 5 days of training and consequent probe test protocol. Different doses of intraperitoneal insulin did not have a significant effect on learning and memory in AD rats. However, intranasal insulin at doses of 0.2 and 0.3 IU improved the learning and memory in Aβ-received rats. In conclusion, intranasal insulin as a non-invasive strategy improves spatial learning and memory in AD model.
Collapse
Affiliation(s)
- S Farzampour
- 1 Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences , Tabriz, Iran
| | - A Majdi
- 1 Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences , Tabriz, Iran
| | - S Sadigh-Eteghad
- 1 Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences , Tabriz, Iran
| |
Collapse
|
223
|
Hippocampal insulin resistance and altered food decision-making as players on obesity risk. Neurosci Biobehav Rev 2017; 77:165-176. [DOI: 10.1016/j.neubiorev.2017.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 12/17/2022]
|
224
|
Mullins RJ, Diehl TC, Chia CW, Kapogiannis D. Insulin Resistance as a Link between Amyloid-Beta and Tau Pathologies in Alzheimer's Disease. Front Aging Neurosci 2017; 9:118. [PMID: 28515688 PMCID: PMC5413582 DOI: 10.3389/fnagi.2017.00118] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/11/2017] [Indexed: 12/19/2022] Open
Abstract
Current hypotheses and theories regarding the pathogenesis of Alzheimer’s disease (AD) heavily implicate brain insulin resistance (IR) as a key factor. Despite the many well-validated metrics for systemic IR, the absence of biomarkers for brain-specific IR represents a translational gap that has hindered its study in living humans. In our lab, we have been working to develop biomarkers that reflect the common mechanisms of brain IR and AD that may be used to follow their engagement by experimental treatments. We present two promising biomarkers for brain IR in AD: insulin cascade mediators probed in extracellular vesicles (EVs) enriched for neuronal origin, and two-dimensional magnetic resonance spectroscopy (MRS) measures of brain glucose. As further evidence for a fundamental link between brain IR and AD, we provide a novel analysis demonstrating the close spatial correlation between brain expression of genes implicated in IR (using Allen Human Brain Atlas data) and tau and beta-amyloid pathologies. We proceed to propose the bold hypotheses that baseline differences in the metabolic reliance on glycolysis, and the expression of glucose transporters (GLUT) and insulin signaling genes determine the vulnerability of different brain regions to Tau and/or Amyloid beta (Aβ) pathology, and that IR is a critical link between these two pathologies that define AD. Lastly, we provide an overview of ongoing clinical trials that target IR as an angle to treat AD, and suggest how biomarkers may be used to evaluate treatment efficacy and target engagement.
Collapse
Affiliation(s)
- Roger J Mullins
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| | - Thomas C Diehl
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| | - Chee W Chia
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| |
Collapse
|
225
|
Zilberter Y, Zilberter M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction. J Neurosci Res 2017; 95:2217-2235. [PMID: 28463438 DOI: 10.1002/jnr.24064] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022]
Abstract
Hypometabolism, characterized by decreased brain glucose consumption, is a common feature of many neurodegenerative diseases. Initial hypometabolic brain state, created by characteristic risk factors, may predispose the brain to acquired epilepsy and sporadic Alzheimer's and Parkinson's diseases, which are the focus of this review. Analysis of available data suggests that deficient glucose metabolism is likely a primary initiating factor for these diseases, and that resulting neuronal dysfunction further promotes the metabolic imbalance, establishing an effective positive feedback loop and a downward spiral of disease progression. Therefore, metabolic correction leading to the normalization of abnormalities in glucose metabolism may be an efficient tool to treat the neurological disorders by counteracting their primary pathological mechanisms. Published and preliminary experimental results on this approach for treating Alzheimer's disease and epilepsy models support the efficacy of metabolic correction, confirming the highly promising nature of the strategy. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California, 94158, USA
| |
Collapse
|
226
|
Fessel WJ. Concordance of Several Subcellular Interactions Initiates Alzheimer's Dementia: Their Reversal Requires Combination Treatment. Am J Alzheimers Dis Other Demen 2017; 32:166-181. [PMID: 28423937 PMCID: PMC10852791 DOI: 10.1177/1533317517698790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathogenesis of Alzheimer's disease involves multiple pathways that, at the macrolevel, include decreased proliferation plus increased loss affecting neurons, astrocytes, and capillaries and, at the subcellular level, involve several elements: amyloid/amyloid precursor protein, presenilins, the unfolded protein response, the ubiquitin/proteasome system, the Wnt/catenin system, the Notch signaling system, mitochondria, mitophagy, calcium, and tau. Data presented show the intimate, anatomical interactions between neurons, astrocytes, and capillaries; the interactions between the several subcellular factors affecting those cells; and the treatments that are currently available and that might correct dysfunctions in the subcellular factors. Available treatments include lithium, valproate, pioglitazone, erythropoietin, and prazosin. Since the subcellular pathogenesis involves multiple interacting elements, combination treatment would be more effective than administration of a single drug directed at only 1 element. The overall purpose of this presentation is to describe the pathogenesis in detail and to explain the proposed treatments.
Collapse
Affiliation(s)
- W. J. Fessel
- University of California, San Francisco, CA, USA
- Kaiser Permanente Medical Care Program, San Francisco, CA, USA
| |
Collapse
|
227
|
Diehl T, Mullins R, Kapogiannis D. Insulin resistance in Alzheimer's disease. Transl Res 2017; 183:26-40. [PMID: 28034760 PMCID: PMC5393926 DOI: 10.1016/j.trsl.2016.12.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022]
Abstract
The links between systemic insulin resistance (IR), brain-specific IR, and Alzheimer's disease (AD) have been an extremely productive area of current research. This review will cover the fundamentals and pathways leading to IR, its connection to AD via cellular mechanisms, the most prominent methods and models used to examine it, an introduction to the role of extracellular vesicles (EVs) as a source of biomarkers for IR and AD, and an overview of modern clinical studies on the subject. To provide additional context, we also present a novel analysis of the spatial correlation of gene expression in the brain with the aid of Allen Human Brain Atlas data. Ultimately, examining the relation between IR and AD can be seen as a means of advancing the understanding of both disease states, with IR being a promising target for therapeutic strategies in AD treatment. In conclusion, we highlight the therapeutic potential of targeting brain IR in AD and the main strategies to pursue this goal.
Collapse
Affiliation(s)
- Thomas Diehl
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD
| | - Roger Mullins
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD.
| |
Collapse
|
228
|
Li K, Wei Q, Liu FF, Hu F, Xie AJ, Zhu LQ, Liu D. Synaptic Dysfunction in Alzheimer's Disease: Aβ, Tau, and Epigenetic Alterations. Mol Neurobiol 2017; 55:3021-3032. [PMID: 28456942 DOI: 10.1007/s12035-017-0533-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/06/2017] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized in the early stages by loss of learning and memory. However, the mechanism underlying these symptoms remains unclear. The best correlation between cognitive decline and pathological changes is in synaptic dysfunction. Histopathological hallmarks of AD are the abnormal aggregation of Aβ and Tau. Evidence suggests that Aβ and Tau oligomers contribute to synaptic loss in AD. Recently, direct links between epigenetic alterations, such as dysfunction in non-coding RNAs (ncRNAs), and synaptic pathologies have emerged, raising interest in exploring the potential roles of ncRNAs in the synaptic deficits in AD. In this paper, we summarize the potential roles of Aβ, Tau, and epigenetic alterations (especially by ncRNAs) in the synaptic dysfunction of AD and discuss the novel findings in this area.
Collapse
Affiliation(s)
- Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qing Wei
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fang-Fang Liu
- Department of Pathology, Central Hospital of Wuhan, Wuhan, 430014, People's Republic of China
| | - Fan Hu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ao-Ji Xie
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Dan Liu
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
229
|
Overexpression of matrix metalloproteinase-9 (MMP-9) rescues insulin-mediated impairment in the 5XFAD model of Alzheimer's disease. Sci Rep 2017; 7:683. [PMID: 28386117 PMCID: PMC5429641 DOI: 10.1038/s41598-017-00794-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/13/2017] [Indexed: 12/30/2022] Open
Abstract
A hallmark of Alzheimer’s disease (AD) is the accumulation of oligomeric amyloid-β (Aβ) peptide, which may be primarily responsible for neuronal dysfunction. Insulin signaling provides a defense mechanism against oligomer-induced neuronal loss. We previously described the neuroprotective role of matrix metalloproteinase 9 (MMP-9) in decreasing the formation of Aβ oligomers. In the present study, we examined the role of MMP-9 on the insulin survival pathway in primary hippocampal cultures and hippocampal cell extracts from 3 month-old wild type, AD (5XFAD), MMP-9-overexpressing (TgMMP-9), and double transgenic mice (5XFAD/TgMMP-9). The data demonstrate that the insulin pathway was compromised in samples from 5XFAD mice, when compared to the wild type and TgMMP-9. This was due to enhanced phosphorylation of IRS1 at Serine 636 (pIRS1-Ser636), which renders IRS1 inactive and prevents insulin-mediated signaling. In 5XFAD/TgMMP-9 samples, the insulin survival pathway was rescued through enhanced activation by phosphorylation of IRS1 at Tyrosine 465 (pIRS1-Tyr465), downstream increased phosphorylation of Akt and GSK-3β, and decreased phosphorylation of JNK kinase. Oligomeric Aβ levels decreased and BDNF levels increased in 5XFAD/TgMMP-9 mice, compared to 5XFAD mice. Our findings indicate that overexpression of MMP-9 rescued insulin survival signaling in vitro and in early stages in the 5XFAD model of AD.
Collapse
|
230
|
Campos-Peña V, Toral-Rios D, Becerril-Pérez F, Sánchez-Torres C, Delgado-Namorado Y, Torres-Ossorio E, Franco-Bocanegra D, Carvajal K. Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: Is Aβ a Crucial Factor in Both Pathologies? Antioxid Redox Signal 2017; 26:542-560. [PMID: 27368351 DOI: 10.1089/ars.2016.6768] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Recently, chronic degenerative diseases have become one of the main health problems worldwide. That is the case of Alzheimer's disease (AD) and metabolic syndrome (MetS), whose expression can be influenced by different risk factors. Recent Advances: In recent decades, it has been widely described that MetS increases the risk of cognitive impairment and dementia. MetS pathogenesis involves several vascular risk factors such as diabetes, dyslipidemia, hypertension, and insulin resistance (I/R). CRITICAL ISSUES Reported evidence shows that vascular risk factors are associated with AD, particularly in the development of protein aggregation, inflammation, oxidative stress, neuronal dysfunction, and disturbances in signaling pathways, with insulin receptor signaling being a common alteration between MetS and AD. FUTURE DIRECTIONS Insulin signaling has been involved in tau phosphorylation and amyloid β (Aβ) metabolism. However, it has also been demonstrated that Aβ oligomers can bind to insulin receptors, triggering their internalization, decreasing neuron responsiveness to insulin, and promoting insulin I/R. Thus, it could be argued that Aβ could be a convergent factor in the development of both pathologies. Antioxid. Redox Signal. 26, 542-560.
Collapse
Affiliation(s)
| | - Danira Toral-Rios
- 2 Departamento de Fisiología Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City, Mexico
| | | | - Carmen Sánchez-Torres
- 4 Departamento of Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City, Mexico
| | | | - Elimar Torres-Ossorio
- 6 Facultad de Química, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | | | - Karla Carvajal
- 7 Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría , Mexico City, Mexico
| |
Collapse
|
231
|
Ochiai Y, Uchida Y, Ohtsuki S, Tachikawa M, Aizawa S, Terasaki T. The blood-brain barrier fatty acid transport protein 1 (FATP1/SLC27A1) supplies docosahexaenoic acid to the brain, and insulin facilitates transport. J Neurochem 2017; 141:400-412. [PMID: 28035674 DOI: 10.1111/jnc.13943] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 11/28/2022]
Abstract
We purposed to clarify the contribution of fatty acid transport protein 1 (FATP1/SLC 27A1) to the supply of docosahexaenoic acid (DHA) to the brain across the blood-brain barrier in this study. Transport experiments showed that the uptake rate of [14 C]-DHA in human FATP1-expressing HEK293 cells was significantly greater than that in empty vector-transfected (mock) HEK293 cells. The steady-state intracellular DHA concentration was nearly 2-fold smaller in FATP1-expressing than in mock cells, suggesting that FATP1 works as not only an influx, but also an efflux transporter for DHA. [14 C]-DHA uptake by a human cerebral microvascular endothelial cell line (hCMEC/D3) increased in a time-dependent manner, and was inhibited by unlabeled DHA and a known FATP1 substrate, oleic acid. Knock-down of FATP1 in hCMEC/D3 cells with specific siRNA showed that FATP1-mediated uptake accounts for 59.2-73.0% of total [14 C]-DHA uptake by the cells. Insulin treatment for 30 min induced translocation of FATP1 protein to the plasma membrane in hCMEC/D3 cells and enhanced [14 C]-DHA uptake. Immunohistochemical analysis of mouse brain sections showed that FATP1 protein is preferentially localized at the basal membrane of brain microvessel endothelial cells. We found that two neuroprotective substances, taurine and biotin, in addition to DHA, undergo FATP1-mediated efflux. Overall, our results suggest that FATP1 localized at the basal membrane of brain microvessels contributes to the transport of DHA, taurine and biotin into the brain, and insulin rapidly increases DHA supply to the brain by promoting translocation of FATP1 to the membrane. Read the Editorial Comment for this article on page 324.
Collapse
Affiliation(s)
- Yusuke Ochiai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Sumio Ohtsuki
- Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Japan Agency for Medical Research and Development (AMED) CREST, Tokyo, Japan
| | - Masanori Tachikawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Sanshiro Aizawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Tetsuya Terasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| |
Collapse
|
232
|
DiChiara T, DiNunno N, Clark J, Bu RL, Cline EN, Rollins MG, Gong Y, Brody DL, Sligar SG, Velasco PT, Viola KL, Klein WL. Alzheimer's Toxic Amyloid Beta Oligomers: Unwelcome Visitors to the Na/K ATPase alpha3 Docking Station. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:45-61. [PMID: 28356893 PMCID: PMC5369044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxic amyloid beta oligomers (AβOs) are known to accumulate in Alzheimer's disease (AD) and in animal models of AD. Their structure is heterogeneous, and they are found in both intracellular and extracellular milieu. When given to CNS cultures or injected ICV into non-human primates and other non-transgenic animals, AβOs have been found to cause impaired synaptic plasticity, loss of memory function, tau hyperphosphorylation and tangle formation, synapse elimination, oxidative and ER stress, inflammatory microglial activation, and selective nerve cell death. Memory loss and pathology in transgenic models are prevented by AβO antibodies, while Aducanumab, an antibody that targets AβOs as well as fibrillar Aβ, has provided cognitive benefit to humans in early clinical trials. AβOs have now been investigated in more than 3000 studies and are widely thought to be the major toxic form of Aβ. Although much has been learned about the downstream mechanisms of AβO action, a major gap concerns the earliest steps: How do AβOs initially interact with surface membranes to generate neuron-damaging transmembrane events? Findings from Ohnishi et al (PNAS 2005) combined with new results presented here are consistent with the hypothesis that AβOs act as neurotoxins because they attach to particular membrane protein docks containing Na/K ATPase-α3, where they inhibit ATPase activity and pathologically restructure dock composition and topology in a manner leading to excessive Ca++ build-up. Better understanding of the mechanism that makes attachment of AβOs to vulnerable neurons a neurotoxic phenomenon should open the door to therapeutics and diagnostics targeting the first step of a complex pathway that leads to neural damage and dementia.
Collapse
Affiliation(s)
- Thomas DiChiara
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Nadia DiNunno
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Jeffrey Clark
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Riana Lo Bu
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Erika N. Cline
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Madeline G. Rollins
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | | | - David L. Brody
- Department of Neurology, Washington University Medical School
| | - Stephen G. Sligar
- School of Molecular and Cell Biology, University of Illinois, Urbana-Champagne
| | - Pauline T. Velasco
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Kirsten L. Viola
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - William L. Klein
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University,Department of Neurology, Feinberg School of Medicine, Northwestern University,To whom all correspondence should be addressed: William L. Klein, Northwestern University, Dept. Neurobiology, 2205 Tech Drive, Evanston, IL 60208, ph: 847-491-5510, fax: 847-491-5211,
| |
Collapse
|
233
|
Seixas da Silva GS, Melo HM, Lourenco MV, Lyra E Silva NM, de Carvalho MB, Alves-Leon SV, de Souza JM, Klein WL, da-Silva WS, Ferreira ST, De Felice FG. Amyloid-β oligomers transiently inhibit AMP-activated kinase and cause metabolic defects in hippocampal neurons. J Biol Chem 2017; 292:7395-7406. [PMID: 28302722 DOI: 10.1074/jbc.m116.753525] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/15/2017] [Indexed: 11/06/2022] Open
Abstract
AMP-activated kinase (AMPK) is a key player in energy sensing and metabolic reprogramming under cellular energy restriction. Several studies have linked impaired AMPK function to peripheral metabolic diseases such as diabetes. However, the impact of neurological disorders, such as Alzheimer disease (AD), on AMPK function and downstream effects of altered AMPK activity on neuronal metabolism have been investigated only recently. Here, we report the impact of Aβ oligomers (AβOs), synaptotoxins that accumulate in AD brains, on neuronal AMPK activity. Short-term exposure of cultured rat hippocampal neurons or ex vivo human cortical slices to AβOs transiently decreased intracellular ATP levels and AMPK activity, as evaluated by its phosphorylation at threonine residue 172 (AMPK-Thr(P)172). The AβO-dependent reduction in AMPK-Thr(P)172 levels was mediated by glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype and resulted in removal of glucose transporters (GLUTs) from the surfaces of dendritic processes in hippocampal neurons. Importantly, insulin prevented the AβO-induced inhibition of AMPK. Our results establish a novel toxic impact of AβOs on neuronal metabolism and suggest that AβO-induced, NMDA receptor-mediated AMPK inhibition may play a key role in early brain metabolic defects in AD.
Collapse
Affiliation(s)
| | - Helen M Melo
- From the Institute of Medical Biochemistry Leopoldo de Meis and
| | - Mychael V Lourenco
- From the Institute of Medical Biochemistry Leopoldo de Meis and.,the Institute of Biophysics Carlos Chagas Filho
| | | | | | | | - Jorge M de Souza
- Neurosurgery, Clementino Fraga Filho Hospital, Federal University of Rio De Janeiro, Rio de Janeiro 21941-902, Brazil
| | - William L Klein
- the Department of Neurobiology, Northwestern University, Evanston, Illinois 60208-3520, and
| | | | - Sergio T Ferreira
- From the Institute of Medical Biochemistry Leopoldo de Meis and.,the Institute of Biophysics Carlos Chagas Filho
| | - Fernanda G De Felice
- From the Institute of Medical Biochemistry Leopoldo de Meis and .,the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
234
|
Brito-Moreira J, Lourenco MV, Oliveira MM, Ribeiro FC, Ledo JH, Diniz LP, Vital JFS, Magdesian MH, Melo HM, Barros-Aragão F, de Souza JM, Alves-Leon SV, Gomes FCA, Clarke JR, Figueiredo CP, De Felice FG, Ferreira ST. Interaction of amyloid-β (Aβ) oligomers with neurexin 2α and neuroligin 1 mediates synapse damage and memory loss in mice. J Biol Chem 2017; 292:7327-7337. [PMID: 28283575 DOI: 10.1074/jbc.m116.761189] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/26/2017] [Indexed: 11/06/2022] Open
Abstract
Brain accumulation of the amyloid-β protein (Aβ) and synapse loss are neuropathological hallmarks of Alzheimer disease (AD). Aβ oligomers (AβOs) are synaptotoxins that build up in the brains of patients and are thought to contribute to memory impairment in AD. Thus, identification of novel synaptic components that are targeted by AβOs may contribute to the elucidation of disease-relevant mechanisms. Trans-synaptic interactions between neurexins (Nrxs) and neuroligins (NLs) are essential for synapse structure, stability, and function, and reduced NL levels have been associated recently with AD. Here we investigated whether the interaction of AβOs with Nrxs or NLs mediates synapse damage and cognitive impairment in AD models. We found that AβOs interact with different isoforms of Nrx and NL, including Nrx2α and NL1. Anti-Nrx2α and anti-NL1 antibodies reduced AβO binding to hippocampal neurons and prevented AβO-induced neuronal oxidative stress and synapse loss. Anti-Nrx2α and anti-NL1 antibodies further blocked memory impairment induced by AβOs in mice. The results indicate that Nrx2α and NL1 are targets of AβOs and that prevention of this interaction reduces the deleterious impact of AβOs on synapses and cognition. Identification of Nrx2α and NL1 as synaptic components that interact with AβOs may pave the way for development of novel approaches aimed at halting synapse failure and cognitive loss in AD.
Collapse
Affiliation(s)
| | - Mychael V Lourenco
- From the Institute of Medical Biochemistry Leopoldo de Meis.,Institute of Biophysics Carlos Chagas Filho
| | - Mauricio M Oliveira
- From the Institute of Medical Biochemistry Leopoldo de Meis.,Institute of Biophysics Carlos Chagas Filho
| | - Felipe C Ribeiro
- From the Institute of Medical Biochemistry Leopoldo de Meis.,Institute of Biophysics Carlos Chagas Filho
| | | | | | | | | | - Helen M Melo
- From the Institute of Medical Biochemistry Leopoldo de Meis
| | | | - Jorge M de Souza
- Division of Neurosurgery and Division of Neurology/Epilepsy Program, Clementino Fraga Filho University Hospital, and
| | - Soniza V Alves-Leon
- Division of Neurosurgery and Division of Neurology/Epilepsy Program, Clementino Fraga Filho University Hospital, and
| | | | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil and
| | - Cláudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil and
| | - Fernanda G De Felice
- From the Institute of Medical Biochemistry Leopoldo de Meis.,the Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Sergio T Ferreira
- From the Institute of Medical Biochemistry Leopoldo de Meis, .,Institute of Biophysics Carlos Chagas Filho
| |
Collapse
|
235
|
Zhang Y, Song W. Islet amyloid polypeptide: Another key molecule in Alzheimer's pathogenesis? Prog Neurobiol 2017; 153:100-120. [PMID: 28274676 DOI: 10.1016/j.pneurobio.2017.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
Recent epidemiological evidence reveals that patients suffering from type 2 diabetes mellitus (T2DM) often experience a significant decline in cognitive function, and approximately 70% of those cases eventually develop Alzheimer's disease (AD). Although several pathological processes are shared by AD and T2DM, the exact molecular mechanisms connecting these two diseases are poorly understood. Aggregation of human islet amyloid polypeptide (hIAPP), the pathological hallmark of T2DM, has also been detected in brain tissue and is associated with cognitive decline and AD development. In addition, hIAPP and amyloid β protein (Aβ) share many biophysical and physiological properties as well as exert similar cytotoxic mechanisms. Therefore, it is important to examine the possible role of hIAPP in the pathogenesis of AD. In this article, we introduce the basics on this amyloidogenic protein. More importantly, we discuss the potential mechanisms of hIAPP-induced AD development, which will be beneficial for proposing novel and feasible strategies to optimize AD prevention and/or treatment in diabetics.
Collapse
Affiliation(s)
- Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
236
|
Rajasekar N, Nath C, Hanif K, Shukla R. Intranasal insulin improves cerebral blood flow, Nrf-2 expression and BDNF in STZ (ICV)-induced memory impaired rats. Life Sci 2017; 173:1-10. [DOI: 10.1016/j.lfs.2016.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/19/2016] [Accepted: 09/26/2016] [Indexed: 01/26/2023]
|
237
|
Hamed SA. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications. Expert Rev Clin Pharmacol 2017; 10:409-428. [PMID: 28276776 DOI: 10.1080/17512433.2017.1293521] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sherifa A. Hamed
- Department of Neurology and Psychiatry, Assiut University Hospital , Assiut, Egypt
| |
Collapse
|
238
|
Vieira MNN, Lyra E Silva NM, Ferreira ST, De Felice FG. Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer's Therapy? Front Aging Neurosci 2017; 9:7. [PMID: 28197094 PMCID: PMC5281585 DOI: 10.3389/fnagi.2017.00007] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/12/2017] [Indexed: 01/21/2023] Open
Abstract
Despite significant advances in current understanding of mechanisms of pathogenesis in Alzheimer's disease (AD), attempts at drug development based on those discoveries have failed to translate into effective, disease-modifying therapies. AD is a complex and multifactorial disease comprising a range of aberrant cellular/molecular processes taking part in different cell types and brain regions. As a consequence, therapeutics for AD should be able to block or compensate multiple abnormal pathological events. Here, we examine recent evidence that inhibition of protein tyrosine phosphatase 1B (PTP1B) may represent a promising strategy to combat a variety of AD-related detrimental processes. Besides its well described role as a negative regulator of insulin and leptin signaling, PTB1B recently emerged as a modulator of various other processes in the central nervous system (CNS) that are also implicated in AD. These include signaling pathways germane to learning and memory, regulation of synapse dynamics, endoplasmic reticulum (ER) stress and microglia-mediated neuroinflammation. We propose that PTP1B inhibition may represent an attractive and yet unexplored therapeutic approach to correct aberrant signaling pathways linked to AD.
Collapse
Affiliation(s)
- Marcelo N N Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de JaneiroRio de Janeiro, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Natalia M Lyra E Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de JaneiroRio de Janeiro, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de JaneiroRio de Janeiro, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's UniversityKingston, ON, Canada
| |
Collapse
|
239
|
Kamei N, Tanaka M, Choi H, Okada N, Ikeda T, Itokazu R, Takeda-Morishita M. Effect of an Enhanced Nose-to-Brain Delivery of Insulin on Mild and Progressive Memory Loss in the Senescence-Accelerated Mouse. Mol Pharm 2017; 14:916-927. [PMID: 28094952 DOI: 10.1021/acs.molpharmaceut.6b01134] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Insulin is now considered to be a new drug candidate for treating dementias, such as Alzheimer's disease, whose pathologies are linked to insulin resistance in the brain. Our recent work has clarified that a noncovalent strategy involving cell-penetrating peptides (CPPs) can increase the direct transport of insulin from the nasal cavity into the brain parenchyma. The present study aimed to determine whether the brain insulin level increased by intranasal coadministration of insulin with the CPP penetratin has potential for treating dementia. The pharmacological actions of insulin were investigated at different stages of memory impairment using a senescence-accelerated mouse-prone 8 (SAMP8) model. The results of spatial learning tests suggested that chronic intranasal administration of insulin with l-penetratin to SAMP8 slowed the progression of memory loss in the early stage of memory impairment. However, contrary to expectations, this strategy using penetratin was ineffective in recovering the severe cognitive dysfunction in the progressive stage, which involves brain accumulation of amyloid β (Aβ). Immunohistological examination of hippocampal regions of samples from SAMP8 in the progressive stage suggested that accelerated nose-to-brain insulin delivery had a partial neuroprotective function but unexpectedly increased Aβ plaque deposition in the hippocampus. These findings suggest that the efficient nose-to-brain delivery of insulin combined with noncovalent CPP strategy has different effects on dementia during the mild and progressive stages of cognitive dysfunction.
Collapse
Affiliation(s)
- Noriyasu Kamei
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University , 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Misa Tanaka
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University , 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Hayoung Choi
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University , 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Nobuyuki Okada
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University , 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Takamasa Ikeda
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University , 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Rei Itokazu
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University , 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Mariko Takeda-Morishita
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University , 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| |
Collapse
|
240
|
Wang P, Su C, Feng H, Chen X, Dong Y, Rao Y, Ren Y, Yang J, Shi J, Tian J, Jiang S. Curcumin regulates insulin pathways and glucose metabolism in the brains of APPswe/PS1dE9 mice. Int J Immunopathol Pharmacol 2017; 30:25-43. [PMID: 28124574 PMCID: PMC5806780 DOI: 10.1177/0394632016688025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recent studies have shown the therapeutic potential of curcumin in Alzheimer’s disease (AD). In 2014, our lab found that curcumin reduced Aβ40, Aβ42 and Aβ-derived diffusible ligands in the mouse hippocampus, and improved learning and memory. However, the mechanisms underlying this biological effect are only partially known. There is considerable evidence in brain metabolism studies indicating that AD might be a brain-specific type of diabetes with progressive impairment of glucose utilisation and insulin signalling. We hypothesised that curcumin might target both the glucose metabolism and insulin signalling pathways. In this study, we monitored brain glucose metabolism in living APPswe/PS1dE9 double transgenic mice using a micro-positron emission tomography (PET) technique. The study showed an improvement in cerebral glucose uptake in AD mice. For a more in-depth study, we used immunohistochemical (IHC) staining and western blot techniques to examine key factors in both glucose metabolism and brain insulin signalling pathways. The results showed that curcumin ameliorated the defective insulin signalling pathway by upregulating insulin-like growth factor (IGF)-1R, IRS-2, PI3K, p-PI3K, Akt and p-Akt protein expression while downregulating IR and IRS-1. Our study found that curcumin improved spatial learning and memory, at least in part, by increasing glucose metabolism and ameliorating the impaired insulin signalling pathways in the brain.
Collapse
Affiliation(s)
- Pengwen Wang
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,2 Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| | - Caixin Su
- 3 Department of Surgery (Neurosurgery, Neurobiology) and Hamilton NeuroRestorative Group, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Huili Feng
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,2 Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaopei Chen
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,4 Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, China
| | - Yunfang Dong
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,2 Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yingxue Rao
- 5 Mizumori Lab, Department of Psychology, University of Washington, Seattle, WA, USA
| | - Ying Ren
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,2 Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jinduo Yang
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,2 Key Laboratory of Pharmacology of Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jing Shi
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,6 Beijing University of Chinese Medicine, BUCM Neurology Center, Dongzhimen Hospital, Beijing, China
| | - Jinzhou Tian
- 1 Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,6 Beijing University of Chinese Medicine, BUCM Neurology Center, Dongzhimen Hospital, Beijing, China
| | - Shucui Jiang
- 3 Department of Surgery (Neurosurgery, Neurobiology) and Hamilton NeuroRestorative Group, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| |
Collapse
|
241
|
Cardoso S, Seiça R, Moreira PI. Diabesity and Brain Energy Metabolism: The Case of Alzheimer's Disease. ADVANCES IN NEUROBIOLOGY 2017; 19:117-150. [PMID: 28933063 DOI: 10.1007/978-3-319-63260-5_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
It is widely accepted that high calorie diets and a sedentary lifestyle sturdily influence the incidence and outcome of type 2 diabetes and obesity, which can occur simultaneously, a situation called diabesity. Tightly linked with metabolic and energy regulation, a close association between diabetes and Alzheimer's disease (AD) has been proposed. Among the common pathogenic mechanisms that underpin both conditions, insulin resistance, brain glucose hypometabolism, and metabolic dyshomeostasis appear to have a pivotal role. This century is an unprecedented diabetogenic period in human history, so therapeutic strategies and/or approaches to control and/or revert this evolving epidemic is of utmost importance. This chapter will make a brief contextualization about the impact that diabetes and obesity can exert in brain structure and function alongside with a brief survey about the role of insulin in normal brain function, exploring its roles in cognition and brain glucose metabolism. Later, attention will be given to the intricate relation of diabesity, insulin resistance, and AD. Finally, both pharmacological and lifestyle interventions will also be reviewed as strategies aimed at fighting diabesity and/or AD-related metabolic effects.
Collapse
Affiliation(s)
- Susana Cardoso
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Raquel Seiça
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
242
|
Takeda A, Tamano H. New Insight into Metallomics in Cognition. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
243
|
Pruzin JJ, Schneider JA, Capuano AW, Leurgans SE, Barnes LL, Ahima RS, Arnold SE, Bennett DA, Arvanitakis Z. Diabetes, Hemoglobin A1C, and Regional Alzheimer Disease and Infarct Pathology. Alzheimer Dis Assoc Disord 2017; 31:41-47. [PMID: 27755004 PMCID: PMC5321787 DOI: 10.1097/wad.0000000000000172] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We examined the relationship of diabetes and hemoglobin A1C (A1C) to 2 common causes of dementia. The study included 1228 subjects who underwent annual clinical evaluations and a brain autopsy at death, as part of a Rush longitudinal cohort study of aging. A total of 433 subjects had A1C data available. Neuropathologic evaluations documented the size and location of infarcts. Modified silver stain-based Alzheimer disease (AD) measures included global and regional scores. We used regression analyses to examine associations of diabetes and A1C with overall and regional neuropathology. Diabetes [odds ratio (OR)=0.94; 95% confidence interval (CI), 0.73-1.20) and A1C (OR=0.83; 95% CI, 0.62-1.10) were not associated with global AD pathology across the brain, nor with overall or individual measures of neuropathology in mesial temporal or neocortical regions separately (all P>0.05). Diabetes was associated with a higher odds of any infarct (OR=1.43; 95% CI, 1.07-1.90), and particularly with gross (OR=1.53; 95% CI, 1.14-2.06) but not microinfarcts (P=0.06), and subcortical (OR=1.79; 95% CI, 1.34-2.39) but not cortical infarcts (P=0.83). In summary, we found no relationship of diabetes or A1C with global or regional AD pathology, including in the mesial temporal lobe. Diabetes is associated with gross subcortical infarcts. Our results suggest that the diabetes-dementia link is based on subcortical vascular pathology and not on regional AD pathology.
Collapse
Affiliation(s)
- Jeremy J Pruzin
- *Rush Alzheimer's Disease Center Departments of †Neurological Sciences ‡Pathology §Behavioral Sciences, Rush University Medical Center, Chicago, IL ∥Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD ¶Department of Neurology, Harvard Medical School, Interdisciplinary Brain Center, Massachusetts General Hospital, Boston, MA
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Gralle M. The neuronal insulin receptor in its environment. J Neurochem 2016; 140:359-367. [PMID: 27889917 DOI: 10.1111/jnc.13909] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 01/01/2023]
Abstract
Insulin is known mainly for its effects in peripheral tissues, such as the liver, skeletal muscles and adipose tissue, where the activation of the insulin receptor (IR) has both short-term and long-term effects. Insulin and the IR are also present in the brain, and since there is evidence that neuronal insulin signaling regulates synaptic plasticity and that it is impaired in disease, this pathway might be the key to protection or reversal of symptoms, especially in Alzheimer's disease. However, there are controversies about the importance of the neuronal IR, partly because biophysical data on its activation and signaling are much less complete than for the peripheral IR. This review briefly summarizes the neuronal IR signaling in health and disease, and then focuses on known differences between the neuronal and peripheral IR with regard to alternative splicing and glycosylation, and lack of data with respect to phosphorylation and membrane subdomain localization. Particularities in the neuronal IR itself and its environment may have consequences for downstream signaling and impact synaptic plasticity. Furthermore, establishing the relative importance of insulin signaling through IR or through hybrids with its homolog, the insulin-like growth factor 1 receptor, is crucial for evaluating the consequences of brain IR activation. An improved biophysical understanding of the neuronal IR may help predict the consequences of insulin-targeted interventions.
Collapse
Affiliation(s)
- Matthias Gralle
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
245
|
Ribe EM, Lovestone S. Insulin signalling in Alzheimer's disease and diabetes: from epidemiology to molecular links. J Intern Med 2016; 280:430-442. [PMID: 27739227 DOI: 10.1111/joim.12534] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As populations across the world both age and become more obese, the numbers of individuals with Alzheimer's disease and diabetes are increasing; posing enormous challenges for society and consequently becoming priorities for governments and global organizations. These issues, an ageing population at risk of neurodegenerative diseases such as Alzheimer's disease and an increasingly obese population at risk of metabolic alterations such as type 2 diabetes, are usually considered as independent conditions, but increasing evidence from both epidemiological and molecular studies link these disorders. The aim of this review was to highlight these multifactorial links. We will discuss the impact of direct links between insulin and IGF-1 signalling and the Alzheimer's disease-associated pathological events as well as the impact of other processes such as inflammation, oxidative stress and mitochondrial dysfunction either common to both conditions or perhaps responsible for a mechanistic link between metabolic and neurodegenerative disease. An understanding of such associations might be of importance not only in the understanding of disease mechanisms but also in the search for novel therapeutic options.
Collapse
Affiliation(s)
- E M Ribe
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - S Lovestone
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
246
|
Cholerton B, Baker LD, Montine TJ, Craft S. Type 2 Diabetes, Cognition, and Dementia in Older Adults: Toward a Precision Health Approach. Diabetes Spectr 2016; 29:210-219. [PMID: 27899872 PMCID: PMC5111529 DOI: 10.2337/ds16-0041] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IN BRIEF There has been a concurrent dramatic rise in type 2 diabetes and dementia in the United States, and type 2 diabetes shares common genetic and environmental risk factors and underlying pathology with both vascular and Alzheimer's dementias. Given the ability to identify this at-risk population and a variety of potential targeted treatments, type 2 diabetes represents a promising focus for a precision health approach to reduce the impact of cognitive decline and dementia in older adults.
Collapse
Affiliation(s)
| | - Laura D. Baker
- Sticht Center on Aging, Department of Internal Medicine, Wake Forest University, Winston-Salem, NC
| | | | - Suzanne Craft
- Sticht Center on Aging, Department of Internal Medicine, Wake Forest University, Winston-Salem, NC
| |
Collapse
|
247
|
Rosenberger AFN, Hilhorst R, Coart E, García Barrado L, Naji F, Rozemuller AJM, van der Flier WM, Scheltens P, Hoozemans JJM, van der Vies SM. Protein Kinase Activity Decreases with Higher Braak Stages of Alzheimer's Disease Pathology. J Alzheimers Dis 2016; 49:927-43. [PMID: 26519433 PMCID: PMC4927853 DOI: 10.3233/jad-150429] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer’s disease (AD) is characterized by a long pre-clinical phase (20–30 years), during which significant brain pathology manifests itself. Disease mechanisms associated with pathological hallmarks remain elusive. Most processes associated with AD pathogenesis, such as inflammation, synaptic dysfunction, and hyper-phosphorylation of tau are dependent on protein kinase activity. The objective of this study was to determine the involvement of protein kinases in AD pathogenesis. Protein kinase activity was determined in postmortem hippocampal brain tissue of 60 patients at various stages of AD and 40 non-demented controls (Braak stages 0-VI) using a peptide-based microarray platform. We observed an overall decrease of protein kinase activity that correlated with disease progression. The phosphorylation of 96.7% of the serine/threonine peptides and 37.5% of the tyrosine peptides on the microarray decreased significantly with increased Braak stage (p-value <0.01). Decreased activity was evident at pre-clinical stages of AD pathology (Braak I-II). Increased phosphorylation was not observed for any peptide. STRING analysis in combination with pathway analysis and identification of kinases responsible for peptide phosphorylation showed the interactions between well-known proteins in AD pathology, including the Ephrin-receptor A1 (EphA1), a risk gene for AD, and sarcoma tyrosine kinase (Src), which is involved in memory formation. Additionally, kinases that have not previously been associated with AD were identified, e.g., protein tyrosine kinase 6 (PTK6/BRK), feline sarcoma oncogene kinase (FES), and fyn-associated tyrosine kinase (FRK). The identified protein kinases are new biomarkers and potential drug targets for early (pre-clinical) intervention.
Collapse
Affiliation(s)
- Andrea F N Rosenberger
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Riet Hilhorst
- PamGene International BV, 's-Hertogenbosch, The Netherlands
| | - Elisabeth Coart
- International Drug Development Institute, Louvain-la-Neuve, Belgium
| | | | - Faris Naji
- PamGene International BV, 's-Hertogenbosch, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Saskia M van der Vies
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
248
|
Tramutola A, Arena A, Cini C, Butterfield DA, Barone E. Modulation of GLP-1 signaling as a novel therapeutic approach in the treatment of Alzheimer’s disease pathology. Expert Rev Neurother 2016; 17:59-75. [PMID: 27715341 DOI: 10.1080/14737175.2017.1246183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - Andrea Arena
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - Chiara Cini
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Eugenio Barone
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
- Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de Salud, Santiago, Chile
| |
Collapse
|
249
|
Tramutola A, Lanzillotta C, Di Domenico F. Targeting mTOR to reduce Alzheimer-related cognitive decline: from current hits to future therapies. Expert Rev Neurother 2016; 17:33-45. [PMID: 27690737 DOI: 10.1080/14737175.2017.1244482] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The mTOR pathway is involved in the regulation of a wide repertoire of cellular functions in the brain and its dysregulation is emerging as a leitmotif in a large number of neurological disorders. In AD, altered mTOR signaling contributes to the inhibition of autophagy deposition of Aβ and tau aggregates and to the alteration of several neuronal metabolic pathways. Areas covered: In this review, we report all the current findings on the use of mTOR inhibitors (rapamycin, rapalogues) in the treatment of AD. These results support the role of mTOR inhibitors as potential therapeutic agents able to reduce AD hallmarks and recover cognitive performances. Expert commentary: Despite mTOR inhibitors appearing to be ideal compounds to counteract AD, further studies are needed in order to gain knowledge on the involvement of aberrant mTOR in AD, and to standardize a valuable therapeutic approach that can be translated to humans.
Collapse
Affiliation(s)
- Antonella Tramutola
- a Department of Biochemical Sciences , Sapienza University of Rome , Rome , Italy
| | - Chiara Lanzillotta
- a Department of Biochemical Sciences , Sapienza University of Rome , Rome , Italy
| | - Fabio Di Domenico
- a Department of Biochemical Sciences , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
250
|
Rajasekar N, Nath C, Hanif K, Shukla R. Intranasal Insulin Administration Ameliorates Streptozotocin (ICV)-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Memory Impairment in Rats. Mol Neurobiol 2016; 54:6507-6522. [PMID: 27730514 DOI: 10.1007/s12035-016-0169-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is associated with reduced insulin level and impairment of insulin receptor (IR) signaling in the brain, which correlates to amyloid pathology, neuroinflammation, and synaptic neurotoxicity. Clinical studies show that intranasal insulin improves memory in AD patients without peripheral hypoglycemia. However, neuroprotective molecular mechanism of the beneficial effect of intranasal insulin in AD pathology is unexplored. Therefore, we investigated the role of intranasal insulin on intracerebroventricular (ICV) streptozotocin (STZ)-induced memory impairment in rats as evaluated in the Morris water maze test. STZ (ICV) treated rats had shown memory impairment along with a significant decrease in IR signaling molecules (IR, pIRS-1, pAkt, and pGSK-3α/β expression) and IDE expression in both hippocampus and cerebral cortex. Intranasal insulin delivery prevented these changes. Moreover, intranasal insulin was found to inhibit significantly glial cell activation (GFAP and Iba-1 expression), neuroinflammation (COX-2 expression, NFκB translocation, TNF-α, and IL-10 level) and amyloidogenic protein expression (BACE-1 and Aβ1-42 expression) in STZ (ICV)-injected rats. STZ (ICV)-induced caspase activation and postsynaptic neurotoxicity were also prevented by treatment with intranasal insulin. Our findings reveal that insulin has the neuroprotective effect and clearly signifies the potential use of intranasal insulin delivery for the treatment of AD. Graphical Abstract Neuroprotective effects of intranasal insulin administration on streptozotocin (ICV)-induced memory impairment in rats.
Collapse
Affiliation(s)
- N Rajasekar
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Chandishwar Nath
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Kashif Hanif
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Rakesh Shukla
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India.
| |
Collapse
|