201
|
Affiliation(s)
- Xinghui Sun
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mark W Feinberg
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
202
|
Horie T, Nishino T, Baba O, Kuwabara Y, Nakao T, Nishiga M, Usami S, Izuhara M, Nakazeki F, Ide Y, Koyama S, Sowa N, Yahagi N, Shimano H, Nakamura T, Hasegawa K, Kume N, Yokode M, Kita T, Kimura T, Ono K. MicroRNA-33b knock-in mice for an intron of sterol regulatory element-binding factor 1 (Srebf1) exhibit reduced HDL-C in vivo. Sci Rep 2014; 4:5312. [PMID: 24931346 PMCID: PMC4058878 DOI: 10.1038/srep05312] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/30/2014] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRs) are small non-protein-coding RNAs that bind to specific mRNAs and inhibit translation or promote mRNA degradation. Recent reports, including ours, indicated that miR-33a located within the intron of sterol regulatory element-binding protein (SREBP) 2 controls cholesterol homeostasis and can be a possible therapeutic target for treating atherosclerosis. Primates, but not rodents, express miR-33b from an intron of SREBF1. Therefore, humanized mice, in which a miR-33b transgene is inserted within a Srebf1 intron, are required to address its function in vivo. We successfully established miR-33b knock-in (KI) mice and found that protein levels of known miR-33a target genes, such as ABCA1, ABCG1, and SREBP-1, were reduced compared with those in wild-type mice. As a consequence, macrophages from the miR-33b KI mice had a reduced cholesterol efflux capacity via apoA-I and HDL-C. Moreover, HDL-C levels were reduced by almost 35% even in miR-33b KI hetero mice compared with the control mice. These results indicate that miR-33b may account for lower HDL-C levels in humans than those in mice and that miR-33b is possibly utilized for a feedback mechanism to regulate its host gene SREBF1. Our mice will also aid in elucidating the roles of miR-33a/b in different genetic disease models.
Collapse
Affiliation(s)
- Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- These authors contributed equally to this work
| | - Tomohiro Nishino
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- These authors contributed equally to this work
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhide Kuwabara
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Tetsushi Nakao
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masataka Nishiga
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shunsuke Usami
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masayasu Izuhara
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Fumiko Nakazeki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuya Ide
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Satoshi Koyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Naoya Sowa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Naoya Yahagi
- Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, Nutrigenomics Research Group, Faculty of Medicine, and International Institute for Integrative Sleep Medicine (IIIS), World Premir International Research Center Initiative (WPI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, Nutrigenomics Research Group, Faculty of Medicine, and International Institute for Integrative Sleep Medicine (IIIS), World Premir International Research Center Initiative (WPI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tomoyuki Nakamura
- Department of Pharmacology, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan
| | - Koji Hasegawa
- Division of Translational Research, National Hospital Organization, Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Noriaki Kume
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | - Masayuki Yokode
- Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Toru Kita
- Department of Cardiovascular Medicine, Kobe City Medical Center General Hospital, Kobe 650-0046, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
203
|
Abstract
Low plasma levels of HDL-cholesterol (HDL-C) represent a strong and independent risk factor for cardiovascular disease. HDL particles display a wide spectrum of atheroprotective activities, which include effluxing cellular cholesterol, diminishing cellular death, decreasing vascular constriction, reducing inflammatory response, protecting from pathological oxidation, combating bacterial infection, lessening platelet activation, regulating gene expression by virtue of microRNAs, and improving glucose metabolism. It remains presently indeterminate as to whether some biological activities of HDL are more relevant for the protection of the endothelium from atherogenesis when compared with others. The multitude of such activities raises the question of a proper assay to assess HDL functionality ex vivo. Together with clear understanding of molecular mechanisms underlying atheroprotective properties of HDL, such assay will provide a basis to resolve the ultimate question of the HDL field to allow the development of efficient HDL-targeting therapies.
Collapse
Affiliation(s)
- Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6, Pitié - Salpétrière University Hospital, ICAN, 75651 Paris Cedex 13, France
| |
Collapse
|
204
|
Canfrán-Duque A, Ramírez CM, Goedeke L, Lin CS, Fernández-Hernando C. microRNAs and HDL life cycle. Cardiovasc Res 2014; 103:414-22. [PMID: 24895349 DOI: 10.1093/cvr/cvu140] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
miRNAs have emerged as important regulators of lipoprotein metabolism. Work over the past few years has demonstrated that miRNAs control the expression of most of the genes associated with high-density lipoprotein (HDL) metabolism, including the ATP transporters, ABCA1 and ABCG1, and the scavenger receptor SRB1. These findings strongly suggest that miRNAs regulate HDL biogenesis, cellular cholesterol efflux, and HDL cholesterol (HDL-C) uptake in the liver, thereby controlling all of the steps of reverse cholesterol transport. Recent work in animal models has demonstrated that manipulating miRNA levels including miR-33 can increase circulating HDL-C. Importantly, antagonizing miR-33 in vivo enhances the regression and reduces the progression of atherosclerosis. These findings support the idea of developing miRNA inhibitors for the treatment of dyslipidaemia and related cardiovascular disorders such as atherosclerosis. This review article focuses on how HDL metabolism is regulated by miRNAs and how antagonizing miRNA expression could be a potential therapy for treating cardiometabolic diseases.
Collapse
Affiliation(s)
- Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Cristina M Ramírez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chen-Kung Rd., Neihu 114, Taipei, Taiwan
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, Amistad Research Building, Room 337C, New Haven 06510, CT, USA Integrative Cell Signalling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
205
|
Barylski M, Toth PP, Nikolic D, Banach M, Rizzo M, Montalto G. Emerging therapies for raising high-density lipoprotein cholesterol (HDL-C) and augmenting HDL particle functionality. Best Pract Res Clin Endocrinol Metab 2014; 28:453-61. [PMID: 24840270 DOI: 10.1016/j.beem.2013.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
High-density lipoprotein (HDL) particles are highly complex polymolecular aggregates capable of performing a remarkable range of atheroprotective functions. Considerable research is being performed throughout the world to develop novel pharmacologic approaches to: (1) promote apoprotein A-I and HDL particle biosynthesis; (2) augment capacity for reverse cholesterol transport so as to reduce risk for the development and progression of atherosclerotic disease; and (3) modulate the functionality of HDL particles in order to increase their capacity to antagonize oxidation, inflammation, thrombosis, endothelial dysfunction, insulin resistance, and other processes that participate in arterial wall injury. HDL metabolism and the molecular constitution of HDL particles are highly complex and can change in response to both acute and chronic alterations in the metabolic milieu. To date, some of these interventions have been shown to positively impact rates of coronary artery disease progression. However, none of them have as yet been shown to significantly reduce risk for cardiovascular events. In the next 3-5 years a variety of pharmacologic interventions for modulating HDL metabolism and functionality will be tested in large, randomized, prospective outcomes trials. It is hoped that one or more of these therapeutic approaches will result in the ability to further reduce risk for cardiovascular events once low-density lipoprotein cholesterol and non-HDL-cholesterol targets have been attained.
Collapse
Affiliation(s)
- Marcin Barylski
- Department of Internal Medicine and Cardiological Rehabilitation, Medical University of Lodz, Lodz, Poland.
| | - Peter P Toth
- CGH Medical Center, Sterling, IL 61081, USA; University of Illinois School of Medicine, Peoria, IL, USA.
| | - Dragana Nikolic
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
| | - Maciej Banach
- Nephrology and Hypertension, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland.
| | - Manfredi Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
| |
Collapse
|
206
|
Takeshita Y, Takamura T, Honda M, Kita Y, Zen Y, Kato KI, Misu H, Ota T, Nakamura M, Yamada K, Sunagozaka H, Arai K, Yamashita T, Mizukoshi E, Kaneko S. The effects of ezetimibe on non-alcoholic fatty liver disease and glucose metabolism: a randomised controlled trial. Diabetologia 2014; 57:878-90. [PMID: 24407920 DOI: 10.1007/s00125-013-3149-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/15/2013] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS The cholesterol absorption inhibitor ezetimibe has been shown to ameliorate non-alcoholic fatty liver disease (NAFLD) pathology in a single-armed clinical study and in experimental animal models. In this study, we investigated the efficacy of ezetimibe on NAFLD pathology in an open-label randomised controlled clinical trial. METHODS We had planned to enrol 80 patients in the trial, as we had estimated that, with this sample size, the study would have 90% power. The study intervention and enrolment were discontinued because of the higher proportion of adverse events (significant elevation in HbA(1c)) in the ezetimibe group than in the control group. Thirty-two patients with NAFLD were enrolled and randomised (allocation by computer program). Ezetimibe (10 mg/day) was given to 17 patients with NAFLD for 6 months. The primary endpoint was change in serum aminotransferase level. Secondary outcomes were change in liver histology (12 control and 16 ezetimibe patients), insulin sensitivity including a hyperinsulinaemic-euglycaemic clamp study (ten control and 13 ezetimibe patients) and hepatic fatty acid composition (six control and nine ezetimibe patients). Hepatic gene expression profiling was completed in 15 patients using an Affymetrix gene chip. Patients and the physician in charge knew to which group the patient had been allocated, but people carrying out measurements or examinations were blinded to group. RESULTS Serum total cholesterol was significantly decreased in the ezetimibe group. The fibrosis stage and ballooning score were also significantly improved with ezetimibe treatment. However, ezetimibe treatment significantly increased HbA1c and was associated with a significant increase in hepatic long-chain fatty acids. Hepatic gene expression analysis showed coordinate downregulation of genes involved in skeletal muscle development and cell adhesion molecules in the ezetimibe treatment group, suggesting a suppression of stellate cell development into myofibroblasts. Genes involved in the L-carnitine pathway were coordinately downregulated by ezetimibe treatment and those in the steroid metabolism pathway upregulated, suggestive of impaired oxidation of long-chain fatty acids. CONCLUSIONS/INTERPRETATION Ezetimibe improved hepatic fibrosis but increased hepatic long-chain fatty acids and HbA1c in patients with NAFLD. These findings shed light on previously unrecognised actions of ezetimibe that should be examined further in future studies. TRIAL REGISTRATION University Hospital Medical Information Network (UMIN) Clinical Trials Registry UMIN000005250. FUNDING The study was funded by grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and research grants from MSD.
Collapse
Affiliation(s)
- Yumie Takeshita
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Allen RM, Marquart TJ, Jesse JJ, Baldán A. Control of very low-density lipoprotein secretion by N-ethylmaleimide-sensitive factor and miR-33. Circ Res 2014; 115:10-22. [PMID: 24753547 DOI: 10.1161/circresaha.115.303100] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Several reports suggest that antisense oligonucleotides against miR-33 might reduce cardiovascular risk in patients by accelerating the reverse cholesterol transport pathway. However, conflicting reports exist about the impact of anti-miR-33 therapy on the levels of very low-density lipoprotein-triglycerides (VLDL-TAG). OBJECTIVE We test the hypothesis that miR-33 controls hepatic VLDL-TAG secretion. METHODS AND RESULTS Using therapeutic silencing of miR-33 and adenoviral overexpression of miR-33, we show that miR-33 limits hepatic secretion of VLDL-TAG by targeting N-ethylmaleimide-sensitive factor (NSF), both in vivo and in primary hepatocytes. We identify conserved sequences in the 3'UTR of NSF as miR-33 responsive elements and show that Nsf is specifically recruited to the RNA-induced silencing complex following induction of miR-33. In pulse-chase experiments, either miR-33 overexpression or knock-down of Nsf lead to decreased secretion of apolipoproteins and TAG in primary hepatocytes, compared with control cells. Importantly, Nsf rescues miR-33-dependent reduced secretion. Finally, we show that overexpression of Nsf in vivo increases global hepatic secretion and raises plasma VLDL-TAG. CONCLUSIONS Together, our data reveal key roles for the miR-33-NSF axis during hepatic secretion and suggest that caution should be taken with anti-miR-33-based therapies because they might raise proatherogenic VLDL-TAG levels.
Collapse
Affiliation(s)
- Ryan M Allen
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology (R.M.A., T.J.M., J.J.J, A.B.) and Center for Cardiovascular Research (R.M.A., T.J.M., A.B.), St. Louis University, St. Louis, MO
| | - Tyler J Marquart
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology (R.M.A., T.J.M., J.J.J, A.B.) and Center for Cardiovascular Research (R.M.A., T.J.M., A.B.), St. Louis University, St. Louis, MO
| | - Jordan J Jesse
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology (R.M.A., T.J.M., J.J.J, A.B.) and Center for Cardiovascular Research (R.M.A., T.J.M., A.B.), St. Louis University, St. Louis, MO
| | - Angel Baldán
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology (R.M.A., T.J.M., J.J.J, A.B.) and Center for Cardiovascular Research (R.M.A., T.J.M., A.B.), St. Louis University, St. Louis, MO.
| |
Collapse
|
208
|
Meiliana A, Wijaya A. MicroRNAs in Lipid Metabolism and Atherosclerosis. INDONESIAN BIOMEDICAL JOURNAL 2014. [DOI: 10.18585/inabj.v6i1.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND: MicroRNAs (miRNA) are mediators of post-transcriptional gene expression that likely regulate most biological pathways and networks. The study of miRNAs is a rapidly emerging field; recent findings have revealed a significant role for miRNAs in atherosclerosis and lipoprotein metabolism.CONTENT: Results from recent studies demonstrated a role for miRNAs in endothelial integrity, macrophage inflammatory response to oxidized low-density lipoprotein, vascular smooth muscle cell proliferation and cholesterol synthesis. These mechanisms are all vital to the initiation and proliferation of atherosclerosis and cardiovascular disease. The importance of miRNAs has recently been recognized in cardiovascular sciences and miRNAs will likely become an integral part of our fundamental comprehension of atherosclerosis and lipoprotein metabolism. The extensive impact of miRNA mediated gene regulation and the relative ease of in vivo applicable modifications highlight the enormous potential of miRNA-based therapeutics in cardiovascular diseases.SUMMARY: miRNA studies in the field of lipid metabolism and atherosclerosis are in their infancy, and thus there is tremendous opportunity for discovery in this understudied area. The ability to target miRNAs in vivo through delivery of miRNA-mimics to enhance miRNA function, or antimiRNAs which inhibit miRNAs, has opened new avenues for the development of therapeutics for dyslipidemias and atherosclerosis, offers a unique approach to treating disease by modulating entire biological pathways. These exciting findings support the development of miRNA antagonists as potential therapeutics for the treatment of dyslipidaemia, atherosclerosis and related metabolic diseases.KEYWORDS: atherosclerosis, lipoprotein, HDL, miRNA
Collapse
|
209
|
Expression of miR-33 from an SREBF2 intron targets the FTO gene in the chicken. PLoS One 2014; 9:e91236. [PMID: 24626192 PMCID: PMC3953336 DOI: 10.1371/journal.pone.0091236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/10/2014] [Indexed: 01/20/2023] Open
Abstract
The sterol regulatory element binding transcription factor 2 (SREBF2) gene encodes a transcription factor that activates the expression of many genes involved in the synthesis and uptake of cholesterol, fatty acids, triglycerides, and phospholipids. Through bioinformatics, we found that intron 16 of the chicken SREBF2 gene might encode the chicken miR-33. Using quantitative RT-PCR, we detected the expression of miR-33 in a variety of chicken tissues including skeletal muscle, adipose tissue, and liver. Three hundred and seventy eight genes were predicted to be potential targets of miR-33 in chickens via miRNA target prediction programs “miRanda” and “TargetScan”. Among these targets, the gene FTO (fat mass and obesity associated) encodes a Fe(II)- and 2-oxoglutarate-dependent nucleic acid demethylase that regulates lipid metabolism, and the possibility that its expression is negatively regulated by miR-33 in the chicken liver was therefore further studied. Co-transfection and dual-luciferase reporter assays showed that the expression of luciferase reporter gene linked to the 3′-untranslated region (3′UTR) of the chicken FTO mRNA was down-regulated by overexpression of the chicken miR-33 in the C2C12 cells (P<0.05). Furthermore, this down-regulation was completely abolished when the predicted miR-33 target site in the FTO 3′UTR was mutated. In contrast, the expression of FTO mRNA in the primary chicken hepatocytes was up-regulated after transfection with the miR-33 inhibitor LNA-anti-miR-33. Using quantitative RT-PCR, we also found that the expression of miR-33 was increased in the chicken liver from day 0 to day 49 of age, whereas that of the FTO mRNA was decreased during the same age period. These data together suggest that miR-33 might play an important role in lipid metabolism in the chicken liver by negatively regulating the expression of the FTO gene.
Collapse
|
210
|
Vinod M, Chennamsetty I, Colin S, Belloy L, De Paoli F, Schaider H, Graier WF, Frank S, Kratky D, Staels B, Chinetti-Gbaguidi G, Kostner GM. miR-206 controls LXRα expression and promotes LXR-mediated cholesterol efflux in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:827-35. [PMID: 24603323 PMCID: PMC3996726 DOI: 10.1016/j.bbalip.2014.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/13/2014] [Accepted: 02/24/2014] [Indexed: 01/16/2023]
Abstract
Liver X receptors (LXRα and LXRβ) are key transcription factors in cholesterol metabolism that regulate cholesterol biosynthesis/efflux and bile acid metabolism/excretion in the liver and numerous organs. In macrophages, LXR signaling modulates cholesterol handling and the inflammatory response, pathways involved in atherosclerosis. Since regulatory pathways of LXR transcription control are well understood, in the present study we aimed at identifying post-transcriptional regulators of LXR activity. MicroRNAs (miRs) are such post-transcriptional regulators of genes that in the canonical pathway mediate mRNA inactivation. In silico analysis identified miR-206 as a putative regulator of LXRα but not LXRβ. Indeed, as recently shown, we found that miR-206 represses LXRα activity and expression of LXRα and its target genes in hepatic cells. Interestingly, miR-206 regulates LXRα differently in macrophages. Stably overexpressing miR-206 in THP-1 human macrophages revealed an up-regulation and miR-206 knockdown led to a down-regulation of LXRα and its target genes. In support of these results, bone marrow-derived macrophages (BMDMs) from miR-206 KO mice also exhibited lower expression of LXRα target genes. The physiological relevance of these findings was proven by gain- and loss-of-function of miR-206; overexpression of miR-206 enhanced cholesterol efflux in human macrophages and knocking out miR-206 decreased cholesterol efflux from MPMs. Moreover, we show that miR-206 expression in macrophages is repressed by LXRα activation, while oxidized LDL and inflammatory stimuli profoundly induced miR-206 expression. We therefore propose a feed-back loop between miR-206 and LXRα that might be part of an LXR auto-regulatory mechanism to fine tune LXR activity. Functional differences of miR-206 in the liver and macrophages In the liver, miR-206 suppresses LXRα expression and signaling. In macrophages, miR-206 increases LXRα abundance and promotes cholesterol efflux. In macrophages, LXRα activation represses miR-206 expression. In macrophages, pro-inflammatory stimuli increase miR-206 expression.
Collapse
Affiliation(s)
- Manjula Vinod
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | | | - Sophie Colin
- Université Lille 2, F-59000 Lille, France; Inserm, U1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59019 Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Loic Belloy
- Université Lille 2, F-59000 Lille, France; Inserm, U1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59019 Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Federica De Paoli
- Université Lille 2, F-59000 Lille, France; Inserm, U1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59019 Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Helmut Schaider
- Translation Research Institute, University of Queensland, Brisbane, Australia
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Saša Frank
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Bart Staels
- Université Lille 2, F-59000 Lille, France; Inserm, U1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59019 Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Giulia Chinetti-Gbaguidi
- Université Lille 2, F-59000 Lille, France; Inserm, U1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59019 Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Gerhard M Kostner
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| |
Collapse
|
211
|
Sene A, Apte RS. Eyeballing cholesterol efflux and macrophage function in disease pathogenesis. Trends Endocrinol Metab 2014; 25:107-14. [PMID: 24252662 PMCID: PMC3943676 DOI: 10.1016/j.tem.2013.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/22/2022]
Abstract
Disorders of lipid metabolism are strongly associated with cardiovascular disease. Recently, there has been significant focus on how tissues process lipid deposits. Impaired cholesterol efflux has been shown to be crucial in mediating lipid deposition in atherosclerosis. The inability of macrophages to effectively efflux cholesterol from tissues initiates inflammation, plaque neovascularization, and subsequent rupture. Recent studies suggest that inability to effectively efflux cholesterol from tissues may have global implications far beyond atherosclerosis, extending to the pathophysiology of unrelated diseases. We examine the unifying mechanisms by which impaired cholesterol efflux facilitates tissue-specific inflammation and disease progression in age-related macular degeneration (AMD), a blinding eye disease, and in atherosclerosis, a disease associated with significant cardiovascular morbidity.
Collapse
Affiliation(s)
- Abdoulaye Sene
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA
| | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA; Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA.
| |
Collapse
|
212
|
Abstract
There is compelling evidence from human population studies that plasma levels of high-density lipoprotein (HDL) cholesterol correlate inversely with cardiovascular risk. Identification of this relationship has stimulated research designed to understand how HDL metabolism is regulated. The ultimate goal of these studies has been to develop HDL-raising therapies that have the potential to decrease the morbidity and mortality associated with atherosclerotic cardiovascular disease. However, the situation has turned out to be much more complex than originally envisaged. This is partly because the HDL fraction consists of multiple subpopulations of particles that vary in terms of shape, size, composition, and surface charge, as well as in their potential cardioprotective properties. This heterogeneity is a consequence of the continual remodeling and interconversion of HDL subpopulations by multiple plasma factors. Evidence that the remodeling of HDLs may impact on their cardioprotective properties is beginning to emerge. This serves to highlight the importance of understanding not only how the remodeling and interconversion of HDL subpopulations is regulated but also how these processes are affected by agents that increase HDL levels. This review provides an overview of what is currently understood about HDL metabolism and how the subpopulation distribution of these lipoproteins is regulated.
Collapse
Affiliation(s)
- Kerry-Anne Rye
- From the Lipid Research Group, Centre for Vascular Research, Lowy Center, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
213
|
Vickers KC, Moore KJ. Small RNA overcomes the challenges of therapeutic targeting of microsomal triglyceride transfer protein. Circ Res 2014; 113:1189-91. [PMID: 24201112 DOI: 10.1161/circresaha.113.302732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The plasma level of apolipoprotein B (apoB) is among the strongest risk factors for coronary artery disease. Microsomal triglyceride transfer protein (MTP) plays a key role in the lipidation of nascent apoB and the secretion of apoB-containing lipoproteins enriched with triglycerides and is thus a promising target for the treatment of hyperlipidemia. Yet, the development of MTP inhibitors to lower plasma lipid concentrations has been hindered by adverse effects on hepatic steatosis. A study recently published in Nature Medicine identifies microRNA-30c (miR-30c) as a potent repressor of MTP that controls plasma apoB-containing lipoprotein levels, in addition to decreasing hepatic lipid synthesis through direct targeting of lysophosphatidylglycerol acyltransferase 1 (LPGAT1). These findings identify miR-30c as a novel therapeutic target that coordinately reduces lipid biosynthesis and lipoprotein secretion to suppress circulating apoB lipoproteins, while sparing the liver from steatosis.
Collapse
Affiliation(s)
- Kasey C Vickers
- From the Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (K.C.V.); and Marc and Ruti Bell Vascular Biology and Disease Program, Department of Medicine, New York University School of Medicine, New York, NY (K.J.M.)
| | | |
Collapse
|
214
|
Wang JM, Zhou JJ, Zheng Q, Gan H, Wang H. Dialysis Method Alters the Expression of MicroRNA-33a and Its Target Genes ABCA1, ABCG1 in THP-1 Macrophages. Ther Apher Dial 2014; 18:44-50. [PMID: 24499083 DOI: 10.1111/1744-9987.12040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian-Min Wang
- Department of Nephrology; The First Affiliated Hospital of Chongqing Medical University; ChongQing China
| | - Jia-Jun Zhou
- Department of Nephrology; The First Affiliated Hospital of Chongqing Medical University; ChongQing China
| | - Qian Zheng
- Department of Nephrology; The First Affiliated Hospital of Chongqing Medical University; ChongQing China
| | - Hua Gan
- Department of Nephrology; The First Affiliated Hospital of Chongqing Medical University; ChongQing China
| | - Hang Wang
- Department of Endocrine; The First Affiliated Hospital of Chongqing Medical University; ChongQing China
| |
Collapse
|
215
|
Chen G, Wang H, Zhang X, Yang ST. Nutraceuticals and Functional Foods in the Management of Hyperlipidemia. Crit Rev Food Sci Nutr 2014; 54:1180-201. [DOI: 10.1080/10408398.2011.629354] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
216
|
Zhao GJ, Tang SL, Lv YC, Ouyang XP, He PP, Yao F, Tang YY, Zhang M, Tang YL, Tang DP, Cayabyab FS, Tian GP, Tang CK. NF-κB suppresses the expression of ATP-binding cassette transporter A1/G1 by regulating SREBP-2 and miR-33a in mice. Int J Cardiol 2014; 171:e93-5. [DOI: 10.1016/j.ijcard.2013.11.093] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
|
217
|
Abstract
Recent discoveries of microRNAs (miRNAs) that control high-density lipoprotein abundance and function have expanded our knowledge of the mechanisms regulating this important lipoprotein subclass. miRNAs have been shown to regulate gene networks that control high-density lipoprotein biogenesis and uptake, as well as discrete steps in the reverse cholesterol transport pathway. Furthermore, high-density lipoprotein itself has been shown to transport miRNAs selectively in health and disease, offering new possibilities of how this lipoprotein may alter gene expression in distal target cells and tissues. Collectively, these discoveries offer new insights into the mechanisms governing high-density lipoprotein metabolism and function and open new avenues for the development of therapeutics for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Katey J Rayner
- From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (K.J.R.); and Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine (K.J.M.)
| | | |
Collapse
|
218
|
Zhou J, Meng Y, Tian S, Chen J, Liu M, Zhuo M, Zhang Y, Du H, Wang X. Comparative microRNA expression profiles of cynomolgus monkeys, rat, and human reveal that mir-182 is involved in T2D pathogenic processes. J Diabetes Res 2014; 2014:760397. [PMID: 25530976 PMCID: PMC4235598 DOI: 10.1155/2014/760397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/02/2014] [Accepted: 09/30/2014] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is a prevalent disease that happens around the world and usually happens with insulin resistance. MicroRNAs (miRNAs) represented important roles in the suppression of gene expression and were proven to be related to human diseases. In this study, we used cynomolgus monkey fed with normal and high fatty diet (HFD), respectively, to analyze the miRNA expression profile in whole blood by deep sequencing. Finally in total 24 miRNAs with differential expression were filtered. Among them, miR-182 related to the insulin resistance by modulating FOXO1 and PI3K/AKT cascade and had the greatest copy number in the whole blood. Decrease of miR-182 in T2D cynomolgus individuals is completely consistent with the previous studies in human and rat. Integrating miR-182 tissue expression profile, target genes, and copy number in blood reveals that miR-182 plays a key role in crucial genes modulation, such as FOXO1 and BHLHE22, which leads to potential hyperglycemia and modulates the insulin secretion. In addition, miR-182 might regulate the processes of both cell proliferation and apoptosis that play crucial role in determining the cells' fate. Therefore, miR-182 can be a biomarker in diagnosis of the potential T2D that has benefits for medical purpose.
Collapse
Affiliation(s)
- Jinghui Zhou
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yuhuan Meng
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuai Tian
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Junhui Chen
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Mingyu Liu
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Min Zhuo
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yu Zhang
- Guangdong Key Laboratory of Laboratory Animals, Guangzhou 510663, China
| | - Hongli Du
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
- *Hongli Du:
| | - Xiaoning Wang
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
- Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
219
|
Abstract
Physiological and pathological roles for small non-encoding miRNAs (microRNAs) in the cardiovascular system have recently emerged and are now widely studied. The discovery of widespread functions of miRNAs has increased the complexity of gene-regulatory processes and networks in both the cardiovascular system and cardiovascular diseases. Indeed, it has recently been shown that miRNAs are implicated in the regulation of many of the steps leading to the development of cardiovascular disease. These findings represent novel aspects in miRNA biology and, therefore, our understanding of the role of these miRNAs during the pathogenesis of cardiovascular disease is critical for the development of novel therapies and diagnostic interventions. The present review will focus on understanding how miRNAs are involved in the onset and development of cardiovascular diseases.
Collapse
|
220
|
Horie T, Baba O, Kuwabara Y, Yokode M, Kita T, Kimura T, Ono K. MicroRNAs and Lipoprotein Metabolism. J Atheroscler Thromb 2013; 21:17-22. [PMID: 24257466 DOI: 10.5551/jat.20859] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
MicroRNAs(miRNAs; miRs) are small, non-protein-coding RNAs that negatively regulate the gene expression. They bind to specific mRNAs and inhibit translation or promote mRNA degradation. Recently, some miRNAs have been shown to be involved in lipid homoeostasis. In particular, miR122 and miR-33 have a significant impact on lipid homeostasis and are potential therapeutic targets for treating lipid disorders and/or atherosclerosis. In this review, we describe the current understanding of the function of miRNAs in lipid homeostasis, with a focus on lipoprotein metabolism.
Collapse
Affiliation(s)
- Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | | | | | | | | | | | | |
Collapse
|
221
|
Pivotal role of microRNA-33 in metabolic syndrome: A systematic review. ARYA ATHEROSCLEROSIS 2013; 9:372-6. [PMID: 24575141 PMCID: PMC3933058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/11/2013] [Indexed: 12/03/2022]
Abstract
Metabolic syndrome (MetS) is a major public health concerns and increase in the incidence of MetS caused a rise in the rates of global morbidity, and mortality due to cardiovascular disease and diabetes. Lifestyle modification, a healthy diet, and pharmacological treatment and bariatric surgery are recommended in order to control this syndrome. Molecular mechanisms of metabolic disorders are essential in order to develop novel, valid therapeutic strategies. MicroRNA-33 plays imperative regulatory roles in a variety of biological processes including collaboration with sterol regulatory element-binding protein (SREBP) to maintain cholesterol homeostasis, high-density lipoprotein formation, fatty acid oxidation, and insulin signaling. Investigation of these molecules and their genetic targets may potentially identify new pathways involved in complex metabolic disease processes, improve our understanding of metabolic disorders, and influence future approaches to the treatment of obesity. This article reviews the role of miRNA-33 in metabolic syndrome, and highlights the potential of using miRNA-33 as a novel biomarker and therapeutic target for this syndrome.
Collapse
|
222
|
Xu J, Hu G, Lu M, Xiong Y, Li Q, Chang CCY, Song B, Chang T, Li B. MiR-9 reduces human acyl-coenzyme A:cholesterol acyltransferase-1 to decrease THP-1 macrophage-derived foam cell formation. Acta Biochim Biophys Sin (Shanghai) 2013; 45:953-62. [PMID: 24028971 DOI: 10.1093/abbs/gmt096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate gene expression by targeting mRNAs and control a wide range of biological functions. Recent studies have indicated that miRNAs can regulate lipid and cholesterol metabolism in mammals. Acyl-coenzyme A:cholesterol acyltransferase (ACAT) is a key enzyme in cellular cholesterol metabolism. The accumulated cholesteryl esters are mainly synthesized by ACAT1 during the formation of foam cell, a hallmark of early atherosclerotic lesions. Here, we revealed that miR-9 could target the 3'-untranslated region of human ACAT1 mRNA, specifically reduce human ACAT1 or reporter firefly luciferase (Fluc) proteins but not their mRNAs in different human cell lines, and functionally decrease the formation of foam cells from THP-1-derived macrophages. Our findings suggest that miR-9 might be an important regulator in cellular cholesterol homeostasis and decrease the formation of foam cells in vivo by reducing ACAT1 proteins.
Collapse
Affiliation(s)
- Jiajia Xu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Abstract
In the last decade, microRNAs (miRNAs) have revolutionized how we understand metabolism and disease. These small, 20- to 22-nucleotide RNA molecules fine-tune gene expression and can often coordinate multiple genes in a single pathway. Given the multifactorial nature of cardiovascular disease, it is perhaps not surprising that miRNAs have been shown to orchestrate many aspects of disease development, from modulating metabolic risk factors over a lifetime (eg, cholesterol and hormones) to controlling the response to an acute cardiovascular event (eg, inflammation and hypoxia). In this review, we discuss how miRNAs exert control over metabolic pathways that maintain vascular health and, when these pathways go awry, how miRNAs can be targeted for therapeutic modulation.
Collapse
Affiliation(s)
- Denuja Karunakaran
- PhD, Assistant Professor, University of Ottawa Heart Institute-Biochemistry, 40 Ruskin Street, H4211, Ottawa, Ontario K1Y4W7, Canada.
| | | |
Collapse
|
224
|
Xu X, So JS, Park JG, Lee AH. Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin Liver Dis 2013; 33:301-11. [PMID: 24222088 PMCID: PMC4035704 DOI: 10.1055/s-0033-1358523] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The liver is a central organ that controls systemic energy homeostasis and nutrient metabolism. Dietary carbohydrates and lipids, and fatty acids derived from adipose tissue are delivered to the liver, and utilized for gluconeogenesis, lipogenesis, and ketogenesis, which are tightly regulated by hormonal and neural signals. Hepatic lipogenesis is activated primarily by insulin that is secreted from the pancreas after a high-carbohydrate meal. Sterol regulatory element binding protein-1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP) are major transcriptional regulators that induce key lipogenic enzymes to promote lipogenesis in the liver. Sterol regulatory element binding protein-1c is activated by insulin through complex signaling cascades that control SREBP-1c at both transcriptional and posttranslational levels. Carbohydrate-responsive element-binding protein is activated by glucose independently of insulin. Here, the authors attempt to summarize the current understanding of the molecular mechanism for the transcriptional regulation of hepatic lipogenesis, focusing on recent studies that explore the signaling pathways controlling SREBPs and ChREBP.
Collapse
Affiliation(s)
| | | | | | - Ann-Hwee Lee
- To whom correspondence should be addressed: Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA. , Tel: 1-212-746-9087
| |
Collapse
|
225
|
Flowers E, Aouizerat BE. MicroRNA associated with dyslipidemia and coronary disease in humans. Physiol Genomics 2013; 45:1199-205. [PMID: 24170031 DOI: 10.1152/physiolgenomics.00106.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs are structural components of an epigenetic mechanism of posttranscriptional regulation of messenger RNA translation. Recently, there has been significant interest in the application of microRNA as a blood-based biomarker of underlying physiological conditions. Dyslipidemia is a complex, heterogeneous condition conferring substantially increased risk for cardiovascular disease. The purpose of this review is to describe the current body of knowledge on the role of microRNA regulation of lipoprotein metabolism in humans and to discuss relevant methodological and study design considerations. We highlight the potential roles for microRNA in gene-environment interactions.
Collapse
Affiliation(s)
- Elena Flowers
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, California; and
| | | |
Collapse
|
226
|
Baselga-Escudero L, Blade C, Ribas-Latre A, Casanova E, Suárez M, Torres JL, Salvadó MJ, Arola L, Arola-Arnal A. Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells. Nucleic Acids Res 2013; 42:882-92. [PMID: 24165878 PMCID: PMC3902894 DOI: 10.1093/nar/gkt1011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Modulation of miR-33 and miR-122 has been proposed to be a promising strategy to treat dyslipidemia and insulin resistance associated with obesity and metabolic syndrome. Interestingly, specific polyphenols reduce the levels of these mi(cro)RNAs. The aim of this study was to elucidate the effect of polyphenols of different chemical structure on miR-33a and miR-122 expression and to determine whether direct binding of the polyphenol to the mature microRNAs (miRNAs) is a plausible mechanism of modulation. The effect of two grape proanthocyanidin extracts, their fractions and pure polyphenol compounds on miRNA expression was evaluated using hepatic cell lines. Results demonstrated that the effect on miRNA expression depended on the polyphenol chemical structure. Moreover, miR-33a was repressed independently of its host-gene SREBP2. Therefore, the ability of resveratrol and epigallocatechin gallate to bind miR-33a and miR-122 was measured using 1H NMR spectroscopy. Both compounds bound miR-33a and miR-122 and differently. Interestingly, the nature of the binding of these compounds to the miRNAs was consistent with their effects on cell miRNA levels. Therefore, the specific and direct binding of polyphenols to miRNAs emerges as a new posttranscriptional mechanism by which polyphenols could modulate metabolism.
Collapse
Affiliation(s)
- Laura Baselga-Escudero
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain and Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, 08034, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Li ZJ, Ou-Yang PH, Han XP. Profibrotic effect of miR-33a with Akt activation in hepatic stellate cells. Cell Signal 2013; 26:141-8. [PMID: 24100264 DOI: 10.1016/j.cellsig.2013.09.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) attract more attention in the pathophysiology of liver fibrosis and miR-33a has been previously demonstrated as involved in the regulation of cholesterol and lipid metabolism. Transforming growth factor-beta1 (TGF-β1) is generally accepted to be the main stimulating factor in the hepatic stellate cells (HSCs) activation, which plays an important role in hepatic fibrosis. However, the involvement and underlying mechanism of miR-33a and its role in TGF-β1-induced hepatic fibrogenesis remains unknown. Here, we investigate the role of miR-33a in the activation of immortalized human HSCs, Lx-2 cells. Our findings have shown that the expression of miR-33a with its host gene sterol regulatory element-binding protein 2 (SREBP2) was more highly expressed in activation of Lx-2 cells than in quiescent cells. The expression of miR-33a on TGF-β1-induced HSCs activation may be modulated via the activation of PI3K/Akt pathway. In addition, miR-33a significantly correlated with TGF-β1-induced expression of α1 (I) collagen (Col1A1) and α-SMA in HSCs. Bioinformatics analyses predict that peroxisome proliferator activated receptor-alpha (PPAR-α) is the potential target of miR-33a. We further found that anti-miR-33a significantly increases target gene PPAR-α mRNA and protein level, suggesting that miR-33a involved in HSCs function might be modulated by targeting PPAR-α. Finally, our results indicate that the expression of miR-33a increased with the progression of liver fibrosis. These results suggested that anti-miR-33a inhibit activation and extracellular matrix production, at least in part, via the activation of PI3K/Akt pathway and PPAR-α and anti sense of miR-33a may be a novel potential therapeutic approach for treating hepatic fibrosis in the future.
Collapse
Affiliation(s)
- Zhuo-Jian Li
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China.
| | | | | |
Collapse
|
228
|
Ghahramani Seno MM, Gwadry FG, Hu P, Scherer SW. Neuregulin 1-alpha regulates phosphorylation, acetylation, and alternative splicing in lymphoblastoid cells. Genome 2013; 56:619-25. [DOI: 10.1139/gen-2013-0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuregulins (NRGs) are signaling molecules involved in various cellular and developmental processes. Abnormal expression and (or) genomic variations of some of these molecules, such as NRG1, have been associated with disease conditions such as cancer and schizophrenia. To gain a comprehensive molecular insight into possible pathways/networks regulated by NRG1-alpha, we performed a global expression profiling analysis on lymphoblastoid cell lines exposed to NRG1-alpha. Our data show that this signaling molecule mainly regulates coordinated expression of genes involved in three processes: phosphorylation, acetylation, and alternative splicing. These processes have fundamental roles in proper development and function of various tissues including the central nervous system (CNS)—a fact that may explain conditions associated with NRG1 dysregulations such as schizophrenia. The data also suggest NRG1-alpha regulates genes (FBXO41) and miRNAs (miR-33) involved in cholesterol metabolism. Moreover, RPN2, a gene already shown to be dysregulated in breast cancer cells, is also differentially regulated by NRG1-alpha treatment.
Collapse
Affiliation(s)
- Mohammad M. Ghahramani Seno
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
- Department of Basic Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Fuad G. Gwadry
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Pingzhao Hu
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
229
|
Li T, Francl JM, Boehme S, Chiang JYL. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7α-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology 2013; 58:1111-21. [PMID: 23536474 PMCID: PMC3735649 DOI: 10.1002/hep.26427] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/25/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Bile acid synthesis not only produces physiological detergents required for intestinal nutrient absorption, but also plays a critical role in regulating hepatic and whole-body metabolic homeostasis. We recently reported that overexpression of cholesterol 7α-hydroxylase (CYP7A1) in the liver resulted in improved metabolic homeostasis in Cyp7a1 transgenic (Cyp7a1-tg) mice. This study further investigated the molecular links between bile acid metabolism and lipid homeostasis. Microarray gene profiling revealed that CYP7A1 overexpression led to marked activation of the steroid response element-binding protein 2 (SREBP2)-regulated cholesterol metabolic network and absence of bile acid repression of lipogenic gene expression in livers of Cyp7a1-tg mice. Interestingly, Cyp7a1-tg mice showed significantly elevated hepatic cholesterol synthesis rates, but reduced hepatic fatty acid synthesis rates, which was accompanied by increased (14) C-glucose-derived acetyl-coenzyme A incorporation into sterols for fecal excretion. Induction of SREBP2 also coinduces intronic microRNA-33a (miR-33a) in the SREBP2 gene in Cyp7a1-tg mice. Overexpression of miR-33a in the liver resulted in decreased bile acid pool, increased hepatic cholesterol content, and lowered serum cholesterol in mice. CONCLUSION This study suggests that a CYP7A1/SREBP2/miR-33a axis plays a critical role in regulation of hepatic cholesterol, bile acid, and fatty acid synthesis. Antagonism of miR-33a may be a potential strategy to increase bile acid synthesis to maintain lipid homeostasis and prevent nonalcoholic fatty liver disease, diabetes, and obesity.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272,Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160
| | - Jessica M. Francl
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272
| | - Shannon Boehme
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272,Corresponding address: John Chiang, Ph.D., Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272; Phone: 330-325-6694; Fax: 330-325-5910;
| |
Collapse
|
230
|
Dávalos A, Fernández-Hernando C. From evolution to revolution: miRNAs as pharmacological targets for modulating cholesterol efflux and reverse cholesterol transport. Pharmacol Res 2013; 75:60-72. [PMID: 23435093 PMCID: PMC3825518 DOI: 10.1016/j.phrs.2013.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 02/09/2023]
Abstract
There has been strong evolutionary pressure to ensure that an animal cell maintains levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies.
Collapse
|
231
|
Aranda JF, Madrigal-Matute J, Rotllan N, Fernández-Hernando C. MicroRNA modulation of lipid metabolism and oxidative stress in cardiometabolic diseases. Free Radic Biol Med 2013; 64:31-9. [PMID: 23871755 PMCID: PMC4145589 DOI: 10.1016/j.freeradbiomed.2013.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 12/11/2022]
Abstract
The regulation of the metabolism of cholesterol has been one of the most studied biological processes since its first isolation from gallstones in 1784. High levels of plasma low-density lipoprotein (LDL) cholesterol and reduced levels of plasma high-density lipoprotein (HDL) cholesterol are widely recognized as major risk factors of cardiovascular disease. An imbalance in the production of reactive oxygen species can oxidize LDL particles, increasing the levels of the highly proatherogenic oxidized LDL. Furthermore, under pathological scenarios, numerous molecules can function as pro-oxidants, such as iron or (high levels of) glucose. In addition to the classical mechanisms regulating lipid homeostasis, recent studies have demonstrated the important role of microRNAs (miRNAs) as regulators of lipoprotein metabolism, oxidative derivatives of lipoprotein, and redox balance. Here, we summarize recent findings in the field, highlighting the contributions of some miRNAs to lipid- and oxidative-associated pathologies. We also discuss how therapeutic intervention of miRNAs may be a promising strategy to decrease LDL, increase HDL, and ameliorate lipid- and oxidative-related disorders, including atherosclerosis, nonalcoholic fatty liver disease, and metabolic syndrome.
Collapse
Affiliation(s)
| | | | - Noemi Rotllan
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016, USA
| | - Carlos Fernández-Hernando
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
232
|
Maute RL, Dalla-Favera R, Basso K. RNAs with multiple personalities. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:1-13. [DOI: 10.1002/wrna.1193] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Roy L. Maute
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center; Columbia University; New York NY USA
- Department of Genetics and Development; Columbia University; New York NY USA
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center; Columbia University; New York NY USA
- Department of Genetics and Development; Columbia University; New York NY USA
- Department of Pathology and Cell Biology; Columbia University; New York NY USA
- Department of Microbiology and Immunology; Columbia University; New York NY USA
| | - Katia Basso
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center; Columbia University; New York NY USA
- Department of Pathology and Cell Biology; Columbia University; New York NY USA
| |
Collapse
|
233
|
|
234
|
Abstract
MicroRNAs (miRNAs) are ~22 nt RNAs that coordinate vast regulatory networks in animals and thereby influence myriad processes. This Review examines evidence that miRNAs have continuous roles in adults in ways that are separable from developmental control. Adult-specific activities for miRNAs have been described in various stem cell populations, in the context of neural function and cardiovascular biology, in metabolism and ageing, and during cancer. In addition to reviewing recent results, we also discuss methods for studying miRNA activities specifically in adults and evaluate their relative strengths and weaknesses. A fuller understanding of continuous functions of miRNAs in adults has bearing on efforts and opportunities to manipulate miRNAs for therapeutic purposes.
Collapse
Affiliation(s)
- Kailiang Sun
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065
| | - Eric C. Lai
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Ave, Box 252, New York, NY 10065
| |
Collapse
|
235
|
Baselga-Escudero L, Arola-Arnal A, Pascual-Serrano A, Ribas-Latre A, Casanova E, Salvadó MJ, Arola L, Blade C. Chronic administration of proanthocyanidins or docosahexaenoic acid reverses the increase of miR-33a and miR-122 in dyslipidemic obese rats. PLoS One 2013; 8:e69817. [PMID: 23922812 PMCID: PMC3724906 DOI: 10.1371/journal.pone.0069817] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/13/2013] [Indexed: 01/30/2023] Open
Abstract
miR-33 and miR-122 are major regulators of lipid metabolism in the liver, and their deregulation has been linked to the development of metabolic diseases such as obesity and metabolic syndrome. However, the biological importance of these miRNAs has been defined using genetic models. The aim of this study was to evaluate whether the levels of miR-122 and miR-33a in rat liver correlate with lipemia in nutritional models. For this purpose, we analyzed the levels of miRNA-33a and miR-122 in the livers of dyslipidemic cafeteria diet-fed rats and of cafeteria diet-fed rats supplemented with proanthocyanidins and/or ω-3 PUFAs because these two dietary components are well-known to counteract dyslipidemia. The results showed that the dyslipidemia induced in rats that were fed a cafeteria diet resulted in the upregulation of miR-33a and miR-122 in the liver, whereas the presence of proanthocyanidins and/or ω-3 PUFAs counteracted the increase of these two miRNAs. However, srebp2, the host gene of miR-33a, was significantly repressed by ω-3 PUFAs but not by proanthocyanidins. Liver mRNA levels of the miR-122 and miR-33a target genes, fas and pparβ/δ, cpt1a and abca1, respectively, were consistent with the expression of these two miRNAs under each condition. Moreover, the miR-33a and abca1 levels were also analyzed in PBMCs. Interestingly, the miR-33a levels evaluated in PBMCs under each condition were similar to the liver levels but enhanced. This demonstrates that miR-33a is expressed in PBMCs and that these cells can be used as a non-invasive way to reflect the expression of this miRNA in the liver. These findings cast new light on the regulation of miR-33a and miR-122 in a dyslipidemic model of obese rats and the way these miRNAs are modulated by dietary components in the liver and in PBMCs.
Collapse
Affiliation(s)
- Laura Baselga-Escudero
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Arola-Arnal
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Aïda Pascual-Serrano
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Aleix Ribas-Latre
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Ester Casanova
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - M-Josepa Salvadó
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Lluis Arola
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Cinta Blade
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
236
|
Miyachi K, Sawada Y, Shida Y, Sugawara A, Hisatomi H. Lipogenic gene expression profile in patients with gastric cancer. Mol Clin Oncol 2013; 1:825-827. [PMID: 24649254 PMCID: PMC3915680 DOI: 10.3892/mco.2013.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 07/02/2013] [Indexed: 11/05/2022] Open
Abstract
Numerous types of cancer exhibit increased lipogenesis and expression of lipogenic enzymes and transcription factors, including sterol regulatory element-binding protein-1. Lipogenic gene expression is upregulated at the mRNA level, in concert with metabolic pathways associated with changes in expression and/or activity of lipogenic transcription factors. However, this expression pattern in human gastric carcinoma has not been elucidated. In this study, lipogenic gene expression in cancer tissues was investigated using quantitative PCR. In patients with gastric cancer, carnitine O-palmitoyltransferase type I mRNA and miR-33b were significantly downregulated, suggesting that miR-33b downregulation is mediated by conditions that also affect the expression and/or activity of transcription factors involved in lipogenic gene expression. Consequently, the association between miR-33b and gastric cancer may provide a novel strategy for the genetic diagnosis of gastric cancer. However, additional studies including a larger number of samples are required to confirm these results.
Collapse
Affiliation(s)
- Kazuhito Miyachi
- Department of Surgery, Nikko Medical Center, Dokkyo Medical University, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Youki Sawada
- Department of Materials and Life Science, Seikei University, Musashino, Tokyo 180-8633, Japan
| | - Yosuke Shida
- Department of Surgery, Nikko Medical Center, Dokkyo Medical University, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Akira Sugawara
- Department of Surgery, Nikko Medical Center, Dokkyo Medical University, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Hisashi Hisatomi
- Department of Materials and Life Science, Seikei University, Musashino, Tokyo 180-8633, Japan
| |
Collapse
|
237
|
Jeon TI, Esquejo RM, Roqueta-Rivera M, Phelan PE, Moon YA, Govindarajan SS, Esau CC, Osborne TF. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metab 2013; 18:51-61. [PMID: 23823476 PMCID: PMC3740797 DOI: 10.1016/j.cmet.2013.06.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/13/2013] [Accepted: 06/12/2013] [Indexed: 12/11/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs) have evolved as a focal point for linking lipid synthesis with other pathways that regulate cell growth and survival. Here, we have uncovered a polycistrionic microRNA (miRNA) locus that is activated directly by SREBP-2. Two of the encoded miRNAs, miR-182 and miR-96, negatively regulate the expression of Fbxw7 and Insig-2, respectively, and both are known to negatively affect nuclear SREBP accumulation. Direct manipulation of this miRNA pathway alters nuclear SREBP levels and endogenous lipid synthesis. Thus, we have uncovered a mechanism for the regulation of intracellular lipid metabolism mediated by the concerted action of a pair of miRNAs that are expressed from the same SREBP-2-regulated miRNA locus, and each targets a different protein of the multistep pathway that regulates SREBP function. These studies reveal an miRNA "operon" analogous to the classic model for genetic control in bacterial regulatory systems.
Collapse
Affiliation(s)
- Tae-Il Jeon
- Metabolic Signaling and Disease Program and Diabetes and Obesity Center, Sanford-Burnham Medical Research Institute, Orlando, Florida 32827, USA
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Lv YC, Yin K, Fu YC, Zhang DW, Chen WJ, Tang CK. Posttranscriptional Regulation ofATP-Binding Cassette Transporter A1in Lipid Metabolism. DNA Cell Biol 2013; 32:348-58. [DOI: 10.1089/dna.2012.1940] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Yun-cheng Lv
- Key Laboratory for Atherosclerology of Hunan Province, Institute of Cardiovascular Research, Life Science Research Center, University of South China, Hengyang, China
- Laboratory of Clinical Anatomy, University of South China, Hengyang, China
| | - Kai Yin
- Key Laboratory for Atherosclerology of Hunan Province, Institute of Cardiovascular Research, Life Science Research Center, University of South China, Hengyang, China
| | - Yu-chang Fu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Da-wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Canada
| | - Wu-jun Chen
- Key Laboratory for Atherosclerology of Hunan Province, Institute of Cardiovascular Research, Life Science Research Center, University of South China, Hengyang, China
| | - Chao-ke Tang
- Key Laboratory for Atherosclerology of Hunan Province, Institute of Cardiovascular Research, Life Science Research Center, University of South China, Hengyang, China
| |
Collapse
|
239
|
Cho Y, Baldán A. Quest for new biomarkers in atherosclerosis. MISSOURI MEDICINE 2013; 110:325-330. [PMID: 24003651 PMCID: PMC3894743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Cho and Baldan labs focus their efforts on novel pathways that control atherogenesis. MIF (Macrophage migration inhibitory factor) recruits macrophages to atherosclerotic lesions and activates the production of matrix proteinases, which in turn destabilize atherosclerotic plaques. On the other hand, miR-33 coordinates the expression of several sterol transporters essential for high-density lipoprotein metabolism and bile secretion. Thus, both MIF and miR-33 are promising therapeutic targets to manage patients at risk of developing atherosclerosis.
Collapse
Affiliation(s)
- Yoonsang Cho
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, USA.
| | | |
Collapse
|
240
|
Godnic I, Zorc M, Jevsinek Skok D, Calin GA, Horvat S, Dovc P, Kovac M, Kunej T. Genome-wide and species-wide in silico screening for intragenic MicroRNAs in human, mouse and chicken. PLoS One 2013; 8:e65165. [PMID: 23762306 PMCID: PMC3675212 DOI: 10.1371/journal.pone.0065165] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) involved in regulation of gene expression. Intragenic miRNAs, especially those exhibiting a high degree of evolutionary conservation, have been shown to be coordinately regulated and/or expressed with their host genes, either with synergistic or antagonistic correlation patterns. However, the degree of cross-species conservation of miRNA/host gene co-location is not known and co-expression information is incomplete and fragmented among several studies. Using the genomic resources (miRBase and Ensembl) we performed a genome-wide in silico screening (GWISS) for miRNA/host gene pairs in three well-annotated vertebrate species: human, mouse, and chicken. Approximately half of currently annotated miRNA genes resided within host genes: 53.0% (849/1,600) in human, 48.8% (418/855) in mouse, and 42.0% (210/499) in chicken, which we present in a central publicly available Catalog of intragenic miRNAs (http://www.integratomics-time.com/miR-host/catalog). The miRNA genes resided within either protein-coding or ncRNA genes, which include long intergenic ncRNAs (lincRNAs) and small nucleolar RNAs (snoRNAs). Twenty-seven miRNA genes were found to be located within the same host genes in all three species and the data integration from literature and databases showed that most (26/27) have been found to be co-expressed. Particularly interesting are miRNA genes located within genes encoding for miRNA silencing machinery (DGCR8, DICER1, and SND1 in human and Cnot3, Gdcr8, Eif4e, Tnrc6b, and Xpo5 in mouse). We furthermore discuss a potential for phenotype misattribution of miRNA host gene polymorphism or gene modification studies due to possible collateral effects on miRNAs hosted within them. In conclusion, the catalog of intragenic miRNAs and identified 27 miRNA/host gene pairs with cross-species conserved co-location, co-expression, and potential co-regulation, provide excellent candidates for further functional annotation of intragenic miRNAs in health and disease.
Collapse
Affiliation(s)
- Irena Godnic
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Minja Zorc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Dasa Jevsinek Skok
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - George Adrian Calin
- Department of Experimental Therapeutics and The Center for RNA Interference and Non-Coding RNAs, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Simon Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Peter Dovc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Milena Kovac
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
- * E-mail:
| |
Collapse
|
241
|
Hafiane A, Genest J. HDL, Atherosclerosis, and Emerging Therapies. CHOLESTEROL 2013; 2013:891403. [PMID: 23781332 PMCID: PMC3678415 DOI: 10.1155/2013/891403] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/22/2013] [Accepted: 04/30/2013] [Indexed: 12/21/2022]
Abstract
This review aims to provide an overview on the properties of high-density lipoproteins (HDLs) and their cardioprotective effects. Emergent HDL therapies will be presented in the context of the current understanding of HDL function, metabolism, and protective antiatherosclerotic properties. The epidemiological association between levels of HDL-C or its major apolipoprotein (apoA-I) is strong, graded, and coherent across populations. HDL particles mediate cellular cholesterol efflux, have antioxidant properties, and modulate vascular inflammation and vasomotor function and thrombosis. A link of causality has been cast into doubt with Mendelian randomization data suggesting that genes causing HDL-C deficiency are not associated with increased cardiovascular risk, nor are genes associated with increased HDL-C, with a protective effect. Despite encouraging data from small studies, drugs that increase HDL-C levels have not shown an effect on major cardiovascular end-points in large-scale clinical trials. It is likely that the cholesterol mass within HDL particles is a poor biomarker of therapeutic efficacy. In the present review, we will focus on novel therapeutic avenues and potential biomarkers of HDL function. A better understanding of HDL antiatherogenic functions including reverse cholesterol transport, vascular protective and antioxidation effects will allow novel insight on novel, emergent therapies for cardiovascular prevention.
Collapse
Affiliation(s)
| | - Jacques Genest
- Faculty of Medicine, Center for Innovative Medicine, McGill University Health Center, Royal Victoria Hospital, McGill University, 687 Pine Avenue West, Montreal, QC, Canada H3A 1A1
| |
Collapse
|
242
|
Rotllan N, Ramírez CM, Aryal B, Esau CC, Fernández-Hernando C. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice--brief report. Arterioscler Thromb Vasc Biol 2013; 33:1973-7. [PMID: 23702658 DOI: 10.1161/atvbaha.113.301732] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To study the efficacy of anti-miRNA-33 therapy on the progression of atherosclerosis. APPROACH AND RESULTS Ldlr(-/-) mice were injected subcutaneously with PBS, control, or anti-miR-33 oligonucleotides weekly and fed a Western diet for 12 weeks. At the end of treatment, the expression of miR-33 target genes was increased in the liver and aorta, demonstrating effective inhibition of miR-33 function. Interestingly, plasma high-density lipoprotein (HDL)-cholesterol was significantly increased in anti-miR-33-treated mice but only when they were fed a chow diet. However, HDL isolated from anti-miR-33-treated mice showed an increase cholesterol efflux capacity compared with HDL isolated from nontargeting oligonucleotide-treated mice. Analysis of atherosclerosis revealed a significant reduction of plaque size and macrophage content in mice receiving anti-miR-33. In contrast, no differences in collagen content and necrotic areas were observed among the 3 groups. CONCLUSIONS Long-term anti-miR-33 therapy significantly reduces the progression of atherosclerosis and improves HDL functionality. The antiatherogenic effect is independent of plasma HDL-cholesterol levels.
Collapse
Affiliation(s)
- Noemi Rotllan
- Department of Medicine, Leon H Charney Division of Cardiology and Cell Biology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
243
|
Seneviratne A, Hulsmans M, Holvoet P, Monaco C. Biomechanical factors and macrophages in plaque stability. Cardiovasc Res 2013; 99:284-93. [DOI: 10.1093/cvr/cvt097] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
244
|
Wang L, Yang Y, Hong B. Advances in the role of microRNAs in lipid metabolism-related anti-atherosclerotic drug discovery. Expert Opin Drug Discov 2013; 8:977-90. [DOI: 10.1517/17460441.2013.798639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
245
|
Araldi E, Chamorro-Jorganes A, van Solingen C, Fernández-Hernando C, Suárez Y. Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease. Curr Vasc Pharmacol 2013:CVP-EPUB-20130513-3. [PMID: 23713860 PMCID: PMC3883893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 06/02/2023]
Abstract
Atherosclerosis (also known as arteriosclerotic vascular disease) is a chronic inflammatory disease of the arterial wall, characterized by the formation of lipid-laden lesions. The activation of endothelial cells at atherosclerotic lesion-prone sites in the arterial tree results in the up-regulation of cell adhesion molecules and chemokines, which mediate the recruitment of circulating monocytes. Accumulation of monocytes and monocyte-derived phagocytes in the wall of large arteries leads to chronic inflammation and the development and progression of atherosclerosis. The lesion experiences the following steps: foam cell formation, fatty streak accumulation, migration and proliferation of vascular smooth muscle cells, and fibrous cap formation. Finally, the rupture of the unstable fibrous cap causes thrombosis in complications of advanced lesions that lead to unstable coronary syndromes, myocardial infarction and stroke. MicroRNAs have recently emerged as a novel class of gene regulators at the post-transcriptional level. Several functions of vascular cells, such as cell differentiation, contraction, migration, proliferation and inflammation that are involved in angiogenesis, neointimal formation and lipid metabolism underlying various vascular diseases, have been found to be regulated by microRNAs and are described in the present review as well as their potential therapeutic application.
Collapse
Affiliation(s)
- Elisa Araldi
- New York University School of Medicine, 522 First Avenue, Smilow 703, New York, NY 10016.
| | | | | | | | | |
Collapse
|
246
|
Näär AM. Anti-atherosclerosis or No Anti-atherosclerosis: That is the miR-33 question. Arterioscler Thromb Vasc Biol 2013; 33:447-8. [PMID: 23407174 DOI: 10.1161/atvbaha.112.301021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
247
|
Pogribny IP, Beland FA. Role of microRNAs in the regulation of drug metabolism and disposition genes in diabetes and liver disease. Expert Opin Drug Metab Toxicol 2013; 9:713-24. [PMID: 23565851 DOI: 10.1517/17425255.2013.783817] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The pathogenesis of diabetes mellitus and nonalcoholic fatty liver disease (NAFLD) is complex, and the underlying molecular mechanisms are only partially understood. AREAS COVERED This review summarizes current knowledge of the role of microRNAs (miRNAs) in the regulation of drug absorption, distribution, metabolism, and excretion genes in the pathogenesis of diabetes and NAFLD. The literature search was performed using the PubMed database (up to February 2013). EXPERT OPINION miRNAs play a fundamental role in diabetes and NAFLD. This review focuses on the dysregulation of miRNAs involved in the regulation of drug metabolism and disposition in the pathogenesis of these metabolic syndromes. The evidence presented indicates that better understanding of the underlying molecular mechanisms associated with dysregulation of miRNAs controlling the cellular drug metabolizing system is of great importance not only from a scientific, but also from a clinical perspective. More importantly, an association between these metabolic disorders and miRNA dysregulation suggests that correcting miRNA expression by either their up-regulation or inhibition holds a promise for treating these metabolic syndrome and alleviating disease progression.
Collapse
Affiliation(s)
- Igor P Pogribny
- NCTR, Division of Biochemical Toxicology, Jefferson, AR 72079, USA.
| | | |
Collapse
|
248
|
MicroRNA-33 in atherosclerosis etiology and pathophysiology. Atherosclerosis 2013; 227:201-8. [DOI: 10.1016/j.atherosclerosis.2012.11.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 11/24/2012] [Accepted: 11/26/2012] [Indexed: 12/30/2022]
|
249
|
A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol Cell Biol 2013; 33:2339-52. [PMID: 23547260 DOI: 10.1128/mcb.01714-12] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
hsa-miR-33a and hsa-miR-33b, intronic microRNAs (miRNAs) located within the sterol regulatory element-binding protein 2 and 1 genes (Srebp-2 and -1), respectively, have recently been shown to regulate lipid homeostasis in concert with their host genes. Although the functional role of miR-33a and -b has been highly investigated, the role of their passenger strands, miR-33a* and -b*, remains unclear. Here, we demonstrate that miR-33a* and -b* accumulate to steady-state levels in human, mouse, and nonhuman primate tissues and share a similar lipid metabolism target gene network as their sister strands. Analogous to miR-33, miR-33* represses key enzymes involved in cholesterol efflux (ABCA1 and NPC1), fatty acid metabolism (CROT and CPT1a), and insulin signaling (IRS2). Moreover, miR-33* also targets key transcriptional regulators of lipid metabolism, including SRC1, SRC3, NFYC, and RIP140. Importantly, inhibition of either miR-33 or miR-33* rescues target gene expression in cells overexpressing pre-miR-33. Consistent with this, overexpression of miR-33* reduces fatty acid oxidation in human hepatic cells. Altogether, these data support a regulatory role for the miRNA* species and suggest that miR-33 regulates lipid metabolism through both arms of the miR-33/miR-33* duplex.
Collapse
|
250
|
Rayner KJ, Moore KJ. The plaque "micro" environment: microRNAs control the risk and the development of atherosclerosis. Curr Atheroscler Rep 2013; 14:413-21. [PMID: 22847770 DOI: 10.1007/s11883-012-0272-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While the discovery of microRNAs has exponentially expanded our understanding of the regulatory mechanisms governing gene networks in many biological processes, the study of these tiny RNA powerhouses in cardiovascular disease is in its infancy. To date, there have been over 1200 human microRNAs identified, and they are estimated to affect the expression of over half of the protein-coding portion of the human genome. In this review, we will discuss miRNAs that are integral players in processes affecting risk factors for CVD, as well as miRNAs that act at the level of the vessel wall to affect atherogenesis. We will discuss how microRNAs are not only advancing the field of cardiovascular biology, but how some miRNAs are at the forefront of drug development and may be soon advancing into the clinic.
Collapse
Affiliation(s)
- Katey J Rayner
- Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|