201
|
Lühken R, Jöst H, Cadar D, Thomas SM, Bosch S, Tannich E, Becker N, Ziegler U, Lachmann L, Schmidt-Chanasit J. Distribution of Usutu Virus in Germany and Its Effect on Breeding Bird Populations. Emerg Infect Dis 2018; 23:1994-2001. [PMID: 29148399 PMCID: PMC5708248 DOI: 10.3201/eid2312.171257] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Usutu virus (USUV) is an emerging mosquitoborne flavivirus with an increasing number of reports from several countries in Europe, where USUV infection has caused high avian mortality rates. However, 20 years after the first observed outbreak of USUV in Europe, there is still no reliable assessment of the large-scale impact of USUV outbreaks on bird populations. In this study, we identified the areas suitable for USUV circulation in Germany and analyzed the effects of USUV on breeding bird populations. We calculated the USUV-associated additional decline of common blackbird (Turdus merula) populations as 15.7% inside USUV-suitable areas but found no significant effect for the other 14 common bird species investigated. Our results show that the emergence of USUV is a further threat for birds in Europe and that the large-scale impact on population levels, at least for common blackbirds, must be considered.
Collapse
|
202
|
The extensive networks of frequent population mobility in the Samoan Islands and their implications for infectious disease transmission. Sci Rep 2018; 8:10136. [PMID: 29973612 PMCID: PMC6031642 DOI: 10.1038/s41598-018-28081-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/15/2018] [Indexed: 11/09/2022] Open
Abstract
Population mobility has been demonstrated to contribute to the persistent transmission and global diffusion of epidemics. In the Pacific Islands, population mobility is particularly important for emerging infectious diseases, disease elimination programs, and diseases spread by close contact. The extent of population mobility between American Samoa villages, Samoa districts and other countries was investigated based on travel data collected during community surveys in American Samoa in 2010 and 2014. Within American Samoa, workers commuted daily across the whole of the main island of Tutuila, with work hubs drawing from villages across the island. Of the 670 adult workers surveyed, 37% had traveled overseas in the past year, with 68% of trips to Samoa. Of children aged 8–13 years (n = 337), 57% had traveled overseas, with 55% of trips to Samoa. An extensive network of connections between American Samoa villages and Samoa districts was demonstrated, with most trips lasting one week to one month. Our study showed that populations in the Samoan islands are highly mobile, and quantified the extent and destinations of their travels. Our findings offer insight into the impact of population mobility on the transmission of infectious diseases and data to refine existing models of disease transmission in the Pacific islands.
Collapse
|
203
|
Kong L, Wang J, Li Z, Lai S, Liu Q, Wu H, Yang W. Modeling the Heterogeneity of Dengue Transmission in a City. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061128. [PMID: 29857503 PMCID: PMC6025315 DOI: 10.3390/ijerph15061128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/02/2018] [Accepted: 05/19/2018] [Indexed: 12/14/2022]
Abstract
Dengue fever is one of the most important vector-borne diseases in the world, and modeling its transmission dynamics allows for determining the key influence factors and helps to perform interventions. The heterogeneity of mosquito bites of humans during the spread of dengue virus is an important factor that should be considered when modeling the dynamics. However, traditional models generally assumed homogeneous mixing between humans and vectors, which is inconsistent with reality. In this study, we proposed a compartmental model with negative binomial distribution transmission terms to model this heterogeneity at the population level. By including the aquatic stage of mosquitoes and incorporating the impacts of the environment and climate factors, an extended model was used to simulate the 2014 dengue outbreak in Guangzhou, China, and to simulate the spread of dengue in different scenarios. The results showed that a high level of heterogeneity can result in a small peak size in an outbreak. As the level of heterogeneity decreases, the transmission dynamics approximate the dynamics predicted by the corresponding homogeneous mixing model. The simulation results from different scenarios showed that performing interventions early and decreasing the carrying capacity for mosquitoes are necessary for preventing and controlling dengue epidemics. This study contributes to a better understanding of the impact of heterogeneity during the spread of dengue virus.
Collapse
Affiliation(s)
- Lingcai Kong
- Department of Mathematics and Physics, North China Electric Power University; Baoding 071003, China.
| | - Jinfeng Wang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences; Beijing 100864, China.
- Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Zhongjie Li
- Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Shengjie Lai
- WorldPop, Department of Geography and Environment, University of Southampton, Southampton SO17 IBJ, UK.
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200433, China.
- Flowminder Foundation, Roslagsgatan 17, SE-11355 Stockholm, Sweden.
| | - Qiyong Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
- WHO Collaborating Center for Vector Surveillance and Management, Beijing 102206, China.
| | - Haixia Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Weizhong Yang
- Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
204
|
Imported cases and minimum temperature drive dengue transmission in Guangzhou, China: evidence from ARIMAX model. Epidemiol Infect 2018; 146:1226-1235. [PMID: 29781412 PMCID: PMC9134281 DOI: 10.1017/s0950268818001176] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dengue is the fastest spreading mosquito-transmitted disease in the world. In China, Guangzhou City is believed to be the most important epicenter of dengue outbreaks although the transmission patterns are still poorly understood. We developed an autoregressive integrated moving average model incorporating external regressors to examine the association between the monthly number of locally acquired dengue infections and imported cases, mosquito densities, temperature and precipitation in Guangzhou. In multivariate analysis, imported cases and minimum temperature (both at lag 0) were both associated with the number of locally acquired infections (P < 0.05). This multivariate model performed best, featuring the lowest fitting root mean squared error (RMSE) (0.7520), AIC (393.7854) and test RMSE (0.6445), as well as the best effect in model validation for testing outbreak with a sensitivity of 1.0000, a specificity of 0.7368 and a consistency rate of 0.7917. Our findings suggest that imported cases and minimum temperature are two key determinants of dengue local transmission in Guangzhou. The modelling method can be used to predict dengue transmission in non-endemic countries and to inform dengue prevention and control strategies.
Collapse
|
205
|
Rees EE, Petukhova T, Mascarenhas M, Pelcat Y, Ogden NH. Environmental and social determinants of population vulnerability to Zika virus emergence at the local scale. Parasit Vectors 2018; 11:290. [PMID: 29739467 PMCID: PMC5941591 DOI: 10.1186/s13071-018-2867-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/23/2018] [Indexed: 01/05/2023] Open
Abstract
Background Zika virus (ZIKV) spread rapidly in the Americas in 2015. Targeting effective public health interventions for inhabitants of, and travellers to and from, affected countries depends on understanding the risk of ZIKV emergence (and re-emergence) at the local scale. We explore the extent to which environmental, social and neighbourhood disease intensity variables influenced emergence dynamics. Our objective was to characterise population vulnerability given the potential for sustained autochthonous ZIKV transmission and the timing of emergence. Logistic regression models estimated the probability of reporting at least one case of ZIKV in a given municipality over the course of the study period as an indicator for sustained transmission; while accelerated failure time (AFT) survival models estimated the time to a first reported case of ZIKV in week t for a given municipality as an indicator for timing of emergence. Results Sustained autochthonous ZIKV transmission was best described at the temporal scale of the study period (almost one year), such that high levels of study period precipitation and low mean study period temperature reduced the probability. Timing of ZIKV emergence was best described at the weekly scale for precipitation in that high precipitation in the current week delayed reporting. Both modelling approaches detected an effect of high poverty on reducing/slowing case detection, especially when inter-municipal road connectivity was low. We also found that proximity to municipalities reporting ZIKV had an effect to reduce timing of emergence when located, on average, less than 100 km away. Conclusions The different modelling approaches help distinguish between large temporal scale factors driving vector habitat suitability and short temporal scale factors affecting the speed of spread. We find evidence for inter-municipal movements of infected people as a local-scale driver of spatial spread. The negative association with poverty suggests reduced case reporting in poorer areas. Overall, relatively simplistic models may be able to predict the vulnerability of populations to autochthonous ZIKV transmission at the local scale. Electronic supplementary material The online version of this article (10.1186/s13071-018-2867-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erin E Rees
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada.
| | - Tatiana Petukhova
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Mariola Mascarenhas
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Yann Pelcat
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
206
|
Wen TH, Hsu CS, Hu MC. Evaluating neighborhood structures for modeling intercity diffusion of large-scale dengue epidemics. Int J Health Geogr 2018; 17:9. [PMID: 29724243 PMCID: PMC5934834 DOI: 10.1186/s12942-018-0131-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
Background Dengue fever is a vector-borne infectious disease that is transmitted by contact between vector mosquitoes and susceptible hosts. The literature has addressed the issue on quantifying the effect of individual mobility on dengue transmission. However, there are methodological concerns in the spatial regression model configuration for examining the effect of intercity-scale human mobility on dengue diffusion. The purposes of the study are to investigate the influence of neighborhood structures on intercity epidemic progression from pre-epidemic to epidemic periods and to compare definitions of different neighborhood structures for interpreting the spread of dengue epidemics. Methods We proposed a framework for assessing the effect of model configurations on dengue incidence in 2014 and 2015, which were the most severe outbreaks in 70 years in Taiwan. Compared with the conventional model configuration in spatial regression analysis, our proposed model used a radiation model, which reflects population flow between townships, as a spatial weight to capture the structure of human mobility. Results The results of our model demonstrate better model fitting performance, indicating that the structure of human mobility has better explanatory power in dengue diffusion than the geometric structure of administration boundaries and geographic distance between centroids of cities. We also identified spatial–temporal hierarchy of dengue diffusion: dengue incidence would be influenced by its immediate neighboring townships during pre-epidemic and epidemic periods, and also with more distant neighbors (based on mobility) in pre-epidemic periods. Conclusions Our findings suggest that the structure of population mobility could more reasonably capture urban-to-urban interactions, which implies that the hub cities could be a “bridge” for large-scale transmission and make townships that immediately connect to hub cities more vulnerable to dengue epidemics. Electronic supplementary material The online version of this article (10.1186/s12942-018-0131-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tzai-Hung Wen
- Department of Geography, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City, 10617, Taiwan.
| | - Ching-Shun Hsu
- Department of Geography, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City, 10617, Taiwan
| | - Ming-Che Hu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City, 10617, Taiwan
| |
Collapse
|
207
|
Stewart-Ibarra AM, Ryan SJ, Kenneson A, King CA, Abbott M, Barbachano-Guerrero A, Beltrán-Ayala E, Borbor-Cordova MJ, Cárdenas WB, Cueva C, Finkelstein JL, Lupone CD, Jarman RG, Maljkovic Berry I, Mehta S, Polhemus M, Silva M, Endy TP. The Burden of Dengue Fever and Chikungunya in Southern Coastal Ecuador: Epidemiology, Clinical Presentation, and Phylogenetics from the First Two Years of a Prospective Study. Am J Trop Med Hyg 2018; 98:1444-1459. [PMID: 29512482 PMCID: PMC5953373 DOI: 10.4269/ajtmh.17-0762] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/11/2018] [Indexed: 01/05/2023] Open
Abstract
Here, we report the findings from the first 2 years (2014-2015) of an arbovirus surveillance study conducted in Machala, Ecuador, a dengue-endemic region. Patients with suspected dengue virus (DENV) infections (index cases, N = 324) were referred from five Ministry of Health clinical sites. A subset of DENV-positive index cases (N = 44) were selected, and individuals from the index household and four neighboring homes within 200 m were recruited (N = 400). Individuals who entered the study, other than the index cases, are referred to as associates. In 2014, 70.9% of index cases and 35.6% of associates had acute or recent DENV infections. In 2015, 28.3% of index cases and 12.8% of associates had acute or recent DENV infections. For every DENV infection captured by passive surveillance, we detected an additional three acute or recent DENV infections in associates. Of associates with acute DENV infections, 68% reported dengue-like symptoms, with the highest prevalence of symptomatic acute infections in children aged less than 10 years. The first chikungunya virus (CHIKV) infections were detected on epidemiological week 12 in 2015; 43.1% of index cases and 3.5% of associates had acute CHIKV infections. No Zika virus infections were detected. Phylogenetic analyses of isolates of DENV from 2014 revealed genetic relatedness and shared ancestry of DENV1, DENV2, and DENV4 genomes from Ecuador with those from Venezuela and Colombia, indicating the presence of viral flow between Ecuador and surrounding countries. Enhanced surveillance studies, such as this, provide high-resolution data on symptomatic and inapparent infections across the population.
Collapse
Affiliation(s)
- Anna M. Stewart-Ibarra
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Sadie J. Ryan
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Geography, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- College of Life Sciences, University of Kwazulu-Natal, Durban, South Africa
| | - Aileen Kenneson
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Christine A. King
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Mark Abbott
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Arturo Barbachano-Guerrero
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Efraín Beltrán-Ayala
- Department of Medicine, Universidad Técnica de Machala, Machala, El Oro, Ecuador
| | - Mercy J. Borbor-Cordova
- Laboratorio para Investigaciónes Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Guayas Province, Ecuador
| | - Washington B. Cárdenas
- Laboratorio para Investigaciónes Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Guayas Province, Ecuador
| | - Cinthya Cueva
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | | | - Christina D. Lupone
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Public Health and Preventative Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Richard G. Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Mark Polhemus
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Mercy Silva
- Ministry of Health, Machala, El Oro, Ecuador
| | - Timothy P. Endy
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| |
Collapse
|
208
|
Zhu G, Xiao J, Zhang B, Liu T, Lin H, Li X, Song T, Zhang Y, Ma W, Hao Y. The spatiotemporal transmission of dengue and its driving mechanism: A case study on the 2014 dengue outbreak in Guangdong, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:252-259. [PMID: 29216466 DOI: 10.1016/j.scitotenv.2017.11.314] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 05/19/2023]
Abstract
Dengue transmission is a complex spatiotemporal process with hidden interactions between hosts, vectors, and viruses as well as environment. This study aims to identify the transmission patterns and the driving mechanism that contributed to the dengue epidemics occurred in Guangdong Province of China in 2014. Based on the city-specific epidemiological, meteorological, demographic and geographic data, we first performed wavelet analysis and then integrated the key dynamics (i.e., mosquito population dynamics, human movement, virus transmission, and parameter estimation) into a transmission model. Using these methods, we found a clear temporal sequence and correlation of dengue transmission between cities, and such relationship is associated with socioeconomic factors. We further obtained the specific component of dengue incidence data in each city, and presented the underlying infectivity networks for characterizing how dengue transmits from one location to another. The results showed that the communication of in-out infections with Guangzhou and Foshan could be responsible for the large-scale diffusion of dengue epidemics in Guangdong in 2014. Our findings can offer new insights into how to improve the predictability and risk assessment of dengue transmission.
Collapse
Affiliation(s)
- Guanghu Zhu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Bing Zhang
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Tao Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Hualiang Lin
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Xing Li
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Tie Song
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Yonghui Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Wenjun Ma
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| | - Yuantao Hao
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
209
|
Stone CM, Schwab SR, Fonseca DM, Fefferman NH. Human movement, cooperation and the effectiveness of coordinated vector control strategies. J R Soc Interface 2018; 14:rsif.2017.0336. [PMID: 28855386 DOI: 10.1098/rsif.2017.0336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
Vector-borne disease transmission is often typified by highly focal transmission and influenced by movement of hosts and vectors across different scales. The ecological and environmental conditions (including those created by humans through vector control programmes) that result in metapopulation dynamics remain poorly understood. The development of control strategies that would most effectively limit outbreaks given such dynamics is particularly urgent given the recent epidemics of dengue, chikungunya and Zika viruses. We developed a stochastic, spatial model of vector-borne disease transmission, allowing for movement of hosts between patches. Our model is applicable to arbovirus transmission by Aedes aegypti in urban settings and was parametrized to capture Zika virus transmission in particular. Using simulations, we investigated the extent to which two aspects of vector control strategies are affected by human commuting patterns: the extent of coordination and cooperation between neighbouring communities. We find that transmission intensity is highest at intermediate levels of host movement. The extent to which coordination of control activities among neighbouring patches decreases the prevalence of infection is affected by both how frequently humans commute and the proportion of neighbouring patches that commits to vector surveillance and control activities. At high levels of host movement, patches that do not contribute to vector control may act as sources of infection in the landscape, yet have comparable levels of prevalence as patches that do cooperate. This result suggests that real cooperation among neighbours will be critical to the development of effective pro-active strategies for vector-borne disease control in today's commuter-linked communities.
Collapse
Affiliation(s)
- Chris M Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA .,Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Samantha R Schwab
- Program in Ecology and Evolutionary Biology, Rutgers University, New Brunswick, NJ, USA
| | - Dina M Fonseca
- Center for Vector Biology, Rutgers University, New Brunswick, NJ, USA
| | - Nina H Fefferman
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
210
|
Gunning CE, Okamoto KW, Astete H, Vasquez GM, Erhardt E, Del Aguila C, Pinedo R, Cardenas R, Pacheco C, Chalco E, Rodriguez-Ferruci H, Scott TW, Lloyd AL, Gould F, Morrison AC. Efficacy of Aedes aegypti control by indoor Ultra Low Volume (ULV) insecticide spraying in Iquitos, Peru. PLoS Negl Trop Dis 2018; 12:e0006378. [PMID: 29624581 PMCID: PMC5906025 DOI: 10.1371/journal.pntd.0006378] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/18/2018] [Accepted: 03/08/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Aedes aegypti is a primary vector of dengue, chikungunya, Zika, and urban yellow fever viruses. Indoor, ultra low volume (ULV) space spraying with pyrethroid insecticides is the main approach used for Ae. aegypti emergency control in many countries. Given the widespread use of this method, the lack of large-scale experiments or detailed evaluations of municipal spray programs is problematic. METHODOLOGY/PRINCIPAL FINDINGS Two experimental evaluations of non-residual, indoor ULV pyrethroid spraying were conducted in Iquitos, Peru. In each, a central sprayed sector was surrounded by an unsprayed buffer sector. In 2013, spray and buffer sectors included 398 and 765 houses, respectively. Spraying reduced the mean number of adults captured per house by ~83 percent relative to the pre-spray baseline survey. In the 2014 experiment, sprayed and buffer sectors included 1,117 and 1,049 houses, respectively. Here, the sprayed sector's number of adults per house was reduced ~64 percent relative to baseline. Parity surveys in the sprayed sector during the 2014 spray period indicated an increase in the proportion of very young females. We also evaluated impacts of a 2014 citywide spray program by the local Ministry of Health, which reduced adult populations by ~60 percent. In all cases, adult densities returned to near-baseline levels within one month. CONCLUSIONS/SIGNIFICANCE Our results demonstrate that densities of adult Ae. aegypti can be reduced by experimental and municipal spraying programs. The finding that adult densities return to approximately pre-spray densities in less than a month is similar to results from previous, smaller scale experiments. Our results demonstrate that ULV spraying is best viewed as having a short-term entomological effect. The epidemiological impact of ULV spraying will need evaluation in future trials that measure capacity of insecticide spraying to reduce human infection or disease.
Collapse
Affiliation(s)
- Christian E. Gunning
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC United States of America
| | - Kenichi W. Okamoto
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC United States of America
| | - Helvio Astete
- Naval Medical Research Unit No. 6, 3230 Lima Pl., Washington DC, Lima and Iquitos, Peru
| | - Gissella M. Vasquez
- Naval Medical Research Unit No. 6, 3230 Lima Pl., Washington DC, Lima and Iquitos, Peru
| | - Erik Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, United States of America
| | - Clara Del Aguila
- Department of Environmental Sanitation, Peruvian Ministry of Health, Iquitos, Peru
| | - Raul Pinedo
- Department of Environmental Sanitation, Peruvian Ministry of Health, Iquitos, Peru
| | - Roldan Cardenas
- Department of Environmental Sanitation, Peruvian Ministry of Health, Iquitos, Peru
| | - Carlos Pacheco
- Department of Environmental Sanitation, Peruvian Ministry of Health, Iquitos, Peru
| | - Enrique Chalco
- Department of Environmental Sanitation, Peruvian Ministry of Health, Iquitos, Peru
| | | | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, CA, United States of America
| | - Alun L. Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC, United States of America
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC United States of America
| | - Amy C. Morrison
- Naval Medical Research Unit No. 6, 3230 Lima Pl., Washington DC, Lima and Iquitos, Peru
- Department of Entomology and Nematology, University of California, Davis, CA, United States of America
| |
Collapse
|
211
|
Katzelnick LC, Harris E. The use of longitudinal cohorts for studies of dengue viral pathogenesis and protection. Curr Opin Virol 2018; 29:51-61. [PMID: 29597086 PMCID: PMC5996389 DOI: 10.1016/j.coviro.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/12/2018] [Indexed: 12/31/2022]
Abstract
In this review, we describe how longitudinal prospective community-based, school-based, and household-based cohort studies contribute to improving our knowledge of viral disease, focusing specifically on contributions to understanding and preventing dengue. We describe how longitudinal cohorts enable measurement of essential disease parameters and risk factors; provide insights into biological correlates of protection and disease risk; enable rapid application of novel biological and statistical technologies; lead to development of new interventions and inform vaccine trial design; serve as sentinels in outbreak conditions and facilitate development of critical diagnostic assays; enable holistic studies on disease in the context of other infections, comorbidities, and environmental risk factors; and build research capacity that strengthens national and global public health response and disease surveillance.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, 1951 Oxford Street, Berkeley, CA 94720-3370, United States
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, 1951 Oxford Street, Berkeley, CA 94720-3370, United States.
| |
Collapse
|
212
|
Wiratsudakul A, Suparit P, Modchang C. Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches. PeerJ 2018; 6:e4526. [PMID: 29593941 PMCID: PMC5866925 DOI: 10.7717/peerj.4526] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/02/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The Zika virus was first discovered in 1947. It was neglected until a major outbreak occurred on Yap Island, Micronesia, in 2007. Teratogenic effects resulting in microcephaly in newborn infants is the greatest public health threat. In 2016, the Zika virus epidemic was declared as a Public Health Emergency of International Concern (PHEIC). Consequently, mathematical models were constructed to explicitly elucidate related transmission dynamics. SURVEY METHODOLOGY In this review article, two steps of journal article searching were performed. First, we attempted to identify mathematical models previously applied to the study of vector-borne diseases using the search terms "dynamics," "mathematical model," "modeling," and "vector-borne" together with the names of vector-borne diseases including chikungunya, dengue, malaria, West Nile, and Zika. Then the identified types of model were further investigated. Second, we narrowed down our survey to focus on only Zika virus research. The terms we searched for were "compartmental," "spatial," "metapopulation," "network," "individual-based," "agent-based" AND "Zika." All relevant studies were included regardless of the year of publication. We have collected research articles that were published before August 2017 based on our search criteria. In this publication survey, we explored the Google Scholar and PubMed databases. RESULTS We found five basic model architectures previously applied to vector-borne virus studies, particularly in Zika virus simulations. These include compartmental, spatial, metapopulation, network, and individual-based models. We found that Zika models carried out for early epidemics were mostly fit into compartmental structures and were less complicated compared to the more recent ones. Simple models are still commonly used for the timely assessment of epidemics. Nevertheless, due to the availability of large-scale real-world data and computational power, recently there has been growing interest in more complex modeling frameworks. DISCUSSION Mathematical models are employed to explore and predict how an infectious disease spreads in the real world, evaluate the disease importation risk, and assess the effectiveness of intervention strategies. As the trends in modeling of infectious diseases have been shifting towards data-driven approaches, simple and complex models should be exploited differently. Simple models can be produced in a timely fashion to provide an estimation of the possible impacts. In contrast, complex models integrating real-world data require more time to develop but are far more realistic. The preparation of complicated modeling frameworks prior to the outbreaks is recommended, including the case of future Zika epidemic preparation.
Collapse
Affiliation(s)
- Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Phutthamonthon, Nakhon Pathom, Thailand
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Phutthamonthon, Nakhon Pathom, Thailand
| | - Parinya Suparit
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
- Centre of Excellence in Mathematics, CHE, Ratchathewi, Bangkok, Thailand
| |
Collapse
|
213
|
Spatio-temporal coherence of dengue, chikungunya and Zika outbreaks in Merida, Mexico. PLoS Negl Trop Dis 2018; 12:e0006298. [PMID: 29543910 PMCID: PMC5870998 DOI: 10.1371/journal.pntd.0006298] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 02/04/2018] [Indexed: 12/12/2022] Open
Abstract
Response to Zika virus (ZIKV) invasion in Brazil lagged a year from its estimated February 2014 introduction, and was triggered by the occurrence of severe congenital malformations. Dengue (DENV) and chikungunya (CHIKV) invasions tend to show similar response lags. We analyzed geo-coded symptomatic case reports from the city of Merida, Mexico, with the goal of assessing the utility of historical DENV data to infer CHIKV and ZIKV introduction and propagation. About 42% of the 40,028 DENV cases reported during 2008–2015 clustered in 27% of the city, and these clustering areas were where the first CHIKV and ZIKV cases were reported in 2015 and 2016, respectively. Furthermore, the three viruses had significant agreement in their spatio-temporal distribution (Kendall W>0.63; p<0.01). Longitudinal DENV data generated patterns indicative of the resulting introduction and transmission patterns of CHIKV and ZIKV, leading to important insights for the surveillance and targeted control to emerging Aedes-borne viruses. Over the past decades, Aedes-borne viruses (dengue, chikungunya, Zika) have become a major source of morbidity within urban areas. Worldwide, public health response to these viruses is reactive to the occurrence of symptomatic cases (a small proportion of all infections). Here we used geocoded passive surveillance data to determine if areas of historically persistent dengue transmission fuel the introduction and propagation of other Aedes-borne viruses. This article provides quantitative evidence of the strong spatio-temporal overlap that occurs between dengue, chikungunya and Zika, all transmitted by Aedes aegypti mosquitoes in the city. Additionally, it emphasizes the value of analyzing long-term geo-coded passive surveillance information to help identify areas for prioritizing surveillance and control. Findings from this article open a window for considering historical DENV data to make predictions of likely sources of invasion for other emerging Aedes-borne viruses, as well as to the consideration of spatially-targeted approaches for delivery of vector control and surveillance. Arbovirus control in complex urban environments can greatly benefit from exploiting existing spatial information for better delivery of interventions.
Collapse
|
214
|
Enduri MK, Jolad S. Dynamics of dengue disease with human and vector mobility. Spat Spatiotemporal Epidemiol 2018; 25:57-66. [PMID: 29751893 DOI: 10.1016/j.sste.2018.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 10/30/2017] [Accepted: 03/03/2018] [Indexed: 10/17/2022]
Abstract
Dengue is a vector borne disease transmitted to humans by Aedes aegypti mosquitoes carrying virus of different serotypes. Dengue exhibits complex spatial and temporal dynamics, influenced by various biological, human and environmental factors. In this work, we study the dengue spread for a single serotype (DENV-1) including statistical models of human mobility with exponential step length distribution, by using reaction-diffusion equations and Stochastic Cellular Automata (SCA) approach. We analyze the spatial and temporal spreading of the disease using parameters from field studies. We choose mosquito density data from Ahmedabad city as a proxy for climate data in our SCA model. We find an interesting result that although human mobility makes the infection spread faster, there is an apparent early suppression of the epidemic compared to immobile humans. The disease extinction time is lesser when human mobility is included.
Collapse
Affiliation(s)
| | - Shivakumar Jolad
- Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 380005, India.
| |
Collapse
|
215
|
Pizzitutti F, Pan W, Feingold B, Zaitchik B, Álvarez CA, Mena CF. Out of the net: An agent-based model to study human movements influence on local-scale malaria transmission. PLoS One 2018; 13:e0193493. [PMID: 29509795 PMCID: PMC5839546 DOI: 10.1371/journal.pone.0193493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/12/2018] [Indexed: 01/08/2023] Open
Abstract
Though malaria control initiatives have markedly reduced malaria prevalence in recent decades, global eradication is far from actuality. Recent studies show that environmental and social heterogeneities in low-transmission settings have an increased weight in shaping malaria micro-epidemiology. New integrated and more localized control strategies should be developed and tested. Here we present a set of agent-based models designed to study the influence of local scale human movements on local scale malaria transmission in a typical Amazon environment, where malaria is transmission is low and strongly connected with seasonal riverine flooding. The agent-based simulations show that the overall malaria incidence is essentially not influenced by local scale human movements. In contrast, the locations of malaria high risk spatial hotspots heavily depend on human movements because simulated malaria hotspots are mainly centered on farms, were laborers work during the day. The agent-based models are then used to test the effectiveness of two different malaria control strategies both designed to reduce local scale malaria incidence by targeting hotspots. The first control scenario consists in treat against mosquito bites people that, during the simulation, enter at least once inside hotspots revealed considering the actual sites where human individuals were infected. The second scenario involves the treatment of people entering in hotspots calculated assuming that the infection sites of every infected individual is located in the household where the individual lives. Simulations show that both considered scenarios perform better in controlling malaria than a randomized treatment, although targeting household hotspots shows slightly better performance.
Collapse
Affiliation(s)
- Francesco Pizzitutti
- Universidad San Francisco de Quito, Instituto de Geografía, Quito, Ecuador
- Duke University, Duke global Health Institute, Durham, NC, United States of America
| | - William Pan
- Duke University, Duke global Health Institute, Durham, NC, United States of America
| | - Beth Feingold
- SUNY-Albany, School of Public Health, Rensselaer, Albany, NY, United States of America
| | - Ben Zaitchik
- Johns Hopkins University, Morton K. Blaustein Department of Earth & Planetary Sciences, Baltimore, MD, United States of America
| | | | - Carlos F. Mena
- Universidad San Francisco de Quito, Instituto de Geografía, Quito, Ecuador
| |
Collapse
|
216
|
Che-Mendoza A, Medina-Barreiro A, Koyoc-Cardeña E, Uc-Puc V, Contreras-Perera Y, Herrera-Bojórquez J, Dzul-Manzanilla F, Correa-Morales F, Ranson H, Lenhart A, McCall PJ, Kroeger A, Vazquez-Prokopec G, Manrique-Saide P. House screening with insecticide-treated netting provides sustained reductions in domestic populations of Aedes aegypti in Merida, Mexico. PLoS Negl Trop Dis 2018; 12:e0006283. [PMID: 29543805 PMCID: PMC5870999 DOI: 10.1371/journal.pntd.0006283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 03/27/2018] [Accepted: 01/30/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND There is a need for effective methods to control Aedes aegypti and prevent the transmission of dengue, chikungunya, yellow fever and Zika viruses. Insecticide treated screening (ITS) is a promising approach, particularly as it targets adult mosquitoes to reduce human-mosquito contact. METHODOLOGY/PRINCIPAL FINDINGS A cluster-randomised controlled trial evaluated the entomological efficacy of ITS based intervention, which consisted of the installation of pyrethroid-impregnated long-lasting insecticide-treated netting material fixed as framed screens on external doors and windows. A total of 10 treatment and 10 control clusters (100 houses/cluster) were distributed throughout the city of Merida, Mexico. Cross-sectional entomological surveys quantified indoor adult mosquito infestation at baseline (pre-intervention) and throughout four post-intervention (PI) surveys spaced at 6-month intervals corresponding to dry/rainy seasons over two years (2012-2014). A total of 844 households from intervention clusters (86% coverage) were protected with ITS at the start of the trial. Significant reductions in the indoor presence and abundance of Ae. aegypti adults (OR = 0.48 and IRR = 0.45, P<0.05 respectively) and the indoor presence and abundance of Ae. aegypti female mosquitoes (OR = 0.47 and IRR = 0.44, P<0.05 respectively) were detected in intervention clusters compared to controls. This high level of protective effect was sustained for up to 24 months PI. Insecticidal activity of the ITS material declined with time, with ~70% mortality being demonstrated in susceptible mosquito cohorts up to 24 months after installation. CONCLUSIONS/SIGNIFICANCE The strong and sustained entomological impact observed in this study demonstrates the potential of house screening as a feasible, alternative approach to a sustained long-term impact on household infestations of Ae. aegypti. Larger trials quantifying the effectiveness of ITS on epidemiological endpoints are warranted and therefore recommended.
Collapse
Affiliation(s)
- Azael Che-Mendoza
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
- Centro Nacional de Programas Preventivos y Control de Enfermedades, Secretaria de Salud, Ciudad de Mexico, Mexico
| | - Anuar Medina-Barreiro
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
| | - Edgar Koyoc-Cardeña
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
| | - Valentín Uc-Puc
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
| | - Yamili Contreras-Perera
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
| | - Josué Herrera-Bojórquez
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
| | - Felipe Dzul-Manzanilla
- Centro Nacional de Programas Preventivos y Control de Enfermedades, Secretaria de Salud, Ciudad de Mexico, Mexico
| | - Fabian Correa-Morales
- Centro Nacional de Programas Preventivos y Control de Enfermedades, Secretaria de Salud, Ciudad de Mexico, Mexico
| | - Hilary Ranson
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Audrey Lenhart
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centers for Disease Control and Prevention, Entomology Branch, Atlanta, Georgia, United States of America
| | - Philip J. McCall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Axel Kroeger
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Gonzalo Vazquez-Prokopec
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
| |
Collapse
|
217
|
Sedda L, Vilela APP, Aguiar ERGR, Gaspar CHP, Gonçalves ANA, Olmo RP, Silva ATS, de Cássia da Silveira L, Eiras ÁE, Drumond BP, Kroon EG, Marques JT. The spatial and temporal scales of local dengue virus transmission in natural settings: a retrospective analysis. Parasit Vectors 2018; 11:79. [PMID: 29394906 PMCID: PMC5797342 DOI: 10.1186/s13071-018-2662-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/19/2018] [Indexed: 11/10/2022] Open
Abstract
Background Dengue is a vector-borne disease caused by the dengue virus (DENV). Despite the crucial role of Aedes mosquitoes in DENV transmission, pure vector indices poorly correlate with human infections. Therefore there is great need for a better understanding of the spatial and temporal scales of DENV transmission between mosquitoes and humans. Here, we have systematically monitored the circulation of DENV in individual Aedes spp. mosquitoes and human patients from Caratinga, a dengue endemic city in the state of Minas Gerais, in Southeast Brazil. From these data, we have developed a novel stochastic point process pattern algorithm to identify the spatial and temporal association between DENV infected mosquitoes and human patients. Methods The algorithm comprises of: (i) parameterization of the variogram for the incidence of each DENV serotype in mosquitoes; (ii) identification of the spatial and temporal ranges and variances of DENV incidence in mosquitoes in the proximity of humans infected with dengue; and (iii) analysis of the association between a set of environmental variables and DENV incidence in mosquitoes in the proximity of humans infected with dengue using a spatio-temporal additive, geostatistical linear model. Results DENV serotypes 1 and 3 were the most common virus serotypes detected in both mosquitoes and humans. Using the data on each virus serotype separately, our spatio-temporal analyses indicated that infected humans were located in areas with the highest DENV incidence in mosquitoes, when incidence is calculated within 2.5–3 km and 50 days (credible interval 30–70 days) before onset of symptoms in humans. These measurements are in agreement with expected distances covered by mosquitoes and humans and the time for virus incubation. Finally, DENV incidence in mosquitoes found in the vicinity of infected humans correlated well with the low wind speed, higher air temperature and northerly winds that were more likely to favor vector survival and dispersal in Caratinga. Conclusions We have proposed a new way of modeling bivariate point pattern on the transmission of arthropod-borne pathogens between vector and host when the location of infection in the latter is known. This strategy avoids some of the strong and unrealistic assumptions made by other point-process models. Regarding virus transmission in Caratinga, our model showed a strong and significant association between high DENV incidence in mosquitoes and the onset of symptoms in humans at specific spatial and temporal windows. Together, our results indicate that vector surveillance must be a priority for dengue control. Nevertheless, localized vector control at distances lower than 2.5 km around premises with infected vectors in densely populated areas are not likely to be effective. Electronic supplementary material The online version of this article (10.1186/s13071-018-2662-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luigi Sedda
- Centre for Health Information Computation and Statistics (CHICAS), Furness Building, Lancaster University, Lancaster, LA1 4YG, UK
| | - Ana Paula Pessoa Vilela
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30270-901, Brazil.,Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30270-901, Brazil
| | - Eric Roberto Guimarães Rocha Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30270-901, Brazil.,Present Address: Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Caio Henrique Pessoa Gaspar
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30270-901, Brazil
| | - André Nicolau Aquime Gonçalves
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30270-901, Brazil
| | - Roenick Proveti Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30270-901, Brazil
| | - Ana Teresa Saraiva Silva
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30270-901, Brazil
| | - Lízia de Cássia da Silveira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30270-901, Brazil
| | - Álvaro Eduardo Eiras
- Department of Parasitology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30270-901, Brazil
| | - Betânia Paiva Drumond
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30270-901, Brazil
| | - Erna Geessien Kroon
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30270-901, Brazil
| | - João Trindade Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30270-901, Brazil.
| |
Collapse
|
218
|
Quyen DL, Thanh Le N, Van Anh CT, Nguyen NB, Hoang DV, Montgomery JL, Kutcher SC, Hoang Le N, Hien NT, Hue Kien DT, Rabaa M, O’Neill SL, Simmons CP, Anh DD, Anders KL. Epidemiological, Serological, and Virological Features of Dengue in Nha Trang City, Vietnam. Am J Trop Med Hyg 2018; 98:402-409. [PMID: 29313471 PMCID: PMC5929208 DOI: 10.4269/ajtmh.17-0630] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/31/2017] [Indexed: 11/07/2022] Open
Abstract
Vietnam is endemic for dengue. We conducted a series of retrospective and prospective studies to characterize the epidemiology of dengue and population mobility patterns in Nha Trang city, Vietnam, with a view to rational design of trials of community-level interventions. A 10-year time series of dengue case notifications showed pronounced interannual variability, as well as spatial heterogeneity in ward-level dengue incidence (median annual coefficient of variation k = 0.47). Of 451 children aged 1-10 years enrolled in a cross-sectional serosurvey, almost one-third had evidence of a past dengue virus (DENV) infection, with older children more likely to have a multitypic response indicative of past exposure to ≥ 1 serotype. All four DENV serotypes were detected in hospitalized patients during 8 months of sampling in 2015. Mobility data collected from 1,000 children and young adults via prospective travel diaries showed that, although all ages spent approximately half of their daytime hours (5:00 am-9:00 pm) at home, younger age groups (≤ 14 years) spent a significantly greater proportion of their time within 500 m of home than older respondents. Together these findings inform the rational design of future trials of dengue preventive interventions in this setting by identifying 1) children < 7 years as an optimal target group for a flavivirus-naive serological cohort, 2) children and young adults as the predominant patient population for a study with a clinical end point of symptomatic dengue, and 3) substantial spatial and temporal variations in DENV transmission, with a consequent requirement for a trial to be large enough and of long enough duration to overcome this heterogeneity.
Collapse
Affiliation(s)
- Duong Le Quyen
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
- Institute for Vector Borne Disease, Monash University, Clayton, Australia
| | - Nguyen Thanh Le
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Cao Thi Van Anh
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Dong Van Hoang
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Simon C. Kutcher
- Institute for Vector Borne Disease, Monash University, Clayton, Australia
| | - Nguyen Hoang Le
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Duong Thi Hue Kien
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Maia Rabaa
- Institute for Vector Borne Disease, Monash University, Clayton, Australia
| | - Scott L. O’Neill
- Institute for Vector Borne Disease, Monash University, Clayton, Australia
| | - Cameron P. Simmons
- Institute for Vector Borne Disease, Monash University, Clayton, Australia
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Department of Microbiology and Immunology, University of Melbourne, Doherty Institute, Melbourne, Australia
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | |
Collapse
|
219
|
Thomas DL, Santiago GA, Abeyta R, Hinojosa S, Torres-Velasquez B, Adam JK, Evert N, Caraballo E, Hunsperger E, Muñoz-Jordán JL, Smith B, Banicki A, Tomashek KM, Gaul L, Sharp TM. Reemergence of Dengue in Southern Texas, 2013. Emerg Infect Dis 2018; 22:1002-7. [PMID: 27191223 PMCID: PMC4880107 DOI: 10.3201/eid2206.152000] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During a dengue epidemic in northern Mexico, enhanced surveillance identified 53 laboratory-positive cases in southern Texas; 26 (49%) patients acquired the infection locally, and 29 (55%) were hospitalized. Of 83 patient specimens that were initially IgM negative according to ELISA performed at a commercial laboratory, 14 (17%) were dengue virus positive by real-time reverse transcription PCR performed at the Centers for Disease Control and Prevention. Dengue virus types 1 and 3 were identified, and molecular phylogenetic analysis demonstrated close identity with viruses that had recently circulated in Mexico and Central America. Of 51 household members of 22 dengue case-patients who participated in household investigations, 6 (12%) had been recently infected with a dengue virus and reported no recent travel, suggesting intrahousehold transmission. One household member reported having a recent illness consistent with dengue. This outbreak reinforces emergence of dengue in southern Texas, particularly when incidence is high in northern Mexico.
Collapse
|
220
|
Pérez D, Van der Stuyft P, Toledo ME, Ceballos E, Fabré F, Lefèvre P. Insecticide treated curtains and residual insecticide treatment to control Aedes aegypti: An acceptability study in Santiago de Cuba. PLoS Negl Trop Dis 2018; 12:e0006115. [PMID: 29293501 PMCID: PMC5766245 DOI: 10.1371/journal.pntd.0006115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 01/12/2018] [Accepted: 11/14/2017] [Indexed: 11/21/2022] Open
Abstract
Background Within the context of a field trial conducted by the Cuban vector control program (AaCP), we assessed acceptability of insecticide-treated curtains (ITCs) and residual insecticide treatment (RIT) with deltamethrin by the community. We also assessed the potential influence of interviewees’ risk perceptions for getting dengue and disease severity. Methodology/principal findings We embedded a qualitative study using in-depth interviews in a cluster randomized trial (CRT) testing the effectiveness of ITCs and RIT in Santiago de Cuba. In-depth interviews (N = 38) were conducted four and twelve months after deployment of the tools with people who accepted the tools, who stopped using them and who did not accept the tools. Data analysis was deductive. Main reasons for accepting ITCs at the start of the trial were perceived efficacy and not being harmful to health. Constraints linked to manufacturer instructions were the main reason for not using ITCs. People stopped using the ITCs due to perceived allergy, toxicity and low efficacy. Few heads of households refused RIT despite the noting reasons for rejection, such as allergy, health hazard and toxicity. Positive opinions of the vector control program influenced acceptability of both tools. However, frequent insecticide fogging as part of routine AaCP vector control actions diminished perceived efficacy of both tools and, therefore, acceptability. Fifty percent of interviewees did feel at risk for getting dengue and considered dengue a severe disease. However, this did not appear to influence acceptability of ITCs or RIT. Conclusion/significance Acceptability of ITCs and RIT was linked to acceptability of AaCP routine vector control activities. However, uptake and use were not always an indication of acceptability. Factors leading to acceptability may be best identified using qualitative methods, but more research is needed on the concept of acceptability and its measurement. We aimed to understand what makes insecticide-treated curtains (ITCs) and residual insecticide treatment (RIT) with deltamethrin acceptable or not to users of these tools. In-depth interviews were conducted as part of a field trial conducted by the Cuban vector control program (AaCP) to test the effectiveness of these tools in Santiago de Cuba. Perceived efficacy was the main reason for interviewees who accepted the tools. Constraints linked to manufacturer instructions were the main reason for not using the ITCs when offered at the start of the trial. People stopped using the ITCs due to perceived allergy, toxicity and low efficacy. Few heads of households refused RIT despite identifying various reasons for rejection, such as allergy, health hazard and toxicity. Positive opinions of the Cuban vector control program influenced acceptability of both tools. On the contrary, perceptions of dengue risk did not appear to influence acceptability of ITCs or RIT. Our findings add on the importance of the growing body of qualitative research assessing acceptability of health interventions.
Collapse
Affiliation(s)
- Dennis Pérez
- Department of Epidemiology, Institute of Tropical Medicine Pedro Kourí, Havana, Cuba
- * E-mail:
| | - Patrick Van der Stuyft
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Public Health, Ghent University, Ghent, Belgium
| | - María Eugenia Toledo
- Department of Epidemiology, Institute of Tropical Medicine Pedro Kourí, Havana, Cuba
| | - Enrique Ceballos
- Department of Vector Control, Polyclinic Armando García, Santiago de Cuba, Cuba
| | - Francisco Fabré
- Department of Vector Control, Provincial Surveillance and Vector Control Unit, Santiago de Cuba, Cuba
| | - Pierre Lefèvre
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
221
|
Abstract
The role of intra-host genetic diversity in dengue viral populations remains a topic of debate, particularly the impact on transmission of changes in this diversity. Several approaches have been taken to increasing and decreasing the genetic diversity of populations of RNA viruses and have drawn what appear to be contradictory conclusions. A 2-6 fold increase in genetic diversity of a wild type population of dengue virus serotype 1(DENV1) and of an infectious clone population derived from the wild type population, produced by treatment with nucleotide analogue 5 fluorouracil (5FU), drove the populations to extinction. Removal of 5FU immediately prior to extinction, resulted in a return to pre-treatment levels of fitness and genetic diversity, albeit with novel single nucleotide polymorphisms. These observations support the concept that DENV populations exist on fitness peaks determined by their transmission requirements and either an increase or a decrease in genetic diversity may result in a loss of fitness.
Collapse
|
222
|
Jia H, Zhang M, Chen M, Yang Z, Li J, Huang G, Guan D, Cen X, Zhang L, Feng Q, Yi J, Wu D, Zhong H, Ma H, Song T. Zika virus infection in travelers returning from countries with local transmission, Guangdong, China, 2016. Travel Med Infect Dis 2018; 21:56-61. [DOI: 10.1016/j.tmaid.2017.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/13/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
|
223
|
Kraemer MUG, Bisanzio D, Reiner RC, Zakar R, Hawkins JB, Freifeld CC, Smith DL, Hay SI, Brownstein JS, Perkins TA. Inferences about spatiotemporal variation in dengue virus transmission are sensitive to assumptions about human mobility: a case study using geolocated tweets from Lahore, Pakistan. EPJ DATA SCIENCE 2018; 7:16. [PMID: 30854281 PMCID: PMC6404370 DOI: 10.1140/epjds/s13688-018-0144-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/31/2018] [Indexed: 05/14/2023]
Abstract
UNLABELLED Billions of users of mobile phones, social media platforms, and other technologies generate an increasingly large volume of data that has the potential to be leveraged towards solving public health challenges. These and other big data resources tend to be most successful in epidemiological applications when utilized within an appropriate conceptual framework. Here, we demonstrate the importance of assumptions about host mobility in a framework for dynamic modeling of infectious disease spread among districts within a large urban area. Our analysis focused on spatial and temporal variation in the transmission of dengue virus (DENV) during a series of large seasonal epidemics in Lahore, Pakistan during 2011-2014. Similar to many directly transmitted diseases, DENV transmission occurs primarily where people spend time during daytime hours, given that DENV is transmitted by a day-biting mosquito. We inferred spatiotemporal variation in DENV transmission under five different assumptions about mobility patterns among ten districts of Lahore: no movement among districts, movement following patterns of geo-located tweets, movement proportional to district population size, and movement following the commonly used gravity and radiation models. Overall, we found that inferences about spatiotemporal variation in DENV transmission were highly sensitive to this range of assumptions about intra-urban human mobility patterns, although the three assumptions that allowed for a modest degree of intra-urban mobility all performed similarly in key respects. Differing inferences about transmission patterns based on our analysis are significant from an epidemiological perspective, as they have different implications for where control efforts should be targeted and whether conditions for transmission became more or less favorable over time. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (10.1140/epjds/s13688-018-0144-x) contains supplementary material.
Collapse
Affiliation(s)
- Moritz U. G. Kraemer
- Department of Pediatrics, Harvard Medical School, Boston, USA
- Computational Epidemiology Lab, Boston Children’s Hospital, Boston, USA
- Department of Zoology, University of Oxford, Oxford, UK
| | - D. Bisanzio
- RTI International, Washington, USA
- Center for Tropical Diseases, Sacro Cuore-Don Calabria Hospital, Negrar, Italy
| | - R. C. Reiner
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
| | - R. Zakar
- Department of Public Health, University of Punjab, Lahore, Pakistan
| | - J. B. Hawkins
- Department of Pediatrics, Harvard Medical School, Boston, USA
- Computational Epidemiology Lab, Boston Children’s Hospital, Boston, USA
| | - C. C. Freifeld
- Computational Epidemiology Lab, Boston Children’s Hospital, Boston, USA
- College of Computer and Information Science, Northeastern University, Boston, USA
| | - D. L. Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
- Sanaria Institute for Global Health and Tropical Medicine, Rockville, USA
| | - S. I. Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
| | - J. S. Brownstein
- Department of Pediatrics, Harvard Medical School, Boston, USA
- Computational Epidemiology Lab, Boston Children’s Hospital, Boston, USA
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, USA
| |
Collapse
|
224
|
Grunnill M. An exploration of the role of asymptomatic infections in the epidemiology of dengue viruses through susceptible, asymptomatic, infected and recovered (SAIR) models. J Theor Biol 2017; 439:195-204. [PMID: 29233775 DOI: 10.1016/j.jtbi.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 11/21/2017] [Accepted: 12/08/2017] [Indexed: 02/03/2023]
Abstract
It is estimated that 20-97% of all dengue infections could be asymptomatic. I used SIR models to investigate the epidemiological role of such infections, by adding an asymptomatic class (SAIR models). Upon infection in one of the models, a human becomes either symptomatic or asymptomatic. In the other, a human becomes asymptomatic and may progress to being symptomatic. The robustness of results from these models is examined by incorporating the mosquito-vector into one of the models, followed by simulating epidemic dynamics stochastically. Results from the first two models were very similar, with epidemics typically lasting less than one year. When mosquitoes were explicitly modelled in a high-transmission setting, if the level or duration of infectivity from asymptomatic infections was high relative to symptomatic infections, dengue would become endemic. Under stochastic simulation this effect of asymptomatic infections leading to dengue persisting was no longer guaranteed. Longer durations in asymptomatic infections had a higher chance of causing dengue's persistence in stochastic simulation, indicating that this may be more of a key determinant for dengue's persistence to 10 years than the infectivity of such infections. Otherwise, the level and duration of infectivity from asymptomatic infections had similar effects on R0 and other epidemiological measures. With all models, outbreaks often led to a larger proportion of the population being immune than suggested by monitoring symptomatic dengue infections. This population would be at risk of developing severe dengue in a subsequent outbreak with a different dengue serotype, and would have to be determined via expansion factors.
Collapse
Affiliation(s)
- Martin Grunnill
- Center for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom; USGS National Wildlife Health Center, 6006 Schroeder Road, Madison, WI 53711-6223, United States of America.
| |
Collapse
|
225
|
Perkins TA, Paz-Soldan VA, Stoddard ST, Morrison AC, Forshey BM, Long KC, Halsey ES, Kochel TJ, Elder JP, Kitron U, Scott TW, Vazquez-Prokopec GM. Calling in sick: impacts of fever on intra-urban human mobility. Proc Biol Sci 2017; 283:rspb.2016.0390. [PMID: 27412286 DOI: 10.1098/rspb.2016.0390] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/21/2016] [Indexed: 11/12/2022] Open
Abstract
Pathogens inflict a wide variety of disease manifestations on their hosts, yet the impacts of disease on the behaviour of infected hosts are rarely studied empirically and are seldom accounted for in mathematical models of transmission dynamics. We explored the potential impacts of one of the most common disease manifestations, fever, on a key determinant of pathogen transmission, host mobility, in residents of the Amazonian city of Iquitos, Peru. We did so by comparing two groups of febrile individuals (dengue-positive and dengue-negative) with an afebrile control group. A retrospective, semi-structured interview allowed us to quantify multiple aspects of mobility during the two-week period preceding each interview. We fitted nested models of each aspect of mobility to data from interviews and compared models using likelihood ratio tests to determine whether there were statistically distinguishable differences in mobility attributable to fever or its aetiology. Compared with afebrile individuals, febrile study participants spent more time at home, visited fewer locations, and, in some cases, visited locations closer to home and spent less time at certain types of locations. These multifaceted impacts are consistent with the possibility that disease-mediated changes in host mobility generate dynamic and complex changes in host contact network structure.
Collapse
Affiliation(s)
- T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA Department of Entomology and Nematology, University of California, Davis, CA, USA Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Valerie A Paz-Soldan
- Department of Global Health Systems and Development, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Steven T Stoddard
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Amy C Morrison
- Department of Entomology and Nematology, University of California, Davis, CA, USA United States Naval Medical Research Unit No. 6, Lima, Peru
| | | | - Kanya C Long
- Department of Entomology and Nematology, University of California, Davis, CA, USA Department of Biology, Andrews University, Berrien Springs, MI, USA
| | - Eric S Halsey
- United States Naval Medical Research Unit No. 6, Lima, Peru
| | | | - John P Elder
- Institute for Behavioral and Community Health, Graduate School of Public Health, San Diego State University, San Diego, CA, USA
| | - Uriel Kitron
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Thomas W Scott
- Department of Entomology and Nematology, University of California, Davis, CA, USA Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Gonzalo M Vazquez-Prokopec
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|
226
|
Ren H, Zheng L, Li Q, Yuan W, Lu L. Exploring Determinants of Spatial Variations in the Dengue Fever Epidemic Using Geographically Weighted Regression Model: A Case Study in the Joint Guangzhou-Foshan Area, China, 2014. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14121518. [PMID: 29211001 PMCID: PMC5750936 DOI: 10.3390/ijerph14121518] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023]
Abstract
Dengue fever (DF) is a common and rapidly spreading vector-borne viral disease in tropical and subtropical regions. In recent years, this imported disease has posed an increasing threat to public health in China, especially in many southern cities. Although the severity of DF outbreaks in these cities is generally associated with known risk factors at various administrative levels, spatial heterogeneities of these associations remain little understood on a finer scale. In this study, the neighboring Guangzhou and Foshan (GF) cities were considered as a joint area for characterizing the spatial variations in the 2014 DF epidemic at various grid levels from 1 × 1 km2 to 6 × 6 km2. On an appropriate scale, geographically weighted regression (GWR) models were employed to interpret the influences of socioeconomic and environmental factors on this epidemic across the GF area. DF transmissions in Guangzhou and Foshan cities presented synchronous temporal changes and spatial expansions during the main epidemic months. Across the GF area, this epidemic was obviously spatially featured at various grid levels, especially on the 2 × 2 km2 scale. Its spatial variations were relatively sufficiently explained by population size, road density, and economic status integrated in the GWR model with the lowest Akaike Information Criterion (AICc = 5227.97) and highest adjusted R square (0.732) values. These results indicated that these three socioeconomic factors acted as geographical determinants of spatial variability of the 2014 DF epidemic across the joint GF area, although some other potential factors should be added to improve the explaining the spatial variations in the central zones. This work improves our understanding of the effects of socioeconomic conditions on the spatial variations in this epidemic and helps local hygienic authorities to make targeted joint interventions for preventing and controlling this epidemic across the GF area.
Collapse
Affiliation(s)
- Hongyan Ren
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lan Zheng
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China.
| | - Qiaoxuan Li
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
- College of Geographical Science, Fujian Normal University, Fuzhou 350007, China.
| | - Wu Yuan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Liang Lu
- Department of Vector Biology and Control, Natural Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
227
|
Arthur RF, Gurley ES, Salje H, Bloomfield LSP, Jones JH. Contact structure, mobility, environmental impact and behaviour: the importance of social forces to infectious disease dynamics and disease ecology. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0454. [PMID: 28289265 DOI: 10.1098/rstb.2016.0454] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2016] [Indexed: 11/12/2022] Open
Abstract
Human factors, including contact structure, movement, impact on the environment and patterns of behaviour, can have significant influence on the emergence of novel infectious diseases and the transmission and amplification of established ones. As anthropogenic climate change alters natural systems and global economic forces drive land-use and land-cover change, it becomes increasingly important to understand both the ecological and social factors that impact infectious disease outcomes for human populations. While the field of disease ecology explicitly studies the ecological aspects of infectious disease transmission, the effects of the social context on zoonotic pathogen spillover and subsequent human-to-human transmission are comparatively neglected in the literature. The social sciences encompass a variety of disciplines and frameworks for understanding infectious diseases; however, here we focus on four primary areas of social systems that quantitatively and qualitatively contribute to infectious diseases as social-ecological systems. These areas are social mixing and structure, space and mobility, geography and environmental impact, and behaviour and behaviour change. Incorporation of these social factors requires empirical studies for parametrization, phenomena characterization and integrated theoretical modelling of social-ecological interactions. The social-ecological system that dictates infectious disease dynamics is a complex system rich in interacting variables with dynamically significant heterogeneous properties. Future discussions about infectious disease spillover and transmission in human populations need to address the social context that affects particular disease systems by identifying and measuring qualitatively important drivers.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Collapse
Affiliation(s)
- Ronan F Arthur
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA 94305, USA
| | - Emily S Gurley
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD 21205, USA.,International Centre for Diarrhoeal Diseases Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh
| | - Henrik Salje
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD 21205, USA.,Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France
| | - Laura S P Bloomfield
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA 94305, USA.,Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James H Jones
- Department of Earth Systems Science, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
228
|
Toledo ME, Vanlerberghe V, Rosales JP, Mirabal M, Cabrera P, Fonseca V, Gómez Padrón T, Pérez Menzies M, Montada D, Van der Stuyft P. The additional benefit of residual spraying and insecticide-treated curtains for dengue control over current best practice in Cuba: Evaluation of disease incidence in a cluster randomized trial in a low burden setting with intensive routine control. PLoS Negl Trop Dis 2017; 11:e0006031. [PMID: 29117180 PMCID: PMC5695847 DOI: 10.1371/journal.pntd.0006031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/20/2017] [Accepted: 10/11/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Aedes control interventions are considered the cornerstone of dengue control programmes, but there is scarce evidence on their effect on disease. We set-up a cluster randomized controlled trial in Santiago de Cuba to evaluate the entomological and epidemiological effectiveness of periodical intra- and peri-domiciliary residual insecticide (deltamethrin) treatment (RIT) and long lasting insecticide treated curtains (ITC). METHODOLOGY/PRINCIPAL FINDINGS Sixty three clusters (around 250 households each) were randomly allocated to two intervention (RIT and ITC) and one control arm. Routine Aedes control activities (entomological surveillance, source reduction, selective adulticiding, health education) were applied in the whole study area. The outcome measures were clinical dengue case incidence and immature Aedes infestation. Effectiveness of tools was evaluated using a generalized linear regression model with a negative binomial link function. Despite significant reduction in Aedes indices (Rate Ratio (RR) 0.54 (95%CI 0.32-0.89) in the first month after RIT, the effect faded out over time and dengue incidence was not reduced. Overall, in this setting there was no protective effect of RIT or ITC over routine in the 17months intervention period, with for house index RR of 1.16 (95%CI 0.96-1.40) and 1.25 (95%CI 1.03-1.50) and for dengue incidence RR of 1.43 (95%CI 1.08-1.90) and 0.96 (95%CI 0.72-1.28) respectively. The monthly dengue incidence rate (IR) at cluster level was best explained by epidemic periods (Incidence Rate Ratio (IRR) 5.50 (95%CI 4.14-7.31)), the IR in bordering houseblocks (IRR 1.03 (95%CI 1.02-1.04)) and the IR pre-intervention (IRR 1.02 (95%CI 1.00-1.04)). CONCLUSIONS Adding RIT to an intensive routine Aedes control programme has a transient effect on the already moderate low entomological infestation levels, while ITC did not have any effect. For both interventions, we didn't evidence impact on disease incidence. Further studies are needed to evaluate impact in settings with high Aedes infestation and arbovirus case load.
Collapse
Affiliation(s)
- Maria Eugenia Toledo
- Department of Epidemiology, Institute of Tropical Medicine “Pedro Kourí”, La Habana, Cuba
| | - Veerle Vanlerberghe
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Julio Popa Rosales
- Provincial Center of Surveillance and Vector Control, Santiago de Cuba, Cuba
| | - Mayelin Mirabal
- Finlay Institute - Center for Vaccines Research and Production, Habana, Cuba
| | - Pedro Cabrera
- Provincial Center of Surveillance and Vector Control, Santiago de Cuba, Cuba
| | - Viviana Fonseca
- Provincial Center of Surveillance and Vector Control, Santiago de Cuba, Cuba
| | | | | | - Domingo Montada
- Department of Epidemiology, Institute of Tropical Medicine “Pedro Kourí”, La Habana, Cuba
| | - Patrick Van der Stuyft
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
- University of Ghent, Ghent, Belgium
| |
Collapse
|
229
|
Lana RM, Gomes MFDC, de Lima TFM, Honório NA, Codeço CT. The introduction of dengue follows transportation infrastructure changes in the state of Acre, Brazil: A network-based analysis. PLoS Negl Trop Dis 2017; 11:e0006070. [PMID: 29149175 PMCID: PMC5693297 DOI: 10.1371/journal.pntd.0006070] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/25/2017] [Indexed: 11/19/2022] Open
Abstract
Human mobility, presence and passive transportation of Aedes aegypti mosquito, and environmental characteristics are a group of factors which contribute to the success of dengue spread and establishment. To understand this process, we assess data from dengue national and municipal basins regarding population and demographics, transportation network, human mobility, and Ae. aegypti monitoring for the Brazilian state of Acre since the first recorded dengue case in the year 2000 to the year 2015. During this period, several changes in Acre's transport infrastructure and urbanization have been started. To reconstruct the process of dengue introduction in Acre, we propose an analytic framework based on concepts used in malaria literature, namely vulnerability and receptivity, to inform risk assessments in dengue-free regions as well as network theory concepts for disease invasion and propagation. We calculate the probability of dengue importation to Acre from other Brazilian states, the evolution of dengue spread between Acrean municipalities and dengue establishment in the state. Our findings suggest that the landscape changes associated with human mobility have created favorable conditions for the establishment of dengue virus transmission in Acre. The revitalization of its major roads, as well as the increased accessibility by air to and within the state, have increased dengue vulnerability. Unplanned urbanization and population growth, as observed in Acre during the period of study, contribute to ideal conditions for Ae. aegypti mosquito establishment, increase the difficulty in mosquito control and consequently its local receptivity.
Collapse
Affiliation(s)
- Raquel Martins Lana
- Fiocruz, Pós-Graduação em Epidemiologia em Saúde Pública, Escola Nacional de Saúde Pública Sérgio Arouca (ENSP), Rio de Janeiro, RJ, Brazil
- Fiocruz, Programa de Computação Científica (PROCC), Rio de Janeiro, RJ, Brazil
| | | | - Tiago França Melo de Lima
- Laboratório de Engenharia e Desenvolvimento de Sistemas (LEDS), Departamento de Computação e Sistemas (DECSI), Instituto de Ciências Exatas e Aplicadas (ICEA), Universidade Federal de Ouro Preto (UFOP), João Monlevade, MG, Brazil
| | - Nildimar Alves Honório
- Fiocruz, Instituto Oswaldo Cruz (IOC), Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, RJ, Brazil
- Fiocruz, Núcleo Operacional Sentinela de Mosquitos Vetores (Nosmove), Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
230
|
Wesolowski A, Buckee CO, Engø-Monsen K, Metcalf CJE. Connecting Mobility to Infectious Diseases: The Promise and Limits of Mobile Phone Data. J Infect Dis 2017; 214:S414-S420. [PMID: 28830104 DOI: 10.1093/infdis/jiw273] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human travel can shape infectious disease dynamics by introducing pathogens into susceptible populations or by changing the frequency of contacts between infected and susceptible individuals. Quantifying infectious disease-relevant travel patterns on fine spatial and temporal scales has historically been limited by data availability. The recent emergence of mobile phone calling data and associated locational information means that we can now trace fine scale movement across large numbers of individuals. However, these data necessarily reflect a biased sample of individuals across communities and are generally aggregated for both ethical and pragmatic reasons that may further obscure the nuance of individual and spatial heterogeneities. Additionally, as a general rule, the mobile phone data are not linked to demographic or social identifiers, or to information about the disease status of individual subscribers (although these may be made available in smaller-scale specific cases). Combining data on human movement from mobile phone data-derived population fluxes with data on disease incidence requires approaches that can tackle varying spatial and temporal resolutions of each data source and generate inference about dynamics on scales relevant to both pathogen biology and human ecology. Here, we review the opportunities and challenges of these novel data streams, illustrating our examples with analyses of 2 different pathogens in Kenya, and conclude by outlining core directions for future research.
Collapse
Affiliation(s)
- Amy Wesolowski
- Department of Epidemiology.,Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Caroline O Buckee
- Department of Epidemiology.,Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | - C J E Metcalf
- Department of Ecology and Evolutionary Biology.,Office of Population Research, Woodrow Wilson School, Princeton University, New Jersey
| |
Collapse
|
231
|
Fuentes-Vallejo M. Space and space-time distributions of dengue in a hyper-endemic urban space: the case of Girardot, Colombia. BMC Infect Dis 2017; 17:512. [PMID: 28738782 PMCID: PMC5525249 DOI: 10.1186/s12879-017-2610-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/18/2017] [Indexed: 12/30/2022] Open
Abstract
Background Dengue is a widely spread vector-borne disease. Dengue cases in the Americas have increased over the last few decades, affecting various urban spaces throughout these continents, including the tourism-oriented city of Girardot, Colombia. Interactions among mosquitoes, pathogens and humans have recently been examined using different temporal and spatial scales in attempts to determine the roles that social and ecological systems play in dengue transmission. The current work characterizes the spatial and temporal behaviours of dengue in Girardot and discusses the potential territorial dynamics related to the distribution of this disease. Methods Based on officially reported dengue cases (2012–2015) corresponding to epidemic (2013) and inter-epidemic years (2012, 2014, 2015), space (Getis-Ord index) and space-time (Kulldorff’s scan statistics) analyses were performed. Results Geocoded dengue cases (n = 2027) were slightly overrepresented by men (52.1%). As expected, the cases were concentrated in the 0- to 15-year-old age group according to the actual trends of Colombia. The incidence rates of dengue during the rainy and dry seasons as well as those for individual years (2012, 2013 and 2014) were significant using the global Getis-Ord index. Local clusters shifted across seasons and years; nevertheless, the incidence rates clustered towards the southwest region of the city under different residential conditions. Space-time clusters shifted from the northeast to the southwest of the city (2012–2014). These clusters represented only 4.25% of the total cases over the same period (n = 1623). A general trend was observed, in which dengue cases increased during the dry seasons, especially between December and February. Conclusions Despite study limitations related to official dengue records and available fine-scale demographic information, the spatial analysis results were promising from a geography of health perspective. Dengue did not show linear association with poverty or with vulnerable peripheral spaces in intra-urban settings, supporting the idea that the pathogenic complex of dengue is driven by different factors. A coordinated collaboration of epidemiological, public health and social science expertise is needed to assess the effect of “place” from a relational perspective in which geography has an important role to play. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2610-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mauricio Fuentes-Vallejo
- Fundación Santa Fe de Bogotá, Bogotá, Colombia. .,Laboratory of Social Dynamics and Spatial Reconstruction (LADYSS), Paris, France.
| |
Collapse
|
232
|
Magalhaes T, Foy BD, Marques ETA, Ebel GD, Weger-Lucarelli J. Mosquito-borne and sexual transmission of Zika virus: Recent developments and future directions. Virus Res 2017; 254:1-9. [PMID: 28705681 DOI: 10.1016/j.virusres.2017.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/08/2017] [Accepted: 07/08/2017] [Indexed: 02/04/2023]
Abstract
Zika virus (ZIKV; Genus Flavivirus, Family Flaviviridae) has recently emerged in Asia and the Americas to cause large outbreaks of human disease. The outbreak has been characterized by high attack rates, birth defects in infants and severe neurological complications in adults. ZIKV is transmitted to humans by Aedes mosquitoes, but recent evidence implicates sexual transmission as playing an important role as well. This review highlights the transmission of ZIKV in humans, with a focus on both mosquito and sexually-transmitted routes and their outcomes. We also discuss critical directions for future research.
Collapse
Affiliation(s)
- Tereza Magalhaes
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Fort Collins, CO, United States
| | - Brian D Foy
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Fort Collins, CO, United States.
| | - Ernesto T A Marques
- Laboratory of Virology and Experimental Therapeutics, Centro de Pesquisas Aggeu Magalhaes, Fundacao Oswaldo Cruz, Recife, PE, Brazil; Center for Vaccine Research, Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Fort Collins, CO, United States
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
233
|
Mendenhall IH, Manuel M, Moorthy M, Lee TTM, Low DHW, Missé D, Gubler DJ, Ellis BR, Ooi EE, Pompon J. Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities. PLoS Negl Trop Dis 2017. [PMID: 28650959 PMCID: PMC5501678 DOI: 10.1371/journal.pntd.0005667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. METHODS We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. RESULTS We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. CONCLUSIONS Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore's vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management.
Collapse
Affiliation(s)
- Ian H. Mendenhall
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
- * E-mail: (IHM); (JP)
| | - Menchie Manuel
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| | - Mahesh Moorthy
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
- Department of Clinical Virology, Christian Medical College, Vellore, Tamilnadu, India
| | - Theodore T. M. Lee
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Dolyce H. W. Low
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| | - Dorothée Missé
- MIVEGEC, UMR IRD 224-CNRS5290-Université de Montpellier, Montpellier, France
| | - Duane J. Gubler
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| | - Brett R. Ellis
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
| | - Julien Pompon
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
- MIVEGEC, UMR IRD 224-CNRS5290-Université de Montpellier, Montpellier, France
- * E-mail: (IHM); (JP)
| |
Collapse
|
234
|
Hamid PH, Prastowo J, Widyasari A, Taubert A, Hermosilla C. Knockdown resistance (kdr) of the voltage-gated sodium channel gene of Aedes aegypti population in Denpasar, Bali, Indonesia. Parasit Vectors 2017; 10:283. [PMID: 28583207 PMCID: PMC5460344 DOI: 10.1186/s13071-017-2215-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/24/2017] [Indexed: 11/23/2022] Open
Abstract
Background Aedes aegypti is the main vector of several arthropod-borne viral infections in the tropics profoundly affecting humans, such as dengue fever (DF), West Nile (WN), chikungunya and more recently Zika. Eradication of Aedes still largely depends on insecticides, which is the most cost-effective strategy, and often inefficient due to resistance development in exposed Aedes populations. We here conducted a study of Ae. aegypti resistance towards several insecticides regularly used in the city of Denpasar, Bali, Indonesia. Methods Aedes aegypti egg samples were collected with ovitraps and thereafter hatched in the insectary of the Gadjah Mada University. The F0 generation was used for all bioassay-related experiments and knockdown resistance (kdr) assays. Results Results clearly showed resistance development of Ae. aegypti against tested insecticides. Mortalities of Ae. aegypti were less than 90% with highest resistance observed against 0.75% permethrin. Mosquitoes from the southern parts of Denpasar presented high level of resistance pattern in comparison to those from the western and northern parts of Denpasar. Kdr analysis of voltage-gated sodium channel (Vgsc) gene showed significant association to S989P and V1016G mutations linked to resistance phenotypes against 0.75% permethrin. Conversely, Ae. aegypti F1534C gene mutation did not result in any significant correlation to resistance development. Conclusions Periodically surveillance of insecticide resistances in Ae. aegypti mosquitoes will help local public health authorities to set better goals and allow proper evaluation of on-going mosquito control strategies. Initial detection of insecticide resistance will contribute to conduct proper actions in delaying mosquito resistance development such as insecticide rotation or combination of compounds in order to prolong chemical efficacy in combating Ae. aegypti vectors in Indonesia.
Collapse
Affiliation(s)
- Penny Humaidah Hamid
- Department of Parasitology, Gadjah Mada University, Jl. Fauna No. 2, Karangmalang, Yogyakarta, Indonesia.
| | - Joko Prastowo
- Department of Parasitology, Gadjah Mada University, Jl. Fauna No. 2, Karangmalang, Yogyakarta, Indonesia
| | - Anis Widyasari
- RSUP Dr Sardjito, Jl. Kesehatan No. 1, Sekip, Yogyakarta, Indonesia
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, Giessen, Germany
| |
Collapse
|
235
|
Iggidr A, Koiller J, Penna M, Sallet G, Silva M, Souza M. Vector borne diseases on an urban environment: The effects of heterogeneity and human circulation. ECOLOGICAL COMPLEXITY 2017. [DOI: 10.1016/j.ecocom.2016.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
236
|
Andersson N, Arostegui J, Nava-Aguilera E, Harris E, Ledogar RJ. Camino Verde (The Green Way): evidence-based community mobilisation for dengue control in Nicaragua and Mexico: feasibility study and study protocol for a randomised controlled trial. BMC Public Health 2017; 17:407. [PMID: 28699570 PMCID: PMC5506595 DOI: 10.1186/s12889-017-4289-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since the Aedes aegypti mosquitoes that transmit dengue virus can breed in clean water, WHO-endorsed vector control strategies place sachets of organophosphate pesticide, temephos (Abate), in household water storage containers. These and other pesticide-dependent approaches have failed to curb the spread of dengue and multiple dengue virus serotypes continue to spread throughout tropical and subtropical regions worldwide. A feasibility study in Managua, Nicaragua, generated instruments, intervention protocols, training schedules and impact assessment tools for a cluster randomised controlled trial of community-based approaches to vector control comprising an alternative strategy for dengue prevention and control in Nicaragua and Mexico. METHODS/DESIGN The Camino Verde (Green Way) is a pragmatic parallel group trial of pesticide-free dengue vector control, adding effectiveness to the standard government dengue control. A random sample from the most recent census in three coastal regions of Guerrero state in Mexico will generate 90 study clusters and the equivalent sampling frame in Managua, Nicaragua will generate 60 clusters, making a total of 150 clusters each of 137-140 households. After a baseline study, computer-driven randomisation will allocate to intervention one half of the sites, stratified by country, evidence of recent dengue virus infection in children aged 3-9 years and, in Nicaragua, level of community organisation. Following a common evidence-based education protocol, each cluster will develop and implement its own collective interventions including house-to-house visits, school-based programmes and inter-community visits. After 18 months, a follow-up study will compare dengue history, serological evidence of recent dengue virus infection (via measurement of anti-dengue virus antibodies in saliva samples) and entomological indices between intervention and control sites. DISCUSSION Our hypothesis is that informed community mobilisation adds effectiveness in controlling dengue. TRIAL REGISTRATION ISRCTN27581154 .
Collapse
Affiliation(s)
- Neil Andersson
- Centro de Investigación de Enfermedades Tropicales (CIET), Universidad Autónoma de Guerrero, Acapulco, Mexico. .,Department of Family Medicine, McGill University, Montreal, Canada.
| | | | - Elizabeth Nava-Aguilera
- Centro de Investigación de Enfermedades Tropicales (CIET), Universidad Autónoma de Guerrero, Acapulco, Mexico
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | | |
Collapse
|
237
|
Zellweger RM, Cano J, Mangeas M, Taglioni F, Mercier A, Despinoy M, Menkès CE, Dupont-Rouzeyrol M, Nikolay B, Teurlai M. Socioeconomic and environmental determinants of dengue transmission in an urban setting: An ecological study in Nouméa, New Caledonia. PLoS Negl Trop Dis 2017; 11:e0005471. [PMID: 28369149 PMCID: PMC5395238 DOI: 10.1371/journal.pntd.0005471] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/18/2017] [Accepted: 03/08/2017] [Indexed: 11/23/2022] Open
Abstract
Background Dengue is a mosquito-borne virus that causes extensive morbidity and economic loss in many tropical and subtropical regions of the world. Often present in cities, dengue virus is rapidly spreading due to urbanization, climate change and increased human movements. Dengue cases are often heterogeneously distributed throughout cities, suggesting that small-scale determinants influence dengue urban transmission. A better understanding of these determinants is crucial to efficiently target prevention measures such as vector control and education. The aim of this study was to determine which socioeconomic and environmental determinants were associated with dengue incidence in an urban setting in the Pacific. Methodology An ecological study was performed using data summarized by neighborhood (i.e. the neighborhood is the unit of analysis) from two dengue epidemics (2008–2009 and 2012–2013) in the city of Nouméa, the capital of New Caledonia. Spatial patterns and hotspots of dengue transmission were assessed using global and local Moran’s I statistics. Multivariable negative binomial regression models were used to investigate the association between dengue incidence and various socioeconomic and environmental factors throughout the city. Principal findings The 2008–2009 epidemic was spatially structured, with clusters of high and low incidence neighborhoods. In 2012–2013, dengue incidence rates were more homogeneous throughout the city. In all models tested, higher dengue incidence rates were consistently associated with lower socioeconomic status (higher unemployment, lower revenue or higher percentage of population born in the Pacific, which are interrelated). A higher percentage of apartments was associated with lower dengue incidence rates during both epidemics in all models but one. A link between vegetation coverage and dengue incidence rates was also detected, but the link varied depending on the model used. Conclusions This study demonstrates a robust spatial association between dengue incidence rates and socioeconomic status across the different neighborhoods of the city of Nouméa. Our findings provide useful information to guide policy and help target dengue prevention efforts where they are needed most. Dengue virus is rapidly spreading throughout tropical and subtropical regions worldwide, possibly aided by environmental change, urbanization and/or increase in human mobility. Already present in 120 countries, dengue virus causes extensive disease burden and generates large economic costs. As dengue is mosquito-borne, its transmission pattern is strongly influenced by climate. However, dengue cases are not always distributed evenly throughout cities, where climate can be assumed to be homogenous. This suggests that other factors which are heterogeneously distributed in cities could play a role in dengue transmission, such as socioeconomic status and environmental factors (both natural and built). Identifying those factors is crucial to develop and target dengue prevention interventions, such as mosquito control and education. Our study uses dengue incidence statistics from two large epidemics in Nouméa, the capital of New Caledonia, to investigate which socioeconomic or environmental factors correlate with dengue incidence in an urban setting. Dengue incidence was consistently higher in neighborhoods where socioeconomic status was lower (i.e. lower revenue or higher unemployment) and often higher where the proportion of single-family houses in all buildings was higher. Our data suggest that, if resources are limited, prevention measures should be targeted in priority towards neighborhoods of lower socioeconomic status.
Collapse
Affiliation(s)
- Raphaël M. Zellweger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Epidemiology of Infectious Diseases Expertise and Research Unit, Institut Pasteur in New Caledonia, Institut Pasteur International Network, Nouméa, New Caledonia
- * E-mail:
| | - Jorge Cano
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Morgan Mangeas
- IRD, UMR ESPACE-DEV (UR/UA/UG/UM/IRD), Nouméa, New Caledonia
| | - François Taglioni
- University of Reunion Island, UMR Prodig/OIES (Cregur), Reunion Island, France
| | - Alizé Mercier
- IRD, UMR ESPACE-DEV (UR/UA/UG/UM/IRD), Nouméa, New Caledonia
- CIRAD/INRA, UMR Contrôle des Maladies Animales Exotiques et Emergentes (CMAEE), Montpellier, France
| | - Marc Despinoy
- IRD, UMR ESPACE-DEV (UR/UA/UG/UM/IRD), Nouméa, New Caledonia
| | - Christophe E. Menkès
- IRD / Sorbonne Universités (UPMC, Université Paris 06) / CNRS / MNHN, LOCEAN – UMR 7159, Nouméa, New Caledonia
| | - Myrielle Dupont-Rouzeyrol
- Dengue and Arboviruses Expertise and Research Unit, Institut Pasteur in New Caledonia, Institut Pasteur International Network, Noumea, New Caledonia
| | - Birgit Nikolay
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France
- CNRS, URA3012, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| | - Magali Teurlai
- Epidemiology of Infectious Diseases Expertise and Research Unit, Institut Pasteur in New Caledonia, Institut Pasteur International Network, Nouméa, New Caledonia
| |
Collapse
|
238
|
Sumner T, Orton RJ, Green DM, Kao RR, Gubbins S. Quantifying the roles of host movement and vector dispersal in the transmission of vector-borne diseases of livestock. PLoS Comput Biol 2017; 13:e1005470. [PMID: 28369082 PMCID: PMC5393902 DOI: 10.1371/journal.pcbi.1005470] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/17/2017] [Accepted: 03/20/2017] [Indexed: 12/05/2022] Open
Abstract
The role of host movement in the spread of vector-borne diseases of livestock has been little studied. Here we develop a mathematical framework that allows us to disentangle and quantify the roles of vector dispersal and livestock movement in transmission between farms. We apply this framework to outbreaks of bluetongue virus (BTV) and Schmallenberg virus (SBV) in Great Britain, both of which are spread by Culicoides biting midges and have recently emerged in northern Europe. For BTV we estimate parameters by fitting the model to outbreak data using approximate Bayesian computation, while for SBV we use previously derived estimates. We find that around 90% of transmission of BTV between farms is a result of vector dispersal, while for SBV this proportion is 98%. This difference is a consequence of higher vector competence and shorter duration of viraemia for SBV compared with BTV. For both viruses we estimate that the mean number of secondary infections per infected farm is greater than one for vector dispersal, but below one for livestock movements. Although livestock movements account for a small proportion of transmission and cannot sustain an outbreak on their own, they play an important role in establishing new foci of infection. However, the impact of restricting livestock movements on the spread of both viruses depends critically on assumptions made about the distances over which vector dispersal occurs. If vector dispersal occurs primarily at a local scale (99% of transmission occurs <25 km), movement restrictions are predicted to be effective at reducing spread, but if dispersal occurs frequently over longer distances (99% of transmission occurs <50 km) they are not. Diseases which are transmitted by the bites of insects can be spread to new locations through the movement of both infected insects and infected hosts. The importance of these routes has implications for disease control, because we can often restrict host movement, and so potentially reduce spread, but cannot easily restrict insect movements. Despite this, the importance of host movements has been little studied. Here we develop a mathematical model which allows us to disentangle and quantify transmission by insect dispersal and by host movement. We apply the model to two diseases of cattle and sheep transmitted by biting midges that have emerged in northern Europe in the past decade, bluetongue virus (BTV) and Schmallenberg virus (SBV). For both viruses, we show insect movements account for a majority of spread between farms. Although they cannot sustain an epidemic on their own, animal movements play an important role in introducing disease to new areas.
Collapse
Affiliation(s)
- Tom Sumner
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Richard J. Orton
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Darren M. Green
- Institute of Aquaculture, University of Stirling, Stirling, Stirlingshire, United Kingdom
| | - Rowland R. Kao
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simon Gubbins
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
239
|
Cromwell EA, Stoddard ST, Barker CM, Van Rie A, Messer WB, Meshnick SR, Morrison AC, Scott TW. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. PLoS Negl Trop Dis 2017; 11:e0005429. [PMID: 28333938 PMCID: PMC5363802 DOI: 10.1371/journal.pntd.0005429] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/21/2017] [Indexed: 11/21/2022] Open
Abstract
Routine entomological monitoring data are used to quantify the abundance of Ae. aegypti. The public health utility of these indicators is based on the assumption that greater mosquito abundance increases the risk of human DENV transmission, and therefore reducing exposure to the vector decreases incidence of infection. Entomological survey data from two longitudinal cohort studies in Iquitos, Peru, linked with 8,153 paired serological samples taken approximately six months apart were analyzed. Indicators of Ae. aegypti density were calculated from cross-sectional and longitudinal entomological data collected over a 12-month period for larval, pupal and adult Ae. aegypti. Log binomial models were used to estimate risk ratios (RR) to measure the association between Ae. aegypti abundance and the six-month risk of DENV seroconversion. RRs estimated using cross-sectional entomological data were compared to RRs estimated using longitudinal data. Higher cross-sectional Ae. aegypti densities were not associated with an increased risk of DENV seroconversion. Use of longitudinal entomological data resulted in RRs ranging from 1.01 (95% CI: 1.01, 1.02) to 1.30 (95% CI: 1.17, 1.46) for adult stage density estimates and RRs ranging from 1.21 (95% CI: 1.07, 1.37) to 1.75 (95% CI: 1.23, 2.5) for categorical immature indices. Ae. aegypti densities calculated from longitudinal entomological data were associated with DENV seroconversion, whereas those measured cross-sectionally were not. Ae. aegypti indicators calculated from cross-sectional surveillance, as is common practice, have limited public health utility in detecting areas or populations at high risk of DENV infection.
Collapse
Affiliation(s)
- Elizabeth A. Cromwell
- Department of Epidemiology, University of North Carolina, Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
| | - Steven T. Stoddard
- Graduate School of Public Health, San Diego State University, San Diego, California, United States of America
| | - Christopher M. Barker
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Annelies Van Rie
- Department of Epidemiology, University of North Carolina, Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
| | - William B. Messer
- Division of Infectious Diseases, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Steven R. Meshnick
- Department of Epidemiology, University of North Carolina, Gillings School of Global Public Health, Chapel Hill, North Carolina, United States of America
| | - Amy C. Morrison
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
240
|
Dzul-Manzanilla F, Ibarra-López J, Bibiano Marín W, Martini-Jaimes A, Leyva JT, Correa-Morales F, Huerta H, Manrique-Saide P, Vazquez-Prokopec GM. Indoor Resting Behavior of Aedes aegypti (Diptera: Culicidae) in Acapulco, Mexico. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:501-504. [PMID: 28011725 DOI: 10.1093/jme/tjw203] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
The markedly anthropophilic and endophilic behaviors of Aedes aegypti (L.) make it a very efficient vector of dengue, chikungunya, and Zika viruses. Although a large body of research has investigated the immature habitats and conditions for adult emergence, relatively few studies have focused on the indoor resting behavior and distribution of vectors within houses. We investigated the resting behavior of Ae. aegypti indoors in 979 houses of the city of Acapulco, Mexico, by performing exhaustive indoor mosquito collections to describe the rooms and height at which mosquitoes were found resting. In total, 1,403 adult and 747 female Ae. aegypti were collected, primarily indoors (98% adults and 99% females). Primary resting locations included bedrooms (44%), living rooms (25%), and bathrooms (20%), followed by kitchens (9%). Aedes aegypti significantly rested below 1.5 m of height (82% adults, 83% females, and 87% bloodfed females); the odds of finding adult Ae. aegypti mosquitoes below 1.5 m was 17 times higher than above 1.5 m. Our findings provide relevant information for the design of insecticide-based interventions selectively targeting the adult resting population, such as indoor residual spraying.
Collapse
Affiliation(s)
- Felipe Dzul-Manzanilla
- Centro Nacional de Programas Preventivos y Control de Enfermedades (CENAPRECE), Secretaria de Salud, Eje 4 Sur Benjamín Franklin, Escandón, Ciudad de Mexico, Mexico (; ; )
| | - Jésus Ibarra-López
- Centro Nacional de Programas Preventivos y Control de Enfermedades (CENAPRECE), Secretaria de Salud, Eje 4 Sur Benjamín Franklin, Escandón, Ciudad de Mexico, Mexico (; ; )
| | - Wilbert Bibiano Marín
- Unidad Colaborativa para Bioensayos Entomológicos, Departamento de Zoología, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5, Merida, Yucatan, México (; )
| | - Andrés Martini-Jaimes
- Servicios Estatales de Salud de Guerrero, Guerrero, Ruffo Figueroa SN, Burocratas, 39090 Chilpancingo de los Bravo, Mexico
| | - Joel Torres Leyva
- Unidad Académica de Matemáticas, Universidad Autónoma de Guerrero, Av. Javier Méndez Aponte 1, Fraccionamiento Servidor Agrario, Guerrero, Mexico
| | - Fabián Correa-Morales
- Centro Nacional de Programas Preventivos y Control de Enfermedades (CENAPRECE), Secretaria de Salud, Eje 4 Sur Benjamín Franklin, Escandón, Ciudad de Mexico, Mexico (; ; )
| | - Herón Huerta
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Secretaria de Salud, Ciudad de Mexico, Francisco de P. Miranda 177, Lomas de Plateros, Mexico
| | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomológicos, Departamento de Zoología, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5, Merida, Yucatan, México (; )
| | | |
Collapse
|
241
|
Reyes-Castro PA, Harris RB, Brown HE, Christopherson GL, Ernst KC. Spatio-temporal and neighborhood characteristics of two dengue outbreaks in two arid cities of Mexico. Acta Trop 2017; 167:174-182. [PMID: 28062233 DOI: 10.1016/j.actatropica.2017.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/02/2017] [Accepted: 01/02/2017] [Indexed: 12/12/2022]
Abstract
Little is currently known about the spatial-temporal dynamics of dengue epidemics in arid areas. This study assesses dengue outbreaks that occurred in two arid cities of Mexico, Hermosillo and Navojoa, located in northern state of Sonora. Laboratory confirmed dengue cases from Hermosillo (N=2730) and Navojoa (N=493) were geocoded by residence and assigned neighborhood-level characteristics from the 2010 Mexican census. Kernel density and Space-time cluster analysis was performed to detect high density areas and space-time clusters of dengue. Ordinary Least Square regression was used to assess the changing socioeconomic characteristics of cases over the course of the outbreaks. Both cities exhibited contiguous patterns of space-time clustering. Initial areas of dissemination were characterized in both cities by high population density, high percentage of occupied houses, and lack of healthcare. Future research and control efforts in these regions should consider these space-time and socioeconomic patterns.
Collapse
Affiliation(s)
- Pablo A Reyes-Castro
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.
| | - Robin B Harris
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Heidi E Brown
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | | | - Kacey C Ernst
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
242
|
Falcón-Lezama JA, Santos-Luna R, Román-Pérez S, Martínez-Vega RA, Herrera-Valdez MA, Kuri-Morales ÁF, Adams B, Kuri-Morales PA, López-Cervantes M, Ramos-Castañeda J. Analysis of spatial mobility in subjects from a Dengue endemic urban locality in Morelos State, Mexico. PLoS One 2017; 12:e0172313. [PMID: 28225820 PMCID: PMC5321279 DOI: 10.1371/journal.pone.0172313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/02/2017] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Mathematical models and field data suggest that human mobility is an important driver for Dengue virus transmission. Nonetheless little is known on this matter due the lack of instruments for precise mobility quantification and study design difficulties. MATERIALS AND METHODS We carried out a cohort-nested, case-control study with 126 individuals (42 cases, 42 intradomestic controls and 42 population controls) with the goal of describing human mobility patterns of recently Dengue virus-infected subjects, and comparing them with those of non-infected subjects living in an urban endemic locality. Mobility was quantified using a GPS-data logger registering waypoints at 60-second intervals for a minimum of 15 natural days. RESULTS Although absolute displacement was highly biased towards the intradomestic and peridomestic areas, occasional displacements exceeding a 100-Km radius from the center of the studied locality were recorded for all three study groups and individual displacements were recorded traveling across six states from central Mexico. Additionally, cases had a larger number of visits out of the municipality´s administrative limits when compared to intradomestic controls (cases: 10.4 versus intradomestic controls: 2.9, p = 0.0282). We were able to identify extradomestic places within and out of the locality that were independently visited by apparently non-related infected subjects, consistent with houses, working and leisure places. CONCLUSIONS Results of this study show that human mobility in a small urban setting exceeded that considered by local health authority's administrative limits, and was different between recently infected and non-infected subjects living in the same household. These observations provide important insights about the role that human mobility may have in Dengue virus transmission and persistence across endemic geographic areas that need to be taken into account when planning preventive and control measures. Finally, these results are a valuable reference when setting the parameters for future mathematical modeling studies.
Collapse
Affiliation(s)
- Jorge Abelardo Falcón-Lezama
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - René Santos-Luna
- Subdirección de Geografía Médica, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Susana Román-Pérez
- Subdirección de Geografía Médica, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Ruth Aralí Martínez-Vega
- OLFIS, Bucaramanga, Santander, Colombia
- Universidad de Santander, Campus Universitario, Bucaramanga, Santander, Colombia
| | | | | | - Ben Adams
- Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
| | | | - Malaquías López-Cervantes
- Unidad de Proyectos Especiales de Investigación Sociomédica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Ramos-Castañeda
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
- Center for Tropical Diseases, University of Texas-Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
243
|
Vanlerberghe V, Gómez-Dantés H, Vazquez-Prokopec G, Alexander N, Manrique-Saide P, Coelho G, Toledo ME, Ocampo CB, Van der Stuyft P. Changing paradigms in Aedes control: considering the spatial heterogeneity of dengue transmission. REVISTA PANAMERICANA DE SALUD PUBLICA = PAN AMERICAN JOURNAL OF PUBLIC HEALTH 2017; 41:e16. [PMID: 31391815 PMCID: PMC6660874 DOI: 10.26633/rpsp.2017.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/18/2016] [Indexed: 12/13/2022]
Abstract
Current dengue vector control strategies, focusing on reactive implementation of insecticide-based interventions in response to clinically apparent disease manifestations, tend to be inefficient, short-lived, and unsustainable within the worldwide epidemiological scenario of virus epidemic recrudescence. As a result of a series of expert meetings and deliberations, a paradigm shift is occurring and a new strategy, using risk stratification at the city level in order to concentrate proactive, sustained efforts in areas at high risk for transmission, has emerged. In this article, the authors 1) outline this targeted, proactive intervention strategy, within the context of dengue epidemiology, the dynamics of its transmission, and current Aedes control strategies, and 2) provide support from published literature for the need to empirically test its impact on dengue transmission as well as on the size of disease outbreaks. As chikungunya and Zika viruses continue to expand their range, the need for a science-based, proactive approach for control of urban Aedes spp. mosquitoes will become a central focus of integrated disease management planning.
Collapse
Affiliation(s)
- Veerle Vanlerberghe
- General Epidemiology and Disease Control Unit Institute of Tropical Medicine Antwerp Belgium General Epidemiology and Disease Control Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hector Gómez-Dantés
- Instituto Nacional de Salud Publica CuernavacaMorelos Mexico Instituto Nacional de Salud Publica, Cuernavaca, Morelos, Mexico
| | - Gonzalo Vazquez-Prokopec
- Department of Environmental Sciences Emory University AtlantaGeorgia United States of America Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Neal Alexander
- London School of Hygiene and Tropical Medicine London United Kingdom London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Pablo Manrique-Saide
- Entomological Bioassays Unit Universidad Autónoma de Yucatán, Merida Yucatán Mexico Entomological Bioassays Unit, Universidad Autónoma de Yucatán, Merida, Yucatán, Mexico
| | - Giovanini Coelho
- National Dengue Control Program Brazilian Ministry of Health Brasília Brazil National Dengue Control Program, Brazilian Ministry of Health, Brasília, Brazil
| | - Maria Eugenia Toledo
- Department of Epidemiology Institute of Tropical Medicine "Pedro Kourí," Havana Cuba Department of Epidemiology, Institute of Tropical Medicine "Pedro Kourí," Havana, Cuba
| | - Clara B Ocampo
- International Training and Medical Research Center Cali Colombia International Training and Medical Research Center, Cali, Colombia
| | - Patrick Van der Stuyft
- Department of Public Health Ghent University Ghent Belgium Department of Public Health, Ghent University, Ghent, Belgium
| |
Collapse
|
244
|
Vazquez-Prokopec GM, Montgomery BL, Horne P, Clennon JA, Ritchie SA. Combining contact tracing with targeted indoor residual spraying significantly reduces dengue transmission. SCIENCE ADVANCES 2017; 3:e1602024. [PMID: 28232955 PMCID: PMC5315446 DOI: 10.1126/sciadv.1602024] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/02/2016] [Indexed: 05/26/2023]
Abstract
The widespread transmission of dengue viruses (DENV), coupled with the alarming increase of birth defects and neurological disorders associated with Zika virus, has put the world in dire need of more efficacious tools for Aedes aegypti-borne disease mitigation. We quantitatively investigated the epidemiological value of location-based contact tracing (identifying potential out-of-home exposure locations by phone interviews) to infer transmission foci where high-quality insecticide applications can be targeted. Space-time statistical modeling of data from a large epidemic affecting Cairns, Australia, in 2008-2009 revealed a complex pattern of transmission driven primarily by human mobility (Cairns accounted for ~60% of virus transmission to and from residents of satellite towns, and 57% of all potential exposure locations were nonresidential). Targeted indoor residual spraying with insecticides in potential exposure locations reduced the probability of future DENV transmission by 86 to 96%, compared to unsprayed premises. Our findings provide strong evidence for the effectiveness of combining contact tracing with residual spraying within a developed urban center, and should be directly applicable to areas with similar characteristics (for example, southern USA, Europe, or Caribbean countries) that need to control localized Aedes-borne virus transmission or to protect pregnant women's homes in areas with active Zika transmission. Future theoretical and empirical research should focus on evaluation of the applicability and scalability of this approach to endemic areas with variable population size and force of DENV infection.
Collapse
Affiliation(s)
- Gonzalo M. Vazquez-Prokopec
- Department of Environmental Sciences, Emory University, Atlanta, GA 30322, USA
- Global Health Institute, Emory University, Atlanta, GA 30322, USA
| | - Brian L. Montgomery
- Tropical Public Health Unit Network, Queensland Health, Cairns, Queensland 4870, Australia
- Metro South Public Health Unit, Metro South Health, Coopers Plains, Brisbane, Queensland 4113, Australia
| | - Peter Horne
- Tropical Public Health Unit Network, Queensland Health, Cairns, Queensland 4870, Australia
| | - Julie A. Clennon
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Scott A. Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland 4878, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Australia
| |
Collapse
|
245
|
Ali S, Gugliemini O, Harber S, Harrison A, Houle L, Ivory J, Kersten S, Khan R, Kim J, LeBoa C, Nez-Whitfield E, O’Marr J, Rothenberg E, Segnitz RM, Sila S, Verwillow A, Vogt M, Yang A, Mordecai EA. Environmental and Social Change Drive the Explosive Emergence of Zika Virus in the Americas. PLoS Negl Trop Dis 2017; 11:e0005135. [PMID: 28182667 PMCID: PMC5300271 DOI: 10.1371/journal.pntd.0005135] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since Zika virus (ZIKV) was detected in Brazil in 2015, it has spread explosively across the Americas and has been linked to increased incidence of microcephaly and Guillain-Barré syndrome (GBS). In one year, it has infected over 500,000 people (suspected and confirmed cases) in 40 countries and territories in the Americas. Along with recent epidemics of dengue (DENV) and chikungunya virus (CHIKV), which are also transmitted by Aedes aegypti and Ae. albopictus mosquitoes, the emergence of ZIKV suggests an ongoing intensification of environmental and social factors that have given rise to a new regime of arbovirus transmission. Here, we review hypotheses and preliminary evidence for the environmental and social changes that have fueled the ZIKV epidemic. Potential drivers include climate variation, land use change, poverty, and human movement. Beyond the direct impact of microcephaly and GBS, the ZIKV epidemic will likely have social ramifications for women's health and economic consequences for tourism and beyond.
Collapse
Affiliation(s)
- Sofia Ali
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Olivia Gugliemini
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Serena Harber
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Alexandra Harrison
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Lauren Houle
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Javarcia Ivory
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Sierra Kersten
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Rebia Khan
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Jenny Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Chris LeBoa
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Emery Nez-Whitfield
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Jamieson O’Marr
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Emma Rothenberg
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - R. Max Segnitz
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Stephanie Sila
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Anna Verwillow
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Miranda Vogt
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Adrienne Yang
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
246
|
Siraj AS, Bouma MJ, Santos-Vega M, Yeshiwondim AK, Rothman DS, Yadeta D, Sutton PC, Pascual M. Temperature and population density determine reservoir regions of seasonal persistence in highland malaria. Proc Biol Sci 2017; 282:20151383. [PMID: 26631558 DOI: 10.1098/rspb.2015.1383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A better understanding of malaria persistence in highly seasonal environments such as highlands and desert fringes requires identifying the factors behind the spatial reservoir of the pathogen in the low season. In these 'unstable' malaria regions, such reservoirs play a critical role by allowing persistence during the low transmission season and therefore, between seasonal outbreaks. In the highlands of East Africa, the most populated epidemic regions in Africa, temperature is expected to be intimately connected to where in space the disease is able to persist because of pronounced altitudinal gradients. Here, we explore other environmental and demographic factors that may contribute to malaria's highland reservoir. We use an extensive spatio-temporal dataset of confirmed monthly Plasmodium falciparum cases from 1995 to 2005 that finely resolves space in an Ethiopian highland. With a Bayesian approach for parameter estimation and a generalized linear mixed model that includes a spatially structured random effect, we demonstrate that population density is important to disease persistence during the low transmission season. This population effect is not accounted for in typical models for the transmission dynamics of the disease, but is consistent in part with a more complex functional form of the force of infection proposed by theory for vector-borne infections, only during the low season as we discuss. As malaria risk usually decreases in more urban environments with increased human densities, the opposite counterintuitive finding identifies novel control targets during the low transmission season in African highlands.
Collapse
Affiliation(s)
- Amir S Siraj
- Department of Geography and the Environment, University of Denver, 235 Boettcher West, 2050 East Iliff Avenue, Denver, CO 80208-0710, USA Frederick S. Pardee Center for International Futures, Josef Korbel School of International Studies, University of Denver, 2201 South Gaylord Street, Denver, CO 80208-0500, USA
| | - Menno J Bouma
- London School of Hygiene and Tropical Medicine, University of London, London WC1 E7HT, UK Catalan Institute of Climate Sciences (IC3), University of Barcelona, Doctor Trueta, 203 3a planta 08005 Barcelona, Spain
| | - Mauricio Santos-Vega
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | - Asnakew K Yeshiwondim
- PATH/ Malaria Control and Elimination Partnership in Africa, Africa Avenue, Getu Commercial Center, PO Box 493, Addis Ababa 1110, Ethiopia
| | - Dale S Rothman
- Frederick S. Pardee Center for International Futures, Josef Korbel School of International Studies, University of Denver, 2201 South Gaylord Street, Denver, CO 80208-0500, USA
| | - Damtew Yadeta
- Oromia Regional Health Bureau, PO Box 24341, Addis Ababa, Ethiopia
| | - Paul C Sutton
- Department of Geography and the Environment, University of Denver, 235 Boettcher West, 2050 East Iliff Avenue, Denver, CO 80208-0710, USA School of Natural and Built Environments, University of South Australia, P Building, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
247
|
Riou J, Poletto C, Boëlle PY. A comparative analysis of Chikungunya and Zika transmission. Epidemics 2017; 19:43-52. [PMID: 28139388 DOI: 10.1016/j.epidem.2017.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/23/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
The recent global dissemination of Chikungunya and Zika has fostered public health concern worldwide. To better understand the drivers of transmission of these two arboviral diseases, we propose a joint analysis of Chikungunya and Zika epidemics in the same territories, taking into account the common epidemiological features of the epidemics: transmitted by the same vector, in the same environments, and observed by the same surveillance systems. We analyse eighteen outbreaks in French Polynesia and the French West Indies using a hierarchical time-dependent SIR model accounting for the effect of virus, location and weather on transmission, and based on a disease specific serial interval. We show that Chikungunya and Zika have similar transmission potential in the same territories (transmissibility ratio between Zika and Chikungunya of 1.04 [95% credible interval: 0.97; 1.13]), but that detection and reporting rates were different (around 19% for Zika and 40% for Chikungunya). Temperature variations between 22°C and 29°C did not alter transmission, but increased precipitation showed a dual effect, first reducing transmission after a two-week delay, then increasing it around five weeks later. The present study provides valuable information for risk assessment and introduces a modelling framework for the comparative analysis of arboviral infections that can be extended to other viruses and territories.
Collapse
Affiliation(s)
- Julien Riou
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP UMRS 1136), 75012 Paris, France.
| | - Chiara Poletto
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP UMRS 1136), 75012 Paris, France
| | - Pierre-Yves Boëlle
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP UMRS 1136), 75012 Paris, France
| |
Collapse
|
248
|
Sharp TM, Tomashek KM, Read JS, Margolis HS, Waterman SH. A New Look at an Old Disease: Recent Insights into the Global Epidemiology of Dengue. CURR EPIDEMIOL REP 2017; 4:11-21. [PMID: 28251039 PMCID: PMC5306284 DOI: 10.1007/s40471-017-0095-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW By all measures, the morbidity and mortality due to dengue are continuing to worsen worldwide. Although both early and recent studies have demonstrated regional differences in how dengue affects local populations, these findings were to varying extents related to disparate surveillance approaches. RECENT FINDINGS Recent studies have broadened the recognized spectrum of disease resulting from DENV infection, particularly in adults, and have also demonstrated new mechanisms of DENV spread both within and between populations. New results regarding the frequency and duration of homo- and heterotypic anti-DENV antibodies have provided important insights relevant to vaccine design and implementation. SUMMARY These observations and findings as well as difficulties in comparing the epidemiology of dengue within and between regions of the world underscore the need for population-based dengue surveillance worldwide. Enhanced surveillance should be implemented to complement passive surveillance in countries in the tropics to establish baseline data in order to define affected populations and evaluate the impact of dengue vaccines and novel vector control interventions.
Collapse
Affiliation(s)
- Tyler M. Sharp
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 1324 Calle Cañada, San Juan, PR 00920-3860 USA
| | - Kay M. Tomashek
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 1324 Calle Cañada, San Juan, PR 00920-3860 USA
| | - Jennifer S. Read
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 1324 Calle Cañada, San Juan, PR 00920-3860 USA
| | - Harold S. Margolis
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 1324 Calle Cañada, San Juan, PR 00920-3860 USA
| | - Stephen H. Waterman
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 1324 Calle Cañada, San Juan, PR 00920-3860 USA
| |
Collapse
|
249
|
Manore CA, Ostfeld RS, Agusto FB, Gaff H, LaDeau SL. Defining the Risk of Zika and Chikungunya Virus Transmission in Human Population Centers of the Eastern United States. PLoS Negl Trop Dis 2017; 11:e0005255. [PMID: 28095405 PMCID: PMC5319773 DOI: 10.1371/journal.pntd.0005255] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 02/21/2017] [Accepted: 12/13/2016] [Indexed: 02/08/2023] Open
Abstract
The recent spread of mosquito-transmitted viruses and associated disease to the Americas motivates a new, data-driven evaluation of risk in temperate population centers. Temperate regions are generally expected to pose low risk for significant mosquito-borne disease; however, the spread of the Asian tiger mosquito (Aedes albopictus) across densely populated urban areas has established a new landscape of risk. We use a model informed by field data to assess the conditions likely to facilitate local transmission of chikungunya and Zika viruses from an infected traveler to Ae. albopictus and then to other humans in USA cities with variable human densities and seasonality. Mosquito-borne disease occurs when specific combinations of conditions maximize virus-to-mosquito and mosquito-to-human contact rates. We develop a mathematical model that captures the epidemiology and is informed by current data on vector ecology from urban sites. The model demonstrates that under specific but realistic conditions, fifty-percent of introductions by infectious travelers to a high human, high mosquito density city could initiate local transmission and 10% of the introductions could result in 100 or more people infected. Despite the propensity for Ae. albopictus to bite non-human vertebrates, we also demonstrate that local virus transmission and human outbreaks may occur when vectors feed from humans even just 40% of the time. Inclusion of human behavioral changes and mitigations were not incorporated into the models and would likely reduce predicted infections. This work demonstrates how a conditional series of non-average events can result in local arbovirus transmission and outbreaks of human disease, even in temperate cities.
Collapse
Affiliation(s)
- Carrie A. Manore
- Center for Computational Science Tulane University New Orleans, LA, United States of America
- Theoretical Biology and Biophysics Los Alamos National Laboratory Los Alamos, NM, United States of America
- New Mexico Consortium, Suite 301 Los Alamos, NM, United States of America
| | - Richard S. Ostfeld
- Cary Institute of Ecosystem Studies Box AB, 2801 Sharon Turnpike Millbrook, NY United States of America
| | - Folashade B. Agusto
- Department of Ecology and Evolutionary Biology University of Kansas Haworth Hall Lawrence, Kansas, United States of America
| | - Holly Gaff
- Department of Biological Sciences Old Dominion University Norfolk, VA, United States of America
- Mathematics, Statistics and Computer Science University of KwaZulu-Natal Durban, South Africa
| | - Shannon L. LaDeau
- Cary Institute of Ecosystem Studies Box AB, 2801 Sharon Turnpike Millbrook, NY United States of America
| |
Collapse
|
250
|
Shrestha S, Chatterjee S, Rao KD, Dowdy DW. Potential impact of spatially targeted adult tuberculosis vaccine in Gujarat, India. J R Soc Interface 2016; 13:rsif.2015.1016. [PMID: 27009179 DOI: 10.1098/rsif.2015.1016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/29/2016] [Indexed: 11/12/2022] Open
Abstract
Some of the most promising vaccines in the pipeline for tuberculosis (TB) target adolescents and adults. Unlike for childhood vaccines, high-coverage population-wide vaccination is significantly more challenging for adult vaccines. Here, we aimed to estimate the impact of vaccine delivery strategies that were targeted to high-incidence geographical 'hotspots' compared with randomly allocated vaccination. We developed a spatially explicit mathematical model of TB transmission that distinguished these hotspots from the general population. We evaluated the impact of targeted and untargeted vaccine delivery strategies in India--a country that bears more than 25% of global TB burden, and may be a potential early adopter of the vaccine. We collected TB notification data and conducted a demonstration study in the state of Gujarat to validate our estimates of heterogeneity in TB incidence. We then projected the impact of randomly vaccinating 8% of adults in a single mass campaign to a spatially targeted vaccination preferentially delivered to 80% of adults in the hotspots, with both strategies augmented by continuous adolescent vaccination. In consultation with vaccine developers, we considered a vaccine efficacy of 60%, and evaluated the population-level impact after 10 years of vaccination. Spatial heterogeneity in TB notification (per 100,000/year) was modest in Gujarat: 190 in the hotspots versus 125 in the remaining population. At this level of heterogeneity, the spatially targeted vaccination was projected to reduce TB incidence by 28% after 10 years, compared with a 24% reduction projected to achieve via untargeted vaccination--a 1.17-fold augmentation in the impact of vaccination by spatially targeting. The degree of the augmentation was robust to reasonable variation in natural history assumptions, but depended strongly on the extent of spatial heterogeneity and mixing between the hotspot and general population. Identifying high-incidence hotspots and quantifying spatial mixing patterns are critical to accurate estimation of the value of targeted intervention strategies.
Collapse
Affiliation(s)
- Sourya Shrestha
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | | | - Krishna D Rao
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - David W Dowdy
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|