201
|
Ahmad A, Druzhyna N, Szabo C. Delayed Treatment with Sodium Hydrosulfide Improves Regional Blood Flow and Alleviates Cecal Ligation and Puncture (CLP)-Induced Septic Shock. Shock 2018; 46:183-93. [PMID: 26863032 DOI: 10.1097/shk.0000000000000589] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cecal ligation and puncture (CLP)-induced sepsis is a serious medical condition, caused by a severe systemic infection resulting in a systemic inflammatory response. Recent studies have suggested the therapeutic potential of donors of hydrogen sulfide (H2S), a novel endogenous gasotransmitter and biological mediator in various diseases. The aim of the present study was to assess the effect of H2S supplementation in sepsis, with special reference to its effect on the modulation of regional blood flow. We infused sodium hydrosulfide (NaHS), a compound that produces H2S in aqueous solution (1, 3, or 10 mg/kg/h, for 1 h at each dose level) in control rats or rats 24 h after CLP, and measured blood flow using fluorescent microspheres. In normal control animals, NaHS induced a characteristic redistribution of blood flow, and reduced cardiac, hepatic, and renal blood flow in a dose-dependent fashion. In contrast, in rats subjected to CLP, cardiac, hepatic, and renal blood flow was significantly reduced; infusion of NaHS (1 mg/kg/h and 3 mg/kg/h) significantly increased organ blood flow. In other words, the effect of H2S on regional blood flow is dependent on the status of the animals (i.e., a decrease in blood flow in normal controls, but an increase in blood flow in CLP). We have also evaluated the effect of delayed treatment with NaHS on organ dysfunction and the inflammatory response by treating the animals with NaHS (3 mg/kg) intraperitoneally (i.p.) at 24 h after the start of the CLP procedure; plasma levels of various cytokines and tissue indicators of inflammatory cell infiltration and oxidative stress were measured 6 h later. After 24 h of CLP, glomerular function was significantly impaired, as evidenced by markedly increased (over 4-fold over baseline) blood urea nitrogen and creatinine levels; this increase was also significantly reduced by treatment with NaHS. NaHS also attenuated the CLP-induced increases in malondialdehyde levels (an index of oxidative stress) in heart as well as in liver and myeloperoxidase levels (an index of neutrophil infiltration) in heart and lung. Plasma levels of IL-1β, IL-5, IL-6, TNF-α, and HMGB1 were attenuated by NaHS. Treatment of NaHS at 3 mg/kg i.p. (but not 1 mg/kg or 6 mg/kg), starting 24 h post-CLP, with dosing repeated every 6 h, improved the survival rate in CLP animals. In summary, treatment with 3 mg/kg H2S-when started in a delayed manner, when CLP-induced organ injury, inflammation and blood flow redistribution have already ensued-improves blood flow to several organs, protects against multiple organ failure, and reduces the plasma levels of multiple pro-inflammatory mediators. These findings support the view that H2S donation may have therapeutic potential in sepsis.
Collapse
Affiliation(s)
- Akbar Ahmad
- *Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas †Shriners Hospital for Children, Galveston, Texas
| | | | | |
Collapse
|
202
|
Li W, Bao G, Chen W, Qiang X, Zhu S, Wang S, He M, Ma G, Ochani M, Al-Abed Y, Yang H, Tracey KJ, Wang P, D'Angelo J, Wang H. Connexin 43 Hemichannel as a Novel Mediator of Sterile and Infectious Inflammatory Diseases. Sci Rep 2018; 8:166. [PMID: 29317708 PMCID: PMC5760527 DOI: 10.1038/s41598-017-18452-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022] Open
Abstract
Cytoplasmic membrane-bound connexin 43 (Cx43) proteins oligomerize into hexameric channels (hemichannels) that can sometimes dock with hemichannels on adjacent cells to form gap junctional (GJ) channels. However, the possible role of Cx43 hemichannels in sterile and infectious inflammatory diseases has not been adequately defined due to the lack of selective interventions. Here we report that a proinflammatory mediator, the serum amyloid A (SAA), resembled bacterial endotoxin by stimulating macrophages to up-regulate Cx43 expression and double-stranded RNA-activated protein kinase R (PKR) phosphorylation in a TLR4-dependent fashion. Two well-known Cx43 mimetic peptides, the GAP26 and TAT-GAP19, divergently affected macrophage hemichannel activities in vitro, and differentially altered the outcome of lethal sepsis in vivo. By screening a panel of Cx43 mimetic peptides, we discovered that one cysteine-containing peptide, P5 (ENVCYD), effectively attenuated hemichannel activities, and significantly suppressed endotoxin-induced release of ATP and HMGB1 in vitro. In vivo, the P5 peptide conferred a significant protection against hepatic ischemia/reperfusion injury and lethal microbial infection. Collectively, these findings have suggested a pathogenic role of Cx43 hemichannels in sterile injurious as well as infectious inflammatory diseases possibly through facilitating extracellular ATP efflux to trigger PKR phosphorylation/activation.
Collapse
Affiliation(s)
- Wei Li
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, 11030, USA. .,The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA. .,International Laboratory for Sepsis Research, Huaihe Hospital, Henan University, Kaifeng, Henan, 475000, China.
| | - Guoqiang Bao
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of General Surgery, Tangdu Hospital, The 4th Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Weiqiang Chen
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, 11030, USA.,The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Xiaoling Qiang
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, 11030, USA.,The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Shu Zhu
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, 11030, USA.,The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Shuaiwei Wang
- International Laboratory for Sepsis Research, Huaihe Hospital, Henan University, Kaifeng, Henan, 475000, China
| | - Mingzhu He
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Gaifeng Ma
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Mahendar Ochani
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Yousef Al-Abed
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Huan Yang
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kevin J Tracey
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ping Wang
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - John D'Angelo
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, 11030, USA
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, NY, 11030, USA. .,The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
203
|
VanPatten S, Al-Abed Y. High Mobility Group Box-1 (HMGb1): Current Wisdom and Advancement as a Potential Drug Target. J Med Chem 2018; 61:5093-5107. [PMID: 29268019 DOI: 10.1021/acs.jmedchem.7b01136] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High mobility group box-1 (HMGb1) protein, a nuclear non-histone protein that is released or secreted from the cell in response to damage or stress, is a sentinel for the immune system that plays a critical role in cell survival/death pathways. This review highlights key features of the endogenous danger-associated molecular pattern (DAMP) protein, HMGb1 in the innate inflammatory response along with various cofactors and receptors that regulate its downstream effects. The evidence demonstrating increased levels of HMGb1 in human inflammatory diseases and conditions is presented, along with a summary of current small molecule or peptide-like antagonists proven to specifically target HMGb1. Additionally, we delineate the measures needed toward validating this protein as a clinically relevant biomarker or bioindicator and as a relevant drug target.
Collapse
Affiliation(s)
- Sonya VanPatten
- Center for Molecular Innovation , The Feinstein Institute for Medical Research , 350 Community Drive , Manhasset , New York 11030 , United States
| | - Yousef Al-Abed
- Center for Molecular Innovation , The Feinstein Institute for Medical Research , 350 Community Drive , Manhasset , New York 11030 , United States
| |
Collapse
|
204
|
Endogenous DAMPs, Category I: Constitutively Expressed, Native Molecules (Cat. I DAMPs). DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7122936 DOI: 10.1007/978-3-319-78655-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This chapter provides the reader with a collection of endogenous DAMPs in terms of constitutively expressed native molecules. The first class of this category refers to DAMPs, which are passively released from necrotic cells, and includes the most prominent subclasses of high mobility group box I and heat shock proteins. Further subclasses of DAMPs that are passively released from necrotic cells include S100 proteins, nucleic acids, histones, pro-forms of interleukin-1-family members, mitochondria-derived N-formylated peptides, F-actin, and heme. A particular subclass of these passively released DAMPs are molecules, which indirectly activate the inflammasome, including adenosine-5′-triphosphate, monosodium urate crystals, cholesterol crystals, some lipolytic species, and beta-amyloid. All these passively released DAMPs are characterized by their capability to promote necroinflammatory responses. The second class of this Category I refers to molecules, which are exposed on the surface of stressed cells. They include the subclass of phagocytosis-facilitating molecules such as calreticulin, as well as the subclass of MHC-I-related molecules such as MHC-I-related molecule A and B. These DAMPs are capable of inducing the activation of innate lymphoid cells and unconventional T cells. One of these DAMPs, the major histocompatibility complex I-related molecule A, is shown to act as a bona fide transplantation antigen. In sum, the endogenous constitutively expressed native molecules represent an impressive category of DAMPs with extraordinary properties, which play a critical role in the pathogenesis of many human diseases.
Collapse
|
205
|
Saquinavir Ameliorates Liver Warm Ischemia-Reperfusion-Induced Lung Injury via HMGB-1- and P38/JNK-Mediated TLR-4-Dependent Signaling Pathways. Mediators Inflamm 2017; 2017:7083528. [PMID: 29440779 PMCID: PMC5758951 DOI: 10.1155/2017/7083528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/13/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022] Open
Abstract
Liver ischemia and reperfusion (I/R) induce local and distant tissue injuries, contributing to morbidity and mortality in a wider range of pathologies. This is especially seen under uncontrolled aseptic inflammatory conditions, leading to injury of remote organs, such as lung injury, and even failure. Saquinavir (SQV) is a kind of HIV protease inhibitor that possesses an anti-inflammatory property. In this study, we investigated whether SQV suppresses Toll-like receptor 4- (TLR4-) dependent signaling pathways of high-mobility group box 1 (HMGB1) and P38/JNK, conferring protection against murine liver I/R-induced lung injury. To investigate our hypothesis, C57BL/6 mice and TLR4 knockout mice (TLR4−/−) were used to perform the study. SQV administration markedly attenuated remote lung tissue injury after 1-hour ischemia and 6-hour reperfusion of the liver. To our expectation, SQV attenuated I/R-induced lung edema, hyperpermeability, and pathological injury. The beneficial effects of SQV were associated with decreased levels of circulating and lung tissue inflammatory cytokines, such as IL-6, IL-1β, TNF-α, and iNOS. The protective effect of SQV was also associated with decreased lung tissue expression of HMGB1, TLR-4, and p-P38/JNK, but not p-ERK in wild-type liver I/R mice. Overall, this study demonstrated a new role of SQV, facilitating negative regulation of HMGB1- and P38/JNK-mediated TLR-4-dependent signaling pathways, conferring protection against liver I/R-induced lung injury.
Collapse
|
206
|
Tussilagone Inhibits the Inflammatory Response and Improves Survival in CLP-Induced Septic Mice. Int J Mol Sci 2017; 18:ijms18122744. [PMID: 29258263 PMCID: PMC5751343 DOI: 10.3390/ijms18122744] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/10/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
Tussilagone, extracted from Tussilago farfara is an oriental medicine used for asthma and bronchitis. We investigated its mechanism of action, its inhibitory effects on lipopolysaccharide-induced inflammation in macrophages, and its impact on viability in a cecal ligation and puncture (CLP)-induced mouse model of sepsis. Tussilagone suppressed the expression of the inflammatory mediators, nitric oxide and prostaglandin E2, and the inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and high-mobility group box 1 (HMGB1), in lipopolysaccharide-stimulated RAW 264.7 cells and peritoneal macrophages. Tussilagone also reduced the activation of the mitogen-activated protein kinases and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) involved in the activation of various inflammatory mediators in activated macrophages. Moreover, tussilagone administration (1 mg/kg and 10 mg/kg) produced decreased mortality and lung injury in CLP-activated septic mice. Augmented expression of cyclooxygenase (COX)-2 and TNF-α in pulmonary alveolar macrophages of septic mice were attenuated by tussilagone administration. Tussilagone also suppressed the induction of nitric oxide, prostaglandin E2, TNF-α and HMGB1 in the serum of the septic mice. Overall, tussilagone exhibited protective effects against inflammation and polymicrobial sepsis by suppressing inflammatory mediators possibly via the inhibition of NF-κB activation and the MAP kinase pathway. These results suggest the possible use of tussilagone for developing novel therapeutic modalities for sepsis and other inflammatory diseases.
Collapse
|
207
|
Richard SA, Jiang Y, Xiang LH, Zhou S, Wang J, Su Z, Xu H. Post-translational modifications of high mobility group box 1 and cancer. Am J Transl Res 2017; 9:5181-5196. [PMID: 29312476 PMCID: PMC5752874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Post-translational modifications (PTMs) of High mobility group box 1 (HMGB1) have not been investigated as extensively as those of other HMG proteins but accumulating evidence has shown the remarkable biological significances induced by the post-translational: acetylation, methylation and phosphorylation, oxidation, glycosylation and ADP-ribosylation of the HMGB1 to modulate its interactions with DNA and other proteins. Although HMGB1 is localized in the nucleus in almost all cells at baseline, it can be rapidly mobilized to other sites within the cell, including the cytoplasm and mitochondria, as well as into the extracellular; hence there is an increasing interest by researches into the complex relationship between the PTMs of HMGB1 protein and its diverse biological activities. The PTMs of HMGB1 could also have effects on gene expression following changes in its DNA-binding properties and in extracellular environment displays immunological activity and could serve as a potential target for new therapy. Our reviewed identifies covalent modifications of HMGB1, and highlighted how these PTMs affect the functions of HMGB1 protein in a variety of cellular and extra cellular processes as well as diseases and therapy.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Immunology, Jiangsu UniversityZhenjiang 212013, P. R. China
- Department of Surgery, Volta Regional HospitalP.O. Box MA-374, Ho, Ghana-West Africa
| | - Yuanyuan Jiang
- Department of Immunology, Jiangsu UniversityZhenjiang 212013, P. R. China
| | - Lu Hong Xiang
- Department of Immunology, Jiangsu UniversityZhenjiang 212013, P. R. China
| | - Shanshan Zhou
- Department of Immunology, Jiangsu UniversityZhenjiang 212013, P. R. China
| | - Jia Wang
- Department of Immunology, Jiangsu UniversityZhenjiang 212013, P. R. China
| | - Zhaoliang Su
- Department of Immunology, Jiangsu UniversityZhenjiang 212013, P. R. China
- The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang 212001, P. R. China
| | - Huaxi Xu
- Department of Immunology, Jiangsu UniversityZhenjiang 212013, P. R. China
| |
Collapse
|
208
|
Zaghloul N, Addorisio ME, Silverman HA, Patel HL, Valdés-Ferrer SI, Ayasolla KR, Lehner KR, Olofsson PS, Nasim M, Metz CN, Wang P, Ahmed M, Chavan SS, Diamond B, Tracey KJ, Pavlov VA. Forebrain Cholinergic Dysfunction and Systemic and Brain Inflammation in Murine Sepsis Survivors. Front Immunol 2017; 8:1673. [PMID: 29326685 PMCID: PMC5736570 DOI: 10.3389/fimmu.2017.01673] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022] Open
Abstract
Sepsis, a complex disorder characterized by immune, metabolic, and neurological dysregulation, is the number one killer in the intensive care unit. Mortality remains alarmingly high even in among sepsis survivors discharged from the hospital. There is no clear strategy for managing this lethal chronic sepsis illness, which is associated with severe functional disabilities and cognitive deterioration. Providing insight into the underlying pathophysiology is desperately needed to direct new therapeutic approaches. Previous studies have shown that brain cholinergic signaling importantly regulates cognition and inflammation. Here, we studied the relationship between peripheral immunometabolic alterations and brain cholinergic and inflammatory states in mouse survivors of cecal ligation and puncture (CLP)-induced sepsis. Within 6 days, CLP resulted in 50% mortality vs. 100% survival in sham-operated controls. As compared to sham controls, sepsis survivors had significantly lower body weight, higher serum TNF, interleukin (IL)-1β, IL-6, CXCL1, IL-10, and HMGB1 levels, a lower TNF response to LPS challenge, and lower serum insulin, leptin, and plasminogen activator inhibitor-1 levels on day 14. In the basal forebrain of mouse sepsis survivors, the number of cholinergic [choline acetyltransferase (ChAT)-positive] neurons was significantly reduced. In the hippocampus and the cortex of mouse sepsis survivors, the activity of acetylcholinesterase (AChE), the enzyme that degrades acetylcholine, as well as the expression of its encoding gene were significantly increased. In addition, the expression of the gene encoding the M1 muscarinic acetylcholine receptor was decreased in the hippocampus. In parallel with these forebrain cholinergic alterations, microglial activation (in the cortex) and increased Il1b and Il6 gene expression (in the cortex), and Il1b gene expression (in the hippocampus) were observed in mouse sepsis survivors. Furthermore, microglial activation was linked to decreased cortical ChAT protein expression and increased AChE activity. These results reinforce the notion of persistent inflammation-immunosuppression and catabolic syndrome in sepsis survivors and characterize a previously unrecognized relationship between forebrain cholinergic dysfunction and neuroinflammation in sepsis survivors. This insight is of interest for new therapeutic approaches that focus on brain cholinergic signaling for patients with chronic sepsis illness, a problem with no specific treatment.
Collapse
Affiliation(s)
- Nahla Zaghloul
- Cohen Children's Medical Center, Northwell Health, New Hyde Park, NY, United States.,Neonatology Research Laboratory, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Meghan E Addorisio
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Harold A Silverman
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, NY, United States
| | - Hardik L Patel
- Neonatology Research Laboratory, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sergio I Valdés-Ferrer
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Laboratory of Neurobiology of Systemic Illness, Department of Neurology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Laboratory of Neurobiology of Systemic Illness, Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Kamesh R Ayasolla
- Neonatology Research Laboratory, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kurt R Lehner
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, NY, United States
| | - Peder S Olofsson
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Mansoor Nasim
- Neuropathology-Anatomic Pathology, Northwell Health, New Hyde Park, NY, United States
| | - Christine N Metz
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, NY, United States
| | - Ping Wang
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, NY, United States.,Center for Immunology and Inflammation, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Mohamed Ahmed
- Cohen Children's Medical Center, Northwell Health, New Hyde Park, NY, United States.,Neonatology Research Laboratory, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sangeeta S Chavan
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Betty Diamond
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, NY, United States.,Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Kevin J Tracey
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, NY, United States.,Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Valentin A Pavlov
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, NY, United States.,Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
209
|
Opitz B. Inflammasome Deficiency Makes Pro-resolving Lipid Mediators Great Again. Am J Respir Crit Care Med 2017; 196:668-669. [PMID: 28914570 DOI: 10.1164/rccm.201702-0402ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Bastian Opitz
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine Charité University Medicine Berlin Berlin, Germany
| |
Collapse
|
210
|
BRD4 has dual effects on the HMGB1 and NF-κB signalling pathways and is a potential therapeutic target for osteoarthritis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3001-3015. [DOI: 10.1016/j.bbadis.2017.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 01/11/2023]
|
211
|
Peng HH, Liu YJ, Ojcius DM, Lee CM, Chen RH, Huang PR, Martel J, Young JD. Mineral particles stimulate innate immunity through neutrophil extracellular traps containing HMGB1. Sci Rep 2017; 7:16628. [PMID: 29192209 PMCID: PMC5709501 DOI: 10.1038/s41598-017-16778-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
Calcium phosphate-based mineralo-organic particles form spontaneously in the body and may represent precursors of ectopic calcification. We have shown earlier that these particles induce activation of caspase-1 and secretion of IL-1β by macrophages. However, whether the particles may produce other effects on immune cells is unclear. Here, we show that these particles induce the release of neutrophil extracellular traps (NETs) in a size-dependent manner by human neutrophils. Intracellular production of reactive oxygen species is required for particle-induced NET release by neutrophils. NETs contain the high-mobility group protein B1 (HMGB1), a DNA-binding protein capable of inducing secretion of TNF-α by a monocyte/macrophage cell line and primary macrophages. HMGB1 functions as a ligand of Toll-like receptors 2 and 4 on macrophages, leading to activation of the MyD88 pathway and TNF-α production. Furthermore, HMGB1 is critical to activate the particle-induced pro-inflammatory cascade in the peritoneum of mice. These results indicate that mineral particles promote pro-inflammatory responses by engaging neutrophils and macrophages via signaling of danger signals through NETs.
Collapse
Affiliation(s)
- Hsin-Hsin Peng
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan.,Laboratory Animal Center, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan
| | - Yu-Ju Liu
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan.,Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, 94103, USA
| | - Chiou-Mei Lee
- Laboratory Animal Center, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan
| | - Ren-Hao Chen
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan
| | - Pei-Rong Huang
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Department of Molecular and Cellular Biology, College of Medicine, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan
| | - Jan Martel
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan
| | - John D Young
- Laboratory of Nanomaterials, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan. .,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan, 33302, Taiwan. .,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Gueishan, Taoyuan, 33305, Taiwan. .,Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY, 10021, USA. .,Biochemical Engineering Research Center, Ming Chi University of Technology, Taishan, New Taipei City 24301, Taiwan.
| |
Collapse
|
212
|
Han MS, Lee YM, Kim SW, Kim KM, Lee T, Lee W, Kwon OK, Lee S, Bae JS. Role of moesin in HMGB1-stimulated severe inflammatory responses. Thromb Haemost 2017; 114:350-63. [DOI: 10.1160/th14-11-0969] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/25/2015] [Indexed: 11/05/2022]
Abstract
SummarySepsis is a life-threatening condition that arises when the body’s response to infection causes systemic inflammation. High-mobility group box 1 (HMGB1), as a late mediator of sepsis, enhances hyper-permeability, and it is therefore a therapeutic target. Despite extensive research into the underlying mechanisms of sepsis, the target molecules controlling vascular leakage remain largely unknown. Moesin is a cytoskeletal protein involved in cytoskeletal changes and para-cellular gap formation. The objectives of this study were to determine the roles of moesin in HMGB1-mediated vascular hyperpermeability and inflammatory responses and to investigate the mechanisms of action underlying these responses. Using siRNA knockdown of moesin expression in primary human umbilical vein endothelial cells (HUVECs), moesin was found to be required in HMGB1-induced F-actin rearrangement, hyperpermeability, and inflammatory responses. The mechanisms involved in moesin phosphorylation were analysed by blocking the binding of the HMGB1 receptor (RAGE) and inhibiting the Rho and MAPK pathways. HMGB1-treated HUVECs exhibited an increase in Thr558 phosphorylation of moesin. Circulating levels of moesin were measured in patients admitted to the intensive care unit with sepsis, severe sepsis, and septic shock; these patients showed significantly higher levels of moesin than healthy controls, which was strongly correlated with disease severity. High blood moesin levels were also observed in cecal ligation and puncture (CLP)-induced sepsis in mice. Administration of blocking moesin antibodies attenuated CLP-induced septic death. Collectively, our findings demonstrate that the HMGB1-RAGE-moesin axis can elicit severe inflammatory responses, suggesting it to be a potential target for the development of diagnostics and therapeutics for sepsis.
Collapse
|
213
|
Qiang X, Liotta AS, Shiloach J, Gutierrez JC, Wang H, Ochani M, Ochani K, Yang H, Rabin A, LeRoith D, Lesniak MA, Böhm M, Maaser C, Kannengiesser K, Donowitz M, Rabizadeh S, Czura CJ, Tracey KJ, Westlake M, Zarfeshani A, Mehdi SF, Danoff A, Ge X, Sanyal S, Schwartz GJ, Roth J. New melanocortin-like peptide of E. coli can suppress inflammation via the mammalian melanocortin-1 receptor (MC1R): possible endocrine-like function for microbes of the gut. NPJ Biofilms Microbiomes 2017; 3:31. [PMID: 29152323 PMCID: PMC5684143 DOI: 10.1038/s41522-017-0039-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022] Open
Abstract
E. coli releases a 33 amino acid peptide melanocortin-like peptide of E. coli (MECO-1) that is identical to the C-terminus of the E. coli elongation factor-G (EF-G) and has interesting similarities to two prominent mammalian melanocortin hormones, alpha-melanocyte-stimulating hormone (alpha-MSH) and adrenocorticotropin (ACTH). Note that MECO-1 lacks HFRW, the common pharmacophore of the known mammalian melanocortin peptides. MECO-1 and the two hormones were equally effective in severely blunting release of cytokines (HMGB1 and TNF) from macrophage-like cells in response to (i) endotoxin (lipopolysaccharide) or (ii) pro-inflammatory cytokine HMGB-1. The in vitro anti-inflammatoty effects of MECO-1 and of alpha-MSH were abrogated by (i) antibody against melanocortin-1 receptor (MC1R) and by (ii) agouti, an endogenous inverse agonist of MC1R. In vivo MECO-1 was even more potent than alpha-MSH in rescuing mice from death due to (i) lethal doses of LPS endotoxin or (ii) cecal ligation and puncture, models of sterile and infectious sepsis, respectively.
Collapse
Affiliation(s)
- Xiaoling Qiang
- Laboratory of Diabetes and Diabetes Related Research, US, USA
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
- Hofstra Northwell School of Medicine, Hempstead, NY USA
| | | | | | | | - Haichao Wang
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
- Department of Emergency Medicine, Manhasset, NY USA
| | - Mahendar Ochani
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
| | - Kanta Ochani
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
| | - Huan Yang
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
| | - Aviva Rabin
- Laboratory of Diabetes and Diabetes Related Research, US, USA
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
| | - Derek LeRoith
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | | | | | | | - Mark Donowitz
- Johns Hopkins University School of Medicine, Baltimore, MD USA
| | | | - Christopher J. Czura
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
- Hofstra Northwell School of Medicine, Hempstead, NY USA
| | - Kevin J. Tracey
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
- Hofstra Northwell School of Medicine, Hempstead, NY USA
| | - Mark Westlake
- Laboratory of Diabetes and Diabetes Related Research, US, USA
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
| | - Aida Zarfeshani
- Laboratory of Diabetes and Diabetes Related Research, US, USA
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
| | - Syed F. Mehdi
- Laboratory of Diabetes and Diabetes Related Research, US, USA
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
| | - Ann Danoff
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Jesse Roth
- Laboratory of Diabetes and Diabetes Related Research, US, USA
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
- Hofstra Northwell School of Medicine, Hempstead, NY USA
- Albert Einstein College of Medicine, Bronx, NY USA
| |
Collapse
|
214
|
Masouris I, Klein M, Dyckhoff S, Angele B, Pfister HW, Koedel U. Inhibition of DAMP signaling as an effective adjunctive treatment strategy in pneumococcal meningitis. J Neuroinflammation 2017; 14:214. [PMID: 29096648 PMCID: PMC5669003 DOI: 10.1186/s12974-017-0989-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pneumococcal meningitis remains a potentially lethal and debilitating disease, mainly due to brain damage from sustained inflammation. The release of danger-associated molecular patterns (DAMPs), like myeloid-related protein 14 (MRP14) and high mobility group box 1 protein (HMGB1), plays a major role in persistence of inflammation. In this study, we evaluated if paquinimod, an MRP14-inhibitor, and an anti-HMGB1 antibody can improve clinical outcome as adjunctive therapeutics in pneumococcal meningitis. METHODS We tested the adjuvant administration of paquinimod and the anti-HMGB1 antibody in our pneumococcal meningitis mouse model assessing clinical (clinical score, open-field-test, temperature) and pathophysiological parameters (intracranial pressure, white blood cell count in CSF, bleeding area) as well as bacterial titers in blood and brain 24 h after administration and 48 h after infection. Furthermore, we explored the interactions of these two agents with dexamethasone, the standard adjuvant treatment in pneumococcal meningitis (PM), and daptomycin, a non-bacteriolytic antibiotic preventing pathogen-associated molecular pattern (PAMP) release. RESULTS Adjunctive inhibition of MRP14 or HMGB1 reduced mortality in mice with PM. This effect was lost when the two anti-DAMP agents were given simultaneously, possibly due to excessive immunosuppression. Combining anti-PAMP (daptomycin) and anti-DAMP treatments did not produce synergistic results; instead, the anti-DAMP treatment alone was sufficient and superior. The combination of anti-HMGB1 with dexamethasone did not diminish the effect of the former. CONCLUSIONS DAMP inhibition possesses good potential as an adjuvant treatment approach in PM, as it improves clinical outcome and can be given together with the standard adjuvant dexamethasone without drug effect loss in experimental PM.
Collapse
Affiliation(s)
- Ilias Masouris
- Department of Neurology, University Hospital, LMU Munich, 81377, Munich, Germany. .,Department of Neurology, Klinikum Grosshadern of the Ludwig Maximilians University, Marchioninistraße 15, 81377, Munich, Germany.
| | - Matthias Klein
- Department of Neurology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Susanne Dyckhoff
- Department of Neurology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Barbara Angele
- Department of Neurology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - H W Pfister
- Department of Neurology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Uwe Koedel
- Department of Neurology, University Hospital, LMU Munich, 81377, Munich, Germany
| |
Collapse
|
215
|
Rao Z, Zhang N, Xu N, Pan Y, Xiao M, Wu J, Zhou H, Yang S, Chen Y. 1,25-Dihydroxyvitamin D Inhibits LPS-Induced High-Mobility Group Box 1 (HMGB1) Secretion via Targeting the NF-E2-Related Factor 2-Hemeoxygenase-1-HMGB1 Pathway in Macrophages. Front Immunol 2017; 8:1308. [PMID: 29085368 PMCID: PMC5650703 DOI: 10.3389/fimmu.2017.01308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/27/2017] [Indexed: 12/30/2022] Open
Abstract
1,25-Dihydroxyvitamin D [1,25(OH)2D3] is recognized as a key mediator of inflammatory diseases, including sepsis. Clinical studies demonstrate that 1,25 (OH)2D3 protects patients from sepsis, but clinical treatment with 1,25(OH)2D3 is rare. In this study, we report that 1,25(OH)2D3 treatment has beneficial effects and improves the survival rate in LPS-induced mouse sepsis model by blocking the secretion of high-mobility group box 1 (HMGB1), a key late regulator of sepsis. LPS-induced HMGB1 secretion is attenuated by 1,25(OH)2D3via blocking HMGB1 translocation from the nucleus to the cytoplasm in macrophages. 1,25(OH)2D3 can induce the expression of hemeoxygenase-1 (HO-1), which is essential for blocking HMBG1 nuclear translocation and its secretion. When siHO-1 or an HO-1 inhibitor are used, the effect of 1,25(OH)2D3 on inhibition of HMGB1 secretion is suppressed. Considering that HO-1 is a downstream gene of NF-E2-related factor 2 (Nrf2), we further confirm that Nrf2 activation can be activated by 1,25(OH)2D3 upon LPS exposure. Together, we provide evidence that 1,25(OH)2D3 attenuates LPS-induced HMGB1 secretion via the Nrf2/HO-1 pathway in macrophages.
Collapse
Affiliation(s)
- Zebing Rao
- Department of Immunology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Techniques of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Na Zhang
- Department of Immunology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Techniques of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Ning Xu
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Ying Pan
- Department of Immunology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Techniques of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Mengjun Xiao
- Department of Immunology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Techniques of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Junxian Wu
- Department of Immunology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Techniques of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Shuo Yang
- Department of Immunology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Techniques of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Yunzi Chen
- Department of Immunology, Nanjing Medical University, Nanjing, China.,Key Laboratory of Antibody Techniques of Ministry of Health, Nanjing Medical University, Nanjing, China.,Medical Centre for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
216
|
Lee IC, Kim DY, Bae JS. Zingerone Suppresses the Shedding of Endothelial Protein C Receptor. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701201025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Zingerone (ZGR), a phenolic alkanone found in Zingiber officinale, has been reported to have various pharmacological activities including anti-inflammatory and anti-apoptotic activities. The endothelial cell protein C receptor (EPCR) plays an important role in the cytoprotective pathway and activation of protein C EPCR can be shed from the cell surface, which is mediated by tumor necrosis factor-α converting enzyme (TACE). However, little is known about the effects of ZGR on EPCR shedding. We investigated this by monitoring the effects of ZGR on phorbol-12-myristate 13-acetate (PMA)-, tumor necrosis factor (TNF)-a, and interleukin (IL)-1p-induced EPCR shedding in human umbilical vein endothelial cells (HUVECs), and cecal ligation and puncture (CLP)-mediated EPCR shedding in mice, as well as by analyzing the underlying mechanisms. Here, ZGR triggered potent inhibition of PMA-, TNF-α-, IL-1β-and CLP-induced EPCR shedding through the inhibition of phosphorylation of mitogen-activated protein kinases (MAPKs) such as p38, janus kinase (JNK), and extracellular signal-regulated kinase (ERK) 1/2. ZGR also inhibited PMA-induced TACE expression and activity in HUVECs, suggesting that p38, ERK1/2, and JNK could be molecular targets of ZGR. These results demonstrate the potential of ZGR as an agent against PMA- and CLP-mediated EPCR shedding.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju 28674, Republic of Korea
| | - Dae Yong Kim
- Department of Biology Education, Seowon University, Cheongju 28674, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
217
|
Ahn MY, Hwang JS, Lee SB, Ham SA, Hur J, Kim JT, Seo HG. Curcumin longa extract-loaded nanoemulsion improves the survival of endotoxemic mice by inhibiting nitric oxide-dependent HMGB1 release. PeerJ 2017; 5:e3808. [PMID: 28929026 PMCID: PMC5600948 DOI: 10.7717/peerj.3808] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background High mobility group box 1 (HMGB1) is a well-known damage-related alarmin that participates in cellular inflammatory responses. However, the mechanisms leading to HMGB1 release in inflammatory conditions and the therapeutic agents that could prevent it remain poorly understood. This study attempted to examine whether the Curcumin longa herb, which is known to have anti-inflammatory property, can modulate cellular inflammatory responses by regulating HMGB1 release. Methods The murine macrophage RAW264.7 cells were treated with lipopolysaccharide (LPS) and/or a C. longa extract-loaded nanoemulsion (CLEN). The levels of released HMGB1, nitric oxide (NO) production, inducible NO synthase (iNOS) expression, and phosphorylation of mitogen-activated protein kinases were analyzed in RAW264.7 macrophages. The effects of CLEN on survival of endotoxemic model mice, circulating HMGB1 levels, and tissue iNOS expression were also evaluated. Results We have shown that a nanoemulsion loaded with an extract from the C. longa rhizome regulates cellular inflammatory responses and LPS-induced systemic inflammation by suppressing the release of HMGB1 by macrophages. First, treatment of RAW264.7 macrophages with the nanoemulsion significantly attenuated their LPS-induced release of HMGB1: this effect was mediated by inhibiting c-Jun N-terminal kinase activation, which in turn suppressed the NO production and iNOS expression of the cells. The nanoemulsion did not affect LPS-induced p38 or extracellular signal-regulated kinase activation. Second, intraperitoneal administration of the nanoemulsion improved the survival rate of LPS-injected endotoxemic mice. This associated with marked reductions in circulating HMGB1 levels and tissue iNOS expression. Discussion The present study shows for the first time the mechanism by which C. longa ameliorates sepsis, namely, by suppressing NO signaling and thereby inhibiting the release of the proinflammatory cytokine HMGB1. These observations suggest that identification of agents, including those in the herb C. longa, that can inhibit HMGB1 production and/or activity may aid the treatment of endotoxemia.
Collapse
Affiliation(s)
- Min Young Ahn
- Department of Food Science and Biotechnology of Animal Products, Konkuk University, Seoul, South Korea
| | - Jung Seok Hwang
- Department of Food Science and Biotechnology of Animal Products, Konkuk University, Seoul, South Korea
| | - Su Bi Lee
- Department of Food Science and Technology, Keimyung University, Daegu, South Korea
| | - Sun Ah Ham
- Department of Food Science and Biotechnology of Animal Products, Konkuk University, Seoul, South Korea
| | - Jinwoo Hur
- Department of Food Science and Biotechnology of Animal Products, Konkuk University, Seoul, South Korea
| | - Jun Tae Kim
- Department of Food Science and Technology, Keimyung University, Daegu, South Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Products, Konkuk University, Seoul, South Korea
| |
Collapse
|
218
|
Bai C, Ren Y, Huang J, Zhang Y, LI L, Du G. High-mobility group Box-1 regulates acute myocardial ischemia-induced injury through the toll-like receptor 4-related pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8344-8352. [PMID: 31966685 PMCID: PMC6965424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 06/10/2023]
Abstract
High-mobility group box-1 (HMGB1) is a nuclear protein released by necrotic cells as a result of its interactions with several receptors, including the receptor for advanced glycation end-products (RAGE) and members of the toll-like receptor family. HMGB1 has been implicated in autoimmune diseases and hepatic and intestinal ischemia/reperfusion (I/R) injury; however, its role in myocardial ischemia-induced injury remains unclear. In this study, isoproterenol (ISO) was used to establish a myocardial ischemia mouse model. Treating mice with recombinant HMGB1 (rHMGB1) worsened myocardial injury, whereas treating mice with antibodies that neutralized HMGB1 significantly reduced tissue damage. Interestingly, myocardial ischemia severity was not affected by rHMGB1 or HMGB1 antibody administration in toll-like receptor 4 (TLR4)-deficient mice (TLR4-/-), which demonstrated significantly reduced ischemia-induced cardiac tissue damage compared with wild-type (WT) mice. HMGB1 plays an important role in myocardial ischemia-induced injury by binding to TLR4, which results in proinflammatory pathway activation and enhanced myocardial injury. Therefore, blocking HMGB1 or TLR4 may represent a novel therapeutic strategy for treating myocardial ischemia-induced injury.
Collapse
Affiliation(s)
- Chaochao Bai
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi, Xinjiang, China
| | - Yun Ren
- The Fifth People’s Hospital of FoshanFoshan, China
| | - Jin Huang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi, Xinjiang, China
| | - Yuan Zhang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi, Xinjiang, China
| | - Lingyi LI
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi, Xinjiang, China
| | - Guangsheng Du
- The Fifth People’s Hospital of FoshanFoshan, China
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi UniversityShihezi, Xinjiang, China
| |
Collapse
|
219
|
Zhao J, Wang Y, Xu C, Liu K, Wang Y, Chen L, Wu X, Gao F, Guo Y, Zhu J, Wang S, Nishibori M, Chen Z. Therapeutic potential of an anti-high mobility group box-1 monoclonal antibody in epilepsy. Brain Behav Immun 2017; 64:308-319. [PMID: 28167116 DOI: 10.1016/j.bbi.2017.02.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/22/2017] [Accepted: 02/01/2017] [Indexed: 12/17/2022] Open
Abstract
Brain inflammation is a major factor in epilepsy, and the high mobility group box-1 (HMGB1) protein is known to contribute significantly to the generation of seizures. Here, we investigated the therapeutic potential of an anti-HMGB1 monoclonal antibody (mAb) in epilepsy. anti-HMGB1 mAb attenuated both acute seizure models (maximal electroshock seizure, pentylenetetrazole-induced and kindling-induced), and chronic epilepsy model (kainic acid-induced) in a dose-dependent manner. Meanwhile, the anti-HMGB1 mAb also attenuated seizure activities of human brain slices obtained from surgical resection from drug-resistant epilepsy patients. The mAb showed an anti-seizure effect with a long-term manner and appeared to be minimal side effects at even very high dose (no disrupted physical EEG rhythm and no impaired basic physical functions, such as body growth rate and thermoregulation). This anti-seizure effect of mAb results from its inhibition of translocated HMGB1 from nuclei following seizures, and the anti-seizure effect was absent in toll-like receptor 4 knockout (TLR4-/-) mice. Interestingly, the anti-HMGB1 mAb also showed a disease-modifying anti-epileptogenetic effect on epileptogenesis after status epileptics, which is indicated by reducing seizure frequency and improving the impaired cognitive function. These results indicate that the anti-HMGB1 mAb should be viewed as a very promising approach for the development of novel therapies to treat refractory epilepsy.
Collapse
Affiliation(s)
- Junli Zhao
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ying Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Liying Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohua Wu
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Gao
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Guo
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junming Zhu
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
220
|
Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes. Sci Rep 2017; 7:5850. [PMID: 28724977 PMCID: PMC5517568 DOI: 10.1038/s41598-017-06205-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/08/2017] [Indexed: 12/29/2022] Open
Abstract
Sepsis remains a significant health burden and a major clinical need exists for therapeutics to dampen the excessive and uncontrolled immune activation. Nuclear protein high mobility group box protein 1 (HMGB1) is released following cell death and is a late mediator in sepsis pathogenesis. While approaches targeting HMGB1 have demonstrated reduced mortality in pre-clinical models of sepsis, the impact of HMGB1 blockade on the complex septic inflammatory milieu and the development of subsequent immunosuppression remain enigmatic. Analysis of plasma samples obtained from septic shock patients established an association between increased HMGB1 and non-survival, higher APACHE II scores, and increased pro-inflammatory cytokine responses. Pre-clinically, administration of neutralising ovine anti-HMGB1 polyclonal antibodies improved survival in murine endotoxaemia and caecal ligation and puncture-induced sepsis models, and altered early cytokine profiles to one which corresponded to patterns observed in the surviving patient cohort. Additionally, anti-HMGB1 treated murine sepsis survivors were significantly more resistant to secondary bacterial infection and exhibited altered innate immune cell phenotypes and cytokine responses. These findings demonstrate that anti-HMGB1 antibodies alter inflammation in murine sepsis models and reduce sepsis mortality without potentiating immunosuppression.
Collapse
|
221
|
Ahn MY, Hwang JS, Ham SA, Hur J, Jo Y, Lee S, Choi MJ, Han SG, Seo HG. Subcritical water-hydrolyzed fish collagen ameliorates survival of endotoxemic mice by inhibiting HMGB1 release in a HO-1-dependent manner. Biomed Pharmacother 2017; 93:923-930. [PMID: 28715873 DOI: 10.1016/j.biopha.2017.07.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 02/06/2023] Open
Abstract
To investigate potential mechanisms underlying the bioactivity of hydrolyzed fish collagen, we examined the anti-inflammatory actions of subcritical water-hydrolyzed fish collagen (SWFC) in lipopolysaccharide (LPS)-triggered inflammation and endotoxemia. SWFC markedly inhibited LPS-stimulated release of high mobility group box 1 (HMGB1) in murine RAW264.7 macrophages, along with decreased cytosolic translocation of HMGB1. Both the protein and mRNA levels of heme oxygenase-1 (HO-1) were significantly upregulated in SWFC-treated RAW 264.7 cells in an Nrf2-dependent manner. In line with these effects of SWFC, both HO-1 siRNA and ZnPPIX (zinc protoporphyrin IX) actually attenuated the effects of SWFC on HMGB1 release stimulated by LPS, indicating a possible mechanism by which SWFC modulates HMGB1 release through HO-1 signaling. Notably, administration of SWFC improved the survival rates of LPS-injected endotoxemic mice, in which the serum level of HMGB1 was significantly reduced. Taken together, these results indicate that the anti-inflammatory activities of SWFC are achieved by inhibiting HMGB1 release induced by LPS in a HO-1-sensitive manner.
Collapse
Affiliation(s)
- Min Young Ahn
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung Seok Hwang
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sun Ah Ham
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jinwoo Hur
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeonji Jo
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - SangYoon Lee
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
222
|
The Alarmin HMGB1 Mediates Age-Induced Neuroinflammatory Priming. J Neurosci 2017; 36:7946-56. [PMID: 27466339 DOI: 10.1523/jneurosci.1161-16.2016] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/08/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Amplified neuroinflammatory responses following an immune challenge occur with normal aging and can elicit or exacerbate neuropathology. The mechanisms mediating this sensitized or "primed" immune response in the aged brain are not fully understood. The alarmin high mobility group box 1 (HMGB1) can be released under chronic pathological conditions and initiate inflammatory cascades. This led us to investigate whether HMGB1 regulates age-related priming of the neuroinflammatory response. Here, we show that HMGB1 protein and mRNA were elevated in the hippocampus of unmanipulated aged rats (24-month-old F344XBN rats). Furthermore, aged rats had increased HMGB1 in the CSF, suggesting increased HMGB1 release. We demonstrate that blocking HMGB1 signaling with an intracisterna magna (ICM) injection of the competitive antagonist to HMGB1, Box-A, downregulates basal expression of several inflammatory pathway genes in the hippocampus of aged rats. This indicates that blocking the actions of HMGB1 might reduce age-associated inflammatory priming. To test this hypothesis, we evaluated whether HMGB1 antagonism blocks the protracted neuroinflammatory and sickness response to peripheral Escherichia coli (E. coli) infection in aged rats. ICM pretreatment of aged rats with Box-A 24 h before E. coli infection prevented the extended hippocampal cytokine response and associated cognitive and affective behavioral changes. ICM pretreatment with Box-A also inhibited aging-induced potentiation of the microglial proinflammatory response to lipopolysaccharide ex vivo Together, these results suggest that HMGB1 mediates neuroinflammatory priming in the aged brain. Blocking the actions of HMGB1 appears to "desensitize" aged microglia to an immune challenge, thereby preventing exaggerated behavioral and neuroinflammatory responses following infection. SIGNIFICANCE STATEMENT The world's population is aging, highlighting a need to develop treatments that promote quality of life in aged individuals. Normal aging is associated with precipitous drops in cognition, typically following events that induce peripheral inflammation (e.g., infection, surgery, heart attack). Peripheral immune stimuli cause exaggerated immune responses in the aged brain, which likely underlie these behavioral deficits. Here, we investigated whether the alarmin high mobility group box 1 (HMGB1) mediates age-associated "priming" of the neuroinflammatory response. HMGB1 is elevated in aged rodent brain and CSF. Blocking HMGB1 signaling downregulated expression of inflammatory pathway genes in aged rat brain. Further, HMGB1 antagonism prevented prolonged infection-induced neuroinflammatory and sickness responses in aged rats. Overall, blocking HMGB1 "desensitized" microglia in the aged brain, thereby preventing pathological infection-elicited neuroinflammatory responses.
Collapse
|
223
|
Abstract
Although acute liver failure (ALF) is a rare disease, it continues to have high mortality and morbidity rates due to its many causes. High mobility group box 1 (HMGB1), originally reported as a ubiquitous non-histone chromosomal protein, is a multi-functional protein with varying functions depending on its location, such as in the nucleus, cytoplasm and extracellular space. The role of extracellular HMGB1 as an inflammatory mediator has been well studied, and the elevation of serum HMGB1 has been reported in several diseases that are closely associated with ALF. Areas covered: In this review, we focus on the relationship between causes of acute liver failure, such as viral infection, drug-induced liver injury, ischemia/reperfusion injury, and acute-on-chronic liver failure, and the role of HMGB1. Furthermore, we also consolidate and summarize the current reports of HMGB1-targeting therapies in hepatic injury models. Expert commentary: HMGB1 could be a novel therapeutic candidate for ALF, and the clinical testing of HMGB1-targeting therapies for ALF patients is expected.
Collapse
Affiliation(s)
- Tetsu Yamamoto
- a Department of Digestive and General Surgery , Shimane University Faculty of Medicine , Izumo , Japan
| | - Yoshitsugu Tajima
- a Department of Digestive and General Surgery , Shimane University Faculty of Medicine , Izumo , Japan
| |
Collapse
|
224
|
Yang H, Wang H, Wang Y, Addorisio M, Li J, Postiglione MJ, Chavan SS, Al-Abed Y, Antoine DJ, Andersson U, Tracey KJ. The haptoglobin beta subunit sequesters HMGB1 toxicity in sterile and infectious inflammation. J Intern Med 2017; 282:76-93. [PMID: 28464519 PMCID: PMC5477782 DOI: 10.1111/joim.12619] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Extra-corpuscular haemoglobin is an endogenous factor enhancing inflammatory tissue damage, a process counteracted by the haemoglobin-binding plasma protein haptoglobin composed of alpha and beta subunits connected by disulfide bridges. Recent studies established that haptoglobin also binds and sequesters another pro-inflammatory mediator, HMGB1, via triggering CD163 receptor-mediated anti-inflammatory responses involving heme oxygenase-1 expression and IL-10 release. The molecular mechanism underlying haptoglobin-HMGB1 interaction remains poorly elucidated. METHODS Haptoglobin β subunits were tested for HMGB1-binding properties, as well as efficacy in animal models of sterile liver injury (induced by intraperitoneal acetaminophen administration) or infectious peritonitis (induced by cecal ligation and puncture, CLP, surgery) using wild-type (C57BL/6) or haptoglobin gene-deficient mice. RESULTS Structural-functional analysis demonstrated that the haptoglobin β subunit recapitulates the HMGB1-binding properties of full-length haptoglobin. Similar to HMGB1-haptoglobin complexes, the HMGB1-haptoglobin β complexes also elicited anti-inflammatory effects via CD163-mediated IL-10 release and heme oxygenase-1 expression. Treatment with haptoglobin β protein conferred significant protection in mouse models of polymicrobial sepsis as well as acetaminophen-induced liver injury, two HMGB1-dependent inflammatory conditions. CONCLUSIONS Haptoglobin β protein offers a novel therapeutic approach to fight against various inflammatory diseases caused by excessive HMGB1 release.
Collapse
Affiliation(s)
- H Yang
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - H Wang
- Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Y Wang
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - M Addorisio
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - J Li
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - M J Postiglione
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - S S Chavan
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Y Al-Abed
- Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - D J Antoine
- MRC Center for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - U Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - K J Tracey
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
225
|
Davis HM, Pacheco-Costa R, Atkinson EG, Brun LR, Gortazar AR, Harris J, Hiasa M, Bolarinwa SA, Yoneda T, Ivan M, Bruzzaniti A, Bellido T, Plotkin LI. Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell 2017; 16:551-563. [PMID: 28317237 PMCID: PMC5418188 DOI: 10.1111/acel.12586] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 12/25/2022] Open
Abstract
Skeletal aging results in apoptosis of osteocytes, cells embedded in bone that control the generation/function of bone forming and resorbing cells. Aging also decreases connexin43 (Cx43) expression in bone; and osteocytic Cx43 deletion partially mimics the skeletal phenotype of old mice. Particularly, aging and Cx43 deletion increase osteocyte apoptosis, and osteoclast number and bone resorption on endocortical bone surfaces. We examined herein the molecular signaling events responsible for osteocyte apoptosis and osteoclast recruitment triggered by aging and Cx43 deficiency. Cx43‐silenced MLO‐Y4 osteocytic (Cx43def) cells undergo spontaneous cell death in culture through caspase‐3 activation and exhibit increased levels of apoptosis‐related genes, and only transfection of Cx43 constructs able to form gap junction channels reverses Cx43def cell death. Cx43def cells and bones from old mice exhibit reduced levels of the pro‐survival microRNA miR21 and, consistently, increased levels of the miR21 target phosphatase and tensin homolog (PTEN) and reduced phosphorylated Akt, whereas PTEN inhibition reduces Cx43def cell apoptosis. miR21 reduction is sufficient to induce apoptosis of Cx43‐expressing cells and miR21 deletion in miR21fl/fl bones increases apoptosis‐related gene expression, whereas a miR21 mimic prevents Cx43def cell apoptosis, demonstrating that miR21 lies downstream of Cx43. Cx43def cells release more osteoclastogenic cytokines [receptor activator of NFκB ligand (RANKL)/high‐mobility group box‐1 (HMGB1)], and caspase‐3 inhibition prevents RANKL/HMGB1 release and the increased osteoclastogenesis induced by conditioned media from Cx43def cells, which is blocked by antagonizing HMGB1‐RAGE interaction. These findings identify a novel Cx43/miR21/HMGB1/RANKL pathway involved in preventing osteocyte apoptosis that also controls osteoclast formation/recruitment and is impaired with aging.
Collapse
Affiliation(s)
- Hannah M. Davis
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Rafael Pacheco-Costa
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Emily G. Atkinson
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Lucas R. Brun
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Arancha R. Gortazar
- Instituto de Medicina Molecular Aplicada; Facultad de Medicina; Universidad San Pablo-CEU; Madrid Spain
| | - Julia Harris
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Masahiro Hiasa
- Division of Hematology/Oncology; Department of Internal Medicine; Indiana University School of Medicine; Indianapolis IN USA
| | - Surajudeen A. Bolarinwa
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
| | - Toshiyuki Yoneda
- Division of Hematology/Oncology; Department of Internal Medicine; Indiana University School of Medicine; Indianapolis IN USA
| | - Mircea Ivan
- Division of Hematology/Oncology; Department of Internal Medicine; Indiana University School of Medicine; Indianapolis IN USA
| | - Angela Bruzzaniti
- Department of Oral Biology; Indiana University School of Dentistry; Indianapolis IN USA
| | - Teresita Bellido
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
- Division of Endocrinology; Department of Internal Medicine; Indiana University School of Medicine; Indianapolis IN USA
- Roudebush Veterans Administration Medical Center; Indianapolis IN USA
| | - Lilian I. Plotkin
- Department of Anatomy & Cell Biology; Indiana University School of Medicine; Indianapolis IN USA
- Roudebush Veterans Administration Medical Center; Indianapolis IN USA
| |
Collapse
|
226
|
Bellussi LM, Vindigni C, Cocca S, Butorano MAGM, Livi W, Corallo G, Passali D. High-mobility group box protein 1 expression in inflammatory diseases of the middle ear. Int J Immunopathol Pharmacol 2017; 30:168-173. [PMID: 28555513 PMCID: PMC5806793 DOI: 10.1177/0394632017698713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/01/2017] [Indexed: 01/17/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a nuclear non-histone protein, playing a critical role as a mediator between innate and acquired immunity; when released extracellularly, it coordinates the cellular stress response (under necrosis, bacterial lipopolysaccharide stimulation) and acts as an inflammatory marker and cytokine. The aim of the study was to demonstrate whether HMGB1 is over-expressed in chronic middle-ear pathologies and whether the entity of expression and the localization are correlated with the degree of the inflammatory reaction, thus suggesting that HMGB1 may play a crucial role in chronic inflammatory disorders of the middle ear, as already demonstrated in other airway diseases. We analyzed 30 samples of middle-ear mucosa in patients affected by chronic suppurative otitis media with ear drum perforation with/without cholesteatoma and otosclerosis as control. The distribution of HMGB1 was evaluated as nuclear, cytoplasmic, and/or extracellular staining. The inflammatory cells observed in the biopsies were mostly lymphocytes and plasmacells. A statistically significant difference in inflammation score between otosclerosis and chronic otitis samples ( P < 0.01; Anova test) and between otosclerosis and cholesteatoma samples ( P < 0.05; Anova test) was observed; the HMGB1 positivity was in accordance with the density of the inflammatory infiltrate. HMGB1 is over-expressed in chronic middle-ear pathologies and may play a role in the progression of the inflammatory process from recurrent acute otitis media to chronic suppurative otitis media.
Collapse
Affiliation(s)
- Luisa Maria Bellussi
- Medical Surgical and Neuroscience Department, ENT Clinic, University of Siena, Siena, Italy
| | | | - Serena Cocca
- Medical Surgical and Neuroscience Department, ENT Clinic, University of Siena, Siena, Italy
| | | | - Walter Livi
- Medical Surgical and Neuroscience Department, ENT Clinic, University of Siena, Siena, Italy
| | - Giulia Corallo
- Medical Surgical and Neuroscience Department, ENT Clinic, University of Siena, Siena, Italy
| | - Desiderio Passali
- Medical Surgical and Neuroscience Department, ENT Clinic, University of Siena, Siena, Italy
| |
Collapse
|
227
|
Komai K, Shichita T, Ito M, Kanamori M, Chikuma S, Yoshimura A. Role of scavenger receptors as damage-associated molecular pattern receptors in Toll-like receptor activation. Int Immunol 2017; 29:59-70. [PMID: 28338748 DOI: 10.1093/intimm/dxx010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/22/2017] [Indexed: 12/22/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) have been implicated in sterile inflammation in various tissue injuries. High-mobility group box 1 (HMGB1) is a representative DAMP, and has been shown to transmit signals through receptors for advanced glycation end products (RAGEs) and TLRs, including TLR2 and TLR4. HMGB1 does not, however, bind to TLRs with high affinity; therefore, the mechanism of HMGB1-mediated TLR activation remains unclear. In this study, we found that fluorescently labeled HMGB1 was efficiently internalized into macrophages through class A scavenger receptors. Although both M1- and M2-type macrophages internalized HMGB1, only M1-type macrophages secreted cytokines in response to HMGB1. The pan-class A scavenger receptor competitive inhibitor, maleylated bovine serum albumin (M-BSA), inhibited HMGB1 internalization and reduced cytokine production from macrophages in response to HMGB1 but not to LPS. The C-terminal acidic domain of HMGB1 is responsible for scavenger receptor-mediated internalization and cytokine production. HMGB1 and TLR4 co-localized in macrophages, and this interaction was disrupted by M-BSA, suggesting that class A scavenger receptors function as co-receptors of HMGB1 for TLR activation. M-BSA ameliorated LPS-induced sepsis and dextran sulfate sodium (DSS)-induced colitis models in which HMGB1 has been shown to play progressive roles. These data suggest that scavenger receptors function as co-receptors along with TLRs for HMGB1 in M1-type inflammatory macrophages.
Collapse
Affiliation(s)
- Kyoko Komai
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takashi Shichita
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitsuhiro Kanamori
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
228
|
Li C, Peng S, Liu X, Han C, Wang X, Jin T, Liu S, Wang W, Xie X, He X, Zhang H, Shan L, Fan C, Shan Z, Teng W. Glycyrrhizin, a Direct HMGB1 Antagonist, Ameliorates Inflammatory Infiltration in a Model of Autoimmune Thyroiditis via Inhibition of TLR2-HMGB1 Signaling. Thyroid 2017; 27:722-731. [PMID: 28363255 DOI: 10.1089/thy.2016.0432] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND High mobility group box-1 (HMGB1), a non-histone protein, plays an important role in autoimmune diseases. However, the significance of HMGB1 in the pathogenesis of autoimmune thyroiditis has not been reported. The purpose of this study was to explore whether HMGB1 participates in the pathogenesis of autoimmune thyroiditis, and whether glycyrrhizin (GL), a direct inhibitor of HMGB1, attenuates the severity of thyroid inflammatory infiltration in a murine model of autoimmune thyroiditis. METHODS A total of 80 male NOD.H-2h4 mice were randomly divided into a control or iodine supplement (NaI) group at four weeks of age, and the control group was fed with regular water, whereas the NaI group was supplied with 0.005% sodium iodine water. Another 24 male NOD.H-2h4 mice were also randomized into three groups (eight mice per group) as follows: control, NaI, and GL treatment after iodine supplementation (NaI + GL). The NOD.H-2h4 mice were fed with 0.005% sodium iodide water for eight weeks to enhance autoimmune thyroiditis. After iodine treatment, the mice received intraperitoneal injections of GL for four weeks. The severity of lymphocytic infiltration in the thyroid gland was measured by histopathological studies. The serum levels of HMGB1, tumor necrosis factor alpha, interleukin (IL)-6, IL-1β, and thyroglobulin antibody titers were measured using an enzyme-linked immunosorbent assay. HMGB1 expression was measured by immunohistochemical staining and real-time polymerase chain reaction. TLR2, HMGB1, MyD88, and nuclear transcription factor κB were measured by Western blot. RESULTS The mRNA expression of HMGB1 was significantly higher at 8 and 16 weeks in the NaI group than it was in the control group. Serum levels of thyroglobulin antibodies, HMGB1, tumor necrosis factor alpha, IL-6, and IL-1β were significantly increased in the NaI group, but they were dramatically attenuated with GL injection. The prevalence of thyroiditis and the infiltration of lymphocytes were significantly decreased in the NaI + GL group. GL administration also significantly reduced the protein expression of TLR2, MyD88, HMGB1 and nuclear transcription factor κB in the thyroid gland and attenuated the severity of thyroiditis. CONCLUSION HMGB1 may play a crucial role in autoimmune thyroiditis by causing inflammatory infiltration, thus increasing the severity of autoimmune thyroiditis. GL effectively attenuated thyroiditis in the iodine-induced NOD.H-2h4 mice via a molecular mechanism related to the inhibition of TLR2-HMGB1 signaling.
Collapse
Affiliation(s)
- Chenyan Li
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University , Shenyang, People's Republic of China
| | - Shiqiao Peng
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University , Shenyang, People's Republic of China
| | - Xin Liu
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University , Shenyang, People's Republic of China
- 2 Department of Intensive Care Unit, Affiliated Hospital of Qingdao University , Qingdao, People's Republic of China
| | - Cheng Han
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University , Shenyang, People's Republic of China
| | - Xinyi Wang
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University , Shenyang, People's Republic of China
- 3 Department of Laboratory Medicine, The First Hospital of China Medical University , Shenyang, People's Republic of China
| | - Ting Jin
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University , Shenyang, People's Republic of China
- 4 Department of Endocrinology, Sir Run Run Shaw Hospital, Affiliated to School of Medicine, Zhejiang University , Hangzhou, People's Republic of China
| | - Shanshan Liu
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University , Shenyang, People's Republic of China
- 5 Department of Emergency, People's Liberation Army No.202 Hospital , Shenyang, People's Republic of China
| | - Weiwei Wang
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University , Shenyang, People's Republic of China
| | - Xiaochen Xie
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University , Shenyang, People's Republic of China
| | - Xue He
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University , Shenyang, People's Republic of China
| | - Hanyi Zhang
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University , Shenyang, People's Republic of China
| | - Ling Shan
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University , Shenyang, People's Republic of China
| | - Chenling Fan
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University , Shenyang, People's Republic of China
| | - Zhongyan Shan
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University , Shenyang, People's Republic of China
| | - Weiping Teng
- 1 Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University , Shenyang, People's Republic of China
| |
Collapse
|
229
|
Choi HS, Park JA, Hwang JS, Ham SA, Yoo T, Lee WJ, Paek KS, Shin HC, Lee CH, Seo HG. A Dalbergia odorifera extract improves the survival of endotoxemia model mice by inhibiting HMGB1 release. Altern Ther Health Med 2017; 17:212. [PMID: 28403838 PMCID: PMC5389052 DOI: 10.1186/s12906-017-1725-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/05/2017] [Indexed: 01/14/2023]
Abstract
Background Dalbergia odorifera T. Chen (Leguminosae) is an indigenous medicinal herb that is widely used as a popular remedy in northern and eastern Asia. However, the cellular mechanisms underlying the biological activity of D. odorifera are not fully elucidated. Methods Anti-inflammatory effect of D. odorifera extract (DOE) was determined through intraperitoneal injection in a mouse model of endotoxemia induced by lipopolysaccharide (LPS). RAW 264.7 cells, a murine macrophage, were also treated with LPS to generate a cellular model of inflammation, and investigated the anti-inflammatory activity and underlying mechanisms of DOE and its constituent isoliquiritigenin. Results DOE dose-dependently inhibited LPS-induced release of high mobility group box 1 (HMGB1), a late proinflammatory cytokine, and decreased cytosolic translocation of HMGB1 in RAW264.7 cells. This inhibitory effect of DOE on HMGB1 release was observed in cells treated with DOE before or after LPS treatment, suggesting that DOE is effective for both treatment and prevention. In addition, DOE significantly inhibited LPS-induced formation of nitric oxide (NO) and expression of inducible NO synthase (iNOS) in a dose-dependent manner. These effects of DOE were accompanied by suppression of HMGB1 release triggered by LPS, suggesting a possible mechanism by which DOE modulates HMGB1 release through NO signaling. Isoriquiritigenin, a constituent of DOE, also attenuated LPS-triggered NO formation and HMGB1 release in RAW264.7 cells, indicating that isoriquiritigenin is an indexing molecule for the anti-inflammatory properties of DOE. Furthermore, c-Jun N-terminal kinase, but not extracellular signal-regulated kinase and p38, mediated DOE-dependent inhibition of HMGB1 release and NO/iNOS induction in RAW 264.7 cells exposed to LPS. Notably, administration of DOE ameliorated survival rates in a mouse model of endotoxemia induced by LPS, where decreased level of circulating HMGB1 was observed. Conclusion These results suggest that DOE confers resistance to LPS-triggered inflammation through NO-mediated inhibitory effects on HMGB1 release.
Collapse
|
230
|
Corylin protects LPS-induced sepsis and attenuates LPS-induced inflammatory response. Sci Rep 2017; 7:46299. [PMID: 28397806 PMCID: PMC5387730 DOI: 10.1038/srep46299] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/14/2017] [Indexed: 01/04/2023] Open
Abstract
Corylin is a main compound isolated from Psoralea corylifolia L. (Fabaceae). A variety of pharmacological effects such as antioxidant, anti-proliferation, and anti-inflammatory properties of corylin have been reported. Nevertheless, the effect of corylin in microbial infection and sepsis remains unclear. In the present study, we investigated the anti-inflammatory effects of corylin. Our experimental results demonstrated that corylin inhibited the production of TNF-α, IL-6 and NO by both LPS-activated RAW 264.7 cells and LPS-activated murine peritoneal macrophages. Moreover, corylin suppressed the expression levels of iNOS and COX-2, reduced the production of PGE2 and HMGB1, blocked the translocation of HMGB1 from the nucleus to cytosol, and decreased the phosphorylation of MAPKs in LPS-activated RAW 264.7 cells as well as suppressed the activity of NF-κB in LPS-activated J-Blue cells. In addition, the administration of corylin reduced the production of NO and TNF-α, decreased LPS-induced liver damage markers (AST and ALT) and kidney damage markers (BUN and CRE), attenuated infiltration of inflammatory cells and tissue damage of lung, liver and kidney, and enhanced the survival rate of LPS-challenged mice. Taken together, these results show the anti-inflammatory properties of corylin on LPS-induced inflammation and sepsis. Corylin could potentially be a novel anti-inflammatory and immunosuppressive drug candidate in the treatment of sepsis and septic shock.
Collapse
|
231
|
Horiuchi T, Sakata N, Narumi Y, Kimura T, Hayashi T, Nagano K, Liu K, Nishibori M, Tsukita S, Yamada T, Katagiri H, Shirakawa R, Horiuchi H. Metformin directly binds the alarmin HMGB1 and inhibits its proinflammatory activity. J Biol Chem 2017; 292:8436-8446. [PMID: 28373282 PMCID: PMC5437248 DOI: 10.1074/jbc.m116.769380] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/31/2017] [Indexed: 01/26/2023] Open
Abstract
Metformin is the first-line drug in the treatment of type 2 diabetes. In addition to its hypoglycemic effect, metformin has an anti-inflammatory function, but the precise mechanism promoting this activity remains unclear. High mobility group box 1 (HMGB1) is an alarmin that is released from necrotic cells and induces inflammatory responses by its cytokine-like activity and is, therefore, a target of anti-inflammatory therapies. Here we identified HMGB1 as a novel metformin-binding protein by affinity purification using a biotinylated metformin analogue. Metformin directly bound to the C-terminal acidic tail of HMGB1. Both in vitro and in vivo, metformin inhibited inflammatory responses induced by full-length HMGB1 but not by HMGB1 lacking the acidic tail. In an acetaminophen-induced acute liver injury model in which HMGB1 released from injured cells exacerbates the initial injury, metformin effectively reduced liver injury and had no additional inhibitory effects when the extracellular HMGB1 was blocked by anti-HMGB1-neutralizing antibody. In summary, we report for the first time that metformin suppresses inflammation by inhibiting the extracellular activity of HMGB1. Because HMGB1 plays a major role in inflammation, our results suggest possible new ways to manage HMGB1-induced inflammation.
Collapse
Affiliation(s)
- Takahiro Horiuchi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Natsumi Sakata
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yoshihiro Narumi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tomohiro Kimura
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Takashi Hayashi
- Biomedical Technology Research Center, Tokushima Research Institute
| | - Keisuke Nagano
- First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Sohei Tsukita
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ryutaro Shirakawa
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Hisanori Horiuchi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
232
|
Schaper F, de Leeuw K, Horst G, Maas F, Bootsma H, Heeringa P, Limburg PC, Westra J. Autoantibodies to box A of high mobility group box 1 in systemic lupus erythematosus. Clin Exp Immunol 2017; 188:412-419. [PMID: 28245520 DOI: 10.1111/cei.12951] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 01/03/2023] Open
Abstract
Autoantibodies to nuclear structures are a hallmark of systemic lupus erythematosus (SLE), including autoantibodies to nuclear protein high mobility group box 1 (HMGB1). HMGB1 consists of three separate domains: box A, box B and an acidic tail. Recombinant box A acts as a competitive antagonist for HMGB1 and might be an interesting treatment option in SLE. However, antibodies to box A might interfere. Therefore, levels of anti-box A were examined in SLE patients in association with disease activity and clinical parameters. Serum anti-box A was measured in 86 SLE patients and 44 age- and sex-matched healthy controls (HC). Serum samples of 28 patients with primary Sjögren's syndrome and 32 patients with rheumatoid arthritis were included as disease controls. Anti-HMGB1 and anti-box B levels were also measured by enzyme-linked immunosorbent assay during quiescent disease [SLE Disease Activity Index (SLEDAI) ≤ 4, n = 47] and active disease (SLEDAI ≥ 5, n = 39). Anti-box A levels in active SLE patients were higher compared to quiescent patients, and were increased significantly compared to HC and disease controls. Anti-box A levels correlated positively with SLEDAI and anti-dsDNA levels and negatively with complement C3 levels. Increased levels of anti-box A antibodies were present in the majority of patients with nephritic (73%) and non-nephritic exacerbations (71%). Antibodies to the box A domain of HMGB1 might be an interesting new biomarker, as these had a high specificity for SLE and were associated with disease activity. Longitudinal studies should be performed to evaluate whether these antibodies perform better in predicting an exacerbation, especially non-nephritic exacerbations.
Collapse
Affiliation(s)
- F Schaper
- Departments of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - K de Leeuw
- Departments of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - G Horst
- Departments of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - F Maas
- Departments of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - H Bootsma
- Departments of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - P Heeringa
- Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - P C Limburg
- Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J Westra
- Departments of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
233
|
Wang X, Liu C, Wang G. Propofol Protects Rats and Human Alveolar Epithelial Cells Against Lipopolysaccharide-Induced Acute Lung Injury via Inhibiting HMGB1 Expression. Inflammation 2017; 39:1004-16. [PMID: 26956470 DOI: 10.1007/s10753-016-0330-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-mobility group box 1 (HMGB1) plays a key role in the development of acute lung injury (ALI). Propofol, a general anesthetic with anti-inflammatory properties, has been suggested to be able to modulate lipopolysaccharide (LPS)-induced ALI. In this study, we investigated the effects of propofol on the expression of HMGB1 in a rat model of LPS-induced ALI. Rats underwent intraperitoneal injection of LPS to mimic sepsis-induced ALI. Propofol bolus (1, 5, or 10 mg/kg) was infused continuously 30 min after LPS administration, followed by infusion at 5 mg/(kg · h) through the left femoral vein cannula. LPS increased wet to dry weight ratio and myeloperoxidase activity in lung tissues and caused the elevation of total protein and cells, neutrophils, macrophages, and neutrophils in bronchoalveolar lavage fluid (BALF). Moreover, HMGB1 and other cytokine levels were increased in BALF and lung tissues and pathological changes of lung tissues were excessively aggravated in rats after LPS administration. Propofol inhibited all the above effects. It also inhibited LPS-induced toll-like receptor (TLR)2/4 protein upexpression and NF-κB activation in lung tissues and human alveolar epithelial cells. Propofol protects rats and human alveolar epithelial cells against HMGB1 expression in a rat model of LPS-induced ALI. These effects may partially result from reductions in TLR2/4 and NF-κB activation.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong, China
| | - Chengxiao Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong, China
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 Jingwu Road, Jinan, Shandong, China.
| |
Collapse
|
234
|
Paeonol Inhibits Lipopolysaccharide-Induced HMGB1 Translocation from the Nucleus to the Cytoplasm in RAW264.7 Cells. Inflammation 2017; 39:1177-87. [PMID: 27106477 DOI: 10.1007/s10753-016-0353-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Transport of high-mobility group box 1 (HMGB1), a highly conserved non-histone DNA-binding protein, from the nucleus to the cytoplasm is induced by lipopolysaccharide (LPS). Secretion of HMGB1 appears to be a key lethal factor in sepsis, so it is considered to be a therapeutic target. Previous studies have suggested that paeonol (2'-hydroxy-4'-methoxyacetophenone), an active compound of Paeonia lactiflora Pallas, exerts anti-inflammatory effects. However, the effect of paeonol on HMGB1 is unknown. Here, we investigated the effect of paeonol on the expression, location, and secretion of HMGB1 in LPS-induced murine RAW264.7 cells. ELISA revealed HMGB1 supernatant concentrations of 615 ± 30 ng/mL in the LPS group and 600 ± 45, 560 ± 42, and 452 ± 38 ng/mL in cells treated with 0.2, 0.6, or 1 mM paeonol, respectively, suggesting that paeonol inhibits HMGB1 secretion induced by LPS. Immunohistochemistry and Western blotting revealed that paeonol decreased cytoplasmic HMGB1 and increased nuclear HMGB1. Chromatin immunoprecipitation microarrays suggested that HMGB1 relocation to the nucleus induced by paeonol might depress the action of Janus kinase/signal transducers and activators of transcription, chemokine, and mitogen-activated protein kinase pro-inflammatory signaling pathways. Paeonol was also found to inhibit tumor necrosis factor-α promoter activity in a dose-dependent manner. These results indicate that paeonol has the potential to be developed as a novel HMGB1-targeting therapeutic drug for the treatment of inflammatory diseases.
Collapse
|
235
|
Ueda T, Higashiyama M, Narimatsu K, Yasutake Y, Kurihara C, Okada Y, Watanabe C, Yoshikawa K, Maruta K, Komoto S, Tomita K, Nagao S, Hokari R, Miura S. Recombinant Thrombomodulin Modulates Murine Colitis Possibly via High-Mobility Group Box 1 Protein Inhibition. Digestion 2017; 92:108-19. [PMID: 26302768 DOI: 10.1159/000438507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/10/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIM Thrombomodulin (TM) is an anticoagulant cofactor protein. We hypothesized that its recombinant soluble TM (rhTM) form, widely used to treat disseminated intravascular coagulation, might have anti-inflammatory action in inflammatory bowel disease (IBD), possibly through its inhibition of high-mobility group box 1 protein (HMGB1). METHODS We investigated inflammatory effects of HMGB1 and anti-inflammatory effect of rhTM in dextran sulfate sodium (DSS)-treated mice, some cell lines and ulcerative colitis (UC) patients, particularly focusing on changes of vascular endothelial adhesion molecules. RESULTS Treatments with rhTM significantly attenuated DSS-treated mice clinically and histologically. The mRNA levels of proinflammatory cytokines and adhesion molecules were decreased by rhTM. Increased inflammatory cells in the colonic mucosa strongly expressed HMGB1 in the cytoplasm in the DSS-treated mice and UC patients' colonic mucosa, which were significantly decreased by rhTM in mice. In in vitro experiments, rhTM significantly decreased the mRNA levels of tumor necrosis factor-alpha (TNF-α) and adhesion molecules increased by endotoxin exposures in RAW 264.7 (macrophage cell line) and bEND.3 cells (endothelial cell line), suggesting the proinflammatory role of HMGB1 in TNF-α production from macrophages. CONCLUSIONS These findings suggest that rhTM may be useful for the treatment of IBD by attenuating inflammatory cytokine production and adhesion molecule expression, partly because of its inhibition of HMGB1.
Collapse
Affiliation(s)
- Toshihide Ueda
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Seo KH, Choi JW, Jung HS, Yoo H, Joo JD. The Effects of Remifentanil on Expression of High Mobility Group Box 1 in Septic Rats. J Korean Med Sci 2017; 32:542-551. [PMID: 28145661 PMCID: PMC5290117 DOI: 10.3346/jkms.2017.32.3.542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/11/2016] [Indexed: 02/01/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a pivotal mediator of sepsis progression. Remifentanil, an opioid agonist, has demonstrated anti-inflammatory effects in septic mice. However, it is not yet known whether remifentanil affects the expression of HMGB1. We investigated the effects of remifentanil on HMGB1 expression and the underlying mechanism in septic rats. Forty-eight male Sprague-Dawley rats were randomly divided into 3 groups; a sham group, a cecal ligation and puncture (CLP) group, and a CLP with remifentanil treatment (Remi) group. The rat model of CLP was used to examine plasma concentrations of proinflammatory cytokines, tissue HMGB1 mRNA and the activity of nuclear factor (NF)-κB in the liver, lungs, kidneys, and ileum. Pathologic changes and immunohistochemical staining of NF-κB in the liver, lungs, and kidneys tissue were observed. We found that remifentanil treatment suppressed the level of serum interleukin (IL)-6 and tumor necrosis factor (TNF)-α 6 hours after CLP, and serum HMGB1 24 hours after CLP. HMGB1 mRNA levels and the activity of NF-κB in multiple organs decreased by remifentanil treatment 24 hours after CLP. Remifentanil treatment also attenuated nuclear expression of NF-κB in immunohistochemical staining and mitigated pathologic changes in multiple organs. Altogether, these results suggested that remifentanil inhibited expression of HMGB1 in vital organs and release of HMGB1 into plasma. The mechanism was related to the inhibitory effect of remifentanil on the release of proinflammatory cytokines and activation of NF-κB.
Collapse
Affiliation(s)
- Kwon Hui Seo
- Department of Anesthesiology and Pain Medicine, Saint Vincent's Hospital, The College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Jin Woo Choi
- Department of Anesthesiology and Pain Medicine, Saint Vincent's Hospital, The College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Hong Soo Jung
- Department of Anesthesiology and Pain Medicine, Saint Vincent's Hospital, The College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Hansol Yoo
- Department of Anesthesiology and Pain Medicine, Saint Vincent's Hospital, The College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Jin Deok Joo
- Department of Anesthesiology and Pain Medicine, Saint Vincent's Hospital, The College of Medicine, The Catholic University of Korea, Suwon, Korea.
| |
Collapse
|
237
|
Sterile Neuroinflammation and Strategies for Therapeutic Intervention. Int J Inflam 2017; 2017:8385961. [PMID: 28127491 PMCID: PMC5239986 DOI: 10.1155/2017/8385961] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
Sterile neuroinflammation is essential for the proper brain development and tissue repair. However, uncontrolled neuroinflammation plays a major role in the pathogenesis of various disease processes. The endogenous intracellular molecules so called damage-associated molecular patterns or alarmins or damage signals that are released by activated or necrotic cells are thought to play a crucial role in initiating an immune response. Sterile inflammatory response that occurs in Alzheimer's disease (AD), Parkinson's disease (PD), stroke, hemorrhage, epilepsy, or traumatic brain injury (TBI) creates a vicious cycle of unrestrained inflammation, driving progressive neurodegeneration. Neuroinflammation is a key mechanism in the progression (e.g., AD and PD) or secondary injury development (e.g., stroke, hemorrhage, stress, and TBI) of multiple brain conditions. Hence, it provides an opportunity for the therapeutic intervention to prevent progressive tissue damage and loss of function. The key for developing anti-neuroinflammatory treatment is to minimize the detrimental and neurotoxic effects of inflammation while promoting the beneficial and neurotropic effects, thereby creating ideal conditions for regeneration and repair. This review outlines how inflammation is involved in the pathogenesis of major nonpathogenic neuroinflammatory conditions and discusses the complex response of glial cells to damage signals. In addition, emerging experimental anti-neuroinflammatory drug treatment strategies are discussed.
Collapse
|
238
|
Weber MD, Godbout JP, Sheridan JF. Repeated Social Defeat, Neuroinflammation, and Behavior: Monocytes Carry the Signal. Neuropsychopharmacology 2017; 42:46-61. [PMID: 27319971 PMCID: PMC5143478 DOI: 10.1038/npp.2016.102] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/28/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023]
Abstract
Mounting evidence indicates that proinflammatory signaling in the brain affects mood, cognition, and behavior and is linked with the etiology of psychiatric disorders, including anxiety and depression. The purpose of this review is to focus on stress-induced bidirectional communication pathways between the central nervous system (CNS) and peripheral immune system that converge to promote a heightened neuroinflammatory environment. These communication pathways involve sympathetic outflow from the brain to the peripheral immune system that biases hematopoietic stem cells to differentiate into a glucocorticoid-resistant and primed myeloid lineage immune cell. In conjunction, microglia-dependent neuroinflammatory events promote myeloid cell trafficking to the brain that reinforces stress-related behavior, and is argued to play a role in stress-related psychiatric disorders. We will discuss evidence implicating a key role for endothelial cells that comprise the blood-brain barrier in propagating peripheral-to-central immune communication. We will also discuss novel neuron-to-glia communication pathways involving endogenous danger signals that have recently been argued to facilitate neuroinflammation under various conditions, including stress. These findings help elucidate the complex communication that occurs in response to stress and highlight novel therapeutic targets against the development of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Michael D Weber
- Division of Biosciences, The Ohio State University, Columbus, OH, USA,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Division of Biosciences, The Ohio State University, 223 IBMR Building, 305 W 12th Avenue, 460 Medical Center Drive, Columbus, OH 43210, USA, Tel: 614-293-3392, Fax: 614-292-6087, E-mail:
| | - Jonathan P Godbout
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - John F Sheridan
- Division of Biosciences, The Ohio State University, Columbus, OH, USA,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
239
|
Hwang YH, Kim MJ, Lee YK, Lee M, Lee DY. HMGB1 modulation in pancreatic islets using a cell-permeable A-box fragment. J Control Release 2017; 246:155-163. [DOI: 10.1016/j.jconrel.2016.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/19/2016] [Accepted: 12/25/2016] [Indexed: 12/11/2022]
|
240
|
Cho W, Koo JY, Park Y, Oh K, Lee S, Song JS, Bae MA, Lim D, Lee DS, Park SB. Treatment of Sepsis Pathogenesis with High Mobility Group Box Protein 1-Regulating Anti-inflammatory Agents. J Med Chem 2016; 60:170-179. [DOI: 10.1021/acs.jmedchem.6b00954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wansang Cho
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Ja Young Koo
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Yeonju Park
- Department
of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Keunhee Oh
- Transplantation
Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sanghee Lee
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jin-Sook Song
- Korea
Bio-Organic Science Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Myung Ae Bae
- Korea
Bio-Organic Science Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Donghyun Lim
- Department
of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Dong-Sup Lee
- Department
of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung Bum Park
- CRI
Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Department
of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
241
|
Abstract
Danger-associated molecular patterns (DAMPs) that are released by injured, threatened, or dead cells, or that originate from the extracellular matrix, influence the immune system. This is of great relevance in critically ill patients, in whom trauma or surgery-related cell damage, hypoxia, ischemia, and infections can result in extensive release of DAMPs. As many patients at the intensive care unit suffer from immune system-related complications, DAMPs could serve as markers for the prognosis of these patients and represent possible therapeutic targets. In the present review, we provide an overview of several well known DAMPs (high-mobility group box 1, heat-shock proteins, s100 proteins, nucleic acids, and hyaluronan) and their effects on the immune system. Furthermore, we discuss the role of DAMPs as markers or therapeutic targets in several conditions frequently encountered in critically ill patients, such as sepsis, trauma, ventilator-induced lung injury, and cardiac arrest.
Collapse
|
242
|
Luo Y, Che W, Zhao M. Ulinastatin post-treatment attenuates lipopolysaccharide-induced acute lung injury in rats and human alveolar epithelial cells. Int J Mol Med 2016; 39:297-306. [PMID: 27959396 PMCID: PMC5358699 DOI: 10.3892/ijmm.2016.2828] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/16/2016] [Indexed: 01/11/2023] Open
Abstract
Ulinastatin (UTI), a serine protease inhibitor, possesses anti-inflammatory properties and has been suggested to modulate lipopolysaccharide (LPS)-induced acute lung injury (ALI). High-mobility group box 1 (HMGB1), a nuclear DNA-binding protein, plays a key role in the development of ALI. The aim of this study was to investigate whether UTI attenuates ALI through the inhibition of HMGB1 expression and to elucidate the underlying molecular mechanisms. ALI was induced in male rats by the intratracheal instillation of LPS (5 mg/kg). UTI was administered intraperitoneally 30 min following exposure to LPS. A549 alveolar epithelial cells were incubated with LPS in the presence or absence of UTI. An enzyme-linked immunosorbent assay was used to detect the levels of inflammatory cytokines. Western blot analysis was performed to detect the changes in the expression levels of Toll-like receptor 2/4 (TLR2/4) and the activation of nuclear factor-κB (NF-κB). The results revealed that UTI significantly protected the animals from LPS-induced ALI, as evidenced by the decrease in the lung wet to dry weight ratio, total cells, neutrophils, macrophages and myeloperoxidase activity, associated with reduced lung histological damage. We also found that UTI post-treatment markedly inhibited the release of HMGB1 and other pro-inflammatory cytokines. Furthermore, UTI significantly inhibited the LPS-induced increase in TLR2/4 protein expression and NF-κB activation in lung tissues. In vitro, UTI markedly inhibited the expression of TLR2/4 and the activation of NF-κB in LPS-stimulated A549 alveolar epithelial cells. The findings of our study indicate that UTI attenuates LPS-induced ALI through the inhibition of HMGB1 expression in rats. These benefits are associated with the inhibition of the activation of the TLR2/4-NF-κB pathway by UTI.
Collapse
Affiliation(s)
- Yunpeng Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wen Che
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Mingyan Zhao
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
243
|
Namas R, Ghuma A, Hermus L, Zamora R, Okonkwo D, Billiar T, Vodovotz Y. The Acute Inflammatory Response in Trauma /Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects. Libyan J Med 2016. [DOI: 10.3402/ljm.v4i3.4824] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
| | | | - L. Hermus
- Martini Hospital, Department of Surgery, Groningen, Netherlands
| | | | | | | | - Y. Vodovotz
- Department of Surgery
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
244
|
Lee JH, Park KM, Lee YJ, Kim JH, Kim SH. A New Chemical Compound, NecroX-7, Acts as a Necrosis Modulator by Inhibiting High-Mobility Group Box 1 Protein Release During Massive Ischemia-Reperfusion Injury. Transplant Proc 2016; 48:3406-3414. [PMID: 27931589 DOI: 10.1016/j.transproceed.2016.09.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/21/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Necrotic cell death is common in a wide variety of pathologic conditions, including ischemia-reperfusion (IR) injury. The aim of this study was to develop an IR injury-induced hepatic necrosis model in dogs by means of selective left hepatic inflow occlusion and to test the efficacy of a new chemical compound, NecroX-7, against the IR injury-induced hepatic damage. METHODS A group of male Beagle dogs received intravenous infusions of either vehicle or different doses of NecroX-7 (1.5, 4.5, or 13 mg/kg) for a 20-minute period before a 90-minute left hepatic inflow occlusion followed by reperfusion. RESULTS The gross morphology in the NecroX-7-treated groups after occlusion appeared to be less congested and less swollen than that in vehicle-treated control group. Circulating alanine transaminase and aspartate transaminase levels in the control group were elevated during the course of IR, and were effectively blocked in the 4.5 and 13 mg/kg NecroX-7-treated groups. The serum levels of high-mobility group box 1 protein showed a peak at 8 hours after occlusion in control group, and this elevation was significantly blunted by 4.5 mg/kg NecroX-7 treatment. Histologic analysis showed a marked ischemia or IR injury-induced hepatocytic degenerations, sinusoidal and portal vein congestions, and inflammatory cell infiltrations in the control group, whereas the treatment groups showed significantly diminished histopathology in a dose-dependent manner. CONCLUSIONS These results demonstrated that NecroX-7 attenuated the hepatocyte lethality caused by hepatic IR injury in a large animal setting. We conclude that NecroX-7 may provide a wide variety of therapeutic options for IR injury in human patients.
Collapse
Affiliation(s)
- J H Lee
- Department of Hepatobiliary and Pancreatic Surgery, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - K M Park
- Department of Hepatobiliary and Pancreatic Surgery, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea.
| | - Y J Lee
- Department of Hepatobiliary and Pancreatic Surgery, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - J H Kim
- Department of Pathology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - S H Kim
- LG Life Sciences, Daejeon, Korea
| |
Collapse
|
245
|
The Yersinia Type III secretion effector YopM Is an E3 ubiquitin ligase that induced necrotic cell death by targeting NLRP3. Cell Death Dis 2016; 7:e2519. [PMID: 27929533 PMCID: PMC5260993 DOI: 10.1038/cddis.2016.413] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 12/28/2022]
Abstract
Yersinia pestis uses type III effector proteins to target eukaryotic signaling systems. The Yersinia outer protein (Yop) M effector from the Y. pestis strain is a critical virulence determinant; however, its role in Y. pestis pathogenesis is just beginning to emerge. Here we first identify YopM as the structural mimic of the bacterial IpaH E3 ligase family in vitro, and establish that the conserved CLD motif in its N-terminal is responsible for the E3 ligase function. Furthermore, we show that NLRP3 is a novel target of the YopM protein. Specially, YopM associates with NLRP3, and its CLD ligase motif mediates the activating K63-linked ubiquitylation of NLRP3; as a result, YopM modulates NLRP3-mediated cell necrosis. Mutation of YopM E3 ligase motif dramatically reduces the ability of Y. pestis to induce HMGB1 release and cell necrosis, which ultimately contributes to bacterial virulence. In conclusion, this study has identified a previously unrecognized role for YopM E3 ligase activity in the regulation of host cell necrosis and plague pathogenesis.
Collapse
|
246
|
Ugrinova I, Pasheva E. HMGB1 Protein: A Therapeutic Target Inside and Outside the Cell. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:37-76. [PMID: 28215228 DOI: 10.1016/bs.apcsb.2016.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-mobility group box 1 protein (HMGB1) is a nonhistone chromosomal protein discovered more than 30 years ago. It is an abundant nuclear protein that has a dual function-in the nucleus, it binds DNA and participates in practically all DNA-dependent processes serving as an architectural factor. Outside the cell, HMGB1 plays a different role-it acts as an alarmine that activates a large number of HMGB1-"competent" cells and mediates a broad range of physiological and pathological responses. This universality makes it an attractive target for innovative therapeutic strategies in the treatment of various diseases. Here we present an overview of the major nuclear and extracellular properties of HMGB1 and describe its interaction with different molecular partners as specific receptors or inhibitors, which are important for its role as a target in multiple diseases. We highlight its pivotal role as a target for cancer treatment at two aspects: first in terms of its substantial impact on the repair capacity of cancer cells, thus affecting the effectiveness of chemotherapy with the antitumor drug cis-platinum and, second, the possibility to be targeted by microRNAs influencing different pathways of human diseases, thus making it a promising candidate for a new strategy for therapeutic interventions against various pathological conditions but mainly cancer.
Collapse
Affiliation(s)
- I Ugrinova
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - E Pasheva
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
247
|
Ku SK, Kim J, Kim SC, Bae JS. Suppressive effects of dabrafenib on endothelial protein C receptor shedding. Arch Pharm Res 2016; 40:282-290. [DOI: 10.1007/s12272-016-0869-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/27/2016] [Indexed: 11/30/2022]
|
248
|
Huerta PT, Robbiati S, Huerta TS, Sabharwal A, Berlin R, Frankfurt M, Volpe BT. Preclinical models of overwhelming sepsis implicate the neural system that encodes contextual fear memory. Mol Med 2016; 22:789-799. [PMID: 27878209 PMCID: PMC5193462 DOI: 10.2119/molmed.2015.00201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/02/2016] [Indexed: 01/06/2023] Open
Abstract
Long-term sepsis survivors sustain cryptic brain injury that leads to cognitive impairment, emotional imbalance, and increased disability burden. Suitable animal models of sepsis, such as cecal ligation and puncture (CLP), have permitted the analysis of abnormal brain circuits that underlie post-septic behavioral phenotypes. For instance, we have previously shown that CLP-exposed mice exhibit impaired spatial memory together with depleted dendritic arbors and decreased spines in the apical dendrites of pyramidal neurons in the CA1 region of the hippocampus. Here we show that contextual fear conditioning, a form of associative memory for fear, is chronically disrupted in CLP mice when compared to SHAM-operated animals. We also find that the excitatory neurons in the basolateral nucleus of the amygdala (BLA) and the granule cells in the dentate gyrus (DG) display significantly fewer dendritic spines in the CLP group relative to the SHAM mice, although the dendritic arbors and gross morphology of the BLA and DG are comparable between the two groups. Moreover, the basal dendrites of CA1 pyramidal neurons are unaffected in the CLP mice. Taken together, our data indicate that the structural damage in the amygdalar-hippocampal network represents the neural substrate for impaired contextual fear memory in long-term sepsis survivors. Further, our data suggest that the brain injury caused by overwhelming sepsis alters the stability of the synaptic connections involved in associative fear. These results likely have implications for the emotional imbalance observed in human sepsis survivors.
Collapse
Affiliation(s)
- Patricio T Huerta
- Laboratory of Immune and Neural Networks, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
- Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, United States of America
| | - Sergio Robbiati
- Laboratory of Immune and Neural Networks, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Tomás S Huerta
- Laboratory of Immune and Neural Networks, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Anchal Sabharwal
- Laboratory of Immune and Neural Networks, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Roseann Berlin
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Maya Frankfurt
- Department of Science Education, Hofstra Northwell School of Medicine, Hempstead, NY, United States of America
| | - Bruce T Volpe
- Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, United States of America
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States of America
| |
Collapse
|
249
|
Lundbäck P, Lea JD, Sowinska A, Ottosson L, Fürst CM, Steen J, Aulin C, Clarke JI, Kipar A, Klevenvall L, Yang H, Palmblad K, Park BK, Tracey KJ, Blom AM, Andersson U, Antoine DJ, Erlandsson Harris H. A novel high mobility group box 1 neutralizing chimeric antibody attenuates drug-induced liver injury and postinjury inflammation in mice. Hepatology 2016; 64:1699-1710. [PMID: 27474782 PMCID: PMC5082559 DOI: 10.1002/hep.28736] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/12/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Acetaminophen (APAP) overdoses are of major clinical concern. Growing evidence underlines a pathogenic contribution of sterile postinjury inflammation in APAP-induced acute liver injury (APAP-ALI) and justifies development of anti-inflammatory therapies with therapeutic efficacy beyond the therapeutic window of the only current treatment option, N-acetylcysteine (NAC). The inflammatory mediator, high mobility group box 1 (HMGB1), is a key regulator of a range of liver injury conditions and is elevated in clinical and preclinical APAP-ALI. The anti-HMGB1 antibody (m2G7) is therapeutically beneficial in multiple inflammatory conditions, and anti-HMGB1 polyclonal antibody treatment improves survival in a model of APAP-ALI. Herein, we developed and investigated the therapeutic efficacy of a partly humanized anti-HMGB1 monoclonal antibody (mAb; h2G7) and identified its mechanism of action in preclinical APAP-ALI. The mouse anti-HMGB1 mAb (m2G7) was partly humanized (h2G7) by merging variable domains of m2G7 with human antibody-Fc backbones. Effector function-deficient variants of h2G7 were assessed in comparison with h2G7 in vitro and in preclinical APAP-ALI. h2G7 retained identical antigen specificity and comparable affinity as m2G7. 2G7 treatments significantly attenuated APAP-induced serum elevations of alanine aminotransferase and microRNA-122 and completely abrogated markers of APAP-induced inflammation (tumor necrosis factor, monocyte chemoattractant protein 1, and chemokine [C-X-C motif] ligand 1) with prolonged therapeutic efficacy as compared to NAC. Removal of complement and/or Fc receptor binding did not affect h2G7 efficacy. CONCLUSION This is the first report describing the generation of a partly humanized HMGB1-neutralizing antibody with validated therapeutic efficacy and with a prolonged therapeutic window, as compared to NAC, in APAP-ALI. The therapeutic effect was mediated by HMGB1 neutralization and attenuation of postinjury inflammation. These results represent important progress toward clinical implementation of HMGB1-specific therapy as a means to treat APAP-ALI and other inflammatory conditions. (Hepatology 2016;64:1699-1710).
Collapse
Affiliation(s)
- Peter Lundbäck
- Department of Medicine, Rheumatology Unit, Karolinska Institute, Stockholm, Sweden.
| | - Jonathan D. Lea
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical PharmacologyLiverpool UniversityLiverpoolUnited Kingdom
| | - Agnieszka Sowinska
- Department of Medicine, Rheumatology UnitKarolinska InstituteStockholmSweden
| | - Lars Ottosson
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | - Camilla Melin Fürst
- Section of Medical Protein Chemistry, Department of Translational MedicineLund UniversityMalmöSweden
| | - Johanna Steen
- Department of Medicine, Rheumatology UnitKarolinska InstituteStockholmSweden
| | - Cecilia Aulin
- Department of Medicine, Rheumatology UnitKarolinska InstituteStockholmSweden
| | - Joanna I. Clarke
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical PharmacologyLiverpool UniversityLiverpoolUnited Kingdom
| | - Anja Kipar
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical PharmacologyLiverpool UniversityLiverpoolUnited Kingdom
| | - Lena Klevenvall
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | - Huan Yang
- Laboratory of Biomedical ScienceThe Feinstein Institute for Medical ResearchManhassetNYUSA
| | - Karin Palmblad
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | - B. Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical PharmacologyLiverpool UniversityLiverpoolUnited Kingdom
| | - Kevin J. Tracey
- Laboratory of Biomedical ScienceThe Feinstein Institute for Medical ResearchManhassetNYUSA
| | - Anna M. Blom
- Section of Medical Protein Chemistry, Department of Translational MedicineLund UniversityMalmöSweden
| | - Ulf Andersson
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | - Daniel J. Antoine
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical PharmacologyLiverpool UniversityLiverpoolUnited Kingdom
| | | |
Collapse
|
250
|
Fu Y, Lei J, Zhuang Y, Zhang K, Lu D. Overexpression of HMGB1 A-box reduced IL-1β-induced MMP expression and the production of inflammatory mediators in human chondrocytes. Exp Cell Res 2016; 349:184-190. [PMID: 27771306 DOI: 10.1016/j.yexcr.2016.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 11/30/2022]
Abstract
The pro-inflammatory cytokine interleukin-1 beta (IL-1β) plays a crucial role in the pathogenesis of osteoarthritis (OA) by stimulating several mediators that contribute to cartilage degradation. The aim of this study was to investigate the effects and mechanism of high mobility group box 1 (HMGB1) inhibitors HMGB1 A-box on the expression of matrix metalloproteinase (MMP) and the production of inflammatory mediators in human osteoarthritis chondrocytes after activation by IL-1β. We found that the overexpression of HMGB1 A-box significantly decreased the IL-1β-stimulated the production of MMP-1, MMP-3 and MMP-9, and also reduced the elevated levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) associated with the inhibition of prostaglandin E2 (PGE2) and nitric oxide (NO) production in IL-1β-stimulated chondrocytes. In addition, overexpression of the HMGB1 A-box significantly inhibited the up-regulation of ADAMTS-4, ADAMTS-5 and HMGB1 caused by IL-1β in chondrocytes. Moreover, the overexpression of HMGB1 A-box markedly suppressed the IL-1β-mediated activation of the Toll-like receptor 4 (TRL4)/NF-κB pathway. Our observations indicated that the HMGB1 A-box can play a protective role by suppressing the IL-1β-induced expression of MMPs and that the production of inflammatory mediators in chondrocytes was associated with suppression of the HMGB1/TLR4/NF-κB pathway. In conclusion, HMGB1 A-box relieves the development of OA that may be associated with regulating the HMGB1/TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Yahui Fu
- Department of Orthopaedic Trauma, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710054, PR China
| | - Jinlai Lei
- Department of Orthopaedic Trauma, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710054, PR China.
| | - Yan Zhuang
- Department of Orthopaedic Trauma, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710054, PR China
| | - Kun Zhang
- Department of Orthopaedic Trauma, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710054, PR China
| | - Daigang Lu
- Department of Orthopaedic Trauma, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an 710054, PR China
| |
Collapse
|