201
|
Kanemoto N, Horie M, Omori K, Nishino N, Kondo M, Noguchi K, Tanigami A. Expression of TMEFF1 mRNA in the mouse central nervous system: precise examination and comparative studies of TMEFF1 and TMEFF2. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 86:48-55. [PMID: 11165370 DOI: 10.1016/s0169-328x(00)00257-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
TMEFF1 and TMEFF2 are putative transmembrane proteins comprised of one epidermal growth factor (EGF)-like domain and two follistatin-like domains. Both TMEFF1 and TMEFF2 are predominantly expressed in the brain. We previously demonstrated that recombinant TMEFF2 protein can promote survival of neurons in primary culture and determined expression sites of TMEFF2 mRNA in the mouse central nervous system. To extend our understanding of TMEFF protein functions, we compared precise sites of expression of TMEFF1 and TMEFF2 mRNA using in situ hybridization analysis. Although both TMEFF genes are widely expressed in the brain, they exhibit different patterns of expression. TMEFF1 showed comparatively higher signals in the pyramidal cells of fifth layer of the cerebral neocortex, CA3, CA1 and subiculum regions of the hippocampus, locus coeruleus, and dentate cerebellar nucleus. In contrast, TMEFF2 is highly expressed in the medial habenular, CA2, CA3 and dentate gyrus region of the hippocampus, corpus callosum, cerebellar cortex and cranial nerve nuclei (III, IV, VII, X, XII). The results presented here indicate that expression of TMEFF1 and TMEFF2 are regulated differently and that they play region-specific roles in the central nervous system.
Collapse
Affiliation(s)
- N Kanemoto
- Otsuka GEN Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
202
|
Abstract
Human carcinomas frequently express high levels of receptors in the EGF receptor family, and overexpression of at least two of these receptors, the EGF receptor (EGFr) and closely related ErbB2, has been associated with a more aggressive clinical behavior. Further, transfection or activation of high levels of these two receptors in nonmalignant cell lines can lead to a transformed phenotype. For these reasons therapies directed at preventing the function of these receptors have the potential to be useful anti-cancer treatments. In the last two decades monoclonal antibodies (MAbs) which block activation of the EGFr and ErbB2 have been developed. These MAbs have shown promising preclinical activity and 'chimeric' and 'humanized' MAbs have been produced in order to obviate the problem of host immune reactions. Clinical activity with these antibodies has been documented: trastuzumab, a humanized anti-ErbB2 MAb, is active and was recently approved in combination with paclitaxel for the therapy of patients with metastatic ErbB2-overexpressing breast cancer; IMC-C225, a chimeric anti-EGFr MAb, has shown impressive activity when combined with radiation therapy and reverses resistance to chemotherapy. In addition to antibodies, compounds that directly inhibit receptor tyrosine kinases have shown preclinical activity and early clinical activity has been reported. A series of phase III studies with these antibodies and direct tyrosine kinase inhibitors are ongoing or planned, and will further address the role of these active anti-receptor agents in the treatment of patients with cancer.
Collapse
Affiliation(s)
- J Mendelsohn
- Department of Medicine, The University of Texas, MD Anderson Cancer Center, Houston, 77030-4009, USA
| | | |
Collapse
|
203
|
Abstract
Overexpression of ErbB2, a receptor-like tyrosine kinase, is shared by several types of human carcinomas. In breast tumors the extent of overexpression has a prognostic value, thus identifying the oncoprotein as a target for therapeutic strategies. Already, antibodies to ErbB2 are used in combination with chemotherapy in the treatment of metastasizing breast cancer. The mechanisms underlying the oncogenic action of ErbB2 involve a complex network in which ErbB2 acts as a ligand-less signaling subunit of three other receptors that directly bind a large repertoire of stroma-derived growth factors. The major partners of ErbB2 in carcinomas are ErbB1 (also called EGFR) and ErbB3, a kinase-defective receptor whose potent mitogenic action is activated in the context of heterodimeric complexes. Why ErbB2-containing heterodimers are relatively oncopotent is a function of a number of processes. Apparently, these heterodimers evade normal inactivation processes, by decreasing the rate of ligand dissociation, internalizing relatively slowly and avoiding the degradative pathway by returning to the cell surface. On the other hand, the heterodimers strongly recruit survival and mitogenic pathways such as the mitogen-activated protein kinases and the phosphatidylinositol 3-kinase. Hyper-activated signaling through the ErbB-signaling network results in dysregulation of the cell cycle homeostatic machinery, with upregulation of active cyclin-D/CDK complexes. Recent data indicate that cell cycle regulators are also linked to chemoresistance in ErbB2-dependent breast carcinoma. Together with D-type cyclins, it seems that the CDK inhibitor p21waf1 plays an important role in evasion from apoptosis. These recent findings herald a preliminary understanding of the output layer which connects elevated ErbB-signaling to oncogenesis and chemoresistance.
Collapse
Affiliation(s)
- D Harari
- Department of Biological Regulation, the Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
204
|
Abstract
Various kinds of growth factors are involved in the regulation of human keratinocyte function. Among them, the epidermal growth factor (EGF) family and the transforming growth factor-beta (TGF-beta) family play central roles, providing dual-mode regulation of keratinocyte growth through the proliferation-stimulating effect of EGF and the proliferation-inhibiting effect of TGF-beta. Human keratinocytes synthesize four EGF family growth factors, TGF-alpha, amphiregulin, HB-EGF and epiregulin, which efficiently regulate keratinocyte growth and differentiation via auto- and cross-induction pathways. Human keratinocytes also synthesize TGF-beta1 and TGF-beta2, which are potent inhibitors of human keratinocytes. These intrinsic EGF family growth factors and TGF-betas are responsible for the autonomous growth regulation of keratinocytes.
Collapse
Affiliation(s)
- K Hashimoto
- Department of Dermatology, Ehime University School of Medicine, Shitsukawa, Shigenobu-cho, Onsen-gun, 791-0295, Ehime, Japan.
| |
Collapse
|
205
|
Abstract
The number of identified growth factors continues to increase rapidly with many being implicated in the development of the nervous system, although for most of them the autocrine and paracrine pathways of cellular regulation still remain to be elucidated. The primary olfactory pathway, consisting of the olfactory epithelium and olfactory bulb, is presented here as a very useful model for the analysis of growth factor function. Review of the available literature suggests that a large proportion of neuroactive growth factors and their receptors are present in the olfactory epithelium or olfactory bulb. Furthermore, the primary olfactory pathway is one of the most plastic in the nervous system with neurogenesis continuing to contribute new sensory neurones in the olfactory epithelium and new interneurones in the olfactory bulb throughout adult life. The rich diversity of growth factors and their receptors in the olfactory system indicates that it will be useful in elucidating how these molecules regulate the formation of the nervous system. The olfactory epithelium in particular is proving useful as a model for the actions of growth factors in directing the neuronal lineage from stem cell to mature neurone.
Collapse
Affiliation(s)
- A Mackay-Sima
- Centre for Molecular Neurobiology, School of Biomolecular and Biomedical Science, Griffith University, Brisbane, Australia.
| | | |
Collapse
|
206
|
Abstract
Transforming growth factor alpha (TGFalpha) is a member of the epidermal growth factor (EGF) family with which it shares the same receptor, the EGF receptor (EGFR or erbB1). Identified since 1985 in the central nervous system (CNS), its functions in this organ have started to be determined during the past decade although numerous questions remain unanswered. TGFalpha is widely distributed in the nervous system, both glial and neuronal cells contributing to its synthesis. Although astrocytes appear as its main targets, mediating in part TGFalpha effects on different neuronal populations, results from different studies have raised the possibility for a direct action of this growth factor on neurons. A large array of experimental data have thus pointed to TGFalpha as a multifunctional factor in the CNS. This review is an attempt to present, in a comprehensive manner, the very diverse works performed in vitro and in vivo which have provided evidences for (i) an intervention of TGFalpha in the control of developmental events such as neural progenitors proliferation/cell fate choice, neuronal survival/differentiation, and neuronal control of female puberty onset, (ii) its role as a potent regulator of astroglial metabolism including astrocytic reactivity, (iii) its neuroprotective potential, and (iv) its participation to neuropathological processes as exemplified by astroglial neoplasia. In addition, informations regarding the complex modes of TGFalpha action at the molecular level are provided, and its place within the large EGF family is precised with regard to the potential interactions and substitutions which may take place between TGFalpha and its kindred.
Collapse
Affiliation(s)
- M P Junier
- INSERM U421, Faculté de Médecine, 8, rue du Général Sarrail, 94010, Créteil, France.
| |
Collapse
|
207
|
Montero JC, Yuste L, Díaz-Rodríguez E, Esparís-Ogando A, Pandiella A. Differential shedding of transmembrane neuregulin isoforms by the tumor necrosis factor-alpha-converting enzyme. Mol Cell Neurosci 2000; 16:631-48. [PMID: 11083924 DOI: 10.1006/mcne.2000.0896] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The neuregulins (NRGs) are a family of EGF-like factors that activate receptor tyrosine kinases of the ErbB/HER type. Some NRGs are membrane anchored and are released upon cleavage of the ectodomain. Here we have investigated the characteristics of the cleavage of different transmembrane NRG isoforms (proNRG) that diverge in domains that have been implicated in the regulation of the cleavage of other membrane-anchored growth factors. We show that cleavage of proNRGs is complex and generates several cell-bound truncated fragments. Comparison of the resting generation of these truncated fragments between proNRG forms that diverge in the linker region that connects the EGF-like module to the transmembrane domain revealed that proNRG beta 2a was relatively resistant to processing compared to proNRG beta 4a which was processed more efficiently than proNRG alpha 2a. An important role for this linker in proNRG cleavage was supported by deletion analysis of this region that prevented NRG solubilization. Studies aimed at the identification of the proteolytic machinery responsible for proNRG processing indicated that metalloproteases were involved in proNRG processing. This was further supported by the fact that cleavage of proNRG alpha 2c was defective in fibroblasts derived from TACE(-/-) animals that express an inactive form of the metalloprotease TACE.
Collapse
Affiliation(s)
- J C Montero
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca 37007, Spain
| | | | | | | | | |
Collapse
|
208
|
Flores AI, Mallon BS, Matsui T, Ogawa W, Rosenzweig A, Okamoto T, Macklin WB. Akt-mediated survival of oligodendrocytes induced by neuregulins. J Neurosci 2000; 20:7622-30. [PMID: 11027222 PMCID: PMC6772890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2022] Open
Abstract
Neuregulins have been implicated in a number of events in cells in the oligodendrocyte lineage, including enhanced survival, mitosis, migration, and differentiation. At least two signaling pathways have been shown to be involved in neuregulin signaling: the phosphatidylinositol (PI)-3 kinase and the mitogen-activated protein kinase pathways. In the present studies, we examined the signaling pathway involved in the survival function of heregulin, focusing on heregulin-induced changes in Akt activity in cultured glial cells, and the consequences of Akt activation in cells in the oligodendrocyte lineage. Heregulin binds erbB receptors, and in our studies, primary cultures of both oligodendrocyte progenitor cells and differentiating oligodendrocytes expressed erbB2, erbB3, and erbB4 receptors. In C6 glioma cells and primary cultures of oligodendrocytes, heregulin induced time- and dose-dependent Akt phosphorylation at Ser(473) in a wortmannin-sensitive manner. To investigate further the signaling pathway for heregulin in glial cells, BAD was overexpressed in C6 glioma cells. In these cells, heregulin induced phosphorylation of BAD at Ser(136). Apoptosis of oligodendrocyte progenitor cells induced by growth factor deprivation was effectively blocked by heregulin in a wortmannin-sensitive manner. Overexpression of dominant negative Akt but not of wild-type Akt by adenoviral gene transfer in primary cultures of both oligodendrocytes and their progenitors induced significant apoptosis through activation of the caspase cascade. The present data suggest that the survival function of heregulin is mediated through the PI-3 kinase/Akt pathway in cells in the oligodendrocyte lineage and that the Akt pathway may be quite important for survival of cells in this lineage.
Collapse
Affiliation(s)
- A I Flores
- Department of Neurosciences, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
209
|
Flores AI, Mallon BS, Matsui T, Ogawa W, Rosenzweig A, Okamoto T, Macklin WB. Akt-mediated survival of oligodendrocytes induced by neuregulins. J Neurosci 2000; 20. [PMID: 11027222 PMCID: PMC6772890 DOI: 10.1523/jneurosci.20-20-07622.2000] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Neuregulins have been implicated in a number of events in cells in the oligodendrocyte lineage, including enhanced survival, mitosis, migration, and differentiation. At least two signaling pathways have been shown to be involved in neuregulin signaling: the phosphatidylinositol (PI)-3 kinase and the mitogen-activated protein kinase pathways. In the present studies, we examined the signaling pathway involved in the survival function of heregulin, focusing on heregulin-induced changes in Akt activity in cultured glial cells, and the consequences of Akt activation in cells in the oligodendrocyte lineage. Heregulin binds erbB receptors, and in our studies, primary cultures of both oligodendrocyte progenitor cells and differentiating oligodendrocytes expressed erbB2, erbB3, and erbB4 receptors. In C6 glioma cells and primary cultures of oligodendrocytes, heregulin induced time- and dose-dependent Akt phosphorylation at Ser(473) in a wortmannin-sensitive manner. To investigate further the signaling pathway for heregulin in glial cells, BAD was overexpressed in C6 glioma cells. In these cells, heregulin induced phosphorylation of BAD at Ser(136). Apoptosis of oligodendrocyte progenitor cells induced by growth factor deprivation was effectively blocked by heregulin in a wortmannin-sensitive manner. Overexpression of dominant negative Akt but not of wild-type Akt by adenoviral gene transfer in primary cultures of both oligodendrocytes and their progenitors induced significant apoptosis through activation of the caspase cascade. The present data suggest that the survival function of heregulin is mediated through the PI-3 kinase/Akt pathway in cells in the oligodendrocyte lineage and that the Akt pathway may be quite important for survival of cells in this lineage.
Collapse
Affiliation(s)
- A I Flores
- Department of Neurosciences, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
210
|
Yamada K, Ichino N, Nishii K, Sawada H, Higashiyama S, Ishiguro H, Nagatsu T. Characterization of the human NTAK gene structure and distribution of the isoforms for rat NTAK mRNA. Gene 2000; 255:15-24. [PMID: 10974560 DOI: 10.1016/s0378-1119(00)00309-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
NTAK (neural- and thymus-derived activator for the ErbB kinase, neuregulin-2) is a novel member of the epidermal growth factor (EGF) family. We have isolated and characterized the human NTAK gene, comprising 12 exons spanning in excess of 55 kilobases (kb). The 7. 0kb long mRNA of the human NTAK gene was expressed in the human neuroblastoma SK-N-SH cell line with two alternative isoforms detected. Furthermore, six isoforms have been identified from rat brain and PC-12 cells. Although the alpha isoform of the NTAK gene was found to be expressed in all tissues including brain, the beta isoform was expressed only in rat brain tissues. Potential regulatory regions included consensus binding sites for AP-2, TF-IIIA, Sp-1, and YY-1 located in the 5'-flanking region of the NTAK gene.
Collapse
Affiliation(s)
- K Yamada
- Institute for Comprehensive Medical Science, Fujita Health University, Aichi 470-1192, Toyoake, Japan
| | | | | | | | | | | | | |
Collapse
|
211
|
Abstract
Betacellulin (BTC) belongs to the epidermal growth factor (EGF) family of peptide ligands that are characterised by a six-cysteine consensus motif that forms three intra-molecular disulfide bonds crucial for binding the ErbB receptor family. BTC was initially described, purified and cloned from a mouse insulinoma cell line. BTC is proteolytically processed from a larger membrane-anchored precursor and is a potent mitogen for a wide variety of cell types. BTC binds and activates ErbB-1 and ErbB-4 homodimers and is further characterised by its unique ability to activate all possible heterodimeric ErbB receptors. BTC is widely expressed in most tissues and various body fluids, including milk. Expression is particularly high in the pancreas where it is thought to play a role in the differentiation of pancreatic beta cells. While much is known about the ErbB receptor binding characteristics of BTC and its effect on a variety of cultured cells under different conditions, the challenge that lies ahead is to determine the role of BTC in vivo. This review will focus on the structure of BTC and the various biological effects ascribed to this member of the EGF family.
Collapse
Affiliation(s)
- A J Dunbar
- Cooperative Research Centre for Tissue Growth and Repair, CSIRO Health Sciences and Nutrition, Adelaide, Australia.
| | | |
Collapse
|
212
|
Yen L, You XL, Al Moustafa AE, Batist G, Hynes NE, Mader S, Meloche S, Alaoui-Jamali MA. Heregulin selectively upregulates vascular endothelial growth factor secretion in cancer cells and stimulates angiogenesis. Oncogene 2000; 19:3460-9. [PMID: 10918604 DOI: 10.1038/sj.onc.1203685] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The interaction between the erbB tyrosine kinase receptors and their ligands plays an important role in tumor growth via the regulation of autocrine and paracrine loops. We report the effect of heregulin beta1, the ligand for erbB-3 and erbB-4 receptors, on the regulation of vascular endothelial growth factor (VEGF) expression, using a panel of breast and lung cancer cell lines with constitutive erbB-2 overexpression or engineered to stably overexpress the erbB-2 receptor. We demonstrate that heregulin beta1 induces VEGF secretion in most cancer cell lines, while no significant effect was observed in normal human mammary and bronchial primary cells. Overexpression of erbB-2 receptor results in induction of the basal level of VEGF and exposure to heregulin further enhances VEGF secretion. This is associated with increased VEGF mRNA expression. In contrast, VEGF induction is significantly decreased in a T47D cell line where erbB-2 is functionally inactivated. Conditioned media from heregulin-treated cancer cells, but not from normal cells, stimulates endothelial cell proliferation; this paracrine stimulation is inhibited by co-exposure to a specific VEGF neutralizing antibody. Furthermore, heregulin-mediated angiogenesis is observed in the in vivo CAM assay. This study reports the first evidence of VEGF regulation by heregulin in cancer cells. Oncogene (2000) 19, 3460 - 3469
Collapse
MESH Headings
- Adenocarcinoma/pathology
- Animals
- Breast/cytology
- Breast Neoplasms/pathology
- Bronchi/cytology
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Division
- Cells, Cultured/drug effects
- Chick Embryo
- Culture Media, Conditioned/pharmacology
- Endothelial Growth Factors/antagonists & inhibitors
- Endothelial Growth Factors/biosynthesis
- Endothelial Growth Factors/genetics
- Endothelial Growth Factors/metabolism
- ErbB Receptors/biosynthesis
- ErbB Receptors/genetics
- ErbB Receptors/physiology
- Female
- Genes, erbB-2
- Humans
- Lung Neoplasms/pathology
- Lymphokines/antagonists & inhibitors
- Lymphokines/biosynthesis
- Lymphokines/genetics
- Lymphokines/metabolism
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/physiology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Neuregulin-1/physiology
- Phosphorylation
- Protein Processing, Post-Translational
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/physiology
- Receptor, ErbB-3/biosynthesis
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/physiology
- Receptor, ErbB-4
- Recombinant Fusion Proteins/physiology
- Transfection
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Umbilical Veins/cytology
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- L Yen
- Department of Medicine, Oncology, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Thompson RJ, Roberts B, Alexander CL, Williams SK, Barnett SC. Comparison of neuregulin-1 expression in olfactory ensheathing cells, Schwann cells and astrocytes. J Neurosci Res 2000; 61:172-85. [PMID: 10878590 DOI: 10.1002/1097-4547(20000715)61:2<172::aid-jnr8>3.0.co;2-c] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently we demonstrated that a member of the neuregulin-1 (NRG-1) family of growth factors is a mitogen and survival factor for olfactory ensheathing cells (OECs). OECs are specialized glial cells within the olfactory system that are believed to play a role in the continual nerve re-growth of this tissue. OECs share properties with both astrocytes and Schwann cells but are likely to be a distinct glial cell type. NRG-1s have been found to be important regulators of Schwann cells in vivo, but the role of NRG-1 for OECs is less clear. The nrg-1 gene produces at least 12 different isoforms, that are likely to have different functions, due to alternative splicing of its mRNA. In this study, the expression of NRG-1 mRNAs in OECs was compared with other glial cells and their corresponding tissue sources. Cultured glial cells, unlike their tissue sources, expressed NRG-1 mRNAs containing the alpha EGF-like domain and expressed only the type 1beta isoform that lacks the glycosylated spacer domain. This correlated with expression of these isoforms during olfactory nerve degeneration in vivo. Although OECs expressed mRNA for all NRG-1 isoforms, the protein could not be detected in concentrated supernatant, or on the cell surface by immunofluorescence, but was detected in the nucleus or cytoplasm (depending on the isoform). These data support the hypothesis that NRG-1s play a functional role in OEC biology.
Collapse
Affiliation(s)
- R J Thompson
- Departments of Neurology and Medical Oncology, Garscube Estate, Switchback Road, Glasgow, Scotland
| | | | | | | | | |
Collapse
|
214
|
Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000; 19:3159-67. [PMID: 10880430 PMCID: PMC313958 DOI: 10.1093/emboj/19.13.3159] [Citation(s) in RCA: 1811] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- M A Olayioye
- Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
215
|
Abstract
Pancreatic cancer has one of the worst prognoses of all human malignancies and the molecular mechanisms underlying this aggressive disease have been extensively investigated in the past years. Tyrosine kinase growth factor receptors and their ligands act to influence tumor cell growth, differentiation, invasion, metastasis, and angiogenesis. In pancreatic cancer a variety of these growth factor receptors and ligands are expressed at increased levels and this overexpression influences the clinical course of the disease. For example, the concomitant presence of the EGF receptor and its ligands EGF, TGF-alpha, and/or amphiregulin is associated with enhanced tumor aggressiveness and shorter survival periods following tumor resection. Furthermore, the growth inhibitory effects of the TGF-beta superfamily of serine-threonine kinase receptors and their ligands are often blocked in pancreatic cancer cells. In addition to these alterations, mutations of the p53 tumor-suppressor gene, the K-ras proto-oncogene, and the Smad4 gene are frequently present in these tumors. Taken together, the abundance of growth-promoting factors, the disturbance of growth inhibitory pathways, and the presence of gene mutations combine to give pancreatic cancer cells a distinct growth advantage which clinically results in rapid tumor progression and poor survival.
Collapse
Affiliation(s)
- H Friess
- Department of Visceral and Transplantation Surgery, University of Bern, Inselspital, Bern, Switzerland.
| | | | | | | |
Collapse
|
216
|
Huang YZ, Won S, Ali DW, Wang Q, Tanowitz M, Du QS, Pelkey KA, Yang DJ, Xiong WC, Salter MW, Mei L. Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 2000; 26:443-55. [PMID: 10839362 DOI: 10.1016/s0896-6273(00)81176-9] [Citation(s) in RCA: 297] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neuregulins (NRGs) and their receptors, the ErbB protein tyrosine kinases, are essential for neuronal development, but their functions in the adult CNS are unknown. We report that ErbB4 is enriched in the postsynaptic density (PSD) and associates with PSD-95. Heterologous expression of PSD-95 enhanced NRG activation of ErbB4 and MAP kinase. Conversely, inhibiting expression of PSD-95 in neurons attenuated NRG-mediated activation of MAP kinase. PSD-95 formed a ternary complex with two molecules of ErbB4, suggesting that PSD-95 facilitates ErbB4 dimerization. Finally, NRG suppressed induction of long-term potentiation in the hippocampal CA1 region without affecting basal synaptic transmission. Thus, NRG signaling may be synaptic and regulated by PSD-95. A role of NRG signaling in the adult CNS may be modulation of synaptic plasticity.
Collapse
Affiliation(s)
- Y Z Huang
- Department of Neurobiology, Pathology, and Physical Medicine and Rehabilitation, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Rio C, Buxbaum JD, Peschon JJ, Corfas G. Tumor necrosis factor-alpha-converting enzyme is required for cleavage of erbB4/HER4. J Biol Chem 2000; 275:10379-87. [PMID: 10744726 DOI: 10.1074/jbc.275.14.10379] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HER4 is a member of the epidermal growth factor receptor family and has an essential function in heart and neural development. Identification of two HER4 isoforms, HER4 JM-a and JM-b, which differ in their extracellular juxtamembrane region and in their susceptibility to cleavage after phorbol ester stimulation, showed that the juxtamembrane region of the receptor is critical for proteolysis. We now demonstrate that phorbol ester and pervanadate are effective stimuli for HER4 JM-a processing and that the HER4 JM-b isoform does not undergo cleavage in response to any of the stimuli studied. We also show that HER4 JM-a is not cleaved in cells lacking the metalloprotease tumor necrosis factor-alpha-converting enzyme (TACE) and that reexpression of TACE in these cells restores constitutive and regulated processing of HER4 JM-a. Moreover, we show that the sequence specific to the HER4 JM-a juxtamembrane region is sufficient to confer susceptibility to phorbol 12-myristate 13-acetate-induced cleavage of the HER2 receptor. In conclusion, we provide evidence that TACE is essential for the regulated shedding of the HER4 JM-a receptor.
Collapse
Affiliation(s)
- C Rio
- Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
218
|
Patel NV, Acarregui MJ, Snyder JM, Klein JM, Sliwkowski MX, Kern JA. Neuregulin-1 and human epidermal growth factor receptors 2 and 3 play a role in human lung development in vitro. Am J Respir Cell Mol Biol 2000; 22:432-40. [PMID: 10745024 DOI: 10.1165/ajrcmb.22.4.3854] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The human epidermal growth factor receptor (HER) family consists of four distinct receptors: HER1 (epidermal growth factor receptor), HER2, HER3, and HER4. Their specific activating ligands are collectively known as neuregulins (NRG). We hypothesized that one member of the NRG family, NRG-1, and the HER family would play a role in fetal lung development. To test this hypothesis, we defined NRG-1 and HER gene expression in mid-trimester human fetal lung tissue. HER2 and HER3 messenger RNA and protein were detected in the fetal lung, but HER4 expression was not detected. Immunohistochemical staining of fetal lung tissue localized HER2 and HER3 protein to the developing lung epithelium. NRG-1 expression was not found in freshly isolated human fetal lung, but it was observed in fetal lung explants after 2 d of explant culture. Immunohistochemistry of cultured human fetal lung explants revealed that NRG-1 protein was also expressed in pulmonary epithelial cells. Exposing human fetal lung to recombinant NRG-1 activated the HER receptor complex as measured by approximately 4-fold increases in receptor phosphotyrosine content. In addition, NRG-1 increased explant epithelial cell volume density approximately 2-fold (P < 0. 03); increased epithelial cell proliferation approximately 2-fold, as determined by bromodeoxyuridine labeling (P = 0.002); and reduced surfactant protein-A (SP-A) levels by 53% (P < 0.05). These data are consistent with an autocrine regulatory process mediated by NRG-1 activation of HER2/HER3 heterodimers expressed on developing human fetal lung epithelial cells. Receptor activation results in increased lung epithelial cell proliferation and volume density, and decreased SP-A production, a marker of type II pneumocyte differentiation.
Collapse
MESH Headings
- Autocrine Communication
- Blotting, Western
- Cell Division
- Dimerization
- ErbB Receptors/analysis
- Fetal Proteins/biosynthesis
- Fetal Proteins/chemistry
- Fetal Proteins/genetics
- Fetal Proteins/physiology
- Gene Expression Regulation, Developmental
- Humans
- Lung/embryology
- Lung/metabolism
- Morphogenesis
- Neuregulin-1/biosynthesis
- Neuregulin-1/genetics
- Neuregulin-1/pharmacology
- Neuregulin-1/physiology
- Organ Culture Techniques
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Proteolipids/biosynthesis
- Proteolipids/genetics
- Pulmonary Surfactant-Associated Protein A
- Pulmonary Surfactant-Associated Proteins
- Pulmonary Surfactants/biosynthesis
- Pulmonary Surfactants/genetics
- RNA, Messenger/biosynthesis
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/physiology
- Receptor, ErbB-3/biosynthesis
- Receptor, ErbB-3/chemistry
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/physiology
- Receptor, ErbB-4
- Recombinant Fusion Proteins/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- N V Patel
- Departments of Internal Medicine, Pediatrics, and Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
219
|
The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci U S A 2000. [PMID: 10725395 PMCID: PMC16285 DOI: 10.1073/pnas.070042497] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuregulins regulate the expression of ligand- and voltage-gated channels in neurons and skeletal muscle by the activation of their cognate tyrosine kinase receptors, ErbB 1-4. The subcellular distribution and mechanisms that regulate the localization of ErbB receptors are unknown. We have found that ErbB receptors are present in brain subcellular fractions enriched for postsynaptic densities (PSD). The ErbB-4 receptor is unique among the ErbB proteins because its C-terminal tail (T-V-V) conforms to a sequence that binds to a protein motif known as the PDZ domain. Using the yeast two-hybrid system, we found that the C-terminal region of ErbB-4 interacts with the three related membrane-associated guanylate kinases (MAGUKs) PSD-95/SAP90, PSD-93/chapsyn-110, and SAP 102, which harbor three PDZ domains, as well as with beta(2)-syntrophin, which has a single PDZ domain. As with N-methyl-D-aspartate (NMDA) receptors, ErbB4 interacts with the first two PDZ domains of PSD-95. Using coimmunoprecipitation assays, we confirmed the direct interactions between ErbB-4 and PSD-95 in transfected heterologous cells, as well as in vivo, where both proteins are coimmunoprecipitated from brain lysates. Moreover, evidence for colocalization of these proteins was also observed by immunofluorescence in cultured hippocampal neurons. ErbB-4 colocalizes with PSD-95 and NMDA receptors at a subset of excitatory synapses apposed to synaptophysin-positive presynaptic terminals. The capacity of ErbB receptors to interact with PDZ-domain proteins at cell junctions is conserved from invertebrates to mammals. As discussed, the interactions found between receptor tyrosine kinases and MAGUKs at neuronal synapses may have important implications for activity-dependent plasticity.
Collapse
|
220
|
Garcia RA, Vasudevan K, Buonanno A. The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci U S A 2000; 97:3596-601. [PMID: 10725395 PMCID: PMC16285 DOI: 10.1073/pnas.97.7.3596] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuregulins regulate the expression of ligand- and voltage-gated channels in neurons and skeletal muscle by the activation of their cognate tyrosine kinase receptors, ErbB 1-4. The subcellular distribution and mechanisms that regulate the localization of ErbB receptors are unknown. We have found that ErbB receptors are present in brain subcellular fractions enriched for postsynaptic densities (PSD). The ErbB-4 receptor is unique among the ErbB proteins because its C-terminal tail (T-V-V) conforms to a sequence that binds to a protein motif known as the PDZ domain. Using the yeast two-hybrid system, we found that the C-terminal region of ErbB-4 interacts with the three related membrane-associated guanylate kinases (MAGUKs) PSD-95/SAP90, PSD-93/chapsyn-110, and SAP 102, which harbor three PDZ domains, as well as with beta(2)-syntrophin, which has a single PDZ domain. As with N-methyl-D-aspartate (NMDA) receptors, ErbB4 interacts with the first two PDZ domains of PSD-95. Using coimmunoprecipitation assays, we confirmed the direct interactions between ErbB-4 and PSD-95 in transfected heterologous cells, as well as in vivo, where both proteins are coimmunoprecipitated from brain lysates. Moreover, evidence for colocalization of these proteins was also observed by immunofluorescence in cultured hippocampal neurons. ErbB-4 colocalizes with PSD-95 and NMDA receptors at a subset of excitatory synapses apposed to synaptophysin-positive presynaptic terminals. The capacity of ErbB receptors to interact with PDZ-domain proteins at cell junctions is conserved from invertebrates to mammals. As discussed, the interactions found between receptor tyrosine kinases and MAGUKs at neuronal synapses may have important implications for activity-dependent plasticity.
Collapse
Affiliation(s)
- R A Garcia
- Unit on Molecular Neurobiology, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
221
|
Kew TY, Bell JA, Pinder SE, Denley H, Srinivasan R, Gullick WJ, Nicholson RI, Blamey RW, Ellis IO. c-erbB-4 protein expression in human breast cancer. Br J Cancer 2000; 82:1163-70. [PMID: 10735500 PMCID: PMC2363344 DOI: 10.1054/bjoc.1999.1057] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Type 1 family of growth factor receptors includes epidermal growth factor receptor (EGFR), c-erbB-2, c-erbB-3 and c-erbB-4. Overexpression of the first two members is associated with poorer prognosis in patients with breast carcinoma. In this study we examined the expression of c-erbB-4 protein using the monoclonal antibody HFR-1. A total of 127 consecutive cases of primary operable invasive breast carcinoma presenting between 1975 and 1977 were studied. All patients were managed by simple mastectomy or conservation surgery with radiotherapy and no adjuvant therapy given. Long-term follow-up was maintained. Routine, formalin-fixed, paraffin-embedded tumour samples were used and sections were stained immunohistochemically using the Duet StreptABC method. Immunoreactivity was classified using a simple semi-quantitative scoring method. Protein expression was generally low but definite positive cytoplasmic, membranous and nuclear reactivity was identified in 58%, 41% and 25% of cases respectively. Expression at all three sites demonstrated significant inverse associations were histological grade. In addition, membrane accentuation correlated inversely with the Nottingham Prognostic Index (NPI), while cytoplasmic reactivity showed a positive association with c-erbB-3 expression. No significant associations were found with disease-free interval or survival. The results of this study demonstrate that higher levels of c-erbB-4 protein expression are associated with a more differentiated histological phenotype in contrast to the other members of the Type 1 family. Larger series with extended follow-up will be required to ascertain definitively the prognostic value of c-erbB-4 expression in breast carcinoma.
Collapse
Affiliation(s)
- T Y Kew
- The Breast Unit, Nottingham City Hospital, Nottingham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Ozaki M, Tohyama K, Kishida H, Buonanno A, Yano R, Hashikawa T. Roles of neuregulin in synaptogenesis between mossy fibers and cerebellar granule cells. J Neurosci Res 2000; 59:612-23. [PMID: 10686589 DOI: 10.1002/(sici)1097-4547(20000301)59:5<612::aid-jnr4>3.0.co;2-v] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuregulins (NRGs), a large group of structurally related signaling proteins, are likely to have important roles in the development, maintenance and repair of the nervous system and other selected tissues. We have demonstrated, by using the major form of NRG cloned from the mouse cerebellum that both the soluble form and the membrane anchored form of NRG may serve different functions in synaptogenesis. The soluble form of NRG was produced by proteolytic cleavage of the membrane anchored form of NRG. The proteolytic cleavage was promoted by protein kinase activation. The cleaved form of NRG trans-synaptically regulated the expression of the NMDA (N-methyl-D-aspartate) receptor subunit NR2C as neurally-derived factors, whereas the membrane anchored form of NRG showed a homophilic binding activity between NRGbeta1s. In adult mice the membrane anchored form of NRG was concentrated in neuro-terminals of both granule cells and pontocerebellar mossy fibers. The fact that NRG can be functionally viewed as cell recognition molecules as well as neurotrophic agents suggests new possibilities for the important class of molecules.
Collapse
Affiliation(s)
- M Ozaki
- Laboratory for Cellular Information Processing, BSI, The Institute of Physical and Chemical Research (RIKEN), Saitama, Japan.
| | | | | | | | | | | |
Collapse
|
223
|
Shirakata Y, Komurasaki T, Toyoda H, Hanakawa Y, Yamasaki K, Tokumaru S, Sayama K, Hashimoto K. Epiregulin, a novel member of the epidermal growth factor family, is an autocrine growth factor in normal human keratinocytes. J Biol Chem 2000; 275:5748-53. [PMID: 10681561 DOI: 10.1074/jbc.275.8.5748] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epiregulin is a new member of the epidermal growth factor (EGF) family purified from conditioned medium of NIH-3T3 clone T7. Some EGF family growth factors play essential roles in human keratinocytes in an autocrine manner. We show here that epiregulin is another autocrine growth factor for human keratinocytes. Epiregulin stimulated human keratinocyte proliferation under both subconfluent and confluent culture conditions in the absence of exogenous EGF family growth factors. Immunoprecipitation of [(35)S]methionine-labeled conditioned medium revealed a 5-kDa band corresponding to epiregulin. Northern blot analysis detected a 4. 8-kilobase transcript of epiregulin, and the addition of epiregulin up-regulated epiregulin mRNA synthesis. Furthermore, an anti-epiregulin blocking antibody reduced DNA synthesis by 25%. Epiregulin up-regulated the mRNA levels of heparin-binding EGF-like growth factor (HB-EGF), amphiregulin, and TGF-alpha. In turn, the addition of EGF, HB-EGF, amphiregulin, and TGF-alpha increased epiregulin mRNA levels. These results demonstrate that epiregulin acts as an autocrine growth factor in human epidermal keratinocytes and is part of auto- and cross-induction mechanisms involving HB-EGF, amphiregulin, and TGF-alpha. The mRNA expression profile resulting from induction of differentiation with high calcium and fetal calf serum revealed the differential expression of epiregulin, HB-EGF, amphiregulin, and TGF-alpha in keratinocytes. This indicates that these four growth factors have distinct, non-redundant biological functions.
Collapse
Affiliation(s)
- Y Shirakata
- Department of Dermatology, Ehime University School of Medicine, Shitsukawa, Shigenobu-cho, Onsen-gun, Ehime 791-0295, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Abstract
The HER2 proto-oncogene encodes a transmembrane glycoprotein of 185 kDa (p185(HER2)) with intrinsic tyrosine kinase activity. Amplification of the HER2 gene and overexpression of its product induce cell transformation. Numerous studies have demonstrated the prognostic relevance of p185(HER2), which is overexpressed in 10% to 40% of human breast tumors. Recent data suggest that p185(HER2) is a ligand orphan receptor that amplifies the signal provided by other receptors of the HER family by heterodimerizing with them. Ligand-dependent activation of HER1, HER3, and HER4 by EGF or heregulin results in heterodimerization and, thereby, HER2 activation. HER2 overexpression is associated with breast cancer patient responsiveness to doxorubicin, to cyclophosphamide, methotrexate, and fluorouracil (CMF), and to paclitaxel, whereas tamoxifen was found to be ineffective and even detrimental in patients with HER2-positive tumors. In vitro analyses have shown that the role of HER2 overexpression in determining the sensitivity of cancer cells to drugs is complex, and molecules involved in its signaling pathway are probably the actual protagonists of the sensitivity to drugs. The association of HER2 overexpression with human tumors, its extracellular accessibility, as well as its involvement in tumor aggressiveness are all factors that make this receptor an appropriate target for tumor-specific therapies. A number of approaches are being investigated as possible therapeutic strategies that target HER2: (1) growth inhibitory antibodies, which can be used alone or in combination with standard chemotherapeutics; (2) tyrosine kinase inhibitors (TKI), which have been developed in an effort to block receptor activity because phosphorylation is the key event leading to activation and initiation of the signaling pathway; and (3) active immunotherapy, because the HER2 oncoprotein is immunogenic in some breast carcinoma patients.
Collapse
Affiliation(s)
- S Ménard
- Molecular Targeting Unit, Department of Experimental Oncology, Istituto Nazionale Tumori, Milan, Italy.
| | | | | | | |
Collapse
|
225
|
Golding JP, Trainor P, Krumlauf R, Gassmann M. Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4. Nat Cell Biol 2000; 2:103-9. [PMID: 10655590 DOI: 10.1038/35000058] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mouse embryos with a loss-of-function mutation in the gene encoding the receptor tyrosine kinase ErbB4 exhibit misprojections of cranial sensory ganglion afferent axons. Here we analyse ErbB4-deficient mice, and find that morphological differences between wild-type and mutant cranial ganglia correlate with aberrant migration of a subpopulation of hindbrain-derived cranial neural crest cells within the paraxial mesenchyme environment. In transplantation experiments using new grafting techniques in cultured mouse embryos, we determine that this phenotype is non-cell-autonomous: wild-type and mutant neural crest cells both migrate in a pattern consistent with the host environment, deviating from their normal pathway only when transplanted into mutant embryos. ErbB4 signalling events within the hindbrain therefore provide patterning information to cranial paraxial mesenchyme that is essential for the proper migration of neural crest cells.
Collapse
Affiliation(s)
- J P Golding
- Division of Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
226
|
Lin W, Sanchez HB, Deerinck T, Morris JK, Ellisman M, Lee KF. Aberrant development of motor axons and neuromuscular synapses in erbB2-deficient mice. Proc Natl Acad Sci U S A 2000; 97:1299-304. [PMID: 10655525 PMCID: PMC15603 DOI: 10.1073/pnas.97.3.1299] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptor tyrosine kinase erbB2, which is activated by neuregulin, is expressed in Schwann and muscle cells in the developing neuromuscular junction (NMJ). In vitro studies have shown that neuregulin promotes the survival and migration of Schwann cells and stimulates acetylcholine receptor gene transcription in cultured muscle cells. These findings suggest an important role for erbB2 in the development of the NMJ. Here we examine erbB2-deficient mice to determine whether erbB2 is required for NMJ development in vivo. Our analysis shows that there are pre- and postsynaptic defects of developing NMJ in erbB2-deficient embryos. The presynaptic defects include defasciculation and degeneration of the motor nerves, and an absence of Schwann cells. The postsynaptic defect features an impairment of junctional folds at the neuromuscular synapse in the mutants. These results demonstrate that erbB2 is essential for in vivo development of the NMJ.
Collapse
Affiliation(s)
- W Lin
- The Salk Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
227
|
Affiliation(s)
- K Adlkofer
- Molecular Neurobiology Lab, Salk Institute, La Jolla, California
| | | |
Collapse
|
228
|
|
229
|
Dunbar AJ, Goddard C. Identification of an alternatively spliced mRNA transcript of human betacellulin lacking the C-loop of the EGF motif and the transmembrane domain. Growth Factors 2000; 18:169-75. [PMID: 11334053 DOI: 10.3109/08977190009003242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This paper describes the cloning and characterization of a novel cDNA encoding a short form of betacellulin (BTC-beta), and reports the expression of this mRNA in a variety of human tissues and cell types. BTC-beta is likely the result of alternative splicing. This splicing event leads to the generation of an mRNA encoding an unusual BTC precursor in which the C-loop of the EGF domain and the transmembrane domain are deleted while the remainder of the mature molecule is fused in-frame to the C-terminal cytoplasmic tail.
Collapse
Affiliation(s)
- A J Dunbar
- Cooperative Research Centre for Tissue Growth and Repair, CSIRO Health Sciences and Nutrition, Adelaide, South Australia.
| | | |
Collapse
|
230
|
Wolpowitz D, Mason TB, Dietrich P, Mendelsohn M, Talmage DA, Role LW. Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron 2000; 25:79-91. [PMID: 10707974 DOI: 10.1016/s0896-6273(00)80873-9] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neuregulin-1 (NRG-1) signaling has been implicated in inductive interactions between pre- and postsynaptic partners during synaptogenesis. We used gene targeting to selectively disrupt cysteine-rich domain-(CRD-) containing NRG-1 isoforms. In CRD-NRG-1-/-mice, peripheral projections defasciculated and displayed aberrant branching patterns within their targets. Motor nerve terminals were transiently associated with broad bands of postsynaptic ACh receptor (AChR) clusters. Initially, Schwann cell precursors accompanied peripheral projections, but later, Schwann cells were absent from axons in the periphery. Following initial stages of synapse formation, sensory and motor nerves withdrew and degenerated. Our data demonstrate the essential role of CRD-NRG-1-mediated signaling for coordinating nerve, target, and Schwann cell interactions in the normal maintenance of peripheral synapses, and ultimately in the survival of CRD-NRG-1-expressing neurons.
Collapse
Affiliation(s)
- D Wolpowitz
- Columbia University, College of Physicians and Surgeons, Program in Neurobiology and Behavior, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
231
|
Uchida T, Wada K, Akamatsu T, Yonezawa M, Noguchi H, Mizoguchi A, Kasuga M, Sakamoto C. A novel epidermal growth factor-like molecule containing two follistatin modules stimulates tyrosine phosphorylation of erbB-4 in MKN28 gastric cancer cells. Biochem Biophys Res Commun 1999; 266:593-602. [PMID: 10600548 DOI: 10.1006/bbrc.1999.1873] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated a gene from stomach fibroblasts encoding novel proteins containing two follistatin modules which might bind TGF-beta-related growth factors and a single epidermal growth factor (EGF)-like domain which is closely related to EGF/Neuregulin (NRG) family growth factors. Sequence analysis revealed novel cDNA clones, the protein products of which were designated tomoregulin (TR) and consisted of at least three isoforms which were distinguished by their cytoplasmic domains. The cytoplasmic domains in all isoforms were short and contained potential G-protein activating motifs. Precursors of TR (Pro-TR) are glycosylated transmembrane proteins. Two secreted soluble forms resulting from proteolytic cleavage were distinguished by the presence or absence of the EGF-like domain. The EGF-like domain of TR was highly conserved compared to EGF/NRG family growth factors with the exception of an arginine to histidine substitution at position 39 (Arg --> His 39). Soluble TR stimulated erbB-4 tyrosine phosphorylation in MKN 28 gastric cancer cells, although it was weak compared to neuregulin-induced erbB-4 tyrosine phosphorylation; this suggests that TR might be a ligand for erbB-4- or erbB-4-related receptor tyrosine kinase. TR may have important roles in normal development of middle to late stages of embryos and maintenance of adult central nervous system tissues as high expression of TR mRNAs was observed in these tissues. The modular features suggest multiple roles for TR; these include functioning as a ligand for erbB- receptor, a regulator of TGF-beta-related growth factor signaling by direct interaction through the follistatin modules, and a G-protein-coupled receptor.
Collapse
Affiliation(s)
- T Uchida
- Second Department of Internal Medicine, Kobe University School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Dunbar AJ, Priebe IK, Belford DA, Goddard C. Identification of betacellulin as a major peptide growth factor in milk: purification, characterization and molecular cloning of bovine betacellulin. Biochem J 1999; 344 Pt 3:713-21. [PMID: 10585857 PMCID: PMC1220692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Betacellulin (BTC), a member of the epidermal growth factor (EGF) family of peptide growth factors, was purified from a growth-factor-enriched whey fraction of bovine milk by a combination of ion-exchange chromatography, gel-filtration chromatography, affinity chromatography and reverse-phase HPLC. Bovine BTC (bBTC) had an apparent molecular mass of 21-22 kDa on SDS/PAGE and exists in a glycosylated form. The cDNA encoding bBTC was obtained by a combination of 5' and 3' rapid amplification of cDNA ends ('RACE'). The primary translation product consists of 178 amino acid residues containing a putative signal sequence, a transmembrane domain, the mature BTC domain and a cytoplasmic domain containing a highly hydrophilic Arg-Lys-rich region similar to that of mouse BTC and human BTC. The amino acid sequence of the bBTC precursor was 88% identical with human BTC and 79% identical with mouse BTC. The bBTC gene was found to be expressed in a wide range of tissues, including the mammary gland. The identification of BTC in milk raises the possibility that it has a major role in the growth and development of the neonatal gastrointestinal tract.
Collapse
Affiliation(s)
- A J Dunbar
- Cooperative Research Centre for Tissue Growth and Repair, CSIRO Health Sciences and Nutrition, Adelaide BC, SA 5000, Australia.
| | | | | | | |
Collapse
|
233
|
Neuregulins signaling via a glial erbB-2-erbB-4 receptor complex contribute to the neuroendocrine control of mammalian sexual development. J Neurosci 1999. [PMID: 10559400 DOI: 10.1523/jneurosci.19-22-09913.1999] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of erbB-1 receptors by glial TGFalpha has been shown to be a component of the developmental program by which the neuroendocrine brain controls mammalian sexual development. The participation of other members of the erbB family may be required, however, for full signaling capacity. Here, we show that activation of astrocytic erbB-2/erbB-4 receptors plays a significant role in the process by which the hypothalamus controls the advent of mammalian sexual maturation. Hypothalamic astrocytes express both the erbB-2 and erbB-4 genes, but no erbB-3, and respond to neuregulins (NRGs) by releasing prostaglandin E(2) (PGE(2)), which acts on neurosecretory neurons to stimulate secretion of luteinizing hormone-releasing hormone (LHRH), the neuropeptide controlling sexual development. The actions of TGFalpha and NRGs in glia are synergistic and involve recruitment of erbB-2 as a coreceptor, via erbB-1 and erbB-4, respectively. Hypothalamic expression of both erbB-2 and erbB-4 increases first in a gonad-independent manner before the onset of puberty, and then, at the time of puberty, in a sex steroid-dependent manner. Disruption of erbB-2 synthesis in hypothalamic astrocytes by treatment with an antisense oligodeoxynucleotide inhibited the astrocytic response to NRGs and, to a lesser extent, that to TGFalpha and blocked the erbB-dependent, glia-mediated, stimulation of LHRH release. Intracerebral administration of the oligodeoxynucleotide to developing animals delayed the initiation of puberty. Thus, activation of the erbB-2-erbB-4 receptor complex appears to be a critical component of the signaling process by which astrocytes facilitate the acquisition of female reproductive capacity in mammals.
Collapse
|
234
|
Russell KS, Stern DF, Polverini PJ, Bender JR. Neuregulin activation of ErbB receptors in vascular endothelium leads to angiogenesis. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H2205-11. [PMID: 10600838 DOI: 10.1152/ajpheart.1999.277.6.h2205] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ErbB, or epidermal growth factor receptor (EGF-r), family of transmembrane tyrosine kinase receptors has been demonstrated to play an important role in growth regulation and intracellular signaling in a wide variety of cell types. Targeted deletion of neuregulin (an ErbB ligand) in mice results in endocardial cushion abnormalities, suggesting that these receptor-ligand interactions have important effects on vascular endothelial growth and development. To study the role of ErbB receptor signaling in vascular endothelium, we investigated the expression pattern of the various receptor family members and the effect of ErbB receptor stimulation in human umbilical vein endothelial cells (HUVEC). We demonstrate that ErbB2 (neu), ErbB3, and ErbB4 are highly expressed, whereas ErbB1 (EGF-r) is undetectable. Stimulation of HUVEC with recombinant neuregulin-beta (an ErbB3/4 ligand) induces rapid calcium fluxes, receptor tyrosine phosphorylation, and cell proliferation. We demonstrate marked in vitro and in vivo angiogenic responses to neuregulin-beta, which are independent of vascular endothelial cell growth factor. These findings support an important role for the ErbB family of receptors in endothelial cell signaling and function, including neuregulin-induced angiogenesis.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cornea/blood supply
- Endothelial Growth Factors/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- ErbB Receptors/drug effects
- ErbB Receptors/genetics
- ErbB Receptors/physiology
- Humans
- Lymphokines/pharmacology
- Mice
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/physiology
- Neuregulins/pharmacology
- Neuregulins/physiology
- Rats
- Receptor, ErbB-2/drug effects
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/physiology
- Receptor, ErbB-3/drug effects
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/physiology
- Receptor, ErbB-4
- Thrombin/pharmacology
- Umbilical Veins
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- K S Russell
- Division of Cardiovascular Medicine and Molecular Cardiobiology, Boyer Center for Molecular Medicine, New Haven, Connecticut, 06536-0812, USA
| | | | | | | |
Collapse
|
235
|
Ma YJ, Hill DF, Creswick KE, Costa ME, Cornea A, Lioubin MN, Plowman GD, Ojeda SR. Neuregulins signaling via a glial erbB-2-erbB-4 receptor complex contribute to the neuroendocrine control of mammalian sexual development. J Neurosci 1999; 19:9913-27. [PMID: 10559400 PMCID: PMC6782961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/1999] [Revised: 09/02/1999] [Accepted: 09/02/1999] [Indexed: 02/14/2023] Open
Abstract
Activation of erbB-1 receptors by glial TGFalpha has been shown to be a component of the developmental program by which the neuroendocrine brain controls mammalian sexual development. The participation of other members of the erbB family may be required, however, for full signaling capacity. Here, we show that activation of astrocytic erbB-2/erbB-4 receptors plays a significant role in the process by which the hypothalamus controls the advent of mammalian sexual maturation. Hypothalamic astrocytes express both the erbB-2 and erbB-4 genes, but no erbB-3, and respond to neuregulins (NRGs) by releasing prostaglandin E(2) (PGE(2)), which acts on neurosecretory neurons to stimulate secretion of luteinizing hormone-releasing hormone (LHRH), the neuropeptide controlling sexual development. The actions of TGFalpha and NRGs in glia are synergistic and involve recruitment of erbB-2 as a coreceptor, via erbB-1 and erbB-4, respectively. Hypothalamic expression of both erbB-2 and erbB-4 increases first in a gonad-independent manner before the onset of puberty, and then, at the time of puberty, in a sex steroid-dependent manner. Disruption of erbB-2 synthesis in hypothalamic astrocytes by treatment with an antisense oligodeoxynucleotide inhibited the astrocytic response to NRGs and, to a lesser extent, that to TGFalpha and blocked the erbB-dependent, glia-mediated, stimulation of LHRH release. Intracerebral administration of the oligodeoxynucleotide to developing animals delayed the initiation of puberty. Thus, activation of the erbB-2-erbB-4 receptor complex appears to be a critical component of the signaling process by which astrocytes facilitate the acquisition of female reproductive capacity in mammals.
Collapse
Affiliation(s)
- Y J Ma
- Division of Neuroscience, Oregon Regional Primate Research Center, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Landgraf R, Fischer D, Eisenberg D. Analysis of heregulin symmetry by weighted evolutionary tracing. PROTEIN ENGINEERING 1999; 12:943-51. [PMID: 10585499 DOI: 10.1093/protein/12.11.943] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Heregulins are members of the protein family of EGF-like growth and differentiation factors. The primary cell-surface targets of heregulins are heterodimers of the EGF-receptor homolog HER2 with either HER3 or HER4. We used a weighted evolutionary trace analysis to identify structural features that distinguish the EGF-like domain (hrg) of heregulins from other members of the EGF family. In this analysis, each amino acid sequence is weighted according to its uniqueness and the variability in each position is assigned by an amino acid substitution matrix. Conserved residues in heregulin that are variable in other EGF-like domains are considered possible specificity-conferring residues. This analysis identifies two clusters of residues at the foot of the boot-shaped hrg domain. The residues in one cluster are recruited from the N-terminus; those in the other are from the ohm-loop region and show a weak sequence similarity to the N-terminal residues at the opposite side of the boot. The remaining residues with high conservation scores distribute themselves into these two distinct surfaces on hrg. This pseudo-twofold symmetry and the presence of two distinct interfaces may reflect the preference of hrg for heterodimeric versus homodimeric HER complexes.
Collapse
Affiliation(s)
- R Landgraf
- University of California, UCLA-DOE Laboratory of Structural Biology and Molecular Medicine and Molecular Biology Institute, 405 Hilgard Avenue, Box 951570, Los Angeles, CA 90095-1570, USA
| | | | | |
Collapse
|
237
|
Aguilar Z, Akita RW, Finn RS, Ramos BL, Pegram MD, Kabbinavar FF, Pietras RJ, Pisacane P, Sliwkowski MX, Slamon DJ. Biologic effects of heregulin/neu differentiation factor on normal and malignant human breast and ovarian epithelial cells. Oncogene 1999; 18:6050-62. [PMID: 10557094 DOI: 10.1038/sj.onc.1202993] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The heregulins are a family of ligands with ability to induce phosphorylation of the p185HER-2/neu receptor. Various investigators have reported a variety of responses of mouse and human breast and ovarian cells to this family of ligands including growth stimulation, growth inhibition, apoptosis and induction of differentiation in cells expressing the HER-2/neu receptor. Some of the disparity in the literature has been attributed to variations in the cell lines studied, ligand dose applied, methodologies utilized or model system evaluated (i.e. in vitro or in vivo). To evaluate the effects of heregulin on normal and malignant human breast and ovarian epithelial cells expressing known levels of the HER-2/neu receptor, this report presents the use of several different assays, performed both in vitro and in vivo, in vitro proliferation assays, direct cell counts, clonogenicity under anchorage-dependent and anchorage-independent conditions, as well as the in vivo effects of heregulin on human cells growing in nude mice to address heregulin activity. Using a total of five different biologic assays in nine different cell lines, across two different epithelia and over a one log heregulin dose range, we obtained results that clearly indicate a growth-stimulatory role for this ligand in human breast and ovarian epithelial cells. We find no evidence that heregulin has any growth-inhibitory effects in human epithelial cells. We also quantitated the amount of each member of the type I receptor tyrosine kinase family (RTK I, i.e. HER-1, HER-2, HER-3 and HER-4) in the cell lines employed and correlated this to their respective heregulin responses. These data demonstrate that HER-2/neu overexpression itself affects the expression of other RTK I members and that cells expressing the highest levels of HER-2/neu have the greatest response to HRG.
Collapse
Affiliation(s)
- Z Aguilar
- Division of Hematology and Oncology, Department of Medicine, UCLA School of Medicine, Los Angeles, California, CA 90095 USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Xian CJ, Zhou XF. Roles of transforming growth factor-alpha and related molecules in the nervous system. Mol Neurobiol 1999; 20:157-83. [PMID: 10966120 DOI: 10.1007/bf02742440] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The epidermal growth factor (EGF) family of polypeptides is regulators for tissue development and repair, and is characterized by the fact that their mature forms are proteolytically derived from their integral membrane precursors. This article reviews roles of the prominent members of the EGF family (EGF, transforming growth factor-alpha [TGF-alpha] and heparin-binding EGF [HB-EGF]) and the related neuregulin family in the nerve system. These polypeptides, produced by neurons and glial cells, play an important role in the development of the nervous system, stimulating proliferation, migration, and differentiation of neuronal, glial, and Schwann precursor cells. These peptides are also neurotrophic, enhancing survival and inhibiting apoptosis of post-mitotic neurons, probably acting directly through receptors on neurons, or indirectly via stimulating glial proliferation and glial synthesis of other molecules such as neurotrophic factors. TGF-alpha, EGF, and neuregulins are involved in mediating glial-neuronal and axonal-glial interactions, regulating nerve injury responses, and participating in injury-associated astrocytic gliosis, brain tumors, and other disorders of the nerve system. Although the collective roles of the EGF family (as well as those of the neuregulins) are shown to be essential for the nervous system, redundancy may exist among members of the EGF family.
Collapse
Affiliation(s)
- C J Xian
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia.
| | | |
Collapse
|
239
|
Saxon ML, Lee DC. Mutagenesis reveals a role for epidermal growth factor receptor extracellular subdomain IV in ligand binding. J Biol Chem 1999; 274:28356-62. [PMID: 10497195 DOI: 10.1074/jbc.274.40.28356] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular domain of the epidermal growth factor (EGF) receptor (EGFR) comprises four subdomains (I-IV) and mediates binding of several different polypeptide ligands, including EGF, transforming growth factor-alpha, and heparin-binding EGF. Previous studies have predominantly implicated subdomain III in ligand binding. To investigate a possible role for sequences in subdomain IV, we constructed several mutant EGFRs in which clusters of charged or aromatic amino acids were replaced with alanine. Analysis of stably transfected Chinese hamster ovary cells expressing mutant EGFRs confirmed that they were present on the cell surface at levels approaching that of the wild-type receptor. Although tyrosine phosphorylation of most mutants was markedly induced by EGF, a cluster mutation (mt25) containing four alanine substitutions in the span of residues 521-527 failed to respond. EGF-induced tyrosine phosphorylation of an alternative mutant (DeltaEN) with amino acids 518-589 deleted was also greatly diminished. Larger doses of EGF or heparin-binding EGF induced only weak tyrosine phosphorylation of mt25, whereas the response to transforming growth factor-alpha was undetectable. These results suggest that mt25 might be defective with respect to either ligand binding or receptor dimerization. Quantitative analyses showed that binding of (125)I-EGF to mt25 and DeltaEN was reduced to near background levels, whereas binding of EGF to other cluster mutants was reduced 60-70% compared with wild-type levels. Among the mutants, only mt25 and DeltaEN failed to form homodimers or to transphosphorylate HER2/Neu in response to EGF treatment. Collectively, our results are the first to provide direct evidence that discrete subdomain IV residues are required for normal binding of EGF family ligands. Significantly, they were obtained with the full-length receptor in vivo, rather than a soluble truncated receptor, which has been frequently used for structure/function studies of the EGFR extracellular region.
Collapse
Affiliation(s)
- M L Saxon
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | |
Collapse
|
240
|
Ford BD, Loeb JA, Fischbach GD. Neuregulin stimulates DNA synthesis in embryonic chick heart cells. Dev Biol 1999; 214:139-50. [PMID: 10491263 DOI: 10.1006/dbio.1999.9394] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuregulins are a family of growth factors that have been shown to promote the growth or differentiation of various cell types. Recently, targeted mutations of the genes for neuregulins or their putative receptors by homologous recombination resulted in embryonic lethality characterized by cardiac malformation. Here we investigate a role for neuregulin in the growth of cultured chick heart cells. Neuregulin induced the tyrosine phosphorylation of a 185-kDa protein in cultured heart cells, and it also stimulated an increase in [(3)H]thymidine incorporation and BrDU labeling in the cell cultures. Immunocytochemistry revealed that the increased DNA synthesis was primarily in mesenchymal cells and not detected in myocytes or endocardial cells. These data suggest that neuregulin may function as a paracrine signal in mesenchymal-endothelial interactions during cardiac development.
Collapse
Affiliation(s)
- B D Ford
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
241
|
Steiner H, Blum M, Kitai ST, Fedi P. Differential expression of ErbB3 and ErbB4 neuregulin receptors in dopamine neurons and forebrain areas of the adult rat. Exp Neurol 1999; 159:494-503. [PMID: 10506520 DOI: 10.1006/exnr.1999.7163] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuregulins have been shown to play an important role in the development of the central nervous system, but their function in adult tissues is still unclear. We investigated the expression of the neuregulin receptors erbB3 and erbB4 in the adult rat brain by in situ hybridization histochemistry. Areas with considerable expression of erbB4 receptor mRNA include cortex, amygdala, hippocampus, medial habenula, reticular thalamic nucleus, several hypothalamic nuclei, subthalamic nucleus, substantia nigra pars compacta, and ventral tegmental area. Immunostaining for tyrosine hydroxylase and dopamine depletion by 6-hydroxydopamine indicate that erbB4 is expressed in dopamine neurons in the latter two nuclei. Substantial erbB4 expression is also present in clusters of cells along the ventral and medial border of the striatum/nucleus accumbens and in the subependymal zone along the lateral and olfactory ventricles (rostral migratory stream), suggesting a role for neuregulins in adult cell proliferation. In contrast, erbB3 mRNA is mostly expressed in white matter throughout the brain and in the ependyma of the ventral half of the third ventricle (tanycytes). These results demonstrate that expression of erbB3 and erbB4 receptors is widespread in the adult rat brain and suggest a function for neuregulins into adulthood.
Collapse
Affiliation(s)
- H Steiner
- Department of Anatomy, University of Tennessee, Memphis, Tennessee, 38163, USA
| | | | | | | |
Collapse
|
242
|
Ojeda SR, Ma YJ. Glial-neuronal interactions in the neuroendocrine control of mammalian puberty: facilitatory effects of gonadal steroids. JOURNAL OF NEUROBIOLOGY 1999; 40:528-40. [PMID: 10453054 DOI: 10.1002/(sici)1097-4695(19990915)40:4<528::aid-neu9>3.0.co;2-v] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is now clear that astroglial cells actively contribute to both the generation and flow of information within the central nervous system. In the hypothalamus, astrocytes regulate the secretory activity of neuroendocrine neurons. A small subset of these neurons secrete luteinizing hormone-releasing hormone (LHRH), a neuropeptide essential for sexual development and adult reproductive function. Astrocytes stimulate LHRH secretion via cell-cell signaling mechanisms involving growth factors recognized by receptors with either serine/threonine or tyrosine kinase activity. Two members of the epidermal growth factor (EGF) family and their respective tyrosine kinase receptors appear to play key roles in this regulatory process. Transforming growth factor-alpha (TGFalpha) and its distant congeners, the neuregulins (NRGs), are produced in hypothalamic astrocytes. They stimulate LHRH secretion indirectly, via activation of erbB-1/erbB-2 and erbB-4/erbB-2 receptor complexes also located on astrocytes. Activation of these receptors leads to release of prostaglandin E(2) (PGE(2)), which then binds to specific receptors on LHRH neurons to elicit LHRH secretion. Gonadal steroids facilitate this glia-to-neuron communication process by acting at three different steps along the signaling pathway. They (a) increase astrocytic gene expression of at least one of the EGF-related ligands (TGFalpha), (b) increase expression of at least two of the receptors (erbB-4 and erbB-2), and (c) enhance the LHRH response to PGE(2) by up-regulating in LHRH neurons the expression of specific PGE(2) receptor isoforms. Focal overexpression of TGFalpha in either the median eminence or preoptic area of the hypothalamus accelerates puberty. Conversely, blockade of either TGFalpha or NRG hypothalamic actions delays the process. Thus, both TGFalpha and NRGs appear to be physiological components of the central neuroendocrine mechanism controlling the initiation of female puberty. By facilitating growth factor signaling pathways in the hypothalamus, ovarian steroids accelerate the pace and progression of the pubertal process.
Collapse
Affiliation(s)
- S R Ojeda
- Division of Neuroscience, Oregon Regional Primate Research Center/Oregon Health Sciences University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | | |
Collapse
|
243
|
Abstract
Our understanding of the normal signaling mechanisms and functions of human epidermal growth factor receptor 2 (HER2) and other members of the HER family, namely epidermal growth factor receptor, HER3, and HER4, is growing rapidly. Activation of these receptors results in a diverse array of signals through the formation of homodimeric and heterodimeric receptor complexes; HER2 is the preferred dimerization partner for the other HERs. These oligomeric receptor complexes activate distinct signaling pathways, such as the Ras-MAPK and PI3-kinase pathways. These, in turn, affect various cellular processes. Recent gene deletion experiments in mice point to an important role for HER2 in cardiac and neural development, and evidence from other studies indicates that HER2 is involved in normal breast growth and development. Thus, HER2 is a key component of a complex signaling network that plays a critical role in the regulation of tissue development, growth, and differentiation.
Collapse
Affiliation(s)
- S Sundaresan
- Department of Molecular Oncology, Genentech, Inc., MS 63, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
244
|
Rohrbach S, Yan X, Weinberg EO, Hasan F, Bartunek J, Marchionni MA, Lorell BH. Neuregulin in cardiac hypertrophy in rats with aortic stenosis. Differential expression of erbB2 and erbB4 receptors. Circulation 1999; 100:407-12. [PMID: 10421602 DOI: 10.1161/01.cir.100.4.407] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neuregulins are a family of peptide growth factors that promote cell growth and viability. The potential role of neuregulin-erbB signaling in hypertrophic growth and later failure in the adult heart in vivo is not known. METHODS AND RESULTS We used ribonuclease protection assays to quantify mRNA levels of neuregulin, erbB2, and erbB4 in left ventricular (LV) tissue and myocytes of normal rats and rats with aortic stenosis with pressure-overload hypertrophy 6 and 22 weeks after banding. At both stages of hypertrophy, Northern blot analyses of mRNA from LV myocytes showed upregulation of atrial natriuretic peptide, a molecular marker of hypertrophy (P<0.05). LV tissue neuregulin message levels were similar in animals with aortic stenosis compared with controls (P=NS) and were not detectable in myocytes. LV erbB2 and erbB4 message levels in LV tissue and myocytes were maintained during early compensatory hypertrophy in 6-week aortic stenosis animals compared with age-matched controls; in contrast, erbB2 and erbB4 message levels were depressed in 22-week aortic stenosis animals at the stage of early failure (both P<0.01 vs age-matched controls). Immunoblotting of erbB2 and erbB4 also showed normal protein levels in 6-week aortic stenosis animals compared with controls; however, erbB2 and erbB4 protein levels were depressed in 22-week aortic stenosis animals (48% decrease in erbB2, P<0.05, and 43% decrease in erbB4, P<0.01) relative to age-matched controls. CONCLUSIONS The neuregulin receptors erbB2 and erbB4 are downregulated at both the message and protein levels at the stage of early failure in animals with chronic hypertrophy secondary to aortic stenosis. These data suggest a role for disabled erbB receptor signaling in the transition from compensatory hypertrophy to failure.
Collapse
Affiliation(s)
- S Rohrbach
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
245
|
Feron O, Zhao YY, Kelly RA. The ins and outs of caveolar signaling. m2 muscarinic cholinergic receptors and eNOS activation versus neuregulin and ErbB4 signaling in cardiac myocytes. Ann N Y Acad Sci 1999; 874:11-9. [PMID: 10415516 DOI: 10.1111/j.1749-6632.1999.tb09220.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Endothelial cells constitutively express the NOS isoform eNOS, which generates NO in response to specific extracellular signals to regulate vascular smooth muscle tone, vascular permeability, and platelet adhesion, among other actions. In addition to coronary vascular and endocardial endothelium, both atrial and ventricular myocytes express eNOS, the activation of which is also dependent on specific intracellular and extracellular signals. eNOS is targeted in cardiac myocytes to caveolae in plasma membranes and, in the case of cardiac myocytes, possibly T-tubular membranes as well. eNOS targeting to caveolae in cardiac myocytes requires co-translational myristoylation and subsequent palmitoylation for efficient targeting of the enzyme to the specialized lipid microdomains characteristic of caveolae. Although eNOS also contains a caveolin binding motif, this is insufficient for correct targeting of eNOS to caveolae. Recent evidence obtained from ventricular myocytes of mice with targeted disruption of the eNOS gene indicates that the lack of functional eNOS interrupts muscarinic cholinergic control of ICa-L in these cells. eNOS-/- mice are hypertensive and develop cardiac hypertrophy as they age, and these animals also exhibit an accelerated degree of vascular remodeling in response to injury. Reconstitution experiments confirm both the essential role of eNOS in coupling m2 AchR signaling to the control of ICa-L and myocyte automaticity and the importance of eNOS subcellular localization within caveolae in mediating this signal transduction pathway. It appears that translocation into caveolae is essential for signaling. However, this is not the case with all receptors associated with caveolae.
Collapse
Affiliation(s)
- O Feron
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
246
|
Yang JF, Zhou H, Choi RC, Ip NY, Peng HB, Tsim KW. A cysteine-rich form of Xenopus neuregulin induces the expression of acetylcholine receptors in cultured myotubes. Mol Cell Neurosci 1999; 13:415-29. [PMID: 10383827 DOI: 10.1006/mcne.1999.0759] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neuregulin-1 (NRG-1) has diverse functions in neural development, and one of them is to up regulate the expression of acetylcholine receptors (AChRs) at muscle fibers during the formation of neuromuscular junctions. NRG-1 has two prominent alternative splicing sites at the N-terminus; it could be an immunoglobulin (Ig)-like domain named Ig-NRG-1 or an apolar cysteine-rich domain (CRD) named CRD-NRG-1. cDNAs encoding Xenopus CRD-NRG-1 were isolated by cross-hybridization with Xenopus Ig-NRG-1 cDNA fragment. The amino acid sequence of Xenopus CRD-NRG-1 is 45 to 70% identical to the human, rat, and chick homologs. Similar to Ig-NRG-1, two variation sites within CRD-NRG-1 were identified at the spacer domain with 0 or 43 amino acids inserted and at the C-terminus of the EGF-like domain to derive either alpha or beta isoform. Two transcripts encoding CRD-NRG-1, approximately 7.5 and approximately 9.0 kb, were revealed in adult brain and spinal cord, but the expression in muscle was below the detectable level. The recombinant Xenopus CRD-NRG-1 when applied onto cultured myotubes was able to induce the tyrosine phosphorylation of ErbB receptors and the expression of AChR. The AChR-inducing activity of CRD-NRG-1 was precipitated by anti-NRG-1 antibody but not by heparin. In situ hybridization showed a strong expression of CRD-NRG-1 mRNA in developing brain, spinal cord, and myotomal muscles of Xenopus embryo. Similar to the results in other species, both CRD-NRG-1 and Ig-NRG-1 may play a role in the developing Xenopus neuromuscular junctions.
Collapse
Affiliation(s)
- J F Yang
- Department of Biology and Biotechnology Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
247
|
Morris JK, Lin W, Hauser C, Marchuk Y, Getman D, Lee KF. Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron 1999; 23:273-83. [PMID: 10399934 DOI: 10.1016/s0896-6273(00)80779-5] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
ErbB2 receptor tyrosine kinase plays a role in neuregulin signaling and is expressed in the developing nervous system. We genetically rescued the cardiac defect of erbB2 null mutant embryos, which otherwise died at E11. These rescued erbB2 mutant mice die at birth and display a severe loss of both motor and sensory neurons. Motor and sensory axons are severely defasciculated and aberrantly projected within their final target tissues. Schwann cells are completely absent in the peripheral nerves. Schwann cell precursors are present within the DRG and proliferate normally, but their ability to migrate is decreased. Acetylcholine receptors cluster within the central band of the mutant diaphragm muscle. However, these clusters are dispersed and morphologically different from those in control muscle. Our results reveal an important role for erbB2 during normal peripheral nervous system development.
Collapse
Affiliation(s)
- J K Morris
- The Salk Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
248
|
Paria BC, Elenius K, Klagsbrun M, Dey SK. Heparin-binding EGF-like growth factor interacts with mouse blastocysts independently of ErbB1: a possible role for heparan sulfate proteoglycans and ErbB4 in blastocyst implantation. Development 1999; 126:1997-2005. [PMID: 10101133 DOI: 10.1242/dev.126.9.1997] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Blastocyst implantation requires molecular and cellular interactions between the uterine luminal epithelium and blastocyst trophectoderm. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) is induced in the mouse luminal epithelium solely at the site of blastocyst apposition at 16:00 hours on day 4 of pregnancy prior to the attachment reaction (22:00-23:00 hours), and that HB-EGF promotes blastocyst growth, zona-hatching and trophoblast outgrowth. To delineate which EGF receptors participate in blastocyst activation, the toxicity of chimeric toxins composed of HB-EGF or TGF-(&agr;) coupled to Pseudomonas exotoxin (PE) were used as measures of receptor expression. TGF-(&agr;) or HB-EGF binds to EGF-receptor (ErbB1), while HB-EGF, in addition, binds to ErbB4. The results indicate that ErbB1 is inefficient in mediating TGF-(&agr;)-PE or HB-EGF-PE toxicity as follows: (i) TGF-(&agr;)-PE was relatively inferior in killing blastocysts, 100-fold less than HB-EGF-PE, (ii) analysis of blastocysts isolated from cross-bred egfr+/- mice demonstrated that HB-EGF-PE, but not TGF-(&agr;)-PE, killed egfr-/- blastocysts, and (iii) blastocysts that survived TGF-(&agr;)-PE were nevertheless killed by HB-EGF-PE. HB-EGF-PE toxicity was partially mediated by cell surface heparan sulfate proteoglycans (HSPG), since a peptide corresponding to the heparin-binding domain of HB-EGF as well as heparitinase treatment protected the blastocysts from the toxic effects of HB-EGF-PE by about 40%. ErbB4 is a candidate for being an HB-EGF-responsive receptor since RT-PCR analysis demonstrated that day 4 mouse blastocysts express two different erbB4 isoforms and immunostaining with anti-ErbB4 antibodies confirmed that ErbB4 protein is expressed at the apical surface of the trophectoderm cells. It is concluded that (i) HB-EGF interacts with the blastocyst cell surface via high-affinity receptors other than ErbB1, (ii) the HB-EGF interaction with high-affinity blastocysts receptors is regulated by heparan sulfate, and (iii) ErbB4 is a candidate for being a high-affinity receptor for HB-EGF on the surface of implantation-competent blastocysts.
Collapse
Affiliation(s)
- B C Paria
- Department of Molecular and Integrative Physiology, Ralph L. Smith Research Center, University of Kansas Medical Center, Kansas City, KS 66160-7338, USA
| | | | | | | |
Collapse
|
249
|
Harari D, Tzahar E, Romano J, Shelly M, Pierce JH, Andrews GC, Yarden Y. Neuregulin-4: a novel growth factor that acts through the ErbB-4 receptor tyrosine kinase. Oncogene 1999; 18:2681-9. [PMID: 10348342 DOI: 10.1038/sj.onc.1202631] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ErbB/HER family of receptor tyrosine kinases consists of four receptors that bind a large number of growth factor ligands sharing an epidermal growth factor- (EGF)-like motif. Whereas ErbB-1 binds seven different ligands whose prototype is EGF, the three families of neuregulins (NRGs) activate ErbB-3 and/or ErbB-4. Here we characterize a fourth neuregulin, NRG-4, that acts through ErbB-4. The predicted pro-NRG-4 is a transmembrane protein carrying a unique EGF-like motif and a short cytoplasmic domain. A synthetic peptide encompassing the full-length EGF-like domain can induce growth of interleukin-dependent cells ectopically expressing ErbB-4, but not cells expressing the other three ErbB proteins or their combinations. Consistent with specificity to ErbB-4, NRG-4 can displace an ErbB-4-bound NRG-1 and can activate signaling downstream of this receptor. Expression of NRG-4 mRNA was detected in the adult pancreas and weakly in muscle; other tissues displayed no detectable NRG-4 mRNA. The primary structure and the pattern of expression of NRG-4, together with the strict specificity of this growth factor to ErbB-4, suggest a physiological role distinct from that of the known ErbB ligands.
Collapse
Affiliation(s)
- D Harari
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
250
|
Klapper LN, Glathe S, Vaisman N, Hynes NE, Andrews GC, Sela M, Yarden Y. The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc Natl Acad Sci U S A 1999; 96:4995-5000. [PMID: 10220407 PMCID: PMC21805 DOI: 10.1073/pnas.96.9.4995] [Citation(s) in RCA: 309] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The erbB-2/HER2 oncogene is overexpressed in a significant fraction of human carcinomas of the breast, ovary, and lung in a manner that correlates with poor prognosis. Although the encoded protein resembles several receptors for growth factors, no high affinity ligand of ErbB-2 has so far been fully characterized. However, several lines of evidence have raised the possibility that ErbB-2 can augment signal transduction initiated by binding of certain growth factors to their direct receptors. Here, we contrasted these two models of ErbB-2 function: First, examination of a large series of epidermal growth factor (EGF)-like ligands and neuregulins, including virus-encoded ligands as well as related motifs derived from the precursor of EGF, failed to detect interactions with ErbB-2 when this protein was singly expressed. Second, by using antibodies that block inter-ErbB interactions and cells devoid of surface ErbB-2, we learned that signaling by all ligands examined, except those derived from the precursor of EGF, was enhanced by the oncoprotein. These results imply that ErbB-2 evolved as a shared receptor subunit of all ErbB-specific growth factors. Thus, oncogenicity of ErbB-2 in human epithelia may not rely on the existence of a specific ligand but rather on its ability to act as a coreceptor for multiple stroma-derived growth factors.
Collapse
Affiliation(s)
- L N Klapper
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|