201
|
Grempler R, Günther S, Steffensen KR, Nilsson M, Barthel A, Schmoll D, Walther R. Evidence for an indirect transcriptional regulation of glucose-6-phosphatase gene expression by liver X receptors. Biochem Biophys Res Commun 2005; 338:981-6. [PMID: 16256938 DOI: 10.1016/j.bbrc.2005.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 10/07/2005] [Indexed: 11/29/2022]
Abstract
Liver X receptor (LXR) paralogues alpha and beta (LXRalpha and LXRbeta) are members of the nuclear hormone receptor family and have oxysterols as endogenous ligands. LXR activation reduces hepatic glucose production in vivo through the inhibition of transcription of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase). In the present study, we investigated the molecular mechanisms involved in the regulation of G6Pase gene expression by LXR. Both T0901317, a synthetic LXR agonist, and the adenoviral overexpression of either LXRalpha or LXRbeta suppressed G6Pase gene expression in H4IIE hepatoma cells. However, compared to the suppression of G6Pase expression seen by insulin, the decrease of G6Pase mRNA by LXR activation was delayed and was blocked by cycloheximide, an inhibitor of protein synthesis. These observations, together with the absence of a conserved LXR-binding element within the G6Pase promoter, suggest an indirect inhibition of G6Pase gene expression by liver X receptors.
Collapse
Affiliation(s)
- Rolf Grempler
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17487 Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
202
|
van der Heide L, Jacobs F, Burbach J, Hoekman M, Smidt M. FoxO6 transcriptional activity is regulated by Thr26 and Ser184, independent of nucleo-cytoplasmic shuttling. Biochem J 2005; 391:623-9. [PMID: 15987244 PMCID: PMC1276963 DOI: 10.1042/bj20050525] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/24/2005] [Accepted: 06/29/2005] [Indexed: 11/17/2022]
Abstract
Forkhead members of the 'O' class (FoxO) are transcription factors crucial for the regulation of metabolism, cell cycle, cell death and cell survival. FoxO factors are regulated by insulin-mediated activation of PI3K (phosphoinositide 3-kinase)-PKB (protein kinase B) signalling. Activation of PI3K-PKB signalling results in the phosphorylation of FoxO factors on three conserved phosphorylation motifs, which are essential for the translocation of FoxO factors from the nucleus to the cytosol. FoxO6, however, remains mostly nuclear due to the fact that its shuttling ability is dramatically impaired. FoxO1, FoxO3 and FoxO4 all contain an N- and C-terminal PKB motif and a motif located in the forkhead domain. FoxO6 lacks the conserved C-terminal PKB motif, which is the cause of the shuttling impairment. Since FoxO6 can be considered constitutively nuclear, we investigated whether it is also a constitutively active transcription factor. Our results show that FoxO6 transcriptional activity is inhibited by growth factors, independent of shuttling, indicating that it is not constitutively active. The PKB site in the forkhead domain (Ser184) regulated the DNA binding characteristics and the N-terminal PKB site acted as a growth factor sensor. In summary, FoxO6 is not a constitutively active transcription factor and can be regulated by growth factors in a Thr26- and Ser184-dependent manner, independent of shuttling to the cytosol.
Collapse
Key Words
- cytosol
- foxo6
- growth factor
- nucleo-cytoplasmic shuttling
- transcriptional activity
- translocation
- dbe, daf-16 binding element
- dmem, dulbecco's modified eagle's medium
- fcs, fetal calf serum
- foxo, forkhead members of the ‘o’ class
- g-6-pase, glucose-6-phosphatase
- gfp, green fluorescent protein
- hek-293 cells, human embryonic kidney 293 cells
- hifcs, heat-inactivated fcs
- iru, insulin response unit
- nes, nuclear export sequence
- nls, nuclear localization sequence
- pbs-t, pbs containing 0.05% tween 20
- pi3k, phosphoinositide 3-kinase
- pkb, protein kinase b
Collapse
Affiliation(s)
- Lars P. van der Heide
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Frank M. J. Jacobs
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - J. Peter H. Burbach
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Marco F. M. Hoekman
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Marten P. Smidt
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
203
|
Puig O, Tjian R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev 2005; 19:2435-46. [PMID: 16230533 PMCID: PMC1257398 DOI: 10.1101/gad.1340505] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 08/25/2005] [Indexed: 11/24/2022]
Abstract
The insulin signaling pathway, which is conserved in evolution from flies to humans, evolved to allow a fast response to changes in nutrient availability while keeping glucose concentration constant in serum. Here we show that, both in Drosophila and mammals, insulin receptor (InR) represses its own synthesis by a feedback mechanism directed by the transcription factor dFOXO/FOXO1. In Drosophila, dFOXO is responsible for activating transcription of dInR, and nutritional conditions can modulate this effect. Starvation up-regulates mRNA of dInR in wild-type but not dFOXO-deficient flies. Importantly, FOXO1 acts in mammalian cells like its Drosophila counterpart, up-regulating the InR mRNA level upon fasting. Mammalian cells up-regulate the InR mRNA in the absence of serum, conditions that induce the dephosphorylation and activation of FOXO1. Interestingly, insulin is able to reverse this effect. Therefore, dFOXO/FOXO1 acts as an insulin sensor to activate insulin signaling, allowing a fast response to the hormone after each meal. Our results reveal a key feedback control mechanism for dFOXO/FOXO1 in regulating metabolism and insulin signaling.
Collapse
Affiliation(s)
- Oscar Puig
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
204
|
Abid MR, Yano K, Guo S, Patel VI, Shrikhande G, Spokes KC, Ferran C, Aird WC. Forkhead transcription factors inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia. J Biol Chem 2005; 280:29864-73. [PMID: 15961397 DOI: 10.1074/jbc.m502149200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration contribute significantly to atherosclerosis, postangioplasty restenosis, and transplant vasculopathy. Forkhead transcription factors belonging to the FoxO subfamily have been shown to inhibit growth and cell cycle progression in a variety of cell types. We hypothesized that forkhead proteins may play a role in VSMC biology. Under in vitro conditions, platelet-derived growth factor (PDGF)-BB, tumor necrosis factor-alpha, and insulin-like growth factor 1 stimulated phosphorylation of FoxO in human coronary artery smooth muscle cells via MEK1/2 and/or phosphatidylinositol 3-kinase-dependent signaling pathways. PDGF-BB, tumor necrosis factor-alpha, and insulin-like growth factor 1 treatment resulted in the nuclear exclusion of FoxO, whereas PDGF-BB alone down-regulated the FoxO target gene, p27(kip1), and enhanced cell survival and progression through the cell cycle. These effects were abrogated by overexpression of a constitutively active, phosphorylation-resistant mutant of the FoxO family member, TM-FKHRL1. The anti-proliferative effect of TM-FKHRL1 was partially reversed by small interfering RNA against p27(kip1). In a rat balloon carotid arterial injury model, adenovirus-mediated gene transfer of FKHRL1 caused an increase in the expression of p27(kip1) in the VSMC and inhibition of neointimal hyperplasia. These data suggest that FoxO activity inhibits VSMC proliferation and activation and that this signaling axis may represent a therapeutic target in vasculopathic disease states.
Collapse
Affiliation(s)
- Md Ruhul Abid
- Center for Vascular Biology Research, Department of Medicine, Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Abstract
Currently, we observe an epidemic expansion of diabetes mellitus. In subjects with Type 2 diabetes the resistance of fat, muscle and liver to insulin is the central pathophysiological event in the development of this disease. Genetic and environmental factors play a major role in this process, although the precise pathogenesis of insulin resistance and Type 2 diabetes is still largely unknown. However, recent studies have contributed to a deeper understanding of the molecular mechanisms underlying this process. In this review we therefore summarize the current developments in understanding the pathophysiological process of insulin resistance and Type 2 diabetes. Among the many molecules involved in the intracellular processing of the signal provided by insulin, insulin receptor substrate (IRS)-2, the protein kinase B (PKB)-beta isoform and the forkhead transcription factor Foxo1a (FKHR) are of particular interest in this context as recent data have provided strong evidence that dysfunction of these proteins results in insulin resistance in-vivo. Furthermore, we have now increasing evidence that the adipose tissue not only produces free fatty acids that contribute to insulin resistance, but also acts as a relevant endocrine organ producing mediators (adipokines) that can modulate insulin signalling. The identification of the molecular pathophysiological mechanisms of insulin resistance and Type 2 diabetes is essential for the development of novel and more effective therapies to better treat our patients with insulin resistance and Type 2 diabetes.
Collapse
Affiliation(s)
- S Schinner
- Klinik für Endokrinologie, Diabetologie und Rheumatologie, Universitäts Klinikum Düsseldorf, Düsseldorf, Germany
| | | | | | | |
Collapse
|
206
|
Abstract
There is increasing evidence that Forkhead box 'Other' (FoxO) proteins, a subgroup of the Forkhead transcription factor family, have an important role in mediating the effects of insulin and growth factors on diverse physiological functions, including cell proliferation, apoptosis and metabolism. Genetic studies in Caenorhabditis (Caenorhabditis elegans) and Drosophila demonstrate that FoxO proteins are ancient targets of insulin-like signaling involved in the regulation of metabolism and longevity. Studies in mammalian cells reveal that FoxO proteins regulate cell cycle progression and promote resistance to oxidative stress; both in vivo and cell culture studies support the concept that FoxO proteins have an important role in mediating the effects of insulin on metabolism, including its effects on hepatic glucose production. Phosphorylation and acetylation modulate FoxO function and control nuclear-cytoplasmic shuttling, DNA binding and protein-protein interactions. FoxO transcription factors exert positive and negative effects on gene expression, through direct binding to DNA target sites and protein-protein interactions with other transcription factors and coactivators. This paper provides an overview of studies leading to the identification of FoxO proteins as targets of insulin action and the mechanisms mediating the effects of insulin-like signaling on FoxO function, emphasizing the role of FoxO proteins in mediating the effects of insulin on metabolism.
Collapse
Affiliation(s)
- Andreas Barthel
- Department of Endocrinology, Diabetes and Rheumatology, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
207
|
Russell AP, Hesselink MKC, Lo SK, Schrauwen P. Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. FASEB J 2005; 19:986-8. [PMID: 15814608 DOI: 10.1096/fj.04-3168fje] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endurance exercise improves insulin sensitivity and increases fat oxidation, which are partly facilitated by the induction of metabolic transcription factors. Next to exercise, increased levels of FFA's also increase the gene expression of transcription factors, hence making it difficult to discern the effects from contractile signals produced during exercise, from those produced by increased circulatory FFA's. We aimed to investigate, in human skeletal muscle, whether acute exercise affects gene expression of metabolic transcriptional co-activators and transcription factors, including PGC-1alpha, PRC, PPARalpha, beta/delta, and gamma and RXR, SREBP-1c and FKHR, and to discern the effect of exercise per se from those of elevated levels of FFA. Two hours of endurance exercise was performed either in the fasted state, or following carbohydrate ingestion prior to and during exercise, thereby blunting the fasting-induced increase in FA availability and oxidation. Of the genes measured, PGC-1alpha and PRC mRNA increased immediately after, while PPARbeta/delta and FKHR mRNA increased 1-4 h after exercise, irrespective of the increases in FFA's. Our results suggest that the induction in vivo of metabolic transcription factors implicated in mitochondrial biogenesis are under the control of inherent signals, (PGC-1alpha, PRC), while those implicated in substrate selection are under the control of associated signals (PPARbeta/delta, FKHR) stimulated from the contracting skeletal muscle that are independent of circulating FFA levels.
Collapse
Affiliation(s)
- Aaron P Russell
- Clinique Romande de Réadaptation SUVA Care, Sion, Switzerland.
| | | | | | | |
Collapse
|
208
|
Farese RV, Sajan MP, Standaert ML. Atypical protein kinase C in insulin action and insulin resistance. Biochem Soc Trans 2005; 33:350-3. [PMID: 15787604 DOI: 10.1042/bst0330350] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It now seems clear that aPKC (atypical protein kinase C) isoforms are required for insulin-stimulated glucose transport in muscle and adipocytes. Moreover, there are marked defects in the activation of aPKCs under a variety of insulin-resistant conditions in humans, monkeys and rodents. In humans, defects in aPKC in muscle are seen in Type II diabetes and its precursors, obesity, the obesity-associated polycystic ovary syndrome and impaired glucose tolerance. These defects in muscle aPKC activation are due to both impaired activation of insulin receptor substrate-1-dependent PI3K (phosphoinositide 3-kinase) and the direct activation of aPKCs by the lipid product of PI3K, PI-3,4,5-(PO4)3. Although it is still uncertain which underlying defect comes first, the resultant defect in aPKC activation in muscle most certainly contributes significantly to the development of skeletal muscle insulin resistance. Of further note, unlike the seemingly ubiquitous presence of defective aPKC activation in skeletal muscle in insulin-resistant states, the activation of aPKC is normal or increased in livers of Type II diabetic and obese rodents. The maintenance of aPKC activation in the liver may explain how insulin-dependent lipid synthesis is maintained in these states, as aPKCs function mainly in the activation of enzymes important for lipid synthesis. Thus increased activation of liver aPKC in hyperinsulinaemic states may contribute significantly to the development of hyperlipidaemia in insulin-resistant states.
Collapse
Affiliation(s)
- R V Farese
- Research Service, James A. Haley Veterans Administration Medical Center, and Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
209
|
Orth HM, Krüger KD, Schmoll D, Grempler R, Scherbaum WA, Joost HG, Bornstein SR, Barthel A. Cellular models for the analysis of signaling by protein kinase B and the forkhead transcription factor FKHR (Foxo1a). ACTA ACUST UNITED AC 2005; 121:19-24. [PMID: 15256269 DOI: 10.1016/j.regpep.2004.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 03/12/2004] [Accepted: 03/15/2004] [Indexed: 11/30/2022]
Abstract
The transcription factor FKHR (FOXO1a) is regulated by protein kinase B (PKB) and insulin controls the expression of hepatic genes like glucose-6-phosphatase (G6Pase) at least in part via these proteins. However, insulin is known to activate several pathways and it is therefore difficult to establish which effects of the hormone are attributed to PKB and FKHR signaling. The aim of the present study was the generation of cellular models which allow the specific analysis of molecular events controlled by PKB and FKHR, respectively. We generated two H4IIEC3 rat hepatoma cell lines stably expressing either a hydroxytamoxifen-regulatable form of PKB (myristoylated PKB estrogen receptor chimera; MER-PKB) or FKHR (FKHR estrogen receptor chimera; FKHR-ER) by retroviral infection and determined the regulation of the G6Pase transcript by Northern blotting and enzyme assays. Activation of the regulatable PKB fusion protein almost completely reduced the dexamethasone/cAMP-stimulated G6Pase mRNA levels comparable to the effect of insulin. In contrast, stimulation of FKHR-ER with tamoxifen increased the expression of the dexamethasone/cAMP-induced G6Pase mRNA and the G6Pase enzymatic activity about 2.5- to 3-fold. The present data demonstrate that activation of PKB is sufficient to mimic the effect of insulin on the expression of G6Pase and that FKHR acts as an activator of the G6Pase gene indicating that the established cellular models are suitable for the specific analysis of downstream targets of these signaling molecules. Therefore, these cell systems might serve as useful tools for the development of anti-diabetic drugs.
Collapse
Affiliation(s)
- Hans-Martin Orth
- Institut für Pharmakologie und Toxikologie, RWTH Aachen, D-52057 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Grempler R, Kienitz A, Werner T, Meyer M, Barthel A, Ailett F, Sutherland C, Walther R, Schmoll D. Tumour necrosis factor alpha decreases glucose-6-phosphatase gene expression by activation of nuclear factor kappaB. Biochem J 2005; 382:471-9. [PMID: 15167811 PMCID: PMC1133803 DOI: 10.1042/bj20040160] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 05/06/2004] [Accepted: 05/28/2004] [Indexed: 12/20/2022]
Abstract
The key insulin-regulated gluconeogenic enzyme G6Pase (glucose-6-phosphatase) has an important function in the control of hepatic glucose production. Here we examined the inhibition of G6Pase gene transcription by TNF (tumour necrosis factor) in H4IIE hepatoma cells. TNF decreased dexamethasone/dibtuyryl cAMP-induced G6Pase mRNA levels. TNFalpha, but not insulin, led to rapid activation of NFkappaB (nuclear factor kappaB). The adenoviral overexpression of a dominant negative mutant of IkappaBalpha (inhibitor of NFkappaB alpha) prevented the suppression of G6Pase expression by TNFalpha, but did not affect that by insulin. The regulation of G6Pase by TNF was not mediated by activation of the phosphoinositide 3-kinase/protein kinase B pathway, extracellular-signal-regulated protein kinase or p38 mitogen-activated protein kinase. Reporter gene assays demonstrated a concentration-dependent down-regulation of G6Pase promoter activity by the transient overexpression of NFkappaB. Although two binding sites for NFkappaB were identified within the G6Pase promoter, neither of these sites, nor the insulin response unit or binding sites for Sp proteins, was necessary for the regulation of G6Pase promoter activity by TNFalpha. In conclusion, the data indicate that the activation of NFkappaB is sufficient to suppress G6Pase gene expression, and is required for the regulation by TNFalpha, but not by insulin. We propose that NFkappaB does not act by binding directly to the G6Pase promoter.
Collapse
Affiliation(s)
- Rolf Grempler
- *Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17487 Greifswald, Germany
| | - Anne Kienitz
- *Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17487 Greifswald, Germany
| | - Torsten Werner
- *Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17487 Greifswald, Germany
| | - Marion Meyer
- †Aventis Pharma, DG Metabolic Diseases, Bldg H825, D-65926 Frankfurt/Main, Germany
| | - Andreas Barthel
- ‡Department of Endocrinology, University of Düsseldorf, D-40225 Düsseldorf, Germany
| | - Fabienne Ailett
- §Centre for Biomolecular Sciences, University of St. Andrews, St. Andrews KY16 9TS, Scotland, U.K
| | - Calum Sutherland
- ∥Department of Pharmacology and Neuroscience, University of Dundee, Dundee DD1 9SY, Scotland, U.K
| | - Reinhard Walther
- *Department of Medical Biochemistry and Molecular Biology, University of Greifswald, D-17487 Greifswald, Germany
| | - Dieter Schmoll
- †Aventis Pharma, DG Metabolic Diseases, Bldg H825, D-65926 Frankfurt/Main, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
211
|
Schinner S, Barthel A, Dellas C, Grzeskowiak R, Sharma SK, Oetjen E, Blume R, Knepel W. Protein Kinase B Activity Is Sufficient to Mimic the Effect of Insulin on Glucagon Gene Transcription. J Biol Chem 2005; 280:7369-76. [PMID: 15590659 DOI: 10.1074/jbc.m408560200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin inhibits glucagon gene transcription, and insulin deficiency is associated with hyperglucagonemia that contributes to hyperglycemia in diabetes mellitus. However, the insulin signaling pathway to the glucagon gene is unknown. Protein kinase B (PKB) is a key regulator of insulin signaling and glucose homeostasis. Impaired PKB function leads to insulin resistance and diabetes mellitus. Therefore, the role of PKB in the regulation of glucagon gene transcription was investigated. After transient transfections of glucagon promoter-reporter genes into a glucagon-producing islet cell line, the use of kinase inhibitors indicated that the inhibition of glucagon gene transcription by insulin depends on phosphatidylinositol (PI) 3-kinase. Furthermore, insulin caused a PI 3-kinase-dependent phosphorylation and activation of PKB in this cell line as revealed by phospho-immunoblotting and kinase assays. Overexpression of constitutively active PKB mimicked the effect of insulin on glucagon gene transcription. Both insulin and PKB responsiveness of the glucagon promoter were abolished when the binding sites for the transcription factor Pax6 within the G1 and G3 promoter elements were mutated. Recruitment of Pax6 or its potential coactivator, the CREB-binding protein (CBP), to G1 and G3 by using the GAL4 system restored both insulin and PKB responsiveness. These data suggest that insulin inhibits glucagon gene transcription by signaling via PI 3-kinase and PKB, with the transcription factor Pax6 and its potential coactivator CBP being critical components of the targeted promoter-specific nucleoprotein complex. The present data emphasize the importance of PKB in insulin signaling and glucose homeostasis by defining the glucagon gene as a novel target gene for PKB.
Collapse
Affiliation(s)
- Sven Schinner
- Department of Molecular Pharmacology, University of Göttingen, 37099 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Kino T, De Martino MU, Charmandari E, Ichijo T, Outas T, Chrousos GP. HIV-1 accessory protein Vpr inhibits the effect of insulin on the Foxo subfamily of forkhead transcription factors by interfering with their binding to 14-3-3 proteins: potential clinical implications regarding the insulin resistance of HIV-1-infected patients. Diabetes 2005; 54:23-31. [PMID: 15616007 DOI: 10.2337/diabetes.54.1.23] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
HIV-1 accessory protein Vpr arrests host cells at the G2/M phase of the cell cycle by interacting with members of the protein family 14-3-3, which regulate the activities of "partner" molecules by binding to their phosphorylated serine or threonine residues and changing their intracellular localization and/or stability. Vpr does this by facilitating the association of 14-3-3 to its partner protein Cdc25C, independent of the latter's phosphorylation status. Here we report that the same viral protein interfered with and altered the activity of another 14-3-3 partner molecule, Foxo3a, a subtype of the forkhead transcription factors, by inhibiting its association with 14-3-3. Foxo3a's transcriptional activity is normally suppressed by insulin-induced translocation of this protein from the nucleus into the cytoplasm. Vpr inhibited the ability of insulin or its downstream protein kinase Akt to change the intracellular localization of Foxo3a preferentially to the cytoplasm. This HIV-1 protein also interfered with insulin-induced coprecipitation of 14-3-3 and Foxo3a in vivo and antagonized the negative effect of insulin on Foxo3a-induced transactivation of a FOXO-responsive promoter. Moreover, Vpr antagonized insulin-induced suppression of the mRNA expression of the glucose 6-phosphatase, manganese superoxide dismutase, and sterol carrier protein 2 genes, which are known targets of insulin and FOXO, in HepG2 cells. These findings indicate that Vpr interferes with the suppressive effects of insulin on FOXO-mediated transcription of target genes via 14-3-3. Vpr thus may contribute to the tissue-selective insulin resistance often observed in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Tomoshige Kino
- Pediatric and Reproductive Endocrinology Branch, National Institute of Child Health and Human Development, NIH, 10 Center Dr. MSC 1109, Building 10, Clinical Research Center, Room 1-3140, Bethesda, MD 20892-1109, USA.
| | | | | | | | | | | |
Collapse
|
213
|
Lorenzo M, Valverde ÁM, Benito M. Cellular Models for the Study of Type 2 Diabetes. THE METABOLIC SYNDROME AT THE BEGINNING OF THE XXI CENTURY 2005:43-65. [DOI: 10.1016/b978-84-8174-892-5.50003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
214
|
Altomonte J, Cong L, Harbaran S, Richter A, Xu J, Meseck M, Dong HH. Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J Clin Invest 2004; 114:1493-503. [PMID: 15546000 PMCID: PMC525736 DOI: 10.1172/jci19992] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 09/14/2004] [Indexed: 12/30/2022] Open
Abstract
The apolipoprotein apoC-III plays an important role in plasma triglyceride metabolism. It is predominantly produced in liver, and its hepatic expression is inhibited by insulin. To elucidate the inhibitory mechanism of insulin in apoC-III expression, we delivered forkhead box O1 (Foxo1) cDNA to hepatocytes by adenovirus-mediated gene transfer. Foxo1 stimulated hepatic apoC-III expression and correlated with the ability of Foxo1 to bind to its consensus site in the apoC-III promoter. Deletion or mutation of the Foxo1 binding site abolished insulin response and Foxo1-mediated stimulation. Likewise, Foxo1 also mediated insulin action on intestinal apoC-III expression in enterocytes. Furthermore, elevated Foxo1 production in liver augmented hepatic apoC-III expression, resulting in increased plasma triglyceride levels and impaired fat tolerance in mice. Transgenic mice expressing a constitutively active Foxo1 allele exhibited hypertriglyceridemia. Moreover, we show that hepatic Foxo1 expression becomes deregulated as a result of insulin deficiency or insulin resistance, culminating in significantly elevated Foxo1 production, along with its skewed nuclear distribution, in livers of diabetic NOD or db/db mice. While loss of insulin response is associated with unrestrained apoC-III production and impaired triglyceride metabolism, these data suggest that Foxo1 provides a molecular link between insulin deficiency or resistance and aberrant apoC-III production in the pathogenesis of diabetic hypertriglyceridemia.
Collapse
Affiliation(s)
- Jennifer Altomonte
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
215
|
Altomonte J, Cong L, Harbaran S, Richter A, Xu J, Meseck M, Dong HH. Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J Clin Invest 2004. [DOI: 10.1172/jci200419992] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
216
|
Kodama S, Koike C, Negishi M, Yamamoto Y. Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol Cell Biol 2004; 24:7931-40. [PMID: 15340055 PMCID: PMC515037 DOI: 10.1128/mcb.24.18.7931-7940.2004] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The nuclear receptors CAR and PXR activate hepatic genes in response to therapeutic drugs and xenobiotics, leading to the induction of drug-metabolizing enzymes, such as cytochrome P450. Insulin inhibits the ability of FOXO1 to express genes encoding gluconeogenic enzymes. Induction by drugs is known to be decreased by insulin, whereas gluconeogenic activity is often repressed by treatment with certain drugs, such as phenobarbital (PB). Performing cell-based transfection assays with drug-responsive and insulin-responsive enhancers, glutathione S-transferase pull down, RNA interference (RNAi), and mouse primary hepatocytes, we examined the molecular mechanism by which nuclear receptors and FOXO1 could coordinately regulate both enzyme pathways. FOXO1 was found to be a coactivator to CAR- and PXR-mediated transcription. In contrast, CAR and PXR, acting as corepressors, downregulated FOXO1-mediated transcription in the presence of their activators, such as 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) and pregnenolone 16alpha-carbonitrile, respectively. A constitutively active mutant of the insulin-responsive protein kinase Akt, but not the kinase-negative mutant, effectively blocked FOXO1 activity in cell-based assays. Thus, insulin could repress the receptors by activating the Akt-FOXO1 signal, whereas drugs could interfere with FOXO1-mediated transcription by activating CAR and/or PXR. Treatment with TCPOBOP or PB decreased the levels of phosphoenolpyruvate carboxykinase 1 mRNA in mice but not in Car(-/-) mice. We conclude that FOXO1 and the nuclear receptors reciprocally coregulate their target genes, modulating both drug metabolism and gluconeogenesis.
Collapse
Affiliation(s)
- Susumu Kodama
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
217
|
Kim JY, Kim HJ, Kim KT, Park YY, Seong HA, Park KC, Lee IK, Ha H, Shong M, Park SC, Choi HS. Orphan nuclear receptor small heterodimer partner represses hepatocyte nuclear factor 3/Foxa transactivation via inhibition of its DNA binding. Mol Endocrinol 2004; 18:2880-94. [PMID: 15358835 DOI: 10.1210/me.2004-0211] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Small heterodimer partner (SHP; NR0B2) is an atypical orphan nuclear receptor and acts as a coregulator of various nuclear receptors. Herein, we examined a novel cross talk between SHP and a forkhead transcription factor HNF3 (hepatocyte nuclear factor 3/Foxa. Transient transfection assay demonstrated that SHP inhibited the transcriptional activity of all three isoforms of HNF3, HNF3alpha, beta, and gamma. In vivo and in vitro protein interaction studies showed that SHP physically interacted with HNF3. Adenovirus-mediated overexpression of SHP significantly decreased the mRNA levels of glucose-6-phosphase (G6Pase), cholesterol 7-alpha-hydroxylase (CYP7A1), and phosphoenolpyruvate carboxykinase (PEPCK) in HepG2 cells and rat primary hepatocytes. Moreover, the mRNA level of G6Pase was notably increased by down-regulation of SHP with small interfering RNA. Interestingly, HNF3 transactivity was still repressed by SHPDelta128-139 that fails to repress nuclear receptors. Mapping of interaction domain revealed that SHP interacted with forkhead DNA binding domain of HNF3alpha. Gel mobility shift and chromatin immunoprecipitation assays demonstrated that SHP inhibits DNA binding of HNF3. These results suggest that SHP is involved in the regulation of G6Pase, CYP7A1, and PEPCK gene expression via novel mechanism of inhibition of HNF3 activity and expand the role of SHP as a coregulator of other family of transcription factors in addition to nuclear receptors.
Collapse
Affiliation(s)
- Joon-Young Kim
- Hormone Research Center, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Daitoku H, Hatta M, Matsuzaki H, Aratani S, Ohshima T, Miyagishi M, Nakajima T, Fukamizu A. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A 2004; 101:10042-7. [PMID: 15220471 PMCID: PMC454161 DOI: 10.1073/pnas.0400593101] [Citation(s) in RCA: 461] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Longevity regulatory genes include the Forkhead transcription factor FOXO and the NAD-dependent histone deacetylase silent information regulator 2 (Sir2). Genetic studies demonstrate that Sir2 acts to extend lifespan in Caenorhabditis elegans upstream of DAF-16, a member of the FOXO family, in the insulin-like signaling pathway. However, the molecular mechanisms underlying the requirement of DAF-16 activity in Sir2-mediated longevity remain unknown. Here we show that reversible acetylation of Foxo1 (also known as FKHR), the mouse DAF-16 ortholog, modulates its transactivation function. cAMP-response element-binding protein (CREB)-binding protein binds and acetylates Foxo1 at the K242, K245, and K262 residues, the modification of which is involved in the attenuation of Foxo1 as a transcription factor. Conversely, Sir2 binds and deacetylates Foxo1 at residues acetylated by cAMP-response element-binding protein-binding protein. Sir2 is recruited to insulin response sequence-containing promoter and increases the expression of manganese superoxide dismutase and p27(kip1) in a deacetylase-activity-dependent manner. Our findings establish Foxo1 as a direct and functional target for Sir2 in mammalian systems.
Collapse
Affiliation(s)
- Hiroaki Daitoku
- Center for Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Standaert ML, Sajan MP, Miura A, Kanoh Y, Chen HC, Farese RV, Farese RV. Insulin-induced Activation of Atypical Protein Kinase C, but Not Protein Kinase B, Is Maintained in Diabetic (ob/ob and Goto-Kakazaki) Liver. J Biol Chem 2004; 279:24929-34. [PMID: 15069067 DOI: 10.1074/jbc.m402440200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin resistance in type 2 diabetes is characterized by defects in muscle glucose uptake and hepatic overproduction of both glucose and lipids. These hepatic defects are perplexing because insulin normally suppresses glucose production and increases lipid synthesis in the liver. To understand the mechanisms for these seemingly paradoxical defects, we examined the activation of atypical protein kinase C (aPKC) and protein kinase B (PKB), two key signaling factors that operate downstream of phosphatidylinositol 3-kinase and regulate various insulin-sensitive metabolic processes. Livers and muscles of three insulin-resistant rodent models were studied. In livers of type 2 diabetic non-obese Goto-Kakazaki rats and ob/ob-diabetic mice, the activation of PKB was impaired, whereas activation of aPKC was surprisingly maintained. In livers of non-diabetic high fatfed mice, the activation of both aPKC and PKB was maintained. In contrast to the maintenance of aPKC activation in the liver, insulin activation of aPKC was impaired in muscles of Goto-Kakazaki-diabetic rats and ob/ob-diabetic and non-diabetic high fat-fed mice. These findings suggest that, at least in these rodent models, (a) defects in aPKC activation contribute importantly to skeletal muscle insulin resistance observed in both high fat feeding and type 2 diabetes; (b) insulin signaling defects in muscle are not necessarily accompanied by similar defects in liver; (c) defects in hepatic PKB activation occur in association with, and probably contribute importantly to, the development of overt diabetes; and (d) maintenance of hepatic aPKC activation may explain the continued effectiveness of insulin for stimulating certain metabolic actions in the liver.
Collapse
Affiliation(s)
- Mary L Standaert
- Research Service, James A. Haley Veterans Medical Center and Department of Internal Medicine, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | | | | | | | |
Collapse
|
220
|
Yamashita R, Kikuchi T, Mori Y, Aoki K, Kaburagi Y, Yasuda K, Sekihara H. Aldosterone stimulates gene expression of hepatic gluconeogenic enzymes through the glucocorticoid receptor in a manner independent of the protein kinase B cascade. Endocr J 2004; 51:243-51. [PMID: 15118277 DOI: 10.1507/endocrj.51.243] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Primary aldosteronism is associated with glucose intolerance and diabetes, which is due in part to impaired insulin release caused by reduction of potassium, although other possibilities remain to be elucidated. To evaluate the in vivo effects of aldosterone on glucose metabolism, a single dose of aldosterone was administered to mice, which resulted in elevation of the blood glucose level. In primary cultured mouse hepatocytes, the gene expression of gluconeogenic enzymes such as glucose-6-phosphatase (G6Pase), fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase increased in response to aldosterone in a dose-dependent manner even at a concentration similar to a physiological condition (10(-9) M). The inhibitory effect of insulin on G6Pase gene expression was partially suppressed by aldosterone. Furthermore, aldosterone enhanced G6Pase promoter activity in human hepatoma cell line HepG2, which was prevented by co-treatment with a glucocorticoid antagonist RU-486, but not a mineralocorticoid antagonist spironolactone. In contrast, aldosterone had no effects on major insulin signaling pathways including insulin receptor substrate-1, protein kinase B, and forkhead transcription factor. These results suggest that aldosterone may affect the inhibitory effect of insulin on hepatic gluconeogenesis through the glucocorticoid receptor, which may be one of the causes of impaired glucose metabolism in primary aldosteronism.
Collapse
Affiliation(s)
- Ryo Yamashita
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
221
|
Kwon HS, Huang B, Unterman TG, Harris RA. Protein kinase B-alpha inhibits human pyruvate dehydrogenase kinase-4 gene induction by dexamethasone through inactivation of FOXO transcription factors. Diabetes 2004; 53:899-910. [PMID: 15047604 DOI: 10.2337/diabetes.53.4.899] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Starvation and diabetes increase pyruvate dehydrogenase kinase-4 (PDK4) expression, which conserves gluconeogenic substrates by inactivating the pyruvate dehydrogenase complex. Mechanisms that regulate PDK4 gene expression, previously established to be increased by glucocorticoids and decreased by insulin, were studied. Treatment of HepG2 cells with dexamethasone increases the relative abundance of PDK4 mRNA, and insulin blocks this effect. Dexamethasone also increases human PDK4 (hPDK4) promoter activity in HepG2 cells, and insulin partially inhibits this effect. Expression of constitutively active PKB alpha abrogates dexamethasone stimulation of hPDK4 promoter activity, while coexpression of constitutively active FOXO1a or FOXO3a, which are mutated to alanine at the three phosphorylation sites for protein kinase B (PKB), disrupts the ability of PKB alpha to inhibit promoter activity. A glucocorticoid response element for glucocorticoid receptor (GR) binding and three insulin response sequences (IRSs) that bind FOXO1a and FOXO3a are identified in the hPDK4 promoter. Mutation of the IRSs reduces the ability of glucocorticoids to stimulate PDK4 transcription. Transfection studies with E1A, which binds to and inactivates p300/CBP, suggest that interactions between p300/CBP and GR as well as FOXO factors are important for glucocorticoid-stimulated hPDK4 expression. Insulin suppresses the hPDK4 induction by glucocorticoids through inactivation of the FOXO factors.
Collapse
Affiliation(s)
- Hye-Sook Kwon
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
222
|
Yamagata K, Daitoku H, Shimamoto Y, Matsuzaki H, Hirota K, Ishida J, Fukamizu A. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem 2004; 279:23158-65. [PMID: 15047713 DOI: 10.1074/jbc.m314322200] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bile acid homeostasis is tightly controlled by the feedback mechanism in which an atypical orphan nuclear receptor (NR) small heterodimer partner (SHP) inactivates several NRs such as liver receptor homologue-1 and hepatocyte nuclear factor 4. Although NRs have been implicated in the transcriptional regulation of gluconeogenic genes, the effect of bile acids on gluconeogenic gene expression remained unknown. Here, we report that bile acids inhibit the expression of gluconeogenic genes, including glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase, and fructose 1,6-bis phosphatase in an SHP-dependent fashion. Cholic acid diet decreased the mRNA levels of these gluconeogenic enzymes, whereas those of SHP were increased. Reporter assays demonstrated that the promoter activity of phosphoenolpyruvate carboxykinase and fructose 1,6-bis phosphatase via hepatocyte nuclear factor 4, or that of G6Pase via the forkhead transcription factor Foxo1, was down-regulated by treatment with chenodeoxicholic acid and with transfected SHP. Remarkably, Foxo1 interacted with SHP in vivo and in vitro, which led to the repression of Foxo1-mediated G6Pase transcription by competition with a coactivator cAMP response element-binding protein-binding protein. These findings reveal a novel mechanism by which bile acids regulate gluconeogenic gene expression via an SHP-dependent regulatory pathway.
Collapse
Affiliation(s)
- Kazuyuki Yamagata
- Center for Tsukuba Advanced Research Alliance, Aspect of Functional Genomic Biology, Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
223
|
Kallwellis-Opara A, Zaho X, Zimmermann U, Unterman TG, Walther R, Schmoll D. Characterization of cis-elements mediating the stimulation of glucose-6-phosphate transporter promoter activity by glucocorticoids. Gene 2004; 320:59-66. [PMID: 14597389 DOI: 10.1016/s0378-1119(03)00810-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The endoplasmatic glucose-6-phosphate transporter is involved in the control of hepatic glucose production and blood glucose homeostasis. In this study, the expression of a luciferase reporter gene under the control of the glucose-6-phosphate transporter gene promoter was examined in transiently transfected hepatoma cells. The promoter activity was stimulated approximately 2.5-fold by dexamethasone. Mutational analyses demonstrated that the regions nucleotide (nt) -215/-209 and nt -197/-183 relative to the translation start site were critical for this regulation. In gel electrophoretic mobility shift assays the transcription factor Fox O1, also called forkhead in rhabdomyosarcoma (FKHR), overexpressed in 293 cells, bound to a probe with the sequence nt -215/-209. The overexpression of Fox O1 stimulated the induction of glucose-6-phosphate transporter promoter activity by dexamethasone via nt -215/-209 in hepatoma cells. Recombinant glucocorticoid receptor DNA binding domain protein bound to a probe with the sequence of nt -197/-183 in gel electrophoretic mobility shift assays and an oligonucleotide with this sequence transferred glucocorticoid responsiveness to a heterologous promoter. The data indicate that the glucose-6-phosphate transporter promoter contains a glucocorticoid response unit consisting of binding sites for Fox O1 and the glucocorticoid receptor.
Collapse
Affiliation(s)
- Angela Kallwellis-Opara
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Sauerbruchstr, D-17487 Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
224
|
Roth U, Curth K, Unterman TG, Kietzmann T. The Transcription Factors HIF-1 and HNF-4 and the Coactivator p300 Are Involved in Insulin-regulated Glucokinase Gene Expression via the Phosphatidylinositol 3-Kinase/Protein Kinase B Pathway. J Biol Chem 2004; 279:2623-31. [PMID: 14612449 DOI: 10.1074/jbc.m308391200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucokinase plays a key role in the regulation of glucose utilization in liver and its expression is strongly enhanced by insulin and modulated by venous pO(2). In primary rat hepatocytes, pO(2) modulated insulin-dependent glucokinase (GK) gene expression was abolished by wortmannin an inhibitor of phosphatidylinositol 3-kinase (PI3K). Transfection of vectors encoding the p110 catalytic subunit of PI3K or constitutively active protein kinase B (PKB) stimulated GK mRNA and protein expression. The transfection of GK promoter constructs together with expression vectors for p110 or constitutively active PKB revealed that the GK promoter region -87/-80 mediates the response to PI3K/PKB. Transfection experiments and gel shift assays show that this element is able to bind hypoxia-inducible factor-1 (HIF-1) in a hypoxia- and PKB-dependent manner. The ability of HIF-1alpha to activate the GK promoter was enhanced by hepatocyte nuclear factor-4alpha (HNF-4alpha), acting via the sequence -52/-39, and by the coactivator p300. Stimulation of the GK promoter by insulin was dependent on the intact -87/-80 region and maximal stimulation was achieved when HIF-1alpha, HNF-4, and p300 were cotransfected with the -1430 GK promoter Luc construct in primary hepatocytes. Maximal stimulation of GK promoter activity by insulin was inhibited when a p300 vector was used containing a mutation within a PKB phosphorylation site. Thus, a regulatory transcriptional complex consisting of HIF-1, HNF-4, and p300 appears to be involved in insulin-dependent GK gene activation.
Collapse
Affiliation(s)
- Ulrike Roth
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | | | |
Collapse
|
225
|
Kwon HS, Harris RA. Mechanisms responsible for regulation of pyruvate dehydrogenase kinase 4 gene expression. ACTA ACUST UNITED AC 2004; 44:109-21. [PMID: 15581486 DOI: 10.1016/j.advenzreg.2003.11.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hye-Sook Kwon
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5122, USA
| | | |
Collapse
|
226
|
Abid MR, Guo S, Minami T, Spokes KC, Ueki K, Skurk C, Walsh K, Aird WC. Vascular endothelial growth factor activates PI3K/Akt/forkhead signaling in endothelial cells. Arterioscler Thromb Vasc Biol 2003; 24:294-300. [PMID: 14656735 DOI: 10.1161/01.atv.0000110502.10593.06] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular endothelial growth factor (VEGF) is a potent angiogenic growth factor that promotes endothelial cell (EC) survival, migration, and permeability. The forkhead transcription factors FKHR, FKHRL1, and AFX are mammalian orthologues of DAF-16, a forkhead protein that controls longevity in Caenorhabditis elegans. In this study, we examined whether VEGF is coupled to phosphatidyl inositol 3-kinase (PI3K)/Akt/forkhead in ECs. METHODS AND RESULTS We demonstrate that human ECs express members of the forkhead family (FKHR, FKHRL1, and AFX) and that VEGF modulates the phosphorylation, subcellular localization, and transcriptional activity of one or more of these isoforms by a PI3K/Akt signaling pathway. VEGF inhibited EC apoptosis, promoted DNA synthesis and the G(1)-to-S transition, and reduced expression of the cyclin-dependent kinase inhibitor p27(kip1). Each of these effects was blocked by the PI3K inhibitor LY294002 or by a phosphorylation-resistant mutant of FKHRL1, but not by wild-type FKHRL1. CONCLUSIONS These results suggest that VEGF signaling in ECs is coupled to forkhead transcription factors through a PI3K/Akt-dependent pathway.
Collapse
Affiliation(s)
- Md Ruhul Abid
- Department of Medicine, Beth Israel Deaconess Medical Center, RW-663, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Ono H, Shimano H, Katagiri H, Yahagi N, Sakoda H, Onishi Y, Anai M, Ogihara T, Fujishiro M, Viana AYI, Fukushima Y, Abe M, Shojima N, Kikuchi M, Yamada N, Oka Y, Asano T. Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement. Diabetes 2003; 52:2905-13. [PMID: 14633850 DOI: 10.2337/diabetes.52.12.2905] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Akt is critical in insulin-induced metabolism of glucose and lipids. To investigate functions induced by hepatic Akt activation, a constitutively active Akt, NH(2)-terminally myristoylation signal-attached Akt (myr-Akt), was overexpressed in the liver by injecting its adenovirus into mice. Hepatic myr-Akt overexpression resulted in a markedly hypoglycemic, hypoinsulinemic, and hypertriglyceridemic phenotype with fatty liver and hepatomegaly. To elucidate the sterol regulatory element binding protein (SREBP)-1c contribution to these phenotypic features, myr-Akt adenovirus was injected into SREBP-1 knockout mice. myr-Akt overexpression induced hypoglycemia and hepatomegaly with triglyceride accumulation in SREBP-1 knockout mice to a degree similar to that in normal mice, whereas myr-Akt-induced hypertriglyceridemia in knockout mice was milder than that in normal mice. The myr-Akt-induced changes in glucokinase, phosphofructokinase, glucose-6-phosphatase, and PEPCK expressions were not affected by knocking out SREBP-1, whereas stearoyl-CoA desaturase 1 induction was completely inhibited in knockout mice. Constitutively active SREBP-1-overexpressing mice had fatty livers without hepatomegaly, hypoglycemia, or hypertriglyceridemia. Hepatic acetyl-CoA carboxylase, fatty acid synthase, stearoyl-CoA desaturase 1, and glucose-6-phosphate dehydrogenase expressions were significantly increased by overexpressing SREBP-1, whereas glucokinase, phospho-fructokinase, glucose-6-phosphatase, and PEPCK expressions were not or only slightly affected. Thus, SREBP-1 is not absolutely necessary for the hepatic Akt-mediated hypoglycemic effect. In contrast, myr-Akt-induced hypertriglyceridemia and hepatic triglyceride accumulation are mediated by both Akt-induced SREBP-1 expression and a mechanism involving fatty acid synthesis independent of SREBP-1.
Collapse
Affiliation(s)
- Hiraku Ono
- Institute for Adult Diseases, Asahi Life Foundation, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Dowell P, Otto TC, Adi S, Lane MD. Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J Biol Chem 2003; 278:45485-91. [PMID: 12966085 DOI: 10.1074/jbc.m309069200] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The forkhead factor Foxo1 (or FKHR) was identified in a yeast two-hybrid screen as a peroxisome proliferator-activated receptor (PPAR) gamma-interacting protein. Foxo1 antagonized PPARgamma activity and vice versa indicating that these transcription factors functionally interact in a reciprocal antagonistic manner. One mechanism by which Foxo1 antagonizes PPARgamma activity is through disruption of DNA binding as Foxo1 inhibited the DNA binding activity of a PPARgamma/retinoid X receptor alpha heterodimeric complex. The Caenorhabditis elegans nuclear hormone receptor, DAF-12, interacted with the C. elegans forkhead factor, DAF-16, paralleling the interaction between PPARgamma and Foxo1. daf-12 and daf-16 have been implicated in C. elegans insulin-like signaling pathways, and PPARgamma and Foxo1 likewise have been linked to mammalian insulin signaling pathways. These results suggest a convergence of PPARgamma and Foxo1 signaling that may play a role in insulin action and the insulinomimetic properties of PPARgamma ligands. A more general convergence of nuclear hormone receptor and forkhead factor pathways may be important for multiple biological processes and this convergence may be evolutionarily conserved.
Collapse
Affiliation(s)
- Paul Dowell
- Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
229
|
Furuyama T, Kitayama K, Yamashita H, Mori N. Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochem J 2003; 375:365-71. [PMID: 12820900 PMCID: PMC1223677 DOI: 10.1042/bj20030022] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2003] [Revised: 06/23/2003] [Accepted: 06/23/2003] [Indexed: 01/25/2023]
Abstract
A forkhead-type transcription factor, DAF-16, is located in the most downstream part of the insulin signalling pathway via PI3K (phosphoinositide 3-kinase). It is essential for the extension of life-span and is also involved in dauer formation induced by food deprivation in Caenorhabditis elegans. In the present study, we addressed whether or not FOXO members AFX, FKHR (forkhead homologue in rhabdomyosarcoma) and FKHRL1 (FKHR-like protein 1), mammalian counterparts of DAF-16, are involved in starvation stress. We found a remarkable selective induction of FKHR and FKHRL1 transcripts in skeletal muscle of mice during starvation. The induction of FKHR gene expression was observed at 6 h after food deprivation, peaked at 12 h, and returned to the basal level by 24 h of refeeding. The induction was also found in skeletal muscle of mice with glucocorticoid treatment. Moreover, we found that the levels of PDK4 (pyruvate dehydrogenase kinase 4) gene expression were up-regulated through the direct binding of FKHR to the promoter region of the gene in C2C12 cells. These results suggest that FKHR has an important role in the regulation of energy metabolism, at least in part, through the up-regulation of PDK4 gene expression in skeletal muscle during starvation.
Collapse
Affiliation(s)
- Tatsuo Furuyama
- Department of Molecular Genetics, National Institute for Longevity Sciences, 36-3 Gengo, Morioka, Obu, Aichi, 474-8522, Japan.
| | | | | | | |
Collapse
|
230
|
Abstract
The regulation of hepatic gluconeogenesis is an important process in the adjustment of the blood glucose level, and pathological changes in the glucose production of the liver are a central characteristic in type 2 diabetes. The pharmacological intervention in signaling events that regulate the expression of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK) and the catalytic subunit glucose-6-phosphatase (G-6-Pase) is regarded as a potential strategy for the treatment of metabolic aberrations associated with this disease. However, such intervention requires a detailed understanding of the molecular mechanisms involved in the regulation of this process. Glucagon and glucocorticoids are known to increase hepatic gluconeogenesis by inducing the expression of PEPCK and G-6-Pase. The coactivator protein PGC-1 has been identified as an important mediator of this regulation. In contrast, insulin is known to suppress both PEPCK and G-6-Pase gene expression by the activation of PI 3-kinase. However, PI 3-kinase-independent pathways can also lead to the inhibition of gluconeogenic enzymes. This review focuses on signaling mechanisms and nuclear events that transduce the regulation of gluconeogenic enzymes.
Collapse
Affiliation(s)
- Andreas Barthel
- Department of Endocrinology, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany.
| | | |
Collapse
|
231
|
Altomonte J, Richter A, Harbaran S, Suriawinata J, Nakae J, Thung SN, Meseck M, Accili D, Dong H. Inhibition of Foxo1 function is associated with improved fasting glycemia in diabetic mice. Am J Physiol Endocrinol Metab 2003; 285:E718-28. [PMID: 12783775 DOI: 10.1152/ajpendo.00156.2003] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive hepatic glucose production is a contributing factor to fasting hyperglycemia in diabetes. Insulin suppresses hepatic glucose production by inhibiting the expression of two gluconeogenic enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase). The forkhead transcription factor Foxo1 has been implicated as a mediator of insulin action in regulating hepatic gluconeogenesis, and a Foxo1 mutant (Foxo1-Delta256), devoid of its carboxyl domain, has been shown to interfere with Foxo1 function and inhibit gluconeogenic gene expression in cultured cells. To study the effect of Foxo1-Delta256 on glucose metabolism in animals, the Foxo1-Delta256 cDNA was delivered to the livers of mice by adenovirus-mediated gene transfer. Hepatic Foxo1-Delta256 production resulted in inhibition of gluconeogenic activity, as evidenced by reduced PEPCK and G-6-Pase expression in the liver. Mice treated with the Foxo1-Delta256 vector exhibited significantly reduced blood glucose levels. In contrast, blood glucose levels in control vector-treated animals remained unchanged, which coincided with the lack of alterations in the expression levels of PEPCK and G-6-Pase. When tested in diabetic db/db mice, hepatic production of Foxo1-Delta256 was shown to reduce fasting hyperglycemia. Furthermore, we showed that hepatic Foxo1 expression was deregulated as a result of insulin resistance in diabetic mice and that Foxo1-Delta256 interfered with Foxo1 function via competitive binding to target promoters. These results demonstrated that functional inhibition of Foxo1, caused by hepatic expression of its mutant, is associated with reduced hepatic gluconeogenic activity and improved fasting glycemia in diabetic mice.
Collapse
Affiliation(s)
- Jennifer Altomonte
- Carl C. Icahn Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci U S A 2003; 100:11285-90. [PMID: 13679577 PMCID: PMC208749 DOI: 10.1073/pnas.1934283100] [Citation(s) in RCA: 418] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2003] [Indexed: 12/15/2022] Open
Abstract
Forkhead transcription factor FKHR (Foxo1) is a key regulator of glucose homeostasis, cell-cycle progression, and apoptosis. It has been shown that FKHR is phosphorylated via insulin or growth factor signaling cascades, resulting in its cytoplasmic retention and the repression of target gene expression. Here, we investigate the fate of FKHR after cells are stimulated by insulin. We show that insulin treatment decreases endogenous FKHR proteins in HepG2 cells, which is inhibited by proteasome inhibitors. FKHR is ubiquitinated in vivo and in vitro, and insulin enhances the ubiquitination in the cells. In addition, the signal to FKHR degradation from insulin is mediated by the phosphatidylinositol 3-kinase pathway, and the mutation of FKHR at the serine or threonine residues phosphorylated by protein kinase B, a downstream target of phosphatidylinositol 3-kinase, inhibits the ubiquitination in vivo and in vitro. Finally, efficient ubiquitination of FKHR requires both phosphorylation and cytoplasmic retention in the cells. These results demonstrate that the insulin-induced phosphorylation of FKHR leads to the multistep negative regulation, not only by the nuclear exclusion but also the ubiquitination-mediated degradation.
Collapse
Affiliation(s)
- Hitomi Matsuzaki
- Center for Tsukuba Advanced Research Alliance, Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | |
Collapse
|
233
|
Valverde AM, Burks DJ, Fabregat I, Fisher TL, Carretero J, White MF, Benito M. Molecular mechanisms of insulin resistance in IRS-2-deficient hepatocytes. Diabetes 2003; 52:2239-48. [PMID: 12941762 DOI: 10.2337/diabetes.52.9.2239] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To assess the role of insulin receptor (IR) substrate (IRS)-2 in insulin action and resistance in the liver, immortalized neonatal hepatocyte cell lines have been generated from IRS-2(-/-), IRS-2(+/-), and wild-type mice. These cells maintained the expression of the differentiated liver markers albumin and carbamoyl phosphate synthetase, as well as bear a high number of IRs. The lack of IRS-2 did not result in enhanced IRS-1 tyrosine phosphorylation or IRS-1-associated phosphatidylinositol (PI) 3-kinase activity on insulin stimulation. Total insulin-induced PI 3-kinase activity was decreased by 50% in IRS-2(-/-) hepatocytes, but the translocation of PI-3,4,5-trisphosphate to the plasma membrane in these cells was almost completely abolished. Downstream PI 3-kinase, activation of Akt, glycogen synthase kinase (GSK)-3 (alpha and beta isoforms), Foxo1, and atypical protein kinase C were blunted in insulin-stimulated IRS-2(-/-) cells. Reconstitution of IRS-2(-/-) hepatocytes with adenoviral IRS-2 restored activation of these pathways, demonstrating that IRS-2 is essential for functional insulin signaling in hepatocytes. Insulin induced a marked glycogen synthase activity in wild-type and heterozygous primary hepatocytes; interestingly, this response was absent in IRS-2(-/-) cells but was rescued by infection with adenoviral IRS-2. Regarding gluconeogenesis, the induction of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase by dibutyryl cAMP and dexamethasone was observed in primary hepatocytes of all genotypes. However, insulin was not able to suppress gluconeogenic gene expression in primary hepatocytes lacking IRS-2, but when IRS-2 signaling was reconstituted, these cells recovered this response to insulin. Suppression of gluconeogenic gene expression in IRS-2-deficient primary hepatocytes was also restored by infection with dominant negative Delta 256Foxo1.
Collapse
Affiliation(s)
- Angela M Valverde
- Instituto de Bioquímica/Departamento de Bioquímica y Biología Molecular II, Centro Mixto CSIC/UCM, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
234
|
Puig O, Marr MT, Ruhf ML, Tjian R. Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev 2003; 17:2006-20. [PMID: 12893776 PMCID: PMC196255 DOI: 10.1101/gad.1098703] [Citation(s) in RCA: 496] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Accepted: 06/19/2003] [Indexed: 11/24/2022]
Abstract
The Drosophila insulin receptor (dInR) regulates cell growth and proliferation through the dPI3K/dAkt pathway, which is conserved in metazoan organisms. Here we report the identification and functional characterization of the Drosophila forkhead-related transcription factor dFOXO, a key component of the insulin signaling cascade. dFOXO is phosphorylated by dAkt upon insulin treatment, leading to cytoplasmic retention and inhibition of its transcriptional activity. Mutant dFOXO lacking dAkt phosphorylation sites no longer responds to insulin inhibition, remains in the nucleus, and is constitutively active. dFOXO activation in S2 cells induces growth arrest and activates two key players of the dInR/dPI3K/dAkt pathway: the translational regulator d4EBP and the dInR itself. Induction of d4EBP likely leads to growth inhibition by dFOXO, whereas activation of dInR provides a novel transcriptionally induced feedback control mechanism. Targeted expression of dFOXO in fly tissues regulates organ size by specifying cell number with no effect on cell size. Our results establish dFOXO as a key transcriptional regulator of the insulin pathway that modulates growth and proliferation.
Collapse
Affiliation(s)
- Oscar Puig
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
235
|
Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003; 423:550-5. [PMID: 12754525 DOI: 10.1038/nature01667] [Citation(s) in RCA: 1163] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Accepted: 04/24/2003] [Indexed: 12/15/2022]
Abstract
Hepatic gluconeogenesis is absolutely required for survival during prolonged fasting or starvation, but is inappropriately activated in diabetes mellitus. Glucocorticoids and glucagon have strong gluconeogenic actions on the liver. In contrast, insulin suppresses hepatic gluconeogenesis. Two components known to have important physiological roles in this process are the forkhead transcription factor FOXO1 (also known as FKHR) and peroxisome proliferative activated receptor-gamma co-activator 1 (PGC-1alpha; also known as PPARGC1), a transcriptional co-activator; whether and how these factors collaborate has not been clear. Using wild-type and mutant alleles of FOXO1, here we show that PGC-1alpha binds and co-activates FOXO1 in a manner inhibited by Akt-mediated phosphorylation. Furthermore, FOXO1 function is required for the robust activation of gluconeogenic gene expression in hepatic cells and in mouse liver by PGC-1alpha. Insulin suppresses gluconeogenesis stimulated by PGC-1alpha but co-expression of a mutant allele of FOXO1 insensitive to insulin completely reverses this suppression in hepatocytes or transgenic mice. We conclude that FOXO1 and PGC-1alpha interact in the execution of a programme of powerful, insulin-regulated gluconeogenesis.
Collapse
Affiliation(s)
- Pere Puigserver
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Hirota K, Daitoku H, Matsuzaki H, Araya N, Yamagata K, Asada S, Sugaya T, Fukamizu A. Hepatocyte nuclear factor-4 is a novel downstream target of insulin via FKHR as a signal-regulated transcriptional inhibitor. J Biol Chem 2003; 278:13056-60. [PMID: 12519792 DOI: 10.1074/jbc.c200553200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that FKHR, a member of the forkhead family of transcription factors, acts as a DNA binding-independent cofactor of nuclear receptors, including estrogen, retinoid, and thyroid hormone receptors, in addition to the original function as a DNA binding transcription factor that redistributes from the nucleus to the cytoplasm by insulin-induced phosphorylation. Here, we demonstrated the physical interaction of FKHR with hepatocyte nuclear factor (HNF)-4, a member of steroid/thyroid nuclear receptor superfamily, and the repression of HNF-4 transactivation by FKHR. FKHR interacted with the DNA binding domain of HNF-4 and inhibited HNF-4 binding to the cognate DNA. Furthermore, the binding affinity of HNF-4 with phosphorylated FKHR significantly decreased in comparison to that with unphosphorylated FKHR. Therefore, a phosphorylation of FKHR by insulin followed by its dissociation from HNF-4 and the redistribution of FKHR from the nucleus to the cytoplasm would expect to induce the transcriptional activation of HNF-4 by facilitating to the access of HNF-4 to its DNA element. Indeed, most intriguingly, insulin stimulation reversed the repression of HNF-4 transcriptional activity by phosphorylation-sensitive (wild-type) FKHR, but not by phosphorylation-deficient FKHR. These results suggest that insulin regulates the transcriptional activity of HNF-4 via FKHR as a signal-regulated transcriptional inhibitor.
Collapse
Affiliation(s)
- Keiko Hirota
- Center of Tsukuba Advanced Research Alliance, Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Vander Kooi BT, Streeper RS, Svitek CA, Oeser JK, Powell DR, O'Brien RM. The three insulin response sequences in the glucose-6-phosphatase catalytic subunit gene promoter are functionally distinct. J Biol Chem 2003; 278:11782-93. [PMID: 12556524 DOI: 10.1074/jbc.m212570200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glucose-6-phosphatase catalyzes the terminal step in the gluconeogenic and glycogenolytic pathways. In HepG2 cells, the maximum repression of basal glucose-6-phosphatase catalytic subunit (G6Pase) gene transcription by insulin requires two distinct promoter regions, designated A (located between -231 and -199) and B (located between -198 and -159), that together form an insulin response unit. Region A binds hepatocyte nuclear factor-1, which acts as an accessory factor to enhance the effect of insulin, mediated through region B, on G6Pase gene transcription. We have previously shown that region B binds the transcriptional activator FKHR (FOXO1a) in vitro. Chromatin immunoprecipitation assays demonstrate that FKHR also binds the G6Pase promoter in situ and that insulin inhibits this binding. Region B contains three insulin response sequences (IRSs), designated IRS 1, 2, and 3, that share the core sequence T(G/A)TTTT. However, detailed analyses reveal that these three G6Pase IRSs are functionally distinct. Thus, FKHR binds IRS 1 with high affinity and IRS 2 with low affinity but it does not bind IRS 3. Moreover, in the context of the G6Pase promoter, IRS 1 and 2, but not IRS 3, are required for the insulin response. Surprisingly, IRS 3, as well as IRS 1 and IRS 2, can each confer an inhibitory effect of insulin on the expression of a heterologous fusion gene, indicating that, in this context, a transcription factor other than FKHR, or its orthologs, can also mediate an insulin response through the T(G/A)TTTT motif.
Collapse
Affiliation(s)
- Beth T Vander Kooi
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
238
|
Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, Spiegelman BM. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci U S A 2003; 100:4012-7. [PMID: 12651943 PMCID: PMC153039 DOI: 10.1073/pnas.0730870100] [Citation(s) in RCA: 465] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The liver plays several critical roles in the metabolic adaptation to fasting. We have shown previously that the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) is induced in fasted or diabetic liver and activates the entire program of gluconeogenesis. PGC-1alpha interacts with several nuclear receptors known to bind gluconeogenic promoters including the glucocorticoid receptor, hepatocyte nuclear factor 4alpha (HNF4alpha), and the peroxisome proliferator-activated receptors. However, the genetic requirement for any of these interactions has not been determined. Using hepatocytes from mice lacking HNF4alpha in the liver, we show here that PGC-1alpha completely loses its ability to activate key genes of gluconeogenesis such as phosphoenolpyruvate carboxykinase and glucose-6-phosphatase when HNF4alpha is absent. It is also shown that PGC-1alpha can induce genes of beta-oxidation and ketogenesis in hepatocytes, but these effects do not require HNF4alpha. Analysis of the glucose-6-phosphatase promoter indicates a key role for HNF4alpha-binding sites that function robustly only when HNF4alpha is coactivated by PGC-1alpha. These data illustrate the involvement of PGC-1alpha in several aspects of the hepatic fasting response and show that HNF4alpha is a critical component of PGC-1alpha-mediated gluconeogenesis.
Collapse
Affiliation(s)
- James Rhee
- Dana Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
239
|
Tran H, Brunet A, Griffith EC, Greenberg ME. The many forks in FOXO's road. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:RE5. [PMID: 12621150 DOI: 10.1126/stke.2003.172.re5] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The FOXO family of transcription factors constitute an evolutionarily conserved subgroup within the larger family known as winged helix or Forkhead transcriptional regulators. Building upon work in the nematode, researchers have uncovered a role for these proteins in a diverse set of cellular responses that include glucose metabolism, stress response, cell cycle regulation, and apoptosis. At the organismal level, FOXO transcription factors are believed to function in various pathological processes ranging from cancer and diabetes to organismal aging. A number of studies have also shed light on the signaling pathways that regulate FOXO activity in response to external stimuli and have identified multiple FOXO target genes that mediate this varied set of biological responses.
Collapse
Affiliation(s)
- Hien Tran
- Department of Neurobiology, Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
240
|
|
241
|
Daitoku H, Yamagata K, Matsuzaki H, Hatta M, Fukamizu A. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 2003; 52:642-9. [PMID: 12606503 DOI: 10.2337/diabetes.52.3.642] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) plays a major role in mediating hepatic gluconeogenesis in response to starvation, during which PGC-1 is induced by the cyclic AMP response element binding protein. Although it is observed that insulin counteracts PGC-1 transcription, the mechanism by which insulin suppresses the transcription of PGC-1 is still unclear. Here, we show that forkhead transcription factor FKHR contributes to mediating the effects of insulin on PGC-1 promoter activity. Reporter assays demonstrate that insulin suppresses the basal PGC-1 promoter activity and that coexpression of protein kinase (PK)-B mimics the effect of insulin in HepG2 cells. Insulin response sequences (IRSs) are addressed in the PGC-1 promoter as the direct target for FKHR in vivo. Coexpression of FKHR stimulates the PGC-1 promoter activity via interaction with the IRSs, while coexpression of FKHR (3A), in which the three putative PKB sites in FKHR are mutated, mainly abolishes the suppressive effect of PKB. Whereas deletion of the IRSs prevents the promoter stimulation by FKHR, that activity is still partially inhibited by insulin. These results indicate that signaling via PKB to FKHR can partly account for the effect of insulin to regulate the PGC-1 promoter activity via the IRSs.
Collapse
Affiliation(s)
- Hiroaki Daitoku
- Center for Tsukuba Advanced Research Alliance, Institute of Applied Biochemistry, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | |
Collapse
|
242
|
von Groote-Bidlingmaier F, Schmoll D, Orth HM, Joost HG, Becker W, Barthel A. DYRK1 is a co-activator of FKHR (FOXO1a)-dependent glucose-6-phosphatase gene expression. Biochem Biophys Res Commun 2003; 300:764-9. [PMID: 12507516 DOI: 10.1016/s0006-291x(02)02914-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Expression of glucose-6-phosphatase (G6Pase), one of the rate-limiting enzymes of hepatic gluconeogenesis, has recently been shown to be transactivated by the transcription factor FKHR. One of the proteins known to directly interact with FKHR is the nuclear protein kinase DYRK1A. In order to study the effects of DYRK1A on G6Pase gene expression, we generated a H4IIEC3 rat hepatoma cell line stably expressing DYRK1A by retroviral infection. Overexpression of DYRK1A increased the expression of G6Pase about threefold, as determined by Northern blotting. In transiently transfected HepG2 cells, co-expression of DYRK1A and a G6Pase promoter construct increased G6Pase promoter activity about twofold. This effect of DYRK1A was independent of its kinase activity, since a kinase-dead DYRK1A mutant as well as a point mutant of the phosphorylation site of DYRK1A in FKHR (Ser329Ala) failed to affect the effect of DYRK1A on the G6Pase expression. The effect of DYRK on the G6Pase promoter activity was produced by the isoforms DYRK1A and DYRK1B, which are localized in the nucleus, but not by DYRK2. Mutations of the FKHR-binding sites in the G6Pase promoter markedly reduced the effect of DYRK1 on the G6Pase promoter activity. In summary, the data suggest that DYRK1 is a specific co-activator of FKHR, independent of its kinase activity.
Collapse
|
243
|
Rudd MD, Johnston DA, Kazianis S, Butler AP. Cloning and analysis of a FoxO transcription factor from Xiphophorus. Gene 2003; 302:31-41. [PMID: 12527194 DOI: 10.1016/s0378-1119(02)01100-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanoma development in the fish Xiphophorus is determined, at least in part, by overexpression and activation of the Xmrk-2 oncogene, which triggers a variety of signal transduction pathways resulting in altered cell cycle control. We have begun analysing transcription factors which may link Xmrk-2 with regulation of cell proliferation or apoptosis. Towards this end, we have cloned an FKHR (FoxO sub-family) homolog from Xiphophorus maculatus. The isolated clone is a 2.7 kb cDNA encoding a predicted protein of 664 amino acids. The gene, which we have named FoxO5, maps to Xiphophorus Linkage Group XV. The protein product can be categorized within a branch of the FOXO sub-class, which includes: Danio rerio zFKHR (foxo5), Homo sapiens FKHR-L1 (FoxO3a) and Mus musculus FKHR2 (Foxo3). Notably, the Forkhead DNA binding domain, three Akt consensus phosphorylation sites and a carboxy-terminal minimal activation domain are each highly conserved. A mutated FoxO5 protein with disrupted Akt phosphorylation sites inhibits proliferation, but the wild-type protein fails to do so, when exogenously expressed in Xiphophorus cells derived from a melanoma. The same mutated protein predominantly localizes to the nucleus, yet the wild-type protein seldom does. Further characterization of Xiphophorus FoxO5 will contribute to understanding the molecular basis of carcinogenesis in these species.
Collapse
Affiliation(s)
- Michael D Rudd
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park - Research Division, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
244
|
Zhang X, Gan L, Pan H, Guo S, He X, Olson ST, Mesecar A, Adam S, Unterman TG. Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J Biol Chem 2002; 277:45276-84. [PMID: 12228231 DOI: 10.1074/jbc.m208063200] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FKHR is a member of the FOXO subfamily of Forkhead transcription factors, which are important targets for insulin and growth factor signaling. FKHR contains three predicted protein kinase B phosphorylation sites (Thr-24, Ser-256, and Ser-319) that are conserved in other FOXO proteins. We have reported that phosphorylation of Ser-256 is critical for the ability of insulin and insulin-like growth factors to suppress transactivation by FKHR (Guo, S., Rena, G., Cichy, S., He, X., Cohen, P., and Unterman, T. (1999) J. Biol. Chem. 274, 17184-17192) and for its exclusion from the nucleus (Rena, G., Prescott, A. R., Guo, S., Cohen, P., and Unterman, T. G. (2001) Biochem. J. 354, 605-612). Ser-256 is located in a basic region of the FKHR DNA binding domain where phosphorylation may have direct effects on DNA binding and/or nuclear targeting. Phosphorylation of Ser-256 may also be required for the phosphorylation of Thr-24 and Ser-319. Here, we provide the first direct evidence that basic residues in the FKHR DNA binding domain are critical for DNA binding and that Ser-256 phosphorylation alters binding activity. Ser-256 phosphorylation also is critical for regulating nuclear/cytoplasmic trafficking; however, this effect requires Thr-24/Ser-319 phosphorylation. Transient transfection studies with reporter gene constructs in 293 cells reveal that the phosphorylation of Ser-256 can inhibit the function of FKHR independent of Thr-24/Ser-319 phosphorylation. Studies with GFP(1) fusion proteins indicate that Ser-256 phosphorylation is critical for nuclear exclusion of FKHR. However, this effect is disrupted when Thr-24 and Ser-319 are replaced by alanine, indicating that nuclear exclusion of FKHR also requires Thr-24/Ser-319 phosphorylation. Gel shift and fluorescence anisotropy studies reveal that basic residues at the C-terminal end of the FKHR DBD are important for DNA binding, and the introduction of a negative charge at the site of Ser-256 limits binding activity. Binding is rapid and reversible, providing an opportunity for the phosphorylation of Ser-256 and subsequent phosphorylation of Thr-24 and Ser-319 and nuclear exclusion of FKHR.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Medicine, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Foufelle F, Ferré P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J 2002; 366:377-91. [PMID: 12061893 PMCID: PMC1222807 DOI: 10.1042/bj20020430] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Revised: 05/27/2002] [Accepted: 06/13/2002] [Indexed: 02/07/2023]
Abstract
The regulation of hepatic glucose metabolism has a key role in whole-body energy metabolism, since the liver is able to store (glycogen synthesis, lipogenesis) and to produce (glycogenolysis, gluconeogenesis) glucose. These pathways are regulated at several levels, including a transcriptional level, since many of the metabolism-related genes are expressed according to the quantity and quality of nutrients. Recent advances have been made in the understanding of the regulation of hepatic glycolytic, lipogenic and gluconeogenic gene expression by pancreatic hormones, insulin and glucagon and glucose. Here we review the role of the transcription factors forkhead and sterol regulatory element binding protein-1c in the inductive and repressive effects of insulin on hepatic gene expression, and the pathway that leads from glucose to gene regulation with the recently discovered carbohydrate response element binding protein. We discuss how these transcription factors are integrated in a regulatory network that allows a fine tuning of hepatic glucose storage or production, and their potential importance in metabolic diseases.
Collapse
Affiliation(s)
- Fabienne Foufelle
- INSERM Unit 465, Centre de Recherches Biomédicales des Cordeliers, 15 rue de l'Ecole de Médecine, 75270 Paris Cedex 06, France.
| | | |
Collapse
|
246
|
Nadal A, Marrero PF, Haro D. Down-regulation of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by insulin: the role of the forkhead transcription factor FKHRL1. Biochem J 2002; 366:289-97. [PMID: 12027802 PMCID: PMC1222772 DOI: 10.1042/bj20020598] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2002] [Revised: 05/23/2002] [Accepted: 05/23/2002] [Indexed: 01/07/2023]
Abstract
Normal physiological responses to carbohydrate shortages cause the liver to increase the production of ketone bodies from the acetyl-CoA generated from fatty acid oxidation. This allows the use of ketone bodies for energy, thereby preserving the limited glucose for use by the brain. This adaptative response is switched off by insulin rapidly inhibiting the expression of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase (HMGCS2) gene, which is a key control site of ketogenesis. We decided to investigate the molecular mechanism of this inhibition. In the present study, we show that FKHRL1, a member of the forkhead in rhabdosarcoma (FKHR) subclass of the Fox family of transcription factors, stimulates transcription from transfected 3-hydroxy-3-methylglutaryl-CoA synthase promoter-luciferase reporter constructs, and that this stimulation is repressed by insulin. An FKHRL1-responsive sequence AAAAATA, located 211 bp upstream of the HMGCS2 gene transcription start site, was identified by deletion analysis. It binds FKHRL1 in vivo and in vitro and confers FKHRL1 responsiveness on homologous and heterologous promoters. If it is mutated, it partially blocks the effect of insulin in HepG2 cells, both in the absence and presence of overexpressed FKHRL1. These results suggest that FKHRL1 contributes to the regulation of HMGCS2 gene expression by insulin.
Collapse
Affiliation(s)
- Alícia Nadal
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Avda. Diagonal, 643, E-08028 Barcelona, Spain
| | | | | |
Collapse
|
247
|
Ramaswamy S, Nakamura N, Sansal I, Bergeron L, Sellers WR. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 2002; 2:81-91. [PMID: 12150827 DOI: 10.1016/s1535-6108(02)00086-7] [Citation(s) in RCA: 335] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mammalian DAF-16-like transcription factors, FKHR, FKHRL1, and AFX, function as key regulators of insulin signaling, cell cycle progression, and apoptosis downstream of phosphoinositide 3-kinase. Gene activation through binding to insulin response sequences (IRS) has been thought to be essential for mediating these functions. However, using transcriptional profiling, chromatin immunoprecipitation, and functional experiments, we demonstrate that rather than activation of IRS regulated genes (Class I transcripts), transcriptional repression of D-type cyclins (in Class III) is required for FKHR mediated inhibition of cell cycle progression and transformation. These data suggest that a novel mechanism of FKHR-mediated gene regulation is linked to its activity as a suppressor of tumor growth.
Collapse
Affiliation(s)
- Shivapriya Ramaswamy
- Department of Adult Oncology and Department of Internal Medicine, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
248
|
Kondo H, Shimomura I, Kishida K, Kuriyama H, Makino Y, Nishizawa H, Matsuda M, Maeda N, Nagaretani H, Kihara S, Kurachi Y, Nakamura T, Funahashi T, Matsuzawa Y. Human aquaporin adipose (AQPap) gene. Genomic structure, promoter analysis and functional mutation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1814-26. [PMID: 11952783 DOI: 10.1046/j.1432-1033.2002.02821.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aquaporin adipose (AQPap), which we identified from human adipose tissue, is a glycerol channel in adipocyte [Kishida et al. (2000) J. Biol. Chem. 275, 20896-20902]. In the current study, we determined the genomic structure of the human AQPap gene, and identified three AQPap-like genes that resembled (approximately 95%) AQPap, with little expression in human tissues. The AQPap promoter contained a putative peroxisome proliferator response element (PPRE) at -46 to -62, and a putative insulin response element (IRE) at -542/-536. Deletion of the PPRE abolished the pioglitazone-mediated induction of AQPap promoter activity in 3T3-L1 adipocytes. Deletion and single base pair substitution analysis of the IRE abolished the insulin-mediated suppression of the human AQPap gene. Analysis of AQPap sequence in human subjects revealed three missense mutations (R12C, V59L and G264V), and two silent mutations (A103A and G250G). The cRNA injection of the missense mutants into Xenopus oocytes revealed the absence of the activity to transport glycerol and water in the AQPap-G264V protein. In the subject homozygous for AQPap-G264V, exercise-induced increase in plasma glycerol was not observed in spite of the increased plasma noradrenaline. We suggest that AQPap is responsible for the increase of plasma glycerol during exercise in humans.
Collapse
Affiliation(s)
- Hidehiko Kondo
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Abstract
Glucose-6-phosphatase (G6Pase), an enzyme found mainly in the liver and the kidneys, plays the important role of providing glucose during starvation. Unlike most phosphatases acting on water-soluble compounds, it is a membrane-bound enzyme, being associated with the endoplasmic reticulum. In 1975, W. Arion and co-workers proposed a model according to which G6Pase was thought to be a rather unspecific phosphatase, with its catalytic site oriented towards the lumen of the endoplasmic reticulum [Arion, Wallin, Lange and Ballas (1975) Mol. Cell. Biochem. 6, 75--83]. Substrate would be provided to this enzyme by a translocase that is specific for glucose 6-phosphate, thereby accounting for the specificity of the phosphatase for glucose 6-phosphate in intact microsomes. Distinct transporters would allow inorganic phosphate and glucose to leave the vesicles. At variance with this substrate-transport model, other models propose that conformational changes play an important role in the properties of G6Pase. The last 10 years have witnessed important progress in our knowledge of the glucose 6-phosphate hydrolysis system. The genes encoding G6Pase and the glucose 6-phosphate translocase have been cloned and shown to be mutated in glycogen storage disease type Ia and type Ib respectively. The gene encoding a G6Pase-related protein, expressed specifically in pancreatic islets, has also been cloned. Specific potent inhibitors of G6Pase and of the glucose 6-phosphate translocase have been synthesized or isolated from micro-organisms. These as well as other findings support the model initially proposed by Arion. Much progress has also been made with regard to the regulation of the expression of G6Pase by insulin, glucocorticoids, cAMP and glucose.
Collapse
Affiliation(s)
- Emile van Schaftingen
- Laboratoire de Chimie Physiologique, UCL and ICP, Avenue Hippocrate 75, B-1200 Brussels, Belgium.
| | | |
Collapse
|
250
|
Abstract
The genetic analysis of life span has only begun in mammals, invertebrates, such as Caenorhabditis elegans and Drosophila, and yeast. Even at this primitive stage of the genetic analysis of aging, the physiological observations that rate of metabolism is intimately tied to life span is supported. In many examples from mice to worms to flies to yeast, genetic variants that affect life span also modify metabolism. Insulin signaling regulates life span coordinately with reproduction, metabolism, and free radical protective gene regulation in C. elegans. This may be related to the findings that caloric restriction also regulates mammalian aging, perhaps via the modulation of insulin-like signaling pathways. The nervous system has been implicated as a key tissue where insulin-like signaling and free radical protective pathways regulate life span in C. elegans and Drosophila. Genes that determine the life span could act in neuroendocrine cells in diverse animals. The involvement of insulin-like hormones suggests that the plasticity in life spans evident in animal phylogeny may be due to variation in the timing of release of hormones that control vitality and mortality as well as variation in the response to those hormones. Pedigree analysis of human aging may reveal variations in the orthologs of the insulin pathway genes and coupled pathways that regulate invertebrate aging. Thus, genetic approaches may identify a set of circuits that was established in ancestral metazoans to regulate their longevity.
Collapse
Affiliation(s)
- C E Finch
- Andrus Gerontology Center and Department Biological Sciences, University of Southern California, Los Angeles, California 90089-0191, USA.
| | | |
Collapse
|