201
|
Namkung W, Finkbeiner WE, Verkman AS. CFTR-adenylyl cyclase I association responsible for UTP activation of CFTR in well-differentiated primary human bronchial cell cultures. Mol Biol Cell 2010; 21:2639-48. [PMID: 20554763 PMCID: PMC2912350 DOI: 10.1091/mbc.e09-12-1004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chloride secretion by airway epithelial cells is defective in cystic fibrosis (CF). The conventional paradigm is that CFTR is activated through cAMP and protein kinase A (PKA), whereas the Ca(2+)-activated chloride channel (CaCC) is activated by Ca(2+) agonists like UTP. We found that most chloride current elicited by Ca(2+) agonists in primary cultures of human bronchial epithelial cells is mediated by CFTR by a mechanism involving Ca(2+) activation of adenylyl cyclase I (AC1) and cAMP/PKA signaling. Use of selective inhibitors showed that Ca(2+) agonists produced more chloride secretion from CFTR than from CaCC. CFTR-dependent chloride secretion was reduced by PKA inhibition and was absent in CF cell cultures. Ca(2+) agonists produced cAMP elevation, which was blocked by adenylyl cyclase inhibition. AC1, a Ca(2+)/calmodulin-stimulated adenylyl cyclase, colocalized with CFTR in the cell apical membrane. RNAi knockdown of AC1 selectively reduced UTP-induced cAMP elevation and chloride secretion. These results, together with correlations between cAMP and chloride current, suggest that compartmentalized AC1-CFTR association is responsible for Ca(2+)/cAMP cross-talk. We further conclude that CFTR is the principal chloride secretory pathway in non-CF airways for both cAMP and Ca(2+) agonists, providing a novel mechanism to link CFTR dysfunction to CF lung disease.
Collapse
Affiliation(s)
- Wan Namkung
- Department of Medicine and Physiology, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
202
|
Fulcher NB, Holliday PM, Klem E, Cann MJ, Wolfgang MC. The Pseudomonas aeruginosa Chp chemosensory system regulates intracellular cAMP levels by modulating adenylate cyclase activity. Mol Microbiol 2010; 76:889-904. [PMID: 20345659 PMCID: PMC2906755 DOI: 10.1111/j.1365-2958.2010.07135.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signalling molecule adenosine 3', 5'-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems.
Collapse
Affiliation(s)
- Nanette B. Fulcher
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599
| | - Phillip M. Holliday
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Erich Klem
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599
| | - Martin J. Cann
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Matthew C. Wolfgang
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
203
|
Krapf D, Arcelay E, Wertheimer EV, Sanjay A, Pilder SH, Salicioni AM, Visconti PE. Inhibition of Ser/Thr phosphatases induces capacitation-associated signaling in the presence of Src kinase inhibitors. J Biol Chem 2010; 285:7977-85. [PMID: 20068039 PMCID: PMC2832948 DOI: 10.1074/jbc.m109.085845] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling events leading to mammalian sperm capacitation rely on activation/deactivation of proteins by phosphorylation. This cascade includes soluble adenylyl cyclase, an atypical bicarbonate-stimulated adenylyl cyclase, and is mediated by protein kinase A and the subsequent stimulation of protein tyrosine phosphorylation. Recently, it has been proposed that the capacitation-associated increase in tyrosine phosphorylation is governed by Src tyrosine kinase activity. This conclusion was based mostly on the observation that Src is present in sperm and that the Src kinase family inhibitor SU6656 blocked the capacitation-associated increase in tyrosine phosphorylation. Results in the present manuscript confirmed these observations and provided evidence that these inhibitors were also able to inhibit protein kinase A phosphorylation, sperm motility, and in vitro fertilization. However, the block of capacitation-associated parameters was overcome when sperm were incubated in the presence of Ser/Thr phosphatase inhibitors such as okadaic acid and calyculin-A at concentrations reported to affect only PP2A. Altogether, these data indicate that Src is not directly involved in the observed increase in tyrosine phosphorylation. More importantly, this work presents strong evidence that capacitation is regulated by two parallel pathways. One of them requiring activation of protein kinase A and the second one involving inactivation of Ser/Thr phosphatases.
Collapse
Affiliation(s)
- Dario Krapf
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | |
Collapse
|
204
|
Păunescu TG, Ljubojevic M, Russo LM, Winter C, McLaughlin MM, Wagner CA, Breton S, Brown D. cAMP stimulates apical V-ATPase accumulation, microvillar elongation, and proton extrusion in kidney collecting duct A-intercalated cells. Am J Physiol Renal Physiol 2010; 298:F643-54. [PMID: 20053793 DOI: 10.1152/ajprenal.00584.2009] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Kidney proton-secreting A-intercalated cells (A-IC) respond to systemic acidosis by accumulating the vacuolar ATPase (V-ATPase) in their apical membrane and by increasing the length and number of apical microvilli. We show here that the cell-permeant cAMP analog CPT-cAMP, infused in vivo, results in an almost twofold increase in apical V-ATPase accumulation in AE1-positive A-IC within 15 min and that these cells develop an extensive array of apical microvilli compared with controls. In contrast, no significant change in V-ATPase distribution could be detected by immunocytochemistry in B-intercalated cells at the acute time point examined. To show a direct effect of cAMP on A-IC, we prepared cell suspensions from the medulla of transgenic mice expressing EGFP in IC (driven by the B1-subunit promoter of the V-ATPase) and exposed them to cAMP analogs in vitro. Three-dimensional reconstructions of confocal images revealed that cAMP induced a time-dependent growth of apical microvilli, starting within minutes after addition. This effect was blocked by the PKA inhibitor myristoylated PKI. These morphological changes were paralleled by increased cAMP-mediated proton extrusion (pHi recovery) by A-IC in outer medullary collecting ducts measured using the ratiometric probe BCECF. These results, and our prior data showing that the bicarbonate-stimulated soluble adenylyl cyclase (sAC) is highly expressed in kidney intercalated cells, support the idea that cAMP generated either by sAC, or by activation of other signaling pathways, is part of the signal transduction mechanism involved in acid-base sensing and V-ATPase membrane trafficking in kidney intercalated cells.
Collapse
Affiliation(s)
- Teodor G Păunescu
- MGH Center for Systems Biology, Program in Membrane Biology, and Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis. Proc Natl Acad Sci U S A 2009; 107:442-7. [PMID: 20018667 DOI: 10.1073/pnas.0911790107] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
pH homeostasis is essential for life, yet it remains unclear how animals sense their systemic acid/base (A/B) status. Soluble adenylyl cyclase (sAC) is an evolutionary conserved signaling enzyme that produces the second messenger cAMP in response to bicarbonate ions (HCO(3)(-)). We cloned the sAC ortholog from the dogfish, a shark that regulates blood A/B by absorbing and secreting protons (H(+)) and HCO(3)(-) at its gills. Similar to mammalian sAC, dogfish soluble adenylyl cyclase (dfsAC) is activated by HCO(3)(-) and can be inhibited by two structurally and mechanistically distinct small molecule inhibitors. dfsAC is expressed in the gill epithelium, where the subset of base-secreting cells resides. Injection of inhibitors into animals under alkaline stress confirmed that dfsAC is essential for maintaining systemic pH and HCO(3)(-) levels in the whole organism. One of the downstream effects of dfsAC is to promote the insertion of vacuolar proton pumps into the basolateral membrane to absorb H(+) into the blood. sAC orthologs are present throughout metazoans, and mammalian sAC is expressed in A/B regulatory organs, suggesting that systemic A/B sensing via sAC is widespread in the animal kingdom.
Collapse
|
206
|
Inhibition of protein kinase C signaling protects prefrontal cortex dendritic spines and cognition from the effects of chronic stress. Proc Natl Acad Sci U S A 2009; 106:17957-62. [PMID: 19805148 DOI: 10.1073/pnas.0908563106] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The prefrontal cortex r regulates behavior, cognition, and emotion by using working memory. Prefrontal functions are impaired by stress exposure. Acute, stress-induced deficits arise from excessive protein kinase C (PKC) signaling, which diminishes prefrontal neuronal firing. Chronic stress additionally produces architectural changes, reducing dendritic complexity and spine density of cortico-cortical pyramidal neurons, thereby disrupting excitatory working memory networks. In vitro studies have found that sustained PKC activity leads to spine loss from hippocampal-cultured neurons, suggesting that PKC may contribute to spine loss during chronic stress exposure. The present study tested whether inhibition of PKC with chelerythrine before daily stress would protect prefrontal spines and working memory. We found that inhibition of PKC rescued working memory impairments and reversed distal apical dendritic spine loss in layer II/III pyramidal neurons of rat prelimbic cortex. Greater spine density predicted better cognitive performance, the first direct correlation between pyramidal cell structure and working memory abilities. These findings suggest that PKC inhibitors may be neuroprotective in disorders with dysregulated PKC signaling such as bipolar disorder, schizophrenia, post-traumatic stress disorder, and lead poisoning--conditions characterized by impoverished prefrontal structural and functional integrity.
Collapse
|
207
|
Brown D, Paunescu TG, Breton S, Marshansky V. Regulation of the V-ATPase in kidney epithelial cells: dual role in acid-base homeostasis and vesicle trafficking. ACTA ACUST UNITED AC 2009; 212:1762-72. [PMID: 19448085 DOI: 10.1242/jeb.028803] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The proton-pumping V-ATPase is a complex, multi-subunit enzyme that is highly expressed in the plasma membranes of some epithelial cells in the kidney, including collecting duct intercalated cells. It is also located on the limiting membranes of intracellular organelles in the degradative and secretory pathways of all cells. Different isoforms of some V-ATPase subunits are involved in the targeting of the proton pump to its various intracellular locations, where it functions in transporting protons out of the cell across the plasma membrane or acidifying intracellular compartments. The former process plays a critical role in proton secretion by the kidney and regulates systemic acid-base status whereas the latter process is central to intracellular vesicle trafficking, membrane recycling and the degradative pathway in cells. We will focus our discussion on two cell types in the kidney: (1) intercalated cells, in which proton secretion is controlled by shuttling V-ATPase complexes back and forth between the plasma membrane and highly-specialized intracellular vesicles, and (2) proximal tubule cells, in which the endocytotic pathway that retrieves proteins from the glomerular ultrafiltrate requires V-ATPase-dependent acidification of post-endocytotic vesicles. The regulation of both of these activities depends upon the ability of cells to monitor the pH and/or bicarbonate content of their extracellular environment and intracellular compartments. Recent information about these pH-sensing mechanisms, which include the role of the V-ATPase itself as a pH sensor and the soluble adenylyl cyclase as a bicarbonate sensor, will be addressed in this review.
Collapse
Affiliation(s)
- Dennis Brown
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
208
|
Corredor RG, Goldberg JL. Electrical activity enhances neuronal survival and regeneration. J Neural Eng 2009; 6:055001. [DOI: 10.1088/1741-2560/6/5/055001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
209
|
Abstract
The ubiquitously expressed Na(+)/H(+) exchanger NHE1 plays an important role in regulating polarized membrane protrusion and directional motility in non-neuronal cells. Using NGF-differentiated PC12 cells and murine neocortical neurons in vitro, we now show that NHE1 plays a role in regulating early neurite morphogenesis. NHE1 was expressed in growth cones in which it gave rise to an elevated intracellular pH in actively extending neurites. The NHE1 inhibitor cariporide reversibly reduced growth cone filopodia number and the formation and elongation of neurites, especially branches, whereas the transient overexpression of full-length NHE1, but not NHE1 mutants deficient in either ion translocation activity or actin cytoskeletal anchoring, elicited opposite effects. In addition, compared with neocortical neurons obtained from wild-type littermates, neurons isolated from NHE1-null mice exhibited reductions in early neurite outgrowth, an effect that was rescued by overexpression of full-length NHE1 but not NHE1 mutants. Finally, the growth-promoting effects of netrin-1, but not BDNF or IGF-1, were markedly reduced by cariporide in wild-type neocortical neurons and were not observed in NHE1-null neurons. Although netrin-1 failed to increase growth cone intracellular pH or Na(+)/H(+) exchange activity, netrin-1-induced increases in early neurite outgrowth were restored in NHE1-null neurons transfected with full-length NHE1 but not an ion translocation-deficient mutant. Collectively, the results indicate that NHE1 participates in the regulation of early neurite morphogenesis and identify a novel role for NHE1 in the promotion of early neurite outgrowth by netrin-1.
Collapse
|
210
|
Sampaio LDFS. An unexpected effect of 5-MCA-NAT in chick retinal development. Int J Dev Neurosci 2009; 27:511-5. [PMID: 19596433 DOI: 10.1016/j.ijdevneu.2009.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/22/2009] [Accepted: 07/01/2009] [Indexed: 10/20/2022] Open
Abstract
Luzindole is an unselective antagonist of the melatonin receptors and melatonin's other binding sites, although some exceptions have been observed in chick retinal neurodevelopment, where this unselective antagonist does not block melatonin's inhibitory effect on the adenylate cyclase enzyme, probably due to the presence of some other melatonin receptor(s) or binding site(s). The present study investigated the modulation of cyclic adenosine 3'-5'-monophosphate (cAMP) levels via MT3 melatonin-binding sites, located within the QR2 (dihydronicotinamide riboside: quinone oxidoreductase 2) enzyme, by observing the response to luzindole. Embryonic and post-hatch retinas, incubated with a selective agonist for the MT3 melatonin-binding site 5-methoxycarbonylamino-N-acetyltryptamine (5-MCA-NAT, 10 or 100 nM), had an increase in cAMP accumulation relative to control retinas. Luzindole (5microM) inhibited the 5-MCA-NAT stimulatory effect at all ages tested. The agonist 5-MCA-NAT enhanced the melatonin inhibitory effect on cAMP levels stimulated by forskolin (5microM), but not the stimulatory forskolin effect. The results suggest that MT3 melatonin-binding sites are present in embryonic and post-hatch chick retinas and that luzindole more selectively blocks the 5-MCA-NAT effect on cAMP accumulation than it blocks the melatonin inhibitory effect via G protein-coupled receptors in chick retinal neurodevelopment.
Collapse
Affiliation(s)
- Lucia de Fatima Sobral Sampaio
- Laboratório de Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, CEP: 66075-110 Belém, PA, Brazil.
| |
Collapse
|
211
|
Branham MT, Bustos MA, De Blas GA, Rehmann H, Zarelli VEP, Treviño CL, Darszon A, Mayorga LS, Tomes CN. Epac activates the small G proteins Rap1 and Rab3A to achieve exocytosis. J Biol Chem 2009; 284:24825-39. [PMID: 19546222 DOI: 10.1074/jbc.m109.015362] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions bypasses some of these requirements and elicits exocytosis in a protein kinase A- and extracellular calcium-independent manner. The relevant cAMP target is Epac, a guanine nucleotide exchange factor for the small GTPase Rap. We show here that a soluble adenylyl cyclase synthesizes the cAMP required for the acrosome reaction. Epac stimulates the exchange of GDP for GTP on Rap1, upstream of a phospholipase C. The Epac-selective cAMP analogue 8-pCPT-2'-O-Me-cAMP induces a phospholipase C-dependent calcium mobilization in human sperm suspensions. In addition, our studies identify a novel connection between cAMP and Rab3A, a secretory granule-associated protein, revealing that the latter functions downstream of soluble adenylyl cyclase/cAMP/Epac but not of Rap1. Challenging sperm with calcium or 8-pCPT-2'-O-Me-cAMP boosts the exchange of GDP for GTP on Rab3A. Recombinant Epac does not release GDP from Rab3A in vitro, suggesting that the Rab3A-GEF activation by cAMP/Epac in vivo is indirect. We propose that Epac sits at a critical point during the exocytotic cascade after which the pathway splits into two limbs, one that assembles the fusion machinery into place and another that elicits intracellular calcium release.
Collapse
Affiliation(s)
- María T Branham
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, CC 56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Abstract
Guanylyl cyclases (GCs) catalyze the conversion of GTP to the second messenger cGMP. While some transmembrane GCs are receptors for extracellular ligands, other transmembrane GCs such as retinal-specific GC-E and GC-F are stimulated by cellular proteins. GC-D is expressed in a special group of olfactory sensory neurons. However, the direct regulatory mechanism of GC-D activity is not completely understood. Here we have demonstrated that bicarbonate directly increases the activity of purified GC-D. Bicarbonate also increases the cGMP levels in cells expressing GC-D. These results identify bicarbonate as a small molecule that regulates GC-D.
Collapse
Affiliation(s)
- Dagang Guo
- Department of Physiology, Cornell University Weill Medical College, New York, New York 10065, USA
| | | | | |
Collapse
|
213
|
Satorre MM, Breininger E, Beconi MT, Beorlegui NB. Protein tyrosine phosphorylation under capacitating conditions in porcine fresh spermatozoa and sperm cryopreserved with and without alpha tocopherol. Andrologia 2009; 41:184-92. [DOI: 10.1111/j.1439-0272.2009.00915.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
214
|
Mou T, Masada N, Cooper DMF, Sprang SR. Structural basis for inhibition of mammalian adenylyl cyclase by calcium. Biochemistry 2009; 48:3387-97. [PMID: 19243146 PMCID: PMC2680196 DOI: 10.1021/bi802122k] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type V and VI mammalian adenylyl cyclases (AC5, AC6) are inhibited by Ca(2+) at both sub- and supramicromolar concentration. This inhibition may provide feedback in situations where cAMP promotes opening of Ca(2+) channels, allowing fine control of cardiac contraction and rhythmicity in cardiac tissue where AC5 and AC6 predominate. Ca(2+) inhibits the soluble AC core composed of the C1 domain of AC5 (VC1) and the C2 domain of AC2 (IIC2). As observed for holo-AC5, inhibition is biphasic, showing "high-affinity" (K(i) = approximately 0.4 microM) and "low-affinity" (K(i) = approximately 100 microM) modes of inhibition. At micromolar concentration, Ca(2+) inhibition is nonexclusive with respect to pyrophosphate (PP(i)), a noncompetitive inhibitor with respect to ATP, but at >100 microM Ca(2+), inhibition appears to be exclusive with respect to PP(i). The 3.0 A resolution structure of Galphas.GTPgammaS/forskolin-activated VC1:IIC2 crystals soaked in the presence of ATPalphaS and 8 microM free Ca(2+) contains a single, loosely coordinated metal ion. ATP soaked into VC1:IIC2 crystals in the presence of 1.5 mM Ca(2+) is not cyclized, and two calcium ions are observed in the 2.9 A resolution structure of the complex. In both of the latter complexes VC1:IIC2 adopts the "open", catalytically inactive conformation characteristic of the apoenzyme, in contrast to the "closed", active conformation seen in the presence of ATP analogues and Mg(2+) or Mn(2+). Structures of the pyrophosphate (PP(i)) complex with 10 mM Mg(2+) (2.8 A) or 2 mM Ca(2+) (2.7 A) also adopt the open conformation, indicating that the closed to open transition occurs after cAMP release. In the latter complexes, Ca(2+) and Mg(2+) bind only to the high-affinity "B" metal site associated with substrate/product stabilization. Ca(2+) thus stabilizes the inactive conformation in both ATP- and PP(i)-bound states.
Collapse
Affiliation(s)
- Tung—Chung Mou
- Center for Biomolecular Structure and Dynamics and the Division of Biological Sciences, The University of Montana, Missoula, MT 59812
| | - Nanako Masada
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom
| | - Dermot M. F. Cooper
- Center for Biomolecular Structure and Dynamics and the Division of Biological Sciences, The University of Montana, Missoula, MT 59812
| | - Stephen R. Sprang
- Center for Biomolecular Structure and Dynamics and the Division of Biological Sciences, The University of Montana, Missoula, MT 59812
| |
Collapse
|
215
|
Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G. Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 2009; 9:265-76. [PMID: 19254571 PMCID: PMC2684673 DOI: 10.1016/j.cmet.2009.01.012] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/31/2008] [Accepted: 01/29/2009] [Indexed: 11/18/2022]
Abstract
Mitochondria constantly respond to changes in substrate availability and energy utilization to maintain cellular ATP supplies, and at the same time control reactive oxygen radical (ROS) production. Reversible phosphorylation of mitochondrial proteins has been proposed to play a fundamental role in metabolic homeostasis, but very little is known about the signaling pathways involved. We show here that protein kinase A (PKA) regulates ATP production by phosphorylation of mitochondrial proteins, including subunits of cytochrome c oxidase. The cyclic AMP (cAMP), which activates mitochondrial PKA, does not originate from cytoplasmic sources but is generated within mitochondria by the carbon dioxide/bicarbonate-regulated soluble adenylyl cyclase (sAC) in response to metabolically generated carbon dioxide. We demonstrate for the first time the existence of a CO(2)-HCO(3)(-)-sAC-cAMP-PKA (mito-sAC) signaling cascade wholly contained within mitochondria, which serves as a metabolic sensor modulating ATP generation and ROS production in response to nutrient availability.
Collapse
Affiliation(s)
- Rebeca Acin-Perez
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
216
|
Saravia F, Wallgren M, Johannisson A, Calvete J, Sanz L, Peña F, Roca J, Rodríguez-Martínez H. Exposure to the seminal plasma of different portions of the boar ejaculate modulates the survival of spermatozoa cryopreserved in MiniFlatPacks. Theriogenology 2009; 71:662-75. [DOI: 10.1016/j.theriogenology.2008.09.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/24/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
|
217
|
Hallows KR, Wang H, Edinger RS, Butterworth MB, Oyster NM, Li H, Buck J, Levin LR, Johnson JP, Pastor-Soler NM. Regulation of epithelial Na+ transport by soluble adenylyl cyclase in kidney collecting duct cells. J Biol Chem 2009; 284:5774-83. [PMID: 19126549 DOI: 10.1074/jbc.m805501200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alkalosis impairs the natriuretic response to diuretics, but the underlying mechanisms are unclear. The soluble adenylyl cyclase (sAC) is a chemosensor that mediates bicarbonate-dependent elevation of cAMP in intracellular microdomains. We hypothesized that sAC may be an important regulator of Na(+) transport in the kidney. Confocal images of rat kidney revealed specific immunolocalization of sAC in collecting duct cells, and immunoblots confirmed sAC expression in mouse cortical collecting duct (mpkCCD(c14)) cells. These cells exhibit aldosterone-stimulated transepithelial Na(+) currents that depend on both the apical epithelial Na(+) channel (ENaC) and basolateral Na(+),K(+)-ATPase. RNA interference-mediated 60-70% knockdown of sAC expression comparably inhibited basal transepithelial short circuit currents (I(sc)) in mpkCCD(c14) cells. Moreover, the sAC inhibitors KH7 and 2-hydroxyestradiol reduced I(sc) in these cells by 50-60% within 30 min. 8-Bromoadenosine-3',5'-cyclic-monophosphate substantially rescued the KH7 inhibition of transepithelial Na(+) current. Aldosterone doubled ENaC-dependent I(sc) over 4 h, an effect that was abolished in the presence of KH7. The sAC contribution to I(sc) was unaffected with apical membrane nystatin-mediated permeabilization, whereas the sAC-dependent Na(+) current was fully inhibited by basolateral ouabain treatment, suggesting that the Na(+),K(+)-ATPase, rather than ENaC, is the relevant transporter target of sAC. Indeed, neither overexpression of sAC nor treatment with KH7 modulated ENaC currents in Xenopus oocytes. ATPase and biotinylation assays in mpkCCD(c14) cells demonstrated that sAC inhibition decreases catalytic activity rather than surface expression of the Na(+),K(+)-ATPase. In summary, these results suggest that sAC regulates both basal and agonist-stimulated Na(+) reabsorption in the kidney collecting duct, acting to enhance Na(+),K(+)-ATPase activity.
Collapse
Affiliation(s)
- Kenneth R Hallows
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15621, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Townsend PD, Holliday PM, Fenyk S, Hess KC, Gray MA, Hodgson DRW, Cann MJ. Stimulation of mammalian G-protein-responsive adenylyl cyclases by carbon dioxide. J Biol Chem 2008; 284:784-91. [PMID: 19008230 PMCID: PMC2613629 DOI: 10.1074/jbc.m807239200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbon dioxide is fundamental to the physiology of all organisms. There is
considerable interest in the precise molecular mechanisms that organisms use
to directly sense CO2. Here we demonstrate that a mammalian
recombinant G-protein-activated adenylyl cyclase and the related Rv1625c
adenylyl cyclase of Mycobacterium tuberculosis are specifically
stimulated by CO2. Stimulation occurred at physiological
concentrations of CO2 through increased kcat.
CO2 increased the affinity of enzyme for metal co-factor, but
contact with metal was not necessary as CO2 interacted directly
with apoenzyme. CO2 stimulated the activity of both
G-protein-regulated adenylyl cyclases and Rv1625c in vivo. Activation
of G-protein regulated adenylyl cyclases by CO2 gave a
corresponding increase in cAMP-response element-binding protein (CREB)
phosphorylation. Comparison of the responses of the G-protein regulated
adenylyl cyclases and the molecularly, and biochemically distinct mammalian
soluble adenylyl cyclase revealed that whereas G-protein-regulated enzymes are
responsive to CO2, the soluble adenylyl cyclase is responsive to
both CO2 and bicarbonate ion. We have, thus, identified a signaling
enzyme by which eukaryotes can directly detect and respond to fluctuating
CO2.
Collapse
Affiliation(s)
- Philip D Townsend
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | | | | | | | | | | | | |
Collapse
|
219
|
Sadana R, Dessauer CW. Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 2008; 17:5-22. [PMID: 18948702 DOI: 10.1159/000166277] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 04/22/2008] [Indexed: 01/08/2023] Open
Abstract
Cyclic AMP is a universal second messenger, produced by a family of adenylyl cyclase (AC) enzymes. The last three decades have brought a wealth of new information about the regulation of cyclic AMP production by ACs. Nine hormone-sensitive, membrane-bound AC isoforms have been identified in addition to a tenth isoform that lacks membrane spans and more closely resembles the cyanobacterial AC enzymes. New model systems for purifying and characterizing the catalytic domains of AC have led to the crystal structure of these domains and the mapping of numerous interaction sites. However, big hurdles remain in unraveling the roles of individual AC isoforms and their regulation in physiological systems. In this review we explore the latest on AC knockout and overexpression studies to better understand the roles of G protein regulation of ACs in the brain, olfactory bulb, and heart.
Collapse
Affiliation(s)
- Rachna Sadana
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
220
|
Farrell J, Ramos L, Tresguerres M, Kamenetsky M, Levin LR, Buck J. Somatic 'soluble' adenylyl cyclase isoforms are unaffected in Sacy tm1Lex/Sacy tm1Lex 'knockout' mice. PLoS One 2008; 3:e3251. [PMID: 18806876 PMCID: PMC2532759 DOI: 10.1371/journal.pone.0003251] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 09/02/2008] [Indexed: 11/17/2022] Open
Abstract
Background Mammalian Soluble adenylyl cyclase (sAC, Adcy10, or Sacy) represents a source of the second messenger cAMP distinct from the widely studied, G protein-regulated transmembrane adenylyl cyclases. Genetic deletion of the second through fourth coding exons in Sacytm1Lex/Sacytm1Lex knockout mice results in a male sterile phenotype. The absence of any major somatic phenotype is inconsistent with the variety of somatic functions identified for sAC using pharmacological inhibitors and RNA interference. Principal Findings We now use immunological and molecular biological methods to demonstrate that somatic tissues express a previously unknown isoform of sAC, which utilizes a unique start site, and which ‘escapes’ the design of the Sacytm1Lex knockout allele. Conclusions/Significance These studies reveal increased complexity at the sAC locus, and they suggest that the known isoforms of sAC play a unique function in male germ cells.
Collapse
Affiliation(s)
- Jeanne Farrell
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
221
|
Ramos LS, Zippin JH, Kamenetsky M, Buck J, Levin LR. Glucose and GLP-1 stimulate cAMP production via distinct adenylyl cyclases in INS-1E insulinoma cells. ACTA ACUST UNITED AC 2008; 132:329-38. [PMID: 18695009 PMCID: PMC2518727 DOI: 10.1085/jgp.200810044] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In β cells, both glucose and hormones, such as GLP-1, stimulate production of the second messenger cAMP, but glucose and GLP-1 elicit distinct cellular responses. We now show in INS-1E insulinoma cells that glucose and GLP-1 produce cAMP with distinct kinetics via different adenylyl cyclases. GLP-1 induces a rapid cAMP signal mediated by G protein–responsive transmembrane adenylyl cyclases (tmAC). In contrast, glucose elicits a delayed cAMP rise mediated by bicarbonate, calcium, and ATP-sensitive soluble adenylyl cyclase (sAC). This glucose-induced, sAC-dependent cAMP rise is dependent upon calcium influx and is responsible for the glucose-induced activation of the mitogen-activated protein kinase (ERK1/2) pathway. These results demonstrate that sAC-generated and tmAC-generated cAMP define distinct signaling cascades.
Collapse
Affiliation(s)
- Lavoisier S Ramos
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
222
|
Schlicker C, Rauch A, Hess KC, Kachholz B, Levin LR, Buck J, Steegborn C. Structure-based development of novel adenylyl cyclase inhibitors. J Med Chem 2008; 51:4456-64. [PMID: 18630896 DOI: 10.1021/jm800481q] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In mammals, the second messenger cAMP is synthesized by a family of transmembrane isoforms (tmACs) and one known cytoplasmic enzyme, "soluble" adenylyl cyclase (sAC). Understanding the individual contributions of these families to cAMP signaling requires tools which can distinguish them. Here, we describe the structure-based development of isoform discriminating AC inhibitors. Docking calculations using a library of small molecules with the crystal structure of a sAC homologue complexed with the noncompetitive inhibitor catechol estrogen identified two novel inhibitors, 3,20-dioxopregn-4-en-21-yl4-bromobenzenesulfonate (2) and 1,2,3,4,5,6,7,8,13,13,14,14-dodecachloro-1,4,4a,4b,5,8,8a,12b-octahydro-11-sulfo-1,4:5,8-dimethanotriphenylene-10-carboxylic acid (3). In vitro testing revealed that 3 defines a novel AC inhibitor scaffold with high affinity for human sAC and less inhibitory effect on mammalian tmACs. 2 also discriminates between sAC and tmACs, and it appears to simultaneously block the original binding pocket and a neighboring interaction site. Our results show that compounds exploiting the catechol estrogen binding site can produce potent, isoform discriminating AC inhibitors.
Collapse
Affiliation(s)
- Christine Schlicker
- Department of Physiological Chemistry, Ruhr-University Bochum, Universitatsstrasse 150, 44801 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
223
|
Marquez B, Suarez SS. Soluble adenylyl cyclase is required for activation of sperm but does not have a direct effect on hyperactivation. Reprod Fertil Dev 2008; 20:247-52. [PMID: 18255013 DOI: 10.1071/rd07146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 10/12/2007] [Indexed: 01/24/2023] Open
Abstract
Soluble adenylyl cyclase (SACY) is an essential component of cAMP-signalling cascades that activate sperm motility and capacitate sperm. SACY activity is stimulated by HCO(3)(-) and Ca(2+). Sperm from Sacy(-/-) (null) mice were immotile or weakly motile, but cAMP analogues N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (dbcAMP) and adenosine 3',5'-cyclic monophosphate acetoxymethyl ester (cAMP-AM) activated motility. Null sperm activated by dbcAMP quickly developed hairpin bends at the junction of the midpiece and principal piece, which could be prevented by omitting HCO(3)(-). Treating Sacy(-/-) sperm with thimerosal or NH(4)Cl to raise flagellar cytoplasmic Ca(2+) could not substitute for cAMP analogues in activating motility; however, sperm activated with cAMP-AM hyperactivated after thimerosal treatment. Treating activated wild-type sperm with SACY inhibitor KH7 did not prevent hyperactivation from developing during capacitation in vitro, although high doses impaired motility. These results indicate that, while the SACY/cAMP signalling pathway is required for motility activation, it is not directly involved in triggering hyperactivation.
Collapse
Affiliation(s)
- Becky Marquez
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
224
|
Rodríguez-Miranda E, Buffone MG, Edwards SE, Ord TS, Lin K, Sammel MD, Gerton GL, Moss SB, Williams CJ. Extracellular adenosine 5'-triphosphate alters motility and improves the fertilizing capability of mouse sperm. Biol Reprod 2008; 79:164-71. [PMID: 18401012 DOI: 10.1095/biolreprod.107.065565] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Extracellular adenosine 5'-triphosphate (ATPe) treatment of human sperm has been implicated in improving in vitro fertilization (IVF) results. We used the mouse model to investigate mechanisms of action of ATPe on sperm. ATPe treatment significantly enhanced IVF success as indicated by both rate of pronuclear formation and percentage cleavage to the 2-cell stage. However, ATPe did not increase the percentage of sperm undergoing spontaneous acrosomal exocytosis nor change the pattern of protein tyrosine phosphorylation normally observed in capacitated sperm. ATPe altered sperm motility parameters; in particular, both noncapacitated and capacitated sperm swam faster and straighter. The percentage of hyperactivated sperm did not increase in capacitated ATPe-treated sperm compared to control sperm. ATPe induced a rapid increase in the level of intracellular calcium that was inhibited by two distinct P2 purinergic receptor inhibitors, confirming that these receptors have an ionotropic role in sperm function. The observed motility changes likely explain, in part, the improved fertilizing capability when ATPe-treated sperm were used in IVF procedures and suggest a mechanism by which ATPe treatment may be beneficial for artificial reproductive techniques.
Collapse
Affiliation(s)
- Esmeralda Rodríguez-Miranda
- Department of Obstetrics & Gynecology, Center for Research on Reproduction & Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Brennan AR, Dolinsky B, Vu MAT, Stanley M, Yeckel MF, Arnsten AFT. Blockade of IP3-mediated SK channel signaling in the rat medial prefrontal cortex improves spatial working memory. Learn Mem 2008; 15:93-6. [PMID: 18285467 DOI: 10.1101/lm.767408] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Planning and directing thought and behavior require the working memory (WM) functions of prefrontal cortex. WM is compromised by stress, which activates phosphatidylinositol (PI)-mediated IP3-PKC intracellular signaling. PKC overactivation impairs WM operations and in vitro studies indicate that IP3 receptor (IP3R)-evoked calcium release results in SK channel-dependent hyperpolarization of prefrontal neurons. However, the effects of IP3R signaling on prefrontal function have not been investigated. The present findings demonstrate that blockade of IP3R or SK channels in the prefrontal cortex enhances WM performance in rats, suggesting that both arms of the PI cascade influence prefrontal cognitive function.
Collapse
Affiliation(s)
- Avis R Brennan
- Yale University School of Medicine, Department of Neurobiology, New Haven, Connecticut 06511, USA
| | | | | | | | | | | |
Collapse
|
226
|
Edwards SE, Buffone MG, Knee GR, Rossato M, Bonanni G, Masiero S, Ferasin S, Gerton GL, Moss SB, Williams CJ. Effects of extracellular adenosine 5'-triphosphate on human sperm motility. Reprod Sci 2008; 14:655-66. [PMID: 18000227 DOI: 10.1177/1933719107306227] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) previously has been shown to increase the fertilization percentage in human in vitro fertilization (IVF) performed for male factor infertility. The objective of this study is to determine the effects of extracellular adenosine 5'-triphosphate (ATPe) on human sperm function by examining its effects on end points of sperm capacitation. Sperm obtained from healthy volunteers with normal semen parameters, asthenozoospermic men, and cryopreserved samples were incubated in medium with or without 2.5 mM ATPe. The effects of ATPe on acrosomal exocytosis, protein tyrosine phosphorylation, and sperm motility parameters were quantified. Although ATPe did not affect acrosomal exocytosis or protein tyrosine phosphorylation in sperm from healthy donors, it significantly altered several motility parameters, with the largest effects manifested in increased curvilinear velocity and percentage hyperactivation. ATPe similarly affected sperm selected for poor motility and thawed cryopreserved sperm but to a lesser extent than its effects on sperm with normal motility. ATPe increased straight-line velocity and linearity of sperm obtained from asthenozoospermic men. Human sperm motility characteristics are altered by ATPe; this finding may explain its previously reported beneficial effect on human IVF. These results suggest that ATPe could constitute a new therapeutic modality in the treatment of male infertility.
Collapse
Affiliation(s)
- Scott E Edwards
- Center for Research on Reproduction & Women's Health, Department of Obstetrics & Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Paunescu TG, Da Silva N, Russo LM, McKee M, Lu HAJ, Breton S, Brown D. Association of soluble adenylyl cyclase with the V-ATPase in renal epithelial cells. Am J Physiol Renal Physiol 2007; 294:F130-8. [PMID: 17959750 DOI: 10.1152/ajprenal.00406.2007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of soluble adenylyl cyclase (sAC) by bicarbonate causes local cAMP generation, indicating that sAC might act as a pH and/or bicarbonate sensor in kidney cells involved in acid-base homeostasis. Therefore, we examined the expression of sAC in renal acid-base transporting intercalated cells (IC) and compared its distribution to that of the vacuolar proton pumping ATPase (V-ATPase) under different conditions. In all IC, sAC and V-ATPase showed considerable overlap under basal conditions, but sAC staining was also found in other cellular locations in the absence of V-ATPase. In type A-IC, both sAC and V-ATPase were apically and subapically located, whereas in type B-IC, significant basolateral colocalization of sAC and the V-ATPase was seen. When apical membrane insertion of the V-ATPase was stimulated by treatment of rats with acetazolamide, sAC was also concentrated in the apical membrane of A-IC. In mice that lack a functional B1 subunit of the V-ATPase, sAC was colocalized apically in A-IC along with V-ATPase containing the alternative B2 subunit isoform. The close association between these two enzymes was confirmed by coimmunoprecipitation of sAC from kidney homogenates using anti-V-ATPase antibodies. Our data show that sAC and the V-ATPase colocalize in IC, that they are concentrated in the IC plasma membrane under conditions that "activate" these proton secretory cells, and that they are both present in an immunoprecipitated complex. This suggests that these enzymes have a close association and could be part of a protein complex that is involved in regulating renal distal proton secretion.
Collapse
Affiliation(s)
- Teodor G Paunescu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
228
|
Abstract
Following insemination of spermatozoa pre-ovulation, the mammalian oviduct ensures, by the formation of a functional sperm reservoir (SR), that suitable (low) numbers of viable and potentially fertile spermatozoa are available for fertilization at the ampullary isthmic junction (AIJ). As ovulation approaches, a proportion of the SR-stored spermatozoa is continuously distributed towards the AIJ and individually activated leading to step-wise capacitation and the attainment of hyperactivated motility. This paper reviews in vivo changes in the intra-luminal milieu of the oviduct of pigs and cows, in particular the SR and the AIJ which relate to the modulation of sperm capacitation around spontaneous ovulation. In vivo, most viable spermatozoa in the pre-ovulatory SR are uncapacitated. Capacitation rates significantly increase after ovulation, apparently not massively but concurrent with the individual, continuous sperm dislocation from the SR. Bicarbonate, whose levels differ between the SR and the AIJ, appears as the common primary effector of the membrane destabilizing changes that encompasses the first stages of capacitation. Sperm activation can be delayed or even reversed by co-incubation with membrane proteins of the tubal lining, isthmic fluid or specific tubal glycosaminoglycans, such as hyaluronan. Although the pattern of response to in vitro induction of sperm activation - capacitation in particular - is similar for all spermatozoa, the capacity and speed of the response is very individual. Such diversity in responsiveness among spermatozoa insures full sperm viability before ovulation and the presence of spermatozoa at different stages of capacitation at the AIJ, thus maximizing the chances of normal fertilization.
Collapse
Affiliation(s)
- H Rodriguez-Martinez
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
229
|
Schmid A, Sutto Z, Nlend MC, Horvath G, Schmid N, Buck J, Levin LR, Conner GE, Fregien N, Salathe M. Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP. ACTA ACUST UNITED AC 2007; 130:99-109. [PMID: 17591988 PMCID: PMC2154360 DOI: 10.1085/jgp.200709784] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ciliated airway epithelial cells are subject to sustained changes in intracellular CO(2)/HCO(3)(-) during exacerbations of airway diseases, but the role of CO(2)/HCO(3)(-)-sensitive soluble adenylyl cyclase (sAC) in ciliary beat regulation is unknown. We now show not only sAC expression in human airway epithelia (by RT-PCR, Western blotting, and immunofluorescence) but also its specific localization to the axoneme (Western blotting and immunofluorescence). Real time estimations of [cAMP] changes in ciliated cells, using FRET between fluorescently tagged PKA subunits (expressed under the foxj1 promoter solely in ciliated cells), revealed CO(2)/HCO(3)(-)-mediated cAMP production. This cAMP production was specifically blocked by sAC inhibitors but not by transmembrane adenylyl cyclase (tmAC) inhibitors. In addition, this cAMP production stimulated ciliary beat frequency (CBF) independently of intracellular pH because PKA and sAC inhibitors were uniquely able to block CO(2)/HCO(3)(-)-mediated changes in CBF (while tmAC inhibitors had no effect). Thus, sAC is localized to motile airway cilia and it contributes to the regulation of human airway CBF. In addition, CO(2)/HCO(3)(-) increases indeed reversibly stimulate intracellular cAMP production by sAC in intact cells.
Collapse
Affiliation(s)
- Andreas Schmid
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Beltrán C, Vacquier VD, Moy G, Chen Y, Buck J, Levin LR, Darszon A. Particulate and soluble adenylyl cyclases participate in the sperm acrosome reaction. Biochem Biophys Res Commun 2007; 358:1128-35. [PMID: 17524362 PMCID: PMC3644950 DOI: 10.1016/j.bbrc.2007.05.061] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 05/10/2007] [Indexed: 12/01/2022]
Abstract
cAMP is important in sea urchin sperm signaling, yet the molecular nature of the adenylyl cyclases (ACs) involved remained unknown. These cells were recently shown to contain an ortholog of the mammalian soluble adenylyl cyclase (sAC). Here, we show that sAC is present in the sperm head and as in mammals is stimulated by bicarbonate. The acrosome reaction (AR), a process essential for fertilization, is influenced by the bicarbonate concentration in seawater. By using functional assays and immunofluorescence techniques we document that sea urchin sperm also express orthologs of multiple isoforms of transmembrane ACs (tmACs). Our findings employing selective inhibitors for each class of AC indicate that both sAC and tmACs participate in the sperm acrosome reaction.
Collapse
Affiliation(s)
- Carmen Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 62250, Mexico.
| | | | | | | | | | | | | |
Collapse
|
231
|
Wang D, Hu J, Bobulescu IA, Quill TA, McLeroy P, Moe OW, Garbers DL. A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC). Proc Natl Acad Sci U S A 2007; 104:9325-30. [PMID: 17517652 PMCID: PMC1890493 DOI: 10.1073/pnas.0611296104] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Indexed: 02/04/2023] Open
Abstract
We previously identified a sperm-specific Na(+)/H(+) exchanger (sNHE) principally localized to the flagellum. Disruption of the sNHE gene in mice resulted in absolute male infertility associated with a complete loss of sperm motility. Here, we show that the sNHE-null spermatozoa fail to develop the cAMP-dependent protein tyrosine phosphorylation that coincides with the functional maturation occurring upon incubation in capacitating conditions in vitro. Both the sperm motility defect and the lack of induced protein tyrosine phosphorylation are rescued by the addition of cell-permeable cAMP analogs, suggesting that cAMP metabolism is impaired in spermatozoa lacking sNHE. Our analyses of the bicarbonate-dependent soluble adenylyl cyclase (sAC) signaling pathway in sNHE-null sperm cells reveal that sNHE is required for the expression of full-length sAC, and that it is important for the bicarbonate stimulation of sAC activity in spermatozoa. Furthermore, both codependent expression and coimmunoprecipitation experiments indicate that sNHE and sAC associate with each other. Thus, these two proteins appear to be components of a signaling complex at the sperm flagellar plasma membrane. We propose that the formation of this complex efficiently modulates intracellular pH and bicarbonate levels through the rapid and effective control of sAC and sNHE activities to facilitate sperm motility regulation.
Collapse
Affiliation(s)
- Dan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9051, USA.
| | | | | | | | | | | | | |
Collapse
|
232
|
Abstract
Recent advances in our understanding of the structure-function relationship of motile cilia with the 9 + 2 microtubular arrangement have helped explain some of the mechanisms of ciliary beat regulation by intracellular second messengers. These second messengers include cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) as well as calcium and pH. cAMP activates protein kinase A (PKA), which is localized to the axoneme. The cAMP-dependent phosphorylation of PKA's main target, originally described as p29 in Paramecium, seems to increase ciliary beat frequency (CBF) directly. The mechanism by which cGMP increases CBF is less well defined but involves protein kinase G and possibly PKA. Protein kinase C inhibits ciliary beating. The regulation mechanisms of CBF by calcium remain somewhat controversial, favoring an immediate, direct action of calcium on ciliary beating and a second cyclic nucleotide-dependent phase. Finally, intracellular pH likely affects CBF through direct influences on dynein arms.
Collapse
Affiliation(s)
- Matthias Salathe
- Division of Pulmonary and Critical Care Medicine, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA.
| |
Collapse
|
233
|
Kujala M, Hihnala S, Tienari J, Kaunisto K, Hästbacka J, Holmberg C, Kere J, Höglund P. Expression of ion transport-associated proteins in human efferent and epididymal ducts. Reproduction 2007; 133:775-84. [PMID: 17504921 DOI: 10.1530/rep.1.00964] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Appropriate intraluminal microenvironment in the epididymis is essential for maturation of sperm. To clarify whether the anion transporters SLC26A2, SLC26A6, SLC26A7, and SLC26A8 might participate in generating this proper intraluminal milieu, we studied the localization of these proteins in the human efferent and the epididymal ducts by immunohistochemistry. In addition, immunohistochemistry of several SLC26-interacting proteins was performed: the Na+/H+exchanger 3 (NHE3), the Cl−channel cystic fibrosis transmembrane conductance regulator (CFTR), the proton pump V-ATPase, their regulator Na+/H+exchanger regulating factor 1 (NHERF-1), and carbonic anhydrase II (CAII). Our results show that SLC26A6, CFTR, NHE3, and NHERF-1 are co-expressed on the apical side of the nonciliated cells, and SLC26A2 appears in the cilia of the ciliated cells in the human efferent ducts. In the epididymal ducts, SLC26A6, CFTR, NHERF-1, CAII, and V-ATPase (B and E subunits) were co-localized to the apical mitochondria rich cells, while SLC26A7 was expressed in a subgroup of basal cells. SLC26A8 was not found in the structures studied. This is the first study describing the localization of SLC26A2, A6 and A7, and NHERF-1 in the efferent and the epididymal ducts. Immunolocalization of human CFTR, NHE3, CAII, and V-ATPase in these structures differs partly from previous reports from rodents. Our findings suggest roles for these proteins in male fertility, either independently or through interaction and reciprocal regulation with co-localized proteins shown to affect fertility, when disrupted.
Collapse
Affiliation(s)
- Minna Kujala
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Beltrán C, Galindo BE, Rodríguez-Miranda E, Sánchez D. Signal transduction mechanisms regulating ion fluxes in the sea urchin sperm. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
235
|
Darszon A, Acevedo JJ, Galindo BE, Hernández-González EO, Nishigaki T, Treviño CL, Wood C, Beltrán C. Sperm channel diversity and functional multiplicity. Reproduction 2006; 131:977-88. [PMID: 16735537 DOI: 10.1530/rep.1.00612] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ion channels are extraordinarily efficient machines that move ions in diversely controlled manners, allowing cells to rapidly exchange information with the outside world and with other cells. Communication is the currency of fertilization, as it is of most fundamental cell signaling events. Ion channels are deeply involved in the dialogue between sperm, its surroundings, and the egg. How sperm swim, find the egg and fertilize it depend on ion permeability changes modulated by environmental cues and components of the egg outer layer. Different ion channels distinctly localized in these tiny, amazing cells perform specific decoding functions that shape the sophisticated behavior of sperm. It is not surprising that certain sperm ion channels are turning out to be unique. New strategies to characterize sperm ion transport have opened exciting possibilities to dissect sperm-egg signaling and unveil novel contraception targets.
Collapse
Affiliation(s)
- Alberto Darszon
- Department of Genetics of Development and Molecular Physiology, Institute of Biotechnology, UNAM, Cuernavaca, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Kaupp UB, Hildebrand E, Weyand I. Sperm chemotaxis in marine invertebrates--molecules and mechanisms. J Cell Physiol 2006; 208:487-94. [PMID: 16619222 DOI: 10.1002/jcp.20669] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sperm are attracted by chemical substances which are released by the egg. This process is called chemotaxis. Several molecules that are involved in chemotactic signaling of sperm from marine invertebrates are described and a model of the signaling pathway is presented. We discuss the motor response during chemotaxis and propose a model of the navigation strategy of sperm.
Collapse
Affiliation(s)
- U B Kaupp
- Institut für Biologische Informationsverarbeitung 1, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | |
Collapse
|
237
|
Wu KY, Zippin JH, Huron DR, Kamenetsky M, Hengst U, Buck J, Levin LR, Jaffrey SR. Soluble adenylyl cyclase is required for netrin-1 signaling in nerve growth cones. Nat Neurosci 2006; 9:1257-64. [PMID: 16964251 PMCID: PMC3081654 DOI: 10.1038/nn1767] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 08/15/2006] [Indexed: 11/09/2022]
Abstract
Growth cones at the tips of nascent and regenerating axons direct axon elongation. Netrin-1, a secreted molecule that promotes axon outgrowth and regulates axon pathfinding, elevates cyclic AMP (cAMP) levels in growth cones and regulates growth cone morphology and axonal outgrowth. These morphological effects depend on the intracellular levels of cAMP. However, the specific pathways that regulate cAMP levels in response to netrin-1 signaling are unclear. Here we show that 'soluble' adenylyl cyclase (sAC), an atypical calcium-regulated cAMP-generating enzyme previously implicated in sperm maturation, is expressed in developing rat axons and generates cAMP in response to netrin-1. Overexpression of sAC results in axonal outgrowth and growth cone elaboration, whereas inhibition of sAC blocks netrin-1-induced axon outgrowth and growth cone elaboration. Taken together, these results indicate that netrin-1 signals through sAC-generated cAMP, and identify a fundamental role for sAC in axonal development.
Collapse
Affiliation(s)
- Karen Y Wu
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Nomura M, Vacquier VD. Proteins associated with soluble adenylyl cyclase in sea urchin sperm flagella. ACTA ACUST UNITED AC 2006; 63:582-90. [PMID: 16847896 DOI: 10.1002/cm.20147] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adenylyl cyclases (ACs) synthesize cAMP and are present in cells as transmembrane AC and soluble AC (sAC). In sperm, the cAMP produced regulates ion channels and it also activates protein kinase-A that in turn phosphorylates specific axonemal proteins to activate flagellar motility. In mammalian sperm, sAC localizes to the midpiece of flagella, whereas in sea urchin sperm sAC is along the entire flagellum. Here we show that in sea urchin sperm, sAC is complexed with proteins of the plasma membrane and axoneme. Immunoprecipitation shows that a minimum of 10 proteins is tightly associated with sAC. Mass spectrometry of peptides derived from these proteins shows them to be: axonemal dynein heavy chains 7 and 9, sperm specific Na+/H+ exchanger, cyclic nucleotide-gated ion channel, sperm specific creatine kinase, membrane bound guanylyl cyclase, cyclic GMP specific phosphodiesterase 5A, the receptor for the egg peptide speract, and alpha- and beta-tubulins. The sAC-associated proteins could be important in linking membrane signal transduction to energy utilisation in the regulation of flagellar motility.
Collapse
Affiliation(s)
- Mamoru Nomura
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0202, USA.
| | | |
Collapse
|
239
|
Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol 2006; 362:623-39. [PMID: 16934836 PMCID: PMC3662476 DOI: 10.1016/j.jmb.2006.07.045] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/15/2006] [Accepted: 07/20/2006] [Indexed: 01/05/2023]
Abstract
The second messenger cAMP has been extensively studied for half a century, but the plethora of regulatory mechanisms controlling cAMP synthesis in mammalian cells is just beginning to be revealed. In mammalian cells, cAMP is produced by two evolutionary related families of adenylyl cyclases, soluble adenylyl cyclases (sAC) and transmembrane adenylyl cyclases (tmAC). These two enzyme families serve distinct physiological functions. They share a conserved overall architecture in their catalytic domains and a common catalytic mechanism, but they differ in their sub-cellular localizations and responses to various regulators. The major regulators of tmACs are heterotrimeric G proteins, which transduce extracellular signals via G protein-coupled receptors. sAC enzymes, in contrast, are regulated by the intracellular signaling molecules bicarbonate and calcium. Here, we discuss and compare the biochemical, structural and regulatory characteristics of the two mammalian AC families. This comparison reveals the mechanisms underlying their different properties but also illustrates many unifying themes for these evolutionary related signaling enzymes.
Collapse
Affiliation(s)
- Margarita Kamenetsky
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Sabine Middelhaufe
- Department of Physiological Chemistry, Ruhr-University, Bochum, Universitätsstraße
| | - Erin M. Bank
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Lonny R. Levin
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
- Corresponding authors: ;
| | - Jochen Buck
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Clemens Steegborn
- Department of Physiological Chemistry, Ruhr-University, Bochum, Universitätsstraße
- Corresponding authors: ;
| |
Collapse
|
240
|
Chaloupka JA, Bullock SA, Iourgenko V, Levin LR, Buck J. Autoinhibitory regulation of soluble adenylyl cyclase. Mol Reprod Dev 2006; 73:361-8. [PMID: 16250004 PMCID: PMC3644951 DOI: 10.1002/mrd.20409] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Soluble adenylyl cyclase is an evolutionarily conserved bicarbonate sensor that plays a crucial role in cAMP dependent processes that occur during mammalian fertilization. sAC protein is expressed at the highest levels in male germ cells, and is found to occur as one of two known isoforms: a truncated protein (sAC(t)) that consists almost exclusively of the two conserved catalytic domains (C1 and C2), and a full-length form (sAC(fl)) that contains an additional noncatalytic C-terminal region. Several studies suggested sAC(t) was more active than sAC(fl). We now demonstrate that the specific activity of sAC(t) is at least 10-fold higher than the specific activity of sAC(fl). Using deletion analysis and a novel genetic screen to identify activating mutations, we uncovered an autoinhibitory region just C-terminal to the C2 domain. Kinetic analysis of purified recombinant sAC revealed this autoinhibitory domain functions to lower the enzyme's V(max) without altering its affinity for substrate or regulation by any of the known modulators of sAC activity. Our results identify an additional regulatory mechanism specific to the sAC(fl) isoform.
Collapse
Affiliation(s)
| | | | | | - Lonny R. Levin
- Correspondence to: Lonny R. Levin, Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021.
| | | |
Collapse
|
241
|
Xie F, Garcia MA, Carlson AE, Schuh SM, Babcock DF, Jaiswal BS, Gossen JA, Esposito G, van Duin M, Conti M. Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Dev Biol 2006; 296:353-62. [PMID: 16842770 DOI: 10.1016/j.ydbio.2006.05.038] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/25/2006] [Accepted: 05/31/2006] [Indexed: 11/30/2022]
Abstract
We previously demonstrated that male mice deficient in the soluble adenylyl cyclase (sAC) are sterile and produce spermatozoa with deficits in progressive motility and are unable to fertilize zona-intact eggs. Here, analyses of sAC(-/-) spermatozoa provide additional insights into the functions linked to cAMP signaling. Adenylyl cyclase activity and cAMP content are greatly diminished in crude preparations of sAC(-/-) spermatozoa and are undetectable after sperm purification. HCO(3)(-) is unable to rapidly accelerate the flagellar beat or facilitate evoked Ca(2+) entry into sAC(-/-) spermatozoa. Moreover, the delayed HCO(3)(-)-dependent increases in protein tyrosine phosphorylation and hyperactivated motility, which occur late in capacitation of wild-type spermatozoa, do not develop in sAC(-/-) spermatozoa. However, sAC(-/-) sperm fertilize zona-free oocytes, indicating that gamete fusion does not require sAC. Although ATP levels are significantly reduced in sAC(-/-) sperm, cAMP-AM ester increases flagellar beat frequency, progressive motility, and alters the pattern of tyrosine phosphorylated proteins. These results indicate that sAC and cAMP coordinate cellular energy balance in wild-type sperm and that the ATP generating machinery is not operating normally in sAC(-/-) spermatozoa. These findings demonstrate that sAC plays a critical role in cAMP signaling in spermatozoa and that defective cAMP production prevents engagement of multiple components of capacitation resulting in male infertility.
Collapse
Affiliation(s)
- Fang Xie
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Stessin AM, Zippin JH, Kamenetsky M, Hess KC, Buck J, Levin LR. Soluble adenylyl cyclase mediates nerve growth factor-induced activation of Rap1. J Biol Chem 2006; 281:17253-17258. [PMID: 16627466 PMCID: PMC3092367 DOI: 10.1074/jbc.m603500200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nerve growth factor (NGF) and the ubiquitous second messenger cyclic AMP (cAMP) are both implicated in neuronal differentiation. Multiple studies indicate that NGF signals to at least a subset of its targets via cAMP, but the link between NGF and cAMP has remained elusive. Here, we have described the use of small molecule inhibitors to differentiate between the two known sources of cAMP in mammalian cells, bicarbonate- and calcium-responsive soluble adenylyl cyclase (sAC) and G protein-regulated transmembrane adenylyl cyclases. These inhibitors, along with sAC-specific small interfering RNA, reveal that sAC is uniquely responsible for the NGF-elicited rise in cAMP and is essential for the NGF-induced activation of the small G protein Rap1 in PC12 cells. In contrast and as expected, transmembrane adenylyl cyclase-generated cAMP is responsible for Rap1 activation by the G protein-coupled receptor ligand PACAP (pituitary adenylyl cyclase-activating peptide). These results identify sAC as a mediator of NGF signaling and reveal the existence of distinct pathways leading to cAMP-dependent signal transduction.
Collapse
Affiliation(s)
- Alexander M Stessin
- Department of Pharmacology, New York, New York 10021; Tri-institutional M.D./Ph.D. Program, Weill Medical College of Cornell University, New York, New York 10021
| | - Jonathan H Zippin
- Department of Pharmacology, New York, New York 10021; Tri-institutional M.D./Ph.D. Program, Weill Medical College of Cornell University, New York, New York 10021
| | | | | | - Jochen Buck
- Department of Pharmacology, New York, New York 10021.
| | - Lonny R Levin
- Department of Pharmacology, New York, New York 10021
| |
Collapse
|
243
|
Gunaratne HJ, Nomura M, Moy GW, Vacquier VD. A sodium bicarbonate transporter from sea urchin spermatozoa. Gene 2006; 375:37-43. [PMID: 16603323 DOI: 10.1016/j.gene.2006.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/10/2006] [Accepted: 02/01/2006] [Indexed: 01/08/2023]
Abstract
Bicarbonate (HCO3-) transporters play crucial roles in cell-signaling pathways and are essential for cell viability. Here we describe the first cloning and localization of a HCO3- transporter from sperm of the sea urchin, Strongylocentrotus purpuratus. The deduced protein is 1214 amino acids and has a calculated molecular mass of 135 kDa. The annotated protein coding region of the transporter gene consists of 24 exons. The most similar human protein is the Na+/HCO3- cotransporter-2 (NBC2), which has 53% identity and 68% similarity to the sea urchin protein. The sea urchin protein shares the major structural features of HCO3- transporters, including 13 transmembrane segments, a DIDS (4,4-diiodothiocyanatostilbene-2, 2-disulfonic acid) binding motif and N-linked glycosylation sites. It has longer N- and C-terminal cytoplasmic domains compared to human HCO3- transporters. The sea urchin protein possesses a relatively long 3rd extracellular loop with four conserved cysteine residues. This is characteristic for Na+/HCO3- cotransporters, but not for anion exchangers, suggesting that the sea urchin protein is a Na+/HCO3- cotransporter. It is therefore designated as Sp-NBC. A neighbor-joining tree shows that Sp-NBC branches closer to the electroneutral type of HCO3- transporters. Western immunoblots and immunoflourescence show that Sp-NBC is concentrated in the flagellar plasma membrane, suggesting a role in motility regulation.
Collapse
Affiliation(s)
- Herath Jayantha Gunaratne
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA.
| | | | | | | |
Collapse
|
244
|
Smith N, Kim SK, Reddy PT, Gallagher DT. Crystallization of the class IV adenylyl cyclase from Yersinia pestis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:200-4. [PMID: 16511301 PMCID: PMC2197185 DOI: 10.1107/s1744309106002855] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 01/23/2006] [Indexed: 01/01/2023]
Abstract
The class IV adenylyl cyclase from Yersinia pestis has been cloned and crystallized in both a triclinic and an orthorhombic form. An amino-terminal His-tagged construct, from which the tag was removed by thrombin, crystallized in a triclinic form diffracting to 1.9 A, with one dimer per asymmetric unit and unit-cell parameters a = 33.5, b = 35.5, c = 71.8 A, alpha = 88.7, beta = 82.5, gamma = 65.5 degrees. Several mutants of this construct crystallized but diffracted poorly. A non-His-tagged native construct (179 amino acids, MW = 20.5 kDa) was purified by conventional chromatography and crystallized in space group P2(1)2(1)2(1). These crystals have unit-cell parameters a = 56.8, b = 118.6, c = 144.5 A, diffract to 3 A and probably have two dimers per asymmetric unit and VM = 3.0 A3 Da(-1). Both crystal forms appear to require pH below 5, complicating attempts to incorporate nucleotide ligands into the structure. The native construct has been produced as a selenomethionine derivative and crystallized for phasing and structure determination.
Collapse
Affiliation(s)
- Natasha Smith
- Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8310, USA
| | - Sook-Kyung Kim
- Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8310, USA
| | - Prasad T. Reddy
- Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8310, USA
| | - D. Travis Gallagher
- Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8310, USA
- Correspondence e-mail:
| |
Collapse
|
245
|
Fraser LR, Beyret E, Milligan SR, Adeoya-Osiguwa SA. Effects of estrogenic xenobiotics on human and mouse spermatozoa. Hum Reprod 2006; 21:1184-93. [PMID: 16459350 DOI: 10.1093/humrep/dei486] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate human sperm responsiveness to the estrogenic xenobiotic genistein and seek further information regarding the mechanism of action of estrogenic xenobiotics using mouse spermatozoa. METHODS Uncapacitated human spermatozoa were incubated with genistein and assessed using chlortetracycline (CTC) fluorescence. CTC was also used to evaluate mouse sperm responses to daidzein and combinations of genistein, 8-prenylnaringenin and nonylphenol. Several steroids were tested to determine structure-function relationships, and possible involvement of cAMP and G proteins in responses was also investigated. RESULTS Genistein significantly accelerated capacitation and acrosome loss in human spermatozoa, with 1, 10 and 100 nmol/l being equally effective. In mouse spermatozoa, daidzein produced significant responses, and combinations of xenobiotics at low concentrations were more effective than used singly. The compounds appear to act at the cell surface, and responses to three different steroids were nonidentical. A protein kinase-A inhibitor blocked responses to xenobiotics, while genistein and nonylphenol significantly stimulated cAMP production. Pertussis toxin and dideoxyadenosine blocked responses, suggesting involvement of inhibitory G proteins and membrane-associated adenylyl cyclases. CONCLUSION Human and mouse sperm responses to genistein are very similar, but human gametes appear to be even more sensitive. The mechanism of action may involve unregulated stimulation of cAMP production, leading to significant acrosome loss, undesirable because already acrosome-reacted cells are nonfertilizing. Xenobiotics were even more effective in combination. Since simultaneous exposure to low concentrations of multiple xenobiotics is likely to occur in animals and humans, further investigation is needed to determine whether this could impair fertility.
Collapse
Affiliation(s)
- Lynn R Fraser
- Reproduction and Rhythms Group, School of Biomedical and Health Sciences, King's College London, London, UK.
| | | | | | | |
Collapse
|
246
|
Branham MT, Mayorga LS, Tomes CN. Calcium-induced acrosomal exocytosis requires cAMP acting through a protein kinase A-independent, Epac-mediated pathway. J Biol Chem 2006; 281:8656-66. [PMID: 16407249 DOI: 10.1074/jbc.m508854200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epac, a guanine nucleotide exchange factor for the small GTPase Rap, binds to and is activated by the second messenger cAMP. In sperm, there are a number of signaling pathways required to achieve egg-fertilizing ability that depend upon an intracellular rise of cAMP. Most of these processes were thought to be mediated by cAMP-dependent protein kinases. Here we report a new dependence for the cAMP-induced acrosome reaction involving Epac. The acrosome reaction is a specialized type of regulated exocytosis leading to a massive fusion between the outer acrosomal and the plasma membranes of sperm cells. Ca2+ is the archetypical trigger of regulated exocytosis, and we show here that its effects on acrosomal release are fully mediated by cAMP. Ca2+ failed to trigger acrosomal exocytosis when intracellular cAMP was depleted by an exogenously added phosphodiesterase or when Epac was sequestered by specific blocking antibodies. The nondiscriminating dibutyryl-cAMP and the Epac-selective 8-(p-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate analogues triggered the acrosome reaction in the effective absence of extracellular Ca2+. This indicates that cAMP, via Epac activation, has the ability to drive the whole cascade of events necessary to bring exocytosis to completion, including tethering and docking of the acrosome to the plasma membrane, priming of the fusion machinery, mobilization of intravesicular Ca2+, and ultimately, bilayer mixing and fusion. cAMP-elicited exocytosis was sensitive to anti-alpha-SNAP, anti-NSF, and anti-Rab3A antibodies, to intra-acrosomal Ca2+ chelators, and to botulinum toxins but was resistant to cAMP-dependent protein kinase blockers. These experiments thus identify Epac in human sperm and evince its indispensable role downstream of Ca2+ in exocytosis.
Collapse
Affiliation(s)
- María T Branham
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, CC 56, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | | | | |
Collapse
|
247
|
Sinha SC, Sprang SR. Structures, mechanism, regulation and evolution of class III nucleotidyl cyclases. Rev Physiol Biochem Pharmacol 2006; 157:105-40. [PMID: 17236651 DOI: 10.1007/112_0603] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cyclic 3',5'-guanylyl and adenylyl nucleotides function as second messengers in eukaryotic signal transduction pathways and as sensory transducers in prokaryotes. The nucleotidyl cyclases (NCs) that catalyze the synthesis of these molecules comprise several evolutionarily distinct groups, of which class III is the largest. The domain structures of prokaryotic and eukaryotic class III NCs are diverse, including a variety of regulatory and transmembrane modules. Yet all members of this family contain one or two catalytic domains, characterized by an evolutionarily ancient topological motif (betaalphaalphabetabetaalphabeta) that is preserved in several other enzymes that catalyze the nucleophilic attack of a 3'-hydroxyl upon a 5' nucleotide phosphate. Two dyad-related catalytic domains compose one catalytic unit, with the catalytic sites formed at the domain interface. The catalytic domains of mononucleotidyl cyclases (MNCs) and diguanylate cyclases (DGCs) are called cyclase homology domains (CHDs) and GGDEF domains, respectively. Prokaryotic NCs usually contain only one catalytic domain and are catalytically active as intermolecular homodimers. The different modes of dimerization in class III NCs probably evolved concurrently with their mode of binding substrate. The catalytic mechanism of GGDEF domain homodimers is not completely understood, but they are expected to have a single active site with each subunit contributing equivalent determinants to bind one GTP molecule or half a c-diGMP molecule. CHD dimers have two potential dyad-related active sites, with both CHDs contributing determinants to each site. Homodimeric class III MNCs have two equivalent catalytic sites, although such enzymes may show half-of-sites reactivity. Eukaryotic class III MNCs often contain two divergent CHDs, with only one catalytically competent site. All CHDs appear to use a common catalytic mechanism, which requires the participation of two magnesium or manganese ions for binding polyphosphate groups and nucleophile activation. In contrast, mechanisms for purine recognition and specificity are more diverse. Class III NCs are subject to regulation by small molecule effectors, endogenous domains, or exogenous protein partners. Many of these regulators act by altering the interface of the catalytic domains and therefore the integrity of the catalytic site(s). This review focuses on both conserved and divergent mechanisms of class III NC function and regulation.
Collapse
Affiliation(s)
- S C Sinha
- University of Texas Southwestern Medical Center, Division of Infectious Diseases, Department of Internal Medicine, 5323 Harry Hines Blvd., Dallas 75390-9113, USA.
| | | |
Collapse
|
248
|
Turner RM. Moving to the beat: a review of mammalian sperm motility regulation. Reprod Fertil Dev 2006; 18:25-38. [PMID: 16478600 DOI: 10.1071/rd05120] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 01/21/2005] [Indexed: 01/18/2023] Open
Abstract
Because it is generally accepted that a high percentage of poorly motile or immotile sperm will adversely affect male fertility, analysis of sperm motility is a central part of the evaluation of male fertility. In spite of its importance to fertility, poor sperm motility remains only a description of a pathology whose underlying cause is typically poorly understood. The present review is designed to bring the clinician up to date with the most current understanding of the mechanisms that regulate sperm motility and to raise questions about how aberrations in these mechanisms could be the underlying causes of this pathology.
Collapse
Affiliation(s)
- Regina M Turner
- Department of Clinical Studies, Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, PA 19348, USA.
| |
Collapse
|
249
|
Hess KC, Jones BH, Marquez B, Chen Y, Ord TS, Kamenetsky M, Miyamoto C, Zippin JH, Kopf GS, Suarez SS, Levin LR, Williams CJ, Buck J, Moss SB. The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev Cell 2005; 9:249-59. [PMID: 16054031 PMCID: PMC3082461 DOI: 10.1016/j.devcel.2005.06.007] [Citation(s) in RCA: 317] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 05/11/2005] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
Mammalian fertilization is dependent upon a series of bicarbonate-induced, cAMP-dependent processes sperm undergo as they "capacitate," i.e., acquire the ability to fertilize eggs. Male mice lacking the bicarbonate- and calcium-responsive soluble adenylyl cyclase (sAC), the predominant source of cAMP in male germ cells, are infertile, as the sperm are immotile. Membrane-permeable cAMP analogs are reported to rescue the motility defect, but we now show that these "rescued" null sperm were not hyperactive, displayed flagellar angulation, and remained unable to fertilize eggs in vitro. These deficits uncover a requirement for sAC during spermatogenesis and/or epididymal maturation and reveal limitations inherent in studying sAC function using knockout mice. To circumvent this restriction, we identified a specific sAC inhibitor that allowed temporal control over sAC activity. This inhibitor revealed that capacitation is defined by separable events: induction of protein tyrosine phosphorylation and motility are sAC dependent while acrosomal exocytosis is not dependent on sAC.
Collapse
Affiliation(s)
- Kenneth C. Hess
- Department of Pharmacology Joan and Sanford Weill Medical College Graduate School of Medical Sciences of Cornell University New York, New York 10021
| | - Brian H. Jones
- Center for Research on Reproduction and Women’s Health University of Pennsylvania Medical Center Philadelphia, Pennsylvania 19104
| | - Becky Marquez
- Department of Biomedical Sciences College of Veterinary Medicine Cornell University Ithaca, New York 14853
| | - Yanqiu Chen
- Department of Pharmacology Joan and Sanford Weill Medical College Graduate School of Medical Sciences of Cornell University New York, New York 10021
| | - Teri S. Ord
- Center for Research on Reproduction and Women’s Health University of Pennsylvania Medical Center Philadelphia, Pennsylvania 19104
| | - Margarita Kamenetsky
- Department of Pharmacology Joan and Sanford Weill Medical College Graduate School of Medical Sciences of Cornell University New York, New York 10021
| | - Catarina Miyamoto
- Department of Pharmacology Joan and Sanford Weill Medical College Graduate School of Medical Sciences of Cornell University New York, New York 10021
| | - Jonathan H. Zippin
- Department of Pharmacology Joan and Sanford Weill Medical College Graduate School of Medical Sciences of Cornell University New York, New York 10021
| | - Gregory S. Kopf
- Center for Research on Reproduction and Women’s Health University of Pennsylvania Medical Center Philadelphia, Pennsylvania 19104
| | - Susan S. Suarez
- Department of Biomedical Sciences College of Veterinary Medicine Cornell University Ithaca, New York 14853
| | - Lonny R. Levin
- Department of Pharmacology Joan and Sanford Weill Medical College Graduate School of Medical Sciences of Cornell University New York, New York 10021
- Correspondence: (L.R.L.), (S.B.M.)
| | - Carmen J. Williams
- Center for Research on Reproduction and Women’s Health University of Pennsylvania Medical Center Philadelphia, Pennsylvania 19104
| | - Jochen Buck
- Department of Pharmacology Joan and Sanford Weill Medical College Graduate School of Medical Sciences of Cornell University New York, New York 10021
| | - Stuart B. Moss
- Center for Research on Reproduction and Women’s Health University of Pennsylvania Medical Center Philadelphia, Pennsylvania 19104
- Correspondence: (L.R.L.), (S.B.M.)
| |
Collapse
|
250
|
Masuda S, Ono TA. Adenylyl cyclase activity of Cya1 from the cyanobacterium Synechocystis sp. strain PCC 6803 is inhibited by bicarbonate. J Bacteriol 2005; 187:5032-5. [PMID: 15995223 PMCID: PMC1169521 DOI: 10.1128/jb.187.14.5032-5035.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bicarbonate stimulates the activities of several class III adenylyl cyclases studied to date. However, we show here that bicarbonate decreased V(max) and substrate affinity in Cya1, a major adenylyl cyclase in the cyanobacterium Synechocystis sp. strain PCC 6803. This indicates that manifestation of the bicarbonate responsiveness is specifically modulated in Cya1.
Collapse
Affiliation(s)
- Shinji Masuda
- Laboratory for Photo-Biology, RIKEN Photodynamics Research Center, The Institute of Physical and Chemical Research, Aramaki, Aoba, Sendai, Japan.
| | | |
Collapse
|