201
|
Ruiz LM, Jensen EL, Bustos RI, Argüelloa G, Gutierrez-Garcia R, González M, Hernández C, Paredes R, Simon F, Riedel C, Ferrick D, Elorza AA. Adaptive responses of mitochondria to mild copper deprivation involve changes in morphology, OXPHOS remodeling and bioenergetics. J Cell Physiol 2014; 229:607-19. [PMID: 24446197 DOI: 10.1002/jcp.24484] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/30/2013] [Indexed: 12/23/2022]
Abstract
Copper is an essential cofactor of complex IV of the electron transfer chain, and it is directly involved in the generation of mitochondrial membrane potential. Its deficiency induces the formation of ROS, large mitochondria and anemia. Thus, there is a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis. Copper depletion might end in cellular apoptosis or necrosis. However, before entering into those irreversible processes, mitochondria may execute a series of adaptive responses. Mitochondrial adaptive responses (MAR) may involve multiple and diverse mechanisms for preserving cell life, such as mitochondrial dynamics, OXPHOS remodeling and bioenergetics output. In this study, a mild copper deficiency was produced in an animal model through intraperitoneal injections of bathocuproine disulfonate in order to study the MAR. Under these conditions, a new type of mitochondrial morphology was discovered in the liver. Termed the "butternut squash" mitochondria, it coexisted with normal and swollen mitochondria. Western blot analyses of mitochondrial dynamics proteins showed an up-regulation of MFN-2 and OPA1 fusion proteins. Furthermore, isolated liver mitochondria displayed OXPHOS remodeling through a decrease in supercomplex activity with a concomitant increase at an individual level of complexes I and IV, higher respiratory rates at complex I and II levels, higher oligomycin-insensitive respiration, and lower respiratory control ratio values when compared to the control group. As expected, total ATP and ATP/ADP values were not significantly different, since animal's health was not compromised. As a whole, these results describe a compensatory and adaptive response of metabolism and bioenergetics under copper deprivation.
Collapse
Affiliation(s)
- Lina María Ruiz
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Brionne A, Nys Y, Hennequet-Antier C, Gautron J. Hen uterine gene expression profiling during eggshell formation reveals putative proteins involved in the supply of minerals or in the shell mineralization process. BMC Genomics 2014; 15:220. [PMID: 24649854 PMCID: PMC3999959 DOI: 10.1186/1471-2164-15-220] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/11/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The chicken eggshell is a natural mechanical barrier to protect egg components from physical damage and microbial penetration. Its integrity and strength is critical for the development of the embryo or to ensure for consumers a table egg free of pathogens. This study compared global gene expression in laying hen uterus in the presence or absence of shell calcification in order to characterize gene products involved in the supply of minerals and / or the shell biomineralization process. RESULTS Microarrays were used to identify a repertoire of 302 over-expressed genes during shell calcification. GO terms enrichment was performed to provide a global interpretation of the functions of the over-expressed genes, and revealed that the most over-represented proteins are related to reproductive functions. Our analysis identified 16 gene products encoding proteins involved in mineral supply, and allowed updating of the general model describing uterine ion transporters during eggshell calcification. A list of 57 proteins potentially secreted into the uterine fluid to be active in the mineralization process was also established. They were classified according to their potential functions (biomineralization, proteoglycans, molecular chaperone, antimicrobials and proteases/antiproteases). CONCLUSIONS Our study provides detailed descriptions of genes and corresponding proteins over-expressed when the shell is mineralizing. Some of these proteins involved in the supply of minerals and influencing the shell fabric to protect the egg contents are potentially useful biological markers for the genetic improvement of eggshell quality.
Collapse
Affiliation(s)
| | | | | | - Joël Gautron
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France.
| |
Collapse
|
203
|
Song H, Wang W, Zhao P, Qi Z, Zhao S. Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression. NANOSCALE 2014; 6:3206-3216. [PMID: 24499922 DOI: 10.1039/c3nr04363k] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Angiogenesis is a process that forms new blood capillaries from existing vessels, which is of great physiological and pathological significance. Although recent studies provide evidence that cuprous oxide nanoparticles (CO-NPs) may have biomedical potential, the mechanisms of CO-NPs in angiogenesis have not been investigated to date. We have studied the anti-angiogenic properties of CO-NPs on primary human umbilical vein endothelial cells (HUVECs). We found that CO-NPs were able to induce cell morphology changes and suppress cell proliferation, migration and tube formation in vitro and in vivo dose dependently. Furthermore, CO-NPs could induce cell apoptosis both at the early and late apoptotic stage and induce cell cycle arrest at S phase in a dose dependent manner. As signalling via the vascular endothelial growth factor receptor-2 (VEGFR2) is critical for angiogenic responses, we further explored the expression of VEGFR2 after the treatment of CO-NPs. They were found to inhibit VEGFR2 expression dose and time dependently both at the protein and mRNA level while had no effect on VEGF and VEGFR1 expression. Together, we report for the first time that CO-NPs can act as an anti-angiogenic agent by suppressing VEGFR2 expression, which may be a potential nanomedicine for angiogenesis therapy.
Collapse
Affiliation(s)
- Hongyuan Song
- Department of Ophthalmology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, P.R. China.
| | | | | | | | | |
Collapse
|
204
|
Cai H, Wu JS, Muzik O, Hsieh JT, Lee RJ, Peng F. Reduced 64Cu uptake and tumor growth inhibition by knockdown of human copper transporter 1 in xenograft mouse model of prostate cancer. J Nucl Med 2014; 55:622-8. [PMID: 24639459 DOI: 10.2967/jnumed.113.126979] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Copper is an element required for cell proliferation and angiogenesis. Human prostate cancer xenografts with increased (64)Cu radioactivity were visualized previously by PET using (64)CuCl2 as a radiotracer ((64)CuCl2 PET). This study aimed to determine whether the increased tumor (64)Cu radioactivity was due to increased cellular uptake of (64)Cu mediated by human copper transporter 1 (hCtr1) or simply due to nonspecific binding of ionic (64)CuCl2 to tumor tissue. In addition, the functional role of hCtr1 in proliferation of prostate cancer cells and tumor growth was also assessed. METHODS A lentiviral vector encoding short-hairpin RNA specific for hCtr1 (Lenti-hCtr1-shRNA) was constructed for RNA interference-mediated knockdown of hCtr1 expression in prostate cancer cells. The degree of hCtr1 knockdown was determined by Western blot, and the effect of hCtr1 knockdown on copper uptake and proliferation were examined in vitro by cellular (64)Cu uptake and cell proliferation assays. The effects of hCtr1 knockdown on tumor uptake of (64)Cu were determined by PET quantification and tissue radioactivity assay. The effects of hCtr1 knockdown on tumor growth were assessed by PET/CT and tumor size measurement with a caliper. RESULTS RNA interference-mediated knockdown of hCtr1 was associated with the reduced cellular uptake of (64)Cu and the suppression of prostate cancer cell proliferation in vitro. At 24 h after intravenous injection of the tracer (64)CuCl2, the (64)Cu uptake by the tumors with knockdown of hCtr1 (4.02 ± 0.31 percentage injected dose per gram [%ID/g] in Lenti-hCtr1-shRNA-PC-3 and 2.30 ± 0.59 %ID/g in Lenti-hCtr1-shRNA-DU-145) was significantly lower than the (64)Cu uptake by the control tumors without knockdown of hCtr1 (7.21 ± 1.48 %ID/g in Lenti-SCR-shRNA-PC-3 and 5.57 ± 1.20 %ID/g in Lenti-SCR-shRNA-DU-145, P < 0.001) by PET quantification. Moreover, the volumes of prostate cancer xenograft tumors with knockdown of hCtr1 (179 ± 111 mm(3) for Lenti-hCtr1-shRNA-PC-3 or 39 ± 22 mm(3) for Lenti-hCtr1-shRNA-DU-145) were significantly smaller than those without knockdown of hCtr1 (536 ± 191 mm(3) for Lenti- SCR-shRNA-PC-3 or 208 ± 104 mm(3) for Lenti-SCR-shRNA-DU-145, P < 0.01). CONCLUSION Overall, data indicated that hCtr1 is a promising theranostic target, which can be further developed for metabolic imaging of prostate cancer using (64)CuCl2 PET/CT and personalized cancer therapy targeting copper metabolism.
Collapse
Affiliation(s)
- Huawei Cai
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | | | | | |
Collapse
|
205
|
Peng F. Positron emission tomography for measurement of copper fluxes in live organisms. Ann N Y Acad Sci 2014; 1314:24-31. [PMID: 24628290 DOI: 10.1111/nyas.12383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Copper is an essential nutrient for the physiology of live organisms, but excessive copper can be harmful. Copper radioisotopes are used for measurement of copper fluxes in live organisms using a radioactivity assay of body fluids or whole-body positron emission tomography (PET). Hybrid positron emission tomography-computed tomography (PET/CT) is a versatile tool for real-time measurement of copper fluxes combining the high sensitivity and quantification capability of PET and the superior spatial resolution of CT for anatomic localization of radioactive tracer activity. Kinetic analysis of copper metabolism in the liver and extrahepatic tissues of Atp7b(-/-) knockout mice, a mouse model of Wilson's disease, demonstrated the feasibility of measuring copper fluxes in live organisms with PET/CT using copper-64 chloride ((64) CuCl2 ) as a radioactive tracer ((64) CuCl2 -PET/CT). (64) CuCl2 -PET/CT holds potential as a useful tool for the diagnosis of inherited and acquired human copper metabolism disorders and for monitoring the effects of copper-modulating therapy.
Collapse
Affiliation(s)
- Fangyu Peng
- Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
206
|
Zimnicka AM, Tang H, Guo Q, Kuhr FK, Oh MJ, Wan J, Chen J, Smith KA, Fraidenburg DR, Choudhury MSR, Levitan I, Machado RF, Kaplan JH, Yuan JXJ. Upregulated copper transporters in hypoxia-induced pulmonary hypertension. PLoS One 2014; 9:e90544. [PMID: 24614111 PMCID: PMC3948681 DOI: 10.1371/journal.pone.0090544] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/02/2014] [Indexed: 11/18/2022] Open
Abstract
Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu) plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX), a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2) also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC). In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α) with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.
Collapse
Affiliation(s)
- Adriana M. Zimnicka
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Haiyang Tang
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Qiang Guo
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Frank K. Kuhr
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Myung-Jin Oh
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jun Wan
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jiwang Chen
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Kimberly A. Smith
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dustin R. Fraidenburg
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Moumita S. R. Choudhury
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Irena Levitan
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Roberto F. Machado
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jack H. Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jason X.-J. Yuan
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
207
|
|
208
|
Lee EC, Ha E, Singh S, Legesse L, Ahmad S, Karnaukhova E, Donaldson RP, Jeremic AM. Copper(II)-human amylin complex protects pancreatic cells from amylin toxicity. Phys Chem Chem Phys 2014; 15:12558-71. [PMID: 23793354 DOI: 10.1039/c3cp44542a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human amylin-derived oligomers and aggregates are believed to play an important role in the pathogenesis of type II diabetes mellitus (T2DM). In addition to amylin-evoked cell attrition, T2DM is often accompanied by elevated serum copper levels. Although previous studies have shown that human amylin, in the course of its aggregation, produces hydrogen peroxide (H2O2) in solution, and that this process is exacerbated in the presence of copper(ii) ions (Cu(2+)), very little is known about the mechanism of interaction between Cu(2+) and amylin in pancreatic β-cells, including its pathological significance. Hence, in this study we investigated the mechanism by which Cu(2+) and human amylin catalyze formation of reactive oxygen species (ROS) in cells and in vitro, and examined the modulatory effect of Cu(2+) on amylin aggregation and toxicity in pancreatic rat insulinoma (RIN-m5F) β-cells. Our results indicate that Cu(2+) interacts with human and rat amylin to form metalo-peptide complexes with low aggregative and oxidative properties. Human and non-amyloidogenic rat amylin produced minute (nM) amounts of H2O2, the accumulation of which was slightly enhanced in the presence of Cu(2+). In a marked contrast to human and rat amylin, and in the presence of the reducing agents glutathione and ascorbate, Cu(2+) produced μM concentrations of H2O2 surpassing the amylin effect by several fold. The current study shows that human and rat amylin not only produce but also quench H2O2, and that human but not rat amylin significantly decreases the amount of H2O2 in solution produced by Cu(2+) and glutathione. Similarly, human amylin was found to also decrease hydroxyl radical formation elicited by Cu(2+) and glutathione. Furthermore, Cu(2+) mitigated the toxic effect of human amylin by inhibiting activation of pro-apoptotic caspase-3 and stress-kinase signaling pathways in rat pancreatic insulinoma cells in part by stabilizing human amylin in its native conformational state. This sacrificial quenching of metal-catalyzed ROS by human amylin and copper's anti-aggregative and anti-apoptotic properties suggest a novel and protective role for the copper-amylin complex.
Collapse
Affiliation(s)
- Elizabeth C Lee
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Cho J, Pradhan T, Lee YM, Kim JS, Kim S. A calix[2]triazole[2]arene-based fluorescent chemosensor for probing the copper trafficking pathway in Wilson's disease. Dalton Trans 2014; 43:16178-82. [DOI: 10.1039/c4dt02208d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We herein present a synthesis of a new fluorescent chemosensor for Cu2+and its application to Wilson's disease cell model to probe the copper trafficking pathway.
Collapse
Affiliation(s)
- Jihee Cho
- College of Pharmacy
- Seoul National University
- Seoul 151-742, Korea
| | - Tuhin Pradhan
- Department of Chemistry
- Korea University
- Seoul 136-701, Korea
| | - Yun Mi Lee
- College of Pharmacy
- Seoul National University
- Seoul 151-742, Korea
| | - Jong Seung Kim
- Department of Chemistry
- Korea University
- Seoul 136-701, Korea
| | - Sanghee Kim
- College of Pharmacy
- Seoul National University
- Seoul 151-742, Korea
| |
Collapse
|
210
|
Zarschler K, Kubeil M, Stephan H. Establishment of two complementary in vitro assays for radiocopper complexes achieving reliable and comparable evaluation of in vivo stability. RSC Adv 2014. [DOI: 10.1039/c3ra47302c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
211
|
Tang L, Zhao J, Cai M, Zhou P, Zhong K, Hou S, Bian Y. An efficient sensor for relay recognition of Zn2+ and Cu2+ through fluorescence ‘off–on–off’ functionality. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.08.124] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
212
|
Badarau A, Baslé A, Firbank SJ, Dennison C. Investigating the role of zinc and copper binding motifs of trafficking sites in the cyanobacterium Synechocystis PCC 6803. Biochemistry 2013; 52:6816-23. [PMID: 24050657 PMCID: PMC3793899 DOI: 10.1021/bi400492t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although zinc and copper are required by proteins with very different functions, these metals can be delivered to cellular locations by homologous metal transporters within the same organism, as demonstrated by the cyanobacterial ( Synechocystis PCC 6803) zinc exporter ZiaA and thylakoidal copper importer PacS. The N-terminal metal-binding domains of these transporters (ZiaAN and PacSN, respectively) have related ferredoxin folds also found in the metallochaperone Atx1, which delivers copper to PacS, but differ in the residues found in their M/IXCXXC metal-binding motifs. To investigate the role of the nonconserved residues in this region on metal binding, the sequence from ZiaAN has been introduced into Atx1 and PacSN, and the motifs of Atx1 and PacSN swapped. The motif sequence can tune Cu(I) affinity only approximately 3-fold. However, the introduction of the ZiaAN motif (MDCTSC) dramatically increases the Zn(II) affinity of both Atx1 and PacSN by up to 2 orders of magnitude. The Atx1 mutant with the ZiaAN motif crystallizes as a side-to-side homodimer very similar to that found for [Cu(I)2-Atx1]2 ( Badarau et al. Biochemistry 2010 , 49 , 7798 ). In a crystal structure of the PacSN mutant possessing the ZiaAN motif (PacSN(ZiaAN)), the Asp residue from the metal-binding motif coordinates Zn(II). This demonstrates that the increased Zn(II) affinity of this variant and the high Zn(II) affinity of ZiaAN are due to the ability of the carboxylate to ligate this metal ion. Comparison of the Zn(II) sites in PacSN(ZiaAN) structures provides additional insight into Zn(II) trafficking in cyanobacteria.
Collapse
Affiliation(s)
- Adriana Badarau
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University , Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | | | | | |
Collapse
|
213
|
Khan HY, Zubair H, Faisal M, Ullah MF, Farhan M, Sarkar FH, Ahmad A, Hadi SM. Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive action. Mol Nutr Food Res 2013; 58:437-46. [PMID: 24123728 DOI: 10.1002/mnfr.201300417] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 11/09/2022]
Abstract
SCOPE Anticancer polyphenolic nutraceuticals from fruits, vegetables, and spices are generally recognized as antioxidants, but can be prooxidants in the presence of copper ions. We earlier proposed a mechanism for such activity of polyphenols and now we provide data in multiple cancer cell lines in support of our hypothesis. METHODS AND RESULTS Through multiple assays, we show that polyphenols luteolin, apigenin, epigallocatechin-3-gallate, and resveratrol are able to inhibit cell proliferation and induce apoptosis in different cancer cell lines. Such cell death is prevented to a significant extent by cuprous chelator neocuproine and reactive oxygen species scavengers. We also show that normal breast epithelial cells, cultured in a medium supplemented with copper, become sensitized to polyphenol-induced growth inhibition. CONCLUSION Since the concentration of copper is significantly elevated in cancer cells, our results strengthen the idea that an important anticancer mechanism of plant polyphenols is mediated through intracellular copper mobilization and reactive oxygen species generation leading to cancer cell death. Moreover, this prooxidant chemopreventive mechanism appears to be a mechanism common to several polyphenols with diverse chemical structures and explains the preferential cytotoxicity of these compounds toward cancer cells.
Collapse
Affiliation(s)
- Husain Yar Khan
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | | | | | | | | | | | | | | |
Collapse
|
214
|
A simple quinoline derivatized thiosemicarbazone as a colorimetic and fluorescent sensor for relay recognition of Cu2+ and sulfide in aqueous solution. INORG CHEM COMMUN 2013. [DOI: 10.1016/j.inoche.2013.08.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
215
|
Mechanisms of nanoparticle-induced oxidative stress and toxicity. BIOMED RESEARCH INTERNATIONAL 2013; 2013:942916. [PMID: 24027766 PMCID: PMC3762079 DOI: 10.1155/2013/942916] [Citation(s) in RCA: 807] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/16/2013] [Indexed: 12/14/2022]
Abstract
The rapidly emerging field of nanotechnology has offered innovative discoveries in the medical, industrial, and consumer sectors. The unique physicochemical and electrical properties of engineered nanoparticles (NP) make them highly desirable in a variety of applications. However, these novel properties of NP are fraught with concerns for environmental and occupational exposure. Changes in structural and physicochemical properties of NP can lead to changes in biological activities including ROS generation, one of the most frequently reported NP-associated toxicities. Oxidative stress induced by engineered NP is due to acellular factors such as particle surface, size, composition, and presence of metals, while cellular responses such as mitochondrial respiration, NP-cell interaction, and immune cell activation are responsible for ROS-mediated damage. NP-induced oxidative stress responses are torch bearers for further pathophysiological effects including genotoxicity, inflammation, and fibrosis as demonstrated by activation of associated cell signaling pathways. Since oxidative stress is a key determinant of NP-induced injury, it is necessary to characterize the ROS response resulting from NP. Through physicochemical characterization and understanding of the multiple signaling cascades activated by NP-induced ROS, a systemic toxicity screen with oxidative stress as a predictive model for NP-induced injury can be developed.
Collapse
|
216
|
Laha D, Pramanik A, Maity J, Mukherjee A, Pramanik P, Laskar A, Karmakar P. Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7. Biochim Biophys Acta Gen Subj 2013; 1840:1-9. [PMID: 23962629 DOI: 10.1016/j.bbagen.2013.08.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses. METHODS In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~30nm) induce autophagy in human breast cancer cell line, MCF7 in a time- and dose-dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein-light chain 3 (GFP-LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and Western blotting of autophagy marker proteins LC3B, beclin1 and ATG5. Further, inhibition of autophagy by 3-MA decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, de-phosphorylation of Bad and increased cleavage product of caspase 3. siRNA mediated inhibition of autophagy related gene beclin1 also demonstrated similar results. Finally induction of apoptosis by 3-MA in CuO NP treated cells was observed by TEM. RESULTS This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NP mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis. CONCLUSIONS A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells. GENERAL SIGNIFICANCE CuO NP induced autophagy is a survival strategy of MCF7 cells and inhibition of autophagy renders cellular fate to apoptosis.
Collapse
Affiliation(s)
- Dipranjan Laha
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700 032, India
| | | | | | | | | | | | | |
Collapse
|
217
|
Bustos RI, Jensen EL, Ruiz LM, Rivera S, Ruiz S, Simon F, Riedel C, Ferrick D, Elorza AA. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells. Biochem Biophys Res Commun 2013; 437:426-32. [DOI: 10.1016/j.bbrc.2013.06.095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 12/23/2022]
|
218
|
Silva KI, Saxena S. Zn(II) ions substantially perturb Cu(II) ion coordination in amyloid-β at physiological pH. J Phys Chem B 2013; 117:9386-94. [PMID: 23841511 DOI: 10.1021/jp406067n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of Cu(II) and Zn(II) ions with amyloid-β (Aβ) plays an important role in the etiology of Alzheimer's disease. We describe the use of electron spin resonance (ESR) to measure metal-binding competition between Cu(II) and Zn(II) in amyloid-β at physiological pH. Continuous wave ESR measurements show that the affinity of Cu(II) toward Aβ(1-16) is significantly higher than that of Zn(II) at physiological pH. Importantly, of the two known Cu(II) coordination modes in Aβ, component I and component II, Zn(II) displaces Cu(II) only from component I. Our results indicate that at excess amounts of Zn(II) component II becomes the most dominant coordination mode. This observation is important as Aβ aggregates in the brain contain a high Zn(II) ion concentration. In order to determine details of the metal ion competition, electron spin echo envelope modulation experiments were carried out on Aβ variants that were systematically (15)N labeled. In the presence of Zn(II), most peptides use His 14 as an equatorial ligand to bind Cu(II) ions. Interestingly, Zn(II) ions completely substitute Cu(II) ions that are simultaneously coordinated to His 6 and His 13. Furthermore, in the presence of Zn(II), the proportion of Cu(II) ions that are simultaneously coordinated to His 13 and His 14 is increased. On the basis of our results we suggest that His 13 plays a critical role in modulating the morphology of Aβ aggregates.
Collapse
Affiliation(s)
- K Ishara Silva
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
219
|
Lee K, Briehl MM, Mazar AP, Batinic-Haberle I, Reboucas JS, Glinsmann-Gibson B, Rimsza LM, Tome ME. The copper chelator ATN-224 induces peroxynitrite-dependent cell death in hematological malignancies. Free Radic Biol Med 2013; 60:157-67. [PMID: 23416365 PMCID: PMC3654089 DOI: 10.1016/j.freeradbiomed.2013.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 01/16/2023]
Abstract
Chemoresistance due to oxidative stress resistance or upregulation of Bcl-2 contributes to poor outcome in the treatment of hematological malignancies. In this study, we utilize the copper-chelator drug ATN-224 (choline tetrathiomolybdate) to induce cell death in oxidative stress-resistant cells and cells overexpressing Bcl-2 by modulating the cellular redox environment and causing mitochondrial dysfunction. ATN-224 treatment decreases superoxide dismutase 1 (SOD1) activity, increases intracellular oxidants, and induces peroxynitrite-dependent cell death. ATN-224 also targets the mitochondria, decreasing both cytochrome c oxidase (CcOX) activity and mitochondrial membrane potential. The concentration of ATN-224 required to induce cell death is proportional to SOD1 levels, but independent of Bcl-2 status. In combination with doxorubicin, ATN-224 enhances cell death. In primary B-cell acute lymphoblastic leukemia patient samples, ATN-224 decreases the viable cell number. Our findings suggest that ATN-224's dual targeting of SOD1 and CcOX is a promising approach for treatment of hematological malignancies either as an adjuvant or as a single agent.
Collapse
Affiliation(s)
- Kristy Lee
- Department of Pathology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Andrew P. Mazar
- Chemistry of Life Processes Institute. Northwestern University, Evanston, IL 60201, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, NC 27710, USA
| | - Julio S. Reboucas
- Departmento de Química CCEN, Universidade Federal da Paraíba, João Pessoa, PB 58051-970, Brazil
| | | | - Lisa M. Rimsza
- Department of Pathology, University of Arizona, Tucson, AZ 85724, USA
| | - Margaret E. Tome
- Department of Pathology, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
220
|
Metal complex–DNA binding: Insights from molecular dynamics and DFT/MM calculations. J Inorg Biochem 2013; 124:63-9. [DOI: 10.1016/j.jinorgbio.2013.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 11/19/2022]
|
221
|
Suarez-Ortegón MF, Ordoñez-Betancourth JE, Aguilar-de Plata C. Dietary zinc intake is inversely associated to metabolic syndrome in male but not in female urban adolescents. Am J Hum Biol 2013; 25:550-4. [PMID: 23754554 DOI: 10.1002/ajhb.22408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/20/2013] [Accepted: 04/05/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To evaluate the relationship of copper and zinc dietary intakes with metabolic syndrome (MetS) in adolescents. METHODS The sample consisted of 1,311 adolescents aged 11-16 years, and MetS definition by de Ferranti et al. was used. Nutritional intakes, anthropometrical and biochemical markers were measured. RESULTS In males, highest quartile of zinc intake was inversely associated with MetS without and with adjustment by covariables. Without adjustment, highest quartile of copper intake was inversely associated (marginal significance) with MetS, but with adjustment, the relationship was not maintained. Likewise in male gender, elevated waist circumference was the only MetS component inversely associated with highest quartiles of zinc (without and with adjustment) and copper (significant in crude analysis and marginal significant in adjustment by covariables) intakes. In the girls, only waist circumference was significant and inversely associated with highest quartiles of zinc and copper intakes but the association did not remain significant after adjustments. DISCUSSION In the adolescents of this study, zinc intake could be more associated to a clustering of anthropometric, vascular, and metabolic alterations than to these alterations separately, and also it is inversely related to this clustering (MetS). However, studies in other populations are necessary to confirm and explain the finding of exclusive association zinc intake-MetS in male gender adolescents. Further research is required to explore biomarkers of physiological processes (antioxidant function, blood flow regulation, and epigenetic modulation dependent of zinc) in relation to zinc intake and MetS in pediatric and adult populations.
Collapse
Affiliation(s)
- Milton F Suarez-Ortegón
- Physiological Sciences Department, Universidad del Valle, Cali, Colombia; Nutrition Group, Universidad del Valle, Cali, Colombia.
| | | | | |
Collapse
|
222
|
Asahi H, Tolba MEM, Tanabe M, Ohmae H. Molecular factors that are associated with early developmental arrest of intraerythrocytic Plasmodium falciparum. Can J Microbiol 2013; 59:485-93. [PMID: 23826958 DOI: 10.1139/cjm-2013-0166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Malaria continues to be a devastating disease. We investigated the factors that control intraerythrocytic development of the parasite Plasmodium falciparum by using a chemically defined medium (CDM) containing non-esterified fatty acid(s) (NEFA) and phospholipids with specific fatty acid moieties, to identify substances crucial for parasite development. Different NEFAs in the CDM played distinct roles by altering the development of the parasite at various stages, with effects ranging from complete growth to growth arrest at the ring stage. We used genome-wide transcriptome profiling to identify genes that were differentially expressed among the different developmental stages of the parasite, cultured in the presence of various NEFAs. We predicted 26 transcripts that were associated with the suppression of schizogony, of which 5 transcripts, including merozoite surface protein 2, a putative DEAD/DEAH box RNA helicase, serine repeat antigen 3, a putative copper channel, and palmitoyl acyltransferase, were particularly associated with blockage of trophozoite progression from the ring stage. Furthermore, the involvement of copper ions in developmental arrest was detected by copper-ion-chelating methods, implying a critical function of copper homeostasis in the early growth stage of the parasite. These results should help to elucidate the mechanisms behind the development of P. falciparum.
Collapse
Affiliation(s)
- Hiroko Asahi
- Department of Parasitology, National Institute of Infectious Diseases, 23-1 Toyama 1-chome, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | |
Collapse
|
223
|
Bodelón G, Palomino C, Fernández LÁ. Immunoglobulin domains inEscherichia coliand other enterobacteria: from pathogenesis to applications in antibody technologies. FEMS Microbiol Rev 2013; 37:204-50. [DOI: 10.1111/j.1574-6976.2012.00347.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 11/28/2022] Open
|
224
|
Kumbhar AA, Franks AT, Butcher RJ, Franz KJ. Light uncages a copper complex to induce nonapoptotic cell death. Chem Commun (Camb) 2013; 49:2460-2. [DOI: 10.1039/c3cc38927h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
225
|
Koay MS, Janssen BMG, Merkx M. Tuning the metal binding site specificity of a fluorescent sensor protein: from copper to zinc and back. Dalton Trans 2013; 42:3230-2. [DOI: 10.1039/c2dt32082g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
226
|
Nader N, Kulkarni RP, Dib M, Machaca K. How to make a good egg!: The need for remodeling of oocyte Ca(2+) signaling to mediate the egg-to-embryo transition. Cell Calcium 2012; 53:41-54. [PMID: 23266324 DOI: 10.1016/j.ceca.2012.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/19/2022]
Abstract
The egg-to-embryo transition marks the initiation of multicellular organismal development and is mediated by a specialized Ca(2+) transient at fertilization. This explosive Ca(2+) signal has captured the interest and imagination of scientists for many decades, given its cataclysmic nature and necessity for the egg-to-embryo transition. Learning how the egg acquires the competency to generate this Ca(2+) transient at fertilization is essential to our understanding of the mechanisms controlling egg and the transition to embryogenesis. In this review we discuss our current knowledge of how Ca(2+) signaling pathways remodel during oocyte maturation in preparation for fertilization with a special emphasis on the frog oocyte as additional reviews in this issue will touch on this in other species.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Qatar
| | | | | | | |
Collapse
|
227
|
Wang Y, Zhu S, Hodgkinson V, Prohaska JR, Weisman GA, Gitlin JD, Petris MJ. Maternofetal and neonatal copper requirements revealed by enterocyte-specific deletion of the Menkes disease protein. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1236-44. [PMID: 23064757 PMCID: PMC3532455 DOI: 10.1152/ajpgi.00339.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/10/2012] [Indexed: 01/31/2023]
Abstract
The essential requirement for copper in early development is dramatically illustrated by Menkes disease, a fatal neurodegenerative disorder of early childhood caused by loss-of-function mutations in the gene encoding the copper transporting ATPase ATP7A. In this study, we generated mice with enterocyte-specific knockout of the murine ATP7A gene (Atp7a) to test its importance in dietary copper acquisition. Although mice lacking Atp7a protein within intestinal enterocytes appeared normal at birth, they exhibited profound growth impairment and neurological deterioration as a consequence of copper deficiency, resulting in excessive mortality prior to weaning. Copper supplementation of lactating females or parenteral copper injection of the affected offspring markedly attenuated this rapid demise. Enterocyte-specific deletion of Atp7a in rescued pregnant females did not restrict embryogenesis; however, copper accumulation in the late-term fetus was severely reduced, resulting in early postnatal mortality. Taken together, these data demonstrate unique and specific requirements for enterocyte Atp7a in neonatal and maternofetal copper acquisition that are dependent on dietary copper availability, thus providing new insights into the mechanisms of gene-nutrient interaction essential for early human development.
Collapse
Affiliation(s)
- Yanfang Wang
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
228
|
Kaiafa GD, Saouli Z, Diamantidis MD, Kontoninas Z, Voulgaridou V, Raptaki M, Arampatzi S, Chatzidimitriou M, Perifanis V. Copper levels in patients with hematological malignancies. Eur J Intern Med 2012; 23:738-41. [PMID: 22920946 DOI: 10.1016/j.ejim.2012.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/20/2012] [Accepted: 07/30/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND Copper levels are elevated in cancer patients compared to normal subjects. However, few studies have investigated the relationship between copper and hematological malignancies. METHODS 84 patients with hematological diseases were studied, along with 50 healthy individuals. Copper was measured by flame atomic absorption spectrometry. The patients were classified to 2 homogeneous groups, acute and chronic hematological neoplasms, respectively. For the patients with acute hematological malignancies, relapse and remission were investigated in relation to serum copper levels. For chronic hematological neoplasms, serum copper was connected either with stable or progressive disease. Zeta-chain-associated protein kinase 70 (ZAP70) and CD38 expression, along with the unmutated VH immunoglobulin genes (IgVH) status were also determined for the 22 chronic lymphocytic leukemia (CLL) patients. RESULTS 54 patients with relapse or progressive disease had elevated copper levels (mean value 1.8 mg/l), whereas 30 patients either in remission or in stable disease had normal copper levels (mean value 1.01 mg/l) (normal range 0.8-1.3mg/l). CONCLUSION Hence, our study indicates that serum elevated copper levels are associated with hematological malignancies either in relapse or in disease progression, whereas normal copper levels are linked with hematological neoplasms in remission or in stable disease. Furthermore, we report for the first time an association between high serum copper levels and several adverse prognostic markers in CLL, such as increased expression of ZAP70 and CD38, along with elevated percentage of unmutated IgVH.
Collapse
Affiliation(s)
- Georgia D Kaiafa
- Department of Haematology, First Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Matias AC, Villa dos Santos N, Chelegão R, Nomura CS, Fiorito PA, Cerchiaro G. Cu(GlyGlyHis) effects on MCF7 cells: Copper uptake, reactive oxygen species generation and membrane topography changes. J Inorg Biochem 2012; 116:172-9. [DOI: 10.1016/j.jinorgbio.2012.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/08/2012] [Accepted: 07/09/2012] [Indexed: 12/18/2022]
|
230
|
Abstract
Ruminants are more vulnerable to copper deficiency than humans because rumen sulfide generation lowers copper availability from forage, increasing the risk of conditions such as swayback in lambs. Molybdenum-rich pastures promote thiomolybdate (TM) synthesis and formation of unabsorbable Cu-TM complexes, turning risk to clinical reality (hypocuprosis). Selection pressures created ruminant species with tolerance of deficiency but vulnerability to copper toxicity in alien environments, such as specific pathogen-free units. By contrast, cases of copper imbalance in humans seemed confined to rare genetic aberrations of copper metabolism. Recent descriptions of human swayback and the exploratory use of TM for the treatment of Wilson's disease, tumor growth, inflammatory diseases, and Alzheimer's disease have created unexpected common ground. The incidence of pre-hemolytic copper poisoning in specific pathogen-free lambs was reduced by an infection with Mycobacterium avium that left them more responsive to treatment with TM but vulnerable to long-term copper depletion. Copper requirements in ruminants and humans may need an extra allowance for the "copper cost" of immunity to infection. Residual cuproenzyme inhibition in TM-treated lambs and anomalies in plasma copper composition that appeared to depend on liver copper status raise this question "can chelating capacity be harnessed without inducing copper-deficiency in ruminants or humans?" A model of equilibria between exogenous (TM) and endogenous chelators (e.g., albumin, metallothionein) is used to predict risk of exposure and hypocuprosis; although risk of natural exposure in humans is remote, vulnerability to TM-induced copper deficiency may be high. Biomarkers of TM impact are needed, and copper chaperones for inhibited cuproenzymes are prime candidates.
Collapse
|
231
|
McCall KC, Humm JL, Bartlett R, Reese M, Carlin S. Copper-64-diacetyl-bis(N(4)-methylthiosemicarbazone) pharmacokinetics in FaDu xenograft tumors and correlation with microscopic markers of hypoxia. Int J Radiat Oncol Biol Phys 2012; 84:e393-9. [PMID: 22727887 DOI: 10.1016/j.ijrobp.2012.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 12/12/2022]
Abstract
PURPOSE The behavior of copper-64-diacetyl-bis(N(4)-methylthiosemicarbazone) ((64)Cu-ATSM) in hypoxic tumors was examined through a combination of in vivo dynamic positron emission tomography (PET) and ex vivo autoradiographic and histologic evaluation using a xenograft model of head-and-neck squamous cell carcinoma. METHODS AND MATERIALS (64)Cu-ATSM was administered during dynamic PET imaging, and temporal changes in (64)Cu-ATSM distribution within tumors were evaluated for at least 1 hour and up to 18 hours. Animals were sacrificed at either 1 hour (cohort A) or after 18 hours (cohort B) postinjection of radiotracer and autoradiography performed. Ex vivo analysis of microenvironment subregions was conducted by immunohistochemical staining for markers of hypoxia (pimonidazole hydrochloride) and blood flow (Hoechst-33342). RESULTS Kinetic analysis revealed rapid uptake of radiotracer by tumors. The net influx (K(i)) constant was 12-fold that of muscle, whereas the distribution volume (V(d)) was 5-fold. PET images showed large tumor-to-muscle ratios, which continually increased over the entire 18-hour course of imaging. However, no spatial changes in (64)Cu-ATSM distribution occurred in PET imaging at 20 minutes postinjection. Microscopic intratumoral distribution of (64)Cu-ATSM and pimonidazole were not correlated at 1 hour or after 18 hours postinjection, nor was (64)Cu-ATSM and Hoechst-33342. CONCLUSIONS The oxygen partial pressures at which (64)Cu-ATSM and pimonidazole are reduced and bound in cells are theorized to be distinct and separable. However, this study demonstrated that microscopic distributions of these tracers within tumors are independent. Researchers have shown (64)Cu-ATSM uptake to be specific to malignant expression, and this work has also demonstrated clear tumor targeting by the radiotracer.
Collapse
Affiliation(s)
- Keisha C McCall
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
232
|
Chen D, Chan KM. Identification of hepatic copper-binding proteins from tilapia by column chromatography with proteomic approaches. Metallomics 2012; 4:820-34. [PMID: 22699969 DOI: 10.1039/c2mt20057k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although copper is an essential element, it shows cytotoxic effects when present in excessive amounts with the production of hydroxyl radicals, which can damage phospholipids and enzymes. This necessitates a tight cellular control mechanism for copper homeostasis including its uptake and removal. The high copper contents in the liver of tilapia make this fish a suitable model for the study of copper binding proteins (CBPs). The liver was dissected from tilapia injected with Cu(2+) and cytosolic fractions were separated by using Superdex 75 column chromatography followed by atomic absorption spectrometry. Fractions in two major peaks containing CBPs were analyzed by using differential proteomic approaches, and loaded on a Cu chelating ion-immobilized affinity column (Cu-IMAC). Of the 113 differentially expressed proteins in these two peaks, 28 proteins were found to have copper binding ability, including well-characterized CBPs, such as copper transporter ATP7A and metallothionein. The networks of CBPs built up by Ingenuity Pathway Analysis (IPA) would help us to understand the transportation pathway and function of CBPs, which were related to free radical scavenging, cellular development and lipid metabolism. In addition, our results suggest that Cu(2+) would compete with Fe(2+) and Ca(2+) in binding with some target proteins, such as ferritin, transferrin, and calmodulin.
Collapse
Affiliation(s)
- Dongshi Chen
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong Special Administrative Region, China
| | | |
Collapse
|
233
|
Han DMR, Choi MR, Jung KH, Lee HT, Park JH, Ohn T, Chai YG. Proteomic Analysis of the Copper Ion-Induced Stress Response in a Human Embryonic Carcinoma Cell Line. Int J Toxicol 2012; 31:397-406. [DOI: 10.1177/1091581812446869] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Excessive exposure to copper, a redox-active metal, generates free radicals, which can cause cellular damage. In this study, we aim to identify the proteins that are up- or downregulated by copper exposure in human embryonic carcinoma (NCCIT) cells and to understand the mechanisms that play a role in the copper-induced stress response. After exposure to copper ions, the cells showed upregulated levels of 78 kDa glucose-regulated protein, fibrillin 1, CWC22 spliceosome-associated protein (KIAA1604), heat shock protein (HSP) 60, and HSP70, while the tumor necrosis factor receptor-associated factor 6, vimentin, 14-3-3 protein zeta, and RAC-beta (AKT2) serine/threonine protein kinase were downregulated. The GeneGo Process Networks of the proteins upregulated by copper ions were analyzed, and the 3 highest-scoring networks from the proteins upregulated by copper ions are presented here. In particular, the increased level of HSP70 in response to copper ions occurred in a dose-dependent manner, indicating that HSP70 could be a potential biomarker for copper toxicity in mammalian cells.
Collapse
Affiliation(s)
- Dal Mu Ri Han
- Division of Molecular and Life Science, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Mi Ran Choi
- Division of Molecular and Life Science, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Kyoung Hwa Jung
- Division of Molecular and Life Science, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Hyung Tae Lee
- Division of Molecular and Life Science, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Ji Hyun Park
- Division of Molecular and Life Science, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Takbum Ohn
- Division of Natural Medical Sciences, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Young Gyu Chai
- Division of Molecular and Life Science, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| |
Collapse
|
234
|
Suttle NF. Residual effects of Mycobacterium avium infection on susceptibility of sheep to copper toxicity and efficacy of treatment with tetrathiomolybdate. Vet Rec 2012; 171:18. [PMID: 22645152 DOI: 10.1136/vr.100716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Posthaemolytic copper poisoning (post-HCP) in one of six, one-year-old, uninfected sheep (group O) on a Mycobacterium avium experiment prompted an evaluation of copper status and hepatotoxicity in 17 surviving cohorts. Group O had higher mean plasma Cu and δ-glutamyl transferase (GGT) activity and more variable bile acid (BA) concentrations and glutamate dehydrogenase activities (GDH) than two groups infected with M avium soon after birth. Ammonium tetrathiomolybdate (TTM; 3 x 1.7 mg/kg LW) was given subcutaneously over seven days and the pelleted, complete diet replaced by hay, low in copper. Plasma BA immediately declined and was followed by GDH, but erythrocyte superoxide dismutase activity (ESOD) became severely inhibited and took 18 days to recover. Plasma BA and GDH rose sharply after 18 days in uninfected sheep and they became hypercupraemic. TTM treatment was repeated from day 42 and had removed all group differences by day 110 but only after further inhibition of ESOD. M avium infections probably lessened the severity of pre-HCP by reducing copper retention but may predispose grazing livestock to hypocupraemia. The capacity of TTM to reduce liver Cu has probably been overestimated and side effects on cuproenzyme activity underestimated.
Collapse
Affiliation(s)
- N F Suttle
- Moredun Foundation, Pentlands Science Park, Edinburgh EH260PZ, UK.
| |
Collapse
|
235
|
Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria. Proc Natl Acad Sci U S A 2012; 109:8400-4. [PMID: 22582172 DOI: 10.1073/pnas.1112921109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methane-oxidizing bacteria are nature's primary biological mechanism for suppressing atmospheric levels of the second-most important greenhouse gas via methane monooxygenases (MMOs). The copper-containing particulate enzyme is the most widespread and efficient MMO. Under low-copper conditions methane-oxidizing bacteria secrete the small copper-binding peptide methanobactin (mbtin) to acquire copper, but how variations in the structures of mbtins influence copper metabolism and species selection are unknown. Methanobactins have been isolated from Methylocystis strains M and hirsuta CSC1, organisms that can switch to using an iron-containing soluble MMO when copper is limiting, and the nonswitchover Methylocystis rosea. These mbtins are shorter, and have different amino acid compositions, than the characterized mbtin from Methylosinus trichosporium OB3b. A coordinating pyrazinedione ring in the Methylocystis mbtins has little influence on the Cu(I) site structure. The Methylocystis mbtins have a sulfate group that helps stabilize the Cu(I) forms, resulting in affinities of approximately 10(21) M(-1). The Cu(II) affinities vary over three orders of magnitude with reduction potentials covering approximately 250 mV, which may dictate the mechanism of intracellular copper release. Copper uptake and the switchover from using the iron-containing soluble MMO to the copper-containing particulate enzyme is faster when mediated by the native mbtin, suggesting that the amino acid sequence is important for the interaction of mbtins with receptors. The differences in structures and properties of mbtins, and their influence on copper utilization by methane-oxidizing bacteria, have important implications for the ecology and global function of these environmentally vital organisms.
Collapse
|
236
|
Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1406-15. [PMID: 22521452 DOI: 10.1016/j.bbamcr.2012.04.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 01/01/2023]
Abstract
Quantifying the amount and defining the location of metal ions in cells and organisms are critical steps in understanding metal homeostasis and how dyshomeostasis causes or is a consequence of disease. A number of recent advances have been made in the development and application of analytical methods to visualize metal ions in biological specimens. Here, we briefly summarize these advances before focusing in more depth on probes for examining transition metals in living cells with high spatial and temporal resolution using fluorescence microscopy. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
|
237
|
Zinc and copper concentrations in Breastmilk at the second month of lactation. Indian Pediatr 2012; 49:133-5. [DOI: 10.1007/s13312-012-0021-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/15/2011] [Indexed: 12/27/2022]
|
238
|
Schenk L, Meinel DM, Strässer K, Gerber AP. La-motif-dependent mRNA association with Slf1 promotes copper detoxification in yeast. RNA (NEW YORK, N.Y.) 2012; 18:449-61. [PMID: 22271760 PMCID: PMC3285933 DOI: 10.1261/rna.028506.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 11/25/2011] [Indexed: 05/31/2023]
Abstract
The La-motif (LAM) is an ancient and ubiquitous RNA-binding domain defining a superfamily of proteins, which comprises the genuine La proteins and La-related proteins (LARPs). In contrast to La, which binds and stabilizes pre-tRNAs and other RNA polymerase III transcripts, data on function and RNA targets of the LARPs have remained scarce. We have undertaken a global approach to elucidate the previously suggested role of the yeast LARP Slf1p in copper homeostasis. By applying RNA-binding protein immunopurification-microarray (RIP-Chip) analysis, we show that Slf1p and its paralog Sro9p copurify with overlapping sets of hundreds of functionally related mRNAs, including many transcripts coding for ribosomal proteins and histones. Interestingly, among these potential RNA targets were also mRNAs coding for proteins critical for protection of cells against elevated copper concentrations. Mutations introduced in the conserved aromatic patch of the LAM in Slf1p drastically impaired both association with its targets and Slf1-mediated protection of cells against toxic copper concentrations. Furthermore, we show that Slf1p stabilizes copper-related mRNA targets in a LAM-dependent manner. These results provide the first evidence for post-transcriptional regulation of factors/pathways implicated in copper homeostasis by a cytoplasmic RBP.
Collapse
Affiliation(s)
- Luca Schenk
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Dominik M. Meinel
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich (CIPSM), University of Munich, 81377 Munich, Germany
| | - Katja Strässer
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich (CIPSM), University of Munich, 81377 Munich, Germany
| | - André P. Gerber
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
239
|
Affiliation(s)
- Hui Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | |
Collapse
|
240
|
Abstract
Copper (Cu) is essential for development and proliferation, yet the cellular requirements for Cu in these processes are not well defined. We report that Cu plays an unanticipated role in the mitogen-activated protein (MAP) kinase pathway. Ablation of the Ctr1 high-affinity Cu transporter in flies and mouse cells, mutation of Ctr1, and Cu chelators all reduce the ability of the MAP kinase kinase Mek1 to phosphorylate the MAP kinase Erk. Moreover, mice bearing a cardiac-tissue-specific knockout of Ctr1 are deficient in Erk phosphorylation in cardiac tissue. in vitro investigations reveal that recombinant Mek1 binds two Cu atoms with high affinity and that Cu enhances Mek1 phosphorylation of Erk in a dose-dependent fashion. Coimmunoprecipitation experiments suggest that Cu is important for promoting the Mek1-Erk physical interaction that precedes the phosphorylation of Erk by Mek1. These results demonstrate a role for Ctr1 and Cu in activating a pathway well known to play a key role in normal physiology and in cancer.
Collapse
|
241
|
Lee YF, Deng TW, Chiu WJ, Wei TY, Roy P, Huang CC. Visual detection of copper(ii) ions in blood samples by controlling the leaching of protein-capped gold nanoparticles. Analyst 2012; 137:1800-6. [DOI: 10.1039/c2an16270a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
242
|
Scheiber IF, Schmidt MM, Dringen R. Copper export from cultured astrocytes. Neurochem Int 2011; 60:292-300. [PMID: 22226844 DOI: 10.1016/j.neuint.2011.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/16/2011] [Accepted: 12/22/2011] [Indexed: 01/14/2023]
Abstract
Copper is an essential trace metal that is required as a catalytic co-factor or a structural component of several important enzymes. However, since excess of copper can also harm cells due to its potential to catalyse the generation of toxic reactive oxygen species, transport of copper and the cellular copper content are tightly regulated. Astrocytes are known to efficiently take up copper ions, but it was not known whether these cells are also able to export copper. Treatment of astrocyte-rich primary cultures for 24 h with copper chloride caused a concentration-dependent increase in the specific cellular copper content. During further 24 h incubation in the absence of copper chloride, the copper-loaded astrocytes remained viable and released up to 45% of the accumulated copper. The rate of copper export was proportional to the amount of cellular copper, was almost completely prevented by lowering the incubation temperature to 4 °C and was partly prevented by the endocytosis inhibitor amiloride. Copper export is most likely mediated by the copper ATPase ATP7A, since this transporter is expressed in astrocyte cultures and its cellular location is strongly affected by the absence or the presence of extracellular copper. The potential of cultured astrocytes to export copper suggests that astrocytes provide neighbouring cells in brain with this essential trace element.
Collapse
Affiliation(s)
- Ivo F Scheiber
- Center for Biomolecular Interactions Bremen, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany
| | | | | |
Collapse
|
243
|
Liu JC, Guo GZ, Xiao CH, Song XY, Li M. Bis{2-[bis-(3,5-dimethyl-1H-pyrazol-1-yl-κN)meth-yl]pyridine-κN}copper(II) dinitrate. Acta Crystallogr Sect E Struct Rep Online 2011; 67:m1691. [PMID: 22199508 PMCID: PMC3238617 DOI: 10.1107/s1600536811045636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 10/31/2011] [Indexed: 11/10/2022]
Abstract
In the mononuclear title complex, [Cu(C16H19N5)2](NO3)2, the CuII ion is located on a twofold rotation axis and is six-coordinated by six N atoms from two 2-[bis(3,5-dimethyl-1H-pyrazol-1-yl)methyl]pyridine ligands, forming a distorted octahedral geometry. In the crystal, molecules are linked by weak C—H⋯O interactions.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | | | | | | | | |
Collapse
|
244
|
Kennedy DC, McKay CS, Legault MCB, Danielson DC, Blake JA, Pegoraro AF, Stolow A, Mester Z, Pezacki JP. Cellular Consequences of Copper Complexes Used To Catalyze Bioorthogonal Click Reactions. J Am Chem Soc 2011; 133:17993-8001. [DOI: 10.1021/ja2083027] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- David C. Kennedy
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa K1A 0R6, Canada
| | - Craig S. McKay
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa K1A 0R6, Canada
- Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa K1N 6N5, Canada
| | - Marc C. B. Legault
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa K1A 0R6, Canada
- Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa K1N 6N5, Canada
| | - Dana C. Danielson
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa K1A 0R6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Jessie A. Blake
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa K1A 0R6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Adrian F. Pegoraro
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa K1A 0R6, Canada
| | - Albert Stolow
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa K1A 0R6, Canada
| | - Zoltan Mester
- Institute for National Measurement Standards, National Research Council Canada, 1200 Montreal Road, Ottawa ON K1A 0R6, Canada
| | - John Paul Pezacki
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa K1A 0R6, Canada
- Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa K1N 6N5, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
| |
Collapse
|
245
|
Beaudoin J, Ioannoni R, López-Maury L, Bähler J, Ait-Mohand S, Guérin B, Dodani SC, Chang CJ, Labbé S. Mfc1 is a novel forespore membrane copper transporter in meiotic and sporulating cells. J Biol Chem 2011; 286:34356-72. [PMID: 21828039 DOI: 10.1074/jbc.m111.280396] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To gain insight in the molecular basis of copper homeostasis during meiosis, we have used DNA microarrays to analyze meiotic gene expression in the model yeast Schizosaccharomyces pombe. Profiling data identified a novel meiosis-specific gene, termed mfc1(+), that encodes a putative major facilitator superfamily-type transporter. Although Mfc1 does not exhibit any significant sequence homology with the copper permease Ctr4, it contains four putative copper-binding motifs that are typically found in members of the copper transporter family of copper transporters. Similarly to the ctr4(+) gene, the transcription of mfc1(+) was induced by low concentrations of copper. However, its temporal expression profile during meiosis was distinct to ctr4(+). Whereas Ctr4 was observed at the plasma membrane shortly after induction of meiosis, Mfc1 appeared later in precursor vesicles and, subsequently, at the forespore membrane of ascospores. Using the fluorescent copper-binding tracker Coppersensor-1 (CS1), labile cellular copper was primarily detected in the forespores in an mfc1(+)/mfc1(+) strain, whereas an mfc1Δ/mfc1Δ mutant exhibited an intracellular dispersed punctate distribution of labile copper ions. In addition, the copper amine oxidase Cao1, which localized primarily in the forespores of asci, was fully active in mfc1(+)/mfc1(+) cells, but its activity was drastically reduced in an mfc1Δ/mfc1Δ strain. Furthermore, our data showed that meiotic cells that express the mfc1(+) gene have a distinct developmental advantage over mfc1Δ/mfc1Δ mutant cells when copper is limiting. Taken together, the data reveal that Mfc1 serves to transport copper for accurate and timely meiotic differentiation under copper-limiting conditions.
Collapse
Affiliation(s)
- Jude Beaudoin
- Départements de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Ehrensberger KM, Bird AJ. Hammering out details: regulating metal levels in eukaryotes. Trends Biochem Sci 2011; 36:524-31. [PMID: 21840721 DOI: 10.1016/j.tibs.2011.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/07/2011] [Accepted: 07/15/2011] [Indexed: 12/01/2022]
Abstract
The transition metals zinc, iron and copper are common constituents in a wide range of proteins. Although these metals are all essential for life, when present in excess, they are frequently toxic to cell growth and viability. Therefore, all organisms rely on sophisticated mechanisms to maintain optimal levels of each metal. Genes that encode metal transport or storage proteins are often regulated at the transcriptional level in response to changes in metal status. In this review, we focus on what is known about the transcription factors that mediate these metal-dependent changes. Specifically, we highlight recent advances in our understanding of the mechanisms by which these factors sense metal ions.
Collapse
Affiliation(s)
- Kate M Ehrensberger
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
247
|
Badarau A, Dennison C. Thermodynamics of copper and zinc distribution in the cyanobacterium Synechocystis PCC 6803. Proc Natl Acad Sci U S A 2011; 108:13007-12. [PMID: 21778408 PMCID: PMC3156197 DOI: 10.1073/pnas.1101448108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Copper is supplied to plastocyanin for photosynthesis and cytochrome c oxidase for respiration in the thylakoids of Synechocystis PCC 6803 by the membrane-bound P-type ATPases CtaA and PacS, and the metallochaperone Atx1. We have determined the Cu(I) affinities of all of the soluble proteins and domains in this pathway. The Cu(I) affinities of the trafficking proteins range from 5 × 10(16) to 5 × 10(17) M(-1) at pH 7.0, consistent with values for homologues. Unusually, Atx1 binds Cu(I) significantly tighter than the metal-binding domains (MBDs) of CtaA and PacS (CtaA(N) and PacS(N)), and equilibrium copper exchange constants of approximately 0.2 are obtained for transfer to the MBDs. Dimerization of Atx1 increases the affinity for Cu(I), but the loop 5 His61 residue has little influence. The MBD of the zinc exporter ZiaA (ZiaA(N)) exhibits an almost identical Cu(I) affinity, and Cu(I) exchange with Atx1, as CtaA(N) and PacS(N), and the relative stabilities of the complexes must enable the metallochaperone to distinguish between the MBDs. The binding of potentially competing zinc to the trafficking proteins has been studied. ZiaA(N) has the highest Zn(II) affinity and thermodynamics could be important for zinc removal from the cell. Plastocyanin has a Cu(I) affinity of 2.6 × 10(17) M(-1), 15-fold tighter than that of the Cu(A) site of cytochrome c oxidase, highlighting the need for specific mechanisms to ensure copper delivery to both of these targets. The narrow range of Cu(I) affinities for the cytoplasmic copper proteins in Synechocystis will facilitate relocation when copper is limiting.
Collapse
Affiliation(s)
- Adriana Badarau
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Christopher Dennison
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
248
|
Minghetti M, Leaver MJ, Taggart JB, Casadei E, Auslander M, Tom M, George SG. Copper induces Cu-ATPase ATP7A mRNA in a fish cell line, SAF1. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:93-9. [PMID: 21473932 DOI: 10.1016/j.cbpc.2011.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 01/28/2023]
Abstract
Copper transporting ATPase, ATP7A, is an ATP dependent copper pump present in all vertebrates, critical for the maintenance of intracellular and whole body copper homeostasis. Effects of copper treatment on ATP7A gene expression in fibroblast cells (SAF1) of the sea bream (Sparus aurata) were investigated by qRT-PCR and by a medium density microarray from a closely related species, striped sea bream (Lithognathus mormyrus). To discriminate between the effects of Cu and other metals, SAF1 cells were exposed to sub-toxic levels of Cu, Zn and Cd. Expression of Cu homeostasis genes copper transporter 1 (CTR1), Cu ATPase (ATP7A), Cu chaperone (ATOX1) and metallothionein (MT) together with the oxidative stress markers glutathione reductase (GR) and Cu/Zn superoxide dismutase (CuZn/SOD) were measured 0, 4 and 24 hours post-exposure by qRT-PCR. Microarray was conducted on samples from 4 hours post Cu exposure. Cu, Zn and Cd increased MT and GR mRNA levels, while only Cu increased ATP7A mRNA levels. Microarray results confirmed the effects of Cu on ATP7A and MT and in addition showed changes in the expression of genes involved in protein transport and secretion. Results suggest that ATP7A may be regulated at the transcriptional level directly by Cu and by a mechanism that is different from that exerteted by metals on MT genes.
Collapse
|
249
|
Dodani SC, Leary SC, Cobine PA, Winge DR, Chang CJ. A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis. J Am Chem Soc 2011; 133:8606-16. [PMID: 21563821 PMCID: PMC3106114 DOI: 10.1021/ja2004158] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present the design, synthesis, spectroscopy, and biological applications of Mitochondrial Coppersensor-1 (Mito-CS1), a new type of targetable fluorescent sensor for imaging exchangeable mitochondrial copper pools in living cells. Mito-CS1 is a bifunctional reporter that combines a Cu(+)-responsive fluorescent platform with a mitochondrial-targeting triphenylphosphonium moiety for localizing the probe to this organelle. Molecular imaging with Mito-CS1 establishes that this new chemical tool can detect changes in labile mitochondrial Cu(+) in a model HEK 293T cell line as well as in human fibroblasts. Moreover, we utilized Mito-CS1 in a combined imaging and biochemical study in fibroblasts derived from patients with mutations in the two synthesis of cytochrome c oxidase 1 and 2 proteins (SCO1 and SCO2), each of which is required for assembly and metalation of functionally active cytochrome c oxidase (COX). Interestingly, we observe that although defects in these mitochondrial metallochaperones lead to a global copper deficiency at the whole cell level, total copper and exchangeable mitochondrial Cu(+) pools in SCO1 and SCO2 patient fibroblasts are largely unaltered relative to wild-type controls. Our findings reveal that the cell maintains copper homeostasis in mitochondria even in situations of copper deficiency and mitochondrial metallochaperone malfunction, illustrating the importance of regulating copper stores in this energy-producing organelle.
Collapse
Affiliation(s)
- Sheel C. Dodani
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Scot C. Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, United States
| | - Dennis R. Winge
- Department of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
250
|
Thompson LC, Goswami S, Peterson CB. Metals affect the structure and activity of human plasminogen activator inhibitor-1. II. Binding affinity and conformational changes. Protein Sci 2011; 20:366-78. [PMID: 21280128 DOI: 10.1002/pro.567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor with a metastable active conformation. The lifespan of the active form of PAI-1 is modulated via interaction with the plasma protein, vitronectin, and various metal ions. These metal ions fall into two categories: Type I metals, including calcium, magnesium, and manganese, stabilize PAI-1 in the absence of vitronectin, whereas Type II metals, including cobalt, copper, and nickel, destabilize PAI-1 in the absence of vitronectin, but stabilize PAI-1 in its presence. To provide a mechanistic basis for understanding the unusual modulation of PAI-1 structure and activity, the binding characteristics and conformational effects of these two types of metals were further evaluated. Steady-state binding measurements using surface plasmon resonance indicated that both active and latent PAI-1 exhibit a dissociation constant in the low micromolar range for binding to immobilized nickel. Stopped-flow measurements of approach-to-equilibrium changes in intrinsic protein fluorescence indicated that the Type I and Type II metals bind in different modes that induce distinct conformational effects on PAI-1. Changes in the observed rate constants with varying concentrations of metal allowed accurate determination of binding affinities for cobalt, nickel, and copper, yielding dissociation constants of ∼40, 30, and 0.09 μM, respectively. Competition experiments that tested effects on PAI-1 stability were consistent with these measurements of affinity and indicate that copper binds tightly to PAI-1.
Collapse
Affiliation(s)
- Lawrence C Thompson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|