201
|
Vasilikopoulos A, Misof B, Meusemann K, Lieberz D, Flouri T, Beutel RG, Niehuis O, Wappler T, Rust J, Peters RS, Donath A, Podsiadlowski L, Mayer C, Bartel D, Böhm A, Liu S, Kapli P, Greve C, Jepson JE, Liu X, Zhou X, Aspöck H, Aspöck U. An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). BMC Evol Biol 2020; 20:64. [PMID: 32493355 PMCID: PMC7268685 DOI: 10.1186/s12862-020-01631-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The latest advancements in DNA sequencing technologies have facilitated the resolution of the phylogeny of insects, yet parts of the tree of Holometabola remain unresolved. The phylogeny of Neuropterida has been extensively studied, but no strong consensus exists concerning the phylogenetic relationships within the order Neuroptera. Here, we assembled a novel transcriptomic dataset to address previously unresolved issues in the phylogeny of Neuropterida and to infer divergence times within the group. We tested the robustness of our phylogenetic estimates by comparing summary coalescent and concatenation-based phylogenetic approaches and by employing different quartet-based measures of phylogenomic incongruence, combined with data permutations. RESULTS Our results suggest that the order Raphidioptera is sister to Neuroptera + Megaloptera. Coniopterygidae is inferred as sister to all remaining neuropteran families suggesting that larval cryptonephry could be a ground plan feature of Neuroptera. A clade that includes Nevrorthidae, Osmylidae, and Sisyridae (i.e. Osmyloidea) is inferred as sister to all other Neuroptera except Coniopterygidae, and Dilaridae is placed as sister to all remaining neuropteran families. Ithonidae is inferred as the sister group of monophyletic Myrmeleontiformia. The phylogenetic affinities of Chrysopidae and Hemerobiidae were dependent on the data type analyzed, and quartet-based analyses showed only weak support for the placement of Hemerobiidae as sister to Ithonidae + Myrmeleontiformia. Our molecular dating analyses suggest that most families of Neuropterida started to diversify in the Jurassic and our ancestral character state reconstructions suggest a primarily terrestrial environment of the larvae of Neuropterida and Neuroptera. CONCLUSION Our extensive phylogenomic analyses consolidate several key aspects in the backbone phylogeny of Neuropterida, such as the basal placement of Coniopterygidae within Neuroptera and the monophyly of Osmyloidea. Furthermore, they provide new insights into the timing of diversification of Neuropterida. Despite the vast amount of analyzed molecular data, we found that certain nodes in the tree of Neuroptera are not robustly resolved. Therefore, we emphasize the importance of integrating the results of morphological analyses with those of sequence-based phylogenomics. We also suggest that comparative analyses of genomic meta-characters should be incorporated into future phylogenomic studies of Neuropterida.
Collapse
Affiliation(s)
- Alexandros Vasilikopoulos
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany.
| | - Bernhard Misof
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany.
| | - Karen Meusemann
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
- Australian National Insect Collection, National Research Collections Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT 2601, Australia
| | - Doria Lieberz
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Tomáš Flouri
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Rolf G Beutel
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany
| | - Torsten Wappler
- Natural History Department, Hessisches Landesmuseum Darmstadt, 64283, Darmstadt, Germany
| | - Jes Rust
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany
| | - Ralph S Peters
- Centre for Taxonomy and Evolutionary Research, Arthropoda Department, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Alexander Donath
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Lars Podsiadlowski
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Christoph Mayer
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113, Bonn, Germany
| | - Daniela Bartel
- Department of Evolutionary Biology, University of Vienna, 1090, Vienna, Austria
| | - Alexander Böhm
- Department of Evolutionary Biology, University of Vienna, 1090, Vienna, Austria
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Paschalia Kapli
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325, Frankfurt, Germany
| | - James E Jepson
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 N73K, Cork, Ireland
| | - Xingyue Liu
- Department of Entomology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Xin Zhou
- Department of Entomology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Horst Aspöck
- Institute of Specific Prophylaxis and Tropical Medicine, Medical Parasitology, Medical University of Vienna (MUW), 1090, Vienna, Austria
| | - Ulrike Aspöck
- Department of Evolutionary Biology, University of Vienna, 1090, Vienna, Austria
- Zoological Department II, Natural History Museum of Vienna, 1010, Vienna, Austria
| |
Collapse
|
202
|
Nürk NM, Linder HP, Onstein RE, Larcombe MJ, Hughes CE, Piñeiro Fernández L, Schlüter PM, Valente L, Beierkuhnlein C, Cutts V, Donoghue MJ, Edwards EJ, Field R, Flantua SGA, Higgins SI, Jentsch A, Liede‐Schumann S, Pirie MD. Diversification in evolutionary arenas-Assessment and synthesis. Ecol Evol 2020; 10:6163-6182. [PMID: 32607221 PMCID: PMC7319112 DOI: 10.1002/ece3.6313] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
Understanding how and why rates of evolutionary diversification vary is a key issue in evolutionary biology, ecology, and biogeography. Evolutionary rates are the net result of interacting processes summarized under concepts such as adaptive radiation and evolutionary stasis. Here, we review the central concepts in the evolutionary diversification literature and synthesize these into a simple, general framework for studying rates of diversification and quantifying their underlying dynamics, which can be applied across clades and regions, and across spatial and temporal scales. Our framework describes the diversification rate (d) as a function of the abiotic environment (a), the biotic environment (b), and clade-specific phenotypes or traits (c); thus, d ~ a,b,c. We refer to the four components (a-d) and their interactions collectively as the "Evolutionary Arena." We outline analytical approaches to this framework and present a case study on conifers, for which we parameterize the general model. We also discuss three conceptual examples: the Lupinus radiation in the Andes in the context of emerging ecological opportunity and fluctuating connectivity due to climatic oscillations; oceanic island radiations in the context of island formation and erosion; and biotically driven radiations of the Mediterranean orchid genus Ophrys. The results of the conifer case study are consistent with the long-standing scenario that low competition and high rates of niche evolution promote diversification. The conceptual examples illustrate how using the synthetic Evolutionary Arena framework helps to identify and structure future directions for research on evolutionary radiations. In this way, the Evolutionary Arena framework promotes a more general understanding of variation in evolutionary rates by making quantitative results comparable between case studies, thereby allowing new syntheses of evolutionary and ecological processes to emerge.
Collapse
Affiliation(s)
- Nicolai M. Nürk
- Department of Plant SystematicsBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - H. Peter Linder
- Department of Systematic & Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Renske E. Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | | | - Colin E. Hughes
- Department of Systematic & Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - Laura Piñeiro Fernández
- Department of Systematic & Evolutionary BotanyUniversity of ZurichZurichSwitzerland
- Department of BotanyUniversity of HohenheimStuttgartGermany
| | | | - Luis Valente
- Naturalis Biodiversity CenterUnderstanding Evolution GroupLeidenThe Netherlands
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Carl Beierkuhnlein
- Department of BiogeographyBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Vanessa Cutts
- School of GeographyUniversity of NottinghamNottinghamUK
| | - Michael J. Donoghue
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Erika J. Edwards
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Richard Field
- School of GeographyUniversity of NottinghamNottinghamUK
| | | | | | - Anke Jentsch
- Department of Disturbance EcologyBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Sigrid Liede‐Schumann
- Department of Plant SystematicsBayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
| | - Michael D. Pirie
- Johannes Gutenberg‐UniversitätMainzGermany
- University MuseumUniversity of BergenBergenNorway
| |
Collapse
|
203
|
Siqueira AC, Morais RA, Bellwood DR, Cowman PF. Trophic innovations fuel reef fish diversification. Nat Commun 2020; 11:2669. [PMID: 32472063 PMCID: PMC7260216 DOI: 10.1038/s41467-020-16498-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/01/2020] [Indexed: 12/29/2022] Open
Abstract
Reef fishes are an exceptionally speciose vertebrate assemblage, yet the main drivers of their diversification remain unclear. It has been suggested that Miocene reef rearrangements promoted opportunities for lineage diversification, however, the specific mechanisms are not well understood. Here, we assemble near-complete reef fish phylogenies to assess the importance of ecological and geographical factors in explaining lineage origination patterns. We reveal that reef fish diversification is strongly associated with species' trophic identity and body size. Large-bodied herbivorous fishes outpace all other trophic groups in recent diversification rates, a pattern that is consistent through time. Additionally, we show that omnivory acts as an intermediate evolutionary step between higher and lower trophic levels, while planktivory represents a common transition destination. Overall, these results suggest that Miocene changes in reef configurations were likely driven by, and subsequently promoted, trophic innovations. This highlights trophic evolution as a key element in enhancing reef fish diversification.
Collapse
Affiliation(s)
- Alexandre C Siqueira
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
| | - Renato A Morais
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
204
|
Delia J, Bravo‐Valencia L, Warkentin KM. The evolution of extended parental care in glassfrogs: Do egg‐clutch phenotypes mediate coevolution between the sexes? ECOL MONOGR 2020. [DOI: 10.1002/ecm.1411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jesse Delia
- Department of Biology Boston University Boston 02214 Massachusetts USA
| | - Laura Bravo‐Valencia
- Profesional equipo de fauna silvestre Corantioquia Santa Fe de Antioquia Colombia
| | - Karen M. Warkentin
- Department of Biology Boston University Boston 02214 Massachusetts USA
- Smithsonian Tropical Research Institute Panamá 0843-03092 República de Panamá
| |
Collapse
|
205
|
Greenwold MJ, Cunningham BR, Lachenmyer EM, Pullman JM, Richardson TL, Dudycha JL. Diversification of light capture ability was accompanied by the evolution of phycobiliproteins in cryptophyte algae. Proc Biol Sci 2020; 286:20190655. [PMID: 31088271 DOI: 10.1098/rspb.2019.0655] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evolutionary biologists have long sought to identify phenotypic traits whose evolution enhances an organism's performance in its environment. Diversification of traits related to resource acquisition can occur owing to spatial or temporal resource heterogeneity. We examined the ability to capture light in the Cryptophyta, a phylum of single-celled eukaryotic algae with diverse photosynthetic pigments, to better understand how acquisition of an abiotic resource may be associated with diversification. Cryptophytes originated through secondary endosymbiosis between an unknown eukaryotic host and a red algal symbiont. This merger resulted in distinctive pigment-protein complexes, the cryptophyte phycobiliproteins, which are the products of genes from both ancestors. These novel complexes may have facilitated diversification across environments where the spectrum of light available for photosynthesis varies widely. We measured light capture and pigments under controlled conditions in a phenotypically and phylogenetically diverse collection of cryptophytes. Using phylogenetic comparative methods, we found that phycobiliprotein characteristics were evolutionarily associated with diversification of light capture in cryptophytes, while non-phycobiliprotein pigments were not. Furthermore, phycobiliproteins were evolutionarily labile with repeated transitions and reversals. Thus, the endosymbiotic origin of cryptophyte phycobiliproteins provided an evolutionary spark that drove diversification of light capture, the resource that is the foundation of photosynthesis.
Collapse
Affiliation(s)
- Matthew J Greenwold
- 1 Department of Biological Sciences, University of South Carolina , Columbia, SC 29208 , USA
| | - Brady R Cunningham
- 2 School of the Earth, Ocean, and Environment, University of South Carolina , Columbia, SC 29208 , USA
| | - Eric M Lachenmyer
- 2 School of the Earth, Ocean, and Environment, University of South Carolina , Columbia, SC 29208 , USA
| | - John Michael Pullman
- 1 Department of Biological Sciences, University of South Carolina , Columbia, SC 29208 , USA
| | - Tammi L Richardson
- 1 Department of Biological Sciences, University of South Carolina , Columbia, SC 29208 , USA.,2 School of the Earth, Ocean, and Environment, University of South Carolina , Columbia, SC 29208 , USA
| | - Jeffry L Dudycha
- 1 Department of Biological Sciences, University of South Carolina , Columbia, SC 29208 , USA
| |
Collapse
|
206
|
Flower morphology is correlated with distribution and phylogeny in Bertolonia (Melastomataceae), an herbaceous genus endemic to the Atlantic Forest. Mol Phylogenet Evol 2020; 149:106844. [PMID: 32325194 DOI: 10.1016/j.ympev.2020.106844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/02/2020] [Accepted: 04/10/2020] [Indexed: 01/04/2023]
Abstract
Several centers of endemism have been proposed for Melastomataceae, particularly in Amazonia and Atlantic Forest. Despite the high degree of human-caused degradation in the last 500 years, the Atlantic Forest still presents some of the largest levels of diversity and endemism across all angiosperms. With several recently described species in the last decade, the knowledge on Bertolonia's distribution and morphological characterization has changed, with most new species found in northern Atlantic Forest and with different flower color patterns than the species from southern Atlantic Forest. We first tested the monophyly of the genus sampling over 85% of its species to generate a reliable phylogenetic hypothesis. Afterwards, we used Bertolonia as a model group to study distribution patterns and morphological evolution of lineages in the Atlantic Forest. Bertolonia is particularly interesting to address such questions because it is endemic to this domain, with species distributed either in the southern, central or northern portions of the Atlantic Forest. The second step of our work aimed to respond (1) Do closely related species endemic to Atlantic Forest tend to have similar distributions and share similar morphological traits? and (2) Are floral traits more conserved within clades than vegetative characters? We hypothesize that both (1) and (2) are true due to the low dispersal ability and consequent microendemic distribution of most species in the genus. Our results confirm the veracity of the proposed hypotheses. Three major groups were recovered in our analysis: marmorata, formosa and nymphaeifolia clades. Most species that occur in northern Atlantic Forest were recovered in the marmorata clade. Most species distributed in central Atlantic Forest were recovered in the formosa clade, and the ones from the southern Atlantic Forest in the nymphaeifolia clade. A similar pattern was recovered with reproductive characters reconstructed across the phylogeny. Generally, species with pink petals and cream-colored anthers with an extrorse pore occur in northern Atlantic Forest, and species with white petals and yellow anthers with an introrse or apical pore tend to occur in southern Atlantic Forest. Some vegetative characters also have evolutionary congruence and are restricted to one or few lineages, while other characters, such as the texture of the leaf blade surface, have a strong taxonomic value and are useful to identify species, but are not homologous. Our analysis also indicates that the division between southern and northern Atlantic Forest could also be related to ancient events, not only linked with recent phylogeographic patterns. Moreover, we suggest that the orientation of the anther pore in Bertolonia could be related with diversity of species and stability of its populations. In summary, we corroborate, based on the evolutionary history of Bertolonia, that closely related species endemic to Atlantic Forest tend to have similar distributions and share similar morphological floral traits.
Collapse
|
207
|
Gunn BF, Murphy DJ, Walsh NG, Conran JG, Pires JC, Macfarlane TD, Birch JL. Evolution of Lomandroideae: Multiple origins of polyploidy and biome occupancy in Australia. Mol Phylogenet Evol 2020; 149:106836. [PMID: 32304826 DOI: 10.1016/j.ympev.2020.106836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 02/03/2023]
Abstract
Asparagaceae: Lomandroideae are a species-rich and economically important subfamily in the monocot order Asparagales, with a center of diversity in Australia. Lomandroideae are ecologically diverse, occupying mesic and arid biomes in Australia and possessing an array of key traits, including sexual dimorphism, storage organs and polyploidy that are potentially adaptive for survival in seasonally arid and fire-dependent habitats. The Lomandroideae phylogeny was reconstructed using maximum likelihood and Bayesian inference criteria, based on plastome data from genome-skimming to infer relationships. A fossil-calibrated chronogram provided a temporal framework for understanding trait transitions. Ancestral state reconstructions and phylogenetic comparative trait correlation analyses provided insights into the evolutionary and ecological drivers associated with Lomandroideae diversification. Lomandroideae diverged from the other Asparagaceae ca. 56.61 million years ago (95% highest posterior density values 70.31-45.34 million years) and the major lineages diversified since the Oligocene. The most recent common ancestor of the clade likely occupied the mesic biome, was hermaphroditic and geophytic. Biome occupancy transitions were correlated with polyploidy and the presence of storage roots. Polyploidy potentially serves as an "enabler" trait, generating novel phenotypes, which may confer tolerance to climatic ranges and soil conditions putatively required for expansion into and occupation of new arid biomes. Storage roots, as a key factor driving biome transitions, may have been associated with fire rather than with aridification events in the Australian flora. This study contributes significantly to our understanding of biome evolution by identifying polyploidy and storage organs as key factors associated with transitions in biome occupancy in this lineage.
Collapse
Affiliation(s)
- Bee F Gunn
- Royal Botanic Gardens Victoria, Birdwood Ave., Melbourne, VIC 3004, Australia.
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Birdwood Ave., Melbourne, VIC 3004, Australia.
| | - Neville G Walsh
- Royal Botanic Gardens Victoria, Birdwood Ave., Melbourne, VIC 3004, Australia.
| | - John G Conran
- The University of Adelaide, School of Biological Sciences, Adelaide, SA 5005, Australia.
| | - J Chris Pires
- University of Missouri, Div. of Biological Sciences, 105 Tucker Hall, Columbia, MO 65211-7400, USA.
| | - Terry D Macfarlane
- Dept. of Biodiversity, Conservation and Attractions, 17 Dick Perry Ave., Technology Park, Western Precinct, Kensington, WA 6983, Australia.
| | - Joanne L Birch
- The University of Melbourne, School of BioSciences, Parkville, VIC 3010, Australia.
| |
Collapse
|
208
|
Reginato M, Vasconcelos TNC, Kriebel R, Simões AO. Is dispersal mode a driver of diversification and geographical distribution in the tropical plant family Melastomataceae? Mol Phylogenet Evol 2020; 148:106815. [PMID: 32278864 DOI: 10.1016/j.ympev.2020.106815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
Species of plants with different life history strategies may differ in their seed dispersal mechanisms, impacting their distribution and diversification patterns. Shorter or longer distance dispersal is favored by different dispersal modes, facilitating (or constraining) population isolation, which can, in turn, impact speciation and species range sizes. While these associations are intuitive, few studies have explicitly tested these hypotheses for large clades of angiosperms. The plant family Melastomataceae is found on disparate habitats with different dispersal modes, representing a good model to address these questions. In this study, we reconstruct the phylogeny of Melastomataceae and gather data on their dispersal mode and range size to test the impact of dispersal mode on diversification and range size evolution. We found that abiotic dispersal is ancestral in the family, while biotic dispersal evolved multiple times. Species richness distribution is very similar across dispersal modes, although abiotically dispersed species tend to be relatively more diverse in seasonal environments. Range sizes across dispersal modes are not significantly different, although biotically dispersed species have slightly wider distributions. Model comparisons indicate that factors other than dispersal mode might have driven diversification heterogeneity. We did not find evidence for the role of dispersal mode driving diversification rates or range size in the Melastomataceae, suggesting a complex macroevolutionary scenario for this diverse angiosperm family. The bulk of changes to biotic dispersal coinciding with an increase in passerine diversification suggests a possible "past" key innovation in Melastomataceae. Future studies should investigate the role of other diversification drivers in the family and the relatively higher diversity of abiotically dispersed species in open habitats.
Collapse
Affiliation(s)
- Marcelo Reginato
- Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Thais N C Vasconcelos
- Laboratório de Sistemática Vegetal, Departamento de Botânica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ricardo Kriebel
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - André Olmos Simões
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
209
|
Landis MJ, Eaton DAR, Clement WL, Park B, Spriggs EL, Sweeney PW, Edwards EJ, Donoghue MJ. Joint Phylogenetic Estimation of Geographic Movements and Biome Shifts during the Global Diversification of Viburnum. Syst Biol 2020; 70:67-85. [PMID: 32267945 DOI: 10.1093/sysbio/syaa027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 11/14/2022] Open
Abstract
Phylogeny, molecular sequences, fossils, biogeography, and biome occupancy are all lines of evidence that reflect the singular evolutionary history of a clade, but they are most often studied separately, by first inferring a fossil-dated molecular phylogeny, then mapping on ancestral ranges and biomes inferred from extant species. Here we jointly model the evolution of biogeographic ranges, biome affinities, and molecular sequences, while incorporating fossils to estimate a dated phylogeny for all of the 163 extant species of the woody plant clade Viburnum (Adoxaceae) that we currently recognize in our ongoing worldwide monographic treatment of the group. Our analyses indicate that while the major Viburnum lineages evolved in the Eocene, the majority of extant species originated since the Miocene. Viburnum radiated first in Asia, in warm, broad-leaved evergreen (lucidophyllous) forests. Within Asia, we infer several early shifts into more tropical forests, and multiple shifts into forests that experience prolonged freezing. From Asia, we infer two early movements into the New World. These two lineages probably first occupied warm temperate forests and adapted later to spreading cold climates. One of these lineages (Porphyrotinus) occupied cloud forests and moved south through the mountains of the Neotropics. Several other movements into North America took place more recently, facilitated by prior adaptations to freezing in the Old World. We also infer four disjunctions between Asia and Europe: the Tinus lineage is the oldest and probably occupied warm forests when it spread, whereas the other three were more recent and in cold-adapted lineages. These results variously contradict published accounts, especially the view that Viburnum radiated initially in cold forests and, accordingly, maintained vessel elements with scalariform perforations. We explored how the location and biome assignments of fossils affected our inference of ancestral areas and biome states. Our results are sensitive to, but not entirely dependent upon, the inclusion of fossil biome data. It will be critical to take advantage of all available lines of evidence to decipher events in the distant past. The joint estimation approach developed here provides cautious hope even when fossil evidence is limited. [Biogeography; biome; combined evidence; fossil pollen; phylogeny; Viburnum.].
Collapse
Affiliation(s)
- Michael J Landis
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA.,Department of Ecology & Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT 06520, USA
| | - Deren A R Eaton
- Department of Ecology, Evolution & Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Wendy L Clement
- Department of Biology, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628 USA
| | - Brian Park
- Department of Plant Biology, University of Georgia, Miller Plant Sciences Building, Athens, GA 30602, USA
| | - Elizabeth L Spriggs
- The Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA 02131, USA
| | - Patrick W Sweeney
- Division of Botany, Yale Peabody Museum of Natural History, P.O. Box 208118, New Haven, CT 06520, USA
| | - Erika J Edwards
- Department of Ecology & Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT 06520, USA.,Division of Botany, Yale Peabody Museum of Natural History, P.O. Box 208118, New Haven, CT 06520, USA
| | - Michael J Donoghue
- Department of Ecology & Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT 06520, USA.,Division of Botany, Yale Peabody Museum of Natural History, P.O. Box 208118, New Haven, CT 06520, USA
| |
Collapse
|
210
|
Léveillé-Bourret É, Chen BH, Garon-Labrecque MÈ, Ford BA, Starr JR. RAD sequencing resolves the phylogeny, taxonomy and biogeography of Trichophoreae despite a recent rapid radiation (Cyperaceae). Mol Phylogenet Evol 2020; 145:106727. [DOI: 10.1016/j.ympev.2019.106727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/13/2019] [Accepted: 12/29/2019] [Indexed: 12/15/2022]
|
211
|
Dench J, Hinz A, Aris‐Brosou S, Kassen R. Identifying the drivers of computationally detected correlated evolution among sites under antibiotic selection. Evol Appl 2020; 13:781-793. [PMID: 32211067 PMCID: PMC7086105 DOI: 10.1111/eva.12900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/02/2019] [Accepted: 11/14/2019] [Indexed: 11/29/2022] Open
Abstract
The ultimate causes of correlated evolution among sites in a genome remain difficult to tease apart. To address this problem directly, we performed a high-throughput search for correlated evolution among sites associated with resistance to a fluoroquinolone antibiotic using whole-genome data from clinical strains of Pseudomonas aeruginosa, before validating our computational predictions experimentally. We show that for at least two sites, this correlation is underlain by epistasis. Our analysis also revealed eight additional pairs of synonymous substitutions displaying correlated evolution underlain by physical linkage, rather than selection associated with antibiotic resistance. Our results provide direct evidence that both epistasis and physical linkage among sites can drive the correlated evolution identified by high-throughput computational tools. In other words, the observation of correlated evolution is not by itself sufficient evidence to guarantee that the sites in question are epistatic; such a claim requires additional evidence, ideally coming from direct estimates of epistasis, based on experimental evidence.
Collapse
Affiliation(s)
- Jonathan Dench
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Aaron Hinz
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Stéphane Aris‐Brosou
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- Department of Mathematics and StatisticsUniversity of OttawaOttawaOntarioCanada
| | - Rees Kassen
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
212
|
Zhu XM, Du Y, Qu YF, Li H, Gao JF, Lin CX, Ji X, Lin LH. The geographical diversification in varanid lizards: the role of mainland versus island in driving species evolution. Curr Zool 2020; 66:165-171. [PMID: 32226443 PMCID: PMC7083093 DOI: 10.1093/cz/zoaa002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/19/2020] [Indexed: 11/13/2022] Open
Abstract
Monitor lizards (Varanidae) inhabit both the mainland and islands of all geological types and have diversified into an exceptionally wide range of body sizes, thus providing an ideal model for examining the role of mainland versus island in driving species evolution. Here we use phylogenetic comparative methods to examine whether a link exists between body size-driven diversification and body size-frequency distributions in varanid lizards and to test the hypothesis that island lizards differ from mainland species in evolutionary processes, body size, and life-history traits (offspring number and size). We predict that: 1) since body size drives rapid diversification in groups, a link exists between body size-driven diversification and body size-frequency distributions; 2) because of various environments on island, island species will have higher speciation, extinction, and dispersal rates, compared with mainland species; 3) as a response to stronger intraspecific competition, island species will maximize individual ability associated with body size to outcompete closely-related species, and island species will produce smaller clutches of larger eggs to increase offspring quality. Our results confirm that the joint effect of differential macroevolutionary rates shapes the species richness pattern of varanid lizards. There is a link between body size-driven diversification and body size-frequency distributions, and the speciation rate is maximized at medium body sizes. Island species will have higher speciation, equal extinction, and higher dispersal rates compared with mainland species. Smaller clutch size and larger hatchling in the island than in mainland species indicate that offspring quality is more valuable than offspring quantity for island varanids.
Collapse
Affiliation(s)
- Xia-Ming Zhu
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.,Hainan Key Laboratory for Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jian-Fang Gao
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chi-Xian Lin
- Hainan Key Laboratory for Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
213
|
Kolmann MA, Burns MD, Ng JYK, Lovejoy NR, Bloom DD. Habitat transitions alter the adaptive landscape and shape phenotypic evolution in needlefishes (Belonidae). Ecol Evol 2020; 10:3769-3783. [PMID: 32313635 PMCID: PMC7160164 DOI: 10.1002/ece3.6172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 01/10/2023] Open
Abstract
Habitat occupancy can have a profound influence on macroevolutionary dynamics, and a switch in major habitat type may alter the evolutionary trajectory of a lineage. In this study, we investigate how evolutionary transitions between marine and freshwater habitats affect macroevolutionary adaptive landscapes, using needlefishes (Belonidae) as a model system. We examined the evolution of body shape and size in marine and freshwater needlefishes and tested for phenotypic change in response to transitions between habitats. Using micro-computed tomographic (µCT) scanning and geometric morphometrics, we quantified body shape, size, and vertebral counts of 31 belonid species. We then examined the pattern and tempo of body shape and size evolution using phylogenetic comparative methods. Our results show that transitions from marine to freshwater habitats have altered the adaptive landscape for needlefishes and expanded morphospace relative to marine taxa. We provide further evidence that freshwater taxa attain reduced sizes either through dwarfism (as inferred from axial skeletal reduction) or through developmental truncation (as inferred from axial skeletal loss). We propose that transitions to freshwater habitats produce morphological novelty in response to novel prey resources and changes in locomotor demands. We find that repeated invasions of different habitats have prompted predictable changes in morphology.
Collapse
Affiliation(s)
- Matthew A. Kolmann
- Department of Biological SciencesGeorge Washington UniversityWashingtonDCUSA
- Friday Harbor LaboratoriesUniversity of WashingtonFriday HarborWAUSA
| | - Michael D. Burns
- Cornell Lab of OrnithologyCornell University Museum of VertebratesIthacaNYUSA
- Department of Biological SciencesWestern Michigan UniversityKalamazooMIUSA
| | - Justin Y. K. Ng
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| | - Nathan R. Lovejoy
- Department of Biological ScienceUniversity of Toronto ScarboroughTorontoONCanada
| | - Devin D. Bloom
- Department of Biological Sciences & Institute of the Environment and SustainabilityWestern Michigan UniversityKalamazooMIUSA
| |
Collapse
|
214
|
Bergmann PJ, Mann SDW, Morinaga G, Freitas ES, Siler CD. Convergent Evolution of Elongate Forms in Craniates and of Locomotion in Elongate Squamate Reptiles. Integr Comp Biol 2020; 60:190-201. [DOI: 10.1093/icb/icaa015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Synopsis Elongate, snake- or eel-like, body forms have evolved convergently many times in most major lineages of vertebrates. Despite studies of various clades with elongate species, we still lack an understanding of their evolutionary dynamics and distribution on the vertebrate tree of life. We also do not know whether this convergence in body form coincides with convergence at other biological levels. Here, we present the first craniate-wide analysis of how many times elongate body forms have evolved, as well as rates of its evolution and reversion to a non-elongate form. We then focus on five convergently elongate squamate species and test if they converged in vertebral number and shape, as well as their locomotor performance and kinematics. We compared each elongate species to closely related quadrupedal species and determined whether the direction of vertebral or locomotor change matched in each case. The five lineages examined are obscure species from remote locations, providing a valuable glimpse into their biology. They are the skink lizards Brachymeles lukbani, Lerista praepedita, and Isopachys anguinoides, the basal squamate Dibamus novaeguineae, and the basal snake Malayotyphlops cf. ruficaudus. Our results support convergence among these species in the number of trunk and caudal vertebrae, but not vertebral shape. We also find that the elongate species are relatively slower than their limbed counterparts and move with lower frequency and higher amplitude body undulations, with the exception of Isopachys. This is among the first evidence of locomotor convergence across distantly related, elongate species.
Collapse
Affiliation(s)
| | - Sara D W Mann
- Department of Biology, Clark University, Worcester, MA, USA
| | - Gen Morinaga
- Department of Biology, Clark University, Worcester, MA, USA
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Elyse S Freitas
- Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK, USA
| | - Cameron D Siler
- Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
215
|
Winchell KM, Schliep KP, Mahler DL, Revell LJ. Phylogenetic signal and evolutionary correlates of urban tolerance in a widespread neotropical lizard clade. Evolution 2020; 74:1274-1288. [PMID: 32129470 DOI: 10.1111/evo.13947] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 01/01/2023]
Abstract
Urbanization is intensifying worldwide, and while some species tolerate and even exploit urban environments, many others are excluded entirely from this new habitat. Understanding the factors that underlie tolerance of urbanization is thus of rapidly growing importance. Here, we examine urban tolerance across a diverse group of lizards: Caribbean members of the neotropical genus Anolis. Our analyses reveal that urban tolerance has strong phylogenetic signal, suggesting that closely related species tend to respond similarly to urban environments. We propose that this characteristic of urban tolerance in anoles may be used to forecast the possible responses of species to increasing urbanization. In addition, we identified several key ecological and morphological traits that tend to be associated with tolerance in Anolis. Specifically, species experiencing hot and dry conditions in their natural environment and those that maintain higher body temperatures tend to have greater tolerance of urban habitats. We also found that tolerance of urbanization is positively associated with toepad lamella number and negatively associated with ventral scale density and relative hindlimb length. The identification of factors that predispose a species to be more or less urban tolerant can provide a starting point for conservation and sustainable development in our increasingly urbanized world.
Collapse
Affiliation(s)
- Kristin M Winchell
- Department of Biology, Washington University, St. Louis, Missouri, 63130
| | - Klaus P Schliep
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, 02125.,Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - D Luke Mahler
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Liam J Revell
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, 02125.,Facultad de Ciencias, Universidad Cátolica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
216
|
Deline B, Thompson JR, Smith NS, Zamora S, Rahman IA, Sheffield SL, Ausich WI, Kammer TW, Sumrall CD. Evolution and Development at the Origin of a Phylum. Curr Biol 2020; 30:1672-1679.e3. [PMID: 32197083 DOI: 10.1016/j.cub.2020.02.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 01/07/2023]
Abstract
Quantifying morphological evolution is key to determining the patterns and processes underlying the origin of phyla. We constructed a hierarchical morphological character matrix to characterize the radiation and establishment of echinoderm body plans during the early Paleozoic. This showed that subphylum-level clades diverged gradually through the Cambrian, and the distinctiveness of the resulting body plans was amplified by the extinction of transitional forms and obscured by convergent evolution during the Ordovician. Higher-order characters that define these body plans were not fixed at the origin of the phylum, countering hypotheses regarding developmental processes governing the early evolution of animals. Instead, these burdened characters were flexible, enabling continued evolutionary innovation throughout the clades' history.
Collapse
Affiliation(s)
- Bradley Deline
- Department of Geoscience, University of West Georgia, Carrollton, GA 30118, USA.
| | - Jeffrey R Thompson
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Nicholas S Smith
- Department of Geoscience, University of West Georgia, Carrollton, GA 30118, USA; Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Samuel Zamora
- Instituto Geológico y Minero de España, 50006 Zaragoza, Spain; Grupo Aragosaurus-IUCA, Área de Paleontología, Facultad de Ciencias, Universidad de Zaragoza, 50006 Zaragoza, Spain
| | - Imran A Rahman
- Oxford University Museum of Natural History, Oxford OX1 3PW, UK
| | - Sarah L Sheffield
- School of Geosciences, University of South Florida, Tampa, FL 33620, USA
| | - William I Ausich
- School of Earth Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Thomas W Kammer
- Department of Geology and Geography, West Virginia University, Morgantown, WV 26506, USA
| | - Colin D Sumrall
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
217
|
Nagy LG, Merényi Z, Hegedüs B, Bálint B. Novel phylogenetic methods are needed for understanding gene function in the era of mega-scale genome sequencing. Nucleic Acids Res 2020; 48:2209-2219. [PMID: 31943056 PMCID: PMC7049691 DOI: 10.1093/nar/gkz1241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/15/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022] Open
Abstract
Ongoing large-scale genome sequencing projects are forecasting a data deluge that will almost certainly overwhelm current analytical capabilities of evolutionary genomics. In contrast to population genomics, there are no standardized methods in evolutionary genomics for extracting evolutionary and functional (e.g. gene-trait association) signal from genomic data. Here, we examine how current practices of multi-species comparative genomics perform in this aspect and point out that many genomic datasets are under-utilized due to the lack of powerful methodologies. As a result, many current analyses emphasize gene families for which some functional data is already available, resulting in a growing gap between functionally well-characterized genes/organisms and the universe of unknowns. This leaves unknown genes on the 'dark side' of genomes, a problem that will not be mitigated by sequencing more and more genomes, unless we develop tools to infer functional hypotheses for unknown genes in a systematic manner. We provide an inventory of recently developed methods capable of predicting gene-gene and gene-trait associations based on comparative data, then argue that realizing the full potential of whole genome datasets requires the integration of phylogenetic comparative methods into genomics, a rich but underutilized toolbox for looking into the past.
Collapse
Affiliation(s)
- László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Temesvari krt 62. Szeged 6726, Hungary
| |
Collapse
|
218
|
Alves PR, Halanych KM, Santos CSG. The phylogeny of Nereididae (Annelida) based on mitochondrial genomes. ZOOL SCR 2020. [DOI: 10.1111/zsc.12413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paulo Ricardo Alves
- Programa de Pós‐Graduação em Biologia Marinha e Ambientes Costeiros Laboratório de Sistemática e Ecologia de Polychaeta Departamento de Biologia Marinha Universidade Federal Fluminense Niterói Brasil
| | - Kenneth M. Halanych
- Molette Laboratory for Environmental and Climate Change Studies Department of Biological Sciences Auburn University Auburn AL USA
| | - Cinthya Simone Gomes Santos
- Programa de Pós‐Graduação em Biologia Marinha e Ambientes Costeiros Laboratório de Sistemática e Ecologia de Polychaeta Departamento de Biologia Marinha Universidade Federal Fluminense Niterói Brasil
| |
Collapse
|
219
|
Larter M, Dunbar-Wallis A, Berardi AE, Smith SD. Convergent Evolution at the Pathway Level: Predictable Regulatory Changes during Flower Color Transitions. Mol Biol Evol 2020; 35:2159-2169. [PMID: 29878153 DOI: 10.1093/molbev/msy117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The predictability of evolution, or whether lineages repeatedly follow the same evolutionary trajectories during phenotypic convergence remains an open question of evolutionary biology. In this study, we investigate evolutionary convergence at the biochemical pathway level and test the predictability of evolution using floral anthocyanin pigmentation, a trait with a well-understood genetic and regulatory basis. We reconstructed the evolution of floral anthocyanin content across 28 species of the Andean clade Iochrominae (Solanaceae) and investigated how shifts in pigmentation are related to changes in expression of seven key anthocyanin pathway genes. We used phylogenetic multivariate analysis of gene expression to test for phenotypic and developmental convergence at a macroevolutionary scale. Our results show that the four independent losses of the ancestral pigment delphinidin involved convergent losses of expression of the three late pathway genes (F3'5'h, Dfr, and Ans). Transitions between pigment types affecting floral hue (e.g., blue to red) involve changes to the expression of branching genes F3'h and F3'5'h, while the expression levels of early steps of the pathway are strongly conserved in all species. These patterns support the idea that the macroevolution of floral pigmentation follows predictable evolutionary trajectories to reach convergent phenotype space, repeatedly involving regulatory changes. This is likely driven by constraints at the pathway level, such as pleiotropy and regulatory structure.
Collapse
Affiliation(s)
- Maximilian Larter
- Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, Boulder, CO
| | - Amy Dunbar-Wallis
- Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, Boulder, CO
| | - Andrea E Berardi
- Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, Boulder, CO.,Department of Biology, Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, Boulder, CO
| |
Collapse
|
220
|
Halali S, Brakefield PM, Collins SC, Brattström O. To mate, or not to mate: The evolution of reproductive diapause facilitates insect radiation into African savannahs in the Late Miocene. J Anim Ecol 2020; 89:1230-1241. [DOI: 10.1111/1365-2656.13178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/27/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Sridhar Halali
- Department of Zoology University of Cambridge Cambridge UK
| | | | | | - Oskar Brattström
- Department of Zoology University of Cambridge Cambridge UK
- African Butterfly Research Institute (ABRI) Nairobi Kenya
| |
Collapse
|
221
|
Minias P, Janiszewski T. Evolution of a conspicuous melanin-based ornament in gulls Laridae. J Evol Biol 2020; 33:682-693. [PMID: 32050039 DOI: 10.1111/jeb.13604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/29/2019] [Accepted: 02/05/2020] [Indexed: 11/28/2022]
Abstract
Melanin- and carotenoid-based ornaments often signal different aspects of individual quality or similar components of quality under different environmental conditions and, thus, they may become evolutionarily integrated into a composite sexual trait. On the other hand, functionally and developmentally different characters (e.g. coloration characters of different developmental origin) are more likely to evolve independently from each other than more similar traits. Here, we examined evolutionary correlations between the occurrence of a conspicuous melanin-based ornament (hood) and carotenoid-based bare-part ornaments within gull family. We also aimed to identify major ecological, life-history and biogeographical predictors of hood occurrence and reconstruct evolutionary history of this ornament. We found that hood occurrence was associated with red or dark coloration of unfeathered traits (bill and legs), whereas combinations of hood with yellow carotenoid-based coloration of integument were evolutionarily avoided. Also, hood occurrence correlated negatively with the occurrence of other melanin-based plumage character (mantle). Breeding latitude and habitat were identified as major predictors of hood occurrence in gulls, as hoods were recorded more frequently in low-latitude and inland (rather than marine) species. Finally, our analysis provided support for evolutionary lability in hood occurrence, with a dominance of transitions towards hood loss in the evolutionary history of gulls. The results of our study provide one of the first evidence for a correlated evolution of melanin- and carotenoid-based ornaments in an avian lineage, which supports evolutionary modularity of developmentally and functionally different coloration traits.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Tomasz Janiszewski
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
222
|
Arbour JH, Montaña CG, Winemiller KO, Pease AA, Soria-Barreto M, Cochran-Biederman JL, López-Fernández H. Macroevolutionary analyses indicate that repeated adaptive shifts towards predatory diets affect functional diversity in Neotropical cichlids. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
During adaptive radiation, diversification within clades is limited by adaptation to the available ecological niches, and this may drive patterns of both trait and species diversity. However, adaptation to disparate niches may result in varied impacts on the timing, pattern and rate of morphological evolution. In this study, we examined the relationship between feeding ecology and functional diversification across a diverse clade of freshwater fishes, the Neotropical cichlids. Species dietary niches were ordinated via multivariate analysis of stomach content data. We investigated changes in the rate and pattern of morphological diversification associated with feeding, including dietary niche and degree of dietary specialization. A major division in dietary niche space was observed between predators that consume fish and macroinvertebrates vs. other groups with diets dominated by small invertebrates, detritus or vegetation. These trophic niches were strongly associated with groupings defined by functional morphospace. Clades within the piscivore/macroinvertivore group rarely transitioned to other dietary niches. Comparatively, high dietary specialization enhanced functional diversification, driving the evolution of more extreme morphologies. Divergent patterns of trophic diversification among Neotropical cichlids appear to derive from different performance demands in regional abiotic and biotic environments associated with biogeographical history.
Collapse
Affiliation(s)
- Jessica H Arbour
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Carmen G Montaña
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Kirk O Winemiller
- Department of Wildlife and Fisheries Sciences, Texas A&M University, TAMU, College Station, TX, USA
| | - Allison A Pease
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX, USA
| | - Miriam Soria-Barreto
- Departamento de Conservación de la Biodiversidad, CONACYT - El Colegio de la Frontera Sur (ECOSUR), San Cristóbal de Las Casas, Chiapas, Mexico
- Centro de Investigación de Ciencias Ambientales, Universidad Autónoma del Carmen, Ciudad del Carmen, Campeche, Mexico
| | | | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| |
Collapse
|
223
|
Galván I, Vargas‐Mena JC, Rodríguez‐Herrera B. Tent‐roosting may have driven the evolution of yellow skin coloration in Stenodermatinae bats. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ismael Galván
- Department of Evolutionary Ecology, Doñana Biological Station CSIC Sevilla Spain
| | | | | |
Collapse
|
224
|
Ord TJ, Garcia-Porta J, Querejeta M, Collar DC. Gliding Dragons and Flying Squirrels: Diversifying versus Stabilizing Selection on Morphology following the Evolution of an Innovation. Am Nat 2020; 195:E51-E66. [DOI: 10.1086/706305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
225
|
Curtis AA, Arbour JH, Santana SE. Mind the gap: natural cleft palates reduce biting performance in bats. J Exp Biol 2020; 223:jeb.196535. [PMID: 31852754 DOI: 10.1242/jeb.196535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/12/2019] [Indexed: 02/03/2023]
Abstract
Novel morphological traits pose interesting evolutionary paradoxes when they become widespread in a lineage while being deleterious in others. Cleft palate is a rare congenital condition in mammals in which the incisor-bearing premaxilla bones of the upper jaw develop abnormally. However, ∼50% of bat species have natural, non-pathological cleft palates. We used the family Vespertilionidae as a model and linear and geometric morphometrics within a phylogenetic framework to (1) explore evolutionary patterns in cleft morphology, and (2) test whether cleft morphological variation is correlated with skull shape in bats. We also used finite element (FE) analyses to experimentally test how presence of a cleft palate impacts skull performance during biting in a species with extreme cleft morphology (hoary bat, Lasiurus cinereus). We constructed and compared the performance of two FE models: one based on the hoary bat's natural skull morphology, and another with a digitally filled cleft simulating a complete premaxilla. Results showed that cleft length and width are correlated with skull shape in Vespertilionidae, with narrower, shallower clefts seen in more gracile skulls and broader, deeper clefts in more robust skulls. FE analysis showed that the model with a natural cleft produced lower bite forces, and had higher stress and strain than the model with a filled cleft. In the rostrum, safety factors were 1.59-2.20 times higher in the model with a filled cleft than in the natural model. Our results demonstrate that cleft palates in bats reduce biting performance, and evolution of skull robusticity may compensate for this reduction in performance.
Collapse
Affiliation(s)
- Abigail A Curtis
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Jessica H Arbour
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Sharlene E Santana
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.,Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195-1800, USA
| |
Collapse
|
226
|
Fong JJ, Yang BT, Li PP, Waldman B, Min MS. Phylogenetic Systematics of the Water Toad (Bufo stejnegeri) Elucidates the Evolution of Semi-aquatic Toad Ecology and Pleistocene Glacial Refugia. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
227
|
Gearty W, Payne JL. Physiological constraints on body size distributions in Crocodyliformes. Evolution 2020; 74:245-255. [PMID: 31943148 DOI: 10.1111/evo.13901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/21/2019] [Accepted: 11/30/2019] [Indexed: 11/29/2022]
Abstract
At least 26 species of crocodylian populate the globe today, but this richness represents a minute fraction of the diversity and disparity of Crocodyliformes. Fossil forms are far more varied, spanning from erect, fully terrestrial species to flippered, fully marine species. To quantify the influence of a marine habitat on the directionality, rate, and variance of evolution of body size in Crocodyliformes and thereby identify underlying selective pressures, we compiled a database of body sizes for 264 fossil and modern species of crocodyliform covering terrestrial, semi-aquatic, and marine habitats. We find increases in body size coupled with increases in strength of selection and decreases in variance following invasions of marine habitats but not of semiaquatic habitats. A model combining constraints from thermoregulation and lung capacity provides a physiological explanation for the larger minimum and average sizes of marine species. It appears that constraints on maximum size are shared across Crocodyliformes, perhaps through factors such as the allometric scaling of feeding rate versus basal metabolism with body size. These findings suggest that broad-scale patterns of body size evolution and the shapes of body size distributions within higher taxa are often determined more by physiological constraints than by ecological interactions or environmental fluctuations.
Collapse
Affiliation(s)
- William Gearty
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588.,Department of Geological Sciences, Stanford University, Stanford, California, 94305
| | - Jonathan L Payne
- Department of Geological Sciences, Stanford University, Stanford, California, 94305
| |
Collapse
|
228
|
Sinnott-Armstrong MA, Lee C, Clement WL, Donoghue MJ. Fruit syndromes in Viburnum: correlated evolution of color, nutritional content, and morphology in bird-dispersed fleshy fruits. BMC Evol Biol 2020; 20:7. [PMID: 31931711 PMCID: PMC6956505 DOI: 10.1186/s12862-019-1546-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/21/2019] [Indexed: 11/20/2022] Open
Abstract
PREMISE A key question in plant dispersal via animal vectors is where and why fruit colors vary between species and how color relates to other fruit traits. To better understand the factors shaping the evolution of fruit color diversity, we tested for the existence of syndromes of traits (color, morphology, and nutrition) in the fruits of Viburnum. We placed these results in a larger phylogenetic context and reconstructed ancestral states to assess how Viburnum fruit traits have evolved across the clade. RESULTS We find that blue Viburnum fruits are not very juicy, and have high lipid content and large, round endocarps surrounded by a small quantity of pulp. Red fruits display the opposite suite of traits: they are very juicy with low lipid content and smaller, flatter endocarps. The ancestral Viburnum fruit may have gone through a sequence of color changes before maturation (green to yellow to red to black), though our reconstructions are equivocal. In one major clade of Viburnum (Nectarotinus), fruits mature synchronously with reduced intermediate color stages. Most transitions between fruit colors occurred in this synchronously fruiting clade. CONCLUSIONS It is widely accepted that fruit trait diversity has primarily been driven by the differing perceptual abilities of bird versus mammal frugivores. Yet within a clade of largely bird-dispersed fruits, we find clear correlations between color, morphology, and nutrition. These correlations are likely driven by a shift from sequential to synchronous development, followed by diversification in color, nutrition, and morphology. A deeper understanding of fruit evolution within clades will elucidate the degree to which such syndromes structure extant fruit diversity.
Collapse
Affiliation(s)
- Miranda A. Sinnott-Armstrong
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520 USA
- Department of Ecology & Evolutionary Biology, University of Colorado—Boulder, Boulder, CO 80309 USA
| | - Chong Lee
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI 02881 USA
| | - Wendy L. Clement
- Department of Biology, The College of New Jersey, Ewing, NJ 08628 USA
| | - Michael J. Donoghue
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520 USA
| |
Collapse
|
229
|
Parsi-Pour P, Kilbourne BM. Functional Morphology and Morphological Diversification of Hind Limb Cross-Sectional Traits in Mustelid Mammals. Integr Org Biol 2020; 2:obz032. [PMID: 33791583 PMCID: PMC7671153 DOI: 10.1093/iob/obz032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Locomotor habits in mammals are strongly tied to limb bones’ lengths, diameters, and proportions. By comparison, fewer studies have examined how limb bone cross-sectional traits relate to locomotor habit. Here, we tested whether climbing, digging, and swimming locomotor habits reflect biomechanically meaningful differences in three cross-sectional traits rendered dimensionless— cross-sectional area (CSA), second moments of area (SMA), and section modulus (MOD)—using femora, tibiae, and fibulae of 28 species of mustelid. CSA and SMA represent resistance to axial compression and bending, respectively, whereas MOD represents structural strength. Given the need to counteract buoyancy in aquatic environments and soil’s high density, we predicted that natatorial and fossorial mustelids have higher values of cross-sectional traits. For all three traits, we found that natatorial mustelids have the highest values, followed by fossorial mustelids, with both of these groups significantly differing from scansorial mustelids. However, phylogenetic relatedness strongly influences diversity in cross-sectional morphology, as locomotor habit strongly correlates with phylogeny. Testing whether hind limb bone cross-sectional traits have evolved adaptively, we fit Ornstein–Uhlenbeck (OU) and Brownian motion (BM) models of trait diversification to cross-sectional traits. The cross-sectional traits of the femur, tibia, and fibula appear to have, respectively, diversified under a multi-rate BM model, a single rate BM model, and a multi-optima OU model. In light of recent studies on mustelid body size and elongation, our findings suggest that the mustelid body plan—and perhaps that of other mammals—is likely the sum of a suite of traits evolving under different models of trait diversification.
Collapse
Affiliation(s)
- P Parsi-Pour
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - B M Kilbourne
- Museum für Naturkunde Berlin, Leibniz Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany
| |
Collapse
|
230
|
Gainett G, Willemart RH, Giribet G, Sharma PP. Convergent evolution of sexually dimorphic glands in an amphi-Pacific harvestman family. INVERTEBR SYST 2020. [DOI: 10.1071/is20010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sexually dimorphic traits are widespread in animals, and include sex-specific weapons, ornamentation and, although less noticed, glands and associated structures. In arachnids, certain lineages of the order Opiliones exhibit diverse forms of dimorphism in the armature and length of appendages (common in Laniatores), as well as in the presence of sexually dimorphic glands (mostly investigated in Cyphophthalmi), positing harvestmen as promising models to study sexual dimorphism. Whereas the evolution and ecological significance of armature have been the focus of recent attention, sexually dimorphic glands remain understudied in groups other than Cyphophthalmi, despite being widespread in Opiliones. We therefore selected the amphi-Pacific family Zalmoxidae as an ideal taxon to investigate the evolutionary dynamics of this trait. We first describe four new species of Palaeotropical Zalmoxis, including a species with sexually dimorphic glands, and describe the morphology of zalmoxid species with sexually dimorphic glands using scanning electron microscopy. Using a previously assembled six-locus dataset supplemented with new terminals, and applying stochastic character mapping, we infer that sexually dimorphic glands evolved once in the Neotropics and at least four times in the Palaeotropic zalmoxids, revealing the evolutionary lability of this trait.
Collapse
|
231
|
The Evolution of Dragline Initiation in Spiders: Multiple Transitions from Multi- to Single-Gland Usage. DIVERSITY-BASEL 2019. [DOI: 10.3390/d12010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Despite the recognition of spider silk as a biological super-material and its dominant role in various aspects of a spider’s life, knowledge on silk use and silk properties is incomplete. This is a major impediment for the general understanding of spider ecology, spider silk evolution and biomaterial prospecting. In particular, the biological role of different types of silk glands is largely unexplored. Here, I report the results from a comparative study of spinneret usage during silk anchor and dragline spinning. I found that the use of both anterior lateral spinnerets (ALS) and posterior median spinnerets (PMS) is the plesiomorphic state of silk anchor and dragline spinning in the Araneomorphae, with transitions to ALS-only use in the Araneoidea and some smaller lineages scattered across the spider tree of life. Opposing the reduction to using a single spinneret pair, few taxa have switched to using all ALS, PMS and the posterior lateral spinnerets (PLS) for silk anchor and dragline formation. Silk fibres from the used spinnerets (major ampullate, minor ampullate and aciniform silk) were generally bundled in draglines after the completion of silk anchor spinning. Araneoid spiders were highly distinct from most other spiders in their draglines, being composed of major ampullate silk only. This indicates that major ampullate silk properties reported from comparative measurements of draglines should be handled with care. These observations call for a closer investigation of the function of different silk glands in spiders.
Collapse
|
232
|
Fuentes-G JA, Polly PD, Martins EP. A Bayesian extension of phylogenetic generalized least squares: Incorporating uncertainty in the comparative study of trait relationships and evolutionary rates. Evolution 2019; 74:311-325. [PMID: 31849034 DOI: 10.1111/evo.13899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/01/2022]
Abstract
Phylogenetic comparative methods use tree topology, branch lengths, and models of phenotypic change to take into account nonindependence in statistical analysis. However, these methods normally assume that trees and models are known without error. Approaches relying on evolutionary regimes also assume specific distributions of character states across a tree, which often result from ancestral state reconstructions that are subject to uncertainty. Several methods have been proposed to deal with some of these sources of uncertainty, but approaches accounting for all of them are less common. Here, we show how Bayesian statistics facilitates this task while relaxing the homogeneous rate assumption of the well-known phylogenetic generalized least squares (PGLS) framework. This Bayesian formulation allows uncertainty about phylogeny, evolutionary regimes, or other statistical parameters to be taken into account for studies as simple as testing for coevolution in two traits or as complex as testing whether bursts of phenotypic change are associated with evolutionary shifts in intertrait correlations. A mixture of validation approaches indicates that the approach has good inferential properties and predictive performance. We provide suggestions for implementation and show its usefulness by exploring the coevolution of ankle posture and forefoot proportions in Carnivora.
Collapse
Affiliation(s)
- Jesualdo A Fuentes-G
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama
| | - Paul David Polly
- Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana
| | - Emília P Martins
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
233
|
Casewell NR, Petras D, Card DC, Suranse V, Mychajliw AM, Richards D, Koludarov I, Albulescu LO, Slagboom J, Hempel BF, Ngum NM, Kennerley RJ, Brocca JL, Whiteley G, Harrison RA, Bolton FMS, Debono J, Vonk FJ, Alföldi J, Johnson J, Karlsson EK, Lindblad-Toh K, Mellor IR, Süssmuth RD, Fry BG, Kuruppu S, Hodgson WC, Kool J, Castoe TA, Barnes I, Sunagar K, Undheim EAB, Turvey ST. Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals. Proc Natl Acad Sci U S A 2019; 116:25745-25755. [PMID: 31772017 PMCID: PMC6926037 DOI: 10.1073/pnas.1906117116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions.
Collapse
Affiliation(s)
- Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom;
| | - Daniel Petras
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
- Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA 92093
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, Arlington, TX 76010
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Vivek Suranse
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, 560012 Bangalore, India
| | - Alexis M Mychajliw
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Rancho La Brea, Natural History Museum of Los Angeles County, Los Angeles, CA 90036
- Institute of Low Temperature Science, Hokkaido University, 060-0819 Sapporo, Japan
| | - David Richards
- School of Life Sciences, University of Nottingham, University Park, NG7 2RD Nottingham, United Kingdom
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| | - Ivan Koludarov
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Onna, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom
| | - Julien Slagboom
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | | | - Neville M Ngum
- School of Life Sciences, University of Nottingham, University Park, NG7 2RD Nottingham, United Kingdom
| | - Rosalind J Kennerley
- Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity, Jersey JE3 5BP, British Channel Islands, United Kingdom
| | - Jorge L Brocca
- SOH Conservación, Apto. 401 Residencial Las Galerías, Santo Domingo, 10130, Dominican Republic
| | - Gareth Whiteley
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom
| | - Robert A Harrison
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom
| | - Fiona M S Bolton
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom
| | - Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Jessica Alföldi
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Jeremy Johnson
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Elinor K Karlsson
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Kerstin Lindblad-Toh
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Ian R Mellor
- School of Life Sciences, University of Nottingham, University Park, NG7 2RD Nottingham, United Kingdom
| | | | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Sanjaya Kuruppu
- Monash Venom Group, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, VIC 3800, Australia
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, VIC 3800, Australia
| | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, VIC 3800, Australia
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76010
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, SW7 5BD London, United Kingdom
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, 560012 Bangalore, India
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, Brisbane QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Samuel T Turvey
- Institute of Zoology, Zoological Society of London, Regent's Park, NW1 4RY London, United Kingdom
| |
Collapse
|
234
|
Kuhn A, Darras H, Paknia O, Aron S. Repeated evolution of queen parthenogenesis and social hybridogenesis in
Cataglyphis
desert ants. Mol Ecol 2019; 29:549-564. [DOI: 10.1111/mec.15283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Alexandre Kuhn
- Evolutionary Biology and Ecology Université Libre de Bruxelles Brussels Belgium
| | - Hugo Darras
- Evolutionary Biology and Ecology Université Libre de Bruxelles Brussels Belgium
- Department of Ecology and Evolution Biophore UNIL Sorge University of Lausanne Lausanne Switzerland
| | - Omid Paknia
- ITZ, Ecology and Evolution TiHo Hannover Hannover Germany
| | - Serge Aron
- Evolutionary Biology and Ecology Université Libre de Bruxelles Brussels Belgium
| |
Collapse
|
235
|
de Sá FP, Haddad CFB, Gray MM, Verdade VK, Thomé MTC, Rodrigues MT, Zamudio KR. Male-male competition and repeated evolution of terrestrial breeding in Atlantic Coastal Forest frogs. Evolution 2019; 74:459-475. [PMID: 31710098 DOI: 10.1111/evo.13879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022]
Abstract
Terrestrial breeding is a derived condition in frogs, with multiple transitions from an aquatic ancestor. Shifts in reproductive mode often involve changes in habitat use, and these are typically associated with diversification in body plans, with repeated transitions imposing similar selective pressures. We examine the diversification of reproductive modes, male and female body sizes, and sexual size dimorphism (SSD) in the Neotropical frog genera Cycloramphus and Zachaenus, both endemic to the Atlantic rainforest of Brazil. Species in this clade either breed in rocky streams (saxicolous) or in terrestrial environments, allowing us to investigate reproductive habitat shifts. We constructed a multilocus molecular phylogeny and inferred evolutionary histories of reproductive habitats, body sizes, and SSD. The common ancestor was small, saxicolous, and had low SSD. Terrestrial breeding evolved independently three times and we found a significant association between reproductive habitat and SSD, with shifts to terrestrial breeding evolving in correlation with decreases in male body size, but not female body size. Terrestrial breeding increases the availability of breeding sites and results in concealment of amplexus, egg-laying, and parental care, therefore reducing male-male competition at all stages of reproduction. We conclude that correlated evolution of terrestrial reproduction and small males is due to release from intense male-male competition that is typical of exposed saxicolous breeding.
Collapse
Affiliation(s)
- Fábio P de Sá
- Departamento de Zoologia and Centro de Aquicultura (CAUNESP), Instituto de Biociências, UNESP - Universidade Estadual Paulista, Rio Claro, 13506-900, São Paulo, Brazil
| | - Célio F B Haddad
- Departamento de Zoologia and Centro de Aquicultura (CAUNESP), Instituto de Biociências, UNESP - Universidade Estadual Paulista, Rio Claro, 13506-900, São Paulo, Brazil
| | - Miranda M Gray
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| | - Vanessa K Verdade
- Centro de Ciências Naturais e Humanas, UFABC - Universidade Federal do ABC, Santo André, 09210-580, São Paulo, Brazil
| | - Maria Tereza C Thomé
- Departamento de Zoologia and Centro de Aquicultura (CAUNESP), Instituto de Biociências, UNESP - Universidade Estadual Paulista, Rio Claro, 13506-900, São Paulo, Brazil
| | - Miguel T Rodrigues
- Departamento de Zoologia, Instituto de Biociências, USP - Universidade de São Paulo, 05508-090, São Paulo, São Paulo, Brazil
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853
| |
Collapse
|
236
|
Costa J, Torices R, Barrett SCH. Evolutionary history of the buildup and breakdown of the heterostylous syndrome in Plumbaginaceae. THE NEW PHYTOLOGIST 2019; 224:1278-1289. [PMID: 30825331 DOI: 10.1111/nph.15768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/23/2019] [Indexed: 05/27/2023]
Abstract
The evolutionary pathways leading to the heterostylous syndrome are not well understood, and models concerning the origins of distyly differ in the order in which reciprocal herkogamy and self-incompatibility evolve. We investigated the evolution and breakdown of distyly in Plumbaginaceae, a family with considerable diversity of floral traits and reproductive systems. Using Bayesian Markov chain Monte Carlo analyses and stochastic character mapping, we examined the evolutionary assembly and breakdown of the heterostylous syndrome based on a well-resolved phylogeny of 121 species of Plumbaginaceae and six outgroup taxa using five nuclear and plastid gene regions. We used the distribution of reproductive traits and reconstructed ancestral characters across phylogenies to evaluate competing models for the evolution of distyly. The most likely common ancestor of Plumbaginaceae was self-incompatible and monomorphic for sex-organ arrangement and pollen-stigma characters. Character state reconstructions indicated that reciprocal herkogamy evolved at least three times and that shifts to selfing and apomixis occurred on multiple occasions. Our results provide comparative support for the early ideas of H. G. Baker on evolutionary pathways in Plumbaginaceae, and the more recent selfing avoidance model by D. & B. Charlesworth in which distyly evolves from self-incompatible ancestors.
Collapse
Affiliation(s)
- Joana Costa
- Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Rubén Torices
- Area of Biodiversity and Conservation, Universidad Rey Juan Carlos, c/Tulipán s/n., Móstoles, Madrid, E-28933, Spain
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| |
Collapse
|
237
|
Clark JW, Puttick MN, Donoghue PCJ. Origin of horsetails and the role of whole-genome duplication in plant macroevolution. Proc Biol Sci 2019; 286:20191662. [PMID: 31662084 DOI: 10.1098/rspb.2019.1662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Whole-genome duplication (WGD) has occurred commonly in land plant evolution and it is often invoked as a causal agent in diversification, phenotypic and developmental innovation, as well as conferring extinction resistance. The ancient and iconic lineage of Equisetum is no exception, where WGD has been inferred to have occurred prior to the Cretaceous-Palaeogene (K-Pg) boundary, coincident with WGD events in angiosperms. In the absence of high species diversity, WGD in Equisetum is interpreted to have facilitated the long-term survival of the lineage. However, this characterization remains uncertain as these analyses of the Equisetum WGD event have not accounted for fossil diversity. Here, we analyse additional available transcriptomes and summarize the fossil record. Our results confirm support for at least one WGD event shared among the majority of extant Equisetum species. Furthermore, we use improved dating methods to constrain the age of gene duplication in geological time and identify two successive Equisetum WGD events. The two WGD events occurred during the Carboniferous and Triassic, respectively, rather than in association with the K-Pg boundary. WGD events are believed to drive high rates of trait evolution and innovations, but analysed trends of morphological evolution across the historical diversity of Equisetum provide little evidence for further macroevolutionary consequences following WGD. WGD events cannot have conferred extinction resistance to the Equisetum lineage through the K-Pg boundary since the ploidy events occurred hundreds of millions of years before this mass extinction and we find evidence of extinction among fossil polyploid Equisetum lineages. Our findings precipitate the need for a review of the proposed roles of WGDs in biological innovation and extinction survival in angiosperm and non-angiosperm lineages alike.
Collapse
Affiliation(s)
- James W Clark
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, UK.,Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Mark N Puttick
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.,Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Philip C J Donoghue
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
238
|
Benun Sutton F, Wilson AB. Where are all the moms? External fertilization predicts the rise of male parental care in bony fishes. Evolution 2019; 73:2451-2460. [PMID: 31660613 DOI: 10.1111/evo.13846] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/11/2023]
Abstract
Parental care shows remarkable variation across the animal kingdom, but while maternal and biparental care are common in terrestrial organisms, male-only care dominates in aquatic species that provide care. Using the most complete phylogenetic tree of bony fishes to date, we test whether the opportunity for external fertilization in aquatic environments can explain the more frequent evolution of male care in this group. We show that paternal care has evolved at least 30 times independently in fish and is found exclusively in externally fertilizing species. Male care is positively associated with pair spawning, suggesting that confidence in paternity is an important determinant of the evolution of care. Crucially, while female care is constrained by other forms of reproductive investment, male care occurs more frequently when females invest heavily in gamete production. Our results suggest that moving control of fertilization outside of the female reproductive tract raises male confidence in parentage and increases the potential for paternal care, highlighting that in an aquatic environment in which fertilization is external, paternal care is an effective reproductive strategy.
Collapse
Affiliation(s)
- Frieda Benun Sutton
- Department of Biology, Brooklyn College and The Graduate Center, City University of New York, Brooklyn, New York, 11210
| | - Anthony B Wilson
- Department of Biology, Brooklyn College and The Graduate Center, City University of New York, Brooklyn, New York, 11210
| |
Collapse
|
239
|
Morales AE, Ruedi M, Field K, Carstens BC. Diversification rates have no effect on the convergent evolution of foraging strategies in the most speciose genus of bats,
Myotis
*. Evolution 2019; 73:2263-2280. [DOI: 10.1111/evo.13849] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Ariadna E. Morales
- Department of Evolution, Ecology and Organismal Biology Ohio State University Columbus Ohio 43210
- Department of Mammalogy and Herpetology, Division of Vertebrate Zoology American Museum of Natural History New York New York 10024
| | - Manuel Ruedi
- Department of Mammalogy and Ornithology Natural History Museum of Geneva Geneva 1208 Switzerland
| | - Kathryn Field
- Department of Evolution, Ecology and Organismal Biology Ohio State University Columbus Ohio 43210
| | - Bryan C. Carstens
- Department of Evolution, Ecology and Organismal Biology Ohio State University Columbus Ohio 43210
| |
Collapse
|
240
|
Nürk NM, Atchison GW, Hughes CE. Island woodiness underpins accelerated disparification in plant radiations. THE NEW PHYTOLOGIST 2019; 224:518-531. [PMID: 30883788 PMCID: PMC6766886 DOI: 10.1111/nph.15797] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 05/08/2023]
Abstract
The evolution of secondary (insular) woodiness and the rapid disparification of plant growth forms associated with island radiations show intriguing parallels between oceanic islands and tropical alpine sky islands. However, the evolutionary significance of these phenomena remains poorly understood and the focus of debate. We explore the evolutionary dynamics of species diversification and trait disparification across evolutionary radiations in contrasting island systems compared with their nonisland relatives. We estimate rates of species diversification, growth form evolution and phenotypic space saturation for the classical oceanic island plant radiations - the Hawaiian silverswords and Macaronesian Echium - and the well-studied sky island radiations of Lupinus and Hypericum in the Andes. We show that secondary woodiness is associated with dispersal to islands and with accelerated rates of species diversification, accelerated disparification of plant growth forms and occupancy of greater phenotypic trait space for island clades than their nonisland relatives, on both oceanic and sky islands. We conclude that secondary woodiness is a prerequisite that could act as a key innovation, manifest as the potential to occupy greater trait space, for plant radiations on island systems in general, further emphasizing the importance of combinations of clade-specific traits and ecological opportunities in driving adaptive radiations.
Collapse
Affiliation(s)
- Nicolai M. Nürk
- Department of Plant SystematicsBayreuth Centre of Ecology and Environmental Research (BayCEER)University of BayreuthUniversitätsstrasse 3095440BayreuthGermany
| | - Guy W. Atchison
- Department of Systematic & Evolutionary BotanyUniversity of ZurichZollikerstrasse 1078008ZurichSwitzerland
| | - Colin E. Hughes
- Department of Systematic & Evolutionary BotanyUniversity of ZurichZollikerstrasse 1078008ZurichSwitzerland
| |
Collapse
|
241
|
Liebeskind BJ, Aldrich RW, Marcotte EM. Ancestral reconstruction of protein interaction networks. PLoS Comput Biol 2019; 15:e1007396. [PMID: 31658251 PMCID: PMC6837550 DOI: 10.1371/journal.pcbi.1007396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/07/2019] [Accepted: 09/11/2019] [Indexed: 11/19/2022] Open
Abstract
The molecular and cellular basis of novelty is an active area of research in evolutionary biology. Until very recently, the vast majority of cellular phenomena were so difficult to sample that cross-species studies of biochemistry were rare and comparative analysis at the level of biochemical systems was almost impossible. Recent advances in systems biology are changing what is possible, however, and comparative phylogenetic methods that can handle this new data are wanted. Here, we introduce the term "phylogenetic latent variable models" (PLVMs, pronounced "plums") for a class of models that has recently been used to infer the evolution of cellular states from systems-level molecular data, and develop a new parameterization and fitting strategy that is useful for comparative inference of biochemical networks. We deploy this new framework to infer the ancestral states and evolutionary dynamics of protein-interaction networks by analyzing >16,000 predominantly metazoan co-fractionation and affinity-purification mass spectrometry experiments. Based on these data, we estimate ancestral interactions across unikonts, broadly recovering protein complexes involved in translation, transcription, proteostasis, transport, and membrane trafficking. Using these results, we predict an ancient core of the Commander complex made up of CCDC22, CCDC93, C16orf62, and DSCR3, with more recent additions of COMMD-containing proteins in tetrapods. We also use simulations to develop model fitting strategies and discuss future model developments.
Collapse
Affiliation(s)
- Benjamin J. Liebeskind
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Richard W. Aldrich
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Edward M. Marcotte
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
242
|
Giaretta A, Vasconcelos TN, Mazine FF, Faria JEQ, Flores R, Holst B, Sano PT, Lucas E. Calyx (con)fusion in a hyper-diverse genus: Parallel evolution of unusual flower patterns in Eugenia (Myrtaceae). Mol Phylogenet Evol 2019; 139:106553. [DOI: 10.1016/j.ympev.2019.106553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 11/29/2022]
|
243
|
Wang Y, White MM, Moncalvo JM. Diversification of the gut fungi Smittium and allies (Harpellales) co-occurred with the origin of complete metamorphosis of their symbiotic insect hosts (lower Diptera). Mol Phylogenet Evol 2019; 139:106550. [DOI: 10.1016/j.ympev.2019.106550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 05/30/2019] [Accepted: 06/28/2019] [Indexed: 01/26/2023]
|
244
|
Moen DS. What Determines the Distinct Morphology of Species with a Particular Ecology? The Roles of Many-to-One Mapping and Trade-Offs in the Evolution of Frog Ecomorphology and Performance. Am Nat 2019; 194:E81-E95. [DOI: 10.1086/704736] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
245
|
Burress ED, Tan M, Wainwright PC. Head Shape Modulates Diversification of a Classic Cichlid Pharyngeal Jaw Innovation. Am Nat 2019; 194:693-706. [PMID: 31613667 DOI: 10.1086/705392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Functional innovations are often invoked to explain the uneven distribution of ecological diversity. Innovations may provide access to new adaptive zones by expanding available ecological opportunities and may serve as catalysts of adaptive radiation. However, diversity is often unevenly distributed within clades that share a key innovation, highlighting the possibility that the impact of the innovation is mediated by other traits. Pharyngognathy is a widely recognized innovation of the pharyngeal jaws that enhances the ability to process hard and tough prey in several major radiations of fishes, including marine wrasses and freshwater cichlids. We explored diversification of lower pharyngeal jaw shape, a key feature of pharyngognathy, and the extent to which it is influenced by head shape in Neotropical cichlids. While pharyngeal jaw shape was unaffected by either head length or head depth, its disparity declined dramatically with increasing head width. Head width also predicted the rate of pharyngeal jaw evolution such that higher rates were associated with narrow heads. Wide heads are associated with exploiting prey that require intense processing by pharyngeal jaws that have expanded surfaces for the attachment of enlarged muscles. However, we show that a wide head constrains access to adaptive peaks associated with several trophic roles. A constraint on the independent evolution of pharyngeal jaw and head shape may explain the uneven distribution of ecological diversity within a clade that shares a major functional innovation.
Collapse
|
246
|
Kao TT, Pryer KM, Freund FD, Windham MD, Rothfels CJ. Low-copy nuclear sequence data confirm complex patterns of farina evolution in notholaenid ferns (Pteridaceae). Mol Phylogenet Evol 2019; 138:139-155. [DOI: 10.1016/j.ympev.2019.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/15/2019] [Accepted: 05/17/2019] [Indexed: 11/24/2022]
|
247
|
Ishikawa SA, Zhukova A, Iwasaki W, Gascuel O. A Fast Likelihood Method to Reconstruct and Visualize Ancestral Scenarios. Mol Biol Evol 2019; 36:2069-2085. [PMID: 31127303 PMCID: PMC6735705 DOI: 10.1093/molbev/msz131] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The reconstruction of ancestral scenarios is widely used to study the evolution of characters along phylogenetic trees. One commonly uses the marginal posterior probabilities of the character states, or the joint reconstruction of the most likely scenario. However, marginal reconstructions provide users with state probabilities, which are difficult to interpret and visualize, whereas joint reconstructions select a unique state for every tree node and thus do not reflect the uncertainty of inferences. We propose a simple and fast approach, which is in between these two extremes. We use decision-theory concepts (namely, the Brier score) to associate each node in the tree to a set of likely states. A unique state is predicted in tree regions with low uncertainty, whereas several states are predicted in uncertain regions, typically around the tree root. To visualize the results, we cluster the neighboring nodes associated with the same states and use graph visualization tools. The method is implemented in the PastML program and web server. The results on simulated data demonstrate the accuracy and robustness of the approach. PastML was applied to the phylogeography of Dengue serotype 2 (DENV2), and the evolution of drug resistances in a large HIV data set. These analyses took a few minutes and provided convincing results. PastML retrieved the main transmission routes of human DENV2 and showed the uncertainty of the human-sylvatic DENV2 geographic origin. With HIV, the results show that resistance mutations mostly emerge independently under treatment pressure, but resistance clusters are found, corresponding to transmissions among untreated patients.
Collapse
Affiliation(s)
- Sohta A Ishikawa
- Unité Bioinformatique Evolutive, Institut Pasteur, C3BI USR 3756 IP & CNRS, Paris, France
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Evolutionary Genomics of RNA Viruses, Virology Department, Institut Pasteur, Paris, France
| | - Anna Zhukova
- Unité Bioinformatique Evolutive, Institut Pasteur, C3BI USR 3756 IP & CNRS, Paris, France
| | - Wataru Iwasaki
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Olivier Gascuel
- Unité Bioinformatique Evolutive, Institut Pasteur, C3BI USR 3756 IP & CNRS, Paris, France
| |
Collapse
|
248
|
Tarasov S. Integration of Anatomy Ontologies and Evo-Devo Using Structured Markov Models Suggests a New Framework for Modeling Discrete Phenotypic Traits. Syst Biol 2019; 68:698-716. [PMID: 30668800 PMCID: PMC6701457 DOI: 10.1093/sysbio/syz005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/06/2019] [Accepted: 01/15/2019] [Indexed: 11/12/2022] Open
Abstract
Modeling discrete phenotypic traits for either ancestral character state reconstruction or morphology-based phylogenetic inference suffers from ambiguities of character coding, homology assessment, dependencies, and selection of adequate models. These drawbacks occur because trait evolution is driven by two key processes-hierarchical and hidden-which are not accommodated simultaneously by the available phylogenetic methods. The hierarchical process refers to the dependencies between anatomical body parts, while the hidden process refers to the evolution of gene regulatory networks (GRNs) underlying trait development. Herein, I demonstrate that these processes can be efficiently modeled using structured Markov models (SMM) equipped with hidden states, which resolves the majority of the problems associated with discrete traits. Integration of SMM with anatomy ontologies can adequately incorporate the hierarchical dependencies, while the use of the hidden states accommodates hidden evolution of GRNs and substitution rate heterogeneity. I assess the new models using simulations and theoretical synthesis. The new approach solves the long-standing "tail color problem," in which the trait is scored for species with tails of different colors or no tails. It also presents a previously unknown issue called the "two-scientist paradox," in which the nature of coding the trait and the hidden processes driving the trait's evolution are confounded; failing to account for the hidden process may result in a bias, which can be avoided by using hidden state models. All this provides a clear guideline for coding traits into characters. This article gives practical examples of using the new framework for phylogenetic inference and comparative analysis.
Collapse
Affiliation(s)
- Sergei Tarasov
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA
- Department of Biological Sciences, Virginia Tech, 4076 Derring Hall, 926 West Campus Drive, Blacksburg, VA 24061, USA
| |
Collapse
|
249
|
Seymour DK, Gaut BS. Phylogenetic Shifts in Gene Body Methylation Correlate with Gene Expression and Reflect Trait Conservation. Mol Biol Evol 2019; 37:31-43. [DOI: 10.1093/molbev/msz195] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
A subset of genes in plant genomes are labeled with DNA methylation specifically at CG residues. These genes, known as gene-body methylated (gbM), have a number of associated characteristics. They tend to have longer sequences, to be enriched for intermediate expression levels, and to be associated with slower rates of molecular evolution. Most importantly, gbM genes tend to maintain their level of DNA methylation between species, suggesting that this trait is under evolutionary constraint. Given the degree of conservation in gbM, we still know surprisingly little about its function in plant genomes or whether gbM is itself a target of selection. To address these questions, we surveyed DNA methylation across eight grass (Poaceae) species that span a gradient of genome sizes. We first established that genome size correlates with genome-wide DNA methylation levels, but less so for genic levels. We then leveraged genomic data to identify a set of 2,982 putative orthologs among the eight species and examined shifts of methylation status for each ortholog in a phylogenetic context. A total of 55% of orthologs exhibited a shift in gbM, but these shifts occurred predominantly on terminal branches, indicating that shifts in gbM are rarely conveyed over time. Finally, we found that the degree of conservation of gbM across species is associated with increased gene length, reduced rates of molecular evolution, and increased gene expression level, but reduced gene expression variation across species. Overall, these observations suggest a basis for evolutionary pressure to maintain gbM status over evolutionary time.
Collapse
Affiliation(s)
- Danelle K Seymour
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA
| |
Collapse
|
250
|
Kolmann MA, Cohen KE, Bemis KE, Summers AP, Irish FJ, Hernandez LP. Tooth and consequences: Heterodonty and dental replacement in piranhas and pacus (Serrasalmidae). Evol Dev 2019; 21:278-293. [DOI: 10.1111/ede.12306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Matthew A. Kolmann
- Department of Biological Sciences George Washington University Washington District of Columbia
- Department of Biology, Friday Harbor Laboratories University of Washington Friday Harbor Washington
| | - Karly E. Cohen
- Department of Biological Sciences George Washington University Washington District of Columbia
- Department of Biology, Friday Harbor Laboratories University of Washington Friday Harbor Washington
| | - Katherine E. Bemis
- Fisheries Science, Virginia Institute of Marine Science Gloucester Point Virginia
| | - Adam P. Summers
- Department of Biology, Friday Harbor Laboratories University of Washington Friday Harbor Washington
| | - Frances J. Irish
- Department of Biological Sciences Moravian College Bethlehem Pennsylvania
| | - L. Patricia Hernandez
- Department of Biological Sciences George Washington University Washington District of Columbia
| |
Collapse
|