201
|
Abstract
Matrix metalloproteinases (MMPs) are zinc endopeptidases composed of 23 members in humans, which belong to a subfamily of the metzincin superfamily. They play important roles in many pathophysiological events including development, organogenesis, angiogenesis, tissue remodeling and destruction, and cancer cell proliferation and progression by degradation of extracellular matrix (ECM) and non-ECM proteins and interaction with various molecules. Here, we present standard protocols for purification of native proMMPs (proMMP-1, -2, -3, -7, -9 and -10) and recombinant MT1-MMP (MMP-14) using conventional column chromatography. Purification steps comprise the initial common step [diethylaminoethyl (DEAE)-cellulose, Green A Dyematrex gel and gelatin-Sepharose columns], the second step for removal of nontarget proMMPs by immunoaffinity columns (anti-MMP-1 and/or anti-MMP-3 IgG-Sepharose columns) and the final step for further purification (IgG-Sepharose, DEAE-cellulose, Zn2+-chelate-Sepharose and/or gel filtration columns). Purified proMMPs and MMP are functionally active and suitable for biochemical analyses. The basic protocol for the purification from culture media takes approximately 7-10 d.
Collapse
Affiliation(s)
- Kazushi Imai
- Department of Biochemistry, Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | | |
Collapse
|
202
|
Ghajar CM, George SC, Putnam AJ. Matrix metalloproteinase control of capillary morphogenesis. Crit Rev Eukaryot Gene Expr 2008; 18:251-78. [PMID: 18540825 DOI: 10.1615/critreveukargeneexpr.v18.i3.30] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Matrix metalloproteinases (MMPs) play crucial roles in a variety of normal (e.g., blood vessel formation, bone development) and pathophysiological (e.g., wound healing, cancer) processes. This is not only due to their ability to degrade the surrounding extracellular matrix (ECM), but also because MMPs function to reveal cryptic matrix binding sites, release matrix-bound growth factors inherent to these processes, and activate a variety of cell surface molecules. The process of blood vessel formation, in particular, is regulated by what is widely classified as the angiogenic switch: a mixture of both pro- and antiangiogenic factors that function to counteract each other unless the stimuli from one side exceeds the other to disrupt the quiescent state. Although it was initially thought that MMPs were strictly proangiogenic, new functions for this proteolytic family, such as mediating vascular regression and generating matrix fragments with antiangiogenic capacities, have been discovered in the last decade. These findings cast MMPs as multifaceted pro- and antiangiogenic effectors. The purpose of this review is to introduce the reader to the general structure and characterization of the MMP family and to discuss the temporal and spatial regulation of their gene expression and enzymatic activity in the following crucial steps associated with angiogenesis: degradation of the vascular basement membrane, proliferation and invasion of endothelial cells within the subjacent ECM, organization into immature tubules, maturation of these nascent vessels, and the pruning and regression of the vascular network.
Collapse
Affiliation(s)
- Cyrus M Ghajar
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
203
|
Stanley CM, Wang Y, Pal S, Klebe RJ, Harkless LB, Xu X, Chen Z, Steffensen B. Fibronectin fragmentation is a feature of periodontal disease sites and diabetic foot and leg wounds and modifies cell behavior. J Periodontol 2008; 79:861-75. [PMID: 18454665 DOI: 10.1902/jop.2008.070492] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fibronectin (FN) undergoes fragmentation in periodontal disease sites and in poorly healing diabetic wounds. The biologic effects of FN fragments on wound healing remain unresolved. This study characterized the pattern of FN fragmentation and its effects on cellular behavior compared to intact FN. METHODS Polyclonal antibodies were raised against FN and three defined recombinant segments of FN and used to analyze gingival crevicular fluid from periodontal disease sites in systemically healthy subjects and in subjects with diabetes, as well as chronic leg and foot wound exudates from subjects with diabetes. Subsequently, the behavior of human gingival fibroblasts (hGFs) and HT1080 reference cells were analyzed by measuring cell attachment, migration, and chemotaxis in the presence of intact FN or recombinant FN fragments. RESULTS FN fragmentation was evident in fluids from periodontal disease sites and diabetic leg and foot wounds. However, no fragmentation pattern distinguished systemically healthy subjects from subjects with diabetes. hGFs and HT1080 cells required significantly higher concentrations of FN fragments to achieve attachment comparable to intact FN. Cells cultured on FN fragments also were morphologically different from cells cultured on full-length FN. Migration was reduced for hGFs cultured on FN fragments relative to full-length FN. In contrast, FN fragments increased HT1080 fibrosarcoma cell migration over intact FN. CONCLUSIONS FN fragmentation is a prominent feature of periodontal and chronic leg and foot wounds in diabetes. Furthermore, cell culture assays confirmed the hypothesis that exposure to defined FN fragments significantly alters cell behavior.
Collapse
Affiliation(s)
- Corey M Stanley
- Department of Periodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Abstract
Matrix metalloproteinases (MMPs) are members of a family of zinc-dependent proteolytic enzymes. Several of the MMPs are expressed at high levels in bone and cartilage in mammals including humans and mice and are capable of cleaving native, undenatured collagens with long uninterrupted triple helices; these MMPs therefore potentially function as collagenases in vivo. Several MMPs expressed in the skeleton appear to function in endochondral ossification during embryonic development and in modeling and remodeling of bone postnatally and later in life. Different functions of MMPs have been elucidated through observations of spontaneous mutations in MMP genes in humans and of targeted mutations in Mmp genes and collagen (substrate) genes in mice. Potential mechanisms to account for effects of these mutations are considered in this review.
Collapse
Affiliation(s)
- Stephen M Krane
- Department of Medicine, Harvard Medical School and the Massachusetts General Hospital, Center for Immunology and Inflammatory Diseases, Building 149 13th Street, Room 8301, Boston. MA 02129, USA.
| | - Masaki Inada
- Department of Medicine, Harvard Medical School and the Massachusetts General Hospital, Center for Immunology and Inflammatory Diseases, Building 149 13th Street, Room 8301, Boston. MA 02129, USA
| |
Collapse
|
205
|
Lee CH, Liu SY, Lin MH, Chiang WF, Chen TC, Huang WT, Chou DS, Chiu CT, Liu YC. Upregulation of matrix metalloproteinase-1 (MMP-1) expression in oral carcinomas of betel quid (BQ) users: roles of BQ ingredients in the acceleration of tumour cell motility through MMP-1. Arch Oral Biol 2008; 53:810-8. [PMID: 18571622 DOI: 10.1016/j.archoralbio.2008.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 03/04/2008] [Accepted: 05/05/2008] [Indexed: 10/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are commonly expressed in carcinomas including oral squamous cell carcinomas (OSCCs). On the other hand, some evidences suggested that ingredients of betel quid (BQ) inhibit the activity and/or expression of some MMPs thought to be the pathogenesis of oral submucous fibrosis. This study was to analyse whether MMP-1 expression is inhibited in OSCC specimens from BQ users and in cell lines survived from the challenge of BQ ingredients. We found that MMP-1 mRNA was expressed in all the tested 27 OSCC. Levels of MMP-1 mRNA and protein were significantly elevated in the tested five OSCC specimens than in their adjacent tissues (P<0.001 and 0.05, respectively). Esophageal carcinoma (CE81T/VGH) and OSCC (OECM-1) cell lines survived from the cytotoxic BQ extract (BQE) and arecoline selection process were found to express higher MMP-1 mRNA and protein levels, or to exhibit a significant acceleration of two-dimensional (2D) motility than their non-selected parental cells. The enhanced motility was further demonstrated to be specifically and significantly inhibited by the MMP-1 neutralizing antibody and/or by the transfection of an MMP-1 specific antisense oligodeoxynucleotide. These results suggest that in some carcinomas of the upper aerodigestive tract, BQ usage may upregulate MMP-1 expression in the survived tumour cells, and increase their mobility in an MMP-1-dependent manner.
Collapse
Affiliation(s)
- Chin-Hai Lee
- Department of Dentistry, Chi Mei Medical Center, Tainan, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Krane SM. The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids 2008; 35:703-10. [PMID: 18431533 DOI: 10.1007/s00726-008-0073-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 02/07/2008] [Indexed: 02/05/2023]
Abstract
Collagens are among proteins that undergo several post-translational modifications, such as prolyl hydroxylation, that occur during elongation of the nascent chains in the endoplasmic reticulum. The major structural collagens, types I, II and III, have large, uninterrupted triple helices, comprising three polyproline II-like chains supercoiled around a common axis. The structure has a requirement for glycine, as every third residue, and is stabilized by the high content of proline and 4-hydroxyproline residues. Action of prolyl hydroxylases is critical. Spontaneous or targeted genetic defects in prolyl hydroxylases can be lethal or result in severe osteogenesis imperfecta. Prolines, as determinants of substrate specificity and susceptibility, also play a role in degradation of collagen by collagenolytic matrix metalloproteinases (MMPs). Targeted mutations in mice in the collagenase cleavage domain have profound effects on collagen turnover and the function of connective tissues. Prolines are thus critical determinants of collagen structure and function.
Collapse
Affiliation(s)
- Stephen M Krane
- Department of Medicine, Harvard Medical School and the Massachusetts General Hospital, Center for Immunology and Inflammatory Diseases, Building 149, 13th Street, Room 8301, Boston, MA 02129, USA.
| |
Collapse
|
207
|
Thanzami K, Roy I. A sensitive, rapid and specific technique for the detection of collagenase using zymography. Electrophoresis 2008; 29:1585-8. [DOI: 10.1002/elps.200700655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
208
|
Muller M, Trocme C, Lardy B, Morel F, Halimi S, Benhamou PY. Matrix metalloproteinases and diabetic foot ulcers: the ratio of MMP-1 to TIMP-1 is a predictor of wound healing. Diabet Med 2008; 25:419-26. [PMID: 18387077 PMCID: PMC2326726 DOI: 10.1111/j.1464-5491.2008.02414.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Matrix metalloproteinases (MMPs) play a major role in wound healing: they can degrade all components of the extracellular matrix. In diabetic foot ulcers there is an excess of MMPs and a decrease of the tissue inhibitors of MMPs (TIMPs). This imbalance is probably one cause of impaired healing. However, little is known about changes in MMPs during wound healing. METHODS Sixteen patients with neuropathic diabetic foot ulcers participated. Wound fluid was collected regularly during the 12-week follow-up period, for measurement of MMP-1, MMP-2, MMP-8, MMP-9 and TIMP-1. Results were analysed by the degree of wound healing: good healers (defined by a reduction of at least 82% in initial wound surface at 4 weeks) and poor healers (reduction of less than 82% in wound surface at 4 weeks). RESULTS In good healers, levels of MMP-8 and -9 secreted by inflammatory cells decreased earlier. The initial levels of MMP-1 were similar in good and poor healers (P = 0.1) but rose significantly at week 2 in good healers (P = 0.039). There was a significant correlation between a high ratio of MMP-1/TIMP-1 and good healing (r = 0.65, P = 0.008). Receiver Operator Curve (ROC) analysis showed that an MMP-1/TIMP-1 ratio of 0.39 best predicted wound healing (sensitivity = 71%, specificity = 87.5%). CONCLUSIONS A high level of MMP-1 seems essential to wound healing, while an excess of MMP-8 and -9 is deleterious, and could be a target for new topical treatments. The MMP-1/TIMP-1 ratio is a predictor of wound healing in diabetic foot ulcers.
Collapse
Affiliation(s)
- M Muller
- Department of Nephrology and Endocrinology, University Hospital, Grenoble, France
| | | | | | | | | | | |
Collapse
|
209
|
Abstract
The epidermal growth factor (EGF) family comprises multiple mediators such as transforming growth factor-alpha, amphiregulin, heparin binding-EGF, and epiregulin, which are crucially involved in the tissue-specific proliferation/differentiation homeostasis. Typically, they act in an autocrine and paracrine manner on their specific cell membrane receptor and mount an effective reparative response to any attack to biophysical integrity. In addition, the EGFR can be activated by transactivation from a variety of G-protein-coupled receptors, integrins, and cytokine receptors, so that it acts as the major transducer of disparate cell functions, including changes in proliferation rate, cellular shape, attachment and motility, and regulation of proinflammatory activation. However, numerous experimental observations indicate that the different EGFR ligands are not redundant, but may rather provide distinct and specific contributions to keratinocyte functions. Importantly, increasing evidence now suggests that the EGFR pathway has a major impact on the inflammatory/immune reactions of the skin, in the apparent effort of enhancing innate immune defense while opposing overactivation of keratinocyte pro-inflammatory functions. This review covers the molecular mechanisms and functions activated by this major growth factor system in the regulation of keratinocyte biology and focuses on the complex contribution of EGFR signaling to the inflammatory processes in the skin.
Collapse
|
210
|
Juel IS, Solligård E, Tvedt KE, Skogvoll E, Jynge P, Beisvag V, Erlandsen SE, Sandvik AK, Aadahl P, Grønbech JE. Post-ischaemic restituted intestinal mucosa is more resistant to further ischaemia than normal mucosa in the pig. Scandinavian Journal of Clinical and Laboratory Investigation 2007; 68:106-16. [PMID: 17852833 DOI: 10.1080/00365510701534833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Ischaemic preconditioning may protect the intestine from subsequent prolonged ischaemia. This study evaluates whether a much longer initial ischaemia, encountered clinically, may modify intestinal resistance to further ischaemia in a pig model. MATERIAL AND METHODS After cross-clamping of the superior mesenteric artery for 1 h, the intestine was either reperfused for 8 h or a second cross-clamping for 1 h was performed at 4 h of reperfusion. Based on microarray analysis of intestinal samples at 1, 4 and 8 h of reperfusion, mRNA of selected genes was measured with QRT-PCR. RESULTS The first ischaemic period caused exfoliation of surface epithelial cells from the basement membrane comprising about 90 % of the villi tips, a marked increase in permeability and depletion of ATP. The second ischaemic challenge caused about 30 % less denudation of the basement membrane (p = 0.008), no increase in permeability (p = 0.008) and less depletion of ATP (p = 0.039). mRNAs for superoxide dismutase 2, heat shock proteins and signal transducer and activator of transcription 3, which may protect against ischaemia/reperfusion injury, were up-regulated throughout the reperfusion period. mRNAs for matrix metalloproteinase 1, connexin 43 and peripheral myelin 22, which may be associated with cell migration or tight junctions, showed a particular up-regulation at 4 h of reperfusion. CONCLUSION One hour of initial ischaemia followed by 4 h of reperfusion is associated with increased intestinal resistance to further ischaemia. The differential regulation of genes identified in this study provides working hypotheses for mechanisms behind this observation.
Collapse
Affiliation(s)
- Ingebjørg S Juel
- Department of Surgery, St. Olav University Hospital, NO-7006 Trondheim, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Morris VL, Chan BMC. Interaction of epidermal growth factor, Ca2+, and matrix metalloproteinase-9 in primary keratinocyte migration. Wound Repair Regen 2007; 15:907-15. [DOI: 10.1111/j.1524-475x.2007.00315.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
212
|
Gill SE, Parks WC. Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 2007; 40:1334-47. [PMID: 18083622 DOI: 10.1016/j.biocel.2007.10.024] [Citation(s) in RCA: 516] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/18/2007] [Indexed: 12/12/2022]
Abstract
Wound healing is a dynamic process that involves a coordinated response of many cell types representing distinct tissue compartments and is fundamentally similar among tissue types. Among the many gene products that are essential for restoration of normal tissue architecture, several members of the matrix metalloproteinase (MMP) family function as positive and, at times, negative regulators of repair processes. MMPs were initially thought to only function in the resolution phase of wound healing, particularly during scar resorption; however, recent evidence suggests that they also influence other wound-healing responses, such as inflammation and re-epithelialization. In this review, we discuss what is currently known about the function of MMPs in wound healing and will provide suggestions for future research directions.
Collapse
Affiliation(s)
- Sean E Gill
- Center for Lung Biology, University of Washington, 815 Mercer Street, Seattle, WA 98109, USA.
| | | |
Collapse
|
213
|
Abstract
Collagen types I, II, and III are the most abundant extracellular matrix (ECM) proteins. Collagenase is a member of the matrix metalloproteinase (MMP) family of enzymes, and is the principal enzyme involved with collagen degradation. Cellular-ECM interactions are vitally important to tissue structure and function. In this review, we summarize recent work that highlights the role of collagenase in ECM remodeling and repair, and further report that alterations of collagenase expression, function, and/or regulation are found in many diverse disease states, including aortic aneurysms, tumor invasiveness and their metastases, and hernias. Collagenase is intimately involved in many surgical diseases, and represents a potential target for therapy.
Collapse
Affiliation(s)
- Timothy R Donahue
- Division of General Surgery, David Geffen School of Medicine at UCLA, Box 956904, 72-160 CHS, Los Angeles, CA 90095-6904, USA
| | | | | |
Collapse
|
214
|
Secker GA, Shortt AJ, Sampson E, Schwarz QP, Schultz GS, Daniels JT. TGFbeta stimulated re-epithelialisation is regulated by CTGF and Ras/MEK/ERK signalling. Exp Cell Res 2007; 314:131-42. [PMID: 17915216 DOI: 10.1016/j.yexcr.2007.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 08/31/2007] [Accepted: 09/04/2007] [Indexed: 12/13/2022]
Abstract
The complex mechanisms by which transforming growth factor beta (TGFbeta) regulate re-epithelialisation following injury of stratified epithelia are not fully understood. TGFbeta signals via binding to distinct receptors activating downstream effectors, including Smads which initiate transcription of target genes. However, studies have shown that TGFbeta can also signal independently of Smads through MAPK pathways, demonstrating the diversity of TGFbeta signalling. Connective tissue growth factor (CTGF) is strongly induced by and acts downstream of TGFbeta causing pathophysiology in tissues by inducing matrix deposition, conversion of fibroblasts into contractile myofibroblasts (e.g. dermis and corneal stroma) and stimulation of epithelial-to-mesenchymal transition (e.g. kidney and lung) all of which are known to cause fibrosis. However, a role for CTGF in epithelial cell function which does not involve direct contribution to fibrosis has not been demonstrated. We show for the first time that synthesis of CTGF in cultures of human corneal epithelial cells is induced by TGFbeta through the Ras/MEK/ERK MAPK signalling pathway and that this is required for re-epithelialisation to occur through cell migration. These data reveal a novel function for CTGF in the regulation of epithelial tissue repair beyond its established role in fibrosis, and further highlight the complexity of TGFbeta regulation of epithelial cell function.
Collapse
Affiliation(s)
- Genevieve A Secker
- Department of Pathology, Cells for Sight Transplantation and Research Programme, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | | | | | | | | | | |
Collapse
|
215
|
Abruzzo T, Tun T, Sambanis A. Efficient transmicrocatheter delivery of functional fibroblasts with a bioengineered collagen gel-platinum microcoil complex: toward the development of endovascular cell therapy for cerebral aneurysms. AJNR Am J Neuroradiol 2007; 28:1586-93. [PMID: 17846217 PMCID: PMC8134367 DOI: 10.3174/ajnr.a0593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND PURPOSE Endoaneurysmal implantation of fibroblasts may promote healing of aneurysms and reduce recanalization after therapeutic embolization. The purpose of our study was to develop a device for delivery of fibroblasts with use of current microcoil technology. MATERIALS AND METHODS Cell carrier devices and cell-free devices were fabricated by associating collagen gels (with or without fibroblasts) with platinum microcoils. During the propagation of control cell carrier devices for 1 week in culture, cell-mediated gel contraction (CMGC) occurred. Modified cell carrier devices created by glutaraldehyde cross-linking, ascorbate coculture, or extended CMGC were also characterized in vitro. Devices were deployed through microcatheters (533 microm lumen, 160 cm length). Gel retention, cell retention, cell death, and the ability to support local cell migration were analyzed in vitro. RESULTS Cell viability was reduced by glutaraldehyde cross-linking but not by microcatheter transit. During microcatheter transit, cell carrier devices liberated minimal particulate matter and cellular DNA. Liberated particulate matter was reduced by glutaraldehyde cross-linking (P < .05) and extended CMGC (P < .04). Only cell carrier devices treated with glutaraldehyde cross-linking did not exhibit cell migration after microcatheter transit. Passage of cell-free devices through microcatheters sheared off most of their collagen gel. CONCLUSION Collagen gel-platinum microcoil complexes can mediate efficient transmicrocatheter delivery of viable, migration-capable fibroblasts. CMGC is a necessary component of the process of gel stabilization that enables successful microcatheter transit. Although extended CMGC and glutaraldehyde cross-linking enhance gel stabilization, glutaraldehyde cross-linking decreases cell viability and migratory potential.
Collapse
Affiliation(s)
- T Abruzzo
- Section of Interventional Neuroradiology, Department of Radiology and The Neuroscience Institute, University of Cincinnati Medical Center, Cincinnati, Ohio, USA.
| | | | | |
Collapse
|
216
|
Manicone AM, McGuire JK. Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 2007; 19:34-41. [PMID: 17707664 PMCID: PMC2235912 DOI: 10.1016/j.semcdb.2007.07.003] [Citation(s) in RCA: 401] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 07/02/2007] [Accepted: 07/03/2007] [Indexed: 12/21/2022]
Abstract
An increased expression of members of the matrix metalloproteinase (MMP) family of enzymes is seen in almost every human tissue in which inflammation is present. Through the use of models of human disease in mice with targeted deletions of individual MMPs, it has become clear that MMPs act broadly in inflammation to regulate barrier function, inflammatory cytokine and chemokine activity, and the generation of chemokine gradients. Individual MMPs regulate both normal and pathological inflammatory processes, and therefore, developing rational therapies requires further identification of specific MMP substrates and characterization of the downstream consequences of MMP proteolytic activity.
Collapse
Affiliation(s)
- Anne M. Manicone
- Center for Lung Biology, University of Washington, Seattle, WA
- Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA
| | - John K. McGuire
- Center for Lung Biology, University of Washington, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
217
|
Sano S, Chan KS, DiGiovanni J. Impact of Stat3 activation upon skin biology: a dichotomy of its role between homeostasis and diseases. J Dermatol Sci 2007; 50:1-14. [PMID: 17601706 DOI: 10.1016/j.jdermsci.2007.05.016] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/31/2007] [Accepted: 05/31/2007] [Indexed: 12/20/2022]
Abstract
Signal transducer and activator of transcription 3 (Stat3) is a latent cytoplasmic protein that conveys signals to the nucleus upon stimulation with IL-6, EGF, and many other cytokines/growth factors, leading to transcriptional activation of the downstream genes. It has been well defined that Stat3 plays critical roles in biological activities including cell proliferation, migration, survival, and oncogenesis. The in vivo role for Stat3 in the skin was elucidated using keratinocyte-specific Stat3 gene knockout mice, referred to as Stat3-disrutped mice. It was shown that Stat3 activation contributed to skin wound healing, keratinocyte migration, hair follicle growth, and resistance to UV irradiation-induced apoptosis. Furthermore, in the two-stage chemical carcinogenesis protocol, Stat3-disrupted mice did not develop any skin tumors. In contrast, transgenic mice with a constitutive active form of Stat3 (K5.Stat3C mice) developed squamous cell carcinoma (SCC) with a shorter latency and in much greater number compared to control mice. These results suggested a role for Stat3 not only in early stages of skin carcinogenesis but also in driving malignant progression in vivo. Moreover, Stat3 was consistently activated in epidermal keratinocytes in human psoriatic lesions, which has been assumed to recapitulate a condition of persistent wound healing reaction. Accordingly, K5.Stat3C mice were found to be psoriasis-prone. Finally, it was demonstrated that an inhibition of Stat3 activation ameliorated these pathological conditions, i.e., skin carcinogenesis and psoriasis. Here we will review the dichotomous roles for Stat3 in maintaining skin homeostasis and in the development of skin diseases such as psoriasis and skin cancer.
Collapse
Affiliation(s)
- Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Okocho, Nankoku, Kochi 783-8505, Japan
| | | | | |
Collapse
|
218
|
Abstract
During cutaneous wound healing, increased proliferation and migration of epidermal keratinocytes is essential for efficient re-epithelialization of the wound and restoration of barrier function to the skin. Although numerous cell culture studies have identified intracellular signaling proteins that control proliferation and migration in response to extracellular cues from the wound microenvironment, confirming their importance in wound healing requires appropriate in vivo models. The Rho-family guanosine triphosphatase (GTPase) Rac1 is an effector of cellular responses to growth factors, cytokines, and adhesion proteins present in wounds, and it has long been suspected to be an important regulator of wound healing. Two different genetic models now confirm an essential role for Rac1 in wound healing and, further, identify a dual role for Rac1 in promoting keratinocyte migration and proliferation during wound re-epithelialization. This sets the stage for determining which of the known Rac1 pathways are critical for wound repair in vivo and for linking these pathways to specific integrin or growth factor receptors that mediate cellular responses to cues from the wound environment. Together with studies that implicate Rac1 in maintaining epidermal stem cell populations, these findings lay the foundation for identifying distinct epidermal compartments from which Rac1 controls different aspects of wound re-epithelialization.
Collapse
Affiliation(s)
- C Michael DiPersio
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
219
|
Lansdown ABG, Mirastschijski U, Stubbs N, Scanlon E, Agren MS. Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen 2007; 15:2-16. [PMID: 17244314 DOI: 10.1111/j.1524-475x.2006.00179.x] [Citation(s) in RCA: 366] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zinc is an essential trace element in the human body and its importance in health and disease is appreciated. It serves as a cofactor in numerous transcription factors and enzyme systems including zinc-dependent matrix metalloproteinases that augment autodebridement and keratinocyte migration during wound repair. Zinc confers resistance to epithelial apoptosis through cytoprotection against reactive oxygen species and bacterial toxins possibly through antioxidant activity of the cysteine-rich metallothioneins. Zinc deficiency of hereditary or dietary cause can lead to pathological changes and delayed wound healing. Oral zinc supplementation may be beneficial in treating zinc-deficient leg ulcer patients, but its therapeutic place in surgical patients needs further clarification. Topical administration of zinc appears to be superior to oral therapy due to its action in reducing superinfections and necrotic material via enhanced local defense systems and collagenolytic activity, and the sustained release of zinc ions that stimulates epithelialization of wounds in normozincemic individuals. Zinc oxide in paste bandages (Unna boot) protects and soothes inflamed peri-ulcer skin. Zinc is transported through the skin from these formulations, although the systemic effects seem insignificant. We present here the first comprehensive account of zinc in wound management in relation to current concepts of wound bed preparation and the wound-healing cascade. This review article suggests that topical zinc therapy is underappreciated even though clinical evidence emphasizes its importance in autodebridement, anti-infective action, and promotion of epithelialization.
Collapse
Affiliation(s)
- Alan B G Lansdown
- Imperial College Faculty of Medicine, Division of Investigative Sciences, Charing Cross Hospital, London, United Kingdom
| | | | | | | | | |
Collapse
|
220
|
Pirilä E, Korpi JT, Korkiamäki T, Jahkola T, Gutierrez-Fernandez A, Lopez-Otin C, Saarialho-Kere U, Salo T, Sorsa T. Collagenase-2 (MMP-8) and matrilysin-2 (MMP-26) expression in human wounds of different etiologies. Wound Repair Regen 2007; 15:47-57. [PMID: 17244319 DOI: 10.1111/j.1524-475x.2006.00184.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wound healing involves highly controlled events including reepithelialization, neoangiogenesis, and reformation of the stromal compartment. Matrix metalloproteinases (MMPs) are a family of neutral zinc-dependent endopeptidases known to be essential for the wound-healing process. MMP-8 (collagenase-2) is a neutrophil-derived highly effective type I collagenase, recently indicated to be important for acute wound healing. MMP-26 is a more recent and less well-studied member of the MMP family. Our aim was to study the expression of MMP-8 and MMP-26 in human cutaneous wound repair and chronic wounds using histological methods and cell culture. MMP-8 expression was associated with epithelial cells, neutrophils, and other inflammatory cells in chronic human wounds. MMP-26 was prominently expressed in the extracellular compartment of most chronic wounds in close vicinity to the basement membrane area. MMP-26 was also expressed in acute day 1 wounds with declining expression thereafter. In vitro wound experiments showed that both MMP-8 and MMP-26 were expressed by migrating human mucosal keratinocytes. Inhibiting MMP-26 resulted in aberrant keratinocyte migration and proliferation. We conclude that MMP-8 and MMP-26 are differentially expressed in acute and chronic wounds.
Collapse
Affiliation(s)
- Emma Pirilä
- Institute of Dentistry, University of Oulu, Oulu, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Abstract
Pathophysiological molecules in the extracellular environment offer excellent targets that can be exploited for designing drug targeting systems. Matrix metalloproteases (MMPs) are a family of extracellular proteolytic enzymes that are characterized by their overexpression or overactivity in several pathologies. Over the last two decades, the MMP literature reveals heightened interest in the research involving MMP biology, pathology and targeting. This review describes various strategies that have been designed to utilize MMPs for targeting therapeutic entities. Key factors that need to be considered in the successful design of such systems have been identified based on the analyses of these strategies. Development of targeted drug delivery using MMPs has been steadily pursued; however, drug delivery efforts using these targets need to be intensified and focused to realize the clinical application of the fast developing fundamental MMP research.
Collapse
Affiliation(s)
- Deepali G. Vartak
- The University of Illinois, Department of Biopharmaceutical Sciences, Chicago, IL 60612 USA
| | - Richard A. Gemeinhart
- The University of Illinois, Department of Biopharmaceutical Sciences, Chicago, IL 60612 USA
- The University of Illinois, Department of Bioengineering, Chicago, IL 60612 USA
- Corresponding Author:Richard A. Gemeinhart, Ph.D., Assistant Professor of Pharmaceutics and Bioengineering and Director of Graduate Studies, Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, 833 South Wood Street (MC 865), Chicago, IL 60612-7231, Voice: (312) 996-2253, Facsimile: (312) 996-2784,
| |
Collapse
|
222
|
Amano T, Fu L, Marshak A, Kwak O, Shi YB. Spatio-temporal regulation and cleavage by matrix metalloproteinase stromelysin-3 implicate a role for laminin receptor in intestinal remodeling during Xenopus laevis metamorphosis. Dev Dyn 2007; 234:190-200. [PMID: 16059908 DOI: 10.1002/dvdy.20511] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The 37-kd laminin receptor precursor (LR) was first identified as a 67-kd protein that binds laminin with high affinity. We have recently isolated the Xenopus laevis LR as an in vitro substrate of matrix metalloproteinase stromelysin-3 (ST3), which is highly upregulated during intestinal metamorphosis in Xenopus laevis. Here, we show that LR is expressed in the intestinal epithelium of premetamorphic tadpoles. During intestinal metamorphosis, LR is downregulated in the apoptotic epithelium and concurrently upregulated in the connective tissue but with little expression in the developing adult epithelium. Toward the end of metamorphosis, as adult epithelial cells differentiate, they begin to express LR. Furthermore, LR is cleaved during intestinal remodeling when ST3 is highly expressed or in premetamorphic intestine of transgenic tadpoles overexpressing ST3. These results suggest that LR plays a role in cell fate determination and tissue morphogenesis, in part through its cleavage by ST3. Interestingly, high levels of LR are known to be expressed in tumor cells, which are often surrounded by fibroblasts expressing ST3, suggesting that LR cleavage by ST3 plays a role in both physiological and pathological processes.
Collapse
Affiliation(s)
- Tosikazu Amano
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
223
|
Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007; 8:221-33. [PMID: 17318226 PMCID: PMC2760082 DOI: 10.1038/nrm2125] [Citation(s) in RCA: 2121] [Impact Index Per Article: 117.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) were discovered because of their role in amphibian metamorphosis, yet they have attracted more attention because of their roles in disease. Despite intensive scrutiny in vitro, in cell culture and in animal models, the normal physiological roles of these extracellular proteases have been elusive. Recent studies in mice and flies point to essential roles of MMPs as mediators of change and physical adaptation in tissues, whether developmentally regulated, environmentally induced or disease associated.
Collapse
Affiliation(s)
- Andrea Page-McCaw
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Andrew J. Ewald
- Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, California 94143-0452, USA
| | - Zena Werb
- Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, California 94143-0452, USA
| |
Collapse
|
224
|
Gioia M, Monaco S, Fasciglione GF, Coletti A, Modesti A, Marini S, Coletta M. Characterization of the mechanisms by which gelatinase A, neutrophil collagenase, and membrane-type metalloproteinase MMP-14 recognize collagen I and enzymatically process the two alpha-chains. J Mol Biol 2007; 368:1101-13. [PMID: 17379243 DOI: 10.1016/j.jmb.2007.02.076] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 02/19/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
The turnover of native collagen has been ascribed to different members of the matrix metalloproteinase (MMP) family. Here, the mechanisms by which neutrophil collagenase (MMP-8), gelatinase A (MMP-2), and the ectodomain of MT1-MMP (ectMMP-14) degrade fibrillar collagen were examined. In particular, the hydrolysis of type I collagen at 37 degrees C was investigated to identify functional differences in the processing of the two alpha-chain types of fibrillar collagen. Thermodynamic and kinetic parameters were used for a quantitative comparison of the binding, unwinding, and hydrolysis of triple helical collagen. We demonstrate that the MMP family has developed at least two distinct mechanisms for collagen unwinding and cleavage. MMP-8 and ectMMP-14 display a similar mechanism (although with different catalytic parameters), which is characterized by binding (likely through the hemopexin-like domain) and cleavage of alpha-1 and/or alpha-2 chains without distinguishing between them and keeping the gross conformation of the triple helix (at least during the first cleavage step). On the other hand, MMP-2 binds preferentially the alpha-1 chains (likely through the fibronectin-like domain, which is not present in MMP-8 and ectMMP-14), grossly altering the whole triple helical arrangement of the collagen molecule and cleaving preferentially the alpha-2 chain. These distinctive mechanisms underly a drastically different mode of interaction with triple helical fibrillar collagen I, according to which the MMP domain is involved in binding. These findings can be related to the different role exerted by these MMPs on collagen homeostasis in the extracellular matrix.
Collapse
Affiliation(s)
- Magda Gioia
- Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Via Montpellier 1, I-00133 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
225
|
Abstract
The alpha2beta1 integrin is abundantly expressed by basal keratinocytes in intact skin and is required for re-epithelialization of human skin wounds. However, as Grenache et al. and Zweers et al. report, closure of mouse wounds does not require this receptor. The discrepancies between these models may reflect differences in the composition of the dermal matrices and in the proteinases expressed in response to injury.
Collapse
Affiliation(s)
- William C Parks
- Center for Lung Biology, University of Washington, Seattle, Washington 98109, USA.
| |
Collapse
|
226
|
Zweers MC, Davidson JM, Pozzi A, Hallinger R, Janz K, Quondamatteo F, Leutgeb B, Krieg T, Eckes B. Integrin α2β1 Is Required for Regulation of Murine Wound Angiogenesis but Is Dispensable for Reepithelialization. J Invest Dermatol 2007; 127:467-78. [PMID: 16977325 DOI: 10.1038/sj.jid.5700546] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alpha2beta1 integrin functions as the major receptor for collagen type I on a large number of different cell types, including keratinocytes, fibroblasts, endothelial cells, and a variety of inflammatory cells. Recently, we demonstrated that adhesion of keratinocytes to collagen critically depends on alpha2beta1, whereas fibroblasts can partly compensate for loss of alpha2beta1 in simple adhesion to collagen. However, in three-dimensional collagen matrices, alpha2beta1-null fibroblasts are hampered in generating mechanical forces. These data suggested a pivotal role for alpha2beta1 during wound healing in vivo. Unexpectedly, reepithelialization of excisional wounds of alpha2beta1-null mice was not impaired, indicating that keratinocytes do not require adhesion to or migration on collagen for wound closure. Whereas wound contraction and myofibroblast differentiation were similar, wound tensile strain was reduced in alpha2beta1-null mice, suggesting subtle changes in organization of the extracellular matrix. In addition, we observed reduced influx of mast cells into the granulation tissue, whereas infiltration of other inflammatory cells was not impaired. Interestingly, ablation of alpha2beta1 resulted in strong enhancement of neovascularization of granulation tissue and sponge implants. Both ultrastructurally and functionally, these new blood vessels appeared intact. In conclusion, our data show unique and overlapping functions of alpha2beta1 integrin during murine cutaneous wound healing.
Collapse
Affiliation(s)
- Manon C Zweers
- Department of Dermatology, University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Toriseva MJ, Ala-aho R, Karvinen J, Baker AH, Marjomäki VS, Heino J, Kähäri VM. Collagenase-3 (MMP-13) Enhances Remodeling of Three-Dimensional Collagen and Promotes Survival of Human Skin Fibroblasts. J Invest Dermatol 2007; 127:49-59. [PMID: 16917496 DOI: 10.1038/sj.jid.5700500] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Collagenase-3 (MMP-13) is a matrix metalloproteinase capable of cleaving a multitude of extracellular matrix proteins in addition to fibrillar collagens. Human MMP-13 is expressed by fibroblasts in chronic cutaneous ulcers, but not in normally healing adult skin wounds. However, MMP-13 is produced by fibroblasts in adult gingival and in fetal skin wounds characterized by rapid collagen remodeling and scarless healing. Here, we have examined the role of human MMP-13 in remodeling of three-dimensional (3D) collagenous matrix by primary adult human skin fibroblasts. The high level of human MMP-13 expression by fibroblasts achieved by adenoviral gene delivery resulted in potent enhancement of remodeling and contraction of 3D collagen. Fibroblasts expressing MMP-13 in 3D collagen possessed altered filamentous actin morphology with patch-like actin distribution in cell extensions. The expression of MMP-13 promotes survival and proliferation of fibroblasts in floating collagen gel, and results in activation of Akt and extracellular signal-regulated kinase-1/2 by these cells. The results provide evidence for a novel role for human MMP-13 in regulating dermal fibroblast survival, proliferation, and interaction in 3D collagen, which may be an important survival mechanism for fibroblasts in chronic skin ulcers and contribute to scarless healing of adult gingival and fetal skin wounds.
Collapse
|
228
|
O'Toole EA, van Koningsveld R, Chen M, Woodley DT. Hypoxia induces epidermal keratinocyte matrix metalloproteinase-9 secretion via the protein kinase C pathway. J Cell Physiol 2007; 214:47-55. [PMID: 17559070 DOI: 10.1002/jcp.21160] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hypoxia promotes keratinocyte migration on wound bed connective tissues and is a profound biological signal that transforms a basal keratinocyte, destined to differentiate, into a motile cell that is essential for re-epithelialization. In this study, we examined the effect of hypoxia on keratinocyte-derived collagenases associated with keratinocyte migration. Cells plated on various connective tissue matrices under normoxic and hypoxic conditions, demonstrated a two-fold increase in the 92 kDa, type IV collagenase (MMP-9) when examined by quantitative zymography and ELISA. Western blotting and ELISA demonstrated a two-fold increase in tissue inhibitor of metalloproteinase (TIMP-1), an enzyme that binds to MMP-9 and inhibits its activity. The hypoxia-induced increase in cell motility could be inhibited by a neutralizing antibody to MMP-9. Northern blotting demonstrated that MMP-9 and TIMP-1 mRNA increased 2.5- to 4-fold, 2-12 h after the cells were made hypoxic. The hypoxia-induced changes in MMP-9 and TIMP-1 were inhibited by staurosporine and bisindolylmaleimide, inhibitors of protein kinase C (PKC), but not by inhibitors of tyrosine phosphorylation and the mitogen-activated protein kinase pathway. Inhibition of PKC also inhibited hypoxia-induced keratinocyte migration on type I collagen. These data provide evidence that hypoxia-induced keratinocyte migration is mediated by increased cellular secretion of MMP-9 via the PKC pathway.
Collapse
Affiliation(s)
- Edel A O'Toole
- Centre for Cutaneous Research, ICMS, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom.
| | | | | | | |
Collapse
|
229
|
Fujimura T, Moriwaki S, Imokawa G, Takema Y. Crucial role of fibroblast integrins α2 and β1 in maintaining the structural and mechanical properties of the skin. J Dermatol Sci 2007; 45:45-53. [PMID: 17118629 DOI: 10.1016/j.jdermsci.2006.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/30/2006] [Accepted: 09/30/2006] [Indexed: 11/25/2022]
|
230
|
Piccard H, Van den Steen PE, Opdenakker G. Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J Leukoc Biol 2006; 81:870-92. [PMID: 17185359 DOI: 10.1189/jlb.1006629] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The heme-binding hemopexin consists of two, four-bladed propeller domains connected by a linker region. Hemopexin domains are found in different species on the phylogenetic tree and in the human species represented in hemopexin, matrix metalloproteinases (MMPs), vitronectin, and products of the proteoglycan 4 gene. Hemopexin and hemopexin domains of human proteins fulfill functions in activation of MMPs, inhibition of MMPs, dimerization, binding of substrates or ligands, cleavage of substrates, and endocytosis by low-density lipoprotein receptor-related protein-1 (LRP-1; CD91) and LRP-2 (megalin, GP330). Insights into the structures and functions of hemopexin (domains) form the basis for positive or negative interference with the formation of molecular complexes and hence, might be exploited therapeutically in inflammation, cancer, and wound healing.
Collapse
Affiliation(s)
- Helene Piccard
- Rega Institute for Medical Research, Laboratory of Immunobiology, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | | | |
Collapse
|
231
|
Eckes B, Zweers MC, Zhang ZG, Hallinger R, Mauch C, Aumailley M, Krieg T. Mechanical tension and integrin alpha 2 beta 1 regulate fibroblast functions. J Investig Dermatol Symp Proc 2006; 11:66-72. [PMID: 17069012 DOI: 10.1038/sj.jidsymp.5650003] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The extracellular matrix (ECM) environment in connective tissues provides fibroblasts with a structural scaffold and modulates cell shape, but it also profoundly influences the fibroblast phenotype. Here we studied fibroblasts cultured in a three-dimensional network of native collagen, which was either mechanically stressed or relaxed. Mechanical load induces fibroblasts that synthesize abundant ECM and a characteristic array of cytokines/chemokines. This phenotype is reminiscent of late granulation tissue or scleroderma fibroblasts. By contrast, relaxed fibroblasts are characterized by induction of proteases and a subset of cytokines that does not overlap with that of mechanically stimulated cells. Thus, the biochemical composition and physical nature of the ECM exert powerful control over the phenotypes of fibroblasts, ranging from "synthetic" to "inflammatory" phenotypes. Interactions between fibroblasts and collagen fibrils are mostly mediated by a subset of beta 1 integrin receptors. Fibroblasts utilize alpha 1 beta 1, alpha 2 beta 1, and alpha 11 beta 1 integrins for establishing collagen contacts and transducing signals. In vitro assays and mouse genetics have demonstrated individual tasks served by each receptor, but also functional redundancy. Unraveling the integrated functions of fibroblasts, collagen integrin receptors, collagen fibrils, and mechanical tension will be important to understand the molecular mechanisms underlying tissue repair and fibrosis.
Collapse
Affiliation(s)
- Beate Eckes
- Department of Dermatology, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
232
|
Abstract
PURPOSE To provide practitioners with an overview of debridement and its role in wound healing. TARGET AUDIENCE This continuing education activity is intended for physicians and nurses who assess and treat wounds. OBJECTIVES After reading the article and taking the test, the reader should be able to: 1. Discuss the physiologic process of wound healing and the rationale for debridement. 2. Describe evidence-based indications for and methods of debridement.
Collapse
Affiliation(s)
- Carly Kirshen
- External McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
233
|
Grenache DG, Zhang Z, Wells LE, Santoro SA, Davidson JM, Zutter MM. Wound healing in the alpha2beta1 integrin-deficient mouse: altered keratinocyte biology and dysregulated matrix metalloproteinase expression. J Invest Dermatol 2006; 127:455-66. [PMID: 17068473 DOI: 10.1038/sj.jid.5700611] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The alpha2beta1 integrin, a collagen/laminin receptor, is expressed at high level in the basal cell layer of the epidermis. To define the role of the alpha2beta1 integrin in wound healing, wound repair was extensively evaluated in wild-type and alpha2-null mice in vivo. In addition, the impact of alpha2beta1 integrin-deficiency on the function of primary murine keratinocytes in vitro was analyzed. Our in vivo findings demonstrate that genetic deletion of the alpha2beta1 integrin does not significantly alter the rate of re-epithelialization, collagen deposition, or tensile strength during wound closure in mice. In marked contrast to the observed similarities in wound healing, deletion of the alpha2beta1 integrin resulted in a dramatic increase in neoangiogenesis in the wound microenvironment. In contrast to in vivo studies, primary keratinocytes from alpha2-null mice adhered poorly and displayed impaired migration on type I collagen in vitro. We demonstrate that alpha2beta1 integrin-ligation negatively regulates expression of genes including matrix metalloproteinases both in vivo and in vitro. Furthermore, the changes in gene expression could potentially account for relatively normal wound healing in the alpha2-deficient mouse and our recent observation that suggests an antiangiogenic role for the alpha2beta1 integrin in vivo.
Collapse
Affiliation(s)
- David G Grenache
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
234
|
Varani J, Bhagavathula N, Ellis CN, Pershadsingh HA. Thiazolidinediones: potential as therapeutics for psoriasis and perhaps other hyperproliferative skin disease. Expert Opin Investig Drugs 2006; 15:1453-68. [PMID: 17040203 DOI: 10.1517/13543784.15.11.1453] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The thiazolidinediones constitute a family of synthetic compounds that act as high-affinity ligands for persoxisome proliferator-activated receptor-gamma (PPAR-gamma), a member of the nuclear hormone receptor family. Although originally developed to facilitate glucose control in patients with Type 2 diabetes, a number of studies showed that these agents effectively inhibited epithelial cell proliferation and tissue inflammation. Many of the initial cell growth inhibition studies were conducted with malignant epithelial cells from various sites; however, in addition to malignant epithelial cells, other studies showed that rapidly proliferating epidermal keratinoctyes in culture were also sensitive to the growth-inhibiting action of these moieties. Additional studies subsequently demonstrated that some patients with plaque psoriasis responded to treatment with one or another member of the thiazolidinedione family. Due to the potential therapeutic benefit of these compounds in diseases such as psoriasis, studies have been conducted to elucidate mechanisms by which growth inhibition is achieved. Interference with a number of growth-influencing signalling pathways has been demonstrated. Of interest, some of the growth-inhibiting effects are seen under conditions in which PPAR-gamma activation may not be responsible for the activity. Based on therapeutic potential, additional ongoing studies are aimed at developing novel thiazolidinediones that may have better efficacy than the currently available agents. Other studies are aimed at identifying optimal ways to use these agents in the treatment of hyperplastic skin diseases such as psoriasis.
Collapse
Affiliation(s)
- James Varani
- University of Michigan Medical School, Department of Pathology, 1301 Catherine Road/Box 0602, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
235
|
Byun HJ, Hong IK, Kim E, Jin YJ, Jeoung DI, Hahn JH, Kim YM, Park SH, Lee H. A splice variant of CD99 increases motility and MMP-9 expression of human breast cancer cells through the AKT-, ERK-, and JNK-dependent AP-1 activation signaling pathways. J Biol Chem 2006; 281:34833-47. [PMID: 16984917 DOI: 10.1074/jbc.m605483200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CD99 gene encodes two distinct transmembrane proteins by alternative splicing of its transcript. To examine the effects of two CD99 isoforms on the invasive phenotypes of breast cancer cells, MDA-MB-231 and MCF-7 human breast cancer cell lines were stably transfected with CD99 cDNAs encoding the major wild-type form (type I) or a minor splice variant (type II). As a result, expression of CD99 type II, but not type I, markedly elevated the motility, binding to fibronectin, MMP-9 expression, and invasiveness of MDA-MB-231 and MCF-7 breast cancer cells. In MDA-MB-435 breast cancer cells expressing both CD99 type I and type II, invasion-related cellular activities were inhibited by the transfection of small interfering RNA (siRNA) targeted to CD99 type II. Meanwhile, CD99 type II-induced MMP-9 expression in MDA-MB-231 cells was shown to be mediated by the binding of AP-1 factors to the MMP-9 gene promoter. Gel shift assay revealed that ligation of CD99 type II with antibody resulted in the binding of JunD to the AP-1 site of the MMP-9 promoter region. Initiation of CD99 type II signaling by antibody ligation increased expression of JunD and FosB AP-1 factors, along with phosphorylation of Src, Akt, p38 MAPK, ERK, and JNK. Knockdown of JunD and FosB by siRNA transfection abolished the positive effects of CD99 type II on the motility and MMP-9 expression of MDA-MB-231 cells. Increased expression of JunD and FosB as well as elevated cell motility and MMP-9 expression by CD99 type II ligation were also abrogated by inhibitors, dominant-negative forms, and siRNAs for Akt1, ERK1/2, and JNK1 but not for p38 MAPK. These results suggest that expression of a splice variant of CD99 contributes to the invasive ability of human breast cancer cells by up-regulating AP-1-mediated gene expression through the Akt-dependent ERK and JNK signaling pathways.
Collapse
Affiliation(s)
- Hee-Jung Byun
- Vascular System Research Center and Division of Life Sciences, College of Natural Sciences, Department of Anatomy, Kangwon University, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Abstract
Wound healing describes the host mechanisms involved in the process of restoring the continuity of tissues after injury. Wound healing progresses through a continuum of overlapping stages characterized by macroscopic, microscopic, and biochemical events. An understanding of the relation between these events can enhance clinicians' skills in wound management.
Collapse
Affiliation(s)
- Giselle Hosgood
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, South Stadium Drive, Baton Rouge, LA 70803, USA
| |
Collapse
|
237
|
Philp D, Scheremeta B, Sibliss K, Zhou M, Fine EL, Nguyen M, Wahl L, Hoffman MP, Kleinman HK. Thymosin beta4 promotes matrix metalloproteinase expression during wound repair. J Cell Physiol 2006; 208:195-200. [PMID: 16607611 DOI: 10.1002/jcp.20650] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Immobilized patients, diabetics, and the elderly suffer from impaired wound healing. The 43-amino acid angiogenic peptide thymosin beta4 (Tbeta4) has previously been found to accelerate dermal wound repair in rats, aged mice, and db/db diabetic mice. It also promotes corneal repair in both normal rats and mice. Because proteinases are important in wound repair, we hypothesized that Tbeta4 may regulate matrix metalloproteinase (MMP) expression in cells that are involved in wound repair. Analysis by RT-PCR of whole excised mouse dermal wounds on days 1, 2, and 3 after wounding showed that Tbeta4 increased several metalloproteinases, including MMP-2 and -9 expression by several-fold over control on day 2 after wounding. We further analyzed the metalloproteinases secreted in response to exogenous Tbeta4 by cells normally present in the wound. Western blot analysis of cultured keratinocytes, endothelial cells, and fibroblasts that were treated with increasing concentrations of Tbeta4 showed increases in the levels of MMP-1, -2, and -9 in a cell-specific manner. Tbeta4 also enhanced the secretion of MMP-1 and MMP-9 by activated monocytes. The central actin-binding domain, amino acids 17-23, had all of the activity for metalloproteinase induction. We conclude that part of the wound healing activity of Tbeta4 resides in its ability to increase proteinase activity via its central actin-binding domain. Thus, Tbeta4 may play a pivotal role in extracellular matrix remodeling during wound repair.
Collapse
Affiliation(s)
- Deborah Philp
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland 20892-4370, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Nakao H, Yamazaki M, Tsuboi R, Ogawa H. Mixture of sugar and povidone--iodine stimulates wound healing by activating keratinocytes and fibroblast functions. Arch Dermatol Res 2006; 298:175-82. [PMID: 16862430 DOI: 10.1007/s00403-006-0683-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 06/19/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
The topical application of a mixture of sugar and povidone--iodine (PI) has been reported to accelerate the healing of cutaneous wounds and ulcers by promoting re-epithelialization and granulation tissue formation as well as having an anti-microbial effect. To clarify the mechanisms accounting for the efficacy of a 70% sugar and 3% PI paste (U-PASTAtrade mark) (SP), various keratinocytes and fibroblasts functions, including proliferation, collagen synthesis, integrin expression, and cytokine and proteinase secretions in the presence of SP were investigated. Cultured human keratinocytes and fibroblasts were treated with various concentrations of SP, SU and PI. The secretion of urokinase-type plasminogen activator (u-PA), transforming growth factor (TGF)-alpha and interleukin-1alpha from keratinocytes, was detected by ELISA. Collagen synthesis of fibroblasts was examined by means of detecting proline uptake. Furthermore, integrin expressions of these cells were analyzed using a flow cytometer. SP and PI increased intra-cellular u-PA of keratinocytes and stimulated the secretion of u-PA and TGF-alpha. Sugar accelerated the extra-cellular u-PA level only. Both SP and sugar increased the collagen synthesis of fibroblasts. SP and PI also remarkably induced the expressions of extra-cellular matrix receptor integrins, alpha1, alpha2, alpha3, alpha4, alpha5 and beta1, on the surface of keratinocytes and fibroblasts. SP, the mixture of sugar and PI, is likely to act on wounds not only as an antibiotic agent, but also as a modulator for keratinocytes and fibroblasts.
Collapse
Affiliation(s)
- Hiroshi Nakao
- Pharmacology Group, Fuji Research Laboratories, Pharmaceutical Division, Kowa Company Ltd, 332-1 Ohno-shinden, Fuji, Shizuoka, Japan
| | | | | | | |
Collapse
|
239
|
Numata Y, Terui T, Okuyama R, Hirasawa N, Sugiura Y, Miyoshi I, Watanabe T, Kuramasu A, Tagami H, Ohtsu H. The accelerating effect of histamine on the cutaneous wound-healing process through the action of basic fibroblast growth factor. J Invest Dermatol 2006; 126:1403-9. [PMID: 16543894 DOI: 10.1038/sj.jid.5700253] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study revealed that the absence of histamine in histidine decarboxylase gene-knockout (HDC(-/-)) mice resulted in delayed cutaneous wound healing and that exogenously administered histamine compensated this process. With the overproduction of histamine in HDC gene-transgenic mice, the healing was accelerated compared to the HDC(+/+) mice. These results indicate that histamine positively accelerated the cutaneous wound healing. Macrophage recruitment and angiogenesis at the wound edge were specifically impaired in HDC(-/-) mice, and histamine-treated wounds in HDC(-/-) mice demonstrated increased macrophage recruitment and angiogenesis. The amount of basic fibroblast growth factor (bFGF) in protein level at the wound edge was higher in HDC(+/+) mice, especially on the 3rd and 5th day of wound healing compared to those in HDC(-/-) mice. Topically administered SU5402, a specific antagonist to fibroblast growth factor receptor-1 tyrosine kinase, to the wound surface suppressed the wound healing in HDC(+/+) mice but not in HDC(-/-) mice. Moreover, SU5402 reduced macrophage recruitment and angiogenesis in HDC(+/+) mice. From these observations, it was concluded that the accelerated wound-healing activity of histamine was mediated by the activity of bFGF, which leads to angiogenesis, and macrophage recruitment in the wound-healing process.
Collapse
Affiliation(s)
- Yukikazu Numata
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Sogabe Y, Abe M, Yokoyama Y, Ishikawa O. Basic fibroblast growth factor stimulates human keratinocyte motility by Rac activation. Wound Repair Regen 2006; 14:457-62. [PMID: 16939574 DOI: 10.1111/j.1743-6109.2006.00143.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Topical application of human recombinant basic fibroblast growth factor (bFGF) promotes wound healing. bFGF, however, has been reported to have little in vitro effects on keratinocyte compared with other cell types such as endothelial cells or fibroblasts. The aim of this study was to investigate the mechanism(s) of bFGF-stimulated keratinocyte migration. Normal human keratinocytes, seeded on coverslips that were noncoated or coated with type I collagen or fibronectin, were stimulated with bFGF to evaluate their ability to spread. Keratinocyte migration was measured using a Boyden chamber assay. The lysates of keratinocytes, which were plated on noncoated, type I collagen-coated or fibronectin-coated plastic dishes and stimulated with bFGF, were subjected to pulldown assays to detect guanine triphosphate-loaded Rac. Morphologically, keratinocytes formed lamellipodia only when they were stimulated with bFGF on the collagen-coated coverslips. Keratinocyte migration was significantly enhanced by bFGF. Guanine triphosphate-loaded Rac was detected only in the lysate of bFGF-stimulated keratinocytes on collagen-coated dishes. This in vitro study shows that bFGF exerts a stimulatory effect on keratinocyte migration in the presence of type I collagen as a scaffold, and, at least, Rac activation is involved.
Collapse
Affiliation(s)
- Yoko Sogabe
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | | | | | | |
Collapse
|
241
|
Zhang ZG, Bothe I, Hirche F, Zweers M, Gullberg D, Pfitzer G, Krieg T, Eckes B, Aumailley M. Interactions of primary fibroblasts and keratinocytes with extracellular matrix proteins: contribution of α2β1 integrin. J Cell Sci 2006; 119:1886-95. [PMID: 16636073 DOI: 10.1242/jcs.02921] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The α2β1 integrin is a collagen-binding protein with very high affinity for collagen I. It also binds several other collagens and laminins and it is expressed by many cells, including keratinocytes and fibroblasts in the skin. In the past, α2β1 integrin was suggested to be responsible for cell attachment, spreading and migration on monomeric collagen I and contraction of three-dimensional collagen lattices. In view of these functions, normal development and fertility in integrin α2-deficient mice, which we generated by targeting the integrin α2 gene, came as a surprise. This suggested the existence of compensatory mechanisms that we investigate here using primary fibroblasts and keratinocytes isolated from wild-type and α2-deficient mice, antibodies blocking integrin function and downregulation of integrin α2 expression. The results show that the α2β1 integrin is absolutely required for keratinocyte adhesion to collagens whereas for fibroblasts other collagen-binding integrins partially back-up the lack of α2β1 in simple adhesion to collagen monomers. A prominent requirement for α2β1 integrins became apparent when fibroblasts executed mechanical tasks of high complexity in three-dimensional surroundings, such as contracting free-floating collagen gels and developing isometric forces in tethered lattices. The deficits observed for α2-deficient fibroblasts appeared to be linked to alterations in the distribution of force-bearing focal adhesions and deregulation of Rho-GTPase activation.
Collapse
Affiliation(s)
- Zhi-Gang Zhang
- Department of Dermatology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Wolk K, Witte E, Wallace E, Döcke WD, Kunz S, Asadullah K, Volk HD, Sterry W, Sabat R. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 2006; 36:1309-23. [PMID: 16619290 DOI: 10.1002/eji.200535503] [Citation(s) in RCA: 720] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IL-22 is an IFN-IL-10 cytokine family member, which is produced by activated Th1 and NK cells and acts primarily on epithelial cells. Here we demonstrate that IL-22, in contrast to its relative IFN-gamma, regulates the expression of only a few genes in keratinocytes. This is due to varied signal transduction. Gene expressions regulated by IL-22 should enhance antimicrobial defense [psoriasin (S100A7), calgranulin A (S100A8), calgranulin B (S100A9)], inhibit cellular differentiation (e.g., profilaggrin, keratins 1 and 10, kallikrein 7), and increase cellular mobility [e.g., matrix metalloproteinease 1 (MMP1, collagenase 1), MMP3 (stromelysin 1), desmocollin 1]. In contrast, IFN-gamma favored the expression of MHC pathway molecules, adhesion molecules, cytokines, chemokines, and their receptors. The IL-22 effects were transcriptional and either independent of protein synthesis and secretion, or mediated by a secreted protein. Inflammatory conditions, but not keratinocyte differentiation, amplified the IL-22 effects. IL-22 application in mice enhanced cutaneous S100A9 and MMP1 expression. High IL-22 levels in psoriatic skin were associated with strongly up-regulated cutaneous S100A7, S100A8, S100A9, and MMP1 expression. Psoriatic patients showed strongly elevated IL-22 plasma levels, which correlated with the disease severity. Expression of IL-22 and IL-22-regulated genes was reduced by anti-psoriatic therapy. In summary, despite similarities, IFN-gamma primarily amplifies inflammation, while IL-22 may be important in the innate immunity and reorganization of epithelia.
Collapse
Affiliation(s)
- Kerstin Wolk
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, University Hospital Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Short MA, Lui H, McLean D, Zeng H, Alajlan A, Chen XK. Changes in nuclei and peritumoral collagen within nodular basal cell carcinomas via confocal micro-Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:34004. [PMID: 16822054 DOI: 10.1117/1.2209549] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Confocal micro-Raman spectroscopy is used to probe the nuclei of normal human epidermal cells and epidermally derived cancer cells from nodular basal cell carcinomas. Clear differences are seen between the spectra. The nuclei of tumor cells appear to have different contributions from nucleic acids, histones, and proteins with an actin-like spectrum than those of normal epidermal cells. Changes in the contribution of DNA to the spectra are consistent with the staining of conventional histopathologic specimens. We also obtain spectra of the dermis, where it is found that the dermis close to tumor boundaries is not simply deficient in collagen, but shows signs of structural changes as well.
Collapse
Affiliation(s)
- Michael A Short
- Simon Fraser University, Department of Physics, Burnaby, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
244
|
Yang HS, Matthews CP, Clair T, Wang Q, Baker AR, Li CCH, Tan TH, Colburn NH. Tumorigenesis suppressor Pdcd4 down-regulates mitogen-activated protein kinase kinase kinase kinase 1 expression to suppress colon carcinoma cell invasion. Mol Cell Biol 2006; 26:1297-306. [PMID: 16449643 PMCID: PMC1367180 DOI: 10.1128/mcb.26.4.1297-1306.2006] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death 4 (Pdcd4) suppresses neoplastic transformation by inhibiting the activation of c-Jun and consequently AP-1-dependent transcription. We report that Pdcd4 blocks c-Jun activation by inhibiting the expression of mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1)/hematopoietic progenitor kinase 1, a kinase upstream of Jun N-terminal kinase (JNK). cDNA microarray analysis of Pdcd4-overexpressing RKO human colon carcinoma cells revealed MAP4K1 as the sole target of Pdcd4 on the JNK activation pathway. Cotransfection of a MAP4K1 promoter-reporter with Pdcd4 demonstrated inhibition of transcription from the MAP4K1 promoter. Ectopic expression of Pdcd4 in metastatic RKO cells suppressed invasion. MAP4K1 activity is functionally significant in invasion, as overexpression of a dominant negative MAP4K1 (dnMAP4K1) mutant in RKO cells inhibited not only c-Jun activation but also invasion. Overexpression of a MAP4K1 cDNA in Pdcd4-transfected cells rescued the kinase activity of JNK. Thus, Pdcd4 suppresses tumor progression in human colon carcinoma cells by the novel mechanism of down-regulating MAP4K1 transcription, with consequent inhibition of c-Jun activation and AP-1-dependent transcription.
Collapse
Affiliation(s)
- Hsin-Sheng Yang
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Saffarian S, Qian H, Collier I, Elson E, Goldberg G. Powering a burnt bridges Brownian ratchet: a model for an extracellular motor driven by proteolysis of collagen. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:041909. [PMID: 16711838 DOI: 10.1103/physreve.73.041909] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Indexed: 05/09/2023]
Abstract
Biased diffusion of collagenase on collagen fibrils may represent the first observed adenosine triphosphate-independent extracellular molecular motor. The magnitude of force generated by the enzyme remains unclear. We propose a propulsion mechanism based on a burnt bridges Brownian ratchet model with a varying degree of coupling of the free energy from collagen proteolysis to the enzyme motion. When constrained by experimental observations, our model predicts 0.1 pN stall force for individual collagenase molecules. A dimer, surprisingly, can generate a force in the range of 5 pN, suggesting that the motor can be of biological significance.
Collapse
Affiliation(s)
- Saveez Saffarian
- Cell Biology Department, Harvard Medical School/CBR, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
246
|
Hartenstein B, Dittrich BT, Stickens D, Heyer B, Vu TH, Teurich S, Schorpp-Kistner M, Werb Z, Angel P. Epidermal development and wound healing in matrix metalloproteinase 13-deficient mice. J Invest Dermatol 2006; 126:486-96. [PMID: 16374453 PMCID: PMC2767339 DOI: 10.1038/sj.jid.5700084] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Degradation of the extracellular matrix, which is an indispensable step in tissue remodelling processes such as embryonic development and wound healing of the skin, has been attributed to collagenolytic activity of members of the matrix metalloproteinase family (MMPs). Here, we employed mmp13 knockout mice to elucidate the function of MMP13 in embryonic skin development, skin homeostasis, and cutaneous wound healing. Overall epidermal architecture and dermal composition of non-injured skin were indistinguishable from wild-type mice. Despite robust expression of MMP13 in the early phase of wound healing, wild-type and mmp13 knockout animals did not differ in their efficiency of re-epithelialization, inflammatory response, granulation tissue formation, angiogenesis, and restoration of basement membrane. Yet, among other MMPs also expressed during wound healing, MMP8 was found to be enhanced in wounds of MMP13-deficient mice. In summary, skin homeostasis and also tissue remodelling processes like embryonic skin development and cutaneous wound healing are independent of MMP13 either owing to MMP13 dispensability or owing to functional substitution by other collagenolytic proteinases such as MMP8.
Collapse
Affiliation(s)
- Bettina Hartenstein
- Division of Signal Transduction and Growth Control (A100), Deutsches Krebsforschungszentrum Heidelberg (DKFZ), Heidelberg, Germany
| | - Bernd Thilo Dittrich
- Division of Signal Transduction and Growth Control (A100), Deutsches Krebsforschungszentrum Heidelberg (DKFZ), Heidelberg, Germany
| | - Dominique Stickens
- Department of Anatomy, University of California, San Francisco, California, USA
| | - Babette Heyer
- Department of Anatomy, University of California, San Francisco, California, USA
| | - Thiennu H. Vu
- Department of Medicine and Lung Biology Center, University of California, San Francisco, California, USA
| | - Sibylle Teurich
- Division of Signal Transduction and Growth Control (A100), Deutsches Krebsforschungszentrum Heidelberg (DKFZ), Heidelberg, Germany
| | - Marina Schorpp-Kistner
- Division of Signal Transduction and Growth Control (A100), Deutsches Krebsforschungszentrum Heidelberg (DKFZ), Heidelberg, Germany
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, California, USA
| | - Peter Angel
- Division of Signal Transduction and Growth Control (A100), Deutsches Krebsforschungszentrum Heidelberg (DKFZ), Heidelberg, Germany
| |
Collapse
|
247
|
Harrison CA, Heaton MJ, Layton CM, Mac Neil S. Use of an in vitro model of tissue-engineered human skin to study keratinocyte attachment and migration in the process of reepithelialization. Wound Repair Regen 2006; 14:203-9. [PMID: 16630110 DOI: 10.1111/j.1743-6109.2006.00111.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To produce a stable epidermis, keratinocytes need to be firmly attached to the basement membrane. However, following wounding, keratinocytes are required to develop a migratory phenotype in order to reepithelialize the wound. To investigate some of the issues underlying reepithelialization, we have developed a three-dimensional in vitro model of tissue-engineered skin, comprising sterilized human dermis seeded with human keratinocytes and dermal fibroblasts. Using this model, we have shown that the inclusion of fibroblasts within the model increases the stability of keratinocyte attachment. We have also demonstrated that keratinocyte migration occurs most effectively in the absence of a basement membrane and following the inclusion of fibroblasts in the model. In addition, subjecting the keratinocyte layer to mechanical trauma induces a migratory phenotype. We conclude that this three-dimensional in vitro wound model can be used to increase our understanding of the factors that enhance keratinocyte migration and hence wound healing in vivo.
Collapse
Affiliation(s)
- Caroline A Harrison
- Skin Research Unit, Section of Human Metabolism, Division of Clinical Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | | | | |
Collapse
|
248
|
Xu X, Chen Z, Wang Y, Yamada Y, Steffensen B. Functional basis for the overlap in ligand interactions and substrate specificities of matrix metalloproteinases-9 and -2. Biochem J 2006; 392:127-34. [PMID: 16008524 PMCID: PMC1317671 DOI: 10.1042/bj20050650] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The MMPs (matrix metalloproteinases) MMP-9 and -2 each possess a unique CBD (collagen-binding domain) containing three fibronectin type II-like modules. The present experiments investigated whether the contributions to ligand interactions and enzymatic activities by the CBD of MMP-9 (CBD-9) corresponded to those of CBD in MMP-2 (CBD-2). The interactions of recombinant CBD-9 with a series of collagen types and extracellular matrix molecules were characterized by protein-protein binding assays. CBD-9 bound native and denatured type I, II, III, IV and V collagen, as well as Matrigel and laminin, with apparent K(d) values of (0.1-6.8)x10(-7) M, which were similar to the K(d) values for CBD-2 [(0.2-3.7)x10(-7) M]. However, CBD-9 bound neither native nor denatured type VI collagen. We also generated two modified MMPs, MMP-9(E402A) and MMP-2(E404A), by site-specific mutations in the active sites to obtain enzymes with intact ligand binding, but abrogated catalytic properties. In subsequent competitive binding assays, CBD-9 and MMP-9(E402A) inhibited the interactions of MMP-2(E404A) and, conversely, CBD-2 and MMP-2(E404A) competed with MMP-9(E402A) binding to native and denatured type I collagens, pointing to shared binding sites. Importantly, the capacity of CBD-9 to disrupt the MMP-9 and MMP-2 binding of collagen translated to inhibition of the gelatinolytic activity of the enzymes. Collectively, these results emphasize the essential contribution of CBD-9 to MMP-9 substrate binding and gelatinolysis, and demonstrate that the CBDs of MMP-9 and MMP-2 bind the same or closely positioned sites on type I collagen.
Collapse
Affiliation(s)
- Xiaoping Xu
- *Departments of Periodontics and Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7894, San Antonio, TX 78229-3900, U.S.A
| | - Zhihua Chen
- *Departments of Periodontics and Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7894, San Antonio, TX 78229-3900, U.S.A
| | - Yao Wang
- *Departments of Periodontics and Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7894, San Antonio, TX 78229-3900, U.S.A
| | - Yoshishige Yamada
- †School of Dentistry, Department of Endodontology, Showa University, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145, Japan
| | - Bjorn Steffensen
- *Departments of Periodontics and Biochemistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7894, San Antonio, TX 78229-3900, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
249
|
Aslam MN, Lansky EP, Varani J. Pomegranate as a cosmeceutical source: pomegranate fractions promote proliferation and procollagen synthesis and inhibit matrix metalloproteinase-1 production in human skin cells. JOURNAL OF ETHNOPHARMACOLOGY 2006; 103:311-8. [PMID: 16221534 DOI: 10.1016/j.jep.2005.07.027] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 06/23/2005] [Accepted: 07/28/2005] [Indexed: 05/04/2023]
Abstract
Pomegranate (Punica granatum) is an ancient fruit with exceptionally rich ethnomedical applications. The peel (pericarp) is well regarded for its astringent properties; the seeds for conferring invulnerability in combat and stimulating beauty and fertility. Here, aqueous fractions prepared from the fruit's peel and fermented juice and lipophilic fractions prepared from pomegranate seeds were examined for effects on human epidermal keratinocyte and human dermal fibroblast function. Pomegranate seed oil, but not aqueous extracts of fermented juice, peel or seed cake, was shown to stimulate keratinocyte proliferation in monolayer culture. In parallel, a mild thickening of the epidermis (without the loss of ordered differentiation) was observed in skin organ culture. The same pomegranate seed oil that stimulated keratinocyte proliferation was without effect on fibroblast function. In contrast, pomegranate peel extract (and to a lesser extent, both the fermented juice and seed cake extracts) stimulated type I procollagen synthesis and inhibited matrix metalloproteinase-1 (MMP-1; interstitial collagenase) production by dermal fibroblasts, but had no growth-supporting effect on keratinocytes. These results suggest heuristic potential of pomegranate fractions for facilitating skin repair in a polar manner, namely aqueous extracts (especially of pomegranate peel) promoting regeneration of dermis, and pomegranate seed oil promoting regeneration of epidermis.
Collapse
Affiliation(s)
- Muhammad Nadeem Aslam
- Department of Pathology, The University of Michigan Medical School, 1301 Catherine Road/Box 0602, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
250
|
Mechanick J, Breit N. Nutritional Strategies for Wound Healing in Diabetic Patients. NUTRITION AND DISEASE PREVENTION 2006:193-220. [DOI: 10.1201/9781420014884.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|