201
|
Millar AH, Whelan J, Soole KL, Day DA. Organization and regulation of mitochondrial respiration in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:79-104. [PMID: 21332361 DOI: 10.1146/annurev-arplant-042110-103857] [Citation(s) in RCA: 392] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitochondrial respiration in plants provides energy for biosynthesis, and its balance with photosynthesis determines the rate of plant biomass accumulation. We describe recent advances in our understanding of the mitochondrial respiratory machinery of cells, including the presence of a classical oxidative phosphorylation system linked to the cytosol by transporters, discussed alongside nonphosphorylating (and, therefore, non-energy conserving) bypasses that alter the efficiency of ATP synthesis and play a role in oxidative stress responses in plants. We consider respiratory regulation in the context of the contrasting roles mitochondria play in different tissues, from photosynthetic leaves to nutrient-acquiring roots. We focus on the molecular nature of this regulation at transcriptional and post-transcriptional levels that allow the respiratory apparatus of plants to help shape organ development and the response of plants to environmental stress. We highlight the challenges for future research considering spatial and temporal changes of respiration in response to changing climatic conditions.
Collapse
Affiliation(s)
- A Harvey Millar
- Australian Research Council Center of Excellence in Plant Energy Biology, University of Western Australia, M316 Crawley, Western Australia 6009, Australia
| | | | | | | |
Collapse
|
202
|
Aranjuelo I, Molero G, Erice G, Avice JC, Nogués S. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:111-23. [PMID: 20797998 PMCID: PMC2993905 DOI: 10.1093/jxb/erq249] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/20/2010] [Accepted: 07/20/2010] [Indexed: 05/18/2023]
Abstract
Despite its relevance, protein regulation, metabolic adjustment, and the physiological status of plants under drought is not well understood in relation to the role of nitrogen fixation in nodules. In this study, nodulated alfalfa plants were exposed to drought conditions. The study determined the physiological, metabolic, and proteomic processes involved in photosynthetic inhibition in relation to the decrease in nitrogenase (N(ase)) activity. The deleterious effect of drought on alfalfa performance was targeted towards photosynthesis and N(ase) activity. At the leaf level, photosynthetic inhibition was mainly caused by the inhibition of Rubisco. The proteomic profile and physiological measurements revealed that the reduced carboxylation capacity of droughted plants was related to limitations in Rubisco protein content, activation state, and RuBP regeneration. Drought also decreased amino acid content such as asparagine, and glutamic acid, and Rubisco protein content indicating that N availability limitations were caused by N(ase) activity inhibition. In this context, drought induced the decrease in Rubisco binding protein content at the leaf level and proteases were up-regulated so as to degrade Rubisco protein. This degradation enabled the reallocation of the Rubisco-derived N to the synthesis of amino acids with osmoregulant capacity. Rubisco degradation under drought conditions was induced so as to remobilize Rubisco-derived N to compensate for the decrease in N associated with N(ase) inhibition. Metabolic analyses showed that droughted plants increased amino acid (proline, a major compound involved in osmotic regulation) and soluble sugar (D-pinitol) levels to contribute towards the decrease in osmotic potential (Ψ(s)). At the nodule level, drought had an inhibitory effect on N(ase) activity. This decrease in N(ase) activity was not induced by substrate shortage, as reflected by an increase in total soluble sugars (TSS) in the nodules. Proline accumulation in the nodule could also be associated with an osmoregulatory response to drought and might function as a protective agent against ROS. In droughted nodules, the decrease in N(2) fixation was caused by an increase in oxygen resistance that was induced in the nodule. This was a mechanism to avoid oxidative damage associated with reduced respiration activity and the consequent increase in oxygen content. This study highlighted that even though drought had a direct effect on leaves, the deleterious effects of drought on nodules also conditioned leaf responsiveness.
Collapse
Affiliation(s)
- Iker Aranjuelo
- Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
203
|
|
204
|
Wulff-Zottele C, Gatzke N, Kopka J, Orellana A, Hoefgen R, Fisahn J, Hesse H. Photosynthesis and metabolism interact during acclimation of Arabidopsis thaliana to high irradiance and sulphur depletion. PLANT, CELL & ENVIRONMENT 2010; 33:1974-88. [PMID: 20573050 DOI: 10.1111/j.1365-3040.2010.02199.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Arabidopsis plants were exposed to high light or sulphur depletion alone or in combination for 6 d, and changes of photosynthetic parameters and metabolite abundances were quantified. Photosynthetic electron transport rates (ETRs) of plants exposed to sulphur depletion and high light decreased strongly at day 2 of the acclimation period. After 3 d of treatment, the photosynthetic capacity recovered in plants exposed to the combined stresses, indicating a short recovery time for re-adjustment of photosynthesis. However, at metabolic level, the stress combination had a profound effect on central metabolic pathways such as the tricarboxylic acid (TCA) cycle, glycolysis, pentose phosphate cycle and large parts of amino acid metabolism. Under these conditions, central metabolites, such as sugars and their phosphates, increased, while sulphur-containing compounds were decreased. Further differential responses were found for the stress indicator proline accumulating already at day 1 of the high-light regime, but in combination with sulphur depletion first declined and after a recovery phase reached a delayed elevated level. Other metabolites such as raffinose and putrescine seem to replace proline during the early combinatorial stress response and may act as alternative protectants. Our findings support the notion that plants integrate the selectively sensed stress factors in central metabolism.
Collapse
|
205
|
Pandey V, Ranjan S, Deeba F, Pandey AK, Singh R, Shirke PA, Pathre UV. Desiccation-induced physiological and biochemical changes in resurrection plant, Selaginella bryopteris. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1351-9. [PMID: 20605652 DOI: 10.1016/j.jplph.2010.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/06/2010] [Accepted: 05/06/2010] [Indexed: 05/20/2023]
Abstract
Selaginella bryopteris is a lycophyte resurrection plant, which incurves during desiccation and recovers on availability of moisture. The aim of the study was to test and understand the various physiological and biochemical changes the fronds undergo during desiccation and rehydration, to get an insight as to how this plant adapts and survives through the dry phase. Upon desiccation, S. bryopteris fronds showed drastic inhibition in net photosynthesis (A) and maximal photochemical efficiency of PSII (F(v)/F(m)) however, chlorophyll content did not show much variation. Dark respiration (R(d)) continued even at 10% relative water content (RWC), and showed a burst after rehydration, which is proposed to be crucial to establish protection mechanisms. Desiccation caused an enhanced production of reactive oxygen species (ROS) and increased lipid peroxidation. Proline accumulation increased substantially by 11-fold. Sucrose and starch contents decreased upon desiccation as compared to control. The antioxidative enzymes viz. superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) along with soluble acid invertase increased during desiccation. S. bryopteris shows mechanical as well as physiological mechanisms for tolerance to extreme levels of desiccation stress. The rapid and almost complete recovery of F(v)/F(m) after rehydration clearly indicates the absence of marked photoinhibitory or thermal injury to PSII during desiccation. This along with the homoiochlorophyllous characteristics enables S. bryopteris to recover its A. The antioxidant metabolism further plays an important role in the desiccation tolerance of S. bryopteris.
Collapse
Affiliation(s)
- Vivek Pandey
- Plant Physiology Division, National Botanical Research Institute (NBRI-CSIR), Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India
| | | | | | | | | | | | | |
Collapse
|
206
|
Williams TC, Poolman MG, Howden AJ, Schwarzlander M, Fell DA, Ratcliffe RG, Sweetlove LJ. A genome-scale metabolic model accurately predicts fluxes in central carbon metabolism under stress conditions. PLANT PHYSIOLOGY 2010; 154:311-23. [PMID: 20605915 PMCID: PMC2938150 DOI: 10.1104/pp.110.158535] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/03/2010] [Indexed: 05/17/2023]
Abstract
Flux is a key measure of the metabolic phenotype. Recently, complete (genome-scale) metabolic network models have been established for Arabidopsis (Arabidopsis thaliana), and flux distributions have been predicted using constraints-based modeling and optimization algorithms such as linear programming. While these models are useful for investigating possible flux states under different metabolic scenarios, it is not clear how close the predicted flux distributions are to those occurring in vivo. To address this, fluxes were predicted for heterotrophic Arabidopsis cells and compared with fluxes estimated in parallel by (13)C-metabolic flux analysis (MFA). Reactions of the central carbon metabolic network (glycolysis, the oxidative pentose phosphate pathway, and the tricarboxylic acid [TCA] cycle) were independently analyzed by the two approaches. Net fluxes in glycolysis and the TCA cycle were predicted accurately from the genome-scale model, whereas the oxidative pentose phosphate pathway was poorly predicted. MFA showed that increased temperature and hyperosmotic stress, which altered cell growth, also affected the intracellular flux distribution. Under both conditions, the genome-scale model was able to predict both the direction and magnitude of the changes in flux: namely, increased TCA cycle and decreased phosphoenolpyruvate carboxylase flux at high temperature and a general decrease in fluxes under hyperosmotic stress. MFA also revealed a 3-fold reduction in carbon-use efficiency at the higher temperature. It is concluded that constraints-based genome-scale modeling can be used to predict flux changes in central carbon metabolism under stress conditions.
Collapse
|
207
|
Herschbach C, Teuber M, Eiblmeier M, Ehlting B, Ache P, Polle A, Schnitzler JP, Rennenberg H. Changes in sulphur metabolism of grey poplar (Populus x canescens) leaves during salt stress: a metabolic link to photorespiration. TREE PHYSIOLOGY 2010; 30:1161-1173. [PMID: 20516486 DOI: 10.1093/treephys/tpq041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The poplar hybrid Populus x canescens (syn. Populus tremula x Populus alba) was subjected to salt stress by applying 75 mM NaCl for 2 weeks in hydroponic cultures. Decreasing maximum quantum yield (Fv/Fm) indicated damage of photosystem II (PS II), which was more pronounced under nitrate compared with ammonium nutrition. In vivo staining with diaminobenzidine showed no accumulation of H(2)O(2) in the leaf lamina; moreover, staining intensity even decreased. But at the leaf margins, development of necrotic tissue was associated with a strong accumulation of H(2)O(2). Glutathione (GSH) contents increased in response to NaCl stress in leaves but not in roots, the primary site of salt exposure. The increasing leaf GSH concentrations correlated with stress-induced decreases in transpiration and net CO(2) assimilation rates at light saturation. Enhanced rates of photorespiration could also be involved in preventing reactive oxygen species formation in chloroplasts and, thus, in protecting PS II from damage. Accumulation of Gly and Ser in leaves indeed indicates increasing rates of photorespiration. Since Ser and Gly are both immediate precursors of GSH that can limit GSH synthesis, it is concluded that the salt-induced accumulation of leaf GSH results from enhanced photorespiration and is thus probably restricted to the cytosol.
Collapse
Affiliation(s)
- Cornelia Herschbach
- Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 053/054, 79110 Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Gong P, Zhang J, Li H, Yang C, Zhang C, Zhang X, Khurram Z, Zhang Y, Wang T, Fei Z, Ye Z. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3563-75. [PMID: 20643807 PMCID: PMC2921197 DOI: 10.1093/jxb/erq167] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 05/18/2023]
Abstract
To unravel the molecular mechanisms of drought responses in tomato, gene expression profiles of two drought-tolerant lines identified from a population of Solanum pennellii introgression lines, and the recurrent parent S. lycopersicum cv. M82, a drought-sensitive cultivar, were investigated under drought stress using tomato microarrays. Around 400 genes identified were responsive to drought stress only in the drought-tolerant lines. These changes in genes expression are most likely caused by the two inserted chromosome segments of S. pennellii, which possibly contain drought-tolerance quantitative trait loci (QTLs). Among these genes are a number of transcription factors and signalling proteins which could be global regulators involved in the tomato responses to drought stress. Genes involved in organism growth and development processes were also specifically regulated by drought stress, including those controlling cell wall structure, wax biosynthesis, and plant height. Moreover, key enzymes in the pathways of gluconeogenesis (fructose-bisphosphate aldolase), purine and pyrimidine nucleotide biosynthesis (adenylate kinase), tryptophan degradation (aldehyde oxidase), starch degradation (beta-amylase), methionine biosynthesis (cystathionine beta-lyase), and the removal of superoxide radicals (catalase) were also specifically affected by drought stress. These results indicated that tomato plants could adapt to water-deficit conditions through decreasing energy dissipation, increasing ATP energy provision, and reducing oxidative damage. The drought-responsive genes identified in this study could provide further information for understanding the mechanisms of drought tolerance in tomato.
Collapse
Affiliation(s)
- Pengjuan Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Changxian Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chanjuan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziaf Khurram
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853 and USDA Robert W Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Zhibiao Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
209
|
Metcalfe DB, Meir P, Aragão LEOC, Lobo-do-Vale R, Galbraith D, Fisher RA, Chaves MM, Maroco JP, da Costa ACL, de Almeida SS, Braga AP, Gonçalves PHL, de Athaydes J, da Costa M, Portela TTB, de Oliveira AAR, Malhi Y, Williams M. Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon. THE NEW PHYTOLOGIST 2010; 187:608-21. [PMID: 20553394 DOI: 10.1111/j.1469-8137.2010.03319.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
*The effects of drought on the Amazon rainforest are potentially large but remain poorly understood. Here, carbon (C) cycling after 5 yr of a large-scale through-fall exclusion (TFE) experiment excluding about 50% of incident rainfall from an eastern Amazon rainforest was compared with a nearby control plot. *Principal C stocks and fluxes were intensively measured in 2005. Additional minor components were either quantified in later site measurements or derived from the available literature. *Total ecosystem respiration (R(eco)) and total plant C expenditure (PCE, the sum of net primary productivity (NPP) and autotrophic respiration (R(auto))), were elevated on the TFE plot relative to the control. The increase in PCE and R(eco) was mainly caused by a rise in R(auto) from foliage and roots. Heterotrophic respiration did not differ substantially between plots. NPP was 2.4 +/- 1.4 t C ha(-1) yr(-1) lower on the TFE than the control. Ecosystem carbon use efficiency, the proportion of PCE invested in NPP, was lower in the TFE plot (0.24 +/- 0.04) than in the control (0.32 +/- 0.04). *Drought caused by the TFE treatment appeared to drive fundamental shifts in ecosystem C cycling with potentially important consequences for long-term forest C storage.
Collapse
Affiliation(s)
- D B Metcalfe
- Centre for the Environment, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Galbraith D, Levy PE, Sitch S, Huntingford C, Cox P, Williams M, Meir P. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. THE NEW PHYTOLOGIST 2010; 187:647-665. [PMID: 20659253 DOI: 10.1111/j.1469-8137.2010.03350.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
*The large-scale loss of Amazonian rainforest under some future climate scenarios has generally been considered to be driven by increased drying over Amazonia predicted by some general circulation models (GCMs). However, the importance of rainfall relative to other drivers has never been formally examined. *Here, we conducted factorial simulations to ascertain the contributions of four environmental drivers (precipitation, temperature, humidity and CO(2)) to simulated changes in Amazonian vegetation carbon (C(veg)), in three dynamic global vegetation models (DGVMs) forced with climate data based on HadCM3 for four SRES scenarios. *Increased temperature was found to be more important than precipitation reduction in causing losses of Amazonian C(veg) in two DGVMs (Hyland and TRIFFID), and as important as precipitation reduction in a third DGVM (LPJ). Increases in plant respiration, direct declines in photosynthesis and increases in vapour pressure deficit (VPD) all contributed to reduce C(veg) under high temperature, but the contribution of each mechanism varied greatly across models. Rising CO(2) mitigated much of the climate-driven biomass losses in the models. *Additional work is required to constrain model behaviour with experimental data under conditions of high temperature and drought. Current models may be overly sensitive to long-term elevated temperatures as they do not account for physiological acclimation.
Collapse
Affiliation(s)
- David Galbraith
- Centre for Ecology and Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian, UK.
| | | | | | | | | | | | | |
Collapse
|
211
|
Campbell DR, Wu CA, Travers SE. Photosynthetic and growth responses of reciprocal hybrids to variation in water and nitrogen availability. AMERICAN JOURNAL OF BOTANY 2010; 97:925-33. [PMID: 21622463 DOI: 10.3732/ajb.0900387] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
PREMISE OF THE STUDY Fitness of plant hybrids often depends upon the environment, but physiological mechanisms underlying the differential responses to habitat are poorly understood. We examined physiological responses of Ipomopsis species and hybrids, including reciprocal F(1)s and F(2)s, to variation in soil moisture and nitrogen. • METHODS To examine responses to moisture, we subjected plants to a dry-down experiment. Nitrogen was manipulated in three independent experiments, one in the field and two in common environments. • KEY RESULTS Plants with I. tenuituba cytoplasmic background had lower optimal soil moisture for photosynthesis, appearing better adapted to dry conditions, than plants with I. aggregata cytoplasm. This result supported a prediction from prior studies. The species and hybrids did not differ greatly in physiological responses to nitrogen. An increase in soil nitrogen increased leaf nitrogen, carbon assimilation, integrated water-use efficiency, and growth, but the increases in growth were not mediated primarily by an increase in photosynthesis. In neither the field, nor in common-garden studies, did physiological responses to soil nitrogen differ detectably across plant types, although only I. aggregata and hybrids increased seed production in the field. • CONCLUSIONS These results demonstrate differences in photosynthetic responses between reciprocal hybrids and suggest that water use is more important than nitrogen in explaining the relative photosynthetic performance of these hybrids compared to their parents.
Collapse
Affiliation(s)
- Diane R Campbell
- Department of Ecology & Evolutionary Biology, University of California, Irvine, California 92697 USA
| | | | | |
Collapse
|
212
|
Zhang S, Chen F, Peng S, Ma W, Korpelainen H, Li C. Comparative physiological, ultrastructural and proteomic analyses reveal sexual differences in the responses of Populus cathayana
under drought stress. Proteomics 2010; 10:2661-77. [DOI: 10.1002/pmic.200900650] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
213
|
Zhigachev IV, Misharin TA, Terenina MB, Krikunova NN, Generozova IP, Shugaev AG, Fattakhov SG, Konovalov AI. Insufficient moistening and melafen change the fatty-acid composition of mitochondrial membranes from pea seedlings. DOKL BIOCHEM BIOPHYS 2010; 432:99-101. [PMID: 20886738 DOI: 10.1134/s1607672910030014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- I V Zhigachev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow, 119991, Russia
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. PLANT, CELL & ENVIRONMENT 2010; 33:453-67. [PMID: 19712065 DOI: 10.1111/j.1365-3040.2009.02041.x] [Citation(s) in RCA: 1723] [Impact Index Per Article: 123.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Water deficit and salinity, especially under high light intensity or in combination with other stresses, disrupt photosynthesis and increase photorespiration, altering the normal homeostasis of cells and cause an increased production of reactive oxygen species (ROS). ROS play a dual role in the response of plants to abiotic stresses functioning as toxic by-products of stress metabolism, as well as important signal transduction molecules. In this review, we provide an overview of ROS homeostasis and signalling in response to drought and salt stresses and discuss the current understanding of ROS involvement in stress sensing, stress signalling and regulation of acclimation responses.
Collapse
Affiliation(s)
- Gad Miller
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 89557, USA
| | | | | | | |
Collapse
|
215
|
Toka I, Planchais S, Cabassa C, Justin AM, De Vos D, Richard L, Savouré A, Carol P. Mutations in the hyperosmotic stress-responsive mitochondrial BASIC AMINO ACID CARRIER2 enhance proline accumulation in Arabidopsis. PLANT PHYSIOLOGY 2010; 152:1851-62. [PMID: 20172963 PMCID: PMC2850005 DOI: 10.1104/pp.109.152371] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 02/12/2010] [Indexed: 05/21/2023]
Abstract
Mitochondrial carrier family proteins are diverse in their substrate specificity, organellar location, and gene expression. In Arabidopsis (Arabidopsis thaliana), 58 genes encode these six-transmembrane-domain proteins. We investigated the biological role of the basic amino acid carrier Basic Amino Acid Carrier2 (BAC2) from Arabidopsis that is structurally and functionally similar to ARG11, a yeast ornithine and arginine carrier, and to Arabidopsis BAC1. By studying the expression of BAC2 and the consequences of its mutation in Arabidopsis, we showed that BAC2 is a genuine mitochondrial protein and that Arabidopsis requires expression of the BAC2 gene in order to use arginine. The BAC2 gene is induced by hyperosmotic stress (with either 0.2 m NaCl or 0.4 m mannitol) and dark-induced senescence. The BAC2 promoter contains numerous stress-related cis-regulatory elements, and the transcriptional activity of BAC2:beta-glucuronidase is up-regulated by stress and senescence. Under hyperosmotic stress, bac2 mutants express the P5CS1 proline biosynthetic gene more strongly than the wild type, and this correlates with a greater accumulation of Pro. Our data suggest that BAC2 is a hyperosmotic stress-inducible transporter of basic amino acids that contributes to proline accumulation in response to hyperosmotic stress in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pierre Carol
- Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Université Pierre et Marie Curie (Paris 6), UR5 EAC7180 CNRS, Case 156, 75005 Paris, France
| |
Collapse
|
216
|
Sala A, Piper F, Hoch G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. THE NEW PHYTOLOGIST 2010; 186:274-81. [PMID: 20409184 DOI: 10.1111/j.1469-8137.2009.03167.x] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
217
|
Rodríguez-Calcerrada J, Atkin OK, Robson TM, Zaragoza-Castells J, Gil L, Aranda I. Thermal acclimation of leaf dark respiration of beech seedlings experiencing summer drought in high and low light environments. TREE PHYSIOLOGY 2010; 30:214-24. [PMID: 20007131 DOI: 10.1093/treephys/tpp104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Little is known about how environmental factors shape the short- and long-term responses of leaf respiration to temperature under field conditions despite the importance of respiration for plant and stand carbon balances. Impacts of water availability and canopy cover on leaf dark respiration (R) and temperature sensitivity were assessed in beech (Fagus sylvatica L.) seedlings in a sub-Mediterranean population. We studied seedlings established within canopy gaps (39% global site factor; GSF) that were subject to either no watering (unwatered plants; UW) or regular watering (2-10% higher volumetric topsoil water content as summer progressed; W plants) and seedlings established beneath the adjacent understorey (12% GSF). Leaf R rose exponentially with diurnal increases in temperature; the same temperature sensitivity (Q(10): 2.2) was found for understorey and gap plants, irrespective of watering treatment. Respiration estimated at 25 degrees C (R(25)) was lower in the understorey than the gaps and was significantly lower in the unwatered than in the watered gap plants by the end of summer (0.65 versus 0.80 micromol m(-2) s(-1)). R(25) declined with increasing summer temperature in all plants; however, respiration estimated at the prevailing ambient temperature did not change through the summer. There were parallel declines in R(25) and concentrations of starch and soluble sugars with increasing summer temperature for gap plants. We conclude that seasonal shifts in temperature-response curves of beech leaf R occur in both low- and high-light environments; since leaf R decreased with increasing plant water deficit, such shifts are likely to be greater whenever plants experience summer drought compared to scenarios where plants experience high rainfall in summer.
Collapse
Affiliation(s)
- Jesus Rodríguez-Calcerrada
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
218
|
Metcalfe DB, Lobo-do-Vale R, Chaves MM, Maroco JP, C Aragão LEO, Malhi Y, Da Costa AL, Braga AP, Gonçalves PL, De Athaydes J, Da Costa M, Almeida SS, Campbell C, Hurry V, Williams M, Meir P. Impacts of experimentally imposed drought on leaf respiration and morphology in an Amazon rain forest. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2009.01683.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
219
|
Abdeen A, Schnell J, Miki B. Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genomics 2010; 11:69. [PMID: 20105335 PMCID: PMC2837038 DOI: 10.1186/1471-2164-11-69] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 01/28/2010] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Plants engineered for abiotic stress tolerance may soon be commercialized. The engineering of these plants typically involves the manipulation of complex multigene networks and may therefore have a greater potential to introduce pleiotropic effects than the simple monogenic traits that currently dominate the plant biotechnology market. While research on unintended effects in transgenic plant systems has been instrumental in demonstrating the substantial equivalence of many transgenic plant systems, it is essential that such analyses be extended to transgenic plants engineered for stress tolerance. Drought-tolerant Arabidopsis thaliana were engineered through overexpression of the transcription factor ABF3 in order to investigate unintended pleiotropic effects. In order to eliminate position effects, the Cre/lox recombination system was used to create control plant lines that contain identical T-DNA insertion sites but with the ABF3 transgene excised. This additionally allowed us to determine if Cre recombinase can cause unintended effects that impact the transcriptome. RESULTS Microarray analysis of control plant lines that underwent Cre-mediated excision of the ABF3 transgene revealed only two genes that were differentially expressed in more than one plant line, suggesting that the impact of Cre recombinase on the transcriptome was minimal. In the absence of drought stress, overexpression of ABF3 had no effect on the transcriptome, but following drought stress, differences were observed in the gene expression patterns of plants overexpressing ABF3 relative to control plants. Examination of the functional distribution of the differentially expressed genes revealed strong similarity indicating that unintended pathways were not activated. CONCLUSIONS The action of ABF3 is tightly controlled in Arabidopsis. In the absence of drought stress, ectopic activation of drought response pathways does not occur. In response to drought stress, overexpression of ABF3 results in a reprogramming of the drought response, which is characterized by changes in the timing or strength of expression of some drought response genes, without activating any unexpected gene networks. These results illustrate that important gene networks are highly regulated in Arabidopsis and that engineering stress tolerance may not necessarily cause extensive changes to the transcriptome.
Collapse
Affiliation(s)
- Ashraf Abdeen
- Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6 Canada
| | | | | |
Collapse
|
220
|
Verslues PE, Sharma S. Proline metabolism and its implications for plant-environment interaction. THE ARABIDOPSIS BOOK 2010; 8:e0140. [PMID: 22303265 PMCID: PMC3244962 DOI: 10.1199/tab.0140] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Proline has long been known to accumulate in plants experiencing water limitation and this has driven studies of proline as a beneficial solute allowing plants to increase cellular osmolarity during water limitation. Proline metabolism also has roles in redox buffering and energy transfer and is involved in plant pathogen interaction and programmed cell death. Some of these unique roles of proline depend on the properties of proline itself, whereas others depend on the "proline cycle" of coordinated proline synthesis in the chloroplast and cytoplasm with proline catabolism in the mitochondria. The regulatory mechanisms controlling proline metabolism, intercellular and intracellular transport and connections of proline to other metabolic pathways are all important to the in vivo functions of proline metabolism. Connections of proline metabolism to the oxidative pentose phosphate pathway and glutamate-glutamine metabolism are of particular interest. The N-acetyl glutamate pathway can also produce ornithine and, potentially, proline but its role and activity are unclear. Use of model systems such as Arabidopsis thaliana to better understand both these long studied and newly emerging functions of proline can help in the design of next-generation experiments testing whether proline metabolism is a promising metabolic engineering target for improving stress resistance of economically important plants.
Collapse
Affiliation(s)
- Paul E. Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Sec. 2 Academia Rd, Nankang Dist., Taipei, 11529, Taiwan
- Address correspondence to
| | - Sandeep Sharma
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Sec. 2 Academia Rd, Nankang Dist., Taipei, 11529, Taiwan
| |
Collapse
|
221
|
Zhu XG, Long SP, Ort DR. Improving photosynthetic efficiency for greater yield. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:235-61. [PMID: 20192734 DOI: 10.1146/annurev-arplant-042809-112206] [Citation(s) in RCA: 838] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Increasing the yield potential of the major food grain crops has contributed very significantly to a rising food supply over the past 50 years, which has until recently more than kept pace with rising global demand. Whereas improved photosynthetic efficiency has played only a minor role in the remarkable increases in productivity achieved in the last half century, further increases in yield potential will rely in large part on improved photosynthesis. Here we examine inefficiencies in photosynthetic energy transduction in crops from light interception to carbohydrate synthesis, and how classical breeding, systems biology, and synthetic biology are providing new opportunities to develop more productive germplasm. Near-term opportunities include improving the display of leaves in crop canopies to avoid light saturation of individual leaves and further investigation of a photorespiratory bypass that has already improved the productivity of model species. Longer-term opportunities include engineering into plants carboxylases that are better adapted to current and forthcoming CO(2) concentrations, and the use of modeling to guide molecular optimization of resource investment among the components of the photosynthetic apparatus, to maximize carbon gain without increasing crop inputs. Collectively, these changes have the potential to more than double the yield potential of our major crops.
Collapse
Affiliation(s)
- Xin-Guang Zhu
- CAS-MPG Partner Institute for Computational Biology, SIBS, Shanghai, China.
| | | | | |
Collapse
|
222
|
Ruehr NK, Offermann CA, Gessler A, Winkler JB, Ferrio JP, Buchmann N, Barnard RL. Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. THE NEW PHYTOLOGIST 2009; 184:950-61. [PMID: 19843305 DOI: 10.1111/j.1469-8137.2009.03044.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
*Recent studies have highlighted a direct, fast transfer of recently assimilated C from the tree canopy to the soil. However, the effect of environmental changes on this flux remains largely unknown. *We investigated the effects of drought on the translocation of recently assimilated C, by pulse-labelling 1.5-yr-old beech tree mesocosms with (13)CO(2). (13)C signatures were then measured daily for 1 wk in leaves, twigs, coarse and fine root water-soluble and total organic matter, phloem organic matter, soil microbial biomass and soil CO(2) efflux. *Drought reduced C assimilation and doubled the residence time of recently assimilated C in leaf biomass. In phloem organic matter, the (13)C label peaked immediately after labelling then decayed exponentially in the control treatment, while under drought it peaked 4 d after labelling. In soil microbial biomass, the label peaked 1 d after labelling in the control treatment, whereas under drought no peak was measured. Two days after labelling, drought decreased the contribution of recently assimilated C to soil CO(2) efflux by 33%. *Our study showed that drought reduced the coupling between canopy photosynthesis and belowground processes. This will probably affect soil biogeochemical cycling, with potential consequences including slower soil nitrogen cycling and changes in C-sequestration potential under future climate conditions.
Collapse
Affiliation(s)
- Nadine K Ruehr
- Institute of Plant Science, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
223
|
Kornas A, Fischer-Schliebs E, Lüttge U, Miszalski Z. Adaptation of the obligate CAM plant Clusia alata to light stress: Metabolic responses. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1914-1922. [PMID: 19592134 DOI: 10.1016/j.jplph.2009.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/09/2009] [Accepted: 06/03/2009] [Indexed: 05/28/2023]
Abstract
In the Crassulacean acid metabolism (CAM) plants Clusia alata Triana and Planch., decarboxylation of citrate during phase III of CAM took place later than malate decarboxylation. The interdependence of these two CO(2) and NADPH sources is discussed. High light accelerated malate decarboxylation during the day and lowered citrate levels. Strong light stress also activated mechanisms that can protect the plant against oxidative stress. Upon transfer from low light (200micromol m(-2)s(-1)) to high light (650-740micromol m(-2)s(-1)), after 2 days, there was a transient increase of non-photochemical quenching (NPQ) of fluorescence of chlorophyll a of photosystem II. This indicated acute photoinhibition, which declined again after 7 days of exposure. Conversely, after 1 week exposure to high light, the mechanisms of interconversion of violaxanthin (V), antheraxanthin (A), zeaxanthin (Z) (epoxydation/de-epoxydation) were activated. This was accompanied by an increase in pigment levels at dawn and dusk.
Collapse
Affiliation(s)
- Andrzej Kornas
- Institute of Biology, Pedagogical University, 31-054 Krakow, ul. Podbrzezie 3, Poland
| | | | | | | |
Collapse
|
224
|
Vassileva V, Simova-Stoilova L, Demirevska K, Feller U. Variety-specific response of wheat (Triticum aestivum L.) leaf mitochondria to drought stress. JOURNAL OF PLANT RESEARCH 2009; 122:445-454. [PMID: 19319627 DOI: 10.1007/s10265-009-0225-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 02/13/2009] [Indexed: 05/27/2023]
Abstract
The main objective of the present work was to examine leaf respiratory responses to dehydration and subsequent recovery in three varieties of winter wheat (Triticum aestivum L.) known to differ in their level of drought tolerance. Under dehydration, both total respiration and salicylhydroxamic acid (SHAM)-resistant cytochrome (Cyt) pathway respiration by leaf segments decreased significantly compared with well-watered plants. This decrease was more pronounced in the drought-sensitive Sadovo and Prelom genotypes. In contrast, the KCN-resistant SHAM-sensitive alternative (Alt) pathway became increasingly engaged, and accounted for about 80% of the total respiration. In the drought-tolerant Katya variety, increased contribution of the Alt pathway was accompanied by a slight decrease in Cyt pathway activity. Respiration of isolated leaf mitochondria also showed a variety-specific drought response. Mitochondria from drought-sensitive genotypes had low oxidative phosphorylation efficiency after dehydration and rewatering, whereas the drought-tolerant Katya mitochondria showed higher phosphorylation rates. Morphometric analysis of leaf ultrastructure revealed that mitochondria occupied approximately 7% of the cell area in control plants. Under dehydration, in the drought-sensitive varieties this area was reduced to about 2.0%, whereas in Katya it was around 6.0%. The results are discussed in terms of possible mechanisms underlying variety-specific mitochondrial responses to dehydration.
Collapse
Affiliation(s)
- Valya Vassileva
- Acad M Popov Institute of Plant Physiology, Bulgarian Academy of Sciences, Academik Georgi Bonchev, 1113 Sofia, Bulgaria,
| | | | | | | |
Collapse
|
225
|
Lawlor DW. Musings about the effects of environment on photosynthesis. ANNALS OF BOTANY 2009; 103:543-9. [PMID: 19205084 PMCID: PMC2707351 DOI: 10.1093/aob/mcn256] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 11/19/2008] [Accepted: 11/25/2008] [Indexed: 05/18/2023]
Abstract
Understanding of how plants respond to their environment, particularly to extreme conditions to which their metabolisms are not adapted, is advancing on many fronts. An enormous matrix of plant and environmental factors exists from which mechanisms and assessments of quantitative responses must be developed if further progress in understanding how to improve plant (and particularly crop) production is to be achieved. This Special Issue contains assessments of different areas of plant sciences, ranging from genome to field, but with a focus on photosynthesis. Photosynthesis is central to all aspects of plant biology as the provider of energy and assimilates for growth and reproduction, yet how it is regulated by abiotic stresses, such as salinity and water deficits, and by biotic stresses, such as insect herbivory, is still unclear. Differences in responses of C3, C4 and CAM plants are still uncertain and mechanisms unclarified. Gene distribution and transfer between chloroplasts and nucleus on an evolutionary time scale may reflect conditions in the cell and organelles relevant to the short-term effects of water deficits on photosynthetic rate and the function of ATP synthase. Regulation of conditions in tissues and cells depends not only on chloroplast functions but on mitochondrial activity, and their interaction and differences in responses have implications for understanding many aspects of cell metabolism. Adaptation of plant structure, such as stomatal frequency and composition of the photosynthetic machinery by changes to gene expression controlled by transcription factors, or arising from regulation of gene expression by redox state, is of major importance with implications for adaptation in the short- and long-term. The incisive and thought-provoking reviews in this Special Issue offer analyses of experimental information and develop concepts within the complex matrix, relating photosynthesis and associated metabolism to the environment and addressing mechanisms critically with a balanced assessment of the current state of the science.
Collapse
Affiliation(s)
- David W Lawlor
- Plant Sciences, Centre for Crop Improvement, Rothamsted Research, Harpenden, Herts, UK.
| |
Collapse
|
226
|
Lawlor DW, Tezara W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. ANNALS OF BOTANY 2009; 103:561-79. [PMID: 19155221 PMCID: PMC2707350 DOI: 10.1093/aob/mcn244] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/27/2008] [Accepted: 11/10/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Water deficit (WD) decreases photosynthetic rate (A) via decreased stomatal conductance to CO(2) (g(s)) and photosynthetic metabolic potential (A(pot)). The relative importance of g(s) and A(pot), and how they are affected by WD, are reviewed with respect to light intensity and to experimental approaches. SCOPE AND CONCLUSIONS With progressive WD, A decreases as g(s) falls. Under low light during growth and WD, A is stimulated by elevated CO(2), showing that metabolism (A(pot)) is not impaired, but at high light A is not stimulated, showing inhibition. At a given intercellular CO(2) concentration (C(i)) A decreases, showing impaired metabolism (A(pot)). The C(i) and probably chloroplast CO(2) concentration (C(c)), decreases and then increases, together with the equilibrium CO(2) concentration, with greater WD. Estimation of C(c) and internal (mesophyll) conductance (g(i)) is considered uncertain. Photosystem activity is unaffected until very severe WD, maintaining electron (e(-)) transport (ET) and reductant content. Low A, together with photorespiration (PR), which is maintained or decreased, provides a smaller sink for e(-)(,) causing over-energization of energy transduction. Despite increased non-photochemical quenching (NPQ), excess energy and e(-) result in generation of reactive oxygen species (ROS). Evidence is considered that ROS damages ATP synthase so that ATP content decreases progressively with WD. Decreased ATP limits RuBP production by the Calvin cycle and thus A(pot). Rubisco activity is unlikely to determine A(pot). Sucrose synthesis is limited by lack of substrate and impaired enzyme regulation. With WD, PR decreases relative to light respiration (R(L)), and mitochondria consume reductant and synthesise ATP. With progressing WD at low A, R(L) increases C(i) and C(c). This review emphasises the effects of light intensity, considers techniques, and develops a qualitative model of photosynthetic metabolism under WD that explains many observations: testable hypotheses are suggested.
Collapse
Affiliation(s)
- David W Lawlor
- Plant Sciences, Centre for Crop Improvement, Rothamsted Research, Harpenden, Herts, UK.
| | | |
Collapse
|
227
|
Meir P, Brando PM, Nepstad D, Vasconcelos S, Costa ACL, Davidson E, Almeida S, Fisher RA, Sotta ED, Zarin D, Cardinot G. The effects of drought on Amazonian rain forests. AMAZONIA AND GLOBAL CHANGE 2009. [DOI: 10.1029/2009gm000882] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
228
|
Meir P, Metcalfe DB, Costa ACL, Fisher RA. The fate of assimilated carbon during drought: impacts on respiration in Amazon rainforests. Philos Trans R Soc Lond B Biol Sci 2008; 363:1849-55. [PMID: 18267913 PMCID: PMC2374890 DOI: 10.1098/rstb.2007.0021] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interannual variations in CO2 exchange across Amazonia, as deduced from atmospheric inversions, correlate with El Niño occurrence. They are thought to result from changes in net ecosystem exchange and fire incidence that are both related to drought intensity. Alterations to net ecosystem production (NEP) are caused by changes in gross primary production (GPP) and ecosystem respiration (Reco). Here, we analyse observations of the components of Reco (leaves, live and dead woody tissue, and soil) to provide first estimates of changes in Reco during short-term (seasonal to interannual) moisture limitation. Although photosynthesis declines if moisture availability is limiting, leaf dark respiration is generally maintained, potentially acclimating upwards in the longer term. If leaf area is lost, then short-term canopy-scale respiratory effluxes from wood and leaves are likely to decline. Using a moderate short-term drying scenario where soil moisture limitation leads to a loss of 0.5m2m-2yr-1 in leaf area index, we estimate a reduction in respiratory CO2 efflux from leaves and live woody tissue of 1.0 (+/-0.4) tCha-1yr-1. Necromass decomposition declines during drought, but mortality increases; the median mortality increase following a strong El Niño is 1.1% (n=46 tropical rainforest plots) and yields an estimated net short-term increase in necromass CO2 efflux of 0.13-0.18tCha-1yr-1. Soil respiration is strongly sensitive to moisture limitation over the short term, but not to associated temperature increases. This effect is underestimated in many models but can lead to estimated reductions in CO2 efflux of 2.0 (+/-0.5) tCha-1yr-1. Thus, the majority of short-term respiratory responses to drought point to a decline in Reco, an outcome that contradicts recent regional-scale modelling of NEP. NEP varies with both GPP and Reco but robust moisture response functions are clearly needed to improve quantification of the role of Reco in influencing regional-scale CO2 emissions from Amazonia.
Collapse
Affiliation(s)
- P Meir
- School of Geosciences, University of Edinburgh, Edinburgh EH8 9XP, UK.
| | | | | | | |
Collapse
|