201
|
Lerich A, Hillmer S, Langhans M, Scheuring D, van Bentum P, Robinson DG. ER Import Sites and Their Relationship to ER Exit Sites: A New Model for Bidirectional ER-Golgi Transport in Higher Plants. FRONTIERS IN PLANT SCIENCE 2012; 3:143. [PMID: 22876251 PMCID: PMC3410614 DOI: 10.3389/fpls.2012.00143] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/12/2012] [Indexed: 05/08/2023]
Abstract
Per definition, ER exit sites are COPII vesiculation events at the surface of the ER and in higher plants are only visualizable in the electron microscope through cryofixation techniques. Fluorescent COPII labeling moves with Golgi stacks and locates to the interface between the ER and the Golgi. In contrast, the domain of the ER where retrograde COPI vesicles fuse, i.e., ER import sites (ERIS), has remained unclear. To identify ERIS we have employed ER-located SNAREs and tethering factors. We screened several SNAREs (SYP81, the SYP7 family, and USE1) to find a SNARE whose overexpression did not disrupt ER-Golgi traffic and which gave rise to discrete fluorescent punctae when expressed with an XFP tag. Only the Qc-SNARE SYP72 fulfilled these criteria. When coexpressed with SYP72-YFP, both the type I-membrane protein RFP-p24δ5 and the luminal marker CFP-HDEL whose ER localization are due to an efficient COPI-mediated recycling, form nodules along the tubular ER network. SYP72-YFP colocalizes with these nodules which are not seen when RFP-p24δ5 or CFP-HDEL is expressed alone or when SYP72-YFP is coexpressed with a mutant form of RFP-p24δ5 that cannot exit the ER. SYP72-YFP does not colocalize with Golgi markers, except when the Golgi stacks are immobilized through actin depolymerization. Endogenous SYP7 SNAREs, also colocalize with immobilized COPII/Golgi. In contrast, XFP-tagged versions of plant homologs to TIP20 of the Dsl1 COPI-tethering factor complex, and the COPII-tethering factor p115 colocalize perfectly with Golgi stacks irrespective of the motile status. These data suggest that COPI vesicle fusion with the ER is restricted to periods when Golgi stacks are stationary, but that when moving both COPII and COPI vesicles are tethered and collect in the ER-Golgi interface. Thus, the Golgi stack and an associated domain of the ER thereby constitute a mobile secretory and recycling unit: a unique feature in eukaryotic cells.
Collapse
Affiliation(s)
- Alexander Lerich
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Stefan Hillmer
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Markus Langhans
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - David Scheuring
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Paulien van Bentum
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - David G. Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- *Correspondence: David G. Robinson, Department Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany. e-mail:
| |
Collapse
|
202
|
Eisenach C, Chen ZH, Grefen C, Blatt MR. The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K⁺ channel activity with vegetative growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:241-51. [PMID: 21914010 DOI: 10.1111/j.1365-313x.2011.04786.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The vesicle-trafficking protein SYP121 (SYR1/PEN1) was originally identified in association with ion channel control at the plasma membrane of stomatal guard cells, although stomata of the Arabidopsis syp121 loss-of-function mutant close normally in ABA and high Ca²⁺. We have now uncovered a set of stomatal phenotypes in the syp121 mutant that reduce CO₂ assimilation, slow vegetative growth and increase water use efficiency in the whole plant, conditional upon high light intensities and low relative humidity. Stomatal opening and the rise in stomatal transpiration of the mutant was delayed in the light and following Ca²⁺-evoked closure, consistent with a constitutive form of so-called programmed stomatal closure. Delayed reopening was observed in the syp121, but not in the syp122 mutant lacking the homologous gene product; the delay was rescued by complementation with wild-type SYP121 and was phenocopied in wild-type plants in the presence of the vesicle-trafficking inhibitor Brefeldin A. K⁺ channel current that normally mediates K⁺ uptake for stomatal opening was suppressed in the syp121 mutant and, following closure, its recovery was slowed compared to guard cells of wild-type plants. Evoked stomatal closure was accompanied by internalisation of GFP-tagged KAT1 K⁺ channels in both wild-type and syp121 mutant guard cells, but their subsequently recycling was slowed in the mutant. Our findings indicate that SYP121 facilitates stomatal reopening and they suggest that K⁺ channel traffic and recycling to the plasma membrane underpins the stress memory phenomenon of programmed closure in stomata. Additionally, they underline the significance of vesicle traffic for whole-plant water use and biomass production, tying SYP121 function to guard cell membrane transport and stomatal control.
Collapse
Affiliation(s)
- Cornelia Eisenach
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular Cell and Systems Biology, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
203
|
Powers-Fletcher MV, Jambunathan K, Brewer JL, Krishnan K, Feng X, Galande AK, Askew DS. Impact of the lectin chaperone calnexin on the stress response, virulence and proteolytic secretome of the fungal pathogen Aspergillus fumigatus. PLoS One 2011; 6:e28865. [PMID: 22163332 PMCID: PMC3233604 DOI: 10.1371/journal.pone.0028865] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/16/2011] [Indexed: 11/18/2022] Open
Abstract
Calnexin is a membrane-bound lectin chaperone in the endoplasmic reticulum (ER) that is part of a quality control system that promotes the accurate folding of glycoproteins entering the secretory pathway. We have previously shown that ER homeostasis is important for virulence of the human fungal pathogen Aspergillus fumigatus, but the contribution of calnexin has not been explored. Here, we determined the extent to which A. fumigatus relies on calnexin for growth under conditions of environmental stress and for virulence. The calnexin gene, clxA, was deleted from A. fumigatus and complemented by reconstitution with the wild type gene. Loss of clxA altered the proteolytic secretome of the fungus, but had no impact on growth rates in either minimal or complex media at 37°C. However, the ΔclxA mutant was growth impaired at temperatures above 42°C and was hypersensitive to acute ER stress caused by the reducing agent dithiothreitol. In contrast to wild type A. fumigatus, ΔclxA hyphae were unable to grow when transferred to starvation medium. In addition, depleting the medium of cations by chelation prevented ΔclxA from sustaining polarized hyphal growth, resulting in blunted hyphae with irregular morphology. Despite these abnormal stress responses, the ΔclxA mutant remained virulent in two immunologically distinct models of invasive aspergillosis. These findings demonstrate that calnexin functions are needed for growth under conditions of thermal, ER and nutrient stress, but are dispensable for surviving the stresses encountered in the host environment.
Collapse
Affiliation(s)
- Margaret V. Powers-Fletcher
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | | | - Jordan L. Brewer
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Karthik Krishnan
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Xizhi Feng
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Amit K. Galande
- SRI International, Harrisonburg, Virginia, United States of America
| | - David S. Askew
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
204
|
Zhang H, Zhang L, Gao B, Fan H, Jin J, Botella MA, Jiang L, Lin J. Golgi apparatus-localized synaptotagmin 2 is required for unconventional secretion in Arabidopsis. PLoS One 2011; 6:e26477. [PMID: 22140429 PMCID: PMC3225361 DOI: 10.1371/journal.pone.0026477] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Most secretory proteins contain signal peptides that direct their sorting to the ER and secreted via the conventional ER/Golgi transport pathway, while some signal-peptide-lacking proteins have been shown to export through ER/Golgi independent secretory pathways. Hygromycin B is an aminoglycoside antibiotic produced by Streptomyces hygroscopicus that is active against both prokaryotic and eukaryotic cells. The hygromycin phosphotransferase (HYG(R)) can phosphorylate and inactivate the hygromycin B, and has been widely used as a positive selective marker in the construction of transgenic plants. However, the localization and trafficking of HYG(R) in plant cells remain unknown. Synaptotagmins (SYTs) are involved in controlling vesicle endocytosis and exocytosis as calcium sensors in animal cells, while their functions in plant cells are largely unclear. METHODOLOGY/PRINCIPAL FINDINGS We found Arabidopsis synaptotagmin SYT2 was localized on the Golgi apparatus by immunofluorescence and immunogold labeling. Surprisingly, co-expression of SYT2 and HYG(R) caused hypersensitivity of the transgenic Arabidopsis plants to hygromycin B. HYG(R), which lacks a signal sequence, was present in the cytoplasm as well as in the extracellular space in HYG(R)-GFP transgenic Arabidopsis plants and its secretion is not sensitive to brefeldin A treatment, suggesting it is not secreted via the conventional secretory pathway. Furthermore, we found that HYG(R)-GFP was truncated at carboxyl terminus of HYG(R) shortly after its synthesis, and the cells deficient SYT2 failed to efficiently truncate HYG(R)-GFP,resulting in HYG(R)-GFP accumulated in prevacuoles/vacuoles, indicating that SYT2 was involved in HYG(R)-GFP trafficking and secretion. CONCLUSION/SIGNIFICANCE These findings reveal for the first time that SYT2 is localized on the Golgi apparatus and regulates HYG(R)-GFP secretion via the unconventional protein transport from the cytosol to the extracelluar matrix in plant cells.
Collapse
Affiliation(s)
- Haiyan Zhang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Liang Zhang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijng, China
| | - Bin Gao
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hai Fan
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jingbo Jin
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Miguel A. Botella
- Departamento de Biología Moleculary Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Liwen Jiang
- Department of Biology and Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinxing Lin
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
205
|
Mei Y, Jia WJ, Chu YJ, Xue HW. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Res 2011; 22:581-97. [PMID: 21894193 DOI: 10.1038/cr.2011.150] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes the synthesis of PI-4,5-bisphosphate (PtdIns(4,5)P(2)) by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring, and is involved in regulating multiple developmental processes and stress responses. We here report on the functional characterization of Arabidopsis PIP5K2, which is expressed during lateral root initiation and elongation, and whose expression is enhanced by exogenous auxin. The knockout mutant pip5k2 shows reduced lateral root formation, which could be recovered with exogenous auxin, and interestingly, delayed root gravity response that could not be recovered with exogenous auxin. Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2. In addition, analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P(2) reduction, which hence results in suppressed cycling of PIN proteins (PIN2 and 3), and delayed redistribution of PIN2 and auxin under gravistimulation in pip5k2 roots. On the contrary, PtdIns(4,5)P(2) significantly enhanced the vesicle trafficking and cycling of PIN proteins. These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response, and reveal a critical role of PIP5K2/PtdIns(4,5)P(2) in root development through regulation of PIN proteins, providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response, and new insights into the control of polar auxin transport.
Collapse
Affiliation(s)
- Yu Mei
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | |
Collapse
|
206
|
Madison SL, Nebenführ A. Live-cell imaging of dual-labeled Golgi stacks in tobacco BY-2 cells reveals similar behaviors for different cisternae during movement and brefeldin A treatment. MOLECULAR PLANT 2011; 4:896-908. [PMID: 21873295 DOI: 10.1093/mp/ssr067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In plant cells, the Golgi apparatus consists of numerous stacks that, in turn, are composed of several flattened cisternae with a clear cis-to-trans polarity. During normal functioning within living cells, this unusual organelle displays a wide range of dynamic behaviors such as whole stack motility, constant membrane flux through the cisternae, and Golgi enzyme recycling through the ER. In order to further investigate various aspects of Golgi stack dynamics and integrity, we co-expressed pairs of established Golgi markers in tobacco BY-2 cells to distinguish sub-compartments of the Golgi during monensin treatments, movement, and brefeldin A (BFA)-induced disassembly. A combination of cis and trans markers revealed that Golgi stacks remain intact as they move through the cytoplasm. The Golgi stack orientation during these movements showed a slight preference for the cis side moving ahead, but trans cisternae were also found at the leading edge. During BFA treatments, the different sub-compartments of about half of the observed stacks fused with the ER sequentially; however, no consistent order could be detected. In contrast, the ionophore monensin resulted in swelling of trans cisternae while medial and particularly cis cisternae were mostly unaffected. Our results thus demonstrate a remarkable equivalence of the different cisternae with respect to movement and BFA-induced fusion with the ER. In addition, we propose that a combination of dual-label fluorescence microscopy and drug treatments can provide a simple alternative approach to the determination of protein localization to specific Golgi sub-compartments.
Collapse
Affiliation(s)
- Stephanie L Madison
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| | | |
Collapse
|
207
|
Langhans M, Förster S, Helmchen G, Robinson DG. Differential effects of the brefeldin A analogue (6R)-hydroxy-BFA in tobacco and Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2949-57. [PMID: 21357769 DOI: 10.1093/jxb/err007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The effects of two brefeldin A (BFA) analogues (BFA lactam; 6(R)-hydroxy-BFA) on plant cells were tested. Although these two compounds elicited BFA-like effects in mammalian cells, the lactam analogue failed to elicit a response in plant cells. By contrast, while the 6(R)-hydroxy-BFA analogue gave rise to a classic BFA response in tobacco mesophyll protoplasts and true leaves of Arabidopsis (redistribution of Golgi enzymes into the ER), it failed to cause the formation of BFA-compartments in Arabidopsis root cells and cotyledonary leaves. Even when the GNL1-LM mutant of Arabidopsis, which has a cis-Golgi located BFA-sensitive ARF-GEF, was used, the 6(R)-hydroxy analogue failed to elicit a response at conventional BFA concentrations. Only at concentrations of over 200 μM did 6(R)-hydroxy-BFA elicit a BFA-like effect. These differences are interpreted in terms of the different properties of the respective TGN- (Arabidopsis roots) and cis-Golgi- (tobacco mesophyll) localized BFA-sensitive ARF-GEFs.
Collapse
Affiliation(s)
- Markus Langhans
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
208
|
Cai G, Faleri C, Del Casino C, Emons AMC, Cresti M. Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. PLANT PHYSIOLOGY 2011; 155:1169-90. [PMID: 21205616 PMCID: PMC3046577 DOI: 10.1104/pp.110.171371] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Accepted: 12/27/2010] [Indexed: 05/18/2023]
Abstract
Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tubes in relation to the dynamics of actin filaments, microtubules, and the endomembrane system using specific antibodies to highly conserved peptide sequences. The role of the cytoskeleton and membrane flow was investigated using specific inhibitors (latrunculin B, 2,3-butanedione monoxime, taxol, oryzalin, and brefeldin A). Both enzymes are associated with the plasma membrane, but cellulose synthase is present along the entire length of pollen tubes (with a higher concentration at the apex) while callose synthase is located in the apex and in distal regions. In longer pollen tubes, callose synthase accumulates consistently around callose plugs, indicating its involvement in plug synthesis. Actin filaments and endomembrane dynamics are critical for the distribution of callose synthase and cellulose synthase, showing that enzymes are transported through Golgi bodies and/or vesicles moving along actin filaments. Conversely, microtubules appear to be critical in the positioning of callose synthase in distal regions and around callose plugs. In contrast, cellulose synthases are only partially coaligned with cortical microtubules and unrelated to callose plugs. Callose synthase also comigrates with tubulin by Blue Native-polyacrylamide gel electrophoresis. Membrane sucrose synthase, which expectedly provides UDP-glucose to callose synthase and cellulose synthase, binds to actin filaments depending on sucrose concentration; its distribution is dependent on the actin cytoskeleton and the endomembrane system but not on microtubules.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento Scienze Ambientali G. Sarfatti, Università di Siena, 53100 Siena, Italy.
| | | | | | | | | |
Collapse
|
209
|
Isayenkov S, Isner JC, Maathuis FJ. Rice two-pore K+ channels are expressed in different types of vacuoles. THE PLANT CELL 2011; 23:756-68. [PMID: 21224427 PMCID: PMC3077780 DOI: 10.1105/tpc.110.081463] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 11/30/2010] [Accepted: 12/17/2010] [Indexed: 05/17/2023]
Abstract
Potassium (K+) is a major nutrient for plant growth and development. Vacuolar K+ ion channels of the two-pore K+ (TPK) family play an important role in maintaining K+ homeostasis. Several TPK channels were previously shown to be expressed in the lytic vacuole (LV) tonoplast. Plants also contain smaller protein storage vacuoles (PSVs) that contain membrane transporters. However, the mechanisms that define how membrane proteins reach different vacuolar destinations are largely unknown. The Oryza sativa genome encodes two TPK isoforms (TPKa and TPKb) that have very similar sequences and are ubiquitously expressed. The electrophysiological properties of both TPKs were comparable, showing inward rectification and voltage independence. In spite of high levels of similarity in sequence and transport properties, the cellular localization of TPKa and TPKb channels was different, with TPKa localization predominantly at the large LV and TPKb primarily in smaller PSV-type compartments. Trafficking of TPKa was sensitive to brefeldin A, while that of TPKb was not. The use of TPKa:TPKb chimeras showed that C-terminal domains are crucial for the differential targeting of TPKa and TPKb. Site-directed mutagenesis of C-terminal residues that were different between TPKa and TPKb identified three amino acids that are important in determining ultimate vacuolar destination.
Collapse
Affiliation(s)
| | | | - Frans J.M. Maathuis
- University of York, Biology Department/Area 9, York YO10 5DD, United Kingdom
| |
Collapse
|
210
|
Bassil E, Ohto MA, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E. The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. THE PLANT CELL 2011; 23:224-39. [PMID: 21278129 PMCID: PMC3051250 DOI: 10.1105/tpc.110.079426] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/20/2010] [Accepted: 01/03/2011] [Indexed: 05/18/2023]
Abstract
Intracellular Na(+)/H(+) antiporters (NHXs) play important roles in cellular pH and Na(+) and K(+) homeostasis in all eukaryotes. Based on sequence similarity, the six intracellular Arabidopsis thaliana members are divided into two groups. Unlike the vacuolar NHX1-4, NHX5 and NHX6 are believed to be endosomal; however, little data exist to support either their function or localization. Using reverse genetics, we show that whereas single knockouts nhx5 or nhx6 did not differ from the wild type, the double knockout nhx5 nhx6 showed reduced growth, with smaller and fewer cells and increased sensitivity to salinity. Reduced growth of nhx5 nhx6 was due to slowed cell expansion. Transcriptome analysis indicated that nhx5, nhx6, and the wild type had similar gene expression profiles, whereas transcripts related to vesicular trafficking and abiotic stress were enriched in nhx5 nhx6. We show that unlike other intracellular NHX proteins, NHX5 and NHX6 are associated with punctate, motile cytosolic vesicles, sensitive to Brefeldin A, that colocalize to known Golgi and trans-Golgi network markers. We provide data to show that vacuolar trafficking is affected in nhx5 nhx6. Possible involvements of NHX5 and NHX6 in maintaining organelle pH and ion homeostasis with implications in endosomal sorting and cellular stress responses are discussed.
Collapse
Affiliation(s)
- Elias Bassil
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Masa-aki Ohto
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Tomoya Esumi
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Zhu Zhu
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Olivier Cagnac
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Mark Belmonte
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Zvi Peleg
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Toshio Yamaguchi
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
211
|
Takác T, Pechan T, Richter H, Müller J, Eck C, Böhm N, Obert B, Ren H, Niehaus K, Samaj J. Proteomics on brefeldin A-treated Arabidopsis roots reveals profilin 2 as a new protein involved in the cross-talk between vesicular trafficking and the actin cytoskeleton. J Proteome Res 2010; 10:488-501. [PMID: 21090759 DOI: 10.1021/pr100690f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growing importance of vesicular trafficking and cytoskeleton dynamic reorganization during plant development requires the exploitation of novel experimental approaches. Several genetic and cell biological studies have used diverse pharmaceutical drugs that inhibit vesicular trafficking and secretion to study these phenomena. Here, proteomic and cell biology approaches were applied to study effects of brefeldin A (BFA), an inhibitor of vesicle recycling and secretion, in Arabidopsis roots. The main aim of this study was to obtain an overview of proteins affected by BFA, but especially to identify new proteins involved in the vesicular trafficking and its cross-talk to the actin cytoskeleton. The results showed that BFA altered vesicular trafficking and caused the formation of BFA-compartments which was accompanied by differential expression of several proteins in root cells. Some of the BFA-up-regulated proteins belong to the class of the vesicular trafficking proteins, such as V-ATPase and reversibly glycosylated polypeptide, while others, such as profilin 2 and elongation factor 1 alpha, are rather involved in the remodeling of the actin cytoskeleton. Upregulation of profilin 2 by BFA was verified by immunoblot and live imaging at subcellular level. The latter approach also revealed that profilin 2 accumulated in BFA-compartments which was accompanied by remodeling of the actin cytoskeleton in BFA-treated root cells. Thus, profilin 2 seems to be involved in the cross-talk between vesicular trafficking and the actin cytoskeleton, in a BFA-dependent manner.
Collapse
Affiliation(s)
- Tomás Takác
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Department of Cell Biology, Palacký University, Olomouc, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Melo RCN, Dvorak AM, Weller PF. Contributions of electron microscopy to understand secretion of immune mediators by human eosinophils. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2010; 16:653-60. [PMID: 20875166 PMCID: PMC3420811 DOI: 10.1017/s1431927610093864] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Mechanisms governing secretion of proteins underlie the biologic activities and functions of human eosinophils, leukocytes of the innate immune system, involved in allergic, inflammatory, and immunoregulatory responses. In response to varied stimuli, eosinophils are recruited from the circulation into inflammatory foci, where they modulate immune responses through the release of granule-derived products. Transmission electron microscopy (TEM) is the only technique that can clearly identify and distinguish between different modes of cell secretion. In this review, we highlight the advances in understanding mechanisms of eosinophil secretion, based on TEM findings, that have been made over the past years and that have provided unprecedented insights into the functional capabilities of these cells.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, MG, Brazil.
| | | | | |
Collapse
|
213
|
Melo RC, Weller PF. Piecemeal degranulation in human eosinophils: a distinct secretion mechanism underlying inflammatory responses. Histol Histopathol 2010; 25:1341-54. [PMID: 20712018 PMCID: PMC3427618 DOI: 10.14670/hh-25.1341] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Secretion is a fundamental cell process underlying different physiological and pathological events. In cells from the human immune system such as eosinophils, secretion of mediators generally occurs by means of piecemeal degranulation, an unconventional secretory pathway characterized by vesicular transport of small packets of materials from the cytoplasmic secretory granules to the cell surface. During piecemeal degranulation in eosinophils, a distinct transport vesicle system, which includes large, pleiomorphic vesiculo-tubular carriers is mobilized and enables regulated release of granule-stored proteins such as cytokines and major basic protein. Piecemeal degranulation underlies distinct functions of eosinophils as effector and immunoregulatory cells. This review focuses on the structural and functional advances that have been made over the last years concerning the intracellular trafficking and secretion of eosinophil proteins by piecemeal degranulation during inflammatory responses.
Collapse
Affiliation(s)
- Rossana C.N. Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, MG, Brazil
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter F. Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
214
|
García-Román J, Ibarra-Sánchez A, Lamas M, González Espinosa C. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells. Biochem Biophys Res Commun 2010; 401:262-7. [PMID: 20850416 DOI: 10.1016/j.bbrc.2010.09.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/10/2010] [Indexed: 02/08/2023]
Abstract
Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl2) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl2 promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl2-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl2-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl2 in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.
Collapse
Affiliation(s)
- Jonathan García-Román
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav, IPN), Mexico
| | | | | | | |
Collapse
|
215
|
Migration-associated secretion of melanoma inhibitory activity at the cell rear is supported by KCa3.1 potassium channels. Cell Res 2010; 20:1224-38. [DOI: 10.1038/cr.2010.121] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
216
|
Jiang H, Jans R, Xu W, Rorke EA, Lin CY, Chen YW, Fang S, Zhong Y, Eckert RL. Type I transglutaminase accumulation in the endoplasmic reticulum may be an underlying cause of autosomal recessive congenital ichthyosis. J Biol Chem 2010; 285:31634-46. [PMID: 20663883 DOI: 10.1074/jbc.m110.128645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Type I transglutaminase (TG1) is an enzyme that is responsible for assembly of the keratinocyte cornified envelope. Although TG1 mutation is an underlying cause of autosomal recessive congenital ichthyosis, a debilitating skin disease, the pathogenic mechanism is not completely understood. In the present study we show that TG1 is an endoplasmic reticulum (ER) membrane-associated protein that is trafficked through the ER for ultimate delivery to the plasma membrane. Mutation severely attenuates this processing and a catalytically inactive point mutant, TG1-FLAG(C377A), accumulates in the endoplasmic reticulum and in aggresome-like structures where it is ubiquitinylated. This accumulation results from protein misfolding, as treatment with a chemical chaperone permits it to exit the endoplasmic reticulum and travel to the plasma membrane. ER accumulation is also observed for ichthyosis-associated TG1 mutants. Our findings suggest that misfolding of TG1 mutants leads to ubiquitinylation and accumulation in the ER and aggresomes, and that abnormal intracellular processing of TG1 mutants may be an underlying cause of ichthyosis.
Collapse
Affiliation(s)
- Haibing Jiang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Rahman A, Takahashi M, Shibasaki K, Wu S, Inaba T, Tsurumi S, Baskin TI. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. THE PLANT CELL 2010; 22:1762-76. [PMID: 20562236 PMCID: PMC2910985 DOI: 10.1105/tpc.110.075317] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/14/2010] [Accepted: 05/27/2010] [Indexed: 05/20/2023]
Abstract
In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response.
Collapse
Affiliation(s)
- Abidur Rahman
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan.
| | | | | | | | | | | | | |
Collapse
|
218
|
Hummel E, Osterrieder A, Robinson DG, Hawes C. Inhibition of Golgi function causes plastid starch accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2603-14. [PMID: 20423939 PMCID: PMC2882258 DOI: 10.1093/jxb/erq091] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/15/2010] [Accepted: 03/19/2010] [Indexed: 05/08/2023]
Abstract
Little is known about possible interactions between chloroplasts and the Golgi apparatus, although there is increasing evidence for a direct Golgi to chloroplast transport pathway targeting proteins to their destinations within the membranes and stroma of plastids. Here data are presented showing that a blockage of secretion results in a significant increase of starch within plastids. Golgi disassembly promoted either by the secretory inhibitor brefeldin A or through an inducible Sar1-GTP system leads to dramatic starch accumulation in plastids, thus providing evidence for a direct interaction between plastids and Golgi activity. The possibility that starch accumulation is due either to elevated levels of cytosolic sugars because of loss of secretory Golgi activity or even to a blockage of amylase transport from the Golgi to the chloroplast is discussed.
Collapse
Affiliation(s)
- Eric Hummel
- School of Life Sciences, Oxford Brookes University, Oxford, UK.
| | | | | | | |
Collapse
|
219
|
Chen H, Xiong L. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development. J Biol Chem 2010; 285:24238-47. [PMID: 20516080 DOI: 10.1074/jbc.m110.123661] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
myo-Inositol-1-phosphate synthase is a conserved enzyme that catalyzes the first committed and rate-limiting step in inositol biosynthesis. Despite its wide occurrence in all eukaryotes, the role of myo-inositol-1-phosphate synthase and de novo inositol biosynthesis in cell signaling and organism development has been unclear. In this study, we isolated loss-of-function mutants in the Arabidopsis MIPS1 gene from different ecotypes. It was found that all null mips1 mutants are defective in embryogenesis, cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower rates of endocytosis. Treatment with brefeldin A induces slower PIN2 protein aggregation in mips1, indicating altered PIN2 trafficking. Our results demonstrate that MIPS1 is critical for maintaining phosphatidylinositol levels and affects pattern formation in plants likely through regulation of auxin distribution.
Collapse
Affiliation(s)
- Hao Chen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | |
Collapse
|
220
|
Eshaq RS, Stahl LD, Stone R, Smith SS, Robinson LC, Leidenheimer NJ. GABA acts as a ligand chaperone in the early secretory pathway to promote cell surface expression of GABAA receptors. Brain Res 2010; 1346:1-13. [PMID: 20580636 DOI: 10.1016/j.brainres.2010.05.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 05/06/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
Abstract
GABA (gamma-aminobutyric acid) is the primary inhibitory neurotransmitter in brain. The fast inhibitory effect of GABA is mediated through the GABA(A) receptor, a postsynaptic ligand-gated chloride channel. We propose that GABA can act as a ligand chaperone in the early secretory pathway to facilitate GABA(A) receptor cell surface expression. Forty-two hours of GABA treatment increased the surface expression of recombinant receptors expressed in HEK 293 cells, an effect accompanied by an increase in GABA-gated chloride currents. In time-course experiments, a 1h GABA exposure, followed by a 5h incubation in GABA-free medium, was sufficient to increase receptor surface expression. A shorter GABA exposure could be used in HEK 293 cells stably transfected with the GABA transporter GAT-1. In rGAT-1HEK 293 cells, the GABA effect was blocked by the GAT-1 inhibitor NO-711, indicating that GABA was acting intracellularly. The effect of GABA was prevented by brefeldin A (BFA), an inhibitor of early secretory pathway trafficking. Coexpression of GABA(A) receptors with the GABA synthetic enzyme glutamic acid decarboxylase 67 (GAD67) also resulted in an increase in receptor surface levels. GABA treatment failed to promote the surface expression of GABA binding site mutant receptors, which themselves were poorly expressed at the surface. Consistent with an intracellular action of GABA, we show that GABA does not act by stabilizing surface receptors. Furthermore, GABA treatment rescued the surface expression of a receptor construct that was retained within the secretory pathway. Lastly, the lipophilic competitive antagonist (+)bicuculline promoted receptor surface expression, including the rescue of a secretory pathway-retained receptor. Our results indicate that a neurotransmitter can act as a ligand chaperone in the early secretory pathway to regulate the surface expression of its receptor. This effect appears to rely on binding site occupancy, rather than agonist-induced structural changes, since chaperoning is observed with both an agonist and a competitive antagonist.
Collapse
Affiliation(s)
- Randa S Eshaq
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | | | |
Collapse
|
221
|
Piloto S, Schilling TF. Ovo1 links Wnt signaling with N-cadherin localization during neural crest migration. Development 2010; 137:1981-90. [PMID: 20463035 DOI: 10.1242/dev.048439] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A fundamental issue in cell biology is how migratory cell behaviors are controlled by dynamically regulated cell adhesion. Vertebrate neural crest (NC) cells rapidly alter cadherin expression and localization at the cell surface during migration. Secreted Wnts induce some of these changes in NC adhesion and also promote specification of NC-derived pigment cells. Here, we show that the zebrafish transcription factor Ovo1 is a Wnt target gene that controls migration of pigment precursors by regulating the intracellular movements of N-cadherin (Ncad). Ovo1 genetically interacts with Ncad and its depletion causes Ncad to accumulate inside cells. Ovo1-deficient embryos strongly upregulate factors involved in intracellular trafficking, including several rab GTPases, known to modulate cellular localization of cadherins. Surprisingly, NC cells express high levels of many of these rab genes in the early embryo, chemical inhibitors of Rab functions rescue NC development in Ovo1-deficient embryos and overexpression of a Rab-interacting protein leads to similar defects in NC migration. These results suggest that Ovo proteins link Wnt signaling to intracellular trafficking pathways that localize Ncad in NC cells and allow them to migrate. Similar processes probably occur in other cell types in which Wnt signaling promotes migration.
Collapse
Affiliation(s)
- Sarah Piloto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | | |
Collapse
|
222
|
Zhang Y, He J, Lee D, McCormick S. Interdependence of endomembrane trafficking and actin dynamics during polarized growth of Arabidopsis pollen tubes. PLANT PHYSIOLOGY 2010; 152:2200-10. [PMID: 20181757 PMCID: PMC2850033 DOI: 10.1104/pp.109.142349] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
During polarized growth of pollen tubes, endomembrane trafficking and actin polymerization are two critical processes that establish membrane/wall homeostasis and maintain growth polarity. Fine-tuned interactions between these two processes are therefore necessary but poorly understood. To better understand such cross talk in the model plant Arabidopsis (Arabidopsis thaliana), we first established optimized concentrations of drugs that interfere with either endomembrane trafficking or the actin cytoskeleton, then examined pollen tube growth using fluorescent protein markers that label transport vesicles, endosomes, or the actin cytoskeleton. Both brefeldin A (BFA) and wortmannin disturbed the motility and structural integrity of ARA7- but not ARA6-labeled endosomes, suggesting heterogeneity of the endosomal populations. Disrupting endomembrane trafficking by BFA or wortmannin perturbed actin polymerization at the apical region but not in the longitudinal actin cables in the shank. The interference of BFA/wortmannin with actin polymerization was progressive rather than rapid, suggesting an indirect effect, possibly due to perturbed endomembrane trafficking of certain membrane-localized signaling proteins. Both the actin depolymerization drug latrunculin B and the actin stabilization drug jasplakinolide rapidly disrupted transport of secretory vesicles, but each drug caused distinct responses on different endosomal populations labeled by ARA6 or ARA7, indicating that a dynamic actin cytoskeleton was critical for some steps in endomembrane trafficking. Our results provide evidence of cross talk between endomembrane trafficking and the actin cytoskeleton in pollen tubes.
Collapse
|
223
|
Ben-Nissan G, Yang Y, Lee JY. Partitioning of casein kinase 1-like 6 to late endosome-like vesicles. PROTOPLASMA 2010; 240:45-56. [PMID: 19941015 DOI: 10.1007/s00709-009-0087-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 10/29/2009] [Indexed: 05/28/2023]
Abstract
Members of the casein kinase 1 family are highly conserved protein Ser/Thr kinases found in all eukaryotes. They are involved in various cellular, physiological, and developmental processes, but the role of this family of kinase in plants is not well known. By localization studies employing fluorescent live cell imaging and biochemical membrane fractionation, here we showed that Arabidopsis casein kinase-like 6 (CKL6) localizes to motile vesicle-like structures that cofractionate with prevacuolar markers. They were found both in the cytoplasm and at the cell periphery and were motile within the cell. Apparently, this motility was dependent on actin filaments and CKL6-positive vesicles partially colocalized with a late endosomal compartment. However, CKL6-positive structures were not sensitive to brefeldin A nor wortmannin treatment, suggesting that they may belong to a novel compartment. Association of CKL6-positive structures with the cell periphery at the cellular junctions was detected after separation of the protoplasts by plasmolysis. Collectively, these data led us to propose that CKL6 is associated with late endosomal-like compartments that are not fully characterized and may play a role in cellular processes important for regulating components in membrane trafficking.
Collapse
Affiliation(s)
- Gili Ben-Nissan
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | | | | |
Collapse
|
224
|
Chichkova NV, Shaw J, Galiullina RA, Drury GE, Tuzhikov AI, Kim SH, Kalkum M, Hong TB, Gorshkova EN, Torrance L, Vartapetian AB, Taliansky M. Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. EMBO J 2010; 29:1149-61. [PMID: 20111004 PMCID: PMC2845272 DOI: 10.1038/emboj.2010.1] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 01/04/2010] [Indexed: 01/28/2023] Open
Abstract
Caspases are cysteine-dependent proteases and are important components of animal apoptosis. They introduce specific breaks after aspartate residues in a number of cellular proteins mediating programmed cell death (PCD). Plants encode only distant homologues of caspases, the metacaspases that are involved in PCD, but do not possess caspase-specific proteolytic activity. Nevertheless, plants do display caspase-like activities indicating that enzymes structurally distinct from classical caspases may operate as caspase-like proteases. Here, we report the identification and characterisation of a novel PCD-related subtilisin-like protease from tobacco and rice named phytaspase (plant aspartate-specific protease) that possesses caspase specificity distinct from that of other known caspase-like proteases. We provide evidence that phytaspase is synthesised as a proenzyme, which is autocatalytically processed to generate the mature enzyme. Overexpression and silencing of the phytaspase gene showed that phytaspase is essential for PCD-related responses to tobacco mosaic virus and abiotic stresses. Phytaspase is constitutively secreted into the apoplast before PCD, but unexpectedly is re-imported into the cell during PCD providing insights into how phytaspase operates.
Collapse
Affiliation(s)
- Nina V Chichkova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Jane Shaw
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | - Raisa A Galiullina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Georgina E Drury
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | - Alexander I Tuzhikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Sang Hyon Kim
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee, UK
- Division of Biosciences and Bioinformatics, Myongji University, Yongin, Kyeongki-do, Korea
| | - Markus Kalkum
- Department of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Teresa B Hong
- Department of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Elena N Gorshkova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Lesley Torrance
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | - Andrey B Vartapetian
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Michael Taliansky
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee, UK
| |
Collapse
|
225
|
Pedmale UV, Celaya RB, Liscum E. Phototropism: mechanism and outcomes. THE ARABIDOPSIS BOOK 2010; 8:e0125. [PMID: 22303252 PMCID: PMC3244944 DOI: 10.1199/tab.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants have evolved a wide variety of responses that allow them to adapt to the variable environmental conditions in which they find themselves growing. One such response is the phototropic response - the bending of a plant organ toward (stems and leaves) or away from (roots) a directional blue light source. Phototropism is one of several photoresponses of plants that afford mechanisms to alter their growth and development to changes in light intensity, quality and direction. Over recent decades much has been learned about the genetic, molecular and cell biological components involved in sensing and responding to phototropic stimuli. Many of these advances have been made through the utilization of Arabidopsis as a model for phototropic studies. Here we discuss such advances, as well as studies in other plant species where appropriate to the discussion of work in Arabidopsis.
Collapse
Affiliation(s)
- Ullas V. Pedmale
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - R. Brandon Celaya
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Department of Molecular, Cellular and Developmental Biology, University of California — Los Angeles, 3206 Life Science Bldg, 621 Charles E Young Dr, Los Angeles, CA 90095
| | - Emmanuel Liscum
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Address correspondence to
| |
Collapse
|
226
|
Kost B. Regulatory and Cellular Functions of Plant RhoGAPs and RhoGDIs. INTEGRATED G PROTEINS SIGNALING IN PLANTS 2010. [DOI: 10.1007/978-3-642-03524-1_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
227
|
Zhou L, Cheung MY, Zhang Q, Lei CL, Zhang SH, Sun SSM, Lam HM. A novel simple extracellular leucine-rich repeat (eLRR) domain protein from rice (OsLRR1) enters the endosomal pathway and interacts with the hypersensitive-induced reaction protein 1 (OsHIR1). PLANT, CELL & ENVIRONMENT 2009; 32:1804-20. [PMID: 19712067 DOI: 10.1111/j.1365-3040.2009.02039.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Receptor-like protein kinases (RLKs) containing an extracellular leucine-rich repeat (eLRR) domain, a transmembrane domain and a cytoplasmic kinase domain play important roles in plant disease resistance. Simple eLRR domain proteins structurally resembling the extracellular portion of the RLKs may also participate in signalling transduction and plant defence response. Yet the molecular mechanisms and subcellular localization in regulating plant disease resistance of these simple eLRR domain proteins are still largely unclear. We provided the first experimental evidence to demonstrate the subcellular localization and trafficking of a novel simple eLRR domain protein (OsLRR1) in the endosomal pathway, using both confocal and electron microscopy. Yeast two-hybrid and in vitro pull-down assays show that OsLRR1 interacts with the rice hypersensitive-induced response protein 1 (OsHIR1) which is localized on plasma membrane. The interaction between LRR1 and HIR1 homologs was shown to be highly conserved among different plant species, suggesting a close functional relationship between the two proteins. The function of OsLRR1 in plant defence response was examined by gain-of-function tests using transgenic Arabidopsis thaliana. The protective effects of OsLRR1 against bacterial pathogen infection were shown by the alleviating of disease symptoms, lowering of pathogen titres and higher expression of defence marker genes.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
228
|
Baluska F, Mancuso S, Volkmann D, Barlow PW. The 'root-brain' hypothesis of Charles and Francis Darwin: Revival after more than 125 years. PLANT SIGNALING & BEHAVIOR 2009; 4:1121-7. [PMID: 20514226 PMCID: PMC2819436 DOI: 10.4161/psb.4.12.10574] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 05/07/2023]
Abstract
This year celebrates the 200(th) aniversary of the birth of Charles Darwin, best known for his theory of evolution summarized in On the Origin of Species. Less well known is that, in the second half of his life, Darwin's major scientific focus turned towards plants. He wrote several books on plants, the next-to-last of which, The Power of Movement of Plants, published together with his son Francis, opened plants to a new view. Here we amplify the final sentence of this book in which the Darwins proposed that: "It is hardly an exaggeration to say that the tip of the radicle thus endowed [with sensitivity] and having the power of directing the movements of the adjoining parts, acts like the brain of one of the lower animals; the brain being seated within the anterior end of the body, receiving impressions from the sense-organs, and directing the several movements." This sentence conveys two important messages: first, that the root apex may be considered to be a 'brain-like' organ endowed with a sensitivity which controls its navigation through soil; second, that the root apex represents the anterior end of the plant body. In this article, we discuss both these statements.
Collapse
|
229
|
Lam SK, Cai Y, Tse YC, Wang J, Law AHY, Pimpl P, Chan HYE, Xia J, Jiang L. BFA-induced compartments from the Golgi apparatus and trans-Golgi network/early endosome are distinct in plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:865-81. [PMID: 19709389 DOI: 10.1111/j.1365-313x.2009.04007.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Brefeldin A (BFA) is a useful tool for studying protein trafficking and identifying organelles in the plant secretory and endocytic pathways. At low concentrations (5-10 microg ml(-1)), BFA caused both the Golgi apparatus and trans-Golgi network (TGN), an early endosome (EE) equivalent in plant cells, to form visible aggregates in transgenic tobacco BY-2 cells. Here we show that these BFA-induced aggregates from the Golgi apparatus and TGN are morphologically and functionally distinct in plant cells. Confocal immunofluorescent and immunogold electron microscope (EM) studies demonstrated that BFA-induced Golgi- and TGN-derived aggregates are physically distinct from each other. In addition, the internalized endosomal marker FM4-64 co-localized with the TGN-derived aggregates but not with the Golgi aggregates. In the presence of the endocytosis inhibitor tyrphostin A23, which acts in a dose- and time-dependent manner, SCAMP1 (secretory carrier membrane protein 1) and FM4-64 are mostly excluded from the SYP61-positive BFA-induced TGN aggregates, indicating that homotypic fusion of the TGN rather than de novo endocytic trafficking is important for the formation of TGN/EE-derived BFA-induced aggregates. As the TGN also serves as an EE, continuously receiving materials from the plasma membrane, our data support the notion that the secretory Golgi organelle is distinct from the endocytic TGN/EE in terms of its response to BFA treatment in plant cells. Thus, the Golgi and TGN are probably functionally distinct organelles in plants.
Collapse
Affiliation(s)
- Sheung Kwan Lam
- Department of Biology and Molecular Biotechnology Program, Centre for Cell and Developmental Biology, State (China) Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Ribeiro D, Goldbach R, Kormelink R. Requirements for ER-arrest and sequential exit to the golgi of Tomato spotted wilt virus glycoproteins. Traffic 2009; 10:664-72. [PMID: 19302268 DOI: 10.1111/j.1600-0854.2009.00900.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The envelope glycoproteins Gn and Gc are major determinants in the assembly of Tomato spotted wilt virus (TSWV) particles at the Golgi complex. In this article, the ER-arrest of singly expressed Gc and the transport of both glycoproteins to the Golgi upon coexpression have been analyzed.While preliminary results suggest that the arrest of Gc at the ER (endoplasmic reticulum) did not appear to result from improper folding, transient expression of chimeric Gc, in which the transmembrane domain (TMD) and/or cytoplasmic tail (CT) were swapped for those from Gn, showed that the TMD of Gn was sufficient to allow ER exit and transport to the Golgi. Expression of both glycoproteins in the presence of overexpressed Sar1p specific guanosine nucleotide exchange factor Sec12p, resulted in ER-retention demonstrating that the viral glycoproteins are transported to the Golgi in a COPII (coat protein II)-dependent manner. Inhibition of ER Golgi transport by brefeldin A (BFA) had a similar effect on the localization of Gn. However, inhibition of ER (endoplasmic reticulum) to Golgi transport of coexpressed Gc and Gn by overexpression of Sec12p or by BFA revealed distinct localization patterns, i.e. diffuse ER localization versus concentration at specific spots.
Collapse
Affiliation(s)
- Daniela Ribeiro
- Wageningen University, Laboratory of Virology, 6709 PD Wageningen, The Netherlands
| | | | | |
Collapse
|
231
|
The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth. ACTA ACUST UNITED AC 2009; 23:87-93. [DOI: 10.1007/s00497-009-0118-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/22/2009] [Indexed: 01/01/2023]
|
232
|
Cheng FY, Zamski E, Guo WW, Pharr DM, Williamson JD. Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase: a possible defense against mannitol-secreting fungal pathogens. PLANTA 2009; 230:1093-103. [PMID: 19727802 DOI: 10.1007/s00425-009-1006-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/06/2009] [Indexed: 05/28/2023]
Abstract
The sugar alcohol mannitol is an important carbohydrate with well-documented roles in both metabolism and osmoprotection in many plants and fungi. In addition to these traditionally recognized roles, mannitol is reported to be an antioxidant and as such may play a role in host-pathogen interactions. Current research suggests that pathogenic fungi can secrete mannitol into the apoplast to suppress reactive oxygen-mediated host defenses. Immunoelectron microscopy, immunoblot, and biochemical data reported here show that the normally symplastic plant enzyme, mannitol dehydrogenase (MTD), is secreted into the apoplast after treatment with the endogenous inducer of plant defense responses salicylic acid (SA). In contrast, a cytoplasmic marker protein, hexokinase, remained cytoplasmic after SA-treatment. Secreted MTD retained activity after export to the apoplast. Given that MTD converts mannitol to the sugar mannose, MTD secretion may be an important component of plant defense against mannitol-secreting fungal pathogens such as Alternaria. After SA treatment, MTD was not detected in the Golgi apparatus, and its SA-induced secretion was resistant to brefeldin A, an inhibitor of Golgi-mediated protein transport. Together with the absence of a known extracellular targeting sequence on the MTD protein, these data suggest that a plant's response to pathogen challenge may include secretion of selected defensive proteins by as yet uncharacterized, non-Golgi mechanisms.
Collapse
Affiliation(s)
- Fang-yi Cheng
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609, USA
| | | | | | | | | |
Collapse
|
233
|
Cheng FY, Zamski E, Guo WW, Pharr DM, Williamson JD. Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase: a possible defense against mannitol-secreting fungal pathogens. PLANTA 2009; 230:1093-1103. [PMID: 19727802 DOI: 10.1007/s00425-009-1006-1003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/06/2009] [Indexed: 05/28/2023]
Abstract
The sugar alcohol mannitol is an important carbohydrate with well-documented roles in both metabolism and osmoprotection in many plants and fungi. In addition to these traditionally recognized roles, mannitol is reported to be an antioxidant and as such may play a role in host-pathogen interactions. Current research suggests that pathogenic fungi can secrete mannitol into the apoplast to suppress reactive oxygen-mediated host defenses. Immunoelectron microscopy, immunoblot, and biochemical data reported here show that the normally symplastic plant enzyme, mannitol dehydrogenase (MTD), is secreted into the apoplast after treatment with the endogenous inducer of plant defense responses salicylic acid (SA). In contrast, a cytoplasmic marker protein, hexokinase, remained cytoplasmic after SA-treatment. Secreted MTD retained activity after export to the apoplast. Given that MTD converts mannitol to the sugar mannose, MTD secretion may be an important component of plant defense against mannitol-secreting fungal pathogens such as Alternaria. After SA treatment, MTD was not detected in the Golgi apparatus, and its SA-induced secretion was resistant to brefeldin A, an inhibitor of Golgi-mediated protein transport. Together with the absence of a known extracellular targeting sequence on the MTD protein, these data suggest that a plant's response to pathogen challenge may include secretion of selected defensive proteins by as yet uncharacterized, non-Golgi mechanisms.
Collapse
Affiliation(s)
- Fang-yi Cheng
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609, USA
| | | | | | | | | |
Collapse
|
234
|
Osterrieder A, Hummel E, Carvalho CM, Hawes C. Golgi membrane dynamics after induction of a dominant-negative mutant Sar1 GTPase in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2009; 61:405-22. [PMID: 19861656 DOI: 10.1093/jxb/erp315] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An inducible system has been established in Nicotiana tabacum plants allowing controlled expression of Sar1-GTP and thus the investigation of protein dynamics after inhibition of endoplasmic reticulum (ER) to Golgi transport. Complete Golgi disassembly and redistribution of Golgi markers into the ER was observed within 18-24h after induction. At the ultrastructural level Sar1-GTP expression led to a decrease in Golgi stack size followed by Golgi fragmentation and accumulation of vesicle remnants. Induction of Sar1-GTP resulted in redistribution of the green fluorescent protein (GFP)-tagged Arabidopsis golgins AtCASP and GC1 (golgin candidate 1, an Arabidopsis golgin 84 isoform) into the ER or cytoplasm, respectively. Additionally, both fusion proteins were observed in punctate structures, which co-located with a yellow fluorescent protein (YFP)-tagged version of Sar1-GTP. The Sar1-GTP-inducible system is compared with constitutive Sar1-GTP expression and brefeldin A treatment, and its potential for the study of the composition of ER exit sites and early cis-Golgi structures is discussed.
Collapse
Affiliation(s)
- Anne Osterrieder
- School of Life Sciences, Oxford Brookes University, Headington, Oxford, UK
| | | | | | | |
Collapse
|
235
|
Kondylis V, Rabouille C. The Golgi apparatus: lessons from Drosophila. FEBS Lett 2009; 583:3827-38. [PMID: 19800333 DOI: 10.1016/j.febslet.2009.09.048] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/10/2009] [Accepted: 09/26/2009] [Indexed: 11/19/2022]
Abstract
Historically, Drosophila has been a model organism for studying molecular and developmental biology leading to many important discoveries in this field. More recently, the fruit fly has started to be used to address cell biology issues including studies of the secretory pathway, and more specifically on the functional integrity of the Golgi apparatus. A number of advances have been made that are reviewed below. Furthermore, with the development of RNAi technology, Drosophila tissue culture cells have been used to perform genome-wide screens addressing similar issues. Last, the Golgi function has been involved in specific developmental processes, thus shedding new light on the functions of a number of Golgi proteins.
Collapse
Affiliation(s)
- Vangelis Kondylis
- Cell Microscopy Centre, Department of Cell Biology, UMC Utrecht, AZU H02.313, Heidelberglaan 100, Utrecht, The Netherlands.
| | | |
Collapse
|
236
|
The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking. Cell Res 2009; 19:1191-204. [PMID: 19736566 DOI: 10.1038/cr.2009.105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inositol polyphosphate 5-phosphatases (5PTases) are enzymes of phosphatidylinositol metabolism that affect various aspects of plant growth and development. Arabidopsis 5PTase13 regulates auxin homeostasis and hormone-related cotyledon vein development, and here we demonstrate that its knockout mutant 5pt13 has elevated sensitivity to gravistimulation in root gravitropic responses. The altered responses of 5pt13 mutants to 1-N-naphthylphthalamic acid (an auxin transport inhibitor) indicate that 5PTase13 might be involved in the regulation of auxin transport. Indeed, the auxin efflux carrier PIN2 is expressed more broadly under 5PTase13 deficiency, and observations of the internalization of the membrane-selective dye FM4-64 reveal altered vesicle trafficking in 5pt13 mutants. Compared with wild-type, 5pt13 mutant seedlings are less sensitive to the inhibition by brefeldin A of vesicle cycling, seedling growth, and the intracellular cycling of the PIN1 and PIN2 proteins. Further, auxin redistribution upon gravitropic stimulation is stimulated under 5PTase13 deficiency. These results suggest that 5PTase13 may modulate auxin transport by regulating vesicle trafficking and thereby play a role in root gravitropism.
Collapse
|
237
|
Domozych DS, Lambiasse L, Kiemle SN, Gretz MR. CELL-WALL DEVELOPMENT AND BIPOLAR GROWTH IN THE DESMID PENIUM MARGARITACEUM (ZYGNEMATOPHYCEAE, STREPTOPHYTA). ASYMMETRY IN A SYMMETRIC WORLD(1). JOURNAL OF PHYCOLOGY 2009; 45:879-93. [PMID: 27034218 DOI: 10.1111/j.1529-8817.2009.00713.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cell-wall (CW) development in the desmid Penium margaritaceum (Ehrenb.) Bréb. was studied using immunofluorescence labeling of living cells with the monoclonal antibodies (mAbs) JIM5 and JIM7, which recognize unesterified and methyl-esterified homogalacturonan (HG), respectively. During cell expansion, HG was secreted in a high-esterified form at a narrow band, called the HG secretion band or HGSB, at the isthmus or the polar tip of a daughter semicell. As newly secreted HG is displaced outward on the cell surface, deesterification and subsequent calcium (Ca(2+) )-complexing occurred to yield a rigid covering. HG secretion and CW/cell expansion were reversibly inhibited by dark, brefeldin A (BFA), and incubation in 0.24-0.36 M sucrose but were not altered by treatment with actin/microfilament drugs. The HGSB was detected near the nucleus during most cell-cycle events. Centrifugation displaced the nucleus away from the HGSB, but HG synthesis was not affected. HGSB activity was preceded by, and coordinated with, Calcofluor labeling, which suggests that cellulose production in CW/cell-expansion sites was critical to expansion control. In many first-cell-division products, asymmetric patterning of HG was noted in the CW. These asymmetric patterns most likely were a result of timing mechanisms and displacement of the nucleus-HGSB during the cell cycle.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USADepartment of Biological Sciences and Biotechnology Center, Michigan Technological University, Houghton, Michigan 49911, USA
| | - Laura Lambiasse
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USADepartment of Biological Sciences and Biotechnology Center, Michigan Technological University, Houghton, Michigan 49911, USA
| | - Sarah N Kiemle
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USADepartment of Biological Sciences and Biotechnology Center, Michigan Technological University, Houghton, Michigan 49911, USA
| | - Michael R Gretz
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866, USADepartment of Biological Sciences and Biotechnology Center, Michigan Technological University, Houghton, Michigan 49911, USA
| |
Collapse
|
238
|
Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 2009; 11:797-806. [PMID: 19525940 DOI: 10.1038/ncb1886] [Citation(s) in RCA: 465] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/20/2009] [Indexed: 01/10/2023]
|
239
|
Saravanan RS, Slabaugh E, Singh VR, Lapidus LJ, Haas T, Brandizzi F. The targeting of the oxysterol-binding protein ORP3a to the endoplasmic reticulum relies on the plant VAP33 homolog PVA12. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:817-30. [PMID: 19207211 DOI: 10.1111/j.1365-313x.2009.03815.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In plants, sterols play fundamental roles as membrane constituents in the biosynthesis of steroid hormones, and act as precursors for cell wall deposition. Sterols are synthesized in the endoplasmic reticulum (ER), but mainly accumulate in the plasma membrane. How sterols are trafficked in plant cells is largely unknown. In non-plant systems, oxysterol-binding proteins have been involved in sterol trafficking and homeostasis. There are at least twelve homologs of oxysterol-binding proteins in the Arabidopsis genome, but the biology of these proteins remains for the most part obscure. Here, we report our analysis of the targeting requirements and the sterol-binding properties of a small Arabidopsis oxysterol-binding protein, ORP3a. We have determined that ORP3a is a bona fide sterol-binding protein with sitosterol-binding properties. Live-cell imaging analyses revealed that ORP3a is localized at the ER, and that binding to this organelle depends on a direct interaction with PVA12, a member of the largely uncharacterized VAP33 family of plant proteins. Molecular modeling analyses and site-directed mutagenesis led to the identification of a novel protein domain that is responsible for the PVA12-ORP3a interaction. Disruption of the integrity of this domain caused redistribution of ORP3a to the Golgi apparatus, suggesting that ORP3a may cycle between the ER and the Golgi. These results represent new insights into the biology of sterol-binding proteins in plant cells, and elucidate a hitherto unknown relationship between members of oxysterol-binding protein and VAP33 families of plant proteins in the early plant secretory pathway.
Collapse
Affiliation(s)
- Ramu S Saravanan
- DOE, Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | |
Collapse
|
240
|
Peer WA, Hosein FN, Bandyopadhyay A, Makam SN, Otegui MS, Lee GJ, Blakeslee JJ, Cheng Y, Titapiwatanakun B, Yakubov B, Bangari B, Murphy AS. Mutation of the membrane-associated M1 protease APM1 results in distinct embryonic and seedling developmental defects in Arabidopsis. THE PLANT CELL 2009; 21:1693-721. [PMID: 19531600 PMCID: PMC2714933 DOI: 10.1105/tpc.108.059634] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 05/14/2009] [Accepted: 06/01/2009] [Indexed: 05/20/2023]
Abstract
Aminopeptidase M1 (APM1), a single copy gene in Arabidopsis thaliana, encodes a metallopeptidase originally identified via its affinity for, and hydrolysis of, the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Mutations in this gene result in haploinsufficiency. Loss-of-function mutants show irregular, uncoordinated cell divisions throughout embryogenesis, affecting the shape and number of cotyledons and the hypophysis, and is seedling lethal at 5 d after germination due to root growth arrest. Quiescent center and cell cycle markers show no signals in apm1-1 knockdown mutants, and the ground tissue specifiers SHORTROOT and SCARECROW are misexpressed or mislocalized. apm1 mutants have multiple, fused cotyledons and hypocotyls with enlarged epidermal cells with cell adhesion defects. apm1 alleles show defects in gravitropism and auxin transport. Gravistimulation decreases APM1 expression in auxin-accumulating root epidermal cells, and auxin treatment increases expression in the stele. On sucrose gradients, APM1 occurs in unique light membrane fractions. APM1 localizes at the margins of Golgi cisternae, plasma membrane, select multivesicular bodies, tonoplast, dense intravacuolar bodies, and maturing metaxylem cells. APM1 associates with brefeldin A-sensitive endomembrane structures and the plasma membrane in cortical and epidermal cells. The auxin-related phenotypes and mislocalization of auxin efflux proteins in apm1 are consistent with biochemical interactions between APM1 and NPA.
Collapse
Affiliation(s)
- Wendy Ann Peer
- Department of Horticulture, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
|
242
|
Lecuona E, Sun H, Vohwinkel C, Ciechanover A, Sznajder JI. Ubiquitination participates in the lysosomal degradation of Na,K-ATPase in steady-state conditions. Am J Respir Cell Mol Biol 2009; 41:671-9. [PMID: 19286978 DOI: 10.1165/rcmb.2008-0365oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The alveolar epithelial cell (AEC) Na,K-ATPase contributes to vectorial Na(+) transport and plays an important role in keeping the lungs free of edema. We determined, by cell surface labeling with biotin and immunofluorescence, that approximately 30% of total Na,K-ATPase is at the plasma membrane of AEC in steady-state conditions. The half-life of the plasma membrane Na,K-ATPase was about 4 hours, and the incorporation of new Na,K-ATPase to the plasma membrane was Brefeldin A sensitive. Both protein kinase C (PKC) inhibition with bisindolylmaleimide (10 microM) and infection with an adenovirus expressing dominant-negative PKCzeta prevented Na,K-ATPase degradation. In cells expressing the Na,K-ATPase alpha1-subunit lacking the PKC phosphorylation sites, the plasma membrane Na,K-ATPase had a moderate increase in half-life. We also found that the Na,K-ATPase was ubiquitinated in steady-state conditions and that proteasomal inhibitors prevented its degradation. Interestingly, mutation of the four lysines described to be necessary for ubiquitination and endocytosis of the Na,K-ATPase in injurious conditions did not have an effect on its half-life in steady-state conditions. Lysosomal inhibitors prevented Na,K-ATPase degradation, and co-localization of Na,K-ATPase and lysosomes was found after labeling and chasing the plasma membrane Na,K-ATPase for 4 hours. Accordingly, we provide evidence suggesting that phosphorylation and ubiquitination are necessary for the steady-state degradation of the plasma membrane Na,K-ATPase in the lysosomes in alveolar epithelial cells.
Collapse
Affiliation(s)
- Emilia Lecuona
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron, McGaw M300, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
243
|
Sonawane M, Martin-Maischein H, Schwarz H, Nüsslein-Volhard C. Lgl2 and E-cadherin act antagonistically to regulate hemidesmosome formation during epidermal development in zebrafish. Development 2009; 136:1231-40. [PMID: 19261700 DOI: 10.1242/dev.032508] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The integrity and homeostasis of the vertebrate epidermis depend on various cellular junctions. How these junctions are assembled during development and how their number is regulated remain largely unclear. Here, we address these issues by analysing the function of Lgl2, E-cadherin and atypical Protein kinase C (aPKC) in the formation of hemidesmosomes in the developing basal epidermis of zebrafish larvae. Previously, we have shown that a mutation in lgl2 (penner) prevents the formation of hemidesmosomes. Here we show that Lgl2 function is essential for mediating the targeting of Integrin alpha 6 (Itga6), a hemidesmosomal component, to the plasma membrane of basal epidermal cells. In addition, we show that whereas aPKClambda seems dispensable for the localisation of Itga6 during hemidesmosome formation, knockdown of E-cadherin function leads to an Lgl2-dependent increase in the localisation of Itga6. Thus, Lgl2 and E-cadherin act antagonistically to control the localisation of Itga6 during the formation of hemidesmosomes in the developing epidermis.
Collapse
Affiliation(s)
- Mahendra Sonawane
- Max-Planck Institut für Entwicklungsbiologie, Department of Genetics, Spemannstrasse 35, Tuebingen, D-72076, Germany.
| | | | | | | |
Collapse
|
244
|
Brach T, Soyk S, Müller C, Hinz G, Hell R, Brandizzi F, Meyer AJ. Non-invasive topology analysis of membrane proteins in the secretory pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:534-41. [PMID: 18939964 DOI: 10.1111/j.1365-313x.2008.03704.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We present a novel method to experimentally visualize in vivo the topology of transmembrane proteins residing in the endoplasmic reticulum (ER) membrane or passing through the secretory pathway on their way to their final destination. This approach, so-called redox-based topology analysis (ReTA), is based on fusion of transmembrane proteins with redox-sensitive GFP (roGFP) and ratiometric imaging. The ratio images provide direct information on the orientation of roGFP relative to the membrane as the roGFP fluorescence alters with changes in the glutathione redox potential across the ER membrane. As proof of concept, we produced binary read-outs using oxidized roGFP inside the ER lumen and reduced roGFP on the cytosolic side of the membrane for both N- and C-terminal fusions of single and multi-spanning membrane proteins. Further, successive deletion of hydrophobic domains from the C-terminus of the K/HDEL receptor ERD2 resulted in alternating localization of roGFP and a topology model for AtERD2 with six transmembrane domains.
Collapse
Affiliation(s)
- Thorsten Brach
- Heidelberg Institute for Plant Science, University of Heidelberg, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
245
|
Nobukuni M, Mochizuki H, Okada S, Kameyama N, Tanaka A, Yamamoto H, Amano T, Seki T, Sakai N. The C-Terminal Region of Serotonin Transporter Is Important for Its Trafficking and Glycosylation. J Pharmacol Sci 2009; 111:392-404. [DOI: 10.1254/jphs.09195fp] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
246
|
Abstract
Chemical genomics (i.e., genomics-scale chemical genetics) approaches are based on the ability of low-molecular-mass molecules to modify biological processes. Such molecules are used to affect the activity of a protein or a pathway in a manner that is tunable and reversible. A major advantage of this approach compared to classical plant genetics is the fact that chemical genomics can address loss-of-function lethality and redundancy. Bioactive chemicals resulting from forward or reverse chemical screens can be useful in understanding and dissecting complex biological processes due to the essentially limitless variation in structure and activities inherent in chemical space. An important aspect of utilizing small molecules effectively is to characterize bioactive chemicals in detail including an understanding of structure activity relationships (SARs) and the identification of active and inactive analogs. Bioactive chemicals can be useful as reagents to probe biological pathways directly. However, the identification of cognate targets and their pathways is also informative and can be achieved by screens for genetic resistance or hypersensitivity in Arabidopsis thaliana or other organisms in which the results can be translated to plants. Here, we describe approaches to screen for bioactive chemicals that affect biological processes in Arabidopsis. We will also discuss considerations for the characterization of bioactive compounds and genetic screens for target identification. This should provide those who are considering this approach some practical knowledge of how to design and establish a chemical genomics screen.
Collapse
Affiliation(s)
- Lorena Norambuena
- Plant Molecular Biology Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
247
|
Drakakaki G, Robert S, Raikhel NV, Hicks GR. Chemical dissection of endosomal pathways. PLANT SIGNALING & BEHAVIOR 2009; 4:57-62. [PMID: 19704710 PMCID: PMC2634075 DOI: 10.4161/psb.4.1.7314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 05/18/2023]
Abstract
Membrane trafficking and associated signal transduction pathways are critical for plant development and responses to environment. These transduction pathways, including those for brassinosteroids and auxins, require endocytosis to endosomes and recycling back to the plasma membrane. A major challenge toward understanding these processes and their biological roles has been the highly dynamic nature of endomembrane trafficking. To effectively study endocytosis and recycling, which occur in a time frame of minutes, bioactive chemicals provide a powerful and exacting tool. Pharmacological inhibitors such as Brefeldin A (BFA) and the newly identified Endosidin 1 (ES1) have been used to define endosome compartments. ES1 is a clear example of the ability of chemicals to dissect even distinct subpopulations of endosomes involved in trafficking and signal transduction. The ability to characterize and dissect such highly dynamic pathways in a temporal and spatial manner is possible only using pharmacological reagents which can act rapidly and reversibly.
Collapse
Affiliation(s)
- Georgia Drakakaki
- Center for Plant Cell Biology, Institute for Integrative Genome Biology & Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
248
|
Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 2009; 27:53-75. [DOI: 10.1016/j.biotechadv.2008.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/04/2008] [Accepted: 09/07/2008] [Indexed: 12/11/2022]
|
249
|
Reactive Oxygen Species in Growth and Development. REACTIVE OXYGEN SPECIES IN PLANT SIGNALING 2009. [DOI: 10.1007/978-3-642-00390-5_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
250
|
Robert S, Raikhel NV, Hicks GR. Powerful partners: Arabidopsis and chemical genomics. THE ARABIDOPSIS BOOK 2009; 7:e0109. [PMID: 22303245 PMCID: PMC3243329 DOI: 10.1199/tab.0109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chemical genomics (i.e. genomics scale chemical genetics) approaches capitalize on the ability of low molecular mass molecules to modify biological processes. Such molecules are used to modify the activity of a protein or a pathway in a manner that it is tunable and reversible. Bioactive chemicals resulting from forward or reverse chemical screens can be useful in understanding and dissecting complex biological processes due to the essentially limitless variation in structure and activities inherent in chemical space. A major advantage of this approach as a powerful addition to conventional plant genetics is the fact that chemical genomics can address loss-of-function lethality and redundancy. Furthermore, the ability of chemicals to be added at will and to act quickly can permit the study of processes that are highly dynamic such as endomembrane trafficking. An important aspect of utilizing small molecules effectively is to characterize bioactive chemicals in detail including an understanding of structure-activity relationships and the identification of active and inactive analogs. Bioactive chemicals can be useful as reagents to probe biological pathways directly. However, the identification of cognate targets and their pathways is also informative and can be achieved by screens for genetic resistance or hypersensitivity in Arabidopsis thaliana or other organisms from which the results can be translated to plants. In addition, there are approaches utilizing "tagged" chemical libraries that possess reactive moieties permitting the immobilization of active compounds. This opens the possibility for biochemical purification of putative cognate targets. We will review approaches to screen for bioactive chemicals that affect biological processes in Arabidopsis and provide several examples of the power and challenges inherent in this new approach in plant biology.
Collapse
Affiliation(s)
- Stéphanie Robert
- Center for Plant Cell Biology & Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- Current address: VIB Department of Plant Systems Biology, University of Ghent, 9052 Ghent, Belgium
| | - Natasha V. Raikhel
- Center for Plant Cell Biology & Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Glenn R. Hicks
- Center for Plant Cell Biology & Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- Address correspondence to
| |
Collapse
|