201
|
Proteomic characterization of a mouse model of familial Danish dementia. J Biomed Biotechnol 2012; 2012:728178. [PMID: 22619496 PMCID: PMC3350990 DOI: 10.1155/2012/728178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 02/02/2012] [Indexed: 11/18/2022] Open
Abstract
A dominant mutation in the ITM2B/BRI2 gene causes familial Danish dementia (FDD) in humans. To model FDD in animal systems, a knock-in approach was recently implemented in mice expressing a wild-type and mutant allele, which bears the FDD-associated mutation. Since these FDD(KI) mice show behavioural alterations and impaired synaptic function, we characterized their synaptosomal proteome via two-dimensional differential in-gel electrophoresis. After identification by nanoliquid chromatography coupled to electrospray-linear ion trap tandem mass spectrometry, the differentially expressed proteins were classified according to their gene ontology descriptions and their predicted functional interactions. The Dlg4/Psd95 scaffold protein and additional signalling proteins, including protein phosphatases, were revealed by STRING analysis as potential players in the altered synaptic function of FDD(KI) mice. Immunoblotting analysis finally demonstrated the actual downregulation of the synaptosomal scaffold protein Dlg4/Psd95 and of the dual-specificity phosphatase Dusp3 in the synaptosomes of FDD(KI) mice.
Collapse
|
202
|
Gold MG. A frontier in the understanding of synaptic plasticity: solving the structure of the postsynaptic density. Bioessays 2012; 34:599-608. [PMID: 22528972 PMCID: PMC3492911 DOI: 10.1002/bies.201200009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The postsynaptic density (PSD) is a massive multi-protein complex whose functions include positioning signalling molecules for induction of long-term potentiation (LTP) and depression (LTD) of synaptic strength. These processes are thought to underlie memory formation. To understand how the PSD coordinates bidirectional synaptic plasticity with different synaptic activation patterns, it is necessary to determine its three-dimensional structure. A structural model of the PSD is emerging from investigation of its molecular composition and connectivity, in addition to structural studies at different levels of resolution. Technical innovations including mass spectrometry of cross-linked proteins and super-resolution light microscopy can drive progress. Integrating different information relating to PSD structure is challenging since the structure is so large and complex. The reconstruction of a PSD subcomplex anchored by AKAP79 exemplifies on a small scale how integration can be achieved. With its entire molecular structure coming into focus, this is a unique opportunity to study the PSD.
Collapse
Affiliation(s)
- Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
203
|
Swulius MT, Farley MM, Bryant MA, Waxham MN. Electron cryotomography of postsynaptic densities during development reveals a mechanism of assembly. Neuroscience 2012; 212:19-29. [PMID: 22516021 DOI: 10.1016/j.neuroscience.2012.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 01/10/2023]
Abstract
Postsynaptic densities (PSDs) are responsible for organizing receptors and signaling proteins that regulate excitatory transmission in the mammalian brain. To better understand the assembly and 3D organization of this synaptic structure, we employed electron cryotomography to visualize general and fine structural details of PSDs isolated from P2, P14, P21 and adult forebrain in the absence of fixatives and stains. PSDs at P2 are a loose mesh of filamentous and globular proteins and during development additional protein complexes are recruited onto the mesh. Quantitative analysis reveals that while the surface area of PSDs is relatively constant, the thickness and protein occupancy of the PSD volume increase dramatically between P14 and adult. One striking morphological feature is the appearance of lipid raft-like structures, first evident in PSDs from 14 day old animals. These detergent-resistant membranes stain for GM1 ganglioside and their terminations can be clearly seen embedded in protein "bowls" within the PSD complex. In total, these results lead to the conclusion that the PSD is assembled by the gradual recruitment and stabilization of proteins within an initial mesh that systematically adds complexity to the structure.
Collapse
Affiliation(s)
- M T Swulius
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
204
|
Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, Ercan-Sencicek AG, DiLullo NM, Parikshak NN, Stein JL, Walker MF, Ober GT, Teran NA, Song Y, El-Fishawy P, Murtha RC, Choi M, Overton JD, Bjornson RD, Carriero NJ, Meyer KA, Bilguvar K, Mane SM, Sestan N, Lifton RP, Günel M, Roeder K, Geschwind DH, Devlin B, State MW. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012; 485:237-41. [PMID: 22495306 DOI: 10.1038/nature10945] [Citation(s) in RCA: 1512] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/14/2012] [Indexed: 12/14/2022]
Abstract
Multiple studies have confirmed the contribution of rare de novo copy number variations to the risk for autism spectrum disorders. But whereas de novo single nucleotide variants have been identified in affected individuals, their contribution to risk has yet to be clarified. Specifically, the frequency and distribution of these mutations have not been well characterized in matched unaffected controls, and such data are vital to the interpretation of de novo coding mutations observed in probands. Here we show, using whole-exome sequencing of 928 individuals, including 200 phenotypically discordant sibling pairs, that highly disruptive (nonsense and splice-site) de novo mutations in brain-expressed genes are associated with autism spectrum disorders and carry large effects. On the basis of mutation rates in unaffected individuals, we demonstrate that multiple independent de novo single nucleotide variants in the same gene among unrelated probands reliably identifies risk alleles, providing a clear path forward for gene discovery. Among a total of 279 identified de novo coding mutations, there is a single instance in probands, and none in siblings, in which two independent nonsense variants disrupt the same gene, SCN2A (sodium channel, voltage-gated, type II, α subunit), a result that is highly unlikely by chance.
Collapse
Affiliation(s)
- Stephan J Sanders
- Program on Neurogenetics, Child Study Center, Department of Psychiatry, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Application of in utero electroporation and live imaging in the analyses of neuronal migration during mouse brain development. Med Mol Morphol 2012; 45:1-6. [PMID: 22431177 DOI: 10.1007/s00795-011-0557-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/08/2011] [Indexed: 10/28/2022]
Abstract
Correct neuronal migration is crucial for brain architecture and function. During cerebral cortex development (corticogenesis), excitatory neurons generated in the proliferative zone of the dorsal telencephalon (mainly ventricular zone) move through the intermediate zone and migrate past the neurons previously located in the cortical plate and come to rest just beneath the marginal zone. The in utero electroporation technique is a powerful method for rapid gain- and loss-of-function studies of neuronal development, especially neuronal migration. This method enabled us to introduce genes of interest into ventricular zone progenitor cells of mouse embryos and to observe resulting phenotypes such as proliferation, migration, and cell morphology at later stages. In this Award Lecture Review, we focus on the application of the in utero electroporation method to functional analyses of cytoskeleton-related protein septin. We then refer to, as an advanced technique, the in utero electroporation-based real-time imaging method for analyses of cell signaling regulating neuronal migration. The in utero electroporation method and its application would contribute to medical molecular morphology through identification and characterization of the signaling pathways disorganized in various neurological and psychiatric disorders.
Collapse
|
206
|
Abstract
Neuronal activity elicits changes in synaptic composition that play an important role in experience-dependent plasticity (Choquet and Triller, 2003; Lisman and Raghavachari, 2006; Bourne and Harris, 2008; Holtmaat and Svoboda, 2009). We used a modified version of stable isotope labeling by amino acids in cell culture to identify activity-dependent modifications in the composition of postsynaptic densities (PSDs) isolated from rat primary neuronal cultures. We found that synaptic activity altered ∼2% of the PSD proteome, which included an increase in diverse RNA binding proteins (RNABPs). Indeed, 12 of the 37 identified proteins whose levels changed with synaptic activity were RNABPs and included the heterogeneous nuclear ribonucleoproteins (hnRNPs) G, A2/B1, M, and D. Knockdown of hnRNPs M and G using shRNAs resulted in altered numbers of dendritic spines, suggesting a crucial role for these proteins in spine density. Synaptic activity also resulted in a concomitant increase in dendritic and synaptic poly(A) mRNA. However, this increase was not affected by knockdown of hnRNPs M or G. Our results suggest that hnRNP proteins regulate dendritic spine density and may play a role in synaptodendritic mRNA metabolism.
Collapse
|
207
|
Abstract
The study of nervous system development has been greatly facilitated by recent advances in molecular biology and imaging techniques. These approaches are perfectly suited to young transparent zebrafish where they have allowed direct observation of neural circuit assembly in vivo. In this review we will highlight a number of key studies that have applied optical and genetic techniques in zebrafish to address questions relating to axonal and dendritic arbor development,synapse assembly and neural plasticity. These studies have revealed novel cellular phenomena and modes of growth that may reflect general principles governing the assembly of neural circuits.
Collapse
Affiliation(s)
- Nikolas Nikolaou
- King's College London, Guy's Hospital Campus, London SE1 1UL, UK
| | | |
Collapse
|
208
|
Buxbaum JD, Betancur C, Bozdagi O, Dorr NP, Elder GA, Hof PR. Optimizing the phenotyping of rodent ASD models: enrichment analysis of mouse and human neurobiological phenotypes associated with high-risk autism genes identifies morphological, electrophysiological, neurological, and behavioral features. Mol Autism 2012; 3:1. [PMID: 22348382 PMCID: PMC3337792 DOI: 10.1186/2040-2392-3-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 02/20/2012] [Indexed: 11/28/2022] Open
Abstract
Background There is interest in defining mouse neurobiological phenotypes useful for studying autism spectrum disorders (ASD) in both forward and reverse genetic approaches. A recurrent focus has been on high-order behavioral analyses, including learning and memory paradigms and social paradigms. However, well-studied mouse models, including for example Fmr1 knockout mice, do not show dramatic deficits in such high-order phenotypes, raising a question as to what constitutes useful phenotypes in ASD models. Methods To address this, we made use of a list of 112 disease genes etiologically involved in ASD to survey, on a large scale and with unbiased methods as well as expert review, phenotypes associated with a targeted disruption of these genes in mice, using the Mammalian Phenotype Ontology database. In addition, we compared the results with similar analyses for human phenotypes. Findings We observed four classes of neurobiological phenotypes associated with disruption of a large proportion of ASD genes, including: (1) Changes in brain and neuronal morphology; (2) electrophysiological changes; (3) neurological changes; and (4) higher-order behavioral changes. Alterations in brain and neuronal morphology represent quantitative measures that can be more widely adopted in models of ASD to understand cellular and network changes. Interestingly, the electrophysiological changes differed across different genes, indicating that excitation/inhibition imbalance hypotheses for ASD would either have to be so non-specific as to be not falsifiable, or, if specific, would not be supported by the data. Finally, it was significant that in analyses of both mouse and human databases, many of the behavioral alterations were neurological changes, encompassing sensory alterations, motor abnormalities, and seizures, as opposed to higher-order behavioral changes in learning and memory and social behavior paradigms. Conclusions The results indicated that mutations in ASD genes result in defined groups of changes in mouse models and support a broad neurobiological approach to phenotyping rodent models for ASD, with a focus on biochemistry and molecular biology, brain and neuronal morphology, and electrophysiology, as well as both neurological and additional behavioral analyses. Analysis of human phenotypes associated with these genes reinforced these conclusions, supporting face validity for these approaches to phenotyping of ASD models. Such phenotyping is consistent with the successes in Fmr1 knockout mice, in which morphological changes recapitulated human findings and electrophysiological deficits resulted in molecular insights that have since led to clinical trials. We propose both broad domains and, based on expert review of more than 50 publications in each of the four neurobiological domains, specific tests to be applied to rodent models of ASD.
Collapse
Affiliation(s)
- Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
209
|
Santos SD, Iuliano O, Ribeiro L, Veran J, Ferreira JS, Rio P, Mulle C, Duarte CB, Carvalho AL. Contactin-associated protein 1 (Caspr1) regulates the traffic and synaptic content of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors. J Biol Chem 2012; 287:6868-77. [PMID: 22223644 DOI: 10.1074/jbc.m111.322909] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Glutamate receptors of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type mediate fast excitatory synaptic transmission in the CNS. Synaptic strength is modulated by AMPA receptor binding partners, which regulate receptor synaptic targeting and functional properties. We identify Contactin-associated protein 1 (Caspr1) as an AMPA receptor interactor. Caspr1 is present in synapses and interacts with AMPA receptors in brain synaptic fractions. Coexpression of Caspr1 with GluA1 increases the amplitude of glutamate-evoked currents. Caspr1 overexpression in hippocampal neurons increases the number and size of synaptic GluA1 clusters, whereas knockdown of Caspr1 decreases the intensity of synaptic GluA1 clusters. Hence, Caspr1 is a regulator of the trafficking of AMPA receptors to synapses.
Collapse
Affiliation(s)
- Sandra D Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Sheng M, Kim E. The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005678. [PMID: 22046028 DOI: 10.1101/cshperspect.a005678] [Citation(s) in RCA: 409] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The postsynaptic side of the synapse is specialized to receive the neurotransmitter signal released from the presynaptic terminal and transduce it into electrical and biochemical changes in the postsynaptic cell. The cardinal functional components of the postsynaptic specialization of excitatory and inhibitory synapses are the ionotropic receptors (ligand-gated channels) for glutamate and γ-aminobutyric acid (GABA), respectively. These receptor channels are concentrated at the postsynaptic membrane and embedded in a dense and rich protein network comprised of anchoring and scaffolding molecules, signaling enzymes, cytoskeletal components, as well as other membrane proteins. Excitatory and inhibitory postsynaptic specializations are quite different in molecular organization. The postsynaptic density of excitatory synapses is especially complex and dynamic in composition and regulation; it contains hundreds of different proteins, many of which are required for cognitive function and implicated in psychiatric illness.
Collapse
Affiliation(s)
- Morgan Sheng
- The Department of Neuroscience, Genentech Incorporated, San Francisco, California 94080, USA
| | | |
Collapse
|
211
|
Nanavati D, Austin DR, Catapano LA, Luckenbaugh DA, Dosemeci A, Manji HK, Chen G, Markey SP. The effects of chronic treatment with mood stabilizers on the rat hippocampal post-synaptic density proteome. J Neurochem 2011; 119:617-29. [PMID: 21838781 PMCID: PMC3192943 DOI: 10.1111/j.1471-4159.2011.07424.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bipolar disorder is a devastating illness that is marked by recurrent episodes of mania and depression. There is growing evidence that the disease is correlated with disruptions in synaptic plasticity cascades involved in cognition and mood regulation. Alleviating the symptoms of bipolar disorder involves chronic treatment with mood stabilizers like lithium or valproate. These two structurally dissimilar drugs are known to alter prominent signaling cascades in the hippocampus, but their effects on the post-synaptic density complex remain undefined. In this work, we utilized mass spectrometry for quantitative profiling of the rat hippocampal post-synaptic proteome to investigate the effects of chronic mood stabilizer treatment. Our data show that in response to chronic treatment of mood stabilizers there were not gross qualitative changes but rather subtle quantitative perturbations in post-synaptic density proteome linked to several key signaling pathways. Our data specifically support the changes in actin dynamics on valproate treatment. Using label-free quantification methods, we report that lithium and valproate significantly altered the abundance of 21 and 43 proteins, respectively. Seven proteins were affected similarly by both lithium and valproate: Ank3, glutamate receptor 3, dynein heavy chain 1, and four isoforms of the 14-3-3 family. Immunoblotting the same samples confirmed the changes in Ank3 and glutamate receptor 3 abundance. Our findings support the hypotheses that BPD is a synaptic disorder and that mood stabilizers modulate the protein signaling complex in the hippocampal post-synaptic density.
Collapse
Affiliation(s)
- Dhaval Nanavati
- Laboratory of Neurotoxicology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel R. Austin
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa A. Catapano
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A. Luckenbaugh
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ayse Dosemeci
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Husseini K. Manji
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guang Chen
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanford P. Markey
- Laboratory of Neurotoxicology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
212
|
Zhang M, Huang K, Zhang Z, Ji B, Zhu H, Zhou K, Li Y, Yang J, Sun L, Wei Z, He G, Gao L, He L, Wan C. Proteome alterations of cortex and hippocampus tissues in mice subjected to vitamin A depletion. J Nutr Biochem 2011; 22:1003-8. [DOI: 10.1016/j.jnutbio.2010.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 08/11/2010] [Accepted: 08/23/2010] [Indexed: 11/15/2022]
|
213
|
Kalirin binds the NR2B subunit of the NMDA receptor, altering its synaptic localization and function. J Neurosci 2011; 31:12554-65. [PMID: 21880917 DOI: 10.1523/jneurosci.3143-11.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ability of dendritic spines to change size and shape rapidly is critical in modulating synaptic strength; these morphological changes are dependent upon rearrangements of the actin cytoskeleton. Kalirin-7 (Kal7), a Rho guanine nucleotide exchange factor localized to the postsynaptic density (PSD), modulates dendritic spine morphology in vitro and in vivo. Kal7 activates Rac and interacts with several PSD proteins, including PSD-95, DISC-1, AF-6, and Arf6. Mice genetically lacking Kal7 (Kal7(KO)) exhibit deficient hippocampal long-term potentiation (LTP) as well as behavioral abnormalities in models of addiction and learning. Purified PSDs from Kal7(KO) mice contain diminished levels of NR2B, an NMDA receptor subunit that plays a critical role in LTP induction. Here we demonstrate that Kal7(KO) animals have decreased levels of NR2B-dependent NMDA receptor currents in cortical pyramidal neurons as well as a specific deficit in cell surface expression of NR2B. Additionally, we demonstrate that the genotypic differences in conditioned place preference and passive avoidance learning seen in Kal7(KO) mice are abrogated when animals are treated with an NR2B-specific antagonist during conditioning. Finally, we identify a stable interaction between the pleckstrin homology domain of Kal7 and the juxtamembrane region of NR2B preceding its cytosolic C-terminal domain. Binding of NR2B to a protein that modulates the actin cytoskeleton is important, as NMDA receptors require actin integrity for synaptic localization and function. These studies demonstrate a novel and functionally important interaction between the NR2B subunit of the NMDA receptor and Kalirin, proteins known to be essential for normal synaptic plasticity.
Collapse
|
214
|
Micheva KD, Bruchez MP. The gain in brain: novel imaging techniques and multiplexed proteomic imaging of brain tissue ultrastructure. Curr Opin Neurobiol 2011; 22:94-100. [PMID: 21944260 DOI: 10.1016/j.conb.2011.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/24/2011] [Indexed: 12/25/2022]
Abstract
The rapid accumulation of neuroproteomics data in recent years has prompted the emergence of novel antibody-based imaging methods that aim to understand the anatomical and functional context of the multitude of identified proteins. The pioneering field of ultrastructural multiplexed proteomic imaging now includes a number of high resolution methods, such as array tomography, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy and automated transmission electron microscopy, which allow a detailed molecular characterization of individual synapses and subsynaptic structures within brain tissues for the first time. While all of these methods still face considerable limitations, a combined complementary approach building on the respective strengths of each method is possible and will enable fascinating research into the proteomic diversity of the nervous system.
Collapse
Affiliation(s)
- Kristina D Micheva
- Stanford University School of Medicine, Department of Molecular and Cellular Physiology, Stanford, CA 94305, USA.
| | | |
Collapse
|
215
|
Myosin IIb activity and phosphorylation status determines dendritic spine and post-synaptic density morphology. PLoS One 2011; 6:e24149. [PMID: 21887379 PMCID: PMC3162601 DOI: 10.1371/journal.pone.0024149] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/01/2011] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines in hippocampal neurons mature from a filopodia-like precursor into a mushroom-shape with an enlarged post-synaptic density (PSD) and serve as the primary post-synaptic location of the excitatory neurotransmission that underlies learning and memory. Using myosin II regulatory mutants, inhibitors, and knockdowns, we show that non-muscle myosin IIB (MIIB) activity determines where spines form and whether they persist as filopodia-like spine precursors or mature into a mushroom-shape. MIIB also determines PSD size, morphology, and placement in the spine. Local inactivation of MIIB leads to the formation of filopodia-like spine protrusions from the dendritic shaft. However, di-phosphorylation of the regulatory light chain on residues Thr18 and Ser19 by Rho kinase is required for spine maturation. Inhibition of MIIB activity or a mono-phosphomimetic mutant of RLC similarly prevented maturation even in the presence of NMDA receptor activation. Expression of an actin cross-linking, non-contractile mutant, MIIB R709C, showed that maturation into a mushroom-shape requires contractile activity. Loss of MIIB also leads to an elongated PSD morphology that is no longer restricted to the spine tip; whereas increased MIIB activity, specifically through RLC-T18, S19 di-phosphorylation, increases PSD area. These observations support a model whereby myosin II inactivation forms filopodia-like protrusions that only mature once NMDA receptor activation increases RLC di-phosphorylation to stimulate MIIB contractility, resulting in mushroom-shaped spines with an enlarged PSD.
Collapse
|
216
|
Sorokina O, Sorokin A, Armstrong JD. Towards a quantitative model of the post-synaptic proteome. MOLECULAR BIOSYSTEMS 2011; 7:2813-23. [PMID: 21874189 DOI: 10.1039/c1mb05152k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The postsynaptic compartment of the excitatory glutamatergic synapse contains hundreds of distinct polypeptides with a wide range of functions (signalling, trafficking, cell-adhesion, etc.). Structural dynamics in the post-synaptic density (PSD) are believed to underpin cognitive processes. Although functionally and morphologically diverse, PSD proteins are generally enriched with specific domains, which precisely define the mode of clustering essential for signal processing. We applied a stochastic calculus of domain binding provided by a rule-based modelling approach to formalise the highly combinatorial signalling pathway in the PSD and perform the numerical analysis of the relative distribution of protein complexes and their sizes. We specified the combinatorics of protein interactions in the PSD by rules, taking into account protein domain structure, specific domain affinity and relative protein availability. With this model we interrogated the critical conditions for the protein aggregation into large complexes and distribution of both size and composition. The presented approach extends existing qualitative protein-protein interaction maps by considering the quantitative information for stoichiometry and binding properties for the elements of the network. This results in a more realistic view of the postsynaptic proteome at the molecular level.
Collapse
Affiliation(s)
- Oksana Sorokina
- School of Informatics, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
217
|
Piton A, Gauthier J, Hamdan FF, Lafrenière RG, Yang Y, Henrion E, Laurent S, Noreau A, Thibodeau P, Karemera L, Spiegelman D, Kuku F, Duguay J, Destroismaisons L, Jolivet P, Côté M, Lachapelle K, Diallo O, Raymond A, Marineau C, Champagne N, Xiong L, Gaspar C, Rivière JB, Tarabeux J, Cossette P, Krebs MO, Rapoport JL, Addington A, DeLisi LE, Mottron L, Joober R, Fombonne E, Drapeau P, Rouleau GA. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol Psychiatry 2011; 16:867-80. [PMID: 20479760 PMCID: PMC3289139 DOI: 10.1038/mp.2010.54] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 04/10/2010] [Accepted: 04/12/2010] [Indexed: 12/17/2022]
Abstract
Autism spectrum disorder (ASD) and schizophrenia (SCZ) are two common neurodevelopmental syndromes that result from the combined effects of environmental and genetic factors. We set out to test the hypothesis that rare variants in many different genes, including de novo variants, could predispose to these conditions in a fraction of cases. In addition, for both disorders, males are either more significantly or more severely affected than females, which may be explained in part by X-linked genetic factors. Therefore, we directly sequenced 111 X-linked synaptic genes in individuals with ASD (n = 142; 122 males and 20 females) or SCZ (n = 143; 95 males and 48 females). We identified >200 non-synonymous variants, with an excess of rare damaging variants, which suggest the presence of disease-causing mutations. Truncating mutations in genes encoding the calcium-related protein IL1RAPL1 (already described in Piton et al. Hum Mol Genet 2008) and the monoamine degradation enzyme monoamine oxidase B were found in ASD and SCZ, respectively. Moreover, several promising non-synonymous rare variants were identified in genes encoding proteins involved in regulation of neurite outgrowth and other various synaptic functions (MECP2, TM4SF2/TSPAN7, PPP1R3F, PSMD10, MCF2, SLITRK2, GPRASP2, and OPHN1).
Collapse
Affiliation(s)
- A Piton
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - J Gauthier
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - FF Hamdan
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - RG Lafrenière
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - Y Yang
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - E Henrion
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - S Laurent
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - A Noreau
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - P Thibodeau
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - L Karemera
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - D Spiegelman
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - F Kuku
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - J Duguay
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - L Destroismaisons
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - P Jolivet
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - M Côté
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - K Lachapelle
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - O Diallo
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - A Raymond
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - C Marineau
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - N Champagne
- Department of Pathology and Cell Biology and Groupe de recherche sur le systeme nerveux central, University of Montreal, Montreal, QC, Canada
| | - L Xiong
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - C Gaspar
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - J-B Rivière
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - J Tarabeux
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - P Cossette
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
| | - M-O Krebs
- INSERM U796, Physiopathologie des maladies psychiatriques, Université Paris Descartes and Centre hospitalier Sainte Anne, Paris, France
| | - JL Rapoport
- Child Psychiatry Branch, NIMH/NIH, Bethesda, MD, USA
| | - A Addington
- Child Psychiatry Branch, NIMH/NIH, Bethesda, MD, USA
| | - LE DeLisi
- VA Boston Healthcare System and Harvard Medical School, Brockton, MA, USA
- The Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - L Mottron
- Centre d’excellence en Troubles envahissants du développement de l’Université de Montré al (CETEDUM), Montreal, QC, Canada
| | - R Joober
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - E Fombonne
- Department of Psychiatry, Montreal Children’s Hospital, Montreal, QC, Canada
| | - P Drapeau
- Department of Pathology and Cell Biology and Groupe de recherche sur le systeme nerveux central, University of Montreal, Montreal, QC, Canada
| | - GA Rouleau
- Department of Medicine, Centre of Excellence in Neuromics, CHUM Research Centre, University of Montreal, Montreal, QC, Canada
- CHU Sainte-Justine Research Center, Montreal, QC, Canada
| |
Collapse
|
218
|
Tolias KF, Duman JG, Um K. Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog Neurobiol 2011; 94:133-48. [PMID: 21530608 PMCID: PMC3129138 DOI: 10.1016/j.pneurobio.2011.04.011] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 12/21/2022]
Abstract
Synapses are specialized cell-cell contacts that mediate communication between neurons. Most excitatory synapses in the brain are housed on dendritic spines, small actin-rich protrusions extending from dendrites. During development and in response to environmental stimuli, spines undergo marked changes in shape and number thought to underlie processes like learning and memory. Improper spine development, in contrast, likely impedes information processing in the brain, since spine abnormalities are associated with numerous brain disorders. Elucidating the mechanisms that regulate the formation and plasticity of spines and their resident synapses is therefore crucial to our understanding of cognition and disease. Rho-family GTPases, key regulators of the actin cytoskeleton, play essential roles in orchestrating the development and remodeling of spines and synapses. Precise spatio-temporal regulation of Rho GTPase activity is critical for their function, since aberrant Rho GTPase signaling can cause spine and synapse defects as well as cognitive impairments. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). We propose that Rho-family GEFs and GAPs provide the spatiotemporal regulation and signaling specificity necessary for proper Rho GTPase function based on the following features they possess: (i) existence of multiple GEFs and GAPs per Rho GTPase, (ii) developmentally regulated expression, (iii) discrete localization, (iv) ability to bind to and organize specific signaling networks, and (v) tightly regulated activity, perhaps involving GEF/GAP interactions. Recent studies describe several Rho-family GEFs and GAPs that uniquely contribute to spinogenesis and synaptogenesis. Here, we highlight several of these proteins and discuss how they occupy distinct biochemical niches critical for synaptic development.
Collapse
Affiliation(s)
- Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
219
|
Cho SJ, Lee H, Dutta S, Song J, Walikonis R, Moon IS. Septin 6 regulates the cytoarchitecture of neurons through localization at dendritic branch points and bases of protrusions. Mol Cells 2011; 32:89-98. [PMID: 21544625 PMCID: PMC3887662 DOI: 10.1007/s10059-011-1048-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022] Open
Abstract
Septins, a conserved family of GTP-binding proteins with a conserved role in cytokinesis, are present in eukaryotes ranging from yeast to mammals. Septins are also highly expressed in neurons, which are post-mitotic cells. Septin6 (SEPT6) forms SEPT2/6/7 complexes in vivo. In this study, we produced a very specific SEPT6 antibody. Immunocytochemisty (ICC) of dissociated hippocampal cultures revealed that SEPT6 was highly expressed in neurons. Developmentally, the expression of SEPT6 was very low until stage 3 (axonal outgrowth). Significant expression of SEPT6 began at stage 4 (outgrowth of dendrites). At this stage, SEPT6 clusters were positioned at the branch points of developing dendrites. In maturing and mature neurons (stage 5), SEPT6 clusters were positioned at the base of filopodia and spines, and pre-synaptic boutons. Detergent extraction experiments also indicated that SEPT6 is not a post-synaptic density (PSD) protein. Throughout morphologic development of neurons, SEPT6 always formed tiny rings (external diameter, ∼0.5 μm), which appear to be clusters at low magnification. When a Sept6 RNAi vector was introduced at the early developmental stage (DIV 2), a significant reduction in dendritic length and branch number was evident. Taken together, our results indicate that SEPT6 begins to be expressed at the stage of dendritic outgrowth and regulates the cytoarchitecture.
Collapse
Affiliation(s)
- Sun-Jung Cho
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 780-714, Korea
- Present address: Division of Brain Diseases, Center for Biomedical Sciences, National Institute of Health, Osong Health Technology Administration Complex, Cheongwon 363-951, Korea
| | - HyunSook Lee
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 780-714, Korea
| | - Samikshan Dutta
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 780-714, Korea
| | - Jinyoung Song
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 780-714, Korea
- Present address: Department of Pediatrics, Sejong General Hospital, Bucheon 422-711, Korea
| | - Randall Walikonis
- Department of Physiology and Neurobiology, University of Connecticut, CT 06269, USA
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 780-714, Korea
| |
Collapse
|
220
|
Yun-Hong Y, Chih-Fan C, Chia-Wei C, Yen-Chung C. A study of the spatial protein organization of the postsynaptic density isolated from porcine cerebral cortex and cerebellum. Mol Cell Proteomics 2011; 10:M110.007138. [PMID: 21715321 DOI: 10.1074/mcp.m110.007138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Postsynaptic density (PSD) is a protein supramolecule lying underneath the postsynaptic membrane of excitatory synapses and has been implicated to play important roles in synaptic structure and function in mammalian central nervous system. Here, PSDs were isolated from two distinct regions of porcine brain, cerebral cortex and cerebellum. SDS-PAGE and Western blotting analyses indicated that cerebral and cerebellar PSDs consisted of a similar set of proteins with noticeable differences in the abundance of various proteins between these samples. Subsequently, protein localization in these PSDs was analyzed by using the Nano-Depth-Tagging method. This method involved the use of three synthetic reagents, as agarose beads whose surface was covalently linked with a fluorescent, photoactivable, and cleavable chemical crosslinker by spacers of varied lengths. After its application was verified by using a synthetic complex consisting of four layers of different proteins, the Nano-Depth-Tagging method was used here to yield information concerning the depth distribution of various proteins in the PSD. The results indicated that in both cerebral and cerebellar PSDs, glutamate receptors, actin, and actin binding proteins resided in the peripheral regions within ∼ 10 nm deep from the surface and that scaffold proteins, tubulin subunits, microtubule-binding proteins, and membrane cytoskeleton proteins found in mammalian erythrocytes resided in the interiors deeper than 10 nm from the surface in the PSD. Finally, by using the immunoabsorption method, binding partner proteins of two proteins residing in the interiors, PSD-95 and α-tubulin, and those of two proteins residing in the peripheral regions, elongation factor-1α and calcium, calmodulin-dependent protein kinase II α subunit, of cerebral and cerebellar PSDs were identified. Overall, the results indicate a striking similarity in protein organization between the PSDs isolated from porcine cerebral cortex and cerebellum. A model of the molecular structure of the PSD has also been proposed here.
Collapse
Affiliation(s)
- Yen Yun-Hong
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | |
Collapse
|
221
|
Kiraly DD, Stone KL, Colangelo CM, Abbott T, Wang Y, Mains RE, Eipper BA. Identification of kalirin-7 as a potential post-synaptic density signaling hub. J Proteome Res 2011; 10:2828-41. [PMID: 21488700 PMCID: PMC3107868 DOI: 10.1021/pr200088w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Kalirin-7 (Kal7), a multifunctional Rho GDP/GTP exchange factor (GEF) for Rac1 and RhoG, is embedded in the postsynaptic density at excitatory synapses, where it participates in the formation and maintenance of dendritic spines. Kal7 has been implicated in long-term potentiation, fear memories, and addiction-like behaviors. Using liquid chromatography and tandem mass spectroscopy, we identified sites phosphorylated by six PSD-localized kinases implicated in synaptic plasticity and behavior, sites phosphorylated when myc-Kal7 was expressed in non-neuronal cells and sites phosphorylated in mouse brain Kal7. A site in the Sec14p domain phosphorylated by calcium/calmodulin dependent protein kinase II, protein kinase A and protein kinase C, was phosphorylated in mouse brain but not in non-neuronal cells. Phosphorylation in the spectrin-like repeat region was more extensive in mouse brain than in non-neuronal cells, with a total of 20 sites identified. Sites in the pleckstrin homology domain and in the linker region connecting the GEF domain to the PDZ binding motif were heavily phosphorylated in both non-neuronal cells and in mouse brain and affected GEF activity. We postulate that the kinase convergence and divergence observed in Kal7 identify it as a key player in integration of the multiple inputs that regulate synaptic structure and function.
Collapse
Affiliation(s)
- Drew D Kiraly
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | |
Collapse
|
222
|
Abstract
Ionotropic receptors, including the NMDAR (N-methyl-D-aspartate receptor) mediate fast neurotransmission, neurodevelopment, neuronal excitability and learning. In the present article, the structure and function of the NMDAR is reviewed with the aim to condense our current understanding and highlight frontiers where important questions regarding the biology of this receptor remain unanswered. In the second part of the present review, new biochemical and genetic approaches for the investigation of ion channel receptor complexes will be discussed.
Collapse
Affiliation(s)
- René A W Frank
- Wellcome Trust Sanger Institute, Genome Campus, Cambridge U.K.
| |
Collapse
|
223
|
Shinohara Y. Quantification of postsynaptic density proteins: glutamate receptor subunits and scaffolding proteins. Hippocampus 2011; 22:942-53. [PMID: 21594948 DOI: 10.1002/hipo.20950] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2011] [Indexed: 11/11/2022]
Abstract
The postsynaptic density (PSD) protein complex has long been a major target of proteomics in neuroscience. As the number of glutamate receptors on a synapse is one of the main determinants of synaptic efficacy, determining the absolute numbers of receptors in the PSD is necessary for estimating the amplitude of the excitatory postsynaptic current (EPSC) in individual synapses. Moreover, as the receptor molecules are embedded in a macromolecular complex within the PSD, stoichiometry between the receptors and other PSD proteins could help explain the functional and regional specialization of the synapses and their possible roles in synaptic plasticity. Here, I review various studies concerned with the quantification of PSD proteins.
Collapse
Affiliation(s)
- Yoshiaki Shinohara
- RIKEN Brain Science Institute, Hinase Research Unit, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
224
|
Frank RAW, McRae AF, Pocklington AJ, van de Lagemaat LN, Navarro P, Croning MDR, Komiyama NH, Bradley SJ, Challiss RAJ, Armstrong JD, Finn RD, Malloy MP, MacLean AW, Harris SE, Starr JM, Bhaskar SS, Howard EK, Hunt SE, Coffey AJ, Ranganath V, Deloukas P, Rogers J, Muir WJ, Deary IJ, Blackwood DH, Visscher PM, Grant SGN. Clustered coding variants in the glutamate receptor complexes of individuals with schizophrenia and bipolar disorder. PLoS One 2011; 6:e19011. [PMID: 21559497 PMCID: PMC3084736 DOI: 10.1371/journal.pone.0019011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 03/21/2011] [Indexed: 01/03/2023] Open
Abstract
Current models of schizophrenia and bipolar disorder implicate multiple genes, however their biological relationships remain elusive. To test the genetic role of glutamate receptors and their interacting scaffold proteins, the exons of ten glutamatergic 'hub' genes in 1304 individuals were re-sequenced in case and control samples. No significant difference in the overall number of non-synonymous single nucleotide polymorphisms (nsSNPs) was observed between cases and controls. However, cluster analysis of nsSNPs identified two exons encoding the cysteine-rich domain and first transmembrane helix of GRM1 as a risk locus with five mutations highly enriched within these domains. A new splice variant lacking the transmembrane GPCR domain of GRM1 was discovered in the human brain and the GRM1 mutation cluster could perturb the regulation of this variant. The predicted effect on individuals harbouring multiple mutations distributed in their ten hub genes was also examined. Diseased individuals possessed an increased load of deleteriousness from multiple concurrent rare and common coding variants. Together, these data suggest a disease model in which the interplay of compound genetic coding variants, distributed among glutamate receptors and their interacting proteins, contribute to the pathogenesis of schizophrenia and bipolar disorders.
Collapse
Affiliation(s)
- René A. W. Frank
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Allan F. McRae
- Queensland Institute of Medical Research,
Royal Brisbane Hospital, Brisbane, Australia
| | | | | | - Pau Navarro
- MRC Human Genetics, Institute of Genetics and
Molecular Medicine, Western General Hospital, Edinburgh, United
Kingdom
| | - Mike D. R. Croning
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Noboru H. Komiyama
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Sophie J. Bradley
- Department of Cell Physiology and
Pharmacology, University of Leicester, Leicester, United Kingdom
| | - R. A. John Challiss
- Department of Cell Physiology and
Pharmacology, University of Leicester, Leicester, United Kingdom
| | | | - Robert D. Finn
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Mary P. Malloy
- Division of Psychiatry, University of
Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Alan W. MacLean
- Division of Psychiatry, University of
Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Sarah E. Harris
- Department of Psychology, Centre for Cognitive
Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United
Kingdom
| | - John M. Starr
- Department of Psychology, Centre for Cognitive
Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United
Kingdom
| | - Sanjeev S. Bhaskar
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Eleanor K. Howard
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Sarah E. Hunt
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Alison J. Coffey
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Venkatesh Ranganath
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Jane Rogers
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Walter J. Muir
- Division of Psychiatry, University of
Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Ian J. Deary
- Department of Psychology, Centre for Cognitive
Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United
Kingdom
| | - Douglas H. Blackwood
- Division of Psychiatry, University of
Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Peter M. Visscher
- Queensland Institute of Medical Research,
Royal Brisbane Hospital, Brisbane, Australia
| | - Seth G. N. Grant
- Wellcome Trust Sanger Institute, Genome
Campus, Hinxton, Cambridgeshire, United Kingdom
| |
Collapse
|
225
|
Schulte U, Müller CS, Fakler B. Ion channels and their molecular environments – Glimpses and insights from functional proteomics. Semin Cell Dev Biol 2011; 22:132-44. [DOI: 10.1016/j.semcdb.2010.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 01/09/2023]
|
226
|
Emes RD, Grant SGN. The human postsynaptic density shares conserved elements with proteomes of unicellular eukaryotes and prokaryotes. Front Neurosci 2011; 5:44. [PMID: 21503141 PMCID: PMC3071500 DOI: 10.3389/fnins.2011.00044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/16/2011] [Indexed: 11/21/2022] Open
Abstract
The animal nervous system processes information from the environment and mediates learning and memory using molecular signaling pathways in the postsynaptic terminal of synapses. Postsynaptic neurotransmitter receptors assemble to form multiprotein complexes that drive signal transduction pathways to downstream cell biological processes. Studies of mouse and Drosophila postsynaptic proteins have identified key roles in synaptic physiology and behavior for a wide range of proteins including receptors, scaffolds, enzymes, structural, translational, and transcriptional regulators. Comparative proteomic and genomic studies identified components of the postsynaptic proteome conserved in eukaryotes and early metazoans. We extend these studies, and examine the conservation of genes and domains found in the human postsynaptic density with those across the three superkingdoms, archaeal, bacteria, and eukaryota. A conserved set of proteins essential for basic cellular functions were conserved across the three superkingdoms, whereas synaptic structural and many signaling molecules were specific to the eukaryote lineage. Genes involved with metabolism and environmental signaling in Escherichia coli including the chemotactic and ArcAB Two-Component signal transduction systems shared homologous genes in the mammalian postsynaptic proteome. These data suggest conservation between prokaryotes and mammalian synapses of signaling mechanisms from receptors to transcriptional responses, a process essential to learning and memory in vertebrates. A number of human postsynaptic proteins with homologs in prokaryotes are mutated in human genetic diseases with nervous system pathology. These data also indicate that structural and signaling proteins characteristic of postsynaptic complexes arose in the eukaryotic lineage and rapidly expanded following the emergence of the metazoa, and provide an insight into the early evolution of synaptic mechanisms and conserved mechanisms of learning and memory.
Collapse
Affiliation(s)
- Richard David Emes
- School of Veterinary Medicine and Science, University of NottinghamLeicestershire, UK
| | | |
Collapse
|
227
|
Hamdan F, Gauthier J, Araki Y, Lin DT, Yoshizawa Y, Higashi K, Park AR, Spiegelman D, Dobrzeniecka S, Piton A, Tomitori H, Daoud H, Massicotte C, Henrion E, Diallo O, Shekarabi M, Marineau C, Shevell M, Maranda B, Mitchell G, Nadeau A, D'Anjou G, Vanasse M, Srour M, Lafrenière R, Drapeau P, Lacaille J, Kim E, Lee JR, Igarashi K, Huganir R, Rouleau G, Michaud J, Michaud JL. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am J Hum Genet 2011; 88:306-16. [PMID: 21376300 DOI: 10.1016/j.ajhg.2011.02.001] [Citation(s) in RCA: 285] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/27/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022] Open
Abstract
Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder.
Collapse
|
228
|
Costain WJ, Haqqani AS, Rasquinha I, Giguere MS, Slinn J, Zurakowski B, Stanimirovic DB. Proteomic analysis of synaptosomal protein expression reveals that cerebral ischemia alters lysosomal Psap processing. Proteomics 2011; 10:3272-91. [PMID: 20718007 DOI: 10.1002/pmic.200900447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cerebral ischemia (CI) induces dramatic changes in synaptic structure and function that precedes delayed post-ischemic neuronal death. Here, a proteomic analysis was used to identify the effects of focal CI on synaptosomal protein levels. Contralateral and ipsilateral synaptosomes, prepared from adult mice subjected to 60 min middle cerebral artery occlusion, were isolated following 3, 6 and 20 h of reperfusion. Synaptosomal protein samples (n=3) were labeled using the cleavable ICAT system prior to analysis with nanoLC-MS/MS. Each sample was analyzed by LC-MS to identify differential expressions using InDEPT software and differentially expressed peptides were identified by targeted LC-MS/MS. A total of 62 differentially expressed proteins were identified and Gene Ontology classification (cellular component) indicated that the majority of the proteins were located in the mitochondria and other components consistent with synaptic localization. The observed alterations in synaptic protein levels poorly correlated with gene expression, indicating the involvement of post-transcriptional regulatory mechanisms in determining post-ischemic synaptic protein content. Additionally, immunohistochemistry analysis of prosaposin (Psap) and saposin C (SapC) indicates that CI disrupts Psap processing and glycosphingolipid metabolism. These results demonstrate that the synapse is adversely affected by CI and may play a role in mediating post-ischemic neuronal viability.
Collapse
Affiliation(s)
- Willard J Costain
- Glycosyltransferases and Neuroglycomics, Institute for Biological Sciences, National Research Council, Ottawa, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
229
|
Moody TD, Watabe AM, Indersmitten T, Komiyama NH, Grant SG, O'Dell TJ. Beta-adrenergic receptor activation rescues theta frequency stimulation-induced LTP deficits in mice expressing C-terminally truncated NMDA receptor GluN2A subunits. Learn Mem 2011; 18:118-27. [PMID: 21257779 PMCID: PMC3032578 DOI: 10.1101/lm.2045311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/19/2010] [Indexed: 01/15/2023]
Abstract
Through protein interactions mediated by their cytoplasmic C termini the GluN2A and GluN2B subunits of NMDA receptors (NMDARs) have a key role in the formation of NMDAR signaling complexes at excitatory synapses. Although these signaling complexes are thought to have a crucial role in NMDAR-dependent forms of synaptic plasticity such as long-term potentiation (LTP), the role of the C terminus of GluN2A in coupling NMDARs to LTP enhancing and/or suppressing signaling pathways is unclear. To address this issue we examined the induction of LTP in the hippocampal CA1 region in mice lacking the C terminus of endogenous GluN2A subunits (GluN2AΔC/ΔC). Our results show that truncation of GluN2A subunits produces robust, but highly frequency-dependent, deficits in LTP and a reduction in basal levels of extracellular signal regulated kinase 2 (ERK2) activation and phosphorylation of AMPA receptor GluA1 subunits at a protein kinase A site (serine 845). Consistent with the notion that these signaling deficits contribute to the deficits in LTP in GluN2AΔC/ΔC mice, activating ERK2 and increasing GluA1 S845 phosphorylation through activation of β-adrenergic receptors rescued the induction of LTP in these mutants. Together, our results indicate that the capacity of excitatory synapses to undergo plasticity in response to different patterns of activity is dependent on the coupling of specific signaling pathways to the intracellular domains of the NMDARs and that abnormal plasticity resulting from mutations in NMDARs can be reduced by activation of key neuromodulatory transmitter receptors that engage converging signaling pathways.
Collapse
Affiliation(s)
- Teena D. Moody
- Interdepartmental PhD Program for Neuroscience, University of California Los Angeles, Los Angeles, California 90024, USA
| | - Ayako M. Watabe
- Laboratory of Neurophysiology, Department of Neuroscience, Jikei University School of Medicine, Tokyo 105-8461, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Tim Indersmitten
- Interdepartmental PhD Program for Neuroscience, University of California Los Angeles, Los Angeles, California 90024, USA
| | | | - Seth G.N. Grant
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Thomas J. O'Dell
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024, USA
| |
Collapse
|
230
|
Abstract
Regulating the number and function of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors located at the postsynaptic density is a key mechanism underlying synaptic strength and plasticity. Thus, an active area of investigation is the discovery of accessory proteins that regulate AMPA receptor trafficking and biophysical properties. One decade ago, pioneering studies identified the transmembrane protein stargazin as a critical regulator of synaptic targeting of AMPA receptors in cerebellar granule neurons. Stargazin-related family members called TARPs (transmembrane AMPA receptor regulatory proteins) are now recognized as essential auxiliary subunits for AMPA receptors that control both receptor trafficking and channel gating properties in a wide variety of neuronal cell types. Recent studies have identified a diverse array of additional accessory transmembrane proteins with distinct and overlapping functions compared with TARPs. Coupled with the wide variety of established cytoplasmic AMPA receptor accessory proteins, it is clear that AMPA receptor regulation encompasses a previously unrecognized diversity of molecular mechanisms.
Collapse
Affiliation(s)
- Elva Díaz
- Department of Pharmacology, UC Davis School of Medicine, Davis, CA 95616, USA.
| |
Collapse
|
231
|
Regulation of dendritic spines, spatial memory, and embryonic development by the TANC family of PSD-95-interacting proteins. J Neurosci 2010; 30:15102-12. [PMID: 21068316 DOI: 10.1523/jneurosci.3128-10.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PSD-95 (postsynaptic density-95) is thought to play important roles in the regulation of dendritic spines and excitatory synapses, but the underlying mechanisms have not been fully elucidated. TANC1 is a PSD-95-interacting synaptic protein that contains multiple domains for protein-protein interactions but whose function is not well understood. In the present study, we provide evidence that TANC1 and its close relative TANC2 regulate dendritic spines and excitatory synapses. Overexpression of TANC1 and TANC2 in cultured neurons increases the density of dendritic spines and excitatory synapses in a manner that requires the PDZ (PSD-95/Dlg/ZO-1)-binding C termini of TANC proteins. TANC1-deficient mice exhibit reduced spine density in the CA3 region of the hippocampus, but not in the CA1 or dentate gyrus regions, and show impaired spatial memory. TANC2 deficiency, however, causes embryonic lethality. These results suggest that TANC1 is important for dendritic spine maintenance and spatial memory, and implicate TANC2 in embryonic development.
Collapse
|
232
|
Dani A, Huang B, Bergan J, Dulac C, Zhuang X. Superresolution imaging of chemical synapses in the brain. Neuron 2010; 68:843-56. [PMID: 21144999 PMCID: PMC3057101 DOI: 10.1016/j.neuron.2010.11.021] [Citation(s) in RCA: 507] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2010] [Indexed: 12/30/2022]
Abstract
Determination of the molecular architecture of synapses requires nanoscopic image resolution and specific molecular recognition, a task that has so far defied many conventional imaging approaches. Here, we present a superresolution fluorescence imaging method to visualize the molecular architecture of synapses in the brain. Using multicolor, three-dimensional stochastic optical reconstruction microscopy, the distributions of synaptic proteins can be measured with nanometer precision. Furthermore, the wide-field, volumetric imaging method enables high-throughput, quantitative analysis of a large number of synapses from different brain regions. To demonstrate the capabilities of this approach, we have determined the organization of ten protein components of the presynaptic active zone and the postsynaptic density. Variations in synapse morphology, neurotransmitter receptor composition, and receptor distribution were observed both among synapses and across different brain regions. Combination with optogenetics further allowed molecular events associated with synaptic plasticity to be resolved at the single-synapse level.
Collapse
Affiliation(s)
- Adish Dani
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Bo Huang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
- Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138
| | - Joseph Bergan
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Catherine Dulac
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
- Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138
| |
Collapse
|
233
|
Cai L, Pan H, Trzciński K, Thompson CM, Wu Q, Kramnik I. MYBBP1A: a new Ipr1's binding protein in mice. Mol Biol Rep 2010; 37:3863-8. [PMID: 20221700 PMCID: PMC3084015 DOI: 10.1007/s11033-010-0042-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/24/2010] [Indexed: 12/16/2022]
Abstract
Infection with mycobacterium tuberculosis (MTB) can cause different outcomes in hosts with variant genetic backgrounds. Previously, we identified an intracellular pathogen resistance 1 (Ipr1) gene with the role of resistance of MTB infection in mice model. However, until now, its binding proteins have been little known even for its human homology, SP110. In this study, the homology for mouse Ipr1 in canines was found to have an extra domain structure, h.1.5.1. And 30 potential candidate proteins were predicted to bind canine Ipr1, which were characterized of the interacting structure with the h.1.5.1. Among them, MYBBP1A was verified to bind with both Ipr1 and eGFP-Ipr1 in mouse macrophage J774A.1 clone 21 cells using co-immunoprecipitation method. And with the constructed high-confidence Ipr1-involved network, we suggested that Ipr1 might be involved in apoptosis pathway via MYBBP1A.
Collapse
Affiliation(s)
- Lei Cai
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 667 Huntington Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
234
|
Valor LM, Barco A. Hippocampal gene profiling: toward a systems biology of the hippocampus. Hippocampus 2010; 22:929-41. [PMID: 21080408 DOI: 10.1002/hipo.20888] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2010] [Indexed: 01/17/2023]
Abstract
Transcriptomics and proteomics approaches give a unique perspective for understanding brain and hippocampal functions but also pose unique challenges because of the singular complexity of the nervous system. The proliferation of genome-wide expression studies during the last decade has provided important insight into the molecular underpinnings of brain anatomy, neural plasticity, and neurological diseases. Microarray technology has dominated transcriptomics research, but this situation is rapidly changing with the recent technological advances in high-throughput sequencing. The full potential of transcriptomics in the neurosciences will be achieved as a result of its integration with other "-omics" disciplines as well as the development of novel analytical bioinformatics and systems biology tools for meta-analysis. Here, we review some of the most relevant advances in the gene profiling of the hippocampus, its relationship with proteomics approaches, and the promising perspectives for the future.
Collapse
Affiliation(s)
- Luis M Valor
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Campus de Sant Joan, Apt. 18, Sant Joan d'Alacant, 03550, Alicante, Spain
| | | |
Collapse
|
235
|
Hussain NK, Hsin H, Huganir RL, Sheng M. MINK and TNIK differentially act on Rap2-mediated signal transduction to regulate neuronal structure and AMPA receptor function. J Neurosci 2010; 30:14786-94. [PMID: 21048137 PMCID: PMC3070943 DOI: 10.1523/jneurosci.4124-10.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/13/2010] [Indexed: 12/21/2022] Open
Abstract
Misshapen/NIKs (Nck-interacting kinases)-related kinase (MINK) and closely related TRAF2/Nck-interacting kinase (TNIK) are proteins that specifically bind to activated Rap2 and are thus hypothesized to relay its downstream signal transduction. Activated Rap2 has been found to stimulate dendritic pruning, reduce synaptic density and cause removal of synaptic AMPA receptors (AMPA-Rs) (Zhu et al., 2005; Fu et al., 2007). Here we report that MINK and TNIK are postsynaptically enriched proteins whose clustering within dendrites is bidirectionally regulated by the activation state of Rap2. Expression of MINK and TNIK in neurons is required for normal dendritic arborization and surface expression of AMPA receptors. Overexpression of a truncated MINK mutant unable to interact with Rap2 leads to reduced dendritic branching and this MINK-mediated effect on neuronal morphology is dependent upon Rap2 activation. While similarly truncated TNIK also reduces neuronal complexity, its effect does not require Rap2 activity. Furthermore, Rap2-mediated removal of surface AMPA-Rs from spines is entirely abrogated by coexpression of MINK, but not TNIK. Thus, although both MINK and TNIK bind GTP-bound Rap2, these kinases employ distinct mechanisms to modulate Rap2-mediated signaling. MINK appears to antagonize Rap2 signal transduction by binding to activated Rap2. We suggest that MINK interaction with Rap2 plays a critical role in maintaining the morphological integrity of dendrites and synaptic transmission.
Collapse
Affiliation(s)
- Natasha K. Hussain
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Honor Hsin
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Morgan Sheng
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| |
Collapse
|
236
|
Abstract
Proline-rich tyrosine kinase 2 (PYK2), also known as cell adhesion kinase beta or protein tyrosine kinase 2b, is a calcium-dependent signaling protein involved in cell migration. Phosphorylation of residue Y402 is associated with activation of PYK2 and leads to the recruitment of downstream signaling molecules. PYK2 was previously implicated in long-term potentiation (LTP); however, the role of PYK2 in long-term depression (LTD) is unknown. Here, we report that PYK2 is activated by NMDA receptor stimulation (chemical LTD) in cultured neurons. Small hairpin RNA-mediated knockdown of PYK2 blocks LTD, but not LTP, in hippocampal slice cultures. We find that the Y402 residue and, to a lesser extent, PYK2 kinase activity contribute to PYK2's role in LTD. Knockdown experiments indicate that PYK2 is required to suppress NMDA-induced extracellular signal-regulated kinase (ERK) phosphorylation. Overexpression of PYK2 depresses NMDA-induced ERK phosphorylation and inhibits LTP, but not LTD. Our data indicate that PYK2 is critical for the induction of LTD, possibly in part by antagonizing ERK signaling in hippocampal neurons.
Collapse
|
237
|
Lasserre JP, Sylvius L, Joubert-Caron R, Caron M, Hardouin J. Organellar Protein Complexes of Caco-2 Human Cells Analyzed by Two-Dimensional Blue Native/SDS-PAGE and Mass Spectrometry. J Proteome Res 2010; 9:5093-107. [DOI: 10.1021/pr100381m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jean-Paul Lasserre
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Loïk Sylvius
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Raymonde Joubert-Caron
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Michel Caron
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Julie Hardouin
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| |
Collapse
|
238
|
The genetics of obsessive-compulsive disorder and Tourette syndrome: an epidemiological and pathway-based approach for gene discovery. J Am Acad Child Adolesc Psychiatry 2010; 49:810-9, 819.e1-2. [PMID: 20643314 DOI: 10.1016/j.jaac.2010.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To provide a contemporary perspective on genetic discovery methods applied to obsessive-compulsive disorder (OCD) and Tourette syndrome (TS). METHOD A review of research trends in genetics research in OCD and TS is conducted, with emphasis on novel approaches. RESULTS Genome-wide association studies (GWAS) are now in progress in OCD and TS and will provide a platform for future discovery of common gene variants. Optimally, newer next-generation genome sequencing methods can also be used to detect larger effect genes (rare gene variants), taking advantage of pedigrees. Studies of gene networks or sets rather than individual genes will be required to elucidate biological etiology, as neural systems appear to act redundantly. Newer phenotyping strategies, such as symptom-based subtypes, cross-disorder latent class types, and intermediate phenotypes (endophenotypes) will need to be developed and tested to better align clinical and physiological measures with genetic architecture. CONCLUSION Although genetics research has made significant advances based on computational strength and bioinformatics advances, newer approaches to phenotyping and judicious study of gene etiological networks will be needed to uncover the genetic etiology of OCD and TS.
Collapse
|
239
|
Delint-Ramirez I, Fernández E, Bayés A, Kicsi E, Komiyama NH, Grant SGN. In vivo composition of NMDA receptor signaling complexes differs between membrane subdomains and is modulated by PSD-95 and PSD-93. J Neurosci 2010; 30:8162-70. [PMID: 20554866 PMCID: PMC2912510 DOI: 10.1523/jneurosci.1792-10.2010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/01/2010] [Indexed: 11/21/2022] Open
Abstract
Lipid rafts are dynamic membrane microdomains enriched in cholesterol and sphingolipids involved in the compartmentalization of signaling pathways, trafficking and sorting of proteins. At synapses, the glutamatergic NMDA receptor and its cytoplasmic scaffold protein PSD-95 move between postsynaptic density (PSD) and rafts following learning or ischemia. However it is not known whether the signaling complexes formed by these proteins are different in rafts nor the molecular mechanisms that govern their localization. To examine these issues in vivo we used mice carrying genetically encoded tags for purification of protein complexes and specific mutations in NMDA receptors, PSD-95 and other postsynaptic scaffold proteins. Isolation of PSD-95 complexes from mice carrying tandem affinity purification tags showed differential composition in lipid rafts, postsynaptic density and detergent-soluble fractions. Raft PSD-95 complexes showed less CaMKIIalpha and SynGAP and enrichment in Src and Arc/Arg3.1 compared with PSD complexes. Mice carrying knock-outs of PSD-95 or PSD-93 show a key role for PSD-95 in localizing NR2A-containing NMDA receptor complexes to rafts. Deletion of the NR2A C terminus or the C-terminal valine residue of NR2B, which prevents all PDZ interactions, reduced the NR1 association with rafts. Interestingly, the deletion of the NR2B valine residue increased the total amount of lipid rafts. These data show critical roles for scaffold proteins and their interactions with NMDA receptor subunits in organizing the differential expression in rafts and postsynaptic densities of synaptic signaling complexes.
Collapse
Affiliation(s)
- Ilse Delint-Ramirez
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | | | | | | | | | | |
Collapse
|
240
|
Kiraly DD, Eipper-Mains JE, Mains RE, Eipper BA. Synaptic plasticity, a symphony in GEF. ACS Chem Neurosci 2010; 1:348-365. [PMID: 20543890 PMCID: PMC2882301 DOI: 10.1021/cn100012x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/03/2010] [Indexed: 02/06/2023] Open
Abstract
Dendritic spines are the postsynaptic sites for the majority of excitatory synapses in the mammalian forebrain. While many spines display great stability, others change shape in a matter of seconds to minutes. These rapid alterations in dendritic spine number and size require tight control of the actin cytoskeleton, the main structural component of dendritic spines. The ability of neurons to alter spine number and size is essential for the expression of neuronal plasticity. Within spines, guanine nucleotide exchange factors (GEFs) act as critical regulators of the actin cytoskeleton by controlling the activity of Rho-GTPases. In this review we focus on the Rho-GEFs expressed in the nucleus accumbens and localized to the postsynaptic density, and thus positioned to effect rapid alterations in the structure of dendritic spines. We review literature that ties these GEFs to different receptor systems and intracellular signaling cascades and discuss the effects these interactions are likely to have on synaptic plasticity.
Collapse
Affiliation(s)
- Drew D Kiraly
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT
| | | | | | | |
Collapse
|
241
|
Li KW, Klemmer P, Smit AB. Interaction proteomics of synapse protein complexes. Anal Bioanal Chem 2010; 397:3195-202. [PMID: 20361179 PMCID: PMC2911543 DOI: 10.1007/s00216-010-3658-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/15/2010] [Accepted: 03/15/2010] [Indexed: 01/29/2023]
Abstract
The brain integrates complex types of information, and executes a wide range of physiological and behavioral processes. Trillions of tiny organelles, the synapses, are central to neuronal communication and information processing in the brain. Synaptic transmission involves an intricate network of synaptic proteins that forms the molecular machinery underlying transmitter release, activation, and modulation of transmitter receptors and signal transduction cascades. These processes are dynamically regulated and underlie neuroplasticity, crucial to learning and memory formation. In recent years, interaction proteomics has increasingly been used to elucidate the constituents of synaptic protein complexes. Unlike classic hypothesis-based assays, interaction proteomics detects both known and novel interactors without bias. In this trend article, we focus on the technical aspects of recent proteomics to identify synapse protein complexes, and the complementary methods used to verify the protein–protein interaction. Moreover, we discuss the experimental feasibility of performing global analysis of the synapse protein interactome.
Collapse
Affiliation(s)
- Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
242
|
Filiou MD, Bisle B, Reckow S, Teplytska L, Maccarrone G, Turck CW. Profiling of mouse synaptosome proteome and phosphoproteome by IEF. Electrophoresis 2010; 31:1294-301. [DOI: 10.1002/elps.200900647] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
243
|
Ratushnyak AS, Zapara TA. Principles of cellular-molecular mechanisms underlying neuron functions. J Integr Neurosci 2010; 8:453-69. [PMID: 20205298 DOI: 10.1142/s0219635209002319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/02/2009] [Indexed: 11/18/2022] Open
Abstract
In the present work, it was experimentally shown that a neuron in vitro was capable of responding in a manner similar to habituation, Pavlov's reflex and avoidance of the reinforcements. The locality of plastic property modifications and molecular morphology, as well as the connection between functional activity and cytoskeleton have been revealed. A hypothesis is formulated that the neuron is a molecular system which may exercise the control, forecast, recognition, and classification. The basic principles of the molecular mechanisms of the responses underlying integrative activity, learning and memory at the neuronal level are discussed.
Collapse
Affiliation(s)
- Alexander S Ratushnyak
- Design Technological Institute of Digital Techniques SB RAS, Novosibirsk, 63009, Russia.
| | | |
Collapse
|
244
|
Shinoda T, Ito H, Sudo K, Iwamoto I, Morishita R, Nagata KI. Septin 14 is involved in cortical neuronal migration via interaction with Septin 4. Mol Biol Cell 2010; 21:1324-34. [PMID: 20181826 PMCID: PMC2854091 DOI: 10.1091/mbc.e09-10-0869] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Septins are a family of conserved GTP/GDP-binding proteins implicated in a variety of cellular functions. We found that knockdown of Septin 14 or Septin 4 resulted in inhibition of cortical neuronal migration and defective leading process formation. These results suggest a novel function of septin in cortical development. Septins are a family of conserved guanosine triphosphate/guanosine diphosphate-binding proteins implicated in a variety of cellular functions such as cell cycle control and cytokinesis. Although several members of septin family, including Septin 14 (Sept14), are abundantly expressed in nervous tissues, little is known about their physiological functions, especially in neuronal development. Here, we report that Sept14 is strongly expressed in the cortical plate of developing cerebral cortex. Knockdown experiments by using the method of in utero electroporation showed that reduction of Sept14 caused inhibition of cortical neuronal migration. Whereas cDNA encoding RNA interference-resistant Sept14 rescued the migration defect, the C-terminal deletion mutant of Sept14 did not. Biochemical analyses revealed that C-terminal coiled-coil region of Sept14 interacts with Septin 4 (Sept4). Knockdown experiments showed that Sept4 is also involved in cortical neuronal migration in vivo. In addition, knockdown of Sept14 or Sept4 inhibited leading process formation in migrating cortical neurons. These results suggest that Sept14 is involved in neuronal migration in cerebral cortex via interaction with Sept4.
Collapse
Affiliation(s)
- Tomoyasu Shinoda
- Department of Molecular Neurobiology, Aichi Human Service Center, Institute for Developmental Research, Kasugai, Aichi 480-0392, Japan
| | | | | | | | | | | |
Collapse
|
245
|
[Autism, genetics and synaptic function alterations]. ACTA ACUST UNITED AC 2010; 58:381-6. [PMID: 20181440 DOI: 10.1016/j.patbio.2009.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 12/29/2009] [Indexed: 11/20/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by a deficit of language and communication both associated with a restricted repertoire of activities and interests. The current prevalence of autistic disorder stricto sensu is estimated at 1/500 whereas autism spectrum disorders (ASD) increases up to 1/150 to 1/200. Mental deficiency (MD) and epilepsy are present in numerous autistic individuals. Consequently, autism is as a major public health issue. Autism was first considered as a non biological disease; however various rational approaches for analysing epidemiological data suggested the possibility of the influence of genetic factors. In 2003, this hypothesis was clearly illustrated by the characterization of genetic mutations transmitted through a mendelian manner. Subsequently, the glutamate synapse appeared as a preferential causal target in autism because the identified genes encoded proteins present in this structure. Strikingly, the findings that an identical genetic dysfunction of the synapse might also explain some MD suggested the possibility of a genetic comorbidity between these neurodevelopmental conditions. To date, various identified genes are considered indifferently as "autism" or "MD" genes. The characterization of mutations in the NLGN4X gene in patients with Asperger syndrome, autism without MD, or MD without autism, was the first example. It appears that a genetic continuum between ASD on one hand, and between autism and MD on the other hand, is present. Consequently, it is likely that genes already involved in MD will be found mutated in autistic patients and will represent future target for finding new factors in autism.
Collapse
|
246
|
Santos SD, Manadas B, Duarte CB, Carvalho AL. Proteomic Analysis of an Interactome for Long-Form AMPA Receptor Subunits. J Proteome Res 2010; 9:1670-82. [DOI: 10.1021/pr900766r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandra D. Santos
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carlos B. Duarte
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ana Luísa Carvalho
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
247
|
Alié A, Manuel M. The backbone of the post-synaptic density originated in a unicellular ancestor of choanoflagellates and metazoans. BMC Evol Biol 2010; 10:34. [PMID: 20128896 PMCID: PMC2824662 DOI: 10.1186/1471-2148-10-34] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 02/03/2010] [Indexed: 11/24/2022] Open
Abstract
Background Comparative genomics of the early diverging metazoan lineages and of their unicellular sister-groups opens new window to reconstructing the genetic changes which preceded or accompanied the evolution of multicellular body plans. A recent analysis found that the genome of the nerve-less sponges encodes the homologues of most vertebrate post-synaptic proteins. In vertebrate excitatory synapses, these proteins assemble to form the post-synaptic density, a complex molecular platform linking membrane receptors, components of their signalling pathways, and the cytoskeleton. Newly available genomes from Monosiga brevicollis (a member of Choanoflagellata, the closest unicellular relatives of animals) and Trichoplax adhaerens (a member of Placozoa: besides sponges, the only nerve-less metazoans) offer an opportunity to refine our understanding of post-synaptic protein evolution. Results Searches for orthologous proteins and reconstruction of gene gains/losses based on the taxon phylogeny indicate that post-synaptic proteins originated in two main steps. The backbone scaffold proteins (Shank, Homer, DLG) and some of their partners were acquired in a unicellular ancestor of choanoflagellates and metazoans. A substantial additional set appeared in an exclusive ancestor of the Metazoa. The placozoan genome contains most post-synaptic genes but lacks some of them. Notably, the master-scaffold protein Shank might have been lost secondarily in the placozoan lineage. Conclusions The time of origination of most post-synaptic proteins was not concomitant with the acquisition of synapses or neural-like cells. The backbone of the scaffold emerged in a unicellular context and was probably not involved in cell-cell communication. Based on the reconstructed protein composition and potential interactions, its ancestral function could have been to link calcium signalling and cytoskeleton regulation. The complex later became integrated into the evolving synapse through the addition of novel functionalities.
Collapse
Affiliation(s)
- Alexandre Alié
- UPMC Univ Paris 06, UMR 7138 Systématique, Adaptation, Evolution CNRS IRD MNHN, Bâtiment A, Université Pierre et Marie Curie, 7 Quai St Bernard, 75005 Paris, France
| | | |
Collapse
|
248
|
Baucum AJ, Jalan-Sakrikar N, Jiao Y, Gustin RM, Carmody LC, Tabb DL, Ham AJL, Colbran RJ. Identification and validation of novel spinophilin-associated proteins in rodent striatum using an enhanced ex vivo shotgun proteomics approach. Mol Cell Proteomics 2010; 9:1243-59. [PMID: 20124353 DOI: 10.1074/mcp.m900387-mcp200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spinophilin regulates excitatory postsynaptic function and morphology during development by virtue of its interactions with filamentous actin, protein phosphatase 1, and a plethora of additional signaling proteins. To provide insight into the roles of spinophilin in mature brain, we characterized the spinophilin interactome in subcellular fractions solubilized from adult rodent striatum by using a shotgun proteomics approach to identify proteins in spinophilin immune complexes. Initial analyses of samples generated using a mouse spinophilin antibody detected 23 proteins that were not present in an IgG control sample; however, 12 of these proteins were detected in complexes isolated from spinophilin knock-out tissue. A second screen using two different spinophilin antibodies and either knock-out or IgG controls identified a total of 125 proteins. The probability of each protein being specifically associated with spinophilin in each sample was calculated, and proteins were ranked according to a chi(2) analysis of the probabilities from analyses of multiple samples. Spinophilin and the known associated proteins neurabin and multiple isoforms of protein phosphatase 1 were specifically detected. Multiple, novel, spinophilin-associated proteins (myosin Va, calcium/calmodulin-dependent protein kinase II, neurofilament light polypeptide, postsynaptic density 95, alpha-actinin, and densin) were then shown to interact with GST fusion proteins containing fragments of spinophilin. Additional biochemical and transfected cell imaging studies showed that alpha-actinin and densin directly interact with residues 151-300 and 446-817, respectively, of spinophilin. Taken together, we have developed a multi-antibody, shotgun proteomics approach to characterize protein interactomes in native tissues, delineating the importance of knock-out tissue controls and providing novel insights into the nature and function of the spinophilin interactome in mature striatum.
Collapse
Affiliation(s)
- Anthony J Baucum
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232-0615, USA.
| | | | | | | | | | | | | | | |
Collapse
|
249
|
Gorini G, Ponomareva O, Shores KS, Person MD, Harris RA, Mayfield RD. Dynamin-1 co-associates with native mouse brain BKCa channels: proteomics analysis of synaptic protein complexes. FEBS Lett 2010; 584:845-51. [PMID: 20114047 DOI: 10.1016/j.febslet.2009.12.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/15/2009] [Accepted: 12/26/2009] [Indexed: 12/28/2022]
Abstract
In every synapse, a large number of proteins interact with other proteins in order to carry out signaling and transmission in the central nervous system. In this study, we used interaction proteomics to identify novel synaptic protein interactions in mouse cortical membranes under native conditions. Using immunoprecipitation, immunoblotting, and mass spectrometry, we identified a number of novel synaptic protein interactions involving soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), calcium-activated potassium channel (BKCa) alpha subunits, and dynamin-1. These novel interactions offer valuable insight into the protein-protein interaction network in intact synapses that could advance understanding of vesicle trafficking, release, and recycling.
Collapse
Affiliation(s)
- Giorgio Gorini
- Waggoner Center for Alcohol and Addiction Research, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | | | |
Collapse
|
250
|
|