201
|
Li H, Liu Y, Zhang X, Xu Q, Zhang Y, Xue C, Guo C. Medium-chain fatty acids decrease serum cholesterol via reduction of intestinal bile acid reabsorption in C57BL/6J mice. Nutr Metab (Lond) 2018; 15:37. [PMID: 29991957 PMCID: PMC5987598 DOI: 10.1186/s12986-018-0267-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/13/2018] [Indexed: 01/23/2023] Open
Abstract
Background Bile acids play a pivotal role in cholesterol metabolism via the enterohepatic circulation. This study investigated the effects of medium-chain triglycerides (MCTs)/medium-chain fatty acids (MCFAs) on the reduction of bile acid absorption in the small intestine and the mechanisms of action in vivo and partially verified in vitro. Methods Thirty-six C57BL/6 J mice with hypercholesterolaemia were randomly divided into 3 groups: fed a cholesterol-rich diet (CR group), fed a cholesterol-rich and medium-chain triglyceride diet (CR-MCT group) and fed a cholesterol-rich and long-chain triglyceride diet (CR-LCT group). Body weights and blood lipid profiles were measured in all groups after 16 weeks of treatment. The concentrations of bile acids in bile and faeces were analysed using HPLC-MS (high-performance liquid chromatography-mass spectrometry). Gene transcription and the expression levels associated with bile acid absorption in the small intestines were determined using real-time PCR and Western blot. Ileal bile acid binding protein (I-BABP) was analysed using immunofluorescence. The effects of MCFAs on the permeability of bile acid (cholic acid, CA) in Caco-2 cell monolayers and I-BABP expression levels in Caco-2 cells treated with caprylic acid (C8:0), capric acid (C10:0), stearic acid (C18:0) and oleic acid (C18:1) were determined. Results Mice in the CR-MCT group exhibited lower body weights and serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels and a higher HDL-C/LDL-C ratio than the CR-LCT group (P < 0.05). The concentrations of primary bile acids (primarily CA) and secondary bile acids in faeces and secondary bile acids in bile in the CR-MCT group were significantly higher than in the CR-LCT group (P < 0.05). C8:0 and C10:0 decreased the permeability of CA in Caco-2 cell monolayers. MCT/MCFAs (C8:0 and C10:0) inhibited I-BABP gene expression in the small intestines and Caco-2 cells (P < 0.05). Conclusions MCT slowed the body weight increase and promoted the excretion of bile acids. MCT lowered serum cholesterol levels at least partially via reduction of bile acid absorption in the small intestine by inhibition of I-BABP expression. Our results provide the basis for clinical trials of MCT as a dietary supplement for lowering plasma cholesterol and reducing risk of CHD.
Collapse
Affiliation(s)
- Huizi Li
- Department of Nutrition, Tianjin Institute of Environmental & Operational Medicine, Tianjin, 300050 China.,2Department of Nutrition, PLA Rocket Force General Hospital, Beijing, 100088 China
| | - Yinghua Liu
- 3Department of Nutrition, Chinese PLA General Hospital, Beijing, 100853 China
| | - Xinsheng Zhang
- 3Department of Nutrition, Chinese PLA General Hospital, Beijing, 100853 China
| | - Qing Xu
- 3Department of Nutrition, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yong Zhang
- 3Department of Nutrition, Chinese PLA General Hospital, Beijing, 100853 China
| | - Changyong Xue
- 3Department of Nutrition, Chinese PLA General Hospital, Beijing, 100853 China
| | - Changjiang Guo
- Department of Nutrition, Tianjin Institute of Environmental & Operational Medicine, Tianjin, 300050 China
| |
Collapse
|
202
|
Tarui H, Tomigahara Y, Nagahori H, Sugimoto K, Mogi M, Kawamura S, Isobe N, Kaneko H. Species differences in the developmental toxicity of procymidone-Placental transfer of procymidone in pregnant rats, rabbits, and monkeys. JOURNAL OF PESTICIDE SCIENCE 2018; 43:79-87. [PMID: 30363091 PMCID: PMC6140638 DOI: 10.1584/jpestics.d17-079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
To clarify species differences in the developmental toxicity of procymidone (Sumilex®, a fungicide for agricultural use), placental transfer studies were conducted using 14C-labeled procymidone in pregnant rats, rabbits, and monkeys. These studies demonstrated that maternal-to-fetal transfer of the parent compound and its hydroxylated metabolite, which are both weak anti-androgenic agents, occurred more easily than that of other metabolites, with much higher absolute concentrations achieved in the fetal circulation of rats than of rabbits or monkeys. Notably, in rats, the fetal plasma concentration of the hydroxylated metabolite was higher than that of procymidone, especially after repeated oral administration of procymidone. These results suggest that the hydroxylated metabolite is the most relevant metabolite involved in teratogenic activity in rats.
Collapse
Affiliation(s)
- Hirokazu Tarui
- Environmental Health Science Laboratory, Sumitomo Chemical, Co., Ltd
| | | | - Hirohisa Nagahori
- Environmental Health Science Laboratory, Sumitomo Chemical, Co., Ltd
| | | | | | - Satoshi Kawamura
- Environmental Health Science Laboratory, Sumitomo Chemical, Co., Ltd
| | - Naohiko Isobe
- Environmental Health Science Laboratory, Sumitomo Chemical, Co., Ltd
| | - Hideo Kaneko
- Environmental Health Science Laboratory, Sumitomo Chemical, Co., Ltd
| |
Collapse
|
203
|
Morgan ET, Dempsey JL, Mimche SM, Lamb TJ, Kulkarni S, Cui JY, Jeong H, Slitt AL. Physiological Regulation of Drug Metabolism and Transport: Pregnancy, Microbiome, Inflammation, Infection, and Fasting. Drug Metab Dispos 2018; 46:503-513. [PMID: 29514828 PMCID: PMC5885931 DOI: 10.1124/dmd.117.079905] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/22/2018] [Indexed: 01/08/2023] Open
Abstract
This article is a report on a symposium entitled "Physiological Regulation of Drug Metabolism and Transport" sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2017 meeting in Chicago, IL. The contributions of physiologic and pathophysiological regulation of drug-metabolizing enzymes and transporters to interindividual variability in drug metabolism are increasingly recognized but in many cases are not well understood. The presentations herein discuss the phenomenology, consequences, and mechanism of such regulation. CYP2D6 transgenic mice were used to provide insights into the mechanism of regulation of this enzyme in pregnancy, via hepatocyte nuclear factor 4α, small heterodimer partner, and retinoids. Regulation of intestinal and hepatic drug-processing enzymes by the intestinal microbiota via tryptophan and its metabolites was investigated. The potential impact of parasitic infections on human drug metabolism and clearance was assessed in mice infected with Schistosoma mansoni or Plasmodium chabaudi chabaudi AS, both of which produced widespread and profound effects on murine hepatic drug-metabolizing enzymes. Finally, the induction of Abcc drug efflux transporters by fasting was investigated. This was demonstrated to occur via a cAMP, protein kinase A/nuclear factor-E2-related factor 2/Sirtuin 1 pathway via antioxidant response elements on the Abcc genes.
Collapse
Affiliation(s)
- Edward T Morgan
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| | - Joseph L Dempsey
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| | - Sylvie M Mimche
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| | - Tracey J Lamb
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| | - Supriya Kulkarni
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| | - Julia Yue Cui
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| | - Hyunyoung Jeong
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| | - Angela L Slitt
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia (E.T.M., S.M.M.); Department of Pathology, University of Utah, Salt Lake City, Utah (T.J.L.); Department of Pharmacy Practice and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., J.L.D.); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington (J.L.D., J.Y.C.); and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island (A.L.S., S.K.)
| |
Collapse
|
204
|
Human papilloma virus (HPV) 18 proteins E6 and E7 up-regulate ABC transporters in oropharyngeal carcinoma. Involvement of the nonsense-mediated decay (NMD) pathway. Cancer Lett 2018; 428:69-76. [PMID: 29715486 DOI: 10.1016/j.canlet.2018.04.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 02/08/2023]
Abstract
Oropharyngeal cancer incidence increased dramatically in the last decades, being infection with human papillomaviruses (HPV) a determinant of this trend. Concerning etiology, treatment response and prognosis, HPV+ and HPV- oropharyngeal cancers constitute different disease entities. The underlying molecular background is not completely understood. ATP-binding cassette (ABC) transporters mediate the efflux of anticancer drugs and are regulated by changes in the intracellular milieu. Furthermore, a role in cancer pathogenesis besides drug transport was reported. We evaluated the effect of transfection with E6 and E7 oncogenes from HPV16 and HPV18 on ABC transporters in oropharyngeal cancer cells. HPV18E6/E7 up-regulated P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and MRP2 expression in HNO206 cells and breast cancer resistance protein (BCRP) in HNO206 and HNO413 cells. While P-gp was regulated translationally, MRP1, MRP2 and BCRP up-regulation resulted from mRNA stabilization. For MRP1 and MRP2, the nonsense-mediated decay pathway was involved. In general, resistance to substrates of up-regulated transporters was increased. Transfection with oncogenes individually indicated a major role of HPV18E7. Our findings suggest ABC transporters as molecular players leading to differences in the pathogenesis of HPV+ and HPV- oropharyngeal cancer.
Collapse
|
205
|
Characterization of a novel organic solute transporter homologue from Clonorchis sinensis. PLoS Negl Trop Dis 2018; 12:e0006459. [PMID: 29702646 PMCID: PMC5942847 DOI: 10.1371/journal.pntd.0006459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/09/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022] Open
Abstract
Clonorchis sinensis is a liver fluke that can dwell in the bile ducts of mammals. Bile acid transporters function to maintain the homeostasis of bile acids in C. sinensis, as they induce physiological changes or have harmful effects on C. sinensis survival. The organic solute transporter (OST) transports mainly bile acid and belongs to the SLC51 subfamily of solute carrier transporters. OST plays a critical role in the recirculation of bile acids in higher animals. In this study, we cloned full-length cDNA of the 480-amino acid OST from C. sinensis (CsOST). Genomic analysis revealed 11 exons and nine introns. The CsOST protein had a 'Solute_trans_a' domain with 67% homology to Schistosoma japonicum OST. For further analysis, the CsOST protein sequence was split into the ordered domain (CsOST-N) at the N-terminus and disordered domain (CsOST-C) at the C-terminus. The tertiary structure of each domain was built using a threading-based method and determined by manual comparison. In a phylogenetic tree, the CsOST-N domain belonged to the OSTα and CsOST-C to the OSTβ clade. These two domains were more highly conserved with the OST α- and β-subunits at the structure level than at sequence level. These findings suggested that CsOST comprised the OST α- and β-subunits. CsOST was localized in the oral and ventral suckers and in the mesenchymal tissues abundant around the intestine, vitelline glands, uterus, and testes. This study provides fundamental data for the further understanding of homologues in other flukes.
Collapse
|
206
|
Huang CS, Chen HW, Lin TY, Lin AH, Lii CK. Shikonin upregulates the expression of drug-metabolizing enzymes and drug transporters in primary rat hepatocytes. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:18-25. [PMID: 29414119 DOI: 10.1016/j.jep.2018.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shikonin, a naphthoquinone pigment abundant in the root of the Chinese herb Lithospermum erythrorhizon, has been widely used to treat inflammatory diseases for thousands of years. Whether shikonin changes drug metabolism remains unclear. AIM OF THE STUDY We investigated whether shikonin modulates the expression of hepatic drug-metabolizing enzymes and transporters as well as the possible mechanisms of this action. MATERIALS AND METHODS Primary hepatocytes isolated from Sprague-Dawley rats were treated with 0-2 μM shikonin and the protein and mRNA levels of drug-metabolizing enzymes and transporters as well as the activation of aryl hydrocarbon receptor (AhR) and NF-E2-related factor 2 (Nrf2) were determined. RESULTS Shikonin dose-dependently increased the protein and RNA expression of phase I enzymes, i.e., cytochrome P450 (CYP) 1A1/2, CYP3A2, CYP2D1, and CYP2C6; phase II enzymes, i.e., glutathione S-transferase (GST), NADP(H) quinone oxidoreductase 1 (NQO1), and UDP glucuronosyltransferase 1A1; and phase III drug transporters, i.e., P-glycoprotein, multidrug resistance-associated protein 2/3, organic anion transporting polypeptide (OATP) 1B1, and OATP2B1. Immunoblot analysis and EMSA revealed that shikonin increased AhR and Nrf2 nuclear contents and DNA binding activity. AhR and Nrf2 knockdown by siRNA attenuated the ability of shikonin to induce drug-metabolizing enzyme expression. In addition, shikonin increased p38, JNK, and ERK1/2 phosphorylation, and inhibitors of the respective kinases inhibited shikonin-induced Nrf2 nuclear translocation. CONCLUSIONS Shikonin effectively upregulates the transcription of CYP isozymes, phase II detoxification enzymes, and phase III membrane transporters and this function is at least partially through activation of AhR and Nrf2. Moreover, Nrf2 activation is dependent on mitogen-activated protein kinases.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Basic Helix-Loop-Helix Transcription Factors/agonists
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Biotransformation
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/pharmacology
- Extracellular Signal-Regulated MAP Kinases
- Gene Expression Regulation, Enzymologic/drug effects
- Hepatocytes/drug effects
- Hepatocytes/enzymology
- JNK Mitogen-Activated Protein Kinases
- Male
- Membrane Transport Proteins/drug effects
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Naphthoquinones/pharmacology
- Phosphorylation
- Primary Cell Culture
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Transcriptional Activation/drug effects
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Chin-Shiu Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan
| | - Tzu-Yu Lin
- Department of Nutrition, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan
| | - Ai-Hsuan Lin
- Department of Nutrition, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan
| | - Chong-Kuei Lii
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; Department of Nutrition, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan.
| |
Collapse
|
207
|
Tocchetti GN, Domínguez CJ, Zecchinati F, Arana MR, Ruiz ML, Villanueva SSM, Weiss J, Mottino AD, Rigalli JP. Biphasic modulation of cAMP levels by the contraceptive nomegestrol acetate. Impact on P-glycoprotein expression and activity in hepatic cells. Biochem Pharmacol 2018; 154:118-126. [PMID: 29684377 DOI: 10.1016/j.bcp.2018.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022]
Abstract
ABC transporters are key players in drug excretion with alterations in their expression and activity by therapeutic agents potentially leading to drug-drug interactions. The interaction potential of nomegestrol acetate (NMGA), a synthetic progestogen increasingly used as oral contraceptive, had never been explored. In this work we evaluated (1) the effect of NMGA on ABC transporters in the human hepatic cell line HepG2 and (2) the underlying molecular mechanism. NMGA (5, 50 and 500 nM) increased P-glycoprotein (P-gp) expression at both protein and mRNA levels and reduced intracellular calcein accumulation, indicating an increase also in transporter activity. This up-regulation of P-gp was corroborated in Huh7 cells and was independent of the classical progesterone receptor. Instead, using a siRNA-mediated silencing approach, we demonstrated the involvement of membrane progesterone receptor α. Moreover, we found that the activation of this receptor by NMGA led to a falling-rising profile in intracellular cAMP levels and protein kinase A activity over time, ultimately leading to transcriptional P-gp up-regulation. Finally, we identified inhibitory G protein and phosphodiesterases as mediators of this novel biphasic modulation. These results demonstrate the ability of NMGA to selectively up-regulate hepatic P-gp expression and activity and constitute the first report of ABC transporter modulation by membrane progesterone receptor α. If a similar regulation took place in vivo, decreased bioavailability and therapeutic efficacy of NMGA-coadministered P-gp substrates could be expected. This holds special importance considering long-term administration of NMGA and broad substrate specificity of P-gp.
Collapse
Affiliation(s)
- Guillermo Nicolás Tocchetti
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina; Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Camila Juliana Domínguez
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Felipe Zecchinati
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Maite Rocío Arana
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | | | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Aldo Domingo Mottino
- Institute of Experimental Physiology (IFISE-CONICET), Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
208
|
Wang L, Wang J, Cai W, Shi Y, Zhou X, Guo G, Guo C, Huang X, Han Z, Zhang S, Ma S, Zhou X, Fan D, Gershwin ME, Han Y. A Critical Evaluation of Liver Pathology in Humans with Danon Disease and Experimental Correlates in a Rat Model of LAMP-2 Deficiency. Clin Rev Allergy Immunol 2018; 53:105-116. [PMID: 28124283 DOI: 10.1007/s12016-017-8598-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Danon disease is a genetic deficiency in lysosome-associated membrane protein 2 (LAMP-2), a highly glycosylated constituent of the lysosomal membrane and characterized by a cardiomyopathy, skeletal muscle myopathy, and cognitive impairment. Patients, however, often manifest hepatic abnormalities, but liver function has not been well evaluated and the syndrome is relatively uncommon. Hence, we have taken advantage of a rat that has been deleted of LAMP-2 to study the relative role of LAMP-2 on liver function. Interestingly, rats deficient in LAMP-2 develop a striking increase in serum alkaline phosphatase (ALP) and a decrease in bile flow compared with wild-type littermates. Importantly and by ultrastructural analysis, deficient rats manifest dilated canaliculi that lack microvilli with evidence of bile-containing bodies. Moreover, following bile duct ligation, LAMP-2-deficient rats develop rapid and severe evidence of advanced cholestasis, with an increase in serum bilirubin, as early as 6 h later. In wild-type control rats, multidrug resistance-associated protein 2 (Mrp2) normally concentrates at the bile canalicular membranes to secrete conjugated bilirubin into bile. However, in LAMP-2y/- rats, Mrp2 was detected in hepatocytes compared with other canalicular proteins including P-glycoproteins, dipeptidyl peptidase IV (CD26), and aminopeptidase (CD13). Our data further suggest that LAMP-2 interacts with the membrane cytoskeletal proteins radixin and F-actin in determining the localization of integral membrane proteins.
Collapse
Affiliation(s)
- Lu Wang
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Jingbo Wang
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Weile Cai
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Yongquan Shi
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Xinmin Zhou
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Guanya Guo
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Changcun Guo
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Xiaofeng Huang
- Center of Electron Microscope, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Zheyi Han
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Shuai Zhang
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Shuoyi Ma
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Xia Zhou
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Daiming Fan
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA.
| | - Ying Han
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China.
| |
Collapse
|
209
|
Hou Z, Chen L, Fang P, Cai H, Tang H, Peng Y, Deng Y, Cao L, Li H, Zhang B, Yan M. Mechanisms of Triptolide-Induced Hepatotoxicity and Protective Effect of Combined Use of Isoliquiritigenin: Possible Roles of Nrf2 and Hepatic Transporters. Front Pharmacol 2018; 9:226. [PMID: 29615906 PMCID: PMC5865274 DOI: 10.3389/fphar.2018.00226] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/28/2018] [Indexed: 12/13/2022] Open
Abstract
Triptolide (TP), the main bioactive component of Tripterygium wilfordii Hook F, can cause severe hepatotoxicity. Isoliquiritigenin (ISL) has been reported to be able to protect against TP-induced liver injury, but the mechanisms are not fully elucidated. This study aims to explore the role of nuclear transcription factor E2-related factor 2 (Nrf2) and hepatic transporters in TP-induced hepatotoxicity and the reversal protective effect of ISL. TP treatment caused both cytotoxicity in L02 hepatocytes and acute liver injury in mice. Particularly, TP led to the disorder of bile acid (BA) profiles in mice livers. Combined treatment of TP with ISL effectively alleviated TP-induced hepatotoxicity. Furthermore, ISL pretreatment enhanced Nrf2 expressions and nuclear accumulations and its downstream NAD(P)H: quinine oxidoreductase 1 (NQO1) expression. Expressions of hepatic P-gp, MRP2, MRP4, bile salt export pump, and OATP2 were also induced. In addition, in vitro transport assays identified that neither was TP exported by MRP2, OATP1B1, or OATP1B3, nor did TP influence the transport activities of P-gp or MRP2. All these results indicate that ISL may reduce the hepatic oxidative stress and hepatic accumulations of both endogenous BAs and exogenous TP as well as its metabolites by enhancing the expressions of Nrf2, NQO1, and hepatic influx and efflux transporters. Effects of TP on hepatic transporters are mainly at the transcriptional levels, and changes of hepatic BA profiles are very important in the mechanisms of TP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhenyan Hou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Lei Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Pingfei Fang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Huaibo Tang
- Department of Pharmacy, Chemistry College, Xiangtan University, Xiangtan, China
| | - Yongbo Peng
- Molecular Science and Biomedicine Laboratory, College of Life Sciences, State Key Laboratory of Chemo, Bio-Sensing and Chemometrics, Hunan University, Changsha, China
| | - Yang Deng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lingjuan Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Huande Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
210
|
Baillie JK, Bretherick A, Haley CS, Clohisey S, Gray A, Neyton LPA, Barrett J, Stahl EA, Tenesa A, Andersson R, Brown JB, Faulkner GJ, Lizio M, Schaefer U, Daub C, Itoh M, Kondo N, Lassmann T, Kawai J, Mole D, Bajic VB, Heutink P, Rehli M, Kawaji H, Sandelin A, Suzuki H, Satsangi J, Wells CA, Hacohen N, Freeman TC, Hayashizaki Y, Carninci P, Forrest ARR, Hume DA. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease. PLoS Comput Biol 2018; 14:e1005934. [PMID: 29494619 PMCID: PMC5849332 DOI: 10.1371/journal.pcbi.1005934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 03/13/2018] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.
Collapse
Affiliation(s)
- J. Kenneth Baillie
- Division of Genetics and Genomics, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
- Intensive Care Unit, Royal Infirmary Edinburgh, Edinburgh, United Kingdom
| | - Andrew Bretherick
- Division of Genetics and Genomics, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher S. Haley
- Division of Genetics and Genomics, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Clohisey
- Division of Genetics and Genomics, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan Gray
- Edinburgh Parallel Computing Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucile P. A. Neyton
- Division of Genetics and Genomics, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeffrey Barrett
- Statistical Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Eli A. Stahl
- Center for Statistical Genetics, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Albert Tenesa
- Division of Genetics and Genomics, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Robin Andersson
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - J. Ben Brown
- Department of Statistics, University of California, Berkeley, United States of America
| | - Geoffrey J. Faulkner
- Mater Research Institute, University of Queensland, University of Queensland, Brisbane, Australia
| | - Marina Lizio
- RIKEN Omics Science Center, Yokohama, Japan, Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Ulf Schaefer
- Department for Infectious Disease Informatics, Public Health England, Colindale, United Kingdom
| | - Carsten Daub
- RIKEN Omics Science Center, Yokohama, Japan, Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Masayoshi Itoh
- RIKEN Omics Science Center, Yokohama, Japan, Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| | - Naoto Kondo
- RIKEN Omics Science Center, Yokohama, Japan, Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Timo Lassmann
- RIKEN Omics Science Center, Yokohama, Japan, Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Jun Kawai
- RIKEN Omics Science Center, Yokohama, Japan, Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - IIBDGC Consortium
- Harry Perkins Institute of Medical Research, and the Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Perth, Western Australia, Australia
| | - Damian Mole
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Vladimir B. Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center, Thuwal, Kingdom of Saudi Arabia
| | - Peter Heutink
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Michael Rehli
- Dept. Hematology, University Hospital Regensburg, Regensburg, Germany
| | - Hideya Kawaji
- RIKEN Omics Science Center, Yokohama, Japan, Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Harukazu Suzuki
- RIKEN Omics Science Center, Yokohama, Japan, Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Jack Satsangi
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Christine A. Wells
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Brisbane Australia
| | - Nir Hacohen
- Broad Institute of Harvard and MIT, Cambridge, United States of America
| | - Thomas C. Freeman
- Division of Genetics and Genomics, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Yoshihide Hayashizaki
- RIKEN Omics Science Center, Yokohama, Japan, Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Piero Carninci
- RIKEN Omics Science Center, Yokohama, Japan, Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Alistair R. R. Forrest
- Harry Perkins Institute of Medical Research, and the Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Perth, Western Australia, Australia
| | - David A. Hume
- Division of Genetics and Genomics, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- Mater Research Institute, University of Queensland, University of Queensland, Brisbane, Australia
| |
Collapse
|
211
|
Jirkovský E, Jirkovská A, Bureš J, Chládek J, Lenčová O, Stariat J, Pokorná Z, Karabanovich G, Roh J, Brázdová P, Šimůnek T, Kovaříková P, Štěrba M. Pharmacokinetics of the Cardioprotective Drug Dexrazoxane and Its Active Metabolite ADR-925 with Focus on Cardiomyocytes and the Heart. J Pharmacol Exp Ther 2018; 364:433-446. [PMID: 29273587 DOI: 10.1124/jpet.117.244848] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 11/22/2022] Open
Abstract
Dexrazoxane (DEX), the only cardioprotectant approved against anthracycline cardiotoxicity, has been traditionally deemed to be a prodrug of the iron-chelating metabolite ADR-925. However, pharmacokinetic profile of both agents, particularly with respect to the cells and tissues essential for its action (cardiomyocytes/myocardium), remains poorly understood. The aim of this study is to characterize the conversion and disposition of DEX to ADR-925 in vitro (primary cardiomyocytes) and in vivo (rabbits) under conditions where DEX is clearly cardioprotective against anthracycline cardiotoxicity. Our results show that DEX is hydrolyzed to ADR-925 in cell media independently of the presence of cardiomyocytes or their lysate. Furthermore, ADR-925 directly penetrates into the cells with contribution of active transport, and detectable concentrations occur earlier than after DEX incubation. In rabbits, ADR-925 was detected rapidly in plasma after DEX administration to form sustained concentrations thereafter. ADR-925 was not markedly retained in the myocardium, and its relative exposure was 5.7-fold lower than for DEX. Unlike liver tissue, myocardium homogenates did not accelerate the conversion of DEX to ADR-925 in vitro, suggesting that myocardial concentrations in vivo may originate from its distribution from the central compartment. The pharmacokinetic parameters for both DEX and ADR-925 were determined by both noncompartmental analyses and population pharmacokinetics (including joint parent-metabolite model). Importantly, all determined parameters were closer to human than to rodent data. The present results open venues for the direct assessment of the cardioprotective effects of ADR-925 in vitro and in vivo to establish whether DEX is a drug or prodrug.
Collapse
Affiliation(s)
- Eduard Jirkovský
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Anna Jirkovská
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jan Bureš
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jaroslav Chládek
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Olga Lenčová
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Ján Stariat
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Zuzana Pokorná
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Galina Karabanovich
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jaroslav Roh
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Petra Brázdová
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Tomáš Šimůnek
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Petra Kovaříková
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Martin Štěrba
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
212
|
Immunohistochemical Assessment of the Expression of Biliary Transportation Proteins MRP2 and MRP3 in Hepatocellular Carcinoma and in Cholangiocarcinoma. Pathol Oncol Res 2018; 25:1363-1371. [DOI: 10.1007/s12253-018-0386-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 02/05/2018] [Indexed: 12/19/2022]
|
213
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function, and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:1-87. [DOI: 10.1016/b978-0-7020-6697-9.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
214
|
Choudhuri S, Patton GW, Chanderbhan RF, Mattia A, Klaassen CD. From Classical Toxicology to Tox21: Some Critical Conceptual and Technological Advances in the Molecular Understanding of the Toxic Response Beginning From the Last Quarter of the 20th Century. Toxicol Sci 2018; 161:5-22. [PMID: 28973688 PMCID: PMC5837539 DOI: 10.1093/toxsci/kfx186] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Toxicology has made steady advances over the last 60+ years in understanding the mechanisms of toxicity at an increasingly finer level of cellular organization. Traditionally, toxicological studies have used animal models. However, the general adoption of the principles of 3R (Replace, Reduce, Refine) provided the impetus for the development of in vitro models in toxicity testing. The present commentary is an attempt to briefly discuss the transformation in toxicology that began around 1980. Many genes important in cellular protection and metabolism of toxicants were cloned and characterized in the 80s, and gene expression studies became feasible, too. The development of transgenic and knockout mice provided valuable animal models to investigate the role of specific genes in producing toxic effects of chemicals or protecting the organism from the toxic effects of chemicals. Further developments in toxicology came from the incorporation of the tools of "omics" (genomics, proteomics, metabolomics, interactomics), epigenetics, systems biology, computational biology, and in vitro biology. Collectively, the advances in toxicology made during the last 30-40 years are expected to provide more innovative and efficient approaches to risk assessment. A goal of experimental toxicology going forward is to reduce animal use and yet be able to conduct appropriate risk assessments and make sound regulatory decisions using alternative methods of toxicity testing. In that respect, Tox21 has provided a big picture framework for the future. Currently, regulatory decisions involving drugs, biologics, food additives, and similar compounds still utilize data from animal testing and human clinical trials. In contrast, the prioritization of environmental chemicals for further study can be made using in vitro screening and computational tools.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Geoffrey W Patton
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Ronald F Chanderbhan
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Antonia Mattia
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
215
|
Wu G, Wen M, Sun L, Li H, Liu Y, Li R, Wu F, Yang R, Lin Y. Mechanistic insights into geniposide regulation of bile salt export pump (BSEP) expression. RSC Adv 2018; 8:37117-37128. [PMID: 35557817 PMCID: PMC9089303 DOI: 10.1039/c8ra06345a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022] Open
Abstract
Geniposide (GE) is a major component isolated from Gardenia jasminoides Ellis, which has been used to treat cholestasis liver diseases. Our previous study has shown that GE could notably increase mRNA and protein expressions of BSEP in cholestatic rats. BSEP plays a critical role in maintenance of the enterohepatic circulation of bile acids. BSEP could be regulated by the transactivation pathway of farnesoid X receptor (FXR) and nuclear factor erythroid 2-related factor (Nrf2). Here the mechanisms for BSEP regulation by GE were investigated. GE induced the mRNA levels of BSEP in HepG2 cells and cholestatic mice, and knockdown of FXR and Nrf2 reduced the mRNA expression of BSEP at varying degrees after treatment of GE. FXR acts as the major regulator of BSEP transcription. The involvement of FXR regulated BSEP expression by GE was further investigated. An enhancement was observed in FXR-dependent BSEP promoter activation using luciferase assay. ChIP assay further confirmed the interaction between FXR and BSEP after GE treatment. Using siRNA and ChIP assays, we demonstrated that peroxisome-proliferator-activated receptor γ co-activator-1α (PGC-1α) and co-activator-associated arginine methyltransferase 1 (CARM1) were predominantly recruited to the BSEP promoter upon FXR activation by GE. In conclusion, GE regulated the expression of BSEP through FXR and Nrf2 signaling pathway. The FXR transactivation pathway was enhanced by increasing recruitment of coactivators PGC-1α and CARM1 upon GE treatment, coupled with an increased binding of FXR to the BSEP promoter. PGC-1α and CARM1 interact with FXR to increase FXR-dependent BSEP expression upon GE treatment.![]()
Collapse
Affiliation(s)
- Guixin Wu
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Min Wen
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Lin Sun
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Huitao Li
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Yubei Liu
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Rui Li
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Feihua Wu
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Rong Yang
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Yining Lin
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| |
Collapse
|
216
|
Li H, Toth E, Cherrington NJ. Asking the Right Questions With Animal Models: Methionine- and Choline-Deficient Model in Predicting Adverse Drug Reactions in Human NASH. Toxicol Sci 2018; 161:23-33. [PMID: 29145614 PMCID: PMC6454421 DOI: 10.1093/toxsci/kfx253] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the past few decades, great conceptual and technological advances have been made in the field of toxicology, but animal model-based research still remains one of the most widely used and readily available tools for furthering our current knowledge. However, animal models are not perfect in predicting all systemic toxicity in humans. Extrapolating animal data to accurately predict human toxicities remains a challenge, and researchers are obligated to question the appropriateness of their chosen animal model. This paper provides an assessment of the utility of the methionine- and choline-deficient (MCD) diet fed animal model in reflecting human nonalcoholic steatohepatitis (NASH) and the potential risks of adverse drug reactions and toxicities that are associated with the disease. As a commonly used NASH model, the MCD model fails to exhibit most metabolic abnormalities in a similar manner to the human disease. The MCD model, on the other hand, closely resembles human NASH histology and reflects signatures of drug transporter alterations in humans. Due to the nature of the MCD model, it should be avoided in studies of NASH pathogenesis, metabolic parameter evaluation, and biomarker identification. But it can be used to accurately predict altered drug disposition due to NASH-associated transporter alterations.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Erica Toth
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | | |
Collapse
|
217
|
Yang X, Liu W, Lin H, Zeng H, Zhang R, Pu C, Wang L, Zheng C, Tan Y, Luo Y, Feng X, Tian Y, Xiao G, Wang J, Huang Y, Luo J, Qiu Z, Chen JA, Wu L, He L, Shu W. Interaction Effects of AFB1 and MC-LR Co-exposure with Polymorphism of Metabolic Genes on Liver Damage: focusing on SLCO1B1 and GSTP1. Sci Rep 2017; 7:16164. [PMID: 29170472 PMCID: PMC5700940 DOI: 10.1038/s41598-017-16432-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 11/13/2017] [Indexed: 02/08/2023] Open
Abstract
AFB1 and MC-LR are two major environmental risk factors for liver damage worldwide, especially in warm and humid areas, but there are individual differences in health response of the toxin-exposed populations. Therefore, we intended to identify the susceptible genes in transport and metabolic process of AFB1 and MC-LR and find their effects on liver damage. We selected eight related SNPs that may affect liver damage outcomes in AFB1 and MC-LR exposed persons, and enrolled 475 cases with liver damage and 475 controls of healthy people in rural areas of China. The eight SNPs were genotyped by PCR and restriction fragment length polymorphism. We found that SLCO1B1 (T521C) is a risk factor for liver damage among people exposed to high AFB1 levels alone or combined with MC-LR, and that GSTP1 (A1578G) could indicate the risk of liver damage among those exposed to high MC-LR levels alone or combined with high AFB1 levels. However, GSTP1 (A1578G) could reduce the risk of liver damage in populations exposed to low MC-LR levels alone or combined with high AFB1 levels. In conclusion, SLCO1B1 (T521C) and GSTP1 (A1578G) are susceptible genes for liver damage in humans exposed to AFB1 and/or MC-LR in rural areas of China.
Collapse
Affiliation(s)
- Xiaohong Yang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wenyi Liu
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Hui Lin
- Department of Tropical Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Hui Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Renping Zhang
- The Center for Disease Control and Prevention in Fuling District, Chongqing, 408000, China
| | - Chaowen Pu
- The Center for Disease Control and Prevention in Fuling District, Chongqing, 408000, China
| | - Lingqiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Chuanfen Zheng
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yang Luo
- Center for Nanomedicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiaobin Feng
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yingqiao Tian
- The Center for Disease Control and Prevention in Fuling District, Chongqing, 408000, China
| | - Guosheng Xiao
- College of Life Science and Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, 404100, China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yujing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Jiaohua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Zhiqun Qiu
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Ji-An Chen
- Department of Health Education, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Liping Wu
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Lixiong He
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
218
|
Karbanova S, Cerveny L, Ceckova M, Ptackova Z, Jiraskova L, Greenwood S, Staud F. Role of nucleoside transporters in transplacental pharmacokinetics of nucleoside reverse transcriptase inhibitors zidovudine and emtricitabine. Placenta 2017; 60:86-92. [PMID: 29208244 DOI: 10.1016/j.placenta.2017.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Zidovudine (AZT) and emtricitabine (FTC) are effective and well tolerated antiretroviral drugs, routinely used in the prevention of perinatal HIV transmission. However, precise mechanism(s) involved in their transfer from mother to fetus are not fully elucidated. Since both drugs are nucleoside analogues, we hypothesized that the mechanisms of their transplacental passage might include equilibrative nucleoside transporters, ENT1 and/or ENT2. METHODS To address this issue, we performed in vitro accumulation assays in the BeWo placental trophoblast cell line, ex vivo uptake studies in fresh villous fragments isolated from human placenta and in situ dually perfused rat term placenta experiments. RESULTS Applying this complex array of methods, we did not prove that ENTs play a significant role in transfer of AZT or FTC across the placenta. DISCUSSION We conclude that the transplacental passage of AZT and FTC is independent of ENTs. Disposition of either compound into the fetal circulation should thus not be affected by ENT-mediated drug-drug interactions or placental expression of the transporters.
Collapse
Affiliation(s)
- S Karbanova
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - L Cerveny
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - M Ceckova
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Z Ptackova
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - L Jiraskova
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - S Greenwood
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - F Staud
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic.
| |
Collapse
|
219
|
Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile Acid Signaling Pathways from the Enterohepatic Circulation to the Central Nervous System. Front Neurosci 2017; 11:617. [PMID: 29163019 PMCID: PMC5681992 DOI: 10.3389/fnins.2017.00617] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
Bile acids are best known as detergents involved in the digestion of lipids. In addition, new data in the last decade have shown that bile acids also function as gut hormones capable of influencing metabolic processes via receptors such as FXR (farnesoid X receptor) and TGR5 (Takeda G protein-coupled receptor 5). These effects of bile acids are not restricted to the gastrointestinal tract, but can affect different tissues throughout the organism. It is still unclear whether these effects also involve signaling of bile acids to the central nervous system (CNS). Bile acid signaling to the CNS encompasses both direct and indirect pathways. Bile acids can act directly in the brain via central FXR and TGR5 signaling. In addition, there are two indirect pathways that involve intermediate agents released upon interaction with bile acids receptors in the gut. Activation of intestinal FXR and TGR5 receptors can result in the release of fibroblast growth factor 19 (FGF19) and glucagon-like peptide 1 (GLP-1), both capable of signaling to the CNS. We conclude that when plasma bile acids levels are high all three pathways may contribute in signal transmission to the CNS. However, under normal physiological circumstances, the indirect pathway involving GLP-1 may evoke the most substantial effect in the brain.
Collapse
Affiliation(s)
- Kim L Mertens
- Master's Program in Biomedical Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Endocrinology, Department Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands.,Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hannah M Eggink
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
220
|
Rigalli JP, Scholz PN, Tocchetti GN, Ruiz ML, Weiss J. The phytoestrogens daidzein and equol inhibit the drug transporter BCRP/ABCG2 in breast cancer cells: potential chemosensitizing effect. Eur J Nutr 2017; 58:139-150. [PMID: 29101532 DOI: 10.1007/s00394-017-1578-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE The soy isoflavone genistein has been described to up-regulate breast cancer resistance protein (BCRP) and, thus, enhance chemoresistance in breast cancer cells. The aim of this work was to assess the effect of long- and short-term incubation with daidzein, the second most abundant soy isoflavone and its metabolite equol on the expression and activity of P-glycoprotein, multidrug resistance-associated proteins 1 and 2 (MRP1 and MRP2) and BCRP in breast cancer cells. METHODS MCF-7 and MDA-MB-231 cells were treated with phytoestrogen concentrations within the range achieved in individuals with a high isoflavone intake. Transporter expression was evaluated at protein and mRNA level through western blot and qRT-PCR, respectively. Transporter activity was determined using doxorubicin, mitoxantrone and carboxy-dichlorofluorescein as substrates. RESULTS Daidzein (5 µM) up-regulated MRP2- and down-regulated MRP1 protein expressions in MCF-7 and MDA-MB-231 cells, respectively. Both effects were ER-dependent, as determined using the antagonist ICI 182,780. The decrease in MRP1 mRNA in MDA-MB-231 cells indicates a transcriptional mechanism. On the contrary, MRP2 induction in MCF-7 cells takes place post-transcriptionally. Whereas changes in the transporter expression had a minor effect on the transporter activity, acute incubation with daidzein, R-equol and S-equol led to a strong inhibition of BCRP activity and an increase in the IC50 of BCRP substrates. CONCLUSIONS In contrast to previous reports for genistein, daidzein and equol do not provoke a major up-regulation of the transporter expression but instead an inhibition of BCRP activity and sensitization to BCRP substrates.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | - Paul Niklas Scholz
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Guillermo Nicolás Tocchetti
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000, Rosario, Argentina
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
221
|
Li CY, Lee S, Cade S, Kuo LJ, Schultz IR, Bhatt DK, Prasad B, Bammler TK, Cui JY. Novel Interactions between Gut Microbiome and Host Drug-Processing Genes Modify the Hepatic Metabolism of the Environmental Chemicals Polybrominated Diphenyl Ethers. Drug Metab Dispos 2017; 45:1197-1214. [PMID: 28864748 PMCID: PMC5649562 DOI: 10.1124/dmd.117.077024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is a novel frontier in xenobiotic metabolism. Polybrominated diphenyl ethers (PBDEs), especially BDE-47 (2, 2', 4, 4'-tetrabromodiphenyl ether) and BDE-99 (2, 2', 4, 4',5-pentabromodiphenyl ether), are among the most abundant and persistent environmental contaminants that produce a variety of toxicities. Little is known about how the gut microbiome affects the hepatic metabolism of PBDEs and the PBDE-mediated regulation of drug-processing genes (DPGs) in vivo. The goal of this study was to determine the role of gut microbiome in modulating the hepatic biotransformation of PBDEs. Nine-week-old male C57BL/6J conventional (CV) or germ-free (GF) mice were treated with vehicle, BDE-47 or BDE-99 (100 μmol/kg) for 4 days. Following BDE-47 treatment, GF mice had higher levels of 5-OH-BDE-47 but lower levels of four other metabolites in liver than CV mice; whereas following BDE-99 treatment GF mice had lower levels of four minor metabolites in liver than CV mice. RNA sequencing demonstrated that the hepatic expression of DPGs was regulated by both PBDEs and enterotypes. Under basal conditions, the lack of gut microbiome upregulated the Cyp2c subfamily but downregulated the Cyp3a subfamily. Following PBDE exposure, certain DPGs were differentially regulated by PBDEs in a gut microbiome-dependent manner. Interestingly, the lack of gut microbiome augmented PBDE-mediated upregulation of many DPGs, such as Cyp1a2 and Cyp3a11 in mouse liver, which was further confirmed by targeted metabolomics. The lack of gut microbiome also augmented the Cyp3a enzyme activity in liver. In conclusion, our study has unveiled a novel interaction between gut microbiome and the hepatic biotransformation of PBDEs.
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Soowan Lee
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Sara Cade
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Li-Jung Kuo
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Irvin R Schultz
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Deepak K Bhatt
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Bhagwat Prasad
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences (C.Y.L., S.L., T.K.B., J.Y.C.), and Department of Pharmaceutics (D.K.B., B.P.), University of Washington, Seattle, Washington; and Pacific Northwest National Laboratory, Sequim, Washington (S.C., L.-J.K., I.R.S.)
| |
Collapse
|
222
|
Iwabuchi K, Senzaki N, Mazawa D, Sato I, Hara M, Ueda F, Liu W, Tsuda S. Tissue toxicokinetics of perfluoro compounds with single and chronic low doses in male rats. J Toxicol Sci 2017; 42:301-317. [PMID: 28496036 DOI: 10.2131/jts.42.301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To examine the kinetics of low doses of perfluoro compounds (PFCs), we administered perfluorohexanoic acid (C6A), perfluorooctanoic acid (C8A), perfluorononanoic acid (C9A) and perfluorooctane sulfonate (C8S) with a single oral dose (50-100 μg/kg BW), and in drinking water at 1, 5, and 25 μg/L for one and three months to male rats; and examined the distribution in the brain, heart, liver, spleen, kidney, whole blood and serum. C6A was very rapidly absorbed, distributed and eliminated from the tissues with nearly the same tissue t1/2 of 2-3 hr. Considering serum Vd, and the tissue delivery, C6A was mainly in the serum with the lowest delivery to the brain; and no tissue accumulation was observed in the chronic studies as estimated from the single dose study. For the other PFCs, the body seemed to be an assortment of independent one-compartments with a longer elimination t1/2 for the liver than the serum. The concentration ratio of liver/serum increased gradually from C0 to a steady state. The high binding capacity of plasma protein may be the reason for the unusual kinetics, with only a very small fraction of free PFCs moving gradually to the liver. Although the tissue specific distribution was time dependent and different among the PFCs, the Vd and ke of each tissue were constant throughout the study. The possibility of extremely high C6A accumulation in the human brain and liver was suggested, by comparing the steady state tissue concentration of this study with the human data reported by Pérez et al. (2013).
Collapse
Affiliation(s)
| | | | | | - Itaru Sato
- Faculty of Agriculture, Iwate University
| | | | - Fukiko Ueda
- School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology Dalian
| | - Shuji Tsuda
- Iwate Institute of Environmental Health Sciences.,Faculty of Agriculture, Iwate University.,School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University
| |
Collapse
|
223
|
BCRP expression in schwannoma, plexiform neurofibroma and MPNST. Oncotarget 2017; 8:88751-88759. [PMID: 29179472 PMCID: PMC5687642 DOI: 10.18632/oncotarget.21075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/17/2017] [Indexed: 01/10/2023] Open
Abstract
Background peripheral nerve sheath tumors comprise a broad spectrum of neoplasms. Vestibular schwannomas and plexiform neurofibromas are symptomatic albeit benign, but a subset of the latter pre-malignant lesions will transform to malignant peripheral nerve sheath tumors (MPNST). Surgery and radiotherapy are the primary strategies to treat these tumors. Intrinsic resistance to drug therapy characterizes all three tumor subtypes. The breast cancer resistance protein BCRP is a transmembrane efflux transporter considered to play a key role in various biological barriers such as the blood brain barrier. At the same time it is associated with drug resistance in various tumors. Its potential role in drug resistant tumors of the peripheral nervous system is largely unknown. Objective to assess if BCRP is expressed in vestibular schwannomas, plexiform neurofibromas and MPNST. Material and methods immunohistochemical staining for BCRP was performed on a tissue microarray composed out of 22 vestibular schwannomas, 10 plexiform neurofibromas and 18 MPNSTs. Results sixteen out of twenty-two vestibular schwannomas (73%), nine out of ten plexiform neurofibromas (90%) and six out of eighteen MPNST (33%) expressed BCRP in the vasculature. Tumor cells were negative. Conclusion BCRP is present in the vasculature of vestibular schwannomas, plexiform neurofibromas and MPSNT. Therefore, it may reduce the drug exposure of underlying tumor tissues and potentially cause failure of drug therapy.
Collapse
|
224
|
Hu M, Wu B, Liu Z. Bioavailability of Polyphenols and Flavonoids in the Era of Precision Medicine. Mol Pharm 2017; 14:2861-2863. [DOI: 10.1021/acs.molpharmaceut.7b00545] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ming Hu
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, United States
| | - Baojian Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Zhongqiu Liu
- International Institute for
Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| |
Collapse
|
225
|
Rodieux F, Gotta V, Pfister M, van den Anker JN. Causes and Consequences of Variability in Drug Transporter Activity in Pediatric Drug Therapy. J Clin Pharmacol 2017; 56 Suppl 7:S173-92. [PMID: 27385174 DOI: 10.1002/jcph.721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/26/2016] [Accepted: 02/11/2016] [Indexed: 01/06/2023]
Abstract
Drug transporters play a key role in mediating the uptake of endo- and exogenous substances into cells as well as their efflux. Therefore, variability in drug transporter activity can influence pharmaco- and toxicokinetics and be a determinant of drug safety and efficacy. In children, particularly in neonates and young infants, the contribution of tissue-specific drug transporters to drug absorption, distribution, and excretion may differ from that in adults. In this review 5 major factors and their interdependence that may influence drug transporter activity in children are discussed: developmental differences, genetic polymorphisms, pediatric comorbidities, interacting comedication, and environmental factors. Even if data are sparse, altered drug transporter activity due to those factors have been associated with clinically relevant differences in drug disposition, efficacy, and safety in pediatric patients. Single nucleotide polymorphisms in drug transporter-encoding genes were the most studied source of drug transporter variability in children. However, in the age group where drug transporter activity has been reported to differ from that in adults, namely neonates and young infants, hardly any studies have been performed. Longitudinal studies in this young population are required to investigate the age- and disease-dependent genotype-phenotype relationships and relevance of drug transporter drug-drug interactions. Physiologically based pharmacokinetic modeling approaches can integrate drug- and patient-specific parameters, including drug transporter ontogeny, and may further improve in silico predictions of pediatric-specific pharmacokinetics.
Collapse
Affiliation(s)
- Frédérique Rodieux
- Pediatric Pharmacology, University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Verena Gotta
- Pediatric Pharmacology, University of Basel Children's Hospital (UKBB), Basel, Switzerland
| | - Marc Pfister
- Pediatric Pharmacology, University of Basel Children's Hospital (UKBB), Basel, Switzerland.,Quantitative Solutions/Certara, Menlo Park, CA, USA
| | - Johannes N van den Anker
- Pediatric Pharmacology, University of Basel Children's Hospital (UKBB), Basel, Switzerland.,Division of Pediatric Clinical Pharmacology, Children's National Health System, Washington, DC, USA.,Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
226
|
Atilano-Roque A, Roda G, Fogueri U, Kiser JJ, Joy MS. Effect of Disease Pathologies on Transporter Expression and Function. J Clin Pharmacol 2017; 56 Suppl 7:S205-21. [PMID: 27385176 DOI: 10.1002/jcph.768] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022]
Abstract
Transporters are important determinants of drug absorption, distribution, and excretion. The clinical relevance of drug transporters in drug disposition and toxicology depends on their localization in liver, kidney, and brain. There has been growing evidence regarding the importance of disease status on alterations in metabolizing enzymes and transporter proteins. This review focuses on uptake and efflux transporter proteins in liver, kidney, and brain and discusses mechanisms of altered transporter expression and function secondary to disease.
Collapse
Affiliation(s)
- Amandla Atilano-Roque
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Gavriel Roda
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Uma Fogueri
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Jennifer J Kiser
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.,Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
227
|
Wen X, Joy MS, Aleksunes LM. In Vitro Transport Activity and Trafficking of MRP2/ABCC2 Polymorphic Variants. Pharm Res 2017; 34:1637-1647. [PMID: 28405913 PMCID: PMC5500460 DOI: 10.1007/s11095-017-2160-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/04/2017] [Indexed: 04/21/2023]
Abstract
PURPOSE Multidrug resistance-associated protein 2 (MRP2/ABCC2) is an efflux pump that removes drugs and chemicals from cells. We sought to characterize the expression, trafficking and in vitro activity of seven single nucleotide polymorphisms (SNPs) in the ABCC2 gene. METHODS ABCC2 SNPs were generated using site-directed mutagenesis and stably expressed in Flp-In HEK293 cells, which allows targeted insertion of transgenes within the genome. Total and cell surface expression of MRP2 as well as accumulation of substrates (calcein AM and 5(6)-carboxy-2',7'-dichlorofluorescein diacetate, CDCF) were quantified in cells or inverted membrane vesicles expressing wild-type (WT) or variant forms. RESULTS The cell surface expression of the C-24T-, G1249A-, G3542T-, T3563A-, C3972T- and G4544A-MRP2 variants was similar to WT-MRP2. While expression was similar, transport of calcein AM was enhanced in cells expressing the G3542T-, T3563A-, C3972T-, and G4544A-MRP2 variants. By comparison, cells expressing the C2366T-MRP2 variant had 40-50% lower surface expression, which increased the accumulation of calcein AM up to 3-fold. Accumulation of CDCF in inverted membrane vesicles expressing the C2366T-MRP2 variant was also reduced by 50%. In addition, the G1249A-MRP2 variant had decreased transport of CDCF. CONCLUSIONS Taken together, these data demonstrate that genetic variability in the ABCC2 gene influences the in vitro expression, trafficking, and transport activity of MRP2.
Collapse
Affiliation(s)
- Xia Wen
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, 80045, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
228
|
Sissung TM, Ley AM, Strope JD, McCrea EM, Beedie S, Peer CJ, Shukla S, van Velkinburgh J, Reece K, Troutman S, Campbell T, Fernandez E, Huang P, Smith J, Thakkar N, Venzon DJ, Brenner S, Lee W, Merino M, Luo J, Jager W, Price DK, Chau CH, Figg WD. Differential Expression of OATP1B3 Mediates Unconjugated Testosterone Influx. Mol Cancer Res 2017; 15:1096-1105. [PMID: 28389619 PMCID: PMC5540879 DOI: 10.1158/1541-7786.mcr-16-0477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/06/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022]
Abstract
Castration-resistant prostate cancer (CRPC) has greater intratumoral testosterone concentrations than similar tumors from eugonadal men; simple diffusion does not account for this observation. This study was undertaken to ascertain the androgen uptake kinetics, functional, and clinical relevance of de novo expression of the steroid hormone transporter OATP1B3 (SLCO1B3). Experiments testing the cellular uptake of androgens suggest that testosterone is an excellent substrate of OATP1B3 (Km = 23.2 μmol/L; Vmax = 321.6 pmol/mg/minute), and cells expressing a doxycycline-inducible SLCO1B3 construct had greater uptake of a clinically relevant concentration of 3H-testosterone (50 nmol/L; 1.6-fold, P = 0.0027). When compared with Slco1b2 (-/-) mice, Slco1b2 (-/-)/hSLCO1B3 knockins had greater hepatic uptake (15% greater AUC, P = 0.0040) and lower plasma exposure to 3H-testosterone (17% lower AUC, P = 0.0030). Of 82 transporters genes, SLCO1B3 is the second-most differentially expressed transporter in CRPC cell lines (116-fold vs. androgen-sensitive cells), with a differentially spliced cancer-type ct-SLCO1B3 making up the majority of SLCO1B3 expression. Overexpression of SLCO1B3 in androgen-responsive cells results in 1.5- to 2-fold greater testosterone uptake, whereas siRNA knockdown of SLCO1B3 in CRPC cells did not change intracellular testosterone concentration. Primary human prostate tumors express SLCO1B3 to a greater extent than ct-SLCO1B3 (26% of total SLCO1B3 expression vs. 0.08%), suggesting that androgen uptake in these tumor cells also is greater. Non-liver tumors do not differentially express SLCO1B3.Implications: This study suggests that de novo OATP1B3 expression in prostate cancer drives greater androgen uptake and is consistent with previous observations that greater OATP1B3 activity results in the development of androgen deprivation therapy resistance and shorter overall survival. Mol Cancer Res; 15(8); 1096-105. ©2017 AACR.
Collapse
Affiliation(s)
- Tristan M Sissung
- Clinical Pharmacology Program, Office of the Clinical Director, NCI, Bethesda, Maryland
| | - Ariel M Ley
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, NCI, Bethesda, Maryland
| | - Jonathan D Strope
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, NCI, Bethesda, Maryland
| | - Edel M McCrea
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, NCI, Bethesda, Maryland
| | - Shaunna Beedie
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, NCI, Bethesda, Maryland
| | - Cody J Peer
- Clinical Pharmacology Program, Office of the Clinical Director, NCI, Bethesda, Maryland
| | | | | | - Kelie Reece
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, NCI, Bethesda, Maryland
| | - Sarah Troutman
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, NCI, Bethesda, Maryland
| | - Tessa Campbell
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, NCI, Bethesda, Maryland
| | - Elena Fernandez
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, NCI, Bethesda, Maryland
| | - Phoebe Huang
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, NCI, Bethesda, Maryland
| | - Jordan Smith
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Nilay Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - David J Venzon
- Biostatistics and Data Management Section, NCI, Bethesda, Maryland
| | - Stefan Brenner
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Wooin Lee
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Maria Merino
- Translational Surgical Pathology Section, NCI, Bethesda, Maryland
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Walter Jager
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Douglas K Price
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, NCI, Bethesda, Maryland
| | - Cindy H Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, NCI, Bethesda, Maryland
| | - William D Figg
- Clinical Pharmacology Program, Office of the Clinical Director, NCI, Bethesda, Maryland.
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, NCI, Bethesda, Maryland
| |
Collapse
|
229
|
Shen H, Chen W, Drexler DM, Mandlekar S, Holenarsipur VK, Shields EE, Langish R, Sidik K, Gan J, Humphreys WG, Marathe P, Lai Y. Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects. Drug Metab Dispos 2017; 45:908-919. [PMID: 28576766 DOI: 10.1124/dmd.117.075531] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022] Open
Abstract
Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition and recapitulate clinical drug-drug interactions (DDIs). In the present study, we investigated bile acids (BAs) dehydroepiandrosterone sulfate (DHEAS), hexadecanedioate (HDA), and tetradecanedioate (TDA) in plasma as endogenous probes for OATP inhibition and compared these candidate probes to CPs. All probes were determined in samples from a single study that examined their behavior and their association with rosuvastatin (RSV) pharmacokinetics after administration of an OATP inhibitor rifampin (RIF) in healthy subjects. Among endogenous probes examined, RIF significantly increased maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC)(0-24h) of fatty acids HDA and TDA by 2.2- to 3.2-fold. For the 13 bile acids in plasma examined, no statistically significant changes were detected between treatments. Changes in plasma DHEAS did not correlate with OATP1B inhibition by RIF. On the basis of the magnitude of effects for the endogenous compounds that demonstrated significant changes from baseline over interindividual variations, the overall rank order for the AUC change was found to be CP I > CP III > HDA ≈ TDA ≈ RSV > > BAs. Collectively, these results reconfirmed that CPs are novel biomarkers suitable for clinical use. In addition, HDA and TDA are useful for OATP functional assessment. Since these endogenous markers can be monitored in conjunction with pharmacokinetics analysis, the CPs and fatty acid dicarboxylates, either alone or in combination, offer promise of earlier diagnosis and risk stratification for OATP-mediated DDIs.
Collapse
Affiliation(s)
- Hong Shen
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Weiqi Chen
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Dieter M Drexler
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Sandhya Mandlekar
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Vinay K Holenarsipur
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Eric E Shields
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Robert Langish
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Kurex Sidik
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Jinping Gan
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - W Griffith Humphreys
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Punit Marathe
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Yurong Lai
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| |
Collapse
|
230
|
Müller J, Keiser M, Drozdzik M, Oswald S. Expression, regulation and function of intestinal drug transporters: an update. Biol Chem 2017; 398:175-192. [PMID: 27611766 DOI: 10.1515/hsz-2016-0259] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/31/2016] [Indexed: 01/05/2023]
Abstract
Although oral drug administration is currently the favorable route of administration, intestinal drug absorption is challenged by several highly variable and poorly predictable processes such as gastrointestinal motility, intestinal drug solubility and intestinal metabolism. One further determinant identified and characterized during the last two decades is the intestinal drug transport that is mediated by several transmembrane proteins such as P-gp, BCRP, PEPT1 and OATP2B1. It is well-established that intestinal transporters can affect oral absorption of many drugs in a significant manner either by facilitating their cellular uptake or by pumping them back to gut lumen, which limits their oral bioavailability. Their functional relevance becomes even more apparent in cases of unwanted drug-drug interactions when concomitantly given drugs that cause transporter induction or inhibition, which in turn leads to increased or decreased drug exposure. The longitudinal expression of several intestinal transporters is not homogeneous along the human intestine, which may have functional implications on the preferable site of intestinal drug absorption. Besides the knowledge about the expression of pharmacologically relevant transporters in human intestinal tissue, their exact localization on the apical or basolateral membrane of enterocytes is also of interest but in several cases debatable. Finally, there is obviously a coordinative interplay of intestinal transporters (apical-basolateral), intestinal enzymes and transporters as well as intestinal and hepatic transporters. This review aims to give an updated overview about the expression, localization, regulation and function of clinically relevant transporter proteins in the human intestine.
Collapse
|
231
|
Hong M. Biochemical studies on the structure-function relationship of major drug transporters in the ATP-binding cassette family and solute carrier family. Adv Drug Deliv Rev 2017; 116:3-20. [PMID: 27317853 DOI: 10.1016/j.addr.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/27/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Human drug transporters often play key roles in determining drug accumulation within cells. Their activities are often directly related to therapeutic efficacy, drug toxicity as well as drug-drug interactions. However, the progress for interpretation of their crystal structures is relatively slow. Hence, conventional biochemical studies together with computer modeling became useful manners to reveal essential structures of these membrane proteins. Over the years, quite a few structure-function relationship information had been obtained for members of the two major transporter families: the ATP-binding cassette family and the solute carrier family. Critical structural features of drug transporters include transmembrane domains, post-translational modification sites and domains for cell surface assembly and protein-protein interactions. Alterations at these important sites may affect protein stability, trafficking to the plasma membrane and/or ability of transporters to interact with substrates.
Collapse
|
232
|
Cheng SL, Bammler TK, Cui JY. RNA Sequencing Reveals Age and Species Differences of Constitutive Androstane Receptor-Targeted Drug-Processing Genes in the Liver. Drug Metab Dispos 2017; 45:867-882. [PMID: 28232382 PMCID: PMC5478913 DOI: 10.1124/dmd.117.075135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/17/2017] [Indexed: 12/26/2022] Open
Abstract
The constitutive androstane receptor (CAR/Nr1i3) is an important xenobiotic-sensing nuclear receptor that is highly expressed in the liver and is well known to have species differences. During development, age-specific activation of CAR may lead to modified pharmacokinetics and toxicokinetics of drugs and environmental chemicals, leading to higher risks for adverse drug reactions in newborns and children. The goal of this study was to systematically investigate the age- and species-specific regulation of various drug-processing genes (DPGs) after neonatal or adult CAR activation in the livers of wild-type, CAR-null, and humanized CAR transgenic mice. At either 5 or 60 days of age, the three genotypes of mice were administered a species-appropriate CAR ligand or vehicle once daily for 4 days (i.p.). The majority of DPGs were differentially regulated by age and/or CAR activation. Thirty-six DPGs were commonly upregulated by CAR activation regardless of age or species of CAR. Although the cumulative mRNAs of uptake transporters were not readily altered by CAR, the cumulative phase I and phase II enzymes as well as efflux transporters were all increased after CAR activation in both species. In general, mouse CAR activation produced comparable or even greater fold increases of many DPGs in newborns than in adults; conversely, humanized CAR activation produced weaker induction in newborns than in adults. Western blotting and enzyme activity assays confirmed the age and species specificities of selected CAR-targeted DPGs. In conclusion, this study systematically compared the effect of age and species of CAR proteins on the regulation of DPGs in the liver and demonstrated that the regulation of xenobiotic biotransformation by CAR is profoundly modified by age and species.
Collapse
Affiliation(s)
- Sunny Lihua Cheng
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
233
|
Ramsden DB, Waring RH, Barlow DJ, Parsons RB. Nicotinamide N-Methyltransferase in Health and Cancer. Int J Tryptophan Res 2017; 10:1178646917691739. [PMID: 35185340 PMCID: PMC8851132 DOI: 10.1177/1178646917691739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
Over the past decade, the roles of nicotinamide N-methyltransferase and its product 1-methyl nicotinamide have emerged from playing merely minor roles in phase 2 xenobiotic metabolism as actors in some of the most important scenes of human life. In this review, the structures of the gene, messenger RNA, and protein are discussed, together with the role of the enzyme in many of the common cancers that afflict people today.
Collapse
Affiliation(s)
- David B Ramsden
- Institute of Metabolism and Systems Research, The Medical School, University of Birmingham, Birmingham, UK
| | | | - David J Barlow
- Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Richard B Parsons
- Institute of Pharmaceutical Science, King’s College London, London, UK
| |
Collapse
|
234
|
Mayati A, Moreau A, Denizot C, Stieger B, Parmentier Y, Fardel O. β2-adrenergic receptor-mediated in vitro regulation of human hepatic drug transporter expression by epinephrine. Eur J Pharm Sci 2017; 106:302-312. [PMID: 28603032 DOI: 10.1016/j.ejps.2017.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/25/2017] [Accepted: 06/07/2017] [Indexed: 11/26/2022]
Abstract
The catecholamine epinephrine is known to repress expression of hepatic drug metabolizing enzymes such as cytochromes P-450. The present study was designed to determine whether epinephrine may also target expression of main hepatic drug transporters, that play a major role in liver detoxification and are commonly coordinately regulated with drug detoxifying enzymes. Treatment of primary human hepatocytes with 10μM epinephrine for 24h repressed mRNA expression of various transporters, such as the sinusoidal influx transporters NTCP, OATP1B1, OATP2B1, OAT2, OAT7 and OCT1 and the efflux transporters MRP2, MRP3 and BSEP, whereas it induced that of MDR1, but failed to alter that of BCRP. Most of these changes in transporter mRNA levels were also found in epinephrine-exposed human highly-differentiated hepatoma HepaRG cells, which additionally exhibited reduced protein expression of OATP2B1 and MRP3, increased expression of P-glycoprotein and decreased transport activity of NTCP, OATPs and OCT1. Epinephrine effects towards transporter mRNA expression in human hepatocytes were next shown to be correlated to those of the selective β2-adrenoreceptor (ADR) agonist fenoterol, of the adenylate cyclase activator forskolin and of the cAMP analogue 8-bromo-cAMP. In addition, the non-selective β-ADR antagonist carazolol and the selective β2-ADR antagonist ICI-118,551, unlike the α-ADR antagonist phentolamine, suppressed epinephrine-mediated repressions of transporter mRNA expression. Taken together, these data indicate that epinephrine regulates in vitro expression of main hepatic drug transporters in a β2-ADR/adenylate cyclase/cAMP-dependent manner. Hepatic drug transport appears therefore as a target of the β2-adrenergic system, which may have to deserve attention for drugs interacting with β2-ADRs.
Collapse
Affiliation(s)
- Abdullah Mayati
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Amélie Moreau
- Centre de Pharmacocinétique, Technologie Servier, 25-27 Rue Eugène Vignat, 45000 Orléans, France
| | - Claire Denizot
- Centre de Pharmacocinétique, Technologie Servier, 25-27 Rue Eugène Vignat, 45000 Orléans, France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Yannick Parmentier
- Centre de Pharmacocinétique, Technologie Servier, 25-27 Rue Eugène Vignat, 45000 Orléans, France
| | - Olivier Fardel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire, 2 Rue Henri Le Guilloux, 35033 Rennes, France.
| |
Collapse
|
235
|
Mardirosian M, Bieczynski F, Luquet C, Pérez CA, Bongiovanni G, Lascano C, Venturino A. Arsenic absorption and excretion in chronically exposed developing toad Rhinella arenarum. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:255-261. [PMID: 28460261 DOI: 10.1016/j.etap.2017.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/21/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
We assessed the toxicodynamics of As in developing Rhinella arenarum toad embryos and larvae exposed from fertilization to 0.01-10mgAsL-1. We determined As content in toad embryos and larvae by X-ray fluorescence spectrometry. Toad embryos and larvae actively bioaccumulated As, reaching tissue concentrations more than one-thousand higher than control levels after 23d-exposure to 10mgAsL-1. The bioconcentration factors also increased up to fifty times higher levels in toad larvae respect to media levels. Once recovered in As-free media, the larvae rapidly excreted the bioaccumulated As with a half-life of 1.6d. By calcein transport competition assays, we infer that As is excreted through ABCC-like transporters, probably conjugated with GSH. These results are relevant for comprehending the risks posed by As exposure in this autochthonous aquatic species that develops in water courses from Argentina, that may contain As levels ranging between 10-15,000μgL-1.
Collapse
Affiliation(s)
- Mariana Mardirosian
- Center for Research in Environmental Toxicology and Agrobiotechnology of Comahue (CITAAC), Universidad Nacional del Comahue y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1400, Neuquén, CP 8300, Argentina
| | - Flavia Bieczynski
- Center for Research in Environmental Toxicology and Agrobiotechnology of Comahue (CITAAC), Universidad Nacional del Comahue y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1400, Neuquén, CP 8300, Argentina
| | - Carlos Luquet
- Laboratory of Aquatic Ecotoxicology, INIBIOMA-Universidad Nacional del Comahue y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CEAN, Ruta 61 Km 3, Paraje San Cabao, 8371, Junín de los Andes, Neuquén, Argentina
| | - Carlos A Pérez
- Centro Nacional de Pesquisa em Energia e Materiais, Scientific Division, X-Ray Fluorescence and Absorption Group. Laboratorio Nacional de Luz Sincrotron, Campinas, SP, Brazil
| | - Guillermina Bongiovanni
- PROBIEN, CONICET, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, CP 8300, Argentina
| | - Cecilia Lascano
- Center for Research in Environmental Toxicology and Agrobiotechnology of Comahue (CITAAC), Universidad Nacional del Comahue y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1400, Neuquén, CP 8300, Argentina
| | - Andrés Venturino
- Center for Research in Environmental Toxicology and Agrobiotechnology of Comahue (CITAAC), Universidad Nacional del Comahue y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1400, Neuquén, CP 8300, Argentina.
| |
Collapse
|
236
|
Tanaka N, Aoyama T, Kimura S, Gonzalez FJ. Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol Ther 2017; 179:142-157. [PMID: 28546081 DOI: 10.1016/j.pharmthera.2017.05.011] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ligand-activated nuclear receptors, including peroxisome proliferator-activated receptor alpha (PPARα), pregnane X receptor, and constitutive androstane receptor, were first identified as key regulators of the responses against chemical toxicants. However, numerous studies using mouse disease models and human samples have revealed critical roles for these receptors and others, such as PPARβ/δ, PPARγ, farnesoid X receptor (FXR), and liver X receptor (LXR), in maintaining nutrient/energy homeostasis in part through modulation of the gut-liver-adipose axis. Recently, disorders associated with disrupted nutrient/energy homeostasis, e.g., obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD), are increasing worldwide. Notably, in NAFLD, a progressive subtype exists, designated as non-alcoholic steatohepatitis (NASH) that is characterized by typical histological features resembling alcoholic steatohepatitis (ASH), and NASH/ASH are recognized as major causes of hepatitis virus-unrelated liver cirrhosis and hepatocellular carcinoma. Since hepatic steatosis is basically caused by an imbalance between fat/energy influx and utilization, abnormal signaling of these nuclear receptors contribute to the pathogenesis of fatty liver disease. Standard therapeutic interventions have not been fully established for fatty liver disease, but some new agents that activate or inhibit nuclear receptor signaling have shown promise as possible therapeutic targets. In this review, we summarize recent findings on the roles of nuclear receptors in fatty liver disease and discuss future perspectives to develop promising pharmacological strategies targeting nuclear receptors for NAFLD/NASH.
Collapse
Affiliation(s)
- Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan.
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
237
|
Yang G, Ge S, Singh R, Basu S, Shatzer K, Zen M, Liu J, Tu Y, Zhang C, Wei J, Shi J, Zhu L, Liu Z, Wang Y, Gao S, Hu M. Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab Rev 2017; 49:105-138. [PMID: 28266877 DOI: 10.1080/03602532.2017.1293682] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucuronidation is a well-recognized phase II metabolic pathway for a variety of chemicals including drugs and endogenous substances. Although it is usually the secondary metabolic pathway for a compound preceded by phase I hydroxylation, glucuronidation alone could serve as the dominant metabolic pathway for many compounds, including some with high aqueous solubility. Glucuronidation involves the metabolism of parent compound by UDP-glucuronosyltransferases (UGTs) into hydrophilic and negatively charged glucuronides that cannot exit the cell without the aid of efflux transporters. Therefore, elimination of parent compound via glucuronidation in a metabolic active cell is controlled by two driving forces: the formation of glucuronides by UGT enzymes and the (polarized) excretion of these glucuronides by efflux transporters located on the cell surfaces in various drug disposition organs. Contrary to the common assumption that the glucuronides reaching the systemic circulation were destined for urinary excretion, recent evidences suggest that hepatocytes are capable of highly efficient biliary clearance of the gut-generated glucuronides. Furthermore, the biliary- and enteric-eliminated glucuronides participate into recycling schemes involving intestinal microbes, which often prolong their local and systemic exposure, albeit at low systemic concentrations. Taken together, these recent research advances indicate that although UGT determines the rate and extent of glucuronide generation, the efflux and uptake transporters determine the distribution of these glucuronides into blood and then to various organs for elimination. Recycling schemes impact the apparent plasma half-life of parent compounds and their glucuronides that reach intestinal lumen, in addition to prolonging their gut and colon exposure.
Collapse
Affiliation(s)
- Guangyi Yang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China.,b Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine , Shiyan , Hubei , China
| | - Shufan Ge
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Rashim Singh
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Sumit Basu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Katherine Shatzer
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Ming Zen
- d Department of Thoracic and Cardiomacrovascular Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jiong Liu
- e Department of Digestive Diseases Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Yifan Tu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Chenning Zhang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jinbao Wei
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jian Shi
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Lijun Zhu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Zhongqiu Liu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Yuan Wang
- g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Song Gao
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Ming Hu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| |
Collapse
|
238
|
Zhang BB, Li WK, Hou WY, Luo Y, Shi JZ, Li C, Wei LX, Liu J. Zuotai and HgS differ from HgCl 2 and methyl mercury in Hg accumulation and toxicity in weanling and aged rats. Toxicol Appl Pharmacol 2017; 331:76-84. [PMID: 28536007 DOI: 10.1016/j.taap.2017.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022]
Abstract
Mercury sulfides are used in Ayurvedic medicines, Tibetan medicines, and Chinese medicines for thousands of years and are still used today. Cinnabar (α-HgS) and metacinnabar (β-HgS) are different from mercury chloride (HgCl2) and methylmercury (MeHg) in their disposition and toxicity. Whether such scenario applies to weanling and aged animals is not known. To address this question, weanling (21d) and aged (450d) rats were orally given Zuotai (54% β-HgS, 30mg/kg), HgS (α-HgS, 30mg/kg), HgCl2 (34.6mg/kg), or MeHg (MeHgCl, 3.2mg/kg) for 7days. Accumulation of Hg in kidney and liver, and the toxicity-sensitive gene expressions were examined. Animal body weight gain was decreased by HgCl2 and to a lesser extent by MeHg, but unaltered after Zuotai and HgS. HgCl2 and MeHg produced dramatic tissue Hg accumulation, increased kidney (kim-1 and Ngal) and liver (Ho-1) injury-sensitive gene expressions, but such changes are absent or mild after Zuotai and HgS. Aged rats were more susceptible than weanling rats to Hg toxicity. To examine roles of transporters in Hg accumulation, transporter gene expressions were examined. The expression of renal uptake transporters Oat1, Oct2, and Oatp4c1 and hepatic Oatp2 was decreased, while the expression of renal efflux transporter Mrp2, Mrp4 and Mdr1b was increased following HgCl2 and MeHg, but unaffected by Zuotai and HgS. Thus, Zuotai and HgS differ from HgCl2 and MeHg in producing tissue Hg accumulation and toxicity, and aged rats are more susceptible than weanling rats. Transporter expression could be adaptive means to reduce tissue Hg burden.
Collapse
Affiliation(s)
- Bin-Bin Zhang
- Key Lab for Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen-Kai Li
- Key Lab for Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wei-Yu Hou
- Key Lab for Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ya Luo
- School of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Jing-Zhen Shi
- Guiyang Traditional Medical College, Guiyang 550004, China
| | - Cen Li
- Key Lab of Pharmacology and Safety Evaluation of Tibetan Medicine in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Li-Xin Wei
- Key Lab of Pharmacology and Safety Evaluation of Tibetan Medicine in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Jie Liu
- Key Lab for Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
239
|
Li WK, Li H, Lu YF, Li YY, Fu ZD, Liu J. Atorvastatin alters the expression of genes related to bile acid metabolism and circadian clock in livers of mice. PeerJ 2017; 5:e3348. [PMID: 28533986 PMCID: PMC5438592 DOI: 10.7717/peerj.3348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/23/2017] [Indexed: 02/06/2023] Open
Abstract
Aim Atorvastatin is a HMG-CoA reductase inhibitor used for hyperlipidemia. Atorvastatin is generally safe but may induce cholestasis. The present study aimed to examine the effects of atorvastatin on hepatic gene expression related to bile acid metabolism and homeostasis, as well as the expression of circadian clock genes in livers of mice. Methods Adult male mice were given atorvastatin (10, 30, and 100 mg/kg, po) daily for 30 days, and blood biochemistry, histopathology, and gene expression were examined. Results Repeated administration of atorvastatin did not affect animal body weight gain or liver weights. Serum enzyme activities were in the normal range. Histologically, the high dose of atorvastatin produced scattered swollen hepatocytes, foci of feathery-like degeneration, together with increased expression of Egr-1 and metallothionein-1. Atorvastatin increased the expression of Cyp7a1 in the liver, along with FXR and SHP. In contract, atorvastatin decreased the expression of bile acid transporters Ntcp, Bsep, Ostα, and Ostβ. The most dramatic change was the 30-fold induction of Cyp7a1. Because Cyp7a1 is a circadian clock-controlled gene, we further examined the effect of atorvastatin on clock gene expression. Atorvastatin increased the expression of clock core master genes Bmal1 and Npas2, decreased the expression of clock feedback genes Per2, Per3, and the clock targeted genes Dbp and Tef, whereas it had no effect on Cry1 and Nr1d1 expression. Conclusion Repeated administration of atorvastatin affects bile acid metabolism and markedly increases the expression of the bile acid synthesis rate-limiting enzyme gene Cyp7a1, together with alterations in the expression of circadian clock genes.
Collapse
Affiliation(s)
- Wen-Kai Li
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China.,Department of Pharmacology, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Huan Li
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Yuan-Fu Lu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Ying-Ying Li
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Zidong Donna Fu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States of America
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| |
Collapse
|
240
|
Bévalot F, Cartiser N, Bottinelli C, Fanton L, Guitton J. État de l’art de l’analyse de la bile en toxicologie médicolégale. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2017. [DOI: 10.1016/j.toxac.2016.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
241
|
Connerney J, Lau-Corona D, Rampersaud A, Waxman DJ. Activation of Male Liver Chromatin Accessibility and STAT5-Dependent Gene Transcription by Plasma Growth Hormone Pulses. Endocrinology 2017; 158:1386-1405. [PMID: 28323953 PMCID: PMC6283433 DOI: 10.1210/en.2017-00060] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/10/2017] [Indexed: 02/07/2023]
Abstract
Sex differences in pituitary growth hormone (GH) secretion (pulsatile in males vs near continuous/persistent in females) impart sex-dependent expression to hundreds of genes in adult mouse liver. Signal transducer and activator of transcription (STAT) 5, a GH-activated transcription factor that is essential for liver sexual dimorphism, is dynamically activated in direct response to each male plasma GH pulse. However, the impact of GH-induced STAT5 pulses on liver chromatin accessibility and downstream transcriptional events is unknown. In this study, we investigated the impact of a single pulse of GH given to hypophysectomized mice on local liver chromatin accessibility (DNase hypersensitive site analysis), transcription rates (heterogeneous nuclear RNA analysis), and gene expression (quantitative polymerase chain reaction and RNA sequencing) determined 30, 90, or 240 minutes later. The STAT5-dependent but sex-independent early GH response genes Igf1 and Cish showed rapid, GH pulse-induced increases in chromatin accessibility and gene transcription, reversing the effects of hypophysectomy. Rapid increases in liver chromatin accessibility and transcriptional activity were also induced in hypophysectomized male mice for some (Ces2b, Ugt2b38) but not for other liver STAT5-dependent male-biased genes (Cyp7b1). Moreover, in pituitary-intact male mice, Igf1, Cish, Ces2b, and Ugt2b38 all showed remarkable cycles of chromatin opening and closing, as well as associated cycles of induced gene transcription, which closely followed each endogenous pulse of liver STAT5 activity. Thus, the endogenous rhythms of male plasma GH pulsation dynamically open and then close liver chromatin at discrete, localized regulatory sites in temporal association with transcriptional activation of Igf1, Cish, and a subset of STAT5-dependent male-biased genes.
Collapse
Affiliation(s)
- Jeannette Connerney
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215
| | - Dana Lau-Corona
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215
| | - Andy Rampersaud
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
242
|
Murray M, Zhou F. Trafficking and other regulatory mechanisms for organic anion transporting polypeptides and organic anion transporters that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br J Pharmacol 2017; 174:1908-1924. [PMID: 28299773 DOI: 10.1111/bph.13785] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 12/25/2022] Open
Abstract
Organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs), encoded by a number of solute carrier (SLC)22A and SLC organic anion (SLCO) genes, mediate the absorption and distribution of drugs and other xenobiotics. The regulation of OATs and OATPs is complex, comprising both transcriptional and post-translational mechanisms. Plasma membrane expression is required for cellular substrate influx by OATs/OATPs. Thus, interest in post-translational regulatory processes, including membrane targeting, endocytosis, recycling and degradation of transporter proteins, is increasing because these are critical for plasma membrane expression. After being synthesized, transporters undergo N-glycosylation in the endoplasmic reticulum and Golgi apparatus and are delivered to the plasma membrane by vesicular transport. Their expression at the cell surface is maintained by de novo synthesis and recycling, which occurs after clathrin- and/or caveolin-dependent endocytosis of existing protein. Several studies have shown that phosphorylation by signalling kinases is important for the internalization and recycling processes, although the transporter protein does not appear to be directly phosphorylated. After internalization, transporters that are targeted for degradation undergo ubiquitination, most likely on intracellular loop residues. Epigenetic mechanisms, including methylation of gene regulatory regions and transcription from alternate promoters, are also significant in the regulation of certain SLC22A/SLCO genes. The membrane expression of OATs/OATPs is dysregulated in disease, which affects drug efficacy and detoxification. Several transporters are expressed in the cytoplasmic subcompartment in disease states, which suggests that membrane targeting/internalization/recycling may be impaired. This article focuses on recent developments in OAT and OATP regulation, their dysregulation in disease and the significance for drug therapy.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
243
|
Dunn KW, Ryan JC. Using quantitative intravital multiphoton microscopy to dissect hepatic transport in rats. Methods 2017; 128:40-51. [PMID: 28434905 DOI: 10.1016/j.ymeth.2017.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 12/24/2022] Open
Abstract
Hepatic solute transport is a complex process whose disruption is associated with liver disease and drug-induced liver injury. Intravital multiphoton fluorescence excitation microscopy provides the spatial and temporal resolution necessary to characterize hepatic transport at the level of individual hepatocytes in vivo and thus to identify the mechanisms and cellular consequences of cholestasis. Here we present an overview of the use of fluorescence microscopy for studies of hepatic transport in living animals, and describe how we have combined methods of intravital microscopy and digital image analysis to dissect the effects of drugs and pathological conditions on the function of hepatic transporters in vivo.
Collapse
Affiliation(s)
- Kenneth W Dunn
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - Jennifer C Ryan
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
244
|
Shimura S, Watashi K, Fukano K, Peel M, Sluder A, Kawai F, Iwamoto M, Tsukuda S, Takeuchi JS, Miyake T, Sugiyama M, Ogasawara Y, Park SY, Tanaka Y, Kusuhara H, Mizokami M, Sureau C, Wakita T. Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity. J Hepatol 2017; 66:685-692. [PMID: 27890789 PMCID: PMC7172969 DOI: 10.1016/j.jhep.2016.11.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/25/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The sodium taurocholate co-transporting polypeptide (NTCP) is the main target of most hepatitis B virus (HBV) specific entry inhibitors. Unfortunately, these agents also block NTCP transport of bile acids into hepatocytes, and thus have the potential to cause adverse effects. We aimed to identify small molecules that inhibit HBV entry while maintaining NTCP transporter function. METHODS We characterized a series of cyclosporine (CsA) derivatives for their anti-HBV activity and NTCP binding specificity using HepG2 cells overexpressing NTCP and primary human hepatocytes. The four most potent derivatives were tested for their capacity to prevent HBV entry, but maintain NTCP transporter function. Their antiviral activity against different HBV genotypes was analysed. RESULTS We identified several CsA derivatives that inhibited HBV infection with a sub-micromolar IC50. Among them, SCY446 and SCY450 showed low activity against calcineurin (CN) and cyclophilins (CyPs), two major CsA cellular targets. This suggested that instead, these compounds interacted directly with NTCP to inhibit viral attachment to host cells, and have no immunosuppressive function. Importantly, we found that SCY450 and SCY995 did not impair the NTCP-dependent uptake of bile acids, and inhibited multiple HBV genotypes including a clinically relevant nucleoside analog-resistant HBV isolate. CONCLUSIONS This is the first example of small molecule selective inhibition of HBV entry with no decrease in NTCP transporter activity. It suggests that the anti-HBV activity can be functionally separated from bile acid transport. These broadly active anti-HBV molecules are potential candidates for developing new drugs with fewer adverse effects. LAY SUMMARY In this study, we identified new compounds that selectively inhibited hepatitis B virus (HBV) entry, and did not impair bile acid uptake. Our evidence offers a new strategy for developing anti-HBV drugs with fewer side effects.
Collapse
Affiliation(s)
- Satomi Shimura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; SCYNEXIS, Inc., Durham, NC 27713, USA
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Applied Biological Science, Tokyo University of Sciences, Noda 278-8510, Japan; CREST, Japan Science and Technology Agency (J.S.T.), Saitama 332-0012, Japan.
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
| | | | | | - Fumihiro Kawai
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Masashi Iwamoto
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Applied Biological Science, Tokyo University of Sciences, Noda 278-8510, Japan
| | - Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Wako 351-0198, Japan
| | - Junko S Takeuchi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takeshi Miyake
- The University of Tokyo, Graduate School of Pharmaceutical Sciences, Tokyo 113-0033, Japan
| | - Masaya Sugiyama
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medicinal Sciences, Nagoya 467-8601, Japan
| | - Hiroyuki Kusuhara
- The University of Tokyo, Graduate School of Pharmaceutical Sciences, Tokyo 113-0033, Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine (INTS), Paris, France
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
245
|
Yu Y, Wang M, Zhang K, Yang D, Zhong Y, An J, Lei B, Zhang X. The transepithelial transport mechanism of polybrominated diphenyl ethers in human intestine determined using a Caco-2 cell monolayer. ENVIRONMENTAL RESEARCH 2017; 154:93-100. [PMID: 28056407 DOI: 10.1016/j.envres.2016.12.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/02/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Oral ingestion plays an important role in human exposure to polybrominated diphenyl ethers (PBDEs). The uptake of PBDEs primarily occurs in the small intestine. The aim of the present study is to investigate the transepithelial transport characteristics and mechanisms of PBDEs in the small intestine using a Caco-2 cell monolayer model. The apparent permeability coefficients of PBDEs indicated that tri- to hepta-BDEs were poorly absorbed compounds. A linear increase in transepithelial transport was observed with various concentrations of PBDEs, which suggested that passive diffusion dominated their transport at the concentration range tested. In addition, the pseudo-first-order kinetics equation can be applied to the transepithelial transport of PBDEs. The rate-determining step in transepithelial transport of PBDEs was trans-cell transport including the trans-pore process. The significantly lower transepithelial transport rates at low temperature for bidirectional transepithelial transport suggested that an energy-dependent transport mechanism was involved. The efflux transporters (P-glycoprotein, multidrug resistance-associated protein, and breast cancer resistance protein) and influx transporters (organic cation transporters) participated in the transepithelial transport of PBDEs. In addition, the transepithelial transport of PBDEs was pH sensitive; however, more information is required to understand the influence of pH.
Collapse
Affiliation(s)
- Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Mengmeng Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kaiqiong Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Dan Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yufang Zhong
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xinyu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
246
|
Nyquist MD, Prasad B, Mostaghel EA. Harnessing Solute Carrier Transporters for Precision Oncology. Molecules 2017; 22:E539. [PMID: 28350329 PMCID: PMC5570559 DOI: 10.3390/molecules22040539] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Solute Carrier (SLC) transporters are a large superfamily of transmembrane carriers involved in the regulated transport of metabolites, nutrients, ions and drugs across cellular membranes. A subset of these solute carriers play a significant role in the cellular uptake of many cancer therapeutics, ranging from chemotherapeutics such as antimetabolites, topoisomerase inhibitors, platinum-based drugs and taxanes to targeted therapies such as tyrosine kinase inhibitors. SLC transporters are co-expressed in groups and patterns across normal tissues, suggesting they may comprise a coordinated regulatory circuit serving to mediate normal tissue functions. In cancer however, there are dramatic changes in expression patterns of SLC transporters. This frequently serves to feed the increased metabolic demands of the tumor cell for amino acids, nucleotides and other metabolites, but also presents a therapeutic opportunity, as increased transporter expression may serve to increase intracellular concentrations of substrate drugs. In this review, we examine the regulation of drug transporters in cancer and how this impacts therapy response, and discuss novel approaches to targeting therapies to specific cancers via tumor-specific aberrations in transporter expression. We propose that among the oncogenic changes in SLC transporter expression there exist emergent vulnerabilities that can be exploited therapeutically, extending the application of precision medicine from tumor-specific drug targets to tumor-specific determinants of drug uptake.
Collapse
Affiliation(s)
- Michael D Nyquist
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| | - Elahe A Mostaghel
- Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98195 USA.
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
247
|
Ghoneim RH, Kojovic D, Piquette-Miller M. Impact of endotoxin on the expression of drug transporters in the placenta of HIV-1 transgenic (HIV-Tg) rats. Eur J Pharm Sci 2017; 102:94-102. [PMID: 28274777 DOI: 10.1016/j.ejps.2017.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/06/2017] [Accepted: 03/03/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Inflammatory responses in HIV (+) patients may be exacerbated due to reports of subclinical endotoxemia and existing immune dysregulation. As inflammation has been reported to mediate changes in the expression of transporters, this could be potentiated in pregnant HIV (+) women. Similar to humans, the HIV-Tg rat model develops immune dysregulation and chronic AIDS-like conditions. Our objective was to examine the expression of placental drug transporters in HIV-Tg rats in response to low-dose endotoxin. METHODS Pregnant HIV-Tg rats or wild-type littermates (WT) were treated with low dose bacterial endotoxin 0.1mg/kg (n=8) or 0.25mg/kg (n=4-6) on GD18 and placentas were harvested 18h later. Placental and hepatic expression of transporters and cytokines were examined using qRT-PCR and Western blotting. RESULTS As compared to WT, endotoxin administration increased the hepatic and placental expression of IL-6 and TNF-α to a greater extent in HIV-Tg rats (p<0.05). The placental mRNA and protein expression of Abcb1a and Slco2b1 was significantly decreased in endotoxin-treated HIV-Tg but not WT rats and downregulation of Slco4a1 mRNA was more pronounced in the HIV-Tg group (p<0.05). These changes significantly correlated with the placental expression of pro-inflammatory cytokines. Abcc3 mRNA expression was increased in the placenta of endotoxin treated WT rats only, while placental expression of Abcc1, Abcc2 and Abcc4 was not significantly affected in both WT and HIV rats. Endotoxin imposed a pronounced downregulation in the hepatic expression of Abcb1a, Abcc2, Abcc4, Abcg2, Slco1a1, Slco1b2 and Slc29a1 in both HIV-Tg and WT rats; however, Abcb1b expression was increased in HIV but not WT rats. CONCLUSION Our results indicate that low-dose endotoxin resulted in an augmented inflammatory response in HIV-Tg rats accompanied with significant changes in the placental expression of several drug transporters. Our data suggests that subclinical endotoxemia and other co-existing infections may alter the placental transfer of drugs in the HIV population.
Collapse
Affiliation(s)
- Ragia H Ghoneim
- Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | - Dea Kojovic
- Leslie Dan Faculty of Pharmacy, University of Toronto, ON, Canada
| | | |
Collapse
|
248
|
Abstract
Bile acids are potent signaling molecules that regulate glucose, lipid and energy homeostasis predominantly via the bile acid receptors farnesoid X receptor (FXR) and transmembrane G protein-coupled receptor 5 (TGR5). The sodium taurocholate cotransporting polypeptide (NTCP) and the apical sodium dependent bile acid transporter (ASBT) ensure an effective circulation of (conjugated) bile acids. The modulation of these transport proteins affects bile acid localization, dynamics and signaling. The NTCP-specific pharmacological inhibitor myrcludex B inhibits hepatic uptake of conjugated bile acids. Multiple ASBT-inhibitors are already in clinical trials to inhibit intestinal bile acid uptake. Here, we discuss current insights into the consequences of targeting bile acid uptake transporters on systemic and intestinal bile acid dynamics and discuss the possible therapeutic applications that evolve as a result.
Collapse
Affiliation(s)
- Davor Slijepcevic
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands,*Stan F.J. van de Graaf, Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Academic Medical Center, NL-1105 BK Amsterdam (The Netherlands), E-Mail
| |
Collapse
|
249
|
Oskarsson A, Yagdiran Y, Nazemi S, Tallkvist J, Knight C. Short communication: Staphylococcus aureus infection modulates expression of drug transporters and inflammatory biomarkers in mouse mammary gland. J Dairy Sci 2017; 100:2375-2380. [DOI: 10.3168/jds.2016-11650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/12/2016] [Indexed: 12/19/2022]
|
250
|
Lobular Distribution and Variability in Hepatic ATP Binding Cassette Protein B1 (ABCB1, P-gp): Ontogenetic Differences and Potential for Toxicity. Pharmaceutics 2017; 9:pharmaceutics9010008. [PMID: 28218636 PMCID: PMC5374374 DOI: 10.3390/pharmaceutics9010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 01/16/2023] Open
Abstract
The ATP Binding Cassette B1 (ABCB1) transporter has critical roles in endo- and xenobiotic efficacy and toxicity. To understand population variability in hepatic transport we determined ABCB1 mRNA and protein levels in total liver lysates sampled from 8 pre-defined sites (n = 24, 18–69 years), and in S9 from randomly acquired samples (n = 87, 7 days–87 years). ABCB1 levels did not differ significantly throughout individual livers and showed 4.4-fold protein variation between subjects. Neither mRNA nor protein levels varied with sex, ethnicity, obesity or triglycerides in lysates or S9 (that showed the same relationships), but protein levels were lower in pediatric S9 (p < 0.0001), with 76% of adult ABCB1 present at birth and predicted to mature in 5 years. Pediatric total liver lysates were not available. In summary, opportunistic collection for studying human hepatic ABCB1 is acceptable. Additionally, ABCB1 may be lower in children, indicating differential potential for toxicity and response to therapy in this special population.
Collapse
|