201
|
Rayegan S, Dehpour AR, Sharifi AM. Studying neuroprotective effect of Atorvastatin as a small molecule drug on high glucose-induced neurotoxicity in undifferentiated PC12 cells: role of NADPH oxidase. Metab Brain Dis 2017; 32:41-49. [PMID: 27476541 PMCID: PMC7102122 DOI: 10.1007/s11011-016-9883-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
Overproduction of reactive oxygen species (ROS) by NADPH oxidase (NOX) activation has been considered the essential mechanism induced by hyperglycemia in various tissues. However, there is no comprehensive study on the role of NOXs in high glucose (HG)-induced toxic effect in neural tissues. Recently, a therapeutic strategy in oxidative related pathologies has been introduced by blocking the undesirable actions of NOX enzymes by small molecules. The protective roles of Statins in ameliorating oxidative stress by NOX inhibition have been shown in some tissues except neural. We hypothesized then, that different NOXs may have role in HG-induced neural cell injury. Furthermore, we postulate that Atorvastatin as a small molecule may modulate this NOXs activity to protect neural cells. Undifferentiated PC12 cells were treated with HG (140 mM/24 h) in the presence and absence of Atorvastatin (1 μM/96 h). The cell viability was measured by MTT assay and the gene and protein expressions profile of NOX (1-4) were determined by RT-PCR and western blotting, respectively. Levels of ROS and malondialdehyde (MDA) were also evaluated. Gene and protein expression levels of NOX (1-4) and consequently ROS and MDA levels were elevated in HG-treated PC12 cells. Atorvastatin could significantly decrease HG-induced NOXs, ROS and MDA elevation and improve impaired cell viability. It can be concluded that HG could elevate NOXs activity, ROS and MDA levels in neural tissues and Atorvastatin as a small molecule NOX inhibitor drug may prevent and delay diabetic complications, particularly neuropathy.
Collapse
Affiliation(s)
- Samira Rayegan
- Razi Drug Research Center and Dept. of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Sharifi
- Razi Drug Research Center and Dept. of Pharmacology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Tissue engineering group, Department of Orthopedics surgery, Faculty of Medicine, University of Malaya, Kuala lumpur, Malaysia.
| |
Collapse
|
202
|
Chang KH, Park JM, Lee CH, Kim B, Choi KC, Choi SJ, Lee K, Lee MY. NADPH oxidase (NOX) 1 mediates cigarette smoke-induced superoxide generation in rat vascular smooth muscle cells. Toxicol In Vitro 2017; 38:49-58. [PMID: 27816504 DOI: 10.1016/j.tiv.2016.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/08/2016] [Accepted: 10/31/2016] [Indexed: 11/18/2022]
Abstract
Smoking is a well-established risk factor for cardiovascular diseases. Oxidative stress is one of the common etiological factors, and NADPH oxidase (NOX) has been suggested as a potential mediator of oxidative stress. In this study, cigarette smoke (CS)-induced superoxide production was characterized in vascular smooth muscle cells (VSMC). CS was prepared in forms of cigarette smoke extract (CSE) and total particulate matter (TPM). Several molecular probes for reactive oxygen species were trialed, and dihydroethidium (DHE) and WST-1 were chosen for superoxide detection considering the autofluorescence, light absorbance, and peroxidase inhibitory activity of CS. Both CSE and TPM generated superoxide in a VSMC culture system by stimulating cells to produce superoxide and by directly producing superoxide in the aqueous solution. NOX, specifically NOX1 was found to be an important cellular source of superoxide through experiments with the NOX inhibitors diphenyleneiodonium (DPI) and VAS2870 as well as isoform-specific NOX knockdown. NOX inhibitors and the superoxide dismutase mimetic TEMPOL reduced the cytotoxicity of CSE, thus suggesting the contribution of NOX1-derived superoxide to cytotoxicity. Since NOX1 is known to mediate diverse pathological processes in the vascular system, NOX1 may be a critical effector of cardiovascular toxicity caused by smoking.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic
- Male
- Muscle, Smooth, Vascular
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- NADPH Oxidase 1
- NADPH Oxidase 4
- NADPH Oxidases/genetics
- Particulate Matter/toxicity
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Rats, Sprague-Dawley
- Smoke/adverse effects
- Superoxides/metabolism
- Nicotiana
Collapse
Affiliation(s)
- Kyung-Hwa Chang
- College of Pharmacy, Dongguk University, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jung-Min Park
- College of Pharmacy, Dongguk University, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungcheongbuk-do 28644, Republic of Korea
| | - Seong-Jin Choi
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Dongguk University, Goyang, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
203
|
Manna P, Achari AE, Jain SK. Vitamin D supplementation inhibits oxidative stress and upregulate SIRT1/AMPK/GLUT4 cascade in high glucose-treated 3T3L1 adipocytes and in adipose tissue of high fat diet-fed diabetic mice. Arch Biochem Biophys 2017; 615:22-34. [DOI: 10.1016/j.abb.2017.01.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/14/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023]
|
204
|
Molecular and Histopathological Changes Associated with Keratoconus. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7803029. [PMID: 28251158 PMCID: PMC5303843 DOI: 10.1155/2017/7803029] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
Keratoconus (KC) is a corneal thinning disorder that leads to loss of visual acuity through ectasia, opacity, and irregular astigmatism. It is one of the leading indicators for corneal transplantation in the Western countries. KC usually starts at puberty and progresses until the third or fourth decade; however its progression differs among patients. In the keratoconic cornea, all layers except the endothelium have been shown to have histopathological structural changes. Despite numerous studies in the last several decades, the mechanisms of KC development and progression remain unclear. Both genetic and environmental factors may contribute to the pathogenesis of KC. Many previous articles have reviewed the genetic aspects of KC, but in this review we summarize the histopathological features of different layers of cornea and discuss the differentially expressed proteins in the KC-affected cornea. This summary will help emphasize the major molecular defects in KC and identify additional research areas related to KC, potentially opening up possibilities for novel methods of KC prevention and therapeutic intervention.
Collapse
|
205
|
Wang JH, Ling D, Tu L, van Wijngaarden P, Dusting GJ, Liu GS. Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to bedside? Pharmacol Ther 2017; 173:1-18. [PMID: 28132907 DOI: 10.1016/j.pharmthera.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy (DR), a chronic and progressive complication of diabetes mellitus, is a sight-threatening disease characterized in the early stages by neuronal and vascular dysfunction in the retina, and later by neovascularization that further damages vision. A major contributor to the pathology is excess production of vascular endothelial growth factor (VEGF), a growth factor that induces formation of new blood vessels and increases permeability of existing vessels. Despite the recent availability of effective treatments for the disease, including laser photocoagulation and therapeutic VEGF antibodies, DR remains a significant cause of vision loss worldwide. Existing anti-VEGF agents, though generally effective, are limited by their short therapeutic half-lives, necessitating frequent intravitreal injections and the risk of attendant adverse events. Management of DR with gene therapies has been proposed for several years, and pre-clinical studies have yielded enticing findings. Gene therapy holds several advantages over conventional treatments for DR, such as a longer duration of therapeutic effect, simpler administration, the ability to intervene at an earlier stage of the disease, and potentially fewer side-effects. In this review, we summarize the current understanding of the pathophysiology of DR and provide an overview of research into DR gene therapies. We also examine current barriers to the clinical application of gene therapy for DR and evaluate future prospects for this approach.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Damien Ling
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Discipline of Ophthalmology, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Leilei Tu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia; Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia.
| |
Collapse
|
206
|
Rastogi R, Geng X, Li F, Ding Y. NOX Activation by Subunit Interaction and Underlying Mechanisms in Disease. Front Cell Neurosci 2017; 10:301. [PMID: 28119569 PMCID: PMC5222855 DOI: 10.3389/fncel.2016.00301] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX) is an enzyme complex with the sole function of producing superoxide anion and reactive oxygen species (ROS) at the expense of NADPH. Vital to the immune system as well as cellular signaling, NOX is also involved in the pathologies of a wide variety of disease states. Particularly, it is an integral player in many neurological diseases, including stroke, TBI, and neurodegenerative diseases. Pathologically, NOX produces an excessive amount of ROS that exceed the body’s antioxidant ability to neutralize them, leading to oxidative stress and aberrant signaling. This prevalence makes it an attractive therapeutic target and as such, NOX inhibitors have been studied and developed to counter NOX’s deleterious effects. However, recent studies of NOX have created a better understanding of the NOX complex. Comprised of independent cytosolic subunits, p47-phox, p67-phox, p40-phox and Rac, and membrane subunits, gp91-phox and p22-phox, the NOX complex requires a unique activation process through subunit interaction. Of these subunits, p47-phox plays the most important role in activation, binding and translocating the cytosolic subunits to the membrane and anchoring to p22-phox to organize the complex for NOX activation and function. Moreover, these interactions, particularly that between p47-phox and p22-phox, are dependent on phosphorylation initiated by upstream processes involving protein kinase C (PKC). This review will look at these interactions between subunits and with PKC. It will focus on the interaction involving p47-phox with p22-phox, key in bringing the cytosolic subunits to the membrane. Furthermore, the implication of these interactions as a target for NOX inhibitors such as apocynin will be discussed as a potential avenue for further investigation, in order to develop more specific NOX inhibitors based on the inhibition of NOX assembly and activation.
Collapse
Affiliation(s)
- Radhika Rastogi
- Department of Neurosurgery, Wayne State University School of Medicine Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
207
|
Wang K, Liu Y, Tian J, Huang K, Shi T, Dai X, Zhang W. Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:1032. [PMID: 28680431 PMCID: PMC5478880 DOI: 10.3389/fpls.2017.01032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/29/2017] [Indexed: 05/18/2023]
Abstract
Perennial ryegrass (Lolium perenne) is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants.
Collapse
Affiliation(s)
- Kehua Wang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
- *Correspondence: Kehua Wang, Wanjun Zhang,
| | - Yanrong Liu
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Jinli Tian
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Kunyong Huang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Tianran Shi
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Xiaoxia Dai
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Wanjun Zhang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
- National Energy R&D Center for Biomass, China Agricultural UniversityBeijing, China
- *Correspondence: Kehua Wang, Wanjun Zhang,
| |
Collapse
|
208
|
de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS. The Role of Reactive Oxygen Species in Adipogenic Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:125-144. [PMID: 29139087 DOI: 10.1007/5584_2017_119] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interest in reactive oxygen species and adipocyte differentiation/adipose tissue function is steadily increasing. This is due in part to a search for alternative avenues for combating obesity, which results from the excess accumulation of adipose tissue. Obesity is a major risk factor for complex disorders such as cancer, type 2 diabetes, and cardiovascular diseases. The ability of mesenchymal stromal/stem cells (MSCs) to differentiate into adipocytes is often used as a model for studying adipogenesis in vitro. A key focus is the effect of both intra- and extracellular reactive oxygen species (ROS) on adipogenesis. The consensus from the majority of studies is that ROS, irrespective of the source, promote adipogenesis.The effect of ROS on adipogenesis is suppressed by antioxidants or ROS scavengers. Reactive oxygen species are generated during the process of adipocyte differentiation as well as by other cell metabolic processes. Despite many studies in this field, it is still not possible to state with certainty whether ROS measured during adipocyte differentiation are a cause or consequence of this process. In addition, it is still unclear what the exact sources are of the ROS that initiate and/or drive adipogenic differentiation in MSCs in vivo. This review provides an overview of our understanding of the role of ROS in adipocyte differentiation as well as how certain ROS scavengers and antioxidants might affect this process.
Collapse
Affiliation(s)
- Danielle de Villiers
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marnie Potgieter
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Center for Microbial Ecology and Genomics, Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Melvin A Ambele
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ladislaus Adam
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Chrisna Durandt
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
209
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
210
|
Tongul B, Tarhan L. Oxidant and antioxidant status in Saccharomyces cerevisiae exposed to antifungal ketoconazole. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
211
|
Skin Aging-Dependent Activation of the PI3K Signaling Pathway via Downregulation of PTEN Increases Intracellular ROS in Human Dermal Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6354261. [PMID: 28003865 PMCID: PMC5149682 DOI: 10.1155/2016/6354261] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/04/2016] [Accepted: 07/26/2016] [Indexed: 01/04/2023]
Abstract
Reactive oxygen species (ROS) play a major role in both chronological aging and photoaging. ROS induce skin aging through their damaging effect on cellular constituents. However, the origins of ROS have not been fully elucidated. We investigated that ROS generation of replicative senescent fibroblasts is generated by the modulation of phosphatidylinositol 3,4,5-triphosphate (PIP3) metabolism. Reduction of the PTEN protein, which dephosphorylates PIP3, was responsible for maintaining a high level of PIP3 in replicative cells and consequently mediated the activation of the phosphatidylinositol-3-OH kinase (PI3K)/Akt pathway. Increased ROS production was blocked by inhibition of PI3K or protein kinase C (PKC) or by NADPH oxidase activating in replicative senescent cells. These data indicate that the signal pathway to ROS generation in replicative aged skin cells can be stimulated by reduced PTEN level. Our results provide new insights into skin aging-associated modification of the PI3K/NADPH oxidase signaling pathway and its relationship with a skin aging-dependent increase of ROS in human dermal fibroblasts.
Collapse
|
212
|
Dunnill CJ, Ibraheem K, Mohamed A, Southgate J, Georgopoulos NT. A redox state-dictated signalling pathway deciphers the malignant cell specificity of CD40-mediated apoptosis. Oncogene 2016; 36:2515-2528. [PMID: 27869172 PMCID: PMC5422712 DOI: 10.1038/onc.2016.401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 09/08/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022]
Abstract
CD40, a member of the tumour necrosis factor receptor (TNFR) superfamily, has the capacity to cause extensive apoptosis in carcinoma cells, while sparing normal epithelial cells. Yet, apoptosis is only achieved by membrane-presented CD40 ligand (mCD40L), as soluble receptor agonists are but weakly pro-apoptotic. Here, for the first time we have identified the precise signalling cascade underpinning mCD40L-mediated death as involving sequential TRAF3 stabilisation, ASK1 phosphorylation, MKK4 (but not MKK7) activation and JNK/AP-1 induction, leading to a Bak- and Bax-dependent mitochondrial apoptosis pathway. TRAF3 is central in the activation of the NADPH oxidase (Nox)-2 component p40phox and the elevation of reactive oxygen species (ROS) is essential in apoptosis. Strikingly, CD40 activation resulted in down-regulation of Thioredoxin (Trx)-1 to permit ASK1 activation and apoptosis. Although soluble receptor agonist alone could not induce death, combinatorial treatment incorporating soluble CD40 agonist and pharmacological inhibition of Trx-1 was functionally equivalent to the signal triggered by mCD40L. Finally, we demonstrate using normal, ‘para-malignant' and tumour-derived cells that progression to malignant transformation is associated with increase in oxidative stress in epithelial cells, which coincides with increased susceptibility to CD40 killing, while in normal cells CD40 signalling is cytoprotective. Our studies have revealed the molecular nature of the tumour specificity of CD40 signalling and explained the differences in pro-apoptotic potential between soluble and membrane-bound CD40 agonists. Equally importantly, by exploiting a unique epithelial culture system that allowed us to monitor alterations in the redox-state of epithelial cells at different stages of malignant transformation, our study reveals how pro-apoptotic signals can elevate ROS past a previously hypothesised ‘lethal pro-apoptotic threshold' to induce death; an observation that is both of fundamental importance and carries implications for cancer therapy.
Collapse
Affiliation(s)
- C J Dunnill
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - K Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - A Mohamed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - J Southgate
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | - N T Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
213
|
Comparison of the alendronate and irradiation with a light-emitting diode (LED) on murine osteoclastogenesis. Lasers Med Sci 2016; 32:189-200. [DOI: 10.1007/s10103-016-2101-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/17/2016] [Indexed: 11/26/2022]
|
214
|
Ahmadian E, Pennefather PS, Eftekhari A, Heidari R, Eghbal MA. Role of renin-angiotensin system in liver diseases: an outline on the potential therapeutic points of intervention. Expert Rev Gastroenterol Hepatol 2016; 10:1279-1288. [PMID: 27352778 DOI: 10.1080/17474124.2016.1207523] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The current review aimed to outline the functions of the renin angiotensin system (RAS) in the context of the oxidative stress-associated liver disease. Areas covered: Angiotensin II (Ang II) as the major effector peptide of the RAS is a pro-oxidant and fibrogenic cytokine. Mechanistically, NADPH oxidase (NOX) is a multicomponent enzyme complex that is able to generate reactive oxygen species (ROS) as a downstream signaling pathway of Ang II which is expressed in liver. Ang II has a detrimental role in the pathogenesis of chronic liver disease through possessing pro-oxidant, fibrogenic, and pro-inflammatory impact in the liver. The alternative axis (ACE2/Ang(1-7)/mas) of the RAS serves as an anti-inflammatory, antioxidant and anti-fibrotic component of the RAS. Expert commentary: In summary, the use of alternative axis inhibitors accompanying with ACE2/ Ang(1-7)/mas axis activation is a promising new strategy serving as a novel therapeutic option to prevent and treat chronic liver diseases.
Collapse
Affiliation(s)
- Elham Ahmadian
- a Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Biotechnology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,c Pharmacology and Toxicology Department, School of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran.,d Students Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Peter S Pennefather
- e Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , ON , Canada
| | - Aziz Eftekhari
- a Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,d Students Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Reza Heidari
- f Pharmaceutical Sciences Research Center , Shiraz University of Medical Sciences , Shiraz , Iran.,g Gerash School of Paramedical Sciences , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mohammad Ali Eghbal
- a Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Biotechnology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,c Pharmacology and Toxicology Department, School of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
215
|
Huang HS, Hsu CF, Chu SC, Chen PC, Ding DC, Chang MY, Chu TY. Haemoglobin in pelvic fluid rescues Fallopian tube epithelial cells from reactive oxygen species stress and apoptosis. J Pathol 2016; 240:484-494. [PMID: 27625309 DOI: 10.1002/path.4807] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/25/2016] [Accepted: 09/08/2016] [Indexed: 12/19/2022]
Abstract
Fallopian tube fimbrial epithelium is considered to be the major site of origin of ovarian high-grade serous carcinoma, with p53 loss being the earliest and universal change. We previously reported that reactive oxygen species (ROS) in the ovulatory follicular fluids (FFs) are mutagenic and cytotoxic to fimbrial epithelial cells, which are bathed in the peritoneal fluid mixed with FFs. Here, we observed that ferryl haemoglobin (Hb), which was abundantly present in ovulatory FFs and pelvic peritoneal fluids, could rescue p53-deficient immortalized fimbrial epithelial (FE25) cells and oviduct epithelial cells from Trp53-null mice from lethal ovulatory ROS stress. Ferryl Hb and FF containing high Hb levels protected FE25 cells from apoptosis, mainly by consuming extracellular ROS and reducing NADPH oxidase-mediated cell death. The remaining extracellular ROS could still induce DNA double-strand breaks in the fimbrial epithelial cells. Our study revealed that ferryl Hb in peritoneal fluid rescued ROS-stressed, DNA-damaged fimbrial epithelial cells from death, and suggested that peritoneal blood from various sources may contribute to the ovulation-induced transformation of Fallopian tube epithelium. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hsuan-Shun Huang
- Cervical Cancer Prevention Centre, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Che-Fang Hsu
- Cervical Cancer Prevention Centre, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Sung-Chao Chu
- Department of Haematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Pao-Chu Chen
- Department of Obstetrics and Gynaecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Dah-Ching Ding
- Department of Obstetrics and Gynaecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Meng-Ya Chang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| | - Tang-Yuan Chu
- Cervical Cancer Prevention Centre, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Obstetrics and Gynaecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
216
|
Sudawan B, Chang CS, Chao HF, Ku MSB, Yen YF. Hydrogen cyanamide breaks grapevine bud dormancy in the summer through transient activation of gene expression and accumulation of reactive oxygen and nitrogen species. BMC PLANT BIOLOGY 2016; 16:202. [PMID: 27627883 PMCID: PMC5024461 DOI: 10.1186/s12870-016-0889-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/04/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Hydrogen cyanamide (HC) and pruning (P) have frequently been used to break dormancy in grapevine floral buds. However, the exact underlying mechanism remains elusive. This study aimed to address the early mode of action of these treatments on accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and expression of related genes in the dormancy breaking buds of grapevine in the summer. RESULTS The budbreak rates induced by pruning (P), hydrogen cyanamide (HC), pruning plus hydrogen cyanamide (PHC) and water (control) after 8 days were 33, 53, 95, and 0 %, respectively. Clearly, HC was more effective in stimulating grapevine budbreak and P further enhanced its potency. In situ staining of longitudinal bud sections after 12 h of treatments detected high levels of ROS and nitric oxide (NO) accumulated in the buds treated with PHC, compared with HC or P alone. The amounts of ROS and NO accumulated were highly correlated with the rates of budbreak among these treatments, highlighting the importance of a rapid, transient accumulation of sublethal levels of ROS and RNS in dormancy breaking. Microarray analysis revealed specific alterations in gene expression in dormancy breaking buds induced by P, HC and PHC after 24 h of treatment. Relative to control, PHC altered the expression of the largest number of genes, while P affected the expression of the least number of genes. PHC also exerted a greater intensity in transcriptional activation of these genes. Gene ontology (GO) analysis suggests that alteration in expression of ROS related genes is the major factor responsible for budbreak. qRT-PCR analysis revealed the transient expression dynamics of 12 specific genes related to ROS generation and scavenge during the 48 h treatment with PHC. CONCLUSION Our results suggest that rapid accumulation of ROS and NO at early stage is important for dormancy release in grapevine in the summer, and the identification of the commonly expressed specific genes among the treatments allowed the construction of the signal transduction pathway related to ROS/RNS metabolism during dormancy release. The rapid accumulation of a sublethal level of ROS/RNS subsequently induces cell wall loosening and expansion for bud sprouting.
Collapse
Affiliation(s)
- Boonyawat Sudawan
- Ph.D. Program of Agricultural Science, National Chiayi University, Chiayi, 60004 Taiwan
| | - Chih-Sheng Chang
- Department of Farmers’ Services, Council of Agriculture, Taipei, 10014 Taiwan
| | - Hsiu-fung Chao
- Tainan District Agricultural Research and Extension Station, Tainan, 71246 Taiwan
| | - Maurice S. B. Ku
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, 60004 Taiwan
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| | - Yung-fu Yen
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, 60004 Taiwan
| |
Collapse
|
217
|
Cifuentes-Pagano ME, Meijles DN, Pagano PJ. Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors. Curr Pharm Des 2016; 21:6023-35. [PMID: 26510437 DOI: 10.2174/1381612821666151029112013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
Oxidative stress-related diseases underlie many if not all of the major leading causes of death in United States and the Western World. Thus, enormous interest from both academia and pharmaceutical industry has been placed on the development of agents which attenuate oxidative stress. With that in mind, great efforts have been placed in the development of inhibitors of NADPH oxidase (Nox), the major enzymatic source of reactive oxygen species and oxidative stress in many cells and tissue. The regulation of a catalytically active Nox enzyme involves numerous protein-protein interactions which, in turn, afford numerous targets for inhibition of its activity. In this review, we will provide an updated overview of the available Nox inhibitors, both peptidic and small molecules, and discuss the body of data related to their possible mechanisms of action and specificity towards each of the various isoforms of Nox. Indeed, there have been some very notable successes. However, despite great commitment by many in the field, the need for efficacious and well-characterized, isoform-specific Nox inhibitors, essential for the treatment of major diseases as well as for delineating the contribution of a given Nox in physiological redox signalling, continues to grow.
Collapse
Affiliation(s)
| | | | - Patrick J Pagano
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Biomedical Science Tower, 12th Floor, Room E1247, 200 Lothrop St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
218
|
Yan JJ, Xie B, Zhang L, Li SJ, van Peer AF, Wu TJ, Chen BZ, Xie BG. Small GTPases and Stress Responses of vvran1 in the Straw Mushroom Volvariella volvacea. Int J Mol Sci 2016; 17:ijms17091527. [PMID: 27626406 PMCID: PMC5037802 DOI: 10.3390/ijms17091527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
Abstract
Small GTPases play important roles in the growth, development and environmental responses of eukaryotes. Based on the genomic sequence of the straw mushroom Volvariella volvacea, 44 small GTPases were identified. A clustering analysis using human small GTPases as the references revealed that V. volvacea small GTPases can be grouped into five families: nine are in the Ras family, 10 are in the Rho family, 15 are in the Rab family, one is in the Ran family and nine are in the Arf family. The transcription of vvran1 was up-regulated upon hydrogen peroxide (H2O2) stress, and could be repressed by diphenyleneiodonium chloride (DPI), a NADPH oxidase-specific inhibitor. The number of vvran1 transcripts also increased upon cold stress. Diphenyleneiodonium chloride, but not the superoxide dismutase (SOD) inhibitor diethy dithiocarbamate (DDC), could suppress the up-regulation of vvran1 gene expression to cold stress. These results combined with the high correlations between gene expression and superoxide anion (O2−) generation indicated that vvran1 could be one of the candidate genes in the downstream of O2− mediated pathways that are generated by NADPH oxidase under low temperature and oxidative stresses.
Collapse
Affiliation(s)
- Jun-Jie Yan
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bin Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lei Zhang
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shao-Jie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China.
| | - Arend F van Peer
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ta-Ju Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China.
| | - Bing-Zhi Chen
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bao-Gui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
219
|
Boubakri H, Gargouri M, Mliki A, Brini F, Chong J, Jbara M. Vitamins for enhancing plant resistance. PLANTA 2016; 244:529-43. [PMID: 27315123 DOI: 10.1007/s00425-016-2552-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/29/2016] [Indexed: 05/26/2023]
Abstract
This paper provides an overview on vitamins with inducing activities in plants, the molecular and cellular mechanisms implicated, and the hormonal signalling-network regulating this process. Moreover, it reports how vitamins might be part of the molecular events linked to induced resistance by the conventional elicitors. Induced resistance (IR), exploiting the plant innate-defense system is a sustainable strategy for plant disease control. In the last decade, vitamins have been proven to act as inducers of disease resistance, and these findings have received an important attention owing to their safety and cost effectiveness. Vitamins, including thiamine (TH, vitamin B1), riboflavin (RF, vitamin B2), menadione sodium bisulfite (MSB, vitamin K3), Para-aminobenzoic acid (PABA, vitamin Bx), and folic acid (FA, vitamin B9) provided an efficient protection against a wide range of pathogens through the modulation of specific host-defense facets. However, other vitamins, such as ascorbic acid (AA, vitamin C) and tocopherols (vitamin E), have been shown to be a part of the molecular mechanisms associated to IR. The present review is the first to summarize what vitamins are acting as inducers of disease resistance in plants and how could they be modulated by the conventional elicitors. Thus, this report provides an overview on the protective abilities of vitamins and the molecular and cellular mechanisms underlying their activities. Moreover, it describes the hormonal-signalling network regulating vitamin-signal transduction during IR. Finally, a biochemical model describing how vitamins are involved in the establishment of IR process is discussed.
Collapse
Affiliation(s)
- Hatem Boubakri
- Laboratory of Leguminous, Centre of Biotechnology of Borj-Cédria, 2050, Hammam-Lif, Tunisia.
| | - Mahmoud Gargouri
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, 2050, Hammam-Lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cédria, 2050, Hammam-Lif, Tunisia
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Route Sidi-Mansour, BP.1177, 3018, Sfax, Tunisia
| | - Julie Chong
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, EA3991), Université de Haute Alsace, 33 rue de Herrlisheim, 68000, Colmar, France
| | - Moez Jbara
- Laboratory of Leguminous, Centre of Biotechnology of Borj-Cédria, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
220
|
Abstract
SIGNIFICANCE For a healthy cell to turn into a cancer cell and grow out to become a tumor, it needs to undergo a series of complex changes and acquire certain traits, summarized as "The Hallmarks of Cancer." These hallmarks can all be regarded as the result of altered signal transduction cascades and an understanding of these cascades is essential for cancer treatment. RECENT ADVANCES Redox signaling is a long overlooked form of signal transduction that proceeds through the reversible oxidation of cysteines in proteins and that uses hydrogen peroxide as a second messenger. CRITICAL ISSUES In this article, we provide examples that show that redox signaling is involved in the regulation of proteins and signaling cascades that play roles in every hallmark of cancer. FUTURE DIRECTIONS An understanding of how redox signaling and "classical" signal transduction are intertwined could hold promising strategies for cancer therapy in the future. Antioxid. Redox Signal. 25, 300-325.
Collapse
Affiliation(s)
- Marten Hornsveld
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht , Utrecht, the Netherlands
| | - Tobias B Dansen
- Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht , Utrecht, the Netherlands
| |
Collapse
|
221
|
Xu Q, Choksi S, Qu J, Jang J, Choe M, Banfi B, Engelhardt JF, Liu ZG. NADPH Oxidases Are Essential for Macrophage Differentiation. J Biol Chem 2016; 291:20030-41. [PMID: 27489105 DOI: 10.1074/jbc.m116.731216] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 12/14/2022] Open
Abstract
NADPH oxidases (NOXs) are involved in inflammation, angiogenesis, tumor growth, and osteoclast differentiation. However, the role of NOX1 and NOX2 in macrophage differentiation and tumor progression is still elusive. Here we report that NOX1 and NOX2 are critical for the differentiation of monocytes to macrophages, the polarization of M2-type but not M1-type macrophages, and the occurrence of tumor-associated macrophages (TAMs). We found that deletion of both NOX1 and NOX2 led to a dramatic decrease in ROS production in macrophages and resulted in impaired efficiency in monocyte-to-macrophage differentiation and M2-type macrophage polarization. We further showed that NOX1 and NOX2 were critical for the activation of the MAPKs JNK and ERK during macrophage differentiation and that the deficiency of JNK and ERK activation was responsible for the failure of monocyte-to-macrophage differentiation, in turn affecting M2 macrophage polarization. Furthermore, we demonstrated that the decrease in M2 macrophages and TAMs, concomitant with the reduction of cytokine and chemokine secretion, contributed to the delay in wound healing and the inhibition of tumor growth and metastasis in NOX1/2 double knockout mice compared with WT mice. Collectively, these data provide direct evidence that NOX1 and NOX2 deficiency impairs macrophage differentiation and the occurrence of M2-type TAMs during tumor development.
Collapse
Affiliation(s)
- Qing Xu
- From the Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Swati Choksi
- From the Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Jianhui Qu
- From the Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Jonathan Jang
- From the Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Moran Choe
- From the Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Botond Banfi
- the Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242-1109
| | - John F Engelhardt
- the Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242-1109
| | - Zheng-Gang Liu
- From the Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
222
|
Urban L, Charles F, de Miranda MRA, Aarrouf J. Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:1-11. [PMID: 27064192 DOI: 10.1016/j.plaphy.2016.04.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 05/01/2023]
Abstract
There is an abundant literature about the biological and physiological effects of UV-B light and the signaling and metabolic pathways it triggers and influences. Much less is known about UV-C light even though it seems to have a lot of potential for being effective in less time than UV-B light. UV-C light is known since long to exert direct and indirect inhibitory and damaging effects on living cells and is therefore commonly used for disinfection purposes. More recent observations suggest that UV-C light can also be exploited to stimulate the production of health-promoting phytochemicals, to extent shelf life of fruits and vegetables and to stimulate mechanisms of adaptation to biotic and abiotic stresses. Clearly some of these effects may be related to the stimulating effect of UV-C light on the production of reactive oxygen species (ROS) and to the stimulation of antioxidant molecules and mechanisms, although UV-C light could also trigger and regulate signaling pathways independently from its effect on the production of ROS. Our review clearly underlines the high potential of UV-C light in agriculture and therefore advocates for more work to be done to improve its efficiency and also to increase our understanding of the way UV-C light is perceived and influences the physiology of plants.
Collapse
Affiliation(s)
- Laurent Urban
- Unité Mixte de Recherche Qualisud, Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays de Vaucluse, 301 rue Baruch de Spinoza, BP 2139 - 84916, Avignon cedex 9, France.
| | - Florence Charles
- Unité Mixte de Recherche Qualisud, Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays de Vaucluse, 301 rue Baruch de Spinoza, BP 2139 - 84916, Avignon cedex 9, France
| | - Maria Raquel Alcântara de Miranda
- Laboratório de Fisiologia e Bioquímica de Frutos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Mr. Hull 2297 Bl. 907, Campus do Pici, CEP 60455-760, Fortaleza, CE, Brazil
| | - Jawad Aarrouf
- Unité Mixte de Recherche Qualisud, Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays de Vaucluse, 301 rue Baruch de Spinoza, BP 2139 - 84916, Avignon cedex 9, France
| |
Collapse
|
223
|
Feng B, Dai A, Chen L, Qiu L, Fu Y, Sun W. NADPH oxidase-produced superoxide mediated a 50-Hz magnetic field-induced epidermal growth factor receptor clustering. Int J Radiat Biol 2016; 92:596-602. [PMID: 27442448 DOI: 10.1080/09553002.2016.1206227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE A 50-Hz magnetic field (MF) was found to induce epidermal growth factor receptor (EGFR) clustering in our previous study. The aim of this work was to investigate the molecular mechanisms that mediated MF-induced EGFR clustering. MATERIALS AND METHODS Human amniotic epithelial (FL) cells were exposed to a 50-Hz MF. Total reactive oxygen species (ROS), cytoplasmic and mitochondrial superoxide production were detected by DCFH-DA, DHE and MitoSOX, respectively. EGFR clustering was analyzed using confocal microscopy after indirect immunofluorescence staining. RESULTS Results showed that exposing FL cells to MF at intensity higher than 0.2 mT for 15 min enhanced total ROS production. Additionally, enhanced total ROS and cytoplasmic superoxide production were observed after exposing cells to MF at 0.4 mT for 5, 15, or 30 min, while mitochondrial superoxide production for 15 or 30 min. Pretreatment with Nox inhibitor, DPI, effectively inhibited MF-induced cytoplasmic superoxide production and subsequent EGFR clustering while mitochondrial superoxide production was not affected. CONCLUSIONS Nox-produced superoxide mediated a 50-Hz magnetic field-induced EGFR clustering.
Collapse
Affiliation(s)
- Baihuan Feng
- a Bioelectromagnetics Key Laboratory , Zhejiang University School of Medicine , Hangzhou , China
| | - Ahui Dai
- a Bioelectromagnetics Key Laboratory , Zhejiang University School of Medicine , Hangzhou , China ;,c Healthcare Department , the First Affiliated Hospital, Zhejiang University , Hangzhou , China
| | - Liangjing Chen
- a Bioelectromagnetics Key Laboratory , Zhejiang University School of Medicine , Hangzhou , China
| | - Liping Qiu
- a Bioelectromagnetics Key Laboratory , Zhejiang University School of Medicine , Hangzhou , China
| | - Yiti Fu
- a Bioelectromagnetics Key Laboratory , Zhejiang University School of Medicine , Hangzhou , China
| | - Wenjun Sun
- a Bioelectromagnetics Key Laboratory , Zhejiang University School of Medicine , Hangzhou , China ;,b Institute of Environmental Medicine, Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
224
|
Zhang Q, Bhattacharya S, Pi J, Clewell RA, Carmichael PL, Andersen ME. Adaptive Posttranslational Control in Cellular Stress Response Pathways and Its Relationship to Toxicity Testing and Safety Assessment. Toxicol Sci 2016; 147:302-16. [PMID: 26408567 DOI: 10.1093/toxsci/kfv130] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although transcriptional induction of stress genes constitutes a major cellular defense program against a variety of stressors, posttranslational control directly regulating the activities of preexisting stress proteins provides a faster-acting alternative response. We propose that posttranslational control is a general adaptive mechanism operating in many stress pathways. Here with the aid of computational models, we first show that posttranslational control fulfills two roles: (1) handling small, transient stresses quickly and (2) stabilizing the negative feedback transcriptional network. We then review the posttranslational control pathways for major stress responses-oxidative stress, metal stress, hyperosmotic stress, DNA damage, heat shock, and hypoxia. Posttranslational regulation of stress protein activities occurs by reversible covalent modifications, allosteric or non-allosteric enzymatic regulations, and physically induced protein structural changes. Acting in feedback or feedforward networks, posttranslational control may establish a threshold level of cellular stress. Sub-threshold stresses are handled adequately by posttranslational control without invoking gene transcription. With supra-threshold stress levels, cellular homeostasis cannot be maintained and transcriptional induction of stress genes and other gene programs, eg, those regulating cell metabolism, proliferation, and apoptosis, takes place. The loss of homeostasis with consequent changes in cellular function may lead to adverse cellular outcomes. Overall, posttranslational and transcriptional control pathways constitute a stratified cellular defense system, handling stresses coherently across time and intensity. As cell-based assays become a focus for chemical testing anchored on toxicity pathways, examination of proteomic and metabolomic changes as a result of posttranslational control occurring in the absence of transcriptomic alterations deserves more attention.
Collapse
Affiliation(s)
- Qiang Zhang
- *Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; School of Public Health, China Medical University, Shenyang, China; and Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Sudin Bhattacharya
- *Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; School of Public Health, China Medical University, Shenyang, China; and Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Jingbo Pi
- *Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; School of Public Health, China Medical University, Shenyang, China; and Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Rebecca A Clewell
- *Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; School of Public Health, China Medical University, Shenyang, China; and Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Paul L Carmichael
- *Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; School of Public Health, China Medical University, Shenyang, China; and Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Melvin E Andersen
- *Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; School of Public Health, China Medical University, Shenyang, China; and Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| |
Collapse
|
225
|
Treps L, Conradi LC, Harjes U, Carmeliet P. Manipulating Angiogenesis by Targeting Endothelial Metabolism: Hitting the Engine Rather than the Drivers—A New Perspective? Pharmacol Rev 2016; 68:872-87. [DOI: 10.1124/pr.116.012492] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
226
|
Medraño-Fernandez I, Bestetti S, Bertolotti M, Bienert GP, Bottino C, Laforenza U, Rubartelli A, Sitia R. Stress Regulates Aquaporin-8 Permeability to Impact Cell Growth and Survival. Antioxid Redox Signal 2016; 24:1031-44. [PMID: 26972385 PMCID: PMC4931348 DOI: 10.1089/ars.2016.6636] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
UNLABELLED Aquaporin-8 (AQP8) allows the bidirectional transport of water and hydrogen peroxide across biological membranes. Depending on its concentration, H2O2 exerts opposite roles, amplifying growth factor signaling in physiological conditions, but causing severe cell damage when in excess. Thus, H2O2 permeability is likely to be tightly controlled in living cells. AIMS In this study, we investigated whether and how the transport of H2O2 through plasma membrane AQP8 is regulated, particularly during cell stress. RESULTS We show that diverse cellular stress conditions, including heat, hypoxia, and ER stress, reversibly inhibit the permeability of AQP8 to H2O2 and water. Preventing the accumulation of intracellular reactive oxygen species (ROS) during stress counteracts AQP8 blockade. Once inhibition is established, AQP8-dependent transport can be rescued by reducing agents. Neither H2O2 nor water transport is impaired in stressed cells expressing a mutant AQP8, in which cysteine 53 had been replaced by serine. Cells expressing this mutant are more resistant to stress-, drug-, and radiation-induced growth arrest and death. INNOVATION AND CONCLUSION The control of AQP8-mediated H2O2 transport provides a novel mechanism to regulate cell signaling and survival during stress. Antioxid. Redox Signal. 24, 1031-1044.
Collapse
Affiliation(s)
- Iria Medraño-Fernandez
- 1 Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele/Università Vita-Salute San Raffaele , Milan, Italy
| | - Stefano Bestetti
- 1 Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele/Università Vita-Salute San Raffaele , Milan, Italy
| | - Milena Bertolotti
- 1 Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele/Università Vita-Salute San Raffaele , Milan, Italy
| | - Gerd P Bienert
- 2 Metalloid Transport Group, Leibniz Institute of Plant Genetics and Crop Plant Research , Gatersleben, Germany
| | - Cinzia Bottino
- 3 Department of Molecular Medicine, University of Pavia , Pavia, Italy
| | - Umberto Laforenza
- 3 Department of Molecular Medicine, University of Pavia , Pavia, Italy
| | - Anna Rubartelli
- 4 Cell Biology Unit, IRCCS AOU San Martino-IST , Genoa, Italy
| | - Roberto Sitia
- 1 Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele/Università Vita-Salute San Raffaele , Milan, Italy
| |
Collapse
|
227
|
Accetta R, Damiano S, Morano A, Mondola P, Paternò R, Avvedimento EV, Santillo M. Reactive Oxygen Species Derived from NOX3 and NOX5 Drive Differentiation of Human Oligodendrocytes. Front Cell Neurosci 2016; 10:146. [PMID: 27313511 PMCID: PMC4889614 DOI: 10.3389/fncel.2016.00146] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/18/2016] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS) are signaling molecules that mediate stress response, apoptosis, DNA damage, gene expression and differentiation. We report here that differentiation of oligodendrocytes (OLs), the myelin forming cells in the CNS, is driven by ROS. To dissect the OL differentiation pathway, we used the cell line MO3-13, which display the molecular and cellular features of OL precursors. These cells exposed 1-4 days to low levels of H2O2 or to the protein kinase C (PKC) activator, phorbol-12-Myristate-13-Acetate (PMA) increased the expression of specific OL differentiation markers: the specific nuclear factor Olig-2, and Myelin Basic Protein (MBP), which was processed and accumulated selectively in membranes. The induction of differentiation genes was associated with the activation of ERK1-2 and phosphorylation of the nuclear cAMP responsive element binding protein 1 (CREB). PKC mediates ROS-induced differentiation because PKC depletion or bis-indolyl-maleimide (BIM), a PKC inhibitor, reversed the induction of differentiation markers by H2O2. H2O2 and PMA increased the expression of membrane-bound NADPH oxidases, NOX3 and NOX5. Selective depletion of these proteins inhibited differentiation induced by PMA. Furthermore, NOX5 silencing down regulated NOX3 mRNA levels, suggesting that ROS produced by NOX5 up-regulate NOX3 expression. These data unravel an elaborate network of ROS-generating enzymes (NOX5 to NOX3) activated by PKC and necessary for differentiation of OLs. Furthermore, NOX3 and NOX5, as inducers of OL differentiation, represent novel targets for therapies of demyelinating diseases, including multiple sclerosis, associated with impairment of OL differentiation.
Collapse
Affiliation(s)
- Roberta Accetta
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy
| | - Annalisa Morano
- Laboratori di Ricerca Preclinica e Traslazionale, Istituto di Ricovero e Cura a Carattere Scientifico - Centro di Riferimento Oncologico della Basilicata Rionero in Vulture, Italy
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy
| | - Roberto Paternò
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy
| | - Enrico V Avvedimento
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II Naples, Italy
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy
| |
Collapse
|
228
|
Evidence supporting the conceptual framework of cancer chemoprevention in canines. Sci Rep 2016; 6:26500. [PMID: 27216246 PMCID: PMC4877707 DOI: 10.1038/srep26500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/05/2016] [Indexed: 11/08/2022] Open
Abstract
As with human beings, dogs suffer from the consequences of cancer. We investigated the potential of a formulation comprised of resveratrol, ellagic acid, genistein, curcumin and quercetin to modulate biomarkers indicative of disease prevention. Dog biscuits were evaluated for palatability and ability to deliver the chemopreventive agents. The extent of endogenous DNA damage in peripheral blood lymphocytes from dogs given the dietary supplement or placebo showed no change. However, H2O2-inducible DNA damage was significantly decreased after consumption of the supplement. The expression of 11 of 84 genes related to oxidative stress was altered. Hematological parameters remained in the reference range. The concept of chemoprevention for the explicit benefit of the canine is compelling since dogs are an important part of our culture. Our results establish a proof-of-principle and provide a framework for improving the health and well-being of “man’s best friend”.
Collapse
|
229
|
Gu XJ, Liu X, Chen YY, Zhao Y, Xu M, Han XJ, Liu QP, Yi JL, Li JM. Involvement of NADPH oxidases in alkali burn-induced corneal injury. Int J Mol Med 2016; 38:75-82. [PMID: 27221536 PMCID: PMC4899027 DOI: 10.3892/ijmm.2016.2594] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 04/22/2016] [Indexed: 01/15/2023] Open
Abstract
Chemical burns are a major cause of corneal injury. Oxidative stress, inflammatory responses and neovascularization after the chemical burn aggravate corneal damage, and lead to loss of vision. Although NADPH oxidases (Noxs) play a crucial role in the production of reactive oxygen species (ROS), the role of Noxs in chemical burn-induced corneal injury remains to be elucidated. In the present study, the transcription and expression of Noxs in corneas were examined by RT-qPCR, western blot analysis and immunofluorescence staining. It was found that alkali burns markedly upregulated the transcription and expression of Nox2 and Nox4 in human or mouse corneas. The inhibition of Noxs by diphenyleneiodonium (DPI) or apocynin (Apo) effectively attenuated alkali burn-induced ROS production and decreased 3-nitrotyrosine (3-NT) protein levels in the corneas. In addition, Noxs/CD11b double-immunofluorescence staining indicated that Nox2 and Nox4 were partially co-localized with CD11b. DPI or Apo prevented the infiltration of CD11b-positive inflammatory cells, and inhibited the transcription of inflammatory cytokines following alkali burn-induced corneal injury. In our mouse model of alkali burn-induced corneal injury, corneal neovascularization (CNV) occurred on day 3, and it affected 50% of the whole area of the cornea on day 7, and on day 14, CNV coverage of the cornea reached maximum levels. DPI or Apo effectively attenuated alkali burn-induced CNV and decreased the mRNA levels of angiogenic factors, including vascular endothelial growth factor (VEGF), VEGF receptors and matrix metalloproteinases (MMPs). Taken together, our data indicate that Noxs play a role in alkali burn-induced corneal injury by regulating oxidative stress, inflammatory responses and CNV, and we thus suggest that Noxs are a potential therapeutic target in the future treatment of chemical-induced corneal injury.
Collapse
Affiliation(s)
- Xue-Jun Gu
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xian Liu
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ying-Ying Chen
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yao Zhao
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Man Xu
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Jian Han
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiu-Ping Liu
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing-Lin Yi
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing-Ming Li
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
230
|
Kim J, Seo M, Kim SK, Bae YS. Flagellin-induced NADPH oxidase 4 activation is involved in atherosclerosis. Sci Rep 2016; 6:25437. [PMID: 27146088 PMCID: PMC4857127 DOI: 10.1038/srep25437] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/18/2016] [Indexed: 02/06/2023] Open
Abstract
It is widely accepted that bacterial infection-mediated inflammation facilitates development of atherosclerosis by activating toll-like receptor (TLR) signaling system. We reasoned that NADPH oxidases (Nox), required for TLR-mediated inflammatory response, are involved in atherogenesis. Here, we show that the activation of Nox4 through TLR5 regulates the inflammation of the endothelium and in atherogenesis. Flagellin-induced interaction between the COOH region of Nox4 and the TIR domain of TLR5 led to H2O2 generation, which in turn promoted the secretion of pro-inflammatory cytokines including IL-8, as well as the expression of ICAM-1 in human aortic endothelial cells (HAECs). Knockdown of the Nox4 in HAECs resulted in attenuated expressions of IL-8 and ICAM-1 leading to a reduction in the adhesion and trans-endothelial migration of monocytes. Challenge of recombinant FliC (rFliC) to the ApoE KO mice with high-fat diet (HFD) resulted in significantly increased atherosclerotic plaque sizes compared to the saline-injected mice. However, an injection of rFliC into the Nox4ApoE DKO mice with HFDs failed to generate atherosclerotic plaque, suggesting that Nox4 deficiency resulted in significant protections against rFliC-mediated atherogenesis. We conclude that TLR5-dependent Nox4 activation and subsequent H2O2 generation play critical roles for the development of atherosclerosis.
Collapse
Affiliation(s)
- Jinoh Kim
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Misun Seo
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Su Kyung Kim
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, Korea
| |
Collapse
|
231
|
Spiers JG, Chen HJC, Cuffe JSM, Sernia C, Lavidis NA. Acute restraint stress induces rapid changes in central redox status and protective antioxidant genes in rats. Psychoneuroendocrinology 2016; 67:104-12. [PMID: 26881836 DOI: 10.1016/j.psyneuen.2016.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/17/2016] [Accepted: 02/06/2016] [Indexed: 11/26/2022]
Abstract
The stress-induced imbalance in reduction/oxidation (redox) state has been proposed to play a major role in the etiology of neurological disorders. However, the relationship between psychological stress, central redox state, and potential protective mechanisms within specific neural regions has not been well characterized. In this study, we have used an acute psychological stress to demonstrate the dynamic changes that occur in the redox system of hippocampal and striatal tissue. Outbred male Wistar rats were subject to 0 (control), 60, 120, or 240min of acute restraint stress and the hippocampus and striatum were cryodissected for redox assays and relative gene expression. Restraint stress significantly elevated oxidative status and lipid peroxidation, while decreasing glutathione ratios overall indicative of oxidative stress in both neural regions. These biochemical changes were prevented by prior administration of the glucocorticoid receptor antagonist, RU-486. The hippocampus also demonstrated increased glutathione peroxidase 1 and 4 antioxidant expression which was not observed in the striatum, while both regions displayed robust upregulation of the antioxidant, metallothionein 1a. This was observed with concurrent upregulation of 11β-hydroxysteroid dehydrogenase 1, a local reactivator of corticosterone, in addition to decreased expression of the cytosolic regulatory subunit of superoxide-producing enzyme, NADPH-oxidase. Together, this study demonstrates distinctive regional redox profiles following acute stress exposure, in addition to identifying differential capabilities in managing oxidative challenges via altered antioxidant gene expression in the hippocampus and striatum.
Collapse
Affiliation(s)
- Jereme G Spiers
- School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia.
| | | | - James S M Cuffe
- School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia
| |
Collapse
|
232
|
Chen XH, Zhou X, Yang XY, Zhou ZB, Lu DH, Tang Y, Ling ZM, Zhou LH, Feng X. Propofol Protects Against H2O2-Induced Oxidative Injury in Differentiated PC12 Cells via Inhibition of Ca(2+)-Dependent NADPH Oxidase. Cell Mol Neurobiol 2016; 36:541-51. [PMID: 26162968 DOI: 10.1007/s10571-015-0235-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/02/2015] [Indexed: 12/31/2022]
Abstract
Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91(phox) (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca(2+) channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca(2+)-dependent NADPH oxidase.
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Xue Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Xiao-Yu Yang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Zhi-Bin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Di-Han Lu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Ying Tang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Ze-Min Ling
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Li-Hua Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
233
|
Methane Attenuates Hepatic Ischemia/Reperfusion Injury in Rats Through Antiapoptotic, Anti-Inflammatory, and Antioxidative Actions. Shock 2016; 44:181-7. [PMID: 26009821 DOI: 10.1097/shk.0000000000000385] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatic ischemia/reperfusion (I/R) injury, which occurs in various diseases, introduces severe tissue damage and liver dysfunction. However, no promising therapies for such a significant condition currently exist. Methane has been suggested to exert a protective effect against intestinal I/R injury. In this study, we introduced methane to treat hepatic I/R injury to show its promising protective effect. Also, intraperitoneal injection with methane-rich saline, which could have potential clinical applications, was applied as a new method. Partial liver warm ischemia was applied in Sprague-Dawley rats for 60 min followed by succedent reperfusion. In the test for effective dosage, methane-rich saline was administrated intraperitoneally to the rats at doses of 1, 5, 20, or 40 mL/kg at onset of reperfusion. In the test for protective effect, rats received methane-rich saline intraperitoneally at a dose of 10 mL/kg before the initiation of reperfusion. We found that methane-rich saline significantly decreased serum alanine aminotransferase, aspartate aminotransferase activity, and the occurrence of necrosis. Moreover, methane-rich saline reduced the amount of caspase-3 and the number of apoptotic cells. In addition, methane-rich saline increased the level of superoxide dismutase and decreased the level of malondialdehyde and 8-hydroxyguanosine. Furthermore, research indicated that methane-rich saline markedly decreased gene expression and content of tumor necrosis factor-α and interleukin-6. Also, reduced CD68-positive cells showed decreased inflammatory cells in the liver. Our results suggest that methane protects the liver against I/R injury through antiapoptotic, antioxidative, and anti-inflammatory actions.
Collapse
|
234
|
Lin HR, Wu YH, Yen WC, Yang CM, Chiu DTY. Diminished COX-2/PGE2-Mediated Antiviral Response Due to Impaired NOX/MAPK Signaling in G6PD-Knockdown Lung Epithelial Cells. PLoS One 2016; 11:e0153462. [PMID: 27097228 PMCID: PMC4838297 DOI: 10.1371/journal.pone.0153462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/30/2016] [Indexed: 11/18/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) provides the reducing agent NADPH to meet the cellular needs for reductive biosynthesis and the maintenance of redox homeostasis. G6PD-deficient cells experience a high level of oxidative stress and an increased susceptibility to viral infections. Cyclooxygenase-2 (COX-2) is a key mediator in the regulation of viral replication and inflammatory response. In the current study, the role of G6PD on the inflammatory response was determined in both scramble control and G6PD-knockdown (G6PD-kd) A549 cells upon tumor necrosis factor-α (TNF-α) stimulation. A decreased expression pattern of induced COX-2 and reduced production of downstream PGE2 occurred upon TNF-α stimulation in G6PD-kd A549 cells compared with scramble control A549 cells. TNF-α-induced antiviral activity revealed that decreased COX-2 expression enhanced the susceptibility to coronavirus 229E infection in G6PD-kd A549 cells and was a result of the decreased phosphorylation levels of MAPK (p38 and ERK1/2) and NF-κB. The impaired inflammatory response in G6PD-kd A549 cells was found to be mediated through NADPH oxidase (NOX) signaling as elucidated by cell pretreatment with a NOX2-siRNA or NOX inhibitor, diphenyleneiodonium chloride (DPI). In addition, NOX activity with TNF-α treatment in G6PD-kd A549 cells was not up-regulated and was coupled with a decrease in NOX subunit expression at the transcriptional level, implying that TNF-α-mediated NOX signaling requires the participation of G6PD. Together, these data suggest that G6PD deficiency affects the cellular inflammatory response and the decreased TNF-α-mediated antiviral response in G6PD-kd A549 cells is a result of dysregulated NOX/MAPK/NF-κB/COX-2 signaling.
Collapse
Affiliation(s)
- Hsin-Ru Lin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Yi-Hsuan Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chuen-Mao Yang
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Department of physiology and pharmacology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- * E-mail: (DTYC); (CMY)
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Department of Pediatric Hematology, Chang Gung Memorial Hospital, Lin-Kou, Taiwan
- * E-mail: (DTYC); (CMY)
| |
Collapse
|
235
|
Böhm M, Dosoki H, Kerkhoff C. Is Nox4 a key regulator of the activated state of fibroblasts in systemic sclerosis? Exp Dermatol 2016; 23:679-81. [PMID: 25040787 DOI: 10.1111/exd.12497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 12/13/2022]
Abstract
The family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases consists of phagocytic gp91(phox) and six-related isoforms. Recent evidence indicates that the NADPH oxidase isoform Nox4 controls vascular, renal and pulmonary injury. We propose that Nox4 is an intrinsic regulator of the activated state of dermal fibroblasts in systemic sclerosis (SSc). Profibrotic cytokines on the one hand and antifibrogenic factors such as α-melanocyte-stimulating hormone on the other hand may target Nox4 as an intracellular nodal point. Via increased or decreased generation of reactive oxygen species and/or hydrogen peroxide, Nox4 could orchestrate collagen synthesis, differentiation of dermal fibroblasts into a profibrotic myofibroblast phenotype and thus dermal fibrosis. Confirmation of this hypothesis will have important consequences in our understanding of the activated state of dermal fibroblasts in SSc. Based on the availability of clinically useful Nox4 inhibitors, novel antifibrotic therapies of SSc can be envisioned.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | | | | |
Collapse
|
236
|
Ahn SH, Song JE, Kim S, Cho SH, Lim YK, Kook JK, Kook MS, Lee TH. NOX1/2 activation in human gingival fibroblasts by Fusobacterium nucleatum facilitates attachment of Porphyromonas gingivalis. Arch Microbiol 2016; 198:573-83. [PMID: 27071620 DOI: 10.1007/s00203-016-1223-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/22/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
Abstract
Periodontal diseases are infectious polymicrobial inflammatory diseases that lead to destruction of the periodontal ligament, gingiva, and alveolar bone. Sequential colonization of a broad range of bacteria, including Fusobacterium nucleatum and Porphyromonas gingivalis, is an important phenomenon in this disease model. F. nucleatum is a facultative anaerobic species thought to be a key mediator of dental plaque maturation due to its extensive coaggregation with other oral bacteria, while P. gingivalis is an obligate anaerobic species that induces gingival inflammation by secreting various virulence factors. The formation of a bacterial complex by these two species is central to the pathogenesis of periodontal disease. Reactive oxygen species (ROS) are produced during bacterial infections and are involved in intracellular signaling. However, the impact of oral bacteria-induced ROS on the ecology of F. nucleatum and P. gingivalis has yet to be clarified. In the present study, we investigated ROS production induced in primary human oral cells by F. nucleatum and P. gingivalis and its effect on the formation of their bacterial complexes and further host cell apoptosis. We found that in primary human gingival fibroblasts (GFs), two NADPH oxidase isoforms, NOX1 and NOX2, were activated in response to F. nucleatum infection but not P. gingivalis infection. Accordingly, increased NADPH oxidase activity and production of superoxide anion were observed in GFs after F. nucleatum infection, but not after P. gingivalis infection. Interestingly, in NOX1, NOX2, or NOX1/NOX2 knockdown cells, the number of P. gingivalis decreased when the cells were coinfected with F. nucleatum. A similar pattern of host cell apoptosis was observed. This implies that F. nucleatum contributes to attachment of P. gingivalis by triggering activation of NADPH oxidase in host cells, which may provide an environment more favorable to strict anaerobic bacteria and have a subsequent effect on apoptosis of host cells.
Collapse
Affiliation(s)
- Sun Hee Ahn
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Eun Song
- Department of Molecular Medicine (BK21plus), Graduate School, Chonnam National University, Gwangju, Republic of Korea
| | - Suhee Kim
- Department of Molecular Medicine (BK21plus), Graduate School, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Hyun Cho
- Department of Molecular Medicine (BK21plus), Graduate School, Chonnam National University, Gwangju, Republic of Korea
| | - Yun Kyong Lim
- Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Joong-Ki Kook
- Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Min-Suk Kook
- Department of Oral and Maxillofacial Surgery, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea. .,Department of Molecular Medicine (BK21plus), Graduate School, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
237
|
Sumayao R, McEvoy B, Newsholme P, McMorrow T. Lysosomal cystine accumulation promotes mitochondrial depolarization and induction of redox-sensitive genes in human kidney proximal tubular cells. J Physiol 2016; 594:3353-70. [PMID: 26915455 DOI: 10.1113/jp271858] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/02/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cystine is a disulphide amino acid that is normally generated in the lysosomes by the breakdown of cystine-containing proteins. Previously, we demonstrated that lysosomal cystine accumulation in kidney proximal tubular epithelial cells (PTECs) dramatically reduced glutathione (GSH) levels, which may result in the disruption of cellular redox balance. In the present study, we show that lysosomal cystine accumulation following CTNS gene silencing in kidney PTECs resulted in elevated intracellular reactive oxygen species production, reduced antioxidant capacity, induction of redox-sensitive proteins, altered mitochondrial integrity and augmented cell death. These alterations may represent different facets of a unique cascade leading to tubular dysfunction initiated by lysosomal cystine accumulation and may present a clear disadvantage for cystinotic PTECs in vivo. Cystine depletion by cysteamine afforded cytoprotection in CTNS knockdown cells by reducing oxidative stress, normalizing intracellular GSH and ATP content, and preserving cell viability. ABSTRACT Cystine is a disulphide amino acid that is normally generated within the lysosomes through lysosomal-based protein degradation and via extracellular uptake of free cystine. In the autosomal recessive disorder, cystinosis, a defect in the CTNS gene results in excessive lysosomal accumulation of cystine, with early kidney failure a hallmark of the disease. Previously, we demonstrated that silencing of the CTNS gene in kidney proximal tubular epithelial cells (PTECs) resulted in an increase in intracellular cystine concentration coupled with a dramatic reduction in the total GSH content. Because of the crucial role of GSH in maintaining the redox status and viability of kidney PTECs, we assessed the effects of CTNS knockdown-induced lysosomal cystine accumulation on intracellular reactive oxygen species (ROS) production, activity of classical redox-sensitive genes, mitochondrial integrity and cell viability. Our results showed that lysosomal cystine accumulation increased ROS production and solicitation to oxidative stress (OS). This was associated with the induction of classical redox-sensitive proteins, NF-κB, NRF2, HSP32 and HSP70. Cystine-loaded PTECs also displayed depolarized mitochondria, reduced ATP content and augmented apoptosis. Treatment of CTNS knockdown PTECs with the cystine-depleting agent cysteamine resulted in the normalization of OS index, increased GSH and ATP content, and preservation of cell viability. Taken together, the alterations observed in cystinotic cells may represent different facets of a cascade leading to tubular dysfunction and, in combination with cysteamine therapy, may offer a novel link for the attenuation of renal injury and preservation of functions of other organs affected in cystinosis.
Collapse
Affiliation(s)
- Rodolfo Sumayao
- Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Bernadette McEvoy
- Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Philip Newsholme
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct and Faculty of Health Sciences, Curtin University, Perth, Western Australia
| | - Tara McMorrow
- Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
238
|
Xie H, Wang J, Jiang L, Geng C, Li Q, Mei D, Zhao L, Cao J. ROS-dependent HMGA2 upregulation mediates Cd-induced proliferation in MRC-5 cells. Toxicol In Vitro 2016; 34:146-152. [PMID: 27071802 DOI: 10.1016/j.tiv.2016.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/29/2016] [Accepted: 04/03/2016] [Indexed: 12/30/2022]
Abstract
Cadmium (Cd) is a heavy metal widely found in a number of environmental matrices, and the exposure to Cd is increasing nowadays. In this study, the role of high mobility group A2 (HMGA2) in Cd-induced proliferation was investigated in MRC-5 cells. Exposure to Cd (2μM) for 48h significantly enhanced the growth of MRC-5 cells, increased reactive oxygen species (ROS) production, and induced both mRNA and protein expression of HMGA2. Evidence for Cd-induced reduction of the number of G0/G1 phase cells and an increase in the number of cells in S phase and G2/M phase was sought by flow cytometric analysis. Western blot analysis showed that cyclin D1, cyclin B1, and cyclin E were upregulated in Cd-treated cells. Further study revealed that N-acetyl cysteine (NAC) markedly prevented Cd-induced proliferation of MRC-5 cells, ROS generation, and the increasing protein level of HMGA2. Silencing of HMGA2 gene by siRNA blocked Cd-induced cyclin D1, cyclin B1, and cyclin E expression and reduction of the number of G0/G1 phase cells. Combining, our data showed that Cd-induced ROS formation provoked HMGA2 upregulation, caused cell cycle changes, and led to cell proliferation. This suggests that HMGA2 might be an important biomarker in Cd-induced cell proliferation.
Collapse
Affiliation(s)
- Huaying Xie
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Jiayue Wang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China; Jilin Province Research Institute for Tuberculosis Prevention and Treatment, No. 3145. Jing yang Road, Changchun 130062, China
| | - Liping Jiang
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian 116044, China
| | - Chengyan Geng
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Dan Mei
- Dalian Municipal Center for Disease Control and Prevention, Dalian 116023, China
| | - Lian Zhao
- Dalian Municipal Center for Disease Control and Prevention, Dalian 116023, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
239
|
Francis M, Waldrup JR, Qian X, Solodushko V, Meriwether J, Taylor MS. Functional Tuning of Intrinsic Endothelial Ca2+ Dynamics in Swine Coronary Arteries. Circ Res 2016; 118:1078-90. [PMID: 26838791 PMCID: PMC4818197 DOI: 10.1161/circresaha.115.308141] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/02/2016] [Indexed: 01/22/2023]
Abstract
RATIONALE Recent data from mesenteric and cerebral beds have revealed spatially restricted Ca(2+) transients occurring along the vascular intima that control effector recruitment and vasodilation. Although Ca(2+) is pivotal for coronary artery endothelial function, spatial and temporal regulation of functional Ca(2+) signals in the coronary endothelium is poorly understood. OBJECTIVE We aimed to determine whether a discrete spatial and temporal profile of Ca(2+) dynamics underlies endothelium-dependent relaxation of swine coronary arteries. METHODS AND RESULTS Using confocal imaging, custom automated image analysis, and myography, we show that the swine coronary artery endothelium generates discrete basal Ca(2+) dynamics, including isolated transients and whole-cell propagating waves. These events are suppressed by depletion of internal stores or inhibition of inositol 1,4,5-trisphosphate receptors but not by inhibition of ryanodine receptors or removal of extracellular Ca(2+). In vessel rings, inhibition of specific Ca(2+)-dependent endothelial effectors, namely, small and intermediate conductance K(+) channels (K(Ca)3.1 and K(Ca)2.3) and endothelial nitric oxide synthase, produces additive tone, which is blunted by internal store depletion or inositol 1,4,5-trisphosphate receptor blockade. Stimulation of endothelial inositol 1,4,5-trisphosphate-dependent signaling with substance P causes idiosyncratic changes in dynamic Ca(2+) signal parameters (active sites, event frequency, amplitude, duration, and spatial spread). Overall, substance P-induced vasorelaxation corresponded poorly with whole-field endothelial Ca(2+) measurements but corresponded precisely with the concentration-dependent change in Ca(2+) dynamics (linearly translated composite of dynamic parameters). CONCLUSIONS Our findings show that endothelium-dependent control of swine coronary artery tone is determined by spatial and temporal titration of inherent endothelial Ca(2+) dynamics that are not represented by tissue-level averaged Ca(2+) changes.
Collapse
Affiliation(s)
- Michael Francis
- From the Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile
| | - Joshua R Waldrup
- From the Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile
| | - Xun Qian
- From the Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile
| | - Viktoriya Solodushko
- From the Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile
| | - John Meriwether
- From the Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile
| | - Mark S Taylor
- From the Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile.
| |
Collapse
|
240
|
Delaney MK, Kim K, Estevez B, Xu Z, Stojanovic-Terpo A, Shen B, Ushio-Fukai M, Cho J, Du X. Differential Roles of the NADPH-Oxidase 1 and 2 in Platelet Activation and Thrombosis. Arterioscler Thromb Vasc Biol 2016; 36:846-54. [PMID: 26988594 DOI: 10.1161/atvbaha.116.307308] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 02/26/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Reactive oxygen species (ROS) are known to regulate platelet activation; however, the mechanisms of ROS production during platelet activation remain unclear. Platelets express different isoforms of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) oxidases (NOXs). Here, we investigated the role of NOX1 and NOX2 in ROS generation and platelet activation using NOX1 and NOX2 knockout mice. APPROACH AND RESULTS NOX1(-/Y) platelets showed selective defects in G-protein-coupled receptor-mediated platelet activation induced by thrombin and thromboxane A2 analog U46619, but were not affected in platelet activation induced by collagen-related peptide, a glycoprotein VI agonist. In contrast, NOX2(-/-) platelets showed potent inhibition of collagen-related peptide-induced platelet activation, and also showed partial inhibition of thrombin-induced platelet activation. Consistently, production of ROS was inhibited in NOX1(-/Y) platelets stimulated with thrombin, but not collagen-related peptide, whereas NOX2(-/-) platelets showed reduced ROS generation induced by collagen-related peptide or thrombin. Reduced ROS generation in NOX1/2-deficient platelets is associated with impaired activation of Syk and phospholipase Cγ2, but minimally affected mitogen-activated protein kinase pathways. Interestingly, laser-induced arterial thrombosis was impaired but the bleeding time was not affected in NOX2(-/-) mice. Wild-type thrombocytopenic mice injected with NOX2(-/-) platelets also showed defective arterial thrombosis, suggesting an important role for platelet NOX2 in thrombosis in vivo but not hemostasis. CONCLUSIONS NOX1 and NOX2 play differential roles in different platelet activation pathways and in thrombosis. ROS generated by these enzymes promotes platelet activation via the Syk/phospholipase Cγ2/calcium signaling pathway.
Collapse
Affiliation(s)
- M Keegan Delaney
- From the Departments of Pharmacology (M.K.D., K.K., B.E., Z.X., A.S.-T., B.S., M.U.-F., J.C., X.D.) and Anesthesiology (J.C.), University of Illinois at Chicago
| | - Kyungho Kim
- From the Departments of Pharmacology (M.K.D., K.K., B.E., Z.X., A.S.-T., B.S., M.U.-F., J.C., X.D.) and Anesthesiology (J.C.), University of Illinois at Chicago
| | - Brian Estevez
- From the Departments of Pharmacology (M.K.D., K.K., B.E., Z.X., A.S.-T., B.S., M.U.-F., J.C., X.D.) and Anesthesiology (J.C.), University of Illinois at Chicago
| | - Zheng Xu
- From the Departments of Pharmacology (M.K.D., K.K., B.E., Z.X., A.S.-T., B.S., M.U.-F., J.C., X.D.) and Anesthesiology (J.C.), University of Illinois at Chicago
| | - Aleksandra Stojanovic-Terpo
- From the Departments of Pharmacology (M.K.D., K.K., B.E., Z.X., A.S.-T., B.S., M.U.-F., J.C., X.D.) and Anesthesiology (J.C.), University of Illinois at Chicago
| | - Bo Shen
- From the Departments of Pharmacology (M.K.D., K.K., B.E., Z.X., A.S.-T., B.S., M.U.-F., J.C., X.D.) and Anesthesiology (J.C.), University of Illinois at Chicago
| | - Masuko Ushio-Fukai
- From the Departments of Pharmacology (M.K.D., K.K., B.E., Z.X., A.S.-T., B.S., M.U.-F., J.C., X.D.) and Anesthesiology (J.C.), University of Illinois at Chicago
| | - Jaehyung Cho
- From the Departments of Pharmacology (M.K.D., K.K., B.E., Z.X., A.S.-T., B.S., M.U.-F., J.C., X.D.) and Anesthesiology (J.C.), University of Illinois at Chicago
| | - Xiaoping Du
- From the Departments of Pharmacology (M.K.D., K.K., B.E., Z.X., A.S.-T., B.S., M.U.-F., J.C., X.D.) and Anesthesiology (J.C.), University of Illinois at Chicago.
| |
Collapse
|
241
|
Shan Y, Guan F, Zhao X, Wang M, Chen Y, Wang Q, Feng X. Macranthoside B Induces Apoptosis and Autophagy Via Reactive Oxygen Species Accumulation in Human Ovarian Cancer A2780 Cells. Nutr Cancer 2016; 68:280-9. [PMID: 26943028 DOI: 10.1080/01635581.2016.1142587] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Macranthoside B (MB), a saponin compound in Lonicera macranthoides, can block cell proliferation and induce cell death in several types of cancer cells; however, the precise mechanisms by which MB exerts its anticancer effects remain poorly understood. MB blocked A2780 human ovarian carcinoma cell proliferation both dose- and time-dependently. MB induced apoptosis, with increased poly (ADP-ribose) polymerase (PARP) and caspase-3/9 cleavage. MB also caused autophagy in A2780 cells, with light chain 3 (LC3)-II elevation. Inhibiting MB-induced autophagy with the autophagy inhibitor 3-methyladenine (3-MA) significantly decreased apoptosis, with a reduction of growth inhibition; inhibiting MB-induced apoptosis with the pan-caspase inhibitor Z-VAD-FMK did not decrease autophagy but elevated LC3-II levels, indicating that MB-induced autophagy is cytotoxic and may be upstream of apoptosis. Furthermore, MB increased intracellular reactive oxygen species (ROS) levels, with activated 5' adenosine monophosphate-activated protein kinase (AMPK), decreased mammalian target of rapamycin (mTOR) and P70S6 kinase phosphorylation, and increased PARP and caspase-3/9 cleavage, and LC3-II elevation; treatment with the ROS scavenger N-acetyl cysteine and the AMPK inhibitor Compound C diminished this effect. Therefore, the ROS/AMPK/mTOR pathway mediates the effect of MB on induction of apoptosis via autophagy in human ovarian carcinoma cells.
Collapse
Affiliation(s)
- Yu Shan
- a Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , Nanjing , China
| | - Fuqin Guan
- a Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , Nanjing , China
| | - Xingzeng Zhao
- a Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , Nanjing , China
| | - Ming Wang
- a Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , Nanjing , China
| | - Yu Chen
- a Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , Nanjing , China
| | - Qizhi Wang
- a Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , Nanjing , China
| | - Xu Feng
- a Jiangsu Key Laboratory for Bioresources of Saline Soils, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , Nanjing , China
| |
Collapse
|
242
|
|
243
|
Chen Y, Tsai YH, Tseng SH. Selenite Stimulates the Proliferation of Intestinal Stem Cells With Elevated Antioxidative Activity. Transplant Proc 2016; 48:507-11. [DOI: 10.1016/j.transproceed.2015.10.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 10/21/2015] [Indexed: 02/07/2023]
|
244
|
Oostwoud LC, Gunasinghe P, Seow HJ, Ye JM, Selemidis S, Bozinovski S, Vlahos R. Apocynin and ebselen reduce influenza A virus-induced lung inflammation in cigarette smoke-exposed mice. Sci Rep 2016; 6:20983. [PMID: 26877172 PMCID: PMC4753462 DOI: 10.1038/srep20983] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
Influenza A virus (IAV) infections are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Oxidative stress is increased in COPD, IAV-induced lung inflammation and AECOPD. Therefore, we investigated whether targeting oxidative stress with the Nox2 oxidase inhibitors and ROS scavengers, apocynin and ebselen could ameliorate lung inflammation in a mouse model of AECOPD. Male BALB/c mice were exposed to cigarette smoke (CS) generated from 9 cigarettes per day for 4 days. On day 5, mice were infected with 1 × 10(4.5) PFUs of the IAV Mem71 (H3N1). BALF inflammation, viral titers, superoxide production and whole lung cytokine, chemokine and protease mRNA expression were assessed 3 and 7 days post infection. IAV infection resulted in a greater increase in BALF inflammation in mice that had been exposed to CS compared to non-smoking mice. This increase in BALF inflammation in CS-exposed mice caused by IAV infection was associated with elevated gene expression of pro-inflammatory cytokines, chemokines and proteases, compared to CS alone mice. Apocynin and ebselen significantly reduced the exacerbated BALF inflammation and pro-inflammatory cytokine, chemokine and protease expression caused by IAV infection in CS mice. Targeting oxidative stress using apocynin and ebselen reduces IAV-induced lung inflammation in CS-exposed mice and may be therapeutically exploited to alleviate AECOPD.
Collapse
Affiliation(s)
- L. C. Oostwoud
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- Department of Molecular Pharmacology, The University of Groningen, Groningen, The Netherlands
| | - P. Gunasinghe
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
| | - H. J. Seow
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - J. M. Ye
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - S. Selemidis
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - S. Bozinovski
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - R. Vlahos
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
245
|
Choi HI, Ma SK, Bae EH, Lee J, Kim SW. Peroxiredoxin 5 Protects TGF-β Induced Fibrosis by Inhibiting Stat3 Activation in Rat Kidney Interstitial Fibroblast Cells. PLoS One 2016; 11:e0149266. [PMID: 26872211 PMCID: PMC4752225 DOI: 10.1371/journal.pone.0149266] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/30/2016] [Indexed: 02/07/2023] Open
Abstract
Renal fibrosis is a common final pathway of end-stage kidney disease which is induced by aberrant accumulation of myofibroblasts. This process is triggered by reactive oxygen species (ROS) and proinflammatory cytokines generated by various source of injured kidney cells. Peroxiredoxin 5 (Prdx5) is a thiol-dependent peroxidase that reduces oxidative stress by catalyzing intramolecular disulfide bonds. Along with its antioxidant effects, expression level of Prdx5 also was involved in inflammatory regulation by immune stimuli. However, the physiological effects and the underlying mechanisms of Prdx5 in renal fibrosis have not been fully characterized. Sprague-Dawley rats were subjected to unilateral ureteral obstruction (UUO) for 1 or 7 days. For the in vitro model, NRK49F cells, a rat kidney interstitial fibroblast cell lines, were treated with transforming growth factor β (TGF-β) for 0, 1, 3, or 5 days. To access the involvement of its peroxidase activity in TGF-β induced renal fibrosis, wild type Prdx5 (WT) and double mutant Prdx5 (DM), converted two active site cysteines at Cys 48 and Cys 152 residue to serine, were transiently expressed in NRK49F cells. The protein expression of Prdx5 was reduced in UUO kidneys. Upregulation of fibrotic markers, such as fibronectin and alpha-smooth muscle actin (α-SMA), declined at 5 days in time point of higher Prdx5 expression in TGF-β treated NRK49F cells. The overexpression of wild type Prdx5 by transient transfection in NRK49F cells attenuated the TGF-β induced upregulation of fibronectin and α-SMA. On the other hand, the transient transfection of double mutant Prdx5 did not prevent the activation of fibrotic markers. Overexpression of Prdx5 also suppressed the TGF-β induced upregulation of Stat3 phosphorylation, while phosphorylation of Smad 2/3 was unchanged. In conclusion, Prdx5 protects TGF-β induced fibrosis in NRK49F cells by modulating Stat3 activation in a peroxidase activity dependent manner.
Collapse
Affiliation(s)
- Hoon-In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - JongUn Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
246
|
Frädrich C, Beer LA, Gerhard R. Reactive Oxygen Species as Additional Determinants for Cytotoxicity of Clostridium difficile Toxins A and B. Toxins (Basel) 2016; 8:toxins8010025. [PMID: 26797634 PMCID: PMC4728547 DOI: 10.3390/toxins8010025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infections can induce mild to severe diarrhoea and the often associated characteristic pseudomembranous colitis. Two protein toxins, the large glucosyltransferases TcdA and TcdB, are the main pathogenicity factors that can induce all clinical symptoms in animal models. The classical molecular mode of action of these homologous toxins is the inhibition of Rho GTPases by mono-glucosylation. Rho-inhibition leads to breakdown of the actin cytoskeleton, induces stress-activated and pro-inflammatory signaling and eventually results in apoptosis of the affected cells. An increasing number of reports, however, have documented further qualities of TcdA and TcdB, including the production of reactive oxygen species (ROS) by target cells. This review summarizes observations dealing with the production of ROS induced by TcdA and TcdB, dissects pathways that contribute to this phenomenon and speculates about ROS in mediating pathogenesis. In conclusion, ROS have to be considered as a discrete, glucosyltransferase-independent quality of at least TcdB, triggered by different mechanisms.
Collapse
Affiliation(s)
- Claudia Frädrich
- Postgraduate Course for Toxicology and Environmental Toxicology, Institute for Legal Medicine, University of Leipzig, Johannisallee 28, Leipzig 04103, Germany.
| | - Lara-Antonia Beer
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| | - Ralf Gerhard
- Postgraduate Course for Toxicology and Environmental Toxicology, Institute for Legal Medicine, University of Leipzig, Johannisallee 28, Leipzig 04103, Germany.
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| |
Collapse
|
247
|
Joo JH, Oh H, Kim M, An EJ, Kim RK, Lee SY, Kang DH, Kang SW, Keun Park C, Kim H, Lee SJ, Lee D, Seol JH, Bae YS. NADPH Oxidase 1 Activity and ROS Generation Are Regulated by Grb2/Cbl-Mediated Proteasomal Degradation of NoxO1 in Colon Cancer Cells. Cancer Res 2016; 76:855-65. [PMID: 26781991 DOI: 10.1158/0008-5472.can-15-1512] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/27/2015] [Indexed: 11/16/2022]
Abstract
The generation of reactive oxygen species (ROS) is required for proper cell signaling, but must be tightly regulated to minimize deleterious oxidizing effects. Activation of the NADPH oxidases (Nox) triggers ROS production and, thus, regulatory mechanisms exist to properly control Nox activity. In this study, we report a novel mechanism in which Nox1 activity is regulated through the proteasomal degradation of Nox organizer 1 (NoxO1). We found that through the interaction between NoxO1 and growth receptor-bound protein 2 (Grb2), the Casitas B-lineage lymphoma (Cbl) E3 ligase was recruited, leading to decreased NoxO1 stability and a subsequent reduction in ROS generation upon epidermal growth factor (EGF) stimulation. Additionally, we show that EGF-mediated phosphorylation of NoxO1 induced its release from Grb2 and facilitated its association with Nox activator 1 (NoxA1) to stimulate ROS production. Consistently, overexpression of Grb2 resulted in decreased Nox1 activity, whereas knockdown of Grb2 led to increased Nox1 activity in response to EGF. CRISPR/Cas9-mediated NoxO1 knockout in human colon cancer cells abrogated anchorage-independent growth on soft agar and tumor-forming ability in athymic nude mice. Moreover, the expression and stability of NoxO1 were significantly increased in human colon cancer tissues compared with normal colon. Taken together, these results support a model whereby Nox1 activity and ROS generation are regulated by Grb2/Cbl-mediated proteolysis of NoxO1 in response to EGF, providing new insight into the processes by which excessive ROS production may promote oncogenic signaling to drive colorectal tumorigenesis.
Collapse
Affiliation(s)
- Jung Hee Joo
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Hyunjin Oh
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Myungjin Kim
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Eun Jung An
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Rae-Kwon Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - So-Young Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Dong Hoon Kang
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Cheol Keun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Hoguen Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea.
| | - Jae Hong Seol
- School of Biological Sciences, Seoul National University, Seoul, Korea.
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
248
|
Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS Crosstalk in Inflammation. Trends Cell Biol 2016; 26:249-261. [PMID: 26791157 DOI: 10.1016/j.tcb.2015.12.002] [Citation(s) in RCA: 695] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 01/06/2023]
Abstract
Tumor necrosis factor (TNF) is tremendously important for mammalian immunity and cellular homeostasis. The role of TNF as a master regulator in balancing cell survival, apoptosis and necroptosis has been extensively studied in various cell types and tissues. Although these findings have revealed much about the direct impact of TNF on the regulation of NF-κB and JNK, there is now rising interest in understanding the emerging function of TNF as a regulator of the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this review we summarize work aimed at defining the role of TNF in the control of ROS/RNS signaling that influences innate immune cells under both physiological and inflammatory conditions.
Collapse
Affiliation(s)
- Heiko Blaser
- The Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
| | - Tak W Mak
- The Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
249
|
Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5698931. [PMID: 26881031 PMCID: PMC4736408 DOI: 10.1155/2016/5698931] [Citation(s) in RCA: 681] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 10/29/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
Oxidative stress has been implicated in many chronic diseases. However, antioxidant trials are so far largely unsuccessful as a preventive or curative measure. Chronic low-grade inflammatory process, on the other hand, plays a central role in the pathogenesis of a number of chronic diseases. Oxidative stress and inflammation are closely related pathophysiological processes, one of which can be easily induced by another. Thus, both processes are simultaneously found in many pathological conditions. Therefore, the failure of antioxidant trials might result from failure to select appropriate agents that specifically target both inflammation and oxidative stress or failure to use both antioxidants and anti-inflammatory agents simultaneously or use of nonselective agents that block some of the oxidative and/or inflammatory pathways but exaggerate the others. To examine whether the interdependence between oxidative stress and inflammation can explain the antioxidant paradox we discussed in the present review the basic aspects of oxidative stress and inflammation and their relationship and dependence.
Collapse
|
250
|
Pole A, Dimri M, P. Dimri G. Oxidative stress, cellular senescence and ageing. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.3.300] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|