201
|
Fan C, Li J, Li Y, Jin Y, Feng J, Guo R, Meng X, Gong D, Chen Q, Du F, Zhang C, Lu L, Deng J, Chen X. Hypoxia-inducible factor-1α regulates the interleukin-6 production by B cells in rheumatoid arthritis. Clin Transl Immunology 2023; 12:e1447. [PMID: 37179532 PMCID: PMC10167477 DOI: 10.1002/cti2.1447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Objectives Rheumatoid arthritis (RA) is a disease characterised by bone destruction and systemic inflammation, and interleukin-6 (IL-6) is a therapeutic target for treating it. The study aimed at investigating the sources of IL-6 and the influence of hypoxia-inducible factor-1α (HIF-1α) on IL-6 production by B cells in RA patients. Methods The phenotype of IL-6-producing cells in the peripheral blood of RA patients was analysed using flow cytometry. Bioinformatics, real-time polymerase chain reaction, Western blot and immunofluorescence staining were used to determine the IL-6 production and HIF-1α levels in B cells. A dual-luciferase reporter assay and chromatin immunoprecipitation were used to investigate the regulatory role of HIF-1α on IL-6 production in human and mouse B cells. Results Our findings revealed that B cells are major sources of IL-6 in the peripheral blood of RA patients, with the proportion of IL-6-producing B cells significantly correlated with RA disease activity. The CD27-IgD+ naïve B cell subset was identified as the typical IL-6-producing subset in RA patients. Both HIF-1α and IL-6 were co-expressed by B cells in the peripheral blood and synovium of RA patients, and HIF-1α was found to directly bind to the IL6 promoter and enhance its transcription. Conclusion This study highlights the role of B cells in producing IL-6 and the regulation of this production by HIF-1α in patients with RA. Targeting HIF-1α might provide a new therapeutic strategy for treating RA.
Collapse
Affiliation(s)
- Chaofan Fan
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jia Li
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixuan Li
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuyang Jin
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiaqi Feng
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ruru Guo
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xinyu Meng
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dongcheng Gong
- China‐Australia Centre for Personalised Immunology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qian Chen
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Fundus DiseaseShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Du
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chunyan Zhang
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liangjing Lu
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jun Deng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)ShanghaiChina
| | - Xiao‐Xiang Chen
- Department of Rheumatology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
202
|
Stephens R, Grainger JR, Smith CJ, Allan SM. Systemic innate myeloid responses to acute ischaemic and haemorrhagic stroke. Semin Immunopathol 2023; 45:281-294. [PMID: 36346451 PMCID: PMC9641697 DOI: 10.1007/s00281-022-00968-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022]
Abstract
Acute ischaemic and haemorrhagic stroke account for significant disability and morbidity burdens worldwide. The myeloid arm of the peripheral innate immune system is critical in the immunological response to acute ischaemic and haemorrhagic stroke. Neutrophils, monocytes, and dendritic cells (DC) contribute to the evolution of pathogenic local and systemic inflammation, whilst maintaining a critical role in ongoing immunity protecting against secondary infections. This review aims to summarise the key alterations to myeloid immunity in acute ischaemic stroke, intracerebral haemorrhage (ICH), and subarachnoid haemorrhage (SAH). By integrating clinical and preclinical research, we discover how myeloid immunity is affected across multiple organ systems including the brain, blood, bone marrow, spleen, and lung, and evaluate how these perturbations associate with real-world outcomes including infection. These findings are placed in the context of the rapidly developing field of human immunology, which offers a wealth of opportunity for further research.
Collapse
Affiliation(s)
- Ruth Stephens
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - John R Grainger
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Craig J Smith
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
203
|
Abstract
PURPOSE OF REVIEW Immune cells are emerging as central cellular components of the heart which communicate with cardiac resident cells during homeostasis, cardiac injury, and remodeling. These findings are contributing to the development and continuous expansion of the new field of cardio-immunology. We review the most recent literature on this topic and discuss ongoing and future efforts to advance this field forward. RECENT FINDINGS Cell-fate mapping, strategy depleting, and reconstituting immune cells in pre-clinical models of cardiac disease, combined with the investigation of the human heart at the single cell level, are contributing immensely to our understanding of the complex intercellular communication between immune and non-immune cells in the heart. While the acute immune response is necessary to initiate inflammation and tissue repair post injury, it becomes detrimental when sustained over time and contributes to adverse cardiac remodeling and pathology. Understanding the specific functions of immune cells in the context of the cardiac environment will provide new opportunities for immunomodulation to induce or tune down inflammation as needed in heart disease.
Collapse
Affiliation(s)
- Maria Antonia Zambrano
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, M&V 701, 02111, Boston, MA, USA
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, M&V 701, 02111, Boston, MA, USA.
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
204
|
Cohen CD, Rousseau ST, Bermea KC, Bhalodia A, Lovell JP, Dina Zita M, Čiháková D, Adamo L. Myocardial Immune Cells: The Basis of Cardiac Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1198-1207. [PMID: 37068299 PMCID: PMC10111214 DOI: 10.4049/jimmunol.2200924] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/14/2023] [Indexed: 04/19/2023]
Abstract
The mammalian heart is characterized by the presence of striated myocytes, which allow continuous rhythmic contraction from early embryonic development until the last moments of life. However, the myocardium contains a significant contingent of leukocytes from every major class. This leukocyte pool includes both resident and nonresident immune cells. Over recent decades, it has become increasingly apparent that the heart is intimately sensitive to immune signaling and that myocardial leukocytes exhibit an array of critical functions, both in homeostasis and in the context of cardiac adaptation to injury. Here, we systematically review current knowledge of all major leukocyte classes in the heart, discussing their functions in health and disease. We also highlight the connection between the myocardium, immune cells, lymphoid organs, and both local and systemic immune responses.
Collapse
Affiliation(s)
- Charles D. Cohen
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Sylvie T. Rousseau
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kevin C. Bermea
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Aashik Bhalodia
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jana P. Lovell
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Marcelle Dina Zita
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Luigi Adamo
- Cardiac Immunology Laboratory, Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
205
|
Zhang Z, Chen Y, Zheng L, Du J, Wei S, Zhu X, Xiong JW. A DUSP6 inhibitor suppresses inflammatory cardiac remodeling and improves heart function after myocardial infarction. Dis Model Mech 2023; 16:285836. [PMID: 36478044 PMCID: PMC9789401 DOI: 10.1242/dmm.049662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction (MI) results in loss of cardiomyocytes and abnormal cardiac remodeling with severe inflammation and fibrosis. However, how cardiac repair can be achieved by timely resolution of inflammation and cardiac fibrosis remains incompletely understood. Our previous findings have shown that dual-specificity phosphatase 6 (DUSP6) is a regeneration repressor from zebrafish to rats. In this study, we found that intravenous administration of the DUSP6 inhibitor (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI) improved heart function and reduced cardiac fibrosis in MI rats. Mechanistic analysis revealed that BCI attenuated macrophage inflammation through NF-κB and p38 signaling, independent of DUSP6 inhibition, leading to the downregulation of various cytokines and chemokines. In addition, BCI suppressed differentiation-related signaling pathways and decreased bone-marrow cell differentiation into macrophages through inhibiting DUSP6. Furthermore, intramyocardial injection of poly (D, L-lactic-co-glycolic acid)-loaded BCI after MI had a notable effect on cardiac repair. In summary, BCI improves heart function and reduces abnormal cardiac remodeling by inhibiting macrophage formation and inflammation post-MI, thus providing a promising pro-drug candidate for the treatment of MI and related heart diseases. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Zongwang Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Yang Chen
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lixia Zheng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Jianyong Du
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Shicheng Wei
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
- Authors for correspondence (; )
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
- Authors for correspondence (; )
| |
Collapse
|
206
|
Jo KA, Kim KJ, Park SY, Jeon JY, Hwang JE, Kim JY. Evaluation of the Effects of Euglena gracilis on Enhancing Immune Responses in RAW264.7 Cells and a Cyclophosphamide-Induced Mouse Model. J Microbiol Biotechnol 2023; 33:493-499. [PMID: 36788460 PMCID: PMC10164725 DOI: 10.4014/jmb.2212.12041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/06/2023] [Indexed: 02/16/2023]
Abstract
In this study we evaluated the immune-enhancing effects of β-glucan, the main component of Euglena gracilis (Euglena), and Euglena on inflammatory factor expression in RAW264.7 macrophages and ICR mice with cyclophosphamide-induced immunosuppression. Macrophages were treated with β-glucan or Euglena for 48 h. The β-glucan and Euglena groups exhibited higher levels of inducible nitric oxide synthase, nitric oxide, and tumor necrosis factor (TNF)-α than the control (vehicle alone) group. Animals were fed saline and β-glucan (400 mg/kg body weight (B.W.)) or Euglena (400 or 800 mg/kg B.W.) for 19 days, and on days 17-19, cyclophosphamide (CCP, 80 mg/kg B.W.) was administered to induce immunosuppression in the ICR mouse model. CCP reduced the body weight, spleen index, and cytokine expression of the mice. To measure cytokine and receptor expression, splenocytes were treated with concanavalin A (ConA) or lipopolysaccharide (LPS) as a mitogen for 24 h. In vivo, ConA stimulation significantly upregulated the expression of interferon (IFN)-γ, interleukin (IL)-10, IL-12 receptor β1, IL-1β, and IL-2 in splenocytes from the β-glucan- or Euglena-treated groups compared with those in the splenocytes from the CCP-treated group; LPS stimulation increased the levels of the cytokines TNF-α, IL-1β, and IL-6 in splenocytes from the β-glucan- or Euglena-treated groups compared with those from the CCP-treated group, but most of these differences were not significant. These results demonstrate the effect of Euglena in ameliorating macrophages and immunosuppression in CCP-treated mice. Thus, Euglena has the potential to enhance macrophage- and splenocyte-mediated immune-stimulating responses.
Collapse
Affiliation(s)
- Kyeong Ah Jo
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Soo-yeon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Jin-Young Jeon
- BIO R&D Center, Daesang Corp., Seoul 07789, Republic of Korea
| | - Ji Eun Hwang
- BIO R&D Center, Daesang Corp., Seoul 07789, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
207
|
Ng LG, Liu Z, Kwok I, Ginhoux F. Origin and Heterogeneity of Tissue Myeloid Cells: A Focus on GMP-Derived Monocytes and Neutrophils. Annu Rev Immunol 2023; 41:375-404. [PMID: 37126421 DOI: 10.1146/annurev-immunol-081022-113627] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Myeloid cells are a significant proportion of leukocytes within tissues, comprising granulocytes, monocytes, dendritic cells, and macrophages. With the identification of various myeloid cells that perform separate but complementary functions during homeostasis and disease, our understanding of tissue myeloid cells has evolved significantly. Exciting findings from transcriptomics profiling and fate-mapping mouse models have facilitated the identification of their developmental origins, maturation, and tissue-specific specializations. This review highlights the current understanding of tissue myeloid cells and the contributing factors of functional heterogeneity to better comprehend the complex and dynamic immune interactions within the healthy or inflamed tissue. Specifically, we discuss the new understanding of the contributions of granulocyte-monocyte progenitor-derived phagocytes to tissue myeloid cell heterogeneity as well as the impact of niche-specific factors on monocyte and neutrophil phenotype and function. Lastly, we explore the developing paradigm of myeloid cell heterogeneity during inflammation and disease.
Collapse
Affiliation(s)
- Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institut Gustave Roussy, INSERM U1015, Villejuif, France
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| |
Collapse
|
208
|
Avraham R. Untangling Cellular Host-Pathogen Encounters at Infection Bottlenecks. Infect Immun 2023; 91:e0043822. [PMID: 36939328 PMCID: PMC10112260 DOI: 10.1128/iai.00438-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Bacterial pathogens can invade the tissue and establish a protected intracellular niche at the site of invasion that can spread locally (e.g., microcolonies) or to systemic sites (e.g., granulomas). Invasion of the tissue and establishment of intracellular infection are rare events that are difficult to study in the in vivo setting but have critical clinical consequences, such as long-term carriage, reinfections, and emergence of antibiotic resistance. Here, I discuss Salmonella interactions with its host macrophage during early stages of infection and their critical role in determining infection outcome. The dynamics of host-pathogen interactions entail highly heterogenous host immunity, bacterial virulence, and metabolic cross talk, requiring in vivo analysis at single-cell resolution. I discuss models and single-cell approaches that provide a global understanding of the establishment of a protected intracellular niche within the tissue and the host-pathogen landscape at infection bottlenecks during early stages of infection. Studying cellular host-pathogen interactions in vivo can improve our knowledge of the trajectory of infection between the initial inoculation with a dose of pathogens and the appearance of symptoms of disease.
Collapse
Affiliation(s)
- Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
209
|
Bedolla A, Mckinsey G, Ware K, Santander N, Arnold T, Luo Y. Finding the right tool: a comprehensive evaluation of microglial inducible cre mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.536878. [PMID: 37131606 PMCID: PMC10153116 DOI: 10.1101/2023.04.17.536878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The recent proliferation of new Cre and CreER recombinase lines provides researchers with a diverse toolkit to study microglial gene function. To determine how best to apply these lines in studies of microglial gene function, a thorough and detailed comparison of their properties is needed. Here, we examined four different microglial CreER lines (Cx3cr1CreER(Litt), Cx3cr1CreER(Jung), P2ry12CreER, Tmem119CreER), focusing on (1) recombination specificity; (2) leakiness - degree of non-tamoxifen recombination in microglia and other cells; (3) efficiency of tamoxifen-induced recombination; (4) extra-neural recombination -the degree of recombination in cells outside the CNS, particularly myelo/monocyte lineages (5) off-target effects in the context of neonatal brain development. We identify important caveats and strengths for these lines which will provide broad significance for researchers interested in performing conditional gene deletion in microglia. We also provide data emphasizing the potential of these lines for injury models that result in the recruitment of splenic immune cells.
Collapse
Affiliation(s)
- Alicia Bedolla
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45229, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Gabriel Mckinsey
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kierra Ware
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Nicolas Santander
- Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile
| | - Thomas Arnold
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yu Luo
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45229, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
210
|
Humes HD, Aaronson KD, Buffington DA, Sabbah HN, Westover AJ, Yessayan LT, Szamosfalvi B, Pagani FD. Translation of immunomodulatory therapy to treat chronic heart failure: Preclinical studies to first in human. PLoS One 2023; 18:e0273138. [PMID: 37023139 PMCID: PMC10079025 DOI: 10.1371/journal.pone.0273138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Inflammation has been associated with progression and complications of chronic heart failure (HF) but no effective therapy has yet been identified to treat this dysregulated immunologic state. The selective cytopheretic device (SCD) provides extracorporeal autologous cell processing to lessen the burden of inflammatory activity of circulating leukocytes of the innate immunologic system. AIM The objective of this study was to evaluate the effects of the SCD as an extracorporeal immunomodulatory device on the immune dysregulated state of HF. HF. METHODS AND RESULTS SCD treatment in a canine model of systolic HF or HF with reduced ejection fraction (HFrEF) diminished leukocyte inflammatory activity and enhanced cardiac performance as measured by left ventricular (LV) ejection fraction and stroke volume (SV) up to 4 weeks after treatment initiation. Translation of these observations in first in human, proof of concept clinical study was evaluated in a patient with severe HFrEFHFrEF ineligible for cardiac transplantation or LV LV assist device (LVAD) due to renal insufficiency and right ventricular dysfunction. Six hour SCD treatments over 6 consecutive days resulted in selective removal of inflammatory neutrophils and monocytes and reduction in key plasma cytokines, including tumor necrosis factor-alpha (TNF-α),), interleukin (IL)-6, IL-8, and monocyte chemoattractant protein (MCP)-1. These immunologic changes were associated with significant improvements in cardiac power output, right ventricular stroke work index, cardiac index and LVSV index…. Stabilization of renal function with progressive volume removal permitted successful LVAD implantation. CONCLUSION This translational research study demonstrates a promising immunomodulatory approach to improve cardiac performance in HFrEFHFrEF and supports the important role of inflammation in the progression of HFHF.
Collapse
Affiliation(s)
- H. David Humes
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Innovative Biotherapies, Ann Arbor, Michigan, United States of America
| | - Keith D. Aaronson
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Deborah A. Buffington
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hani N. Sabbah
- Department of Medicine, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Angela J. Westover
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Innovative Biotherapies, Ann Arbor, Michigan, United States of America
| | - Lenar T. Yessayan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Balazs Szamosfalvi
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Francis D. Pagani
- Department of Cardiovascular Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
211
|
Dama G, Hu X, Yan Y, Li Y, Li H, Yang F, Liu Y, Lin J. Identification and protective role of CD34 + stromal cells/telocytes in experimental autoimmune encephalomyelitis (EAE) mouse spleen. Histochem Cell Biol 2023:10.1007/s00418-023-02186-5. [PMID: 37014442 DOI: 10.1007/s00418-023-02186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/05/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a classical animal model of human multiple sclerosis (MS) that is most commonly used to study the neuropathology and therapeutic effects of the disease. Telocytes (TCs) are a specialized type of interstitial or mesenchymal cell first identified by Popescu in various tissues and organs. However, the existence, distribution and role of CD34+ stromal cells (SCs)/TCs in the EAE-induced mouse spleen remain to be elucidated. We conducted immunohistochemistry, immunofluorescence (double staining for CD34 and c-kit, vimentin, F4/80, CD163, Nanog, Sca-1, CD31 or tryptase) and transmission electron microscopy experiments to investigate the existence, distribution and role of CD34+ SCs/TCs in the EAE-induced mouse spleen. Interestingly, immunohistochemistry, double-immunofluorescence, and transmission electron microscopy results revealed that CD34+ SCs/TCs were significantly upregulated in the EAE mouse spleen. Immunohistochemical or double-immunofluorescence staining of CD34+ SCs/TCs showed positive expression for CD34, c-kit, vimentin, CD34/vimentin, c-kit/vimentin and CD34/c-kit, and negative expression for CD31 and tryptase. Transmission electron microscopy (TEM) results demonstrated that CD34+ SCs/TCs established close connections with lymphocytes, reticular cells, macrophages, endothelial cells and erythrocytes. Furthermore, we also found that M1 (F4/80) or M2 (CD163) macrophages, and haematopoietic, pluripotent stem cells were markedly increased in EAE mice. Our results suggest that CD34+ SCs/TCs are abundant and may play a contributing role in modulating the immune response, recruiting macrophages and proliferation of haematopoietic and pluripotent stem cells following injury to promote tissue repair and regeneration in EAE mouse spleens. This suggests that their transplantation combined with stem cells might represent a promising therapeutic target for the treatment and prevention of multiple autoimmune and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Ganesh Dama
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Xiaoxi Hu
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Yushan Yan
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Yonghai Li
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Han Li
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China
| | - Fen Yang
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yanli Liu
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China.
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China.
| | - Juntang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road #601, Xinxiang City, 453003, Henan Province, China.
- College of Life Sciences and Technology, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, East of JinSui Road # 601, Xinxiang, 453003, China.
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
212
|
Chen Z, Soni N, Pinero G, Giotti B, Eddins DJ, Lindblad KE, Ross JL, Puigdelloses Vallcorba M, Joshi T, Angione A, Thomason W, Keane A, Tsankova NM, Gutmann DH, Lira SA, Lujambio A, Ghosn EEB, Tsankov AM, Hambardzumyan D. Monocyte depletion enhances neutrophil influx and proneural to mesenchymal transition in glioblastoma. Nat Commun 2023; 14:1839. [PMID: 37012245 PMCID: PMC10070461 DOI: 10.1038/s41467-023-37361-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Myeloid cells comprise the majority of immune cells in tumors, contributing to tumor growth and therapeutic resistance. Incomplete understanding of myeloid cells response to tumor driver mutation and therapeutic intervention impedes effective therapeutic design. Here, by leveraging CRISPR/Cas9-based genome editing, we generate a mouse model that is deficient of all monocyte chemoattractant proteins. Using this strain, we effectively abolish monocyte infiltration in genetically engineered murine models of de novo glioblastoma (GBM) and hepatocellular carcinoma (HCC), which show differential enrichment patterns for monocytes and neutrophils. Eliminating monocyte chemoattraction in monocyte enriched PDGFB-driven GBM invokes a compensatory neutrophil influx, while having no effect on Nf1-silenced GBM model. Single-cell RNA sequencing reveals that intratumoral neutrophils promote proneural-to-mesenchymal transition and increase hypoxia in PDGFB-driven GBM. We further demonstrate neutrophil-derived TNF-a directly drives mesenchymal transition in PDGFB-driven primary GBM cells. Genetic or pharmacological inhibiting neutrophils in HCC or monocyte-deficient PDGFB-driven and Nf1-silenced GBM models extend the survival of tumor-bearing mice. Our findings demonstrate tumor-type and genotype dependent infiltration and function of monocytes and neutrophils and highlight the importance of targeting them simultaneously for cancer treatments.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Nishant Soni
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gonzalo Pinero
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Devon J Eddins
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Medicine, Lowance Center for Human Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Katherine E Lindblad
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - James L Ross
- Emory University Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, GA, 30322, USA
| | | | - Tanvi Joshi
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Angelo Angione
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wes Thomason
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aislinn Keane
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nadejda M Tsankova
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Amaia Lujambio
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eliver E B Ghosn
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Medicine, Lowance Center for Human Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
213
|
Ding J, Zhao J, Wang L, Chen X, Jiang D, Qin M, Zhu Z, Wang D, Jia W. Regulated contribution of local and systemic immunity to new bone regeneration by modulating B/Sr concentration of bioactive borosilicate glass. Mater Today Bio 2023; 19:100585. [PMID: 36896413 PMCID: PMC9988577 DOI: 10.1016/j.mtbio.2023.100585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The local immune response induced by bioactive borosilicate glass (BG) plays a vital role in bone regeneration, but its effect in the systemic immune response of distal tissues, such as spleen, remains unknown. In this study, the network structures and the relative theoretical structural descriptors (Fnet) of the novel BG composition containing boron (B) and strontium (Sr) were calculated and stimulated by molecular dynamics (MD) simulation, and the linear relationships of Fnet and B and Sr releasing rate in pure water and simulate body fluid were built. Next, the synergistic effects of the released B and Sr on promoting osteogenic differentiation, angiogenesis, and macrophage polarization were analyzed in vitro and convinced in rats skull models in vivo. Results show that the optimal synergistic effects of B and Sr both in vitro and in vivo released from 1393B2Sr8 BG increased vessel regeneration, modulated M2 macrophages polarization and promoted new-bone formation. Interestingly, the 1393B2Sr8 BG was found to mobilize monocytes from the spleen to the defects and subsequently modulate them into M2 macrophages. Then, these modulated cells cycled from the bone defects back to the spleen. To analyze the necessity of spleen-derived immune cells in bone regeneration, two contrasting rat models (with/without spleen) of skull defects were furtherly established. As results, rats without spleen had fewer M2 macrophages surrounding skull defects and the bone tissues recovered more slowly, indicating the beneficial effects on bone regeneration of circulating monocytes and polarized macrophages provided by spleen. The present study provides a new approach and strategy in optimizing complex composition of novel BG and sheds light on the importance of spleen through modulating systemic immune response to contribute to local bone regeneration.
Collapse
Affiliation(s)
- Jingxin Ding
- School of Materials and Engineering, Tongji University, Shanghai, 201804, China
| | - Jinhui Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Lingtian Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Department of Orthopedic Surgery, And Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaochen Chen
- School of Materials and Engineering, Tongji University, Shanghai, 201804, China
| | - Dajun Jiang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Department of Orthopedic Surgery, And Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Muyan Qin
- School of Materials and Engineering, Tongji University, Shanghai, 201804, China
| | - Ziyang Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Department of Orthopedic Surgery, And Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Deping Wang
- School of Materials and Engineering, Tongji University, Shanghai, 201804, China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Department of Orthopedic Surgery, And Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
214
|
Elchaninov A, Vishnyakova P, Lokhonina A, Kiseleva V, Menyailo E, Antonova M, Mamedov A, Arutyunyan I, Bolshakova G, Goldshtein D, Bao X, Fatkhudinov T, Sukhikh G. Spleen regeneration after subcutaneous heterotopic autotransplantation in a mouse model. Biol Res 2023; 56:15. [PMID: 36991509 PMCID: PMC10053607 DOI: 10.1186/s40659-023-00427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Splenectomy may lead to severe postoperative complications, including sepsis and cancers. A possible solution to this problem is heterotopic autotransplantation of the spleen. Splenic autografts rapidly restore the regular splenic microanatomy in model animals. However, the functional competence of such regenerated autografts in terms of lympho- and hematopoietic capacity remains uncertain. Therefore, this study aimed to monitor the dynamics of B and T lymphocyte populations, the monocyte-macrophage system, and megakaryocytopoiesis in murine splenic autografts. METHODS The model of subcutaneous splenic engraftment was implemented in C57Bl male mice. Cell sources of functional recovery were studied using heterotopic transplantations from B10-GFP donors to C57Bl recipients. The cellular composition dynamics were studied by immunohistochemistry and flow cytometry. Expression of regulatory genes at mRNA and protein levels was assessed by real-time PCR and Western blot, respectively. RESULTS Characteristic splenic architecture is restored within 30 days post-transplantation, consistent with other studies. The monocyte-macrophage system, megakaryocytes, and B lymphocytes show the highest rates, whereas the functional recovery of T cells takes longer. Cross-strain splenic engraftments using B10-GFP donors indicate the recipient-derived cell sources of the recovery. Transplantations of scaffolds populated with splenic stromal cells or without them afforded no restoration of the characteristic splenic architecture. CONCLUSIONS Allogeneic subcutaneous transplantation of splenic fragments in a mouse model leads to their structural recovery within 30 days, with full reconstitution of the monocyte-macrophage, megakaryocyte and B lymphocyte populations. The circulating hematopoietic cells provide the likely source for the cell composition recovery.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia.
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anastasiya Lokhonina
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Viktoria Kiseleva
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Egor Menyailo
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Maria Antonova
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Aiaz Mamedov
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Irina Arutyunyan
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Galina Bolshakova
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Dmitry Goldshtein
- Laboratory of Stem Cells Genetics, Research Center of Medical Genetics, Moscow, Russia
| | - Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China
| | - Timur Fatkhudinov
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
215
|
Misaka T, Yoshihisa A, Ichijo Y, Ishibashi S, Matsuda M, Yamadera Y, Ohara H, Sugawara Y, Anzai F, Sato Y, Abe S, Sato T, Oikawa M, Kobayashi A, Takeishi Y. Prognostic significance of spleen shear wave elastography and dispersion in patients with heart failure: the crucial role of cardio-splenic axis. Clin Res Cardiol 2023:10.1007/s00392-023-02183-7. [PMID: 36941484 DOI: 10.1007/s00392-023-02183-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The interaction between the heart and spleen plays a crucial role among cardiac and multiple organ networks, particularly in heart failure (HF). Ultrasound shear wave imaging is a non-invasive technology capable of quantifying tissue quality, but its significance in the spleen in patients with HF is poorly understood. METHODS AND RESULTS This prospective observational study enrolled hospitalized 232 patients with HF undergoing abdominal ultrasonography. We used shear wave elastography (SWE) to assess spleen tissue elasticity and shear wave dispersion (SWD) to assess spleen tissue viscosity. Clinical, echocardiography, right heart catheterization, and outcome data were collected. Spleen SWE was negatively correlated with right ventricular fractional area change (R = - 0.180, P = 0.039), but not with right-sided pressure or congestion indices. When patients were divided into three groups based on tertile values of splenic parameters, Kaplan-Meier analysis demonstrated that patients with the highest spleen SWE and SWD had lower event-free survival rates from cardiac deaths and decompensated HF over a median 494-days follow-up period (P < 0.0001 and P < 0.0001, respectively). In a multivariable Cox proportional hazard model, both spleen SWE and SWD were independently associated with increased risks of adverse cardiac events (hazard ratio, 4.974 and 1.384; P = 0.003 and P < 0.0001). Mechanistically, we evaluated mRNA expressions of CD36, a monocyte/macrophage-associated molecule, in peripheral leukocytes, and found that enhanced spleen stiffness was associated with the upregulation of CD36 expressions. CONCLUSION Share wave imaging of the spleen is useful for stratifying the prognosis of HF patients and may suggest a role of the cardio-splenic axis in HF pathogenies.
Collapse
Affiliation(s)
- Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
- Department of Clinical Laboratory Sciences, Fukushima Medical University, Fukushima, Japan
| | - Yasuhiro Ichijo
- Department of Cardiovascular Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Shinji Ishibashi
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital, Fukushima, Japan
| | - Mitsuko Matsuda
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital, Fukushima, Japan
| | - Yukio Yamadera
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital, Fukushima, Japan
| | - Himika Ohara
- Department of Cardiovascular Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yukiko Sugawara
- Department of Cardiovascular Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Fumiya Anzai
- Department of Cardiovascular Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yu Sato
- Department of Cardiovascular Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Satoshi Abe
- Department of Cardiovascular Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Takamasa Sato
- Department of Cardiovascular Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Atsushi Kobayashi
- Department of Cardiovascular Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| |
Collapse
|
216
|
Akbar N, Braithwaite AT, Corr EM, Koelwyn GJ, van Solingen C, Cochain C, Saliba AE, Corbin A, Pezzolla D, Møller Jørgensen M, Bæk R, Edgar L, De Villiers C, Gunadasa-Rohling M, Banerjee A, Paget D, Lee C, Hogg E, Costin A, Dhaliwal R, Johnson E, Krausgruber T, Riepsaame J, Melling GE, Shanmuganathan M, Bock C, Carter DRF, Channon KM, Riley PR, Udalova IA, Moore KJ, Anthony DC, Choudhury RP. Rapid neutrophil mobilization by VCAM-1+ endothelial cell-derived extracellular vesicles. Cardiovasc Res 2023; 119:236-251. [PMID: 35134856 PMCID: PMC10022859 DOI: 10.1093/cvr/cvac012] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/28/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Acute myocardial infarction rapidly increases blood neutrophils (<2 h). Release from bone marrow, in response to chemokine elevation, has been considered their source, but chemokine levels peak up to 24 h after injury, and after neutrophil elevation. This suggests that additional non-chemokine-dependent processes may be involved. Endothelial cell (EC) activation promotes the rapid (<30 min) release of extracellular vesicles (EVs), which have emerged as an important means of cell-cell signalling and are thus a potential mechanism for communicating with remote tissues. METHODS AND RESULTS Here, we show that injury to the myocardium rapidly mobilizes neutrophils from the spleen to peripheral blood and induces their transcriptional activation prior to arrival at the injured tissue. Time course analysis of plasma-EV composition revealed a rapid and selective increase in EVs bearing VCAM-1. These EVs, which were also enriched for miRNA-126, accumulated preferentially in the spleen where they induced local inflammatory gene and chemokine protein expression, and mobilized splenic-neutrophils to peripheral blood. Using CRISPR/Cas9 genome editing, we generated VCAM-1-deficient EC-EVs and showed that its deletion removed the ability of EC-EVs to provoke the mobilization of neutrophils. Furthermore, inhibition of miRNA-126 in vivo reduced myocardial infarction size in a mouse model. CONCLUSIONS Our findings show a novel EV-dependent mechanism for the rapid mobilization of neutrophils to peripheral blood from a splenic reserve and establish a proof of concept for functional manipulation of EV-communications through genetic alteration of parent cells.
Collapse
Affiliation(s)
- Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine University of Oxford Level 6, West Wing John Radcliffe Hospital Headington Oxford OX3 9DU, UK
| | - Adam T Braithwaite
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine University of Oxford Level 6, West Wing John Radcliffe Hospital Headington Oxford OX3 9DU, UK
| | - Emma M Corr
- NYU Cardiovascular Research Center, Department of Medicine, Division of Cardiology, School of Medicine, New York University School of Medicine, 435 E 30th St. New York, NY 10016, USA
| | - Graeme J Koelwyn
- NYU Cardiovascular Research Center, Department of Medicine, Division of Cardiology, School of Medicine, New York University School of Medicine, 435 E 30th St. New York, NY 10016, USA
| | - Coen van Solingen
- NYU Cardiovascular Research Center, Department of Medicine, Division of Cardiology, School of Medicine, New York University School of Medicine, 435 E 30th St. New York, NY 10016, USA
| | - Clément Cochain
- Comprehensive Heart Failure Center, University Hospital Wurzburg, Anstalt des öffentlichen Rechts Josef-Schneider-Straße 2 97080 Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Inhoffenstraße 7 38124 Braunschweig, Würzburg, Germany
| | - Alastair Corbin
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7FY, UK
| | - Daniela Pezzolla
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine University of Oxford Level 6, West Wing John Radcliffe Hospital Headington Oxford OX3 9DU, UK
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32-36, DK-9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, Aalborg, Denmark
| | - Rikke Bæk
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, Aalborg, Denmark
| | - Laurienne Edgar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine University of Oxford Level 6, West Wing John Radcliffe Hospital Headington Oxford OX3 9DU, UK
| | - Carla De Villiers
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building Parks Road, OX1 3PT, Oxford, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building Parks Road, OX1 3PT, Oxford, UK
| | - Abhirup Banerjee
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine University of Oxford Level 6, West Wing John Radcliffe Hospital Headington Oxford OX3 9DU, UK
| | - Daan Paget
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine University of Oxford Level 6, West Wing John Radcliffe Hospital Headington Oxford OX3 9DU, UK
| | - Charlotte Lee
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine University of Oxford Level 6, West Wing John Radcliffe Hospital Headington Oxford OX3 9DU, UK
| | - Eleanor Hogg
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine University of Oxford Level 6, West Wing John Radcliffe Hospital Headington Oxford OX3 9DU, UK
| | - Adam Costin
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Raman Dhaliwal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, Vienna, Austria
| | - Joey Riepsaame
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Genevieve E Melling
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus Oxford OX3 0BP, UK
- Institute of Clinical Sciences, School of Biomedical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mayooran Shanmuganathan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine University of Oxford Level 6, West Wing John Radcliffe Hospital Headington Oxford OX3 9DU, UK
- The OxAMI Study is detailed in the Supplementary Acknowledgments
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, BT88 1090, Vienna, Austria
| | - David R F Carter
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus Oxford OX3 0BP, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine University of Oxford Level 6, West Wing John Radcliffe Hospital Headington Oxford OX3 9DU, UK
- The OxAMI Study is detailed in the Supplementary Acknowledgments
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building Parks Road, OX1 3PT, Oxford, UK
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7FY, UK
| | - Kathryn J Moore
- NYU Cardiovascular Research Center, Department of Medicine, Division of Cardiology, School of Medicine, New York University School of Medicine, 435 E 30th St. New York, NY 10016, USA
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine University of Oxford Level 6, West Wing John Radcliffe Hospital Headington Oxford OX3 9DU, UK
- The OxAMI Study is detailed in the Supplementary Acknowledgments
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| |
Collapse
|
217
|
O'Brien M, Ernst M, Poh AR. An intrasplenic injection model of pancreatic cancer metastasis to the liver in mice. STAR Protoc 2023; 4:102021. [PMID: 36638017 PMCID: PMC9846119 DOI: 10.1016/j.xpro.2022.102021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Here, we provide a protocol for an intrasplenic injection model to establish pancreatic tumors in the mouse liver. We describe the steps to inject tumor cells into mouse spleen and to perform a splenectomy, followed by animal recovery and end point analysis of tumors in the liver. This model allows rapid and reproducible tumor growth in a clinically relevant metastatic site, providing a platform to evaluate the efficacy of anti-cancer drugs. This technique can be expanded to other cancer cell lines. For complete details on the use and execution of this protocol, please refer to Poh et al. (2022).1.
Collapse
Affiliation(s)
- Megan O'Brien
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia.
| |
Collapse
|
218
|
Oh C, Lee W, Park J, Choi J, Lee S, Li S, Jung HN, Lee JS, Hwang JE, Park J, Kim M, Baek S, Im HJ. Development of Spleen Targeting H 2S Donor Loaded Liposome for the Effective Systemic Immunomodulation and Treatment of Inflammatory Bowel Disease. ACS NANO 2023; 17:4327-4345. [PMID: 36744655 DOI: 10.1021/acsnano.2c08898] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanoparticles are primarily taken up by immune cells after systemic administration. Thus, they are considered an ideal drug delivery vehicle for immunomodulation. Because the spleen is the largest lymphatic organ and regulates the systemic immune system, there have been studies to develop spleen targeting nanoparticles for immunomodulation of cancer and immunological disorders. Inflammatory bowel disease (IBD) includes disorders involving chronic inflammation in the gastrointestinal tract and is considered incurable despite a variety of treatment options. Hydrogen sulfide (H2S) is one of the gasotransmitters that carries out anti-inflammatory functions and has shown promising immunomodulatory effects in various inflammatory diseases including IBD. Herein, we developed a delicately tuned H2S donor delivering liposome for spleen targeting (ST-H2S lipo) and studied its therapeutic effects in a dextran sulfate sodium (DSS) induced colitis model. We identified the ideal PEG type and ratio of liposome for a high stability, loading efficiency, and spleen targeting effect. In the treatment of the DSS-induced colitis model, we found that ST-H2S lipo and conventional long-circulating liposomes loaded with H2S donors (LC-H2S lipo) reduced the severity of colitis, whereas unloaded H2S donors did not. Furthermore, the therapeutic effect of ST-H2S lipo was superior to that of LC-H2S lipo due to its better systemic immunomodulatory effect than that of LC-H2S lipo. Our findings demonstrate that spleen targeting H2S lipo may have therapeutic potential for IBD.
Collapse
Affiliation(s)
- Chiwoo Oh
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Wooseung Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeongbin Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jinyeong Choi
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Somin Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Shengjun Li
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Han Na Jung
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Seob Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jee-Eun Hwang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jiwoo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - MinKyu Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungki Baek
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
219
|
Lu Y, You J. Strategy and application of manipulating DCs chemotaxis in disease treatment and vaccine design. Biomed Pharmacother 2023; 161:114457. [PMID: 36868016 DOI: 10.1016/j.biopha.2023.114457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
As the most versatile antigen-presenting cells (APCs), dendritic cells (DCs) function as the cardinal commanders in orchestrating innate and adaptive immunity for either eliciting protective immune responses against canceration and microbial invasion or maintaining immune homeostasis/tolerance. In fact, in physiological or pathological conditions, the diversified migratory patterns and exquisite chemotaxis of DCs, prominently manipulate their biological activities in both secondary lymphoid organs (SLOs) as well as homeostatic/inflammatory peripheral tissues in vivo. Thus, the inherent mechanisms or regulation strategies to modulate the directional migration of DCs even could be regarded as the crucial cartographers of the immune system. Herein, we systemically reviewed the existing mechanistic understandings and regulation measures of trafficking both endogenous DC subtypes and reinfused DCs vaccines towards either SLOs or inflammatory foci (including neoplastic lesions, infections, acute/chronic tissue inflammations, autoimmune diseases and graft sites). Furthermore, we briefly introduced the DCs-participated prophylactic and therapeutic clinical application against disparate diseases, and also provided insights into the future clinical immunotherapies development as well as the vaccines design associated with modulating DCs mobilization modes.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, 291 Fucheng Road, Zhejiang 310018, PR China; Zhejiang-California International NanoSystems Institute, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
220
|
Zhang Y, Long Y, Wan J, Liu S, Shi A, Li D, Yu S, Li X, Wen J, Deng J, Ma Y, Li N. Macrophage membrane biomimetic drug delivery system: for inflammation targeted therapy. J Drug Target 2023; 31:229-242. [PMID: 35587560 DOI: 10.1080/1061186x.2022.2071426] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, there have been many exciting developments in the biomedical applications of the macrophage membrane bionic drug delivery system (MM-Bio-DDS). Macrophages, as an important immune cell, are involved in initiating and regulating the specific immune response of the body. Therefore, the inflammatory process related to macrophages is an important goal in the diagnosis and treatment of many diseases. In this review, we first summarise the different methods of preparation, characterisation, release profiles and natural advantages of using macrophages as a drug delivery system (DDS). Second, we introduce the processes of various chronic inflammatory diseases and the role of macrophages in them, specifically clarifying how the MM-Bio-DDS provides a wide and effective treatment for the targeted inflammatory site. Finally, based on the existing research, we propose the application prospect and existing challenges of the MM-Bio-DDS, especially the problems in clinical transformation, to provide new ideas for the development and utilisation of the MM-Bio-DDS in targeted drug delivery for inflammation and the treatment of diseases.
Collapse
Affiliation(s)
- Yulu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
221
|
Raith M, Nguyen N, Kauffman SJ, Kang N, Mays J, Dalhaimer P. Obesity and inflammation influence pharmacokinetic profiles of PEG-based nanoparticles. J Control Release 2023; 355:434-445. [PMID: 36758834 PMCID: PMC10006354 DOI: 10.1016/j.jconrel.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Most patients that will be treated with soft nanoparticles (NPs) will be obese. Yet, NP testing, which begins with pharmacokinetic (PK) and toxicity studies, is carried out almost exclusively in lean rodents having healthy livers and low inflammation. To address this knowledge gap, we determined the PK and toxicity of tail-vein-injected, PEG-based cylindrical nanoparticles (CNPs) and PEGylated liposomes (PLs) as a function of obesity, liver health, and inflammation in leptin-deficient ob/ob and wild-type C57BL/6 J mice. CNPs localized faster to obese livers than to healthy livers within 24 h of injection. PLs localized faster to obese livers than to healthy livers but only 30 min post-injection. Afterwards PL localization to lean livers was higher than localization to obese livers. Overall, PL liver signal peaked ∼6 h post-injection in lean mice, ∼24 h post-injection in heavy mice, and ∼ 48 h post-injection in obese mice. CNPs and PLs were non-toxic to mouse livers as assessed by histology; they reduced many cytokine and chemokine levels that were elevated by obesity. Liver macrophage depletion reduced CNP and PL liver localization as expected; liver sinusoidal endothelial cell (LSEC) depletion reduced PL liver localization but surprisingly increased CNP liver localization. The intensity of RAW264.7 macrophages was higher after CNP incubations than with PL incubations; conversely, the intensity of LSECs was higher after PL incubations than with CNP incubations. This shows the potential for key differences in NP-liver interactions. Triggering inflammation by administering lipopolysaccharide (LPS) to mice increased CNP liver localization but decreased PL liver localization. The results show that obesity and inflammation in a mouse model and in vitro affect soft PEG-based NP interaction with macrophages and LSECs, but also that these NPs can reduce pro-inflammatory pathways increased by obesity.
Collapse
Affiliation(s)
- Mitch Raith
- Department of Chemical and Biomolecular Engineering, Knoxville, TN 37996, United States of America
| | - Nicole Nguyen
- Department of Biochemistry, Cellular, and Molecular Biology, Knoxville, TN 37996, United States of America
| | - Sarah J Kauffman
- Department of Microbiology, Knoxville, TN 37996, United States of America
| | - Namgoo Kang
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Jimmy Mays
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Paul Dalhaimer
- Department of Chemical and Biomolecular Engineering, Knoxville, TN 37996, United States of America; Department of Biochemistry, Cellular, and Molecular Biology, Knoxville, TN 37996, United States of America.
| |
Collapse
|
222
|
Cho YE, Kwon YS, Hwang S. Heterogeneous population of macrophages in the development of non-alcoholic fatty liver disease. LIVER RESEARCH 2023; 7:16-25. [PMID: 39959694 PMCID: PMC11791820 DOI: 10.1016/j.livres.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by a spectrum of hepatic diseases, including fatty liver, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. NAFLD is a hepatic manifestation of metabolic syndrome and has become the leading cause of liver transplantation, necessitating an in-depth understanding of its underlying pathogenic mechanisms and the identification of viable drug targets. Although fatty liver is benign and does not exert marked liver damage or inflammation, NAFLD progression involves inflammatory processes facilitated by immune cells. Macrophages and monocytes constitute the pool of innate immune cells that contribute to NAFLD development in association with other cell types, such as neutrophils, T cells, and natural killer cells. The concept that macrophages contribute to the inflammatory processes in NAFLD development has long been debated; however, the remarkable advances in experimental techniques have rapidly uncovered new subpopulations of macrophages and monocytes, whose functions need to be comprehensively elucidated. The current review focuses on the recent expansion of our knowledge of the heterogeneous population of macrophages crucially involved in NAFLD development. In addition, the present paper discusses ongoing efforts to target macrophages and inflammatory processes to develop optimal therapeutic agents against non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Ye Eun Cho
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Yong Seong Kwon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seonghwan Hwang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
223
|
Senders ML, Calcagno C, Tawakol A, Nahrendorf M, Mulder WJM, Fayad ZA. PET/MR imaging of inflammation in atherosclerosis. Nat Biomed Eng 2023; 7:202-220. [PMID: 36522465 DOI: 10.1038/s41551-022-00970-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/25/2022] [Indexed: 12/23/2022]
Abstract
Myocardial infarction, stroke, mental disorders, neurodegenerative processes, autoimmune diseases, cancer and the human immunodeficiency virus impact the haematopoietic system, which through immunity and inflammation may aggravate pre-existing atherosclerosis. The interplay between the haematopoietic system and its modulation of atherosclerosis has been studied by imaging the cardiovascular system and the activation of haematopoietic organs via scanners integrating positron emission tomography and resonance imaging (PET/MRI). In this Perspective, we review the applicability of integrated whole-body PET/MRI for the study of immune-mediated phenomena associated with haematopoietic activity and cardiovascular disease, and discuss the translational opportunities and challenges of the technology.
Collapse
Affiliation(s)
- Max L Senders
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Tawakol
- Cardiology Division and Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Willem J M Mulder
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands.
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
224
|
Modulation of Immunity, Antioxidant Status, Performance, Blood Hematology, and Intestinal Histomorphometry in Response to Dietary Inclusion of Origanum majorana in Domestic Pigeons’ Diet. Life (Basel) 2023; 13:life13030664. [PMID: 36983819 PMCID: PMC10051733 DOI: 10.3390/life13030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
This experiment was conducted to evaluate the effect of adding Origanum majorana (OM) powder to domestic pigeon diets on growth performance, feeding and drinking behaviour, blood hematology, blood biochemical parameters, blood inflammatory and oxidative markers, carcass characteristics, the weights of lymphoid organs, and and intestinal cecal, and bursa of Fabricius histology. A random distribution of fifty-four unsexed pigeon squabs (30 days old, average body weight; 321 g ± 7.5) into three groups was done. The first group was fed the grower basal diet without adding OM powder, while OM powder was added at levels of 0.5 and 1% to the basal diets of the second and third groups, respectively. The changes in growth performance parameters and feeding and drinking behavior under OM powder’s effect were insignificant. However, the lymphoid organs (spleen and thymus) significantly increased in weight (p < 0.05) in the OM-fed groups. Moreover, blood examination showed positive responses to OM powder in terms of blood cell counts (RBCs andWBCs), and the values of hemoglobin, hematocrit, mean corpuscular volume, lymphocyte numbers, levels of globulin, and glutathione peroxidase enzyme were significantly increased. The numbers of heterophils, the ratio of heterophil to lymphocyte, malondialdehyde levels were reduced (p < 0.05). Histomorphometry examination revealed increases in intestinal villi height, cecal thickness, and bursal follicle area and number. These results indicated that adding OM powder to the pigeon diet may improve their immunity, increase their antioxidant status, and correct some hematological disorders.
Collapse
|
225
|
Zhang B, Pan H, Chen Z, Yin T, Zheng M, Cai L. Twin-bioengine self-adaptive micro/nanorobots using enzyme actuation and macrophage relay for gastrointestinal inflammation therapy. SCIENCE ADVANCES 2023; 9:eadc8978. [PMID: 36812317 PMCID: PMC9946363 DOI: 10.1126/sciadv.adc8978] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/26/2023] [Indexed: 05/28/2023]
Abstract
A wide array of biocompatible micro/nanorobots are designed for targeted drug delivery and precision therapy largely depending on their self-adaptive ability overcoming complex barriers in vivo. Here, we report a twin-bioengine yeast micro/nanorobot (TBY-robot) with self-propelling and self-adaptive capabilities that can autonomously navigate to inflamed sites for gastrointestinal inflammation therapy via enzyme-macrophage switching (EMS). Asymmetrical TBY-robots effectively penetrated the mucus barrier and notably enhanced their intestinal retention using a dual enzyme-driven engine toward enteral glucose gradient. Thereafter, the TBY-robot was transferred to Peyer's patch, where the enzyme-driven engine switched in situ to macrophage bioengine and was subsequently relayed to inflamed sites along a chemokine gradient. Encouragingly, EMS-based delivery increased drug accumulation at the diseased site by approximately 1000-fold, markedly attenuating inflammation and ameliorating disease pathology in mouse models of colitis and gastric ulcers. These self-adaptive TBY-robots represent a safe and promising strategy for the precision treatment of gastrointestinal inflammation and other inflammatory diseases.
Collapse
Affiliation(s)
- Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Ting Yin
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
226
|
Abstract
Fecal microbiota transplantation (FMT) is an effective means of modulating gut microbiota for the treatment of many diseases, including Clostridioides difficile infections. The gut-spleen axis has been established, and this is involved in the development and function of the spleen. However, it is not understood whether gut microbiota can be used to improve spleen function, especially in spleens disrupted by a disease or an anti-cancer treatment. In the current investigation, we established that alginate oligosaccharide (AOS)-improved gut microbiota (A10-FMT) can rescue anticancer drug busulfan-disrupted spleen vasculature and spleen function. A10-FMT improved the gene and/or protein expression of genes involved in vasculature development, increased the cell proliferation rate, enhanced the endothelial progenitor cell capability, and elevated the expression of the cell junction molecules to increase the vascularization of the spleen. This investigation found for the first time that the reestablishment of spleen vascularization restored spleen function by improving spleen immune cells and iron metabolism. These findings may be used as a strategy to minimize the side effects of anti-cancer drugs or to improve spleen vasculature-related diseases. IMPORTANCE Alginate oligosaccharide (AOS)-improved gut microbiota (A10-FMT) can rescue busulfan disrupted spleen vasculature. A10-FMT improved the cell proliferation rate, endothelial progenitor cell capability, and cell junction molecules to increase vasculature formation in the spleen. This reestablishment restored spleen function by improving spleen immune cells and iron metabolism. These findings are useful for the treatment of spleen vasculature-related diseases.
Collapse
|
227
|
Tousif S, Singh AP, Umbarkar P, Galindo C, Wheeler N, Coro AT, Zhang Q, Prabhu SD, Lal H. Ponatinib Drives Cardiotoxicity by S100A8/A9-NLRP3-IL-1β Mediated Inflammation. Circ Res 2023; 132:267-289. [PMID: 36625265 PMCID: PMC9898181 DOI: 10.1161/circresaha.122.321504] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND The tyrosine kinase inhibitor ponatinib is the only treatment option for chronic myelogenous leukemia patients with T315I (gatekeeper) mutation. Pharmacovigilance analysis of Food and Drug Administration and World Health Organization datasets has revealed that ponatinib is the most cardiotoxic agent among all Food and Drug Administration-approved tyrosine kinase inhibitors in a real-world scenario. However, the mechanism of ponatinib-induced cardiotoxicity is unknown. METHODS The lack of well-optimized mouse models has hampered the in vivo cardio-oncology studies. Here, we show that cardiovascular comorbidity mouse models evidence a robust cardiac pathological phenotype upon ponatinib treatment. A combination of multiple in vitro and in vivo models was employed to delineate the underlying molecular mechanisms. RESULTS An unbiased RNA sequencing analysis identified the enrichment of dysregulated inflammatory genes, including a multifold upregulation of alarmins S100A8/A9, as a top hit in ponatinib-treated hearts. Mechanistically, we demonstrate that ponatinib activates the S100A8/A9-TLR4 (Toll-like receptor 4)-NLRP3 (NLR family pyrin domain-containing 3)-IL (interleukin)-1β signaling pathway in cardiac and systemic myeloid cells, in vitro and in vivo, thereby leading to excessive myocardial and systemic inflammation. Excessive inflammation was central to the cardiac pathology because interventions with broad-spectrum immunosuppressive glucocorticoid dexamethasone or specific inhibitors of NLRP3 (CY-09) or S100A9 (paquinimod) nearly abolished the ponatinib-induced cardiac dysfunction. CONCLUSIONS Taken together, these findings uncover a novel mechanism of ponatinib-induced cardiac inflammation leading to cardiac dysfunction. From a translational perspective, our results provide critical preclinical data and rationale for a clinical investigation into immunosuppressive interventions for managing ponatinib-induced cardiotoxicity.
Collapse
Affiliation(s)
- Sultan Tousif
- Division of Cardiovascular Disease, UAB | The University of Alabama at Birmingham, Birmingham, AL
| | - Anand P. Singh
- Division of Cardiovascular Disease, UAB | The University of Alabama at Birmingham, Birmingham, AL
| | - Prachi Umbarkar
- Division of Cardiovascular Disease, UAB | The University of Alabama at Birmingham, Birmingham, AL
| | - Cristi Galindo
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA35294-1913, USA
| | - Nicholas Wheeler
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA35294-1913, USA
| | - Angelica Toro Coro
- Division of Cardiovascular Disease, UAB | The University of Alabama at Birmingham, Birmingham, AL
| | - Qinkun Zhang
- Division of Cardiovascular Disease, UAB | The University of Alabama at Birmingham, Birmingham, AL
| | - Sumanth D. Prabhu
- Division of Cardiology, Department of Medicine, Washington University in St. Louis
| | - Hind Lal
- Division of Cardiovascular Disease, UAB | The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
228
|
Tan YY, O'Dea KP, Tsiridou DM, Pac Soo A, Koh MW, Beckett F, Takata M. Circulating Myeloid Cell-derived Extracellular Vesicles as Mediators of Indirect Acute Lung Injury. Am J Respir Cell Mol Biol 2023; 68:140-149. [PMID: 36150169 DOI: 10.1165/rcmb.2022-0207oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Blood-borne myeloid cells, neutrophils and monocytes, play a central role in the development of indirect acute lung injury (ALI) during sepsis and noninfectious systemic inflammatory response syndrome. By contrast, the contribution of circulating myeloid cell-derived extracellular vesicles (EVs) to ALI is unknown, despite acute increases in their numbers during sepsis and systemic inflammatory response syndrome. Here, we investigated the direct role of circulating myeloid-EVs in ALI using a mouse isolated perfused lung system and a human cell coculture model of pulmonary vascular inflammation consisting of lung microvascular endothelial cells and peripheral blood mononuclear cells. Total and immunoaffinity-isolated myeloid (CD11b+) and platelet (CD41+) EVs were prepared from the plasma of intravenous LPS-injected endotoxemic donor mice and transferred directly into recipient lungs. Two-hour perfusion of lungs with unfractionated EVs from a single donor induced pulmonary edema formation and increased perfusate concentrations of RAGE (receptor for advanced glycation end products), consistent with lung injury. These responses were abolished in the lungs of monocyte-depleted mice. The isolated myeloid- but not platelet-EVs produced a similar injury response and the acute intravascular release of proinflammatory cytokines and endothelial injury markers. In the in vitro human coculture model, human myeloid- (CD11b+) but not platelet- (CD61+) EVs isolated from LPS-stimulated whole blood induced acute proinflammatory cytokine production and endothelial activation. These findings implicate circulating myeloid-EVs as acute mediators of pulmonary vascular inflammation and edema, suggesting an alternative therapeutic target for attenuation of indirect ALI.
Collapse
Affiliation(s)
- Ying Ying Tan
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kieran P O'Dea
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Diianeira Maria Tsiridou
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Aurelie Pac Soo
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Marissa W Koh
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Florence Beckett
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Masao Takata
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| |
Collapse
|
229
|
Premorbid Use of Beta-Blockers or Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers in Patients with Acute Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7733857. [PMID: 36778208 PMCID: PMC9908343 DOI: 10.1155/2023/7733857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 02/05/2023]
Abstract
This study was designed to investigate the impact of the preexisting use of beta-blockers, angiotensin-converting enzyme inhibitors (ACEIs), or angiotensin receptor blockers (ARBs) on the cellular immune response in peripheral blood and the clinical outcomes of patients with acute ischemic stroke. We retrospectively collected clinical data from a cohort of 69 patients with premorbid beta-blockers and 56 patients with premorbid ACEIs/ARBs. Additionally, we selected a cohort of 107 patients with acute ischemic stroke to be the control of the same age and sex. We analyzed cellular immune parameters in peripheral blood 1 day after the appearance of symptoms, including the frequencies of circulating white blood cell subpopulations, the neutrophil-to-lymphocyte ratio (NLR), and the lymphocyte-to-monocyte ratio (LMR). We found that the count of lymphocytes and the lymphocyte-to-monocyte ratio were significantly higher in the peripheral blood of patients treated with beta-blockers before stroke than in matched controls. However, the premorbid use of ACEIs/ARBs did not considerably impact the circulating immune parameters listed above in patients with acute ischemic stroke. Furthermore, we found that premorbid use of beta-blockers or ACEIs/ARBs did not significantly change functional outcomes in patients 3 months after the onset of stroke. These results suggest that premorbid use of beta-blockers, but not ACEIs/ARBs, reversed lymphopenia associated with acute ischemic stroke. As cellular immune changes in peripheral blood could be an independent predictor of stroke prognosis, more large-scale studies are warranted to further verify the impact of premorbid use of beta-blockers or ACEIs/ARBs on the prognosis of patients with ischemic stroke. Our research is beneficial to understanding the mechanism of the systemic immune response induced by stroke and has the potential for a therapeutic strategy in stroke interventions and treatment.
Collapse
|
230
|
Mamilos A, Winter L, Schmitt VH, Barsch F, Grevenstein D, Wagner W, Babel M, Keller K, Schmitt C, Gürtler F, Schreml S, Niedermair T, Rupp M, Alt V, Brochhausen C. Macrophages: From Simple Phagocyte to an Integrative Regulatory Cell for Inflammation and Tissue Regeneration-A Review of the Literature. Cells 2023; 12:276. [PMID: 36672212 PMCID: PMC9856654 DOI: 10.3390/cells12020276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
The understanding of macrophages and their pathophysiological role has dramatically changed within the last decades. Macrophages represent a very interesting cell type with regard to biomaterial-based tissue engineering and regeneration. In this context, macrophages play a crucial role in the biocompatibility and degradation of implanted biomaterials. Furthermore, a better understanding of the functionality of macrophages opens perspectives for potential guidance and modulation to turn inflammation into regeneration. Such knowledge may help to improve not only the biocompatibility of scaffold materials but also the integration, maturation, and preservation of scaffold-cell constructs or induce regeneration. Nowadays, macrophages are classified into two subpopulations, the classically activated macrophages (M1 macrophages) with pro-inflammatory properties and the alternatively activated macrophages (M2 macrophages) with anti-inflammatory properties. The present narrative review gives an overview of the different functions of macrophages and summarizes the recent state of knowledge regarding different types of macrophages and their functions, with special emphasis on tissue engineering and tissue regeneration.
Collapse
Affiliation(s)
- Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lina Winter
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker H. Schmitt
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Friedrich Barsch
- Medical Center, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - David Grevenstein
- Clinic and Polyclinic for Orthopedics and Trauma Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Willi Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), 69120 Heidelberg, Germany
| | - Maximilian Babel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Karsten Keller
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christine Schmitt
- Department of Internal Medicine, St. Vincenz and Elisabeth Hospital of Mainz (KKM), 55131 Mainz, Germany
| | - Florian Gürtler
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Tanja Niedermair
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Markus Rupp
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Medical Centre Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
231
|
Li D, Son Y, Jang M, Wang S, Zhu W. Nanoparticle Based Cardiac Specific Drug Delivery. BIOLOGY 2023; 12:biology12010082. [PMID: 36671774 PMCID: PMC9856055 DOI: 10.3390/biology12010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Heart failure secondary to myocardial injuries is a leading cause of death worldwide. Recently, a growing number of novel therapies have emerged for injured myocardium repairment. However, delivering therapeutic agents specifically to the injured heart remains a significant challenge. Nanoparticles are the most commonly used vehicles for targeted drug delivery. Various nanoparticles have been synthesized to deliver drugs and other therapeutic molecules to the injured heart via passive or active targeting approaches, and their targeting specificity and therapeutic efficacies have been investigated. Here, we summarized nanoparticle-based, cardiac-specific drug delivery systems, their potency for treating heart diseases, and the mechanisms underlying these cardiac-targeting strategies. We also discussed the clinical studies that have employed nanoparticle-based cardiac-specific drug delivery.
Collapse
Affiliation(s)
- Dong Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Department of Cardiology, Dongfang Hospital, The Second Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yura Son
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Michelle Jang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: (S.W.); (W.Z.)
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Correspondence: (S.W.); (W.Z.)
| |
Collapse
|
232
|
Dynamic changes of monocytes subsets predict major adverse cardiovascular events and left ventricular function after STEMI. Sci Rep 2023; 13:48. [PMID: 36593308 PMCID: PMC9807564 DOI: 10.1038/s41598-022-26688-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
We explored how dynamic changes in monocyte subset counts (as opposed to static values to specific time points), and their phagocytic and NFκB activity relate to major adverse cardiovascular events (MACE) and left ventricular ejection fraction (LVEF) in patients with ST-elevation myocardial infarction (STEMI). Changes in counts, phagocytic activity and intracellular levels of inhibitory κB kinase β (IKKβ) (a marker of NFκB activity) of monocyte subsets (CD14++CD16-CCR2+ [Mon1], CD14++CD16+CCR2+ [Mon2] and CD14+CD16++CCR2- [Mon3]) were measured by flow cytometry in patients with STEMI at baseline, and again after one week, two weeks, and one month. LVEF was measured by echocardiography at baseline and six months after STEMI. Baseline data included 245 patients (mean ± SD age 60 ± 12 years; 22% female), who were followed for a median of 46 (19-61) months. Multivariate Cox regression demonstrated that more prominent dynamic reduction in Mon2 by week 1 (n = 37) was independently associated with fewer MACE (HR 0.06, 95% CI 0.01-0.55, p = 0.01). Also, less prominent reduction in Mon2 at month 1 (n = 24) was independently predictive of 6-month LVEF. None of the other dynamic changes in monocyte subsets were associated with changes in survival from MACE. Neither phagocytic activity nor IKKβ were associated with survival for each monocyte subset. We showed how distinct pattern of dynamic changes in Mon2 are related to both MACE risk and recovery of cardiac contractility. Further research is needed to understand the mechanism of the monocyte effect and possibilities of their pharmacological manipulation.
Collapse
|
233
|
Kröller S, Wissuwa B, Dennhardt S, Krieg N, Thiemermann C, Daniel C, Amann K, Gunzer F, Coldewey SM. Bruton's tyrosine kinase inhibition attenuates disease progression by reducing renal immune cell invasion in mice with hemolytic-uremic syndrome. Front Immunol 2023; 14:1105181. [PMID: 36911665 PMCID: PMC9995712 DOI: 10.3389/fimmu.2023.1105181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Hemolytic-uremic syndrome (HUS) can occur as a complication of an infection with Shiga-toxin (Stx)-producing Escherichia coli. Patients typically present with acute kidney injury, microangiopathic hemolytic anemia and thrombocytopenia. There is evidence that Stx-induced renal damage propagates a pro-inflammatory response. To date, therapy is limited to organ-supportive strategies. Bruton's tyrosine kinase (BTK) plays a pivotal role in recruitment and function of immune cells and its inhibition was recently shown to improve renal function in experimental sepsis and lupus nephritis. We hypothesized that attenuating the evoked immune response by BTK-inhibitors (BTKi) ameliorates outcome in HUS. We investigated the effect of daily oral administration of the BTKi ibrutinib (30 mg/kg) and acalabrutinib (3 mg/kg) in mice with Stx-induced HUS at day 7. After BTKi administration, we observed attenuated disease progression in mice with HUS. These findings were associated with less BTK and downstream phospholipase-C-gamma-2 activation in the spleen and, subsequently, a reduced renal invasion of BTK-positive cells including neutrophils. Only ibrutinib treatment diminished renal invasion of macrophages, improved acute kidney injury and dysfunction (plasma levels of NGAL and urea) and reduced hemolysis (plasma levels of bilirubin and LDH activity). In conclusion, we report here for the first time that BTK inhibition attenuates the course of disease in murine HUS. We suggest that the observed reduction of renal immune cell invasion contributes - at least in part - to this effect. Further translational studies are needed to evaluate BTK as a potential target for HUS therapy to overcome currently limited treatment options.
Collapse
Affiliation(s)
- Sarah Kröller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Bianka Wissuwa
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Sophie Dennhardt
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Nadine Krieg
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Christoph Thiemermann
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Gunzer
- Department of Hospital Infection Control, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sina M Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| |
Collapse
|
234
|
Nian W, Huang Z, Fu C. Immune cells drive new immunomodulatory therapies for myocardial infarction: From basic to clinical translation. Front Immunol 2023; 14:1097295. [PMID: 36761726 PMCID: PMC9903069 DOI: 10.3389/fimmu.2023.1097295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
The high incidence of heart failure secondary to myocardial infarction (MI) has been difficult to effectively address. MI causes strong aseptic inflammation, and infiltration of different immune cells and changes in the local inflammatory microenvironment play a key regulatory role in ventricular remodeling. Therefore, the possibility of improving the prognosis of MI through targeted immunity has been of interest and importance in MI. However, previously developed immune-targeted therapies have not achieved significant success in clinical trials. Here, we propose that the search for therapeutic targets from different immune cells may be more precise and lead to better clinical translation. Specifically, this review summarizes the role and potential therapeutic targets of various immune cells in ventricular remodeling after MI, especially monocytes/macrophages and neutrophils, as a way to demonstrate the importance and potential of immunomodulatory therapies for MI. In addition, we analyze the reasons for the failure of previous immunomodulatory therapies and the issues that need to be addressed, as well as the prospects and targeting strategies of using immune cells to drive novel immunomodulatory therapies, hoping to advance the development of immunomodulatory therapies by providing evidence and new ideas.
Collapse
Affiliation(s)
- Wenjian Nian
- Department of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Zijian Huang
- Department of Cardiology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, China.,Anesthesia Laboratory and Training Center, Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Cong Fu
- Department of Cardiology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, China.,Anesthesia Laboratory and Training Center, Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| |
Collapse
|
235
|
Isidoro CA, Deniset JF. The role of macrophage subsets in and around the heart in modulating cardiac homeostasis and pathophysiology. Front Immunol 2023; 14:1111819. [PMID: 36926341 PMCID: PMC10011174 DOI: 10.3389/fimmu.2023.1111819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Cardiac and pericardial macrophages contribute to both homeostatic and pathophysiological processes. Recent advances have identified a vast repertoire of these macrophage populations in and around the heart - broadly categorized into a CCR2+/CCR2- dichotomy. While these unique populations can be further distinguished by origin, localization, and other cell surface markers, further exploration into the role of cardiac and pericardial macrophage subpopulations in disease contributes an additional layer of complexity. As such, novel transgenic models and exogenous targeting techniques have been employed to evaluate these macrophages. In this review, we highlight known cardiac and pericardial macrophage populations, their functions, and the experimental tools used to bolster our knowledge of these cells in the cardiac context.
Collapse
Affiliation(s)
- Carmina Albertine Isidoro
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Cumming School of Medicine, Calgary, AB, Canada
| | - Justin F Deniset
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute, Cumming School of Medicine, Calgary, AB, Canada.,Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
236
|
Zuo G, Gao Y, Lu G, Bu M, Liu J, Zhang J, Fan X, Chen H, Wang X, She Y. Auriculotherapy Modulates Macrophage Polarization to Reduce Inflammatory Response in a Rat Model of Acne. Mediators Inflamm 2023; 2023:6627393. [PMID: 37159798 PMCID: PMC10163966 DOI: 10.1155/2023/6627393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Background The inflammatory response is an important part of the pathogenesis of acne vulgaris. Auriculotherapy has been shown to have a good therapeutic effect on this disease. The aim of this study was to explore the mechanism underlying the anti-inflammatory effect of auriculotherapy in the treatment of acne vulgaris. Methods Propionibacterium acnes was injected subcutaneously into the ears of rats to establish an animal model of acne. The auriculotherapy intervention in rats consisted of auricular bloodletting therapy (ABT), auricular point sticking (APS), or a combination of both (ABPS). The anti-inflammatory effects of auriculotherapy were evaluated by measuring changes in ear thickness, local body surface microcirculation in the ear, and serum inflammatory factors in rats. The polarization of macrophages was analyzed by flow cytometry, and the expression of TLR2/NF-κB signaling pathway in the target tissues was analyzed using western blot. Results ABT, APS, and ABPS all reduced the erythema of ear acne, decreased microcirculation in localized ear acne, and decreased serum levels of TNF-α and IL-1β in rats. Meanwhile, the three interventions reduced M1-type macrophages and increased M2-type macrophages; only APS could reduce the expression of TLR2/NF-κB signaling pathway. Conclusion ABT, APS, and ABPS can improve the inflammatory symptoms of acne and reduce inflammatory cytokines. APS may exert anti-inflammatory effects by altering macrophage polarization and decreasing TLR2/NF-κB expression.
Collapse
Affiliation(s)
- Guang Zuo
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yidan Gao
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Guangtong Lu
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ming Bu
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jun Liu
- Department of Rehabilitation, School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
| | - Juncha Zhang
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
| | - Xisheng Fan
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
| | - Hao Chen
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xuesong Wang
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yanfen She
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
- Department of Experimental Acupuncture, School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
237
|
Lazzarin T, Tonon CR, Martins D, Fávero EL, Baumgratz TD, Pereira FWL, Pinheiro VR, Ballarin RS, Queiroz DAR, Azevedo PS, Polegato BF, Okoshi MP, Zornoff L, Rupp de Paiva SA, Minicucci MF. Post-Cardiac Arrest: Mechanisms, Management, and Future Perspectives. J Clin Med 2022; 12:259. [PMID: 36615059 PMCID: PMC9820907 DOI: 10.3390/jcm12010259] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Cardiac arrest is an important public health issue, with a survival rate of approximately 15 to 22%. A great proportion of these deaths occur after resuscitation due to post-cardiac arrest syndrome, which is characterized by the ischemia-reperfusion injury that affects the role body. Understanding physiopathology is mandatory to discover new treatment strategies and obtain better results. Besides improvements in cardiopulmonary resuscitation maneuvers, the great increase in survival rates observed in recent decades is due to new approaches to post-cardiac arrest care. In this review, we will discuss physiopathology, etiologies, and post-resuscitation care, emphasizing targeted temperature management, early coronary angiography, and rehabilitation.
Collapse
Affiliation(s)
- Taline Lazzarin
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu 18607-741, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Brinkman DJ, Gupta I, Matteucci PB, Ouchouche S, de Jonge WJ, Coatney RW, Salam T, Chew DJ, Irwin E, Yazicioglu RF, Nieuwenhuizen GAP, Vervoordeldonk MJ, Luyer MDP. Splenic arterial neurovascular bundle stimulation in esophagectomy: A feasibility and safety prospective cohort study. Front Neurosci 2022; 16:1088628. [PMID: 36620453 PMCID: PMC9817142 DOI: 10.3389/fnins.2022.1088628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION The autonomic nervous system is a key regulator of inflammation. Electrical stimulation of the vagus nerve has been shown to have some preclinical efficacy. However, only a few clinical studies have been reported to treat inflammatory diseases. The present study evaluates, for the first time, neuromodulation of the splenic arterial neurovascular bundle (SpA NVB) in patients undergoing minimally invasive esophagectomy (MIE), in which the SpA NVB is exposed as part of the procedure. METHODS This single-center, single-arm study enrolled 13 patients undergoing MIE. During the abdominal phase of the MIE, a novel cuff was placed around the SpA NVB, and stimulation was applied. The primary endpoint was the feasibility and safety of cuff application and removal. A secondary endpoint included the impact of stimulation on SpA blood flow changes during the stimulation, and an exploratory point was C-reactive protein (CRP) levels on postoperative day (POD) 2 and 3. RESULTS All patients successfully underwent placement, stimulation, and removal of the cuff on the SpA NVB with no adverse events related to the investigational procedure. Stimulation was associated with an overall reduction in splenic arterial blood flow but not with changes in blood pressure or heart rate. When compared to historic Propensity Score Matched (PSM) controls, CRP levels on POD2 (124 vs. 197 mg/ml, p = 0.032) and POD3 (151 vs. 221 mg/ml, p = 0.033) were lower in patients receiving stimulation. CONCLUSION This first-in-human study demonstrated for the first time that applying a cuff around the SpA NVB and subsequent stimulation is safe, feasible, and may have an effect on the postoperative inflammatory response following MIE. These findings suggest that SpA NVB stimulation may offer a new method for immunomodulatory therapy in acute or chronic inflammatory conditions.
Collapse
Affiliation(s)
- David J. Brinkman
- Department of Surgery, Catharina Hospital, Eindhoven, Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Isha Gupta
- Galvani Bioelectronics, Stevenage, United Kingdom
| | | | | | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | | | | | - Eric Irwin
- Galvani Bioelectronics, Stevenage, United Kingdom
| | | | | | | | | |
Collapse
|
239
|
Moggio A, Schunkert H, Kessler T, Sager HB. Quo Vadis? Immunodynamics of Myeloid Cells after Myocardial Infarction. Int J Mol Sci 2022; 23:15814. [PMID: 36555456 PMCID: PMC9779515 DOI: 10.3390/ijms232415814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI), a major contributor to worldwide morbidity and mortality, is caused by a lack of blood flow to the heart. Affected heart tissue becomes ischemic due to deficiency of blood perfusion and oxygen delivery. In case sufficient blood flow cannot be timely restored, cardiac injury with necrosis occurs. The ischemic/necrotic area induces a systemic inflammatory response and hundreds of thousands of leukocytes are recruited from the blood to the injured heart. The blood pool of leukocytes is rapidly depleted and urgent re-supply of these cells is needed. Myeloid cells are generated in the bone marrow (BM) and spleen, released into the blood, travel to sites of need, extravasate and accumulate inside tissues to accomplish various functions. In this review we focus on the "leukocyte supply chain" and will separately evaluate different myeloid cell compartments (BM, spleen, blood, heart) in steady state and after MI. Moreover, we highlight the local and systemic kinetics of extracellular factors, chemokines and danger signals involved in the regulation of production/generation, release, transportation, uptake, and activation of myeloid cells during the inflammatory phase of MI.
Collapse
Affiliation(s)
- Aldo Moggio
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
240
|
Liu S, Szatmary P, Lin JW, Wang Q, Sutton R, Chen L, Liu T, Huang W, Xia Q. Circulating monocytes in acute pancreatitis. Front Immunol 2022; 13:1062849. [PMID: 36578487 PMCID: PMC9791207 DOI: 10.3389/fimmu.2022.1062849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease characterized by inflammation of the exocrine pancreas and manifesting itself through acute onset of abdominal pain. It is frequently associated with organ failure, pancreatic necrosis, and death. Mounting evidence describes monocytes - phagocytic, antigen presenting, and regulatory cells of the innate immune system - as key contributors and regulators of the inflammatory response and subsequent organ failure in acute pancreatitis. This review highlights the recent advances of dynamic change of numbers, phenotypes, and functions of circulating monocytes as well as their underling regulatory mechanisms with a special focus on the role of lipid modulation during acute pancreatitis.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jing-wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qiqi Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| |
Collapse
|
241
|
Salarilak L, Pirdel Z, Dinmohammadi H, Rokni‐Zadeh H, Lavend'homme R, Karimi M, Jacquemin M, Shahani T. Pro-haemostatic effect of DDAVP is partially derived through non-classical (CD14 dim /CD16 ++ ) monocytes residing the spleen. J Cell Mol Med 2022; 27:30-35. [PMID: 36479816 PMCID: PMC9806299 DOI: 10.1111/jcmm.17606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Abstract
The splenic endothelial Weibel-palade bodies are one of the most important candidate organelles to release von Willebrand factor upon stimulation with desmopressin. However, the presence of functional desmopressin-specific receptor has not yet been demonstrated on endothelial cells. Experimental evidences are in favour of an indirect pro-haemostatic effect of desmopressin, but the exact mediator and its cellular origin are largely elusive. Here, we report partially hampered desmopressin response in a splenectomised severe haemophilia A/Beta Thalassemia patient without any genetic variant relevant to his incomplete desmopressin response. To further investigate the role of the spleen in this phenomenon, the release of VWF from desmopressin-treated human splenic endothelial cells was assessed in vitro. As a result, desmopressin induced the release of VWF from endothelial cells when the cells were co-cultured with non-classical (CD14dim /CD16++ ), but not other subtypes of monocytes or PBMCs. This in vitro study which resembles close proximity of endothelial cells of sinusoids to monocyte reservoir reside in parenchyma of subcapsular red pulp of the spleen sheds a light upon the role of this highly vascularized VWF-producing organ in driving indirect effect of desmopressin.
Collapse
Affiliation(s)
- Laleh Salarilak
- Department of Genetics and Molecular Medicine, School of MedicineZanjan University of Medical Sciences (ZUMS)ZanjanIran
| | - Zahra Pirdel
- Deputy of Research and TechnologyArdabil University of Medical SciencesArdabilIran
| | - Hossein Dinmohammadi
- Department of Genetics and Molecular Medicine, School of MedicineZanjan University of Medical Sciences (ZUMS)ZanjanIran
| | - Hassan Rokni‐Zadeh
- Zanjan Pharmaceutical Biotechnology Research CenterZanjan University of Medical Sciences (ZUMS)ZanjanIran,Department of Medical BiotechnologySchool of Medicine, Zanjan University of Medical Sciences (ZUMS)ZanjanIran
| | - Renaud Lavend'homme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | - Mehran Karimi
- Hematology Research CenterShiraz University of Medical SciencesShirazIran
| | - Marc Jacquemin
- Department of Cardiovascular Sciences, Center for Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | - Tina Shahani
- Department of Genetics and Molecular Medicine, School of MedicineZanjan University of Medical Sciences (ZUMS)ZanjanIran,Zanjan Pharmaceutical Biotechnology Research CenterZanjan University of Medical Sciences (ZUMS)ZanjanIran
| |
Collapse
|
242
|
Al Rimon R, Nelson VL, Brunt KR, Kassiri Z. High-impact opportunities to address ischemia: a focus on heart and circulatory research. Am J Physiol Heart Circ Physiol 2022; 323:H1221-H1230. [PMID: 36331554 DOI: 10.1152/ajpheart.00402.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myocardial ischemic injury and its resolution are the key determinants of morbidity or mortality in heart failure. The cause and duration of ischemia in patients vary. Numerous experimental models and methods have been developed to define genetic, metabolic, molecular, cellular, and pathophysiological mechanisms, in addition to defining structural and functional deterioration of cardiovascular performance. The rapid rise of big data, such as single-cell analysis techniques with bioinformatics, machine learning, and neural networking, brings a new level of sophistication to our understanding of myocardial ischemia. This mini-review explores the multifaceted nature of ischemic injury in the myocardium. We highlight recent state-of-the-art findings and strategies to show new directions of high-impact approach to understanding myocardial tissue remodeling. This next age of heart and circulatory physiology research will be more comprehensive and collaborative to uncover the origin, progression, and manifestation of heart failure while strengthening novel treatment strategies.
Collapse
Affiliation(s)
- Razoan Al Rimon
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Victoria L Nelson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
243
|
Porto-Pedrosa MLM, de Miranda CDM, Lopes ME, Nakagaki BN, Mafra K, de Paula CMP, Diniz AB, Costa KMDO, Antunes MM, Oliveira AG, Balderas R, Lopes RP, Menezes GB. High-dimensional intravital microscopy reveals major changes in splenic immune system during postnatal development. Front Immunol 2022; 13:1002919. [PMID: 36531990 PMCID: PMC9755845 DOI: 10.3389/fimmu.2022.1002919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
Spleen is a key organ for immunologic surveillance, acting as a firewall for antigens and parasites that spread through the blood. However, how spleen leukocytes evolve across the developmental phase, and how they spatially organize and interact in vivo is still poorly understood. Using a novel combination of selected antibodies and fluorophores to image in vivo the spleen immune environment, we described for the first time the dynamics of immune development across postnatal period. We found that spleens from adults and infants had similar numbers and arrangement of lymphoid cells. In contrast, splenic immune environment in newborns is sharply different from adults in almost all parameters analysed. Using this in vivo approach, B cells were the most frequent subtype throughout the development. Also, we revealed how infections - using a model of malaria - can change the spleen immune profile in adults and infants, which could become the key to understanding different severity grades of infection. Our new imaging solutions can be extremely useful for different groups in all areas of biological investigation, paving a way for new intravital approaches and advances.
Collapse
Affiliation(s)
- Maria Luiza Mundim Porto-Pedrosa
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Dutra Moreira de Miranda
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mateus Eustáquio Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Brenda Naemi Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kassiana Mafra
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cristina Maria Pinto de Paula
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ariane Barros Diniz
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karen Marques de Oliveira Costa
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maisa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André Gustavo Oliveira
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Robert Balderas
- BD Biosciences, Department of Biological Sciences, San Jose, CA, United States
| | - Rodrigo Pestana Lopes
- BD Biosciences, Department of Medical & Scientific Affairs, São Paulo, São Paulo, Brazil
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil,*Correspondence: Gustavo Batista Menezes,
| |
Collapse
|
244
|
Zhou K, Han J, Wang Y, Xu Y, Zhang Y, Zhu C. The therapeutic potential of bone marrow-derived macrophages in neurological diseases. CNS Neurosci Ther 2022; 28:1942-1952. [PMID: 36066198 PMCID: PMC9627381 DOI: 10.1111/cns.13964] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Circulating monocytes are precursors of both tissue macrophages and dendritic cells, and they can infiltrate the central nervous system (CNS) where they transform into bone marrow-derived macrophages (BMDMs). BMDMs play essential roles in various CNS diseases, thus modulating BMDMs might be a way to treat these disorders because there are currently no efficient therapeutic methods available for most of these neurological diseases. Moreover, BMDMs can serve as promising gene delivery vehicles following bone marrow transplantation for otherwise incurable genetic CNS diseases. Understanding the distinct roles that BMDMs play in CNS diseases and their potential as gene delivery vehicles may provide new insights and opportunities for using BMDMs as therapeutic targets or delivery vehicles. This review attempts to comprehensively summarize the neurological diseases that might be treated by modulating BMDMs or by delivering gene therapies via BMDMs after bone marrow transplantation.
Collapse
Affiliation(s)
- Kai Zhou
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Jinming Han
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
- Department of Hematology and OncologyChildren's Hospital Affiliated to Zhengzhou University, Henan, Children's Hospital, Zhengzhou Children's HospitalZhengzhouChina
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina
- Centre for Brain Repair and RehabilitationInstitute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
245
|
Mader MMD, Lefering R, Westphal M, Maegele M, Czorlich P. Traumatic brain injury with concomitant injury to the spleen: characteristics and mortality of a high-risk trauma cohort from the TraumaRegister DGU®. Eur J Trauma Emerg Surg 2022; 48:4451-4459. [PMID: 33206232 PMCID: PMC9712402 DOI: 10.1007/s00068-020-01544-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/31/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Based on the hypothesis that systemic inflammation contributes to secondary injury after initial traumatic brain injury (TBI), this study aims to describe the effect of splenectomy on mortality in trauma patients with TBI and splenic injury. METHODS A retrospective cohort analysis of patients prospectively registered into the TraumaRegister DGU® (TR-DGU) with TBI (AISHead ≥ 3) combined with injury to the spleen (AISSpleen ≥ 1) was conducted. Multivariable logistic regression modeling was performed to adjust for confounding factors and to assess the independent effect of splenectomy on in-hospital mortality. RESULTS The cohort consisted of 1114 patients out of which 328 (29.4%) had undergone early splenectomy. Patients with splenectomy demonstrated a higher Injury Severity Score (median: 34 vs. 44, p < 0.001) and lower Glasgow Coma Scale (median: 9 vs. 7, p = 0.014) upon admission. Splenectomized patients were more frequently hypotensive upon admission (19.8% vs. 38.0%, p < 0.001) and in need for blood transfusion (30.3% vs. 61.0%, p < 0.001). The mortality was 20.7% in the splenectomy group and 10.3% in the remaining cohort. After adjustment for confounding factors, early splenectomy was not found to exert a significant effect on in-hospital mortality (OR 1.29 (0.67-2.50), p = 0.45). CONCLUSION Trauma patients with TBI and spleen injury undergoing splenectomy demonstrate a more severe injury pattern, more compromised hemodynamic status and higher in-hospital mortality than patients without splenectomy. Adjustment for confounding factors reveals that the splenectomy procedure itself is not independently associated with survival.
Collapse
Affiliation(s)
- Marius Marc-Daniel Mader
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, USA.
| | - Rolf Lefering
- Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Ostmerheimer Strasse 200, 51109, Cologne, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Marc Maegele
- Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Ostmerheimer Strasse 200, 51109, Cologne, Germany
- Department of Trauma and Orthopaedic Surgery, University of Witten/Herdecke, Cologne-Merheim Medical Center, Ostmerheimer Strasse 200, 51109, Cologne, Germany
| | - Patrick Czorlich
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
246
|
Luo J, Liu K, Wang Y, Li H. Divergent roles of PD-L1 in immune regulation during ischemia-reperfusion injury. Front Immunol 2022; 13:1021452. [PMID: 36479124 PMCID: PMC9720307 DOI: 10.3389/fimmu.2022.1021452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is a type of pathological injury that commonly arises in various diseases. Various forms of immune response are involved in the process of I/R injury. As a member of the B7 costimulatory molecule family, programmed death 1-ligand 1 (PD-L1) is an important target for immune regulation. Therefore, PD-L1 may be implicated in the regulation of I/R injury. This review briefly describes the immune response during I/R injury and how PD-L1 is involved in its regulation by focusing on findings from various I/R models. Despite the limited number of studies in this field of research, PD-L1 has shown sufficient potential as a clinical therapeutic target.
Collapse
Affiliation(s)
| | | | - Yong Wang
- *Correspondence: Yong Wang, ; Hongge Li,
| | - Hongge Li
- *Correspondence: Yong Wang, ; Hongge Li,
| |
Collapse
|
247
|
Morton C, Cotero V, Ashe J, Ginty F, Puleo C. Accelerating cutaneous healing in a rodent model of type II diabetes utilizing non-invasive focused ultrasound targeted at the spleen. Front Neurosci 2022; 16:1039960. [PMID: 36478877 PMCID: PMC9721138 DOI: 10.3389/fnins.2022.1039960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Healing of wounds is delayed in Type 2 Diabetes Mellitus (T2DM), and new treatment approaches are urgently needed. Our earlier work showed that splenic pulsed focused ultrasound (pFUS) alters inflammatory cytokines in models of acute endotoxemia and pneumonia via modulation of the cholinergic anti-inflammatory pathway (CAP) (ref below). Based on these earlier results, we hypothesized that daily splenic exposure to pFUS during wound healing would accelerate closure rate via altered systemic cytokine titers. In this study, we applied non-invasive ultrasound directed to the spleen of a rodent model [Zucker Diabetic Sprague Dawley (ZDSD) rats] of T2DM with full thickness cutaneous excisional wounds in an attempt to accelerate wound healing via normalization of T2DM-driven aberrant cytokine expression. Daily (1x/day, Monday-Friday) pFUS pulses were targeted externally to the spleen area for 3 min over the course of 15 days. Wound diameter was measured daily, and levels of cytokines were evaluated in spleen and wound bed lysates. Non-invasive splenic pFUS accelerated wound closure by up to 4.5 days vs. sham controls. The time to heal in all treated groups was comparable to that of healthy rats from previously published studies (ref below), suggesting that the pFUS treatment restored a normal wound healing phenotype to the ZDSD rats. IL-6 was lower in stimulated spleen (-2.24 ± 0.81 Log2FC, p = 0.02) while L-selectin was higher in the wound bed of stimulated rodents (2.53 ± 0.72 Log2FC, p = 0.003). In summary, splenic pFUS accelerates healing in a T2DM rat model, demonstrating the potential of the method to provide a novel, non-invasive approach for wound care in diabetes.
Collapse
Affiliation(s)
| | | | | | - Fiona Ginty
- Biology and Applied Physics, GE Research, Niskayuna, NY, United States
| | - Christopher Puleo
- GE Research, Niskayuna, NY, United States
- *Correspondence: Christopher Puleo,
| |
Collapse
|
248
|
Chitin Derived Small Molecule AVR-48 Reprograms the Resting Macrophages to an Intermediate Phenotype and Decrease Pseudomonas aeruginosa Mouse Lung Infection. IMMUNO 2022. [DOI: 10.3390/immuno2040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
AVR-48 is a structural derivative of chitin previously shown by our laboratory to significantly decrease lung injury parameters in LPS, hyperoxia and sepsis-induced rodent models. The current study objectives are to determine the cellular mechanism of action and demonstrate efficacy in a mouse bacterial lung infection model. For in vitro receptor binding and macrophage polarization studies, C57Bl/6J mouse derived spleens and human peripheral blood mononuclear cells (hPBMCs) were treated with AVR-48 ± LPS or biotin conjugated AVR-48. Different macrophage types were determined using flow cytometry and secreted cytokines were measured using ELISA. In vivo, a CD-1 mouse Pseudomonas aeruginosa lung infection was treated with AVR-48, assessing bacterial colony forming unit (CFU), IL-10 and IL-17A levels in lung and blood samples. AVR-48 binds to both the toll-like receptor 4 (TLR4) and the CD163 receptor on mouse monocytes. In hPBMCs, frequency of intermediate macrophages increased upon AVR-48 treatment for 72 h. Increased bacterial phagocytosis/intracellular killing were observed in THP-1 cells and reduction in CFU in CD-1 mouse lungs. Binding of AVR-48 to both TLR4 and CD163 receptors bring the macrophages to an intermediary stage, resulting in increased phagocytosis and decreased inflammation, altogether providing an optimal immune balance for treating lung injury and infection.
Collapse
|
249
|
Biltz RG, Sawicki CM, Sheridan JF, Godbout JP. The neuroimmunology of social-stress-induced sensitization. Nat Immunol 2022; 23:1527-1535. [PMID: 36369271 PMCID: PMC10000282 DOI: 10.1038/s41590-022-01321-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022]
Abstract
Myriad clinical findings provide links between chronic stressors, inflammation, and mood disorders. Furthermore, traumatic or chronic exposure to psychological stressors may promote stress sensitization, in which individuals have long-term complications, including increased vulnerability to subsequent stressors. Post-traumatic stress disorder (PTSD) is a clinically relevant example of stress sensitization. PTSD alters neuronal circuitry and mood; however, the mechanisms underlying long-term stress sensitization within this disorder are unclear. Rodent models of chronic social defeat recapitulate several key physiological, immunological, and behavioral responses associated with psychological stress in humans. Repeated social defeat (RSD) uniquely promotes the convergence of neuronal, central inflammatory (microglial), and peripheral immune (monocyte) pathways, leading to prolonged anxiety, social withdrawal, and cognitive impairment. Moreover, RSD promotes stress sensitization, in which mice are highly sensitive to subthreshold stress exposure and recurrence of anxiety weeks after the cessation of stress. Therefore, the purpose of this Review is to discuss the influence of social-defeat stress on the immune system that may underlie stress sensitization within three key cellular compartments: neurons, microglia, and monocytes. Delineating the mechanisms of stress sensitization is critical in understanding and treating conditions such as PTSD.
Collapse
Affiliation(s)
- Rebecca G Biltz
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Caroline M Sawicki
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - John F Sheridan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
250
|
Laurikka A, Vuolteenaho K, Toikkanen V, Rinne T, Leppänen T, Hämäläinen M, Tarkka M, Laurikka J, Moilanen E. Inflammatory Glycoprotein YKL-40 Is Elevated after Coronary Artery Bypass Surgery and Correlates with Leukocyte Chemotaxis and Myocardial Injury, a Pilot Study. Cells 2022; 11:3378. [PMID: 36359773 PMCID: PMC9653903 DOI: 10.3390/cells11213378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 01/06/2024] Open
Abstract
The aim of the present study was to investigate the levels of YKL-40 during and after coronary artery bypass grafting surgery (CABG) and to establish possible connections between YKL-40 and markers of oxidative stress, inflammation, and myocardial injury. Patients undergoing elective CABG utilizing cardiopulmonary bypass (CPB) were recruited into the study. Blood samples were collected at the onset of anesthesia, during surgery and post-operatively. Levels of YKL-40, 8-isoprostane, interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1) and troponin T (TnT) were measured by immunoassay. YKL-40 levels increased significantly 24 h after CPB. Positive correlation was seen between post-operative TnT and YKL-40 levels (r = 0.457, p = 0.016) and, interestingly, baseline YKL-40 predicted post-operative TnT increase (r = 0.374, p = 0.050). There was also a clear association between YKL-40 and the chemotactic factors MCP-1 (r = 0.440, p = 0.028) and IL-8 (r = 0.484, p = 0.011) linking YKL-40 to cardiac inflammation and fibrosis following CABG. The present results show, for the first time, that YKL-40 is associated with myocardial injury and leukocyte-activating factors following coronary artery bypass surgery. YKL-40 may be a factor and/or biomarker of myocardial inflammation and injury and subsequent fibrosis following heart surgery.
Collapse
Affiliation(s)
- Antti Laurikka
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Vesa Toikkanen
- Tampere University Hospital Heart Center Co., P.O. Box 2000, 33521 Tampere, Finland
| | - Timo Rinne
- Tampere University Hospital Heart Center Co., P.O. Box 2000, 33521 Tampere, Finland
- Department of Anaesthesia, Tampere University Hospital, P.O. Box 2000, 33521 Tampere, Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Matti Tarkka
- Tampere University Hospital Heart Center Co., P.O. Box 2000, 33521 Tampere, Finland
| | - Jari Laurikka
- Tampere University Hospital Heart Center Co., P.O. Box 2000, 33521 Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Tampere University, 33014 Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| |
Collapse
|