201
|
Wilson C, Núñez MT, González-Billault C. Contribution of NADPH-oxidase to the establishment of hippocampal neuronal polarity in culture. J Cell Sci 2015; 128:2989-95. [DOI: 10.1242/jcs.168567] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/05/2015] [Indexed: 01/09/2023] Open
Abstract
Reactive oxygen species (ROS) produced by the NADPH oxidase (NOX) complex play important physiological and pathological roles in neurotransmission and neurodegeneration, respectively. However, the contribution of ROS to molecular mechanisms involved in neuronal polarity and axon elongation is not well understood. In this work, we found that loss of function of the NOX complex altered neuronal polarization and decreased axonal length by a mechanism that involves actin cytoskeleton dynamics. Together, these results indicate that physiological levels of ROS produced by the NOX complex modulate hippocampal neuronal polarity and axonal growth in vitro.
Collapse
Affiliation(s)
- Carlos Wilson
- Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, 7800024, Santiago, Chile
| | - M. Tulio Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, 7800024, Santiago, Chile
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, 7800024, Santiago, Chile
| |
Collapse
|
202
|
Galkin VE, Orlova A, Vos MR, Schröder GF, Egelman EH. Near-atomic resolution for one state of F-actin. Structure 2014; 23:173-182. [PMID: 25533486 DOI: 10.1016/j.str.2014.11.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/03/2014] [Accepted: 11/14/2014] [Indexed: 01/15/2023]
Abstract
Actin functions as a helical polymer, F-actin, but attempts to build an atomic model for this filament have been hampered by the fact that the filament cannot be crystallized and by structural heterogeneity. We have used a direct electron detector, cryo-electron microscopy, and the forces imposed on actin filaments in thin films to reconstruct one state of the filament at 4.7 Å resolution, which allows for building a reliable pseudo-atomic model of F-actin. We also report a different state of the filament where actin protomers adopt a conformation observed in the crystal structure of the G-actin-profilin complex with an open ATP-binding cleft. Comparison of the two structural states provides insights into ATP-hydrolysis and filament dynamics. The atomic model provides a framework for understanding why every buried residue in actin has been under intense selective pressure.
Collapse
Affiliation(s)
- Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Albina Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Matthijn R Vos
- FEI Company, Nanoport Europe, 5651 GG Eindhoven, the Netherlands
| | - Gunnar F Schröder
- Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany; Physics Department, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA.
| |
Collapse
|
203
|
McCarthy MR, Thompson AR, Nitu F, Moen RJ, Olenek MJ, Klein JC, Thomas DD. Impact of methionine oxidation on calmodulin structural dynamics. Biochem Biophys Res Commun 2014; 456:567-72. [PMID: 25478640 DOI: 10.1016/j.bbrc.2014.11.091] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/22/2022]
Abstract
We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of either M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects identical to those of oxidation. Here we have used site-directed spin labeling and double electron-electron resonance (DEER), a pulsed EPR technique that measures distances between spin labels, to characterize the structural changes resulting from these mutations. Spin labels were attached to a pair of introduced cysteine residues, one in the C-lobe (T117C) and one in the N-lobe (T34C) of CaM, and DEER was used to determine the distribution of interspin distances. Ca binding induced a large increase in the mean distance, in concert with previous X-ray crystallography and NMR data, showing a closed structure in the absence of Ca and an open structure in the presence of Ca. DEER revealed additional information about CaM's structural heterogeneity in solution: in both the presence and absence of Ca, CaM populates both structural states, one with probes separated by ∼4nm (closed) and another at ∼6nm (open). Ca shifts the structural equilibrium constant toward the open state by a factor of 13. DEER reveals the distribution of interprobe distances, showing that each of these states is itself partially disordered, with the width of each population ranging from 1 to 3nm. Both mutations (M109Q and M124Q) decrease the effect of Ca on the structure of CaM, primarily by decreasing the closed-to-open equilibrium constant in the presence of Ca. We propose that Met oxidation alters CaM's functional interaction with its target proteins by perturbing this Ca-dependent structural shift.
Collapse
Affiliation(s)
- Megan R McCarthy
- Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew R Thompson
- Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455, USA
| | - Florentin Nitu
- Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rebecca J Moen
- Chemistry and Geology Department, Minnesota State University, Mankato, MN 56001, USA
| | - Michael J Olenek
- Biology Department, University of Wisconsin, La Crosse, WI 54601, USA
| | - Jennifer C Klein
- Biology Department, University of Wisconsin, La Crosse, WI 54601, USA.
| | - David D Thomas
- Biochemistry, Molecular Biology and Biophysics Department, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
204
|
Structure of the F-actin-tropomyosin complex. Nature 2014; 519:114-7. [PMID: 25470062 DOI: 10.1038/nature14033] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/07/2014] [Indexed: 12/11/2022]
Abstract
Filamentous actin (F-actin) is the major protein of muscle thin filaments, and actin microfilaments are the main component of the eukaryotic cytoskeleton. Mutations in different actin isoforms lead to early-onset autosomal dominant non-syndromic hearing loss, familial thoracic aortic aneurysms and dissections, and multiple variations of myopathies. In striated muscle fibres, the binding of myosin motors to actin filaments is mainly regulated by tropomyosin and troponin. Tropomyosin also binds to F-actin in smooth muscle and in non-muscle cells and stabilizes and regulates the filaments there in the absence of troponin. Although crystal structures for monomeric actin (G-actin) are available, a high-resolution structure of F-actin is still missing, hampering our understanding of how disease-causing mutations affect the function of thin muscle filaments and microfilaments. Here we report the three-dimensional structure of F-actin at a resolution of 3.7 Å in complex with tropomyosin at a resolution of 6.5 Å, determined by electron cryomicroscopy. The structure reveals that the D-loop is ordered and acts as a central region for hydrophobic and electrostatic interactions that stabilize the F-actin filament. We clearly identify map density corresponding to ADP and Mg(2+) and explain the possible effect of prominent disease-causing mutants. A comparison of F-actin with G-actin reveals the conformational changes during filament formation and identifies the D-loop as their key mediator. We also confirm that negatively charged tropomyosin interacts with a positively charged groove on F-actin. Comparison of the position of tropomyosin in F-actin-tropomyosin with its position in our previously determined F-actin-tropomyosin-myosin structure reveals a myosin-induced transition of tropomyosin. Our results allow us to understand the role of individual mutations in the genesis of actin- and tropomyosin-related diseases and will serve as a strong foundation for the targeted development of drugs.
Collapse
|
205
|
Moen RJ, Cornea S, Oseid DE, Binder BP, Klein JC, Thomas DD. Redox-sensitive residue in the actin-binding interface of myosin. Biochem Biophys Res Commun 2014; 453:345-9. [PMID: 25264102 PMCID: PMC4272649 DOI: 10.1016/j.bbrc.2014.09.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 12/22/2022]
Abstract
We have examined the chemical and functional reversibility of oxidative modification in myosin. Redox regulation has emerged as a crucial modulator of protein function, with particular relevance to aging. We previously identified a single methionine residue in Dictyostelium discoideum (Dicty) myosin II (M394, near the myosin cardiomyopathy loop in the actin-binding interface) that is functionally sensitive to oxidation. We now show that oxidation of M394 is reversible by methionine sulfoxide reductase (Msr), restoring actin-activated ATPase activity. Sequence alignment reveals that M394 of Dicty myosin II is a cysteine residue in all human isoforms of skeletal and cardiac myosin. Using Dicty myosin II as a model for site-specific redox sensitivity of this Cys residue, the M394C mutant can be glutathionylated in vitro, resulting in reversible inhibition of actin-activated ATPase activity, with effects similar to those of methionine oxidation at this site. This work illustrates the potential for myosin to function as a redox sensor in both non-muscle and muscle cells, modulating motility/contractility in response to oxidative stress.
Collapse
Affiliation(s)
- Rebecca J Moen
- Department of Chemistry and Geology, Minnesota State University, Mankato, MN 56001, United States
| | - Sinziana Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Daniel E Oseid
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Benjamin P Binder
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jennifer C Klein
- Department of Biology, University of Wisconsin, Lacrosse, Lacrosse, MN 54601, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
206
|
Lin Z, Xu YN, Namgoong S, Kim NH. JMY functions as actin nucleation-promoting factor and mediator for p53-mediated DNA damage in porcine oocytes. PLoS One 2014; 9:e109385. [PMID: 25279558 PMCID: PMC4184845 DOI: 10.1371/journal.pone.0109385] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/10/2014] [Indexed: 01/04/2023] Open
Abstract
Junction-mediating and regulatory protein(JMY) is a multifunctional protein with roles in the transcriptional co-activation of p53 and the regulation of actin nucleation promoting factors and, hence, cell migration; however, its role in the maturation of porcine oocytes is unclear. In the current study, we investigated functional roles of JMY in porcine oocytes. Porcine oocytes expressed JMY mRNA and protein, and the mRNA expression level decreased during oocyte maturation. Knockdown of JMY by RNA interference decreased the rate of polar body extrusion, validating its role in the asymmetric division of porcine oocytes. JMY knockdown also down-regulated the mRNA and protein levels of actin and Arp2/3. Furthermore, JMY accumulated in the nucleus in response to DNA damage, and JMY knockdown suppressed DNA damage-mediated p53 activation. In conclusion, our results show that JMY has important roles in oocyte maturation as a regulator of actin nucleation-promoting factors and an activator of p53 during DNA damage during DNA damages in porcine oocytes.
Collapse
Affiliation(s)
- Zili Lin
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Yong-Nan Xu
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
- * E-mail: (NHK); (SN)
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
- * E-mail: (NHK); (SN)
| |
Collapse
|
207
|
Vorotnikov AV, Tyurin-Kuzmin PA. Chemotactic signaling in mesenchymal cells compared to amoeboid cells. Genes Dis 2014; 1:162-173. [PMID: 30258862 PMCID: PMC6150068 DOI: 10.1016/j.gendis.2014.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/15/2014] [Indexed: 01/09/2023] Open
Abstract
Cell chemotaxis plays a pivotal role in normal development, inflammatory response, injury repair and tissue regeneration in all organisms. It is also a critical contributor to cancer metastasis, altered angiogenesis and neurite growth in disease. The molecular mechanisms regulating chemotaxis are currently being identified and key components may be pertinent therapeutic targets. Although these components appear to be mostly common in various cells, there are important differences in chemotactic signaling networks and signal processing that result in the distinct chemotactic behavior of mesenchymal cells compared to much better studied amoeboid blood cells. These differences are not necessarily predetermined based on cell type, but are rather chosen and exploited by cells to modify their chemotactic behavior based on physical constraints and/or environmental conditions. This results in a specific type of chemotactic migration in mesenchymal cells that can be selectively targeted in disease. Here, we compare the chemotactic behavior, signaling and motility of mesenchymal and amoeboid cells. We suggest that the current model of chemotaxis is applicable for small amoeboid cells but needs to be reconsidered for large mesenchymal cells. We focus on new candidate regulatory molecules and feedback mechanisms that may account for mesenchymal cell type-specific chemotaxis.
Collapse
Key Words
- Chemotaxis
- Feedback regulation
- Fibroblasts
- GEFs, guanine nucleotide exchange factors
- GPCRs, G-protein coupled receptors
- Hydrogen peroxide
- LEGI, local excitation and global inhibition
- MAP-kinase, mitogen-activated protein kinase
- NOX, NADPH-oxidase
- PDGF, platelet derived growth factor
- PI3-kinase, phosphatidylinositol-3-kinase
- PIP3, phosphatidylinositol (3,4,5)-trisphosphate
- PLA2, phospholipase A2
- PTEN, phosphatase and tensin homolog
- RTKs, receptor tyrosine kinases
- Signaling
- mTORC, mechanistic target of rapamycin complex
- РТР-1В, protein tyrosine phosphatase-1B
Collapse
Affiliation(s)
- Alexander V. Vorotnikov
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
- Institute of Experimental Cardiology, Russian Cardiology Research and Production Complex, Moscow, Russian Federation
- Corresponding author. Department of Biochemistry and Molecular Medicine, Faculty of Fundamental Medicine, Moscow State University, 31 Lomonosov Ave., Bldg 5, Russian Federation.
| | - Pyotr A. Tyurin-Kuzmin
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
208
|
Nasarre P, Gemmill RM, Drabkin HA. The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. Onco Targets Ther 2014; 7:1663-87. [PMID: 25285016 PMCID: PMC4181631 DOI: 10.2147/ott.s37744] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The semaphorins, discovered over 20 years ago, are a large family of secreted or transmembrane and glycophosphatidylinositol -anchored proteins initially identified as axon guidance molecules crucial for the development of the nervous system. It has now been established that they also play important roles in organ development and function, especially involving the immune, respiratory, and cardiovascular systems, and in pathological disorders, including cancer. During tumor progression, semaphorins can have both pro- and anti-tumor functions, and this has created complexities in our understanding of these systems. Semaphorins may affect tumor growth and metastases by directly targeting tumor cells, as well as indirectly by interacting with and influencing cells from the micro-environment and vasculature. Mechanistically, semaphorins, through binding to their receptors, neuropilins and plexins, affect pathways involved in cell adhesion, migration, invasion, proliferation, and survival. Importantly, neuropilins also act as co-receptors for several growth factors and enhance their signaling activities, while class 3 semaphorins may interfere with this. In this review, we focus on the secreted class 3 semaphorins and their neuropilin co-receptors in cancer, including aspects of their signaling that may be clinically relevant.
Collapse
Affiliation(s)
- Patrick Nasarre
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
209
|
Luo W, Lin B, Wang Y, Zhong J, O'Meally R, Cole RN, Pandey A, Levchenko A, Semenza GL. PHD3-mediated prolyl hydroxylation of nonmuscle actin impairs polymerization and cell motility. Mol Biol Cell 2014; 25:2788-96. [PMID: 25079693 PMCID: PMC4161513 DOI: 10.1091/mbc.e14-02-0775] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/10/2014] [Accepted: 07/10/2014] [Indexed: 01/03/2023] Open
Abstract
Actin filaments play an essential role in cell movement, and many posttranslational modifications regulate actin filament assembly. Here we report that prolyl hydroxylase 3 (PHD3) interacts with nonmuscle actin in human cells and catalyzes hydroxylation of actin at proline residues 307 and 322. Blocking PHD3 expression or catalytic activity by short hairpin RNA knockdown or pharmacological inhibition, respectively, decreased actin prolyl hydroxylation. PHD3 knockdown increased filamentous F-actin assembly, which was reversed by PHD3 overexpression. PHD3 knockdown increased cell velocity and migration distance. Inhibition of PHD3 prolyl hydroxylase activity by dimethyloxalylglycine also increased actin polymerization and cell migration. These data reveal a novel role for PHD3 as a negative regulator of cell motility through posttranslational modification of nonmuscle actins.
Collapse
Affiliation(s)
- Weibo Luo
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Benjamin Lin
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yingfei Wang
- Neuroregeneration Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jun Zhong
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Robert O'Meally
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Andre Levchenko
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Gregg L Semenza
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
210
|
Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev 2014; 94:739-77. [PMID: 24987004 DOI: 10.1152/physrev.00039.2013] [Citation(s) in RCA: 903] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Selenium is an essential micronutrient with important functions in human health and relevance to several pathophysiological conditions. The biological effects of selenium are largely mediated by selenium-containing proteins (selenoproteins) that are present in all three domains of life. Although selenoproteins represent diverse molecular pathways and biological functions, all these proteins contain at least one selenocysteine (Sec), a selenium-containing amino acid, and most serve oxidoreductase functions. Sec is cotranslationally inserted into nascent polypeptide chains in response to the UGA codon, whose normal function is to terminate translation. To decode UGA as Sec, organisms evolved the Sec insertion machinery that allows incorporation of this amino acid at specific UGA codons in a process requiring a cis-acting Sec insertion sequence (SECIS) element. Although the basic mechanisms of Sec synthesis and insertion into proteins in both prokaryotes and eukaryotes have been studied in great detail, the identity and functions of many selenoproteins remain largely unknown. In the last decade, there has been significant progress in characterizing selenoproteins and selenoproteomes and understanding their physiological functions. We discuss current knowledge about how these unique proteins perform their functions at the molecular level and highlight new insights into the roles that selenoproteins play in human health.
Collapse
Affiliation(s)
- Vyacheslav M Labunskyy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dolph L Hatfield
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
211
|
Abstract
Semaphorins are secreted and membrane-associated proteins that regulate many different developmental processes, including neural circuit assembly, bone formation and angiogenesis. Trans and cis interactions between semaphorins and their multimeric receptors trigger intracellular signal transduction networks that regulate cytoskeletal dynamics and influence cell shape, differentiation, motility and survival. Here and in the accompanying poster we provide an overview of the molecular biology of semaphorin signalling within the context of specific cell and developmental processes, highlighting the mechanisms that act to fine-tune, diversify and spatiotemporally control the effects of semaphorins.
Collapse
Affiliation(s)
- Bart C. Jongbloets
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, UMC Utrecht, 3451 PM Utrecht, The Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, UMC Utrecht, 3451 PM Utrecht, The Netherlands
| |
Collapse
|
212
|
MICAL—methionine sulfoxide reductase couple: a new target for the development of neuroprotective strategies. Russ Chem Bull 2014. [DOI: 10.1007/s11172-014-0686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
213
|
Van Battum EY, Gunput RAF, Lemstra S, Groen EJN, Yu KL, Adolfs Y, Zhou Y, Hoogenraad CC, Yoshida Y, Schachner M, Akhmanova A, Pasterkamp RJ. The intracellular redox protein MICAL-1 regulates the development of hippocampal mossy fibre connections. Nat Commun 2014; 5:4317. [PMID: 25007825 DOI: 10.1038/ncomms5317] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 06/05/2014] [Indexed: 02/05/2023] Open
Abstract
Mical is a reduction-oxidation (redox) enzyme that functions as an unusual F-actin disassembly factor during Drosophila development. Although three Molecule interacting with CasL (MICAL) proteins exist in vertebrate species, their mechanism of action remains poorly defined and their role in vivo unknown. Here, we report that vertebrate MICAL-1 regulates the targeting of secretory vesicles containing immunoglobulin superfamily cell adhesion molecules (IgCAMs) to the neuronal growth cone membrane through its ability to control the actin cytoskeleton using redox chemistry, thereby maintaining appropriate IgCAM cell surface levels. This precise regulation of IgCAMs by MICAL-1 is essential for the lamina-specific targeting of mossy fibre axons onto CA3 pyramidal neurons in the developing mouse hippocampus in vivo. These findings reveal the first in vivo role for a vertebrate MICAL protein, expand the repertoire of cellular functions controlled through MICAL-mediated effects on the cytoskeleton, and provide insights into the poorly characterized mechanisms underlying neuronal protein cell surface expression and lamina-specific axonal targeting.
Collapse
Affiliation(s)
- Eljo Y Van Battum
- 1] Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands [2]
| | - Rou-Afza F Gunput
- 1] Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands [2] [3]
| | - Suzanne Lemstra
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Ewout J N Groen
- 1] Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands [2] Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Ka Lou Yu
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Yeping Zhou
- 1] Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands [2]
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Yukata Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
214
|
MacDonald G, Nalvarte I, Smirnova T, Vecchi M, Aceto N, Dolemeyer A, Frei A, Lienhard S, Wyckoff J, Hess D, Seebacher J, Keusch JJ, Gut H, Salaun D, Mazzarol G, Disalvatore D, Bentires-Alj M, Di Fiore PP, Badache A, Hynes NE. Memo is a copper-dependent redox protein with an essential role in migration and metastasis. Sci Signal 2014; 7:ra56. [PMID: 24917593 DOI: 10.1126/scisignal.2004870] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Memo is an evolutionarily conserved protein with a critical role in cell motility. We found that Memo was required for migration and invasion of breast cancer cells in vitro and spontaneous lung metastasis from breast cancer cell xenografts in vivo. Biochemical assays revealed that Memo is a copper-dependent redox enzyme that promoted a more oxidized intracellular milieu and stimulated the production of reactive oxygen species (ROS) in cellular structures involved in migration. Memo was also required for the sustained production of the ROS O2- by NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 1 (NOX1) in breast cancer cells. Memo abundance was increased in >40% of the primary breast tumors tested, was correlated with clinical parameters of aggressive disease, and was an independent prognostic factor of early distant metastasis.
Collapse
Affiliation(s)
- Gwen MacDonald
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Ivan Nalvarte
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Tatiana Smirnova
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Manuela Vecchi
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy. Molecular Medicine Program, Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Nicola Aceto
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland. University of Basel, Basel 4002, Switzerland
| | - Arno Dolemeyer
- Novartis Institutes for BioMedical Research, Basel 4057, Switzerland
| | - Anna Frei
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland. University of Basel, Basel 4002, Switzerland
| | - Susanne Lienhard
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Jeffrey Wyckoff
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Jeremy J Keusch
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Heinz Gut
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Daniele Salaun
- Centre de Recherche en Cancérologie de Marseille, Inserm (U1068), Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique (UMR7258), Marseille 13009, France
| | - Giovanni Mazzarol
- Division of Pathology and Laboratory Medicine, European Institute of Oncology, Milan 20141, Italy
| | - Davide Disalvatore
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan 20141, Italy
| | | | - Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy. Molecular Medicine Program, Department of Experimental Oncology, European Institute of Oncology, Milan 20141, Italy. Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan 20122, Italy
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Inserm (U1068), Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique (UMR7258), Marseille 13009, France
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland. University of Basel, Basel 4002, Switzerland.
| |
Collapse
|
215
|
Venter G, Oerlemans FTJJ, Willemse M, Wijers M, Fransen JAM, Wieringa B. NAMPT-mediated salvage synthesis of NAD+ controls morphofunctional changes of macrophages. PLoS One 2014; 9:e97378. [PMID: 24824795 PMCID: PMC4019579 DOI: 10.1371/journal.pone.0097378] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/18/2014] [Indexed: 12/31/2022] Open
Abstract
Functional morphodynamic behavior of differentiated macrophages is strongly controlled by actin cytoskeleton rearrangements, a process in which also metabolic cofactors ATP and NAD(H) (i.e. NAD+ and NADH) and NADP(H) (i.e. NADP+ and NADPH) play an essential role. Whereas the link to intracellular ATP availability has been studied extensively, much less is known about the relationship between actin cytoskeleton dynamics and intracellular redox state and NAD+-supply. Here, we focus on the role of nicotinamide phosphoribosyltransferase (NAMPT), found in extracellular form as a cytokine and growth factor, and in intracellular form as one of the key enzymes for the production of NAD+ in macrophages. Inhibition of NAD+ salvage synthesis by the NAMPT-specific drug FK866 caused a decrease in cytosolic NAD+ levels in RAW 264.7 and Maf-DKO macrophages and led to significant downregulation of the glycolytic flux without directly affecting cell viability, proliferation, ATP production capacity or mitochondrial respiratory activity. Concomitant with these differential metabolic changes, the capacity for phagocytic ingestion of particles and also substrate adhesion of macrophages were altered. Depletion of cytoplasmic NAD+ induced cell-morphological changes and impaired early adhesion in phagocytosis of zymosan particles as well as spreading performance. Restoration of NAD+ levels by NAD+, NMN, or NADP+ supplementation reversed the inhibitory effects of FK866. We conclude that direct coupling to local, actin-based, cytoskeletal dynamics is an important aspect of NAD+'s cytosolic role in the regulation of morphofunctional characteristics of macrophages.
Collapse
Affiliation(s)
- Gerda Venter
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frank T. J. J. Oerlemans
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marieke Willemse
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mietske Wijers
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jack A. M. Fransen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
216
|
Venter G, Oerlemans FTJJ, Wijers M, Willemse M, Fransen JAM, Wieringa B. Glucose controls morphodynamics of LPS-stimulated macrophages. PLoS One 2014; 9:e96786. [PMID: 24796786 PMCID: PMC4010488 DOI: 10.1371/journal.pone.0096786] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/11/2014] [Indexed: 12/12/2022] Open
Abstract
Macrophages constantly undergo morphological changes when quiescently surveying the tissue milieu for signs of microbial infection or damage, or after activation when they are phagocytosing cellular debris or foreign material. These morphofunctional alterations require active actin cytoskeleton remodeling and metabolic adaptation. Here we analyzed RAW 264.7 and Maf-DKO macrophages as models to study whether there is a specific association between aspects of carbohydrate metabolism and actin-based processes in LPS-stimulated macrophages. We demonstrate that the capacity to undergo LPS-induced cell shape changes and to phagocytose complement-opsonized zymosan (COZ) particles does not depend on oxidative phosphorylation activity but is fueled by glycolysis. Different macrophage activities like spreading, formation of cell protrusions, as well as phagocytosis of COZ, were thereby strongly reliant on the presence of low levels of extracellular glucose. Since global ATP production was not affected by rewiring of glucose catabolism and inhibition of glycolysis by 2-deoxy-D-glucose and glucose deprivation had differential effects, our observations suggest a non-metabolic role for glucose in actin cytoskeletal remodeling in macrophages, e.g. via posttranslational modification of receptors or signaling molecules, or other effects on the machinery that drives actin cytoskeletal changes. Our findings impute a decisive role for the nutrient state of the tissue microenvironment in macrophage morphodynamics.
Collapse
Affiliation(s)
- Gerda Venter
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frank T. J. J. Oerlemans
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mietske Wijers
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marieke Willemse
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jack A. M. Fransen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
217
|
Giridharan SSP, Caplan S. MICAL-family proteins: Complex regulators of the actin cytoskeleton. Antioxid Redox Signal 2014; 20:2059-73. [PMID: 23834433 PMCID: PMC3993057 DOI: 10.1089/ars.2013.5487] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE The molecules interacting with CasL (MICAL) family members participate in a multitude of activities, including axonal growth cone repulsion, membrane trafficking, apoptosis, and bristle development in flies. An interesting feature of MICAL proteins is the presence of an N-terminal flavo-mono-oxygenase domain. This mono-oxygenase domain generates redox potential with which MICALs can either oxidize proteins or produce reactive oxygen species (ROS). Actin is one such protein that is affected by MICAL function, leading to dramatic cytoskeletal rearrangements. This review describes the MICAL-family members, and discusses their mechanisms of actin-binding and regulation of actin cytoskeleton organization. RECENT ADVANCES Recent studies show that MICALs directly induce oxidation of actin molecules, leading to actin depolymerization. ROS production by MICALs also causes oxidation of collapsin response mediator protein-2, a microtubule assembly promoter, which subsequently undergoes phosphorylation. CRITICAL ISSUES MICAL proteins oxidize proteins through two mechanisms: either directly by oxidizing methionine residues or indirectly via the production of ROS. It remains unclear whether MICAL proteins employ both mechanisms or whether the activity of MICAL-family proteins might vary with different substrates. FUTURE DIRECTIONS The identification of additional substrates oxidized by MICAL will shed new light on MICAL protein function. Additional directions include expanding studies toward the MICAL-like homologs that lack flavin adenine dinucleotide domains and oxidation activity.
Collapse
Affiliation(s)
- Sai Srinivas Panapakkam Giridharan
- Department of Biochemistry and Molecular Biology, and the Pamela and Fred Buffett Cancer Center, University of Nebraska Medical Center , Omaha, Nebraska
| | | |
Collapse
|
218
|
Tufro A. Semaphorin3a signaling, podocyte shape, and glomerular disease. Pediatr Nephrol 2014; 29:751-5. [PMID: 24464477 PMCID: PMC3992269 DOI: 10.1007/s00467-013-2743-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022]
Abstract
Semaphorin3a (sema3a), a member of class 3 semaphorins, is a guidance protein that regulates angiogenesis, branching morphogenesis, axon growth, and cell migration, and has pleiotropic roles on organogenesis, immune response, and cancer. Sema3a is secreted by podocytes and is required for normal kidney patterning and glomerular filtration barrier development. We recently discovered that after completion of kidney development, Sema3a gain-of-function in podocytes leads to proteinuric glomerular disease in mice. Excess sema3a causes foot process effacement, glomerular basement lamination, and endothelial damage in vivo, and disrupts cell autonomously podocyte shape by down-regulating nephrin and inhibiting αvβ3 integrin. We identified a novel direct interaction between nephrin and plexinA1, the sema3a signaling receptor. Nephrin-plexinA1 interaction links the slit-diaphragm signaling complex to extracellular sema3a signals. Hence, sema3a functions as an extracellular negative regulator of the structure and function of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Alda Tufro
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, PO Box 208064, New Haven, CT, 06520-8064, USA,
| |
Collapse
|
219
|
Usatyuk PV, Fu P, Mohan V, Epshtein Y, Jacobson JR, Gomez-Cambronero J, Wary KK, Bindokas V, Dudek SM, Salgia R, Garcia JGN, Natarajan V. Role of c-Met/phosphatidylinositol 3-kinase (PI3k)/Akt signaling in hepatocyte growth factor (HGF)-mediated lamellipodia formation, reactive oxygen species (ROS) generation, and motility of lung endothelial cells. J Biol Chem 2014; 289:13476-91. [PMID: 24634221 DOI: 10.1074/jbc.m113.527556] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF) mediated signaling promotes cell proliferation and migration in a variety of cell types and plays a key role in tumorigenesis. As cell migration is important to angiogenesis, we characterized HGF-mediated effects on the formation of lamellipodia, a pre-requisite for migration using human lung microvascular endothelial cells (HLMVECs). HGF, in a dose-dependent manner, induced c-Met phosphorylation (Tyr-1234/1235, Tyr-1349, Ser-985, Tyr-1003, and Tyr-1313), activation of PI3k (phospho-Yp85) and Akt (phospho-Thr-308 and phospho-Ser-473) and potentiated lamellipodia formation and HLMVEC migration. Inhibition of c-Met kinase by SU11274 significantly attenuated c-Met, PI3k, and Akt phosphorylation, suppressed lamellipodia formation and endothelial cell migration. LY294002, an inhibitor of PI3k, abolished HGF-induced PI3k (Tyr-458), and Akt (Thr-308 and Ser-473) phosphorylation and suppressed lamellipodia formation. Furthermore, HGF stimulated p47(phox)/Cortactin/Rac1 translocation to lamellipodia and ROS generation. Moreover, inhibition of c-Met/PI3k/Akt signaling axis and NADPH oxidase attenuated HGF- induced lamellipodia formation, ROS generation and cell migration. Ex vivo experiments with mouse aortic rings revealed a role for c-Met signaling in HGF-induced sprouting and lamellipodia formation. Taken together, these data provide evidence in support of a significant role for HGF-induced c-Met/PI3k/Akt signaling and NADPH oxidase activation in lamellipodia formation and motility of lung endothelial cells.
Collapse
|
220
|
Ghesquière B, Gevaert K. Proteomics methods to study methionine oxidation. MASS SPECTROMETRY REVIEWS 2014; 33:147-56. [PMID: 24178673 DOI: 10.1002/mas.21386] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 05/10/2023]
Abstract
The oxidation and consequent reduction of protein-bound methionine residues is of great interest in understanding different aspects of how oxidative stress affects protein functions and cellular signaling. To date, few technologies are available for the study of methionine sulfoxides. And, especially the absence of highly specific antibodies has impeded the field in understanding the exact role of methionine oxidation on a proteome-wide level. Nonetheless, the different models where the responsible enzymes for repair of the oxidized methionines have been studied show that there is an important role for this modification in a cellular context. We here review different mass spectrometry based and proteomics methods for characterizing in vivo methionine oxidation.
Collapse
Affiliation(s)
- Bart Ghesquière
- Department of Medical Protein Research, VIB, B-9000, Ghent, Belgium; Department of Biochemistry, Ghent University, B-9000, Ghent, Belgium
| | | |
Collapse
|
221
|
Abstract
Oxidation of actin methionine residues by the oxidation-reduction enzyme Mical is known to lead to actin filament depolymerization. SelR enzymes are now shown to reduce these oxidized actin methionines, revealing a regulated redox reaction mechanism through which cells control the assembly and disassembly of actin filaments.
Collapse
|
222
|
Kim G, Weiss SJ, Levine RL. Methionine oxidation and reduction in proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1840:901-5. [PMID: 23648414 PMCID: PMC3766491 DOI: 10.1016/j.bbagen.2013.04.038] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Cysteine and methionine are the two sulfur containing amino acids in proteins. While the roles of protein-bound cysteinyl residues as endogenous antioxidants are well appreciated, those of methionine remain largely unexplored. SCOPE We summarize the key roles of methionine residues in proteins. MAJOR CONCLUSION Recent studies establish that cysteine and methionine have remarkably similar functions. GENERAL SIGNIFICANCE Both cysteine and methionine serve as important cellular antioxidants, stabilize the structure of proteins, and can act as regulatory switches through reversible oxidation and reduction. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Geumsoo Kim
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892, USA
| | - Stephen J. Weiss
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rodney L. Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
223
|
Lundquist MR, Storaska AJ, Liu TC, Larsen SD, Evans T, Neubig RR, Jaffrey SR. Redox modification of nuclear actin by MICAL-2 regulates SRF signaling. Cell 2014; 156:563-76. [PMID: 24440334 PMCID: PMC4384661 DOI: 10.1016/j.cell.2013.12.035] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 09/23/2013] [Accepted: 11/12/2013] [Indexed: 12/16/2022]
Abstract
The serum response factor (SRF) binds to coactivators, such as myocardin-related transcription factor-A (MRTF-A), and mediates gene transcription elicited by diverse signaling pathways. SRF/MRTF-A-dependent gene transcription is activated when nuclear MRTF-A levels increase, enabling the formation of transcriptionally active SRF/MRTF-A complexes. The level of nuclear MRTF-A is regulated by nuclear G-actin, which binds to MRTF-A and promotes its nuclear export. However, pathways that regulate nuclear actin levels are poorly understood. Here, we show that MICAL-2, an atypical actin-regulatory protein, mediates SRF/MRTF-A-dependent gene transcription elicited by nerve growth factor and serum. MICAL-2 induces redox-dependent depolymerization of nuclear actin, which decreases nuclear G-actin and increases MRTF-A in the nucleus. Furthermore, we show that MICAL-2 is a target of CCG-1423, a small molecule inhibitor of SRF/MRTF-A-dependent transcription that exhibits efficacy in various preclinical disease models. These data identify redox modification of nuclear actin as a regulatory switch that mediates SRF/MRTF-A-dependent gene transcription.
Collapse
Affiliation(s)
- Mark R Lundquist
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Andrew J Storaska
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ting-Chun Liu
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Scott D Larsen
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Richard R Neubig
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
224
|
Lindås AC, Chruszcz M, Bernander R, Valegård K. Structure of crenactin, an archaeal actin homologue active at 90°C. ACTA ACUST UNITED AC 2014; 70:492-500. [DOI: 10.1107/s1399004714000935] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/14/2014] [Indexed: 12/31/2022]
Abstract
The crystal structure of the archaeal actin, crenactin, from the rod-shaped hyperthermophilic (optimal growth at 90°C) crenarchaeonPyrobaculum calidifontisis reported at 3.35 Å resolution. Despite low amino-acid sequence identity, the three-dimensional structure of the protein monomer is highly similar to those of eukaryotic actin and the bacterial MreB protein. Crenactin-specific features are also evident, as well as elements that are shared between crenactin and eukaryotic actin but are not found in MreB. In the crystal, crenactin monomers form right-handed helices, demonstrating that the protein is capable of forming filament-like structures. Monomer interactions in the helix, as well as interactions between crenactin and ADP in the nucleotide-binding pocket, are resolved at the atomic level and compared with those of actin and MreB. The results provide insights into the structural and functional properties of a heat-stable archaeal actin and contribute to the understanding of the evolution of actin-family proteins in the three domains of life.
Collapse
|
225
|
Drazic A, Winter J. The physiological role of reversible methionine oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1367-82. [PMID: 24418392 DOI: 10.1016/j.bbapap.2014.01.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/17/2013] [Accepted: 01/02/2014] [Indexed: 01/04/2023]
Abstract
Sulfur-containing amino acids such as cysteine and methionine are particularly vulnerable to oxidation. Oxidation of cysteine and methionine in their free amino acid form renders them unavailable for metabolic processes while their oxidation in the protein-bound state is a common post-translational modification in all organisms and usually alters the function of the protein. In the majority of cases, oxidation causes inactivation of proteins. Yet, an increasing number of examples have been described where reversible cysteine oxidation is part of a sophisticated mechanism to control protein function based on the redox state of the protein. While for methionine the dogma is still that its oxidation inhibits protein function, reversible methionine oxidation is now being recognized as a powerful means of triggering protein activity. This mode of regulation involves oxidation of methionine to methionine sulfoxide leading to activated protein function, and inactivation is accomplished by reduction of methionine sulfoxide back to methionine catalyzed by methionine sulfoxide reductases. Given the similarity to thiol-based redox-regulation of protein function, methionine oxidation is now established as a novel mode of redox-regulation of protein function. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
Affiliation(s)
- Adrian Drazic
- Center for Integrated Protein Science Munich (CiPS(M)) at the Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Jeannette Winter
- Center for Integrated Protein Science Munich (CiPS(M)) at the Department Chemie, Technische Universität München, 85747 Garching, Germany.
| |
Collapse
|
226
|
Zahm JA, Padrick SB, Chen Z, Pak CW, Yunus AA, Henry L, Tomchick DR, Chen Z, Rosen MK. The bacterial effector VopL organizes actin into filament-like structures. Cell 2013; 155:423-34. [PMID: 24120140 DOI: 10.1016/j.cell.2013.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/22/2013] [Accepted: 09/11/2013] [Indexed: 12/28/2022]
Abstract
VopL is an effector protein from Vibrio parahaemolyticus that nucleates actin filaments. VopL consists of a VopL C-terminal domain (VCD) and an array of three WASP homology 2 (WH2) motifs. Here, we report the crystal structure of the VCD dimer bound to actin. The VCD organizes three actin monomers in a spatial arrangement close to that found in the canonical actin filament. In this arrangement, WH2 motifs can be modeled into the binding site of each actin without steric clashes. The data suggest a mechanism of nucleation wherein VopL creates filament-like structures, organized by the VCD with monomers delivered by the WH2 array, that can template addition of new subunits. Similarities with Arp2/3 complex and formin proteins suggest that organization of monomers into filament-like structures is a general and central feature of actin nucleation.
Collapse
Affiliation(s)
- Jacob A Zahm
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Huijbers MME, Montersino S, Westphal AH, Tischler D, van Berkel WJH. Flavin dependent monooxygenases. Arch Biochem Biophys 2013; 544:2-17. [PMID: 24361254 DOI: 10.1016/j.abb.2013.12.005] [Citation(s) in RCA: 384] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/29/2022]
Abstract
Flavin-dependent monooxygenases catalyze a wide variety of chemo-, regio- and enantioselective oxygenation reactions. As such, they are involved in key biological processes ranging from catabolism, detoxification and biosynthesis, to light emission and axon guidance. Based on fold and function, flavin-dependent monooxygenases can be distributed into eight groups. Groups A and B comprise enzymes that rely on NAD(P)H as external electron donor. Groups C-F are two-protein systems, composed of a monooxygenase and a flavin reductase. Groups G and H comprise internal monooxygenases that reduce the flavin cofactor through substrate oxidation. Recently, many new flavin-dependent monooxygenases have been discovered. In addition to posing basic enzymological questions, these proteins attract attention of pharmaceutical and fine-chemical industries, given their importance as regio- and enantioselective biocatalysts. In this review we present an update of the classification of flavin-dependent monooxygenases and summarize the latest advances in our understanding of their catalytic and structural properties.
Collapse
Affiliation(s)
- Mieke M E Huijbers
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Stefania Montersino
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Dirk Tischler
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands; Interdisciplinary Ecological Center, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| |
Collapse
|
228
|
Jia Y, Zhou J, Liu H, Huang K. Effect of methionine sulfoxide reductase B1 (SelR) gene silencing on peroxynitrite-induced F-actin disruption in human lens epithelial cells. Biochem Biophys Res Commun 2013; 443:876-81. [PMID: 24342607 DOI: 10.1016/j.bbrc.2013.12.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/10/2013] [Indexed: 11/15/2022]
Abstract
F-actin plays a crucial role in fundamental cellular processes, and is extremely susceptible to peroxynitrite attack due to the high abundance of tyrosine in the peptide. Methionine sulfoxide reductase (Msr) B1 is a selenium-dependent enzyme (selenoprotein R) that may act as a reactive oxygen species (ROS) scavenger. However, its function in coping with reactive nitrogen species (RNS)-mediated stress and the physiological significance remain unclear. Thus, the present study was conducted to elucidate the role and mechanism of MsrB1 in protecting human lens epithelial (hLE) cells against peroxynitrite-induced F-actin disruption. While exposure to high concentrations of peroxynitrite and gene silencing of MsrB1 by siRNA alone caused disassembly of F-actin via inactivation of extracellular signal-regulated kinase (ERK) in hLE cells, the latter substantially aggravated the disassembly of F-actin triggered by the former. This aggravation concurred with elevated nitration of F-actin and inactivation of ERK compared with that induced by the peroxynitrite treatment alone. In conclusion, MsrB1 protected hLE cells against the peroxynitrite-induced F-actin disruption, and the protection was mediated by inhibiting the resultant nitration of F-actin and inactivation of ERKs.
Collapse
Affiliation(s)
- Yi Jia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan, Hubei 430074, People's Republic of China.
| | - Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan, Hubei 430074, People's Republic of China
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan, Hubei 430074, People's Republic of China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan, Hubei 430074, People's Republic of China.
| |
Collapse
|
229
|
Ugarte N, Ladouce R, Radjei S, Gareil M, Friguet B, Petropoulos I. Proteome alteration in oxidative stress-sensitive methionine sulfoxide reductase-silenced HEK293 cells. Free Radic Biol Med 2013; 65:1023-1036. [PMID: 23988788 DOI: 10.1016/j.freeradbiomed.2013.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/18/2013] [Accepted: 08/08/2013] [Indexed: 12/29/2022]
Abstract
Methionine sulfoxide reductases (Msr's) are key enzymes proficient in catalyzing the reduction of oxidized methionines. This reductive trait is essential to maintaining cellular redox homeostasis from bacteria to mammals and is also regarded as a potential mechanism to regulate protein activities and signaling pathways, considering the inactivating effects that can be induced by methionine oxidation. In this study, we have generated stable human embryonic kidney HEK293 clones with an altered Msr system by silencing the expression of the main Msr elements-MsrA, MsrB1, or MsrB2. The isolated clones--the single mutants MsrA, MsrB1, and MsrB2 and double mutant MsrA/B1-show a reduced Msr activity and an exacerbated sensitivity toward oxidative stress. A two-dimensional difference in-gel electrophoresis analysis was performed on the Msr-silenced cells grown under basal conditions or submitted to oxidative stress. This proteomic analysis revealed that the disruption of the Msr system mainly affects proteins with redox, cytoskeletal or protein synthesis, and maintenance roles. Interestingly, most of the proteins found altered in the Msr mutants were also identified as potential Msr substrates and have been associated with redox or aging processes in previous studies. This study, through an extensive analysis of Msr-inhibited mutants, offers valuable input on the cellular network of a crucial maintenance system such as methionine sulfoxide reductases.
Collapse
Affiliation(s)
- Nicolas Ugarte
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France.
| | - Romain Ladouce
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Sabrina Radjei
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Monique Gareil
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4, IFR83, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France.
| |
Collapse
|
230
|
Hung RJ, Spaeth CS, Yesilyurt HG, Terman JR. SelR reverses Mical-mediated oxidation of actin to regulate F-actin dynamics. Nat Cell Biol 2013; 15:1445-54. [PMID: 24212093 PMCID: PMC4254815 DOI: 10.1038/ncb2871] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/03/2013] [Indexed: 02/06/2023]
Abstract
Actin's polymerization properties are markedly altered by oxidation of its conserved Met 44 residue. Mediating this effect is a specific oxidation-reduction (redox) enzyme, Mical, that works with Semaphorin repulsive guidance cues and selectively oxidizes Met 44. We now find that this actin-regulatory process is reversible. Employing a genetic approach, we identified a specific methionine sulfoxide reductase (MsrB) enzyme SelR that opposes Mical redox activity and Semaphorin-Plexin repulsion to direct multiple actin-dependent cellular behaviours in vivo. SelR specifically catalyses the reduction of the R isomer of methionine sulfoxide (methionine-R-sulfoxide) to methionine, and we found that SelR directly reduced Mical-oxidized actin, restoring its normal polymerization properties. These results indicate that Mical oxidizes actin stereospecifically to generate actin Met-44-R-sulfoxide (actin(Met(R)O-44)), and also implicate the interconversion of specific Met/Met(R)O residues as a precise means to modulate protein function. Our results therefore uncover a specific reversible redox actin regulatory system that controls cell and developmental biology.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program The University of Texas Southwestern Medical Center Dallas, TX 75390 USA
| | - Christopher S. Spaeth
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program The University of Texas Southwestern Medical Center Dallas, TX 75390 USA
| | - Hunkar Gizem Yesilyurt
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program The University of Texas Southwestern Medical Center Dallas, TX 75390 USA
| | - Jonathan R. Terman
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program The University of Texas Southwestern Medical Center Dallas, TX 75390 USA
| |
Collapse
|
231
|
Abstract
In this issue, Lee et al. (2013) exhibit methionine sulfoxidation in a new light. By bringing together two antagonistic enzymes affecting methionine redox state, the authors demonstrate that methionine oxidation constitutes a reversible, posttranslational regulatory mechanism, akin to protein phosphorylation.
Collapse
Affiliation(s)
- Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
232
|
Kwon TJ, Cho HJ, Kim UK, Lee E, Oh SK, Bok J, Bae YC, Yi JK, Lee JW, Ryoo ZY, Lee SH, Lee KY, Kim HY. Methionine sulfoxide reductase B3 deficiency causes hearing loss due to stereocilia degeneration and apoptotic cell death in cochlear hair cells. Hum Mol Genet 2013; 23:1591-601. [PMID: 24191262 DOI: 10.1093/hmg/ddt549] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Methionine sulfoxide reductase B3 (MsrB3) is a protein repair enzyme that specifically reduces methionine-R-sulfoxide to methionine. A recent genetic study showed that the MSRB3 gene is associated with autosomal recessive hearing loss in human deafness DFNB74. However, the precise role of MSRB3 in the auditory system and the pathogenesis of hearing loss have not yet been determined. This work is the first to generate MsrB3 knockout mice to elucidate the possible pathological mechanisms of hearing loss observed in DFNB74 patients. We found that homozygous MsrB3(-/-) mice were profoundly deaf and had largely unaffected vestibular function, whereas heterozygous MsrB3(+/-) mice exhibited normal hearing similar to that of wild-type mice. The MsrB3 protein is expressed in the sensory epithelia of the cochlear and vestibular tissues, beginning at E15.5 and E13.5, respectively. Interestingly, MsrB3 is densely localized at the base of stereocilia on the apical surface of auditory hair cells. MsrB3 deficiency led to progressive degeneration of stereociliary bundles starting at P8, followed by a loss of hair cells, resulting in profound deafness in MsrB3(-/-) mice. The hair cell loss appeared to be mediated by apoptotic cell death, which was measured using TUNEL and caspase 3 immunocytochemistry. Taken together, our data suggest that MsrB3 plays an essential role in maintaining the integrity of hair cells, possibly explaining the pathogenesis of DFNB74 deafness in humans caused by MSRB3 deficiency.
Collapse
Affiliation(s)
- Tae-Jun Kwon
- Department of Biology, College of Natural Sciences
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
McDonald CA, Liu YY, Palfey BA. Actin stimulates reduction of the MICAL-2 monooxygenase domain. Biochemistry 2013; 52:6076-84. [PMID: 23927065 DOI: 10.1021/bi4008462] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MICALs are large, multidomain flavin-dependent monooxygenases that use redox chemistry to cause actin to depolymerize. Little enzymology has been reported for MICALs, and none has been reported for MICAL-2, an enzyme vital for the proliferation of prostate cancer. The monooxygenase domains of MICALs resemble aromatic hydroxylases, but their substrate is the sulfur of a methionine of actin. In order to determine how closely MICAL-2 conforms to the aromatic hydroxylase paradigm, we studied its reaction with NAD(P)H. The enzyme has a strong preference for NADPH over NADH caused by a large difference in binding NADPH. A comparison of the reduction kinetics using protio-NADPH and [4R-(2)H]-NADPH showed that MICAL-2 is specific for the proR hydride of NADPH, as evidenced by a 4.8-fold kinetic isotope effect. The reductive half-reaction of the MICAL-2 hydroxylase domain is stimulated by f-actin. In the absence of actin, NADPH reduces the flavin relatively slowly; actin speeds that reaction significantly. The separate monooxygenase domain of MICAL-2 has the classic regulatory behavior of flavin-dependent aromatic hydroxylases (Class A monooxygenases): slow reduction of the flavin when the substrate to be oxygenated is absent. This prevents the wasteful consumption of reduced pyridine nucleotide and the production of harmful H2O2. Our results show that this strategy is used by MICAL-2. Thus, our data suggest that MICAL-2 could regulate catalysis through the monooxygenase domain alone; control by interactions with other domains of MICAL in the full-length enzyme may not be needed.
Collapse
Affiliation(s)
- Claudia A McDonald
- Department of Biological Chemistry, University of Michigan Medical School , 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-0606, United States
| | | | | |
Collapse
|
234
|
Chaineau M, Ioannou MS, McPherson PS. Rab35: GEFs, GAPs and effectors. Traffic 2013; 14:1109-17. [PMID: 23905989 DOI: 10.1111/tra.12096] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 12/27/2022]
Abstract
Rabs are the largest family of small GTPases and are master regulators of membrane trafficking. Following activation by guanine-nucleotide exchange factors (GEFs), each Rab binds a specific set of effector proteins that mediate the various downstream functions of that Rab. Then, with the help of GTPase-activating proteins, the Rab converts GTP to GDP, terminating its function. There are over 60 Rabs in humans and only a subset has been analyzed in any detail. Recently, Rab35 has emerged as a key regulator of cargo recycling at endosomes, with an additional role in regulation of the actin cytoskeleton. Here, we will focus on the regulation of Rab35 activity by the connecdenn/DENND1 family of GEFs and the TBC1D10/EPI64 family of GTPase-activating proteins. We will describe how analysis of these proteins, as well as a plethora of Rab35 effectors has provided insights into Rab35 function. Finally, we will describe how Rab35 provides a novel link between the Rab and Arf family of GTPases with implications for tumor formation and invasiveness.
Collapse
Affiliation(s)
- Mathilde Chaineau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | | |
Collapse
|
235
|
Lee BC, Péterfi Z, Hoffmann FW, Moore RE, Kaya A, Avanesov A, Tarrago L, Zhou Y, Weerapana E, Fomenko DE, Hoffmann PR, Gladyshev VN. MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Mol Cell 2013; 51:397-404. [PMID: 23911929 DOI: 10.1016/j.molcel.2013.06.019] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/11/2013] [Accepted: 06/25/2013] [Indexed: 01/17/2023]
Abstract
Redox control of protein function involves oxidation and reduction of amino acid residues, but the mechanisms and regulators involved are insufficiently understood. Here, we report that in conjunction with Mical proteins, methionine-R-sulfoxide reductase B1 (MsrB1) regulates mammalian actin assembly via stereoselective methionine oxidation and reduction in a reversible, site-specific manner. Two methionine residues in actin are specifically converted to methionine-R-sulfoxide by Mical1 and Mical2 and reduced back to methionine by selenoprotein MsrB1, supporting actin disassembly and assembly, respectively. Macrophages utilize this redox control during cellular activation by stimulating MsrB1 expression and activity as a part of innate immunity. We identified the regulatory role of MsrB1 as a Mical antagonist in orchestrating actin dynamics and macrophage function. More generally, our study shows that proteins can be regulated by reversible site-specific methionine-R-sulfoxidation.
Collapse
Affiliation(s)
- Byung Cheon Lee
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
van Horssen R, Willemse M, Haeger A, Attanasio F, Güneri T, Schwab A, Stock CM, Buccione R, Fransen JAM, Wieringa B. Intracellular NAD(H) levels control motility and invasion of glioma cells. Cell Mol Life Sci 2013; 70:2175-90. [PMID: 23307072 PMCID: PMC11113314 DOI: 10.1007/s00018-012-1249-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/29/2012] [Accepted: 12/17/2012] [Indexed: 12/15/2022]
Abstract
Oncogenic transformation involves reprogramming of cell metabolism, whereby steady-state levels of intracellular NAD(+) and NADH can undergo dramatic changes while ATP concentration is generally well maintained. Altered expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of NAD(+)-salvage, accompanies the changes in NAD(H) during tumorigenesis. Here, we show by genetic and pharmacological inhibition of NAMPT in glioma cells that fluctuation in intracellular [NAD(H)] differentially affects cell growth and morphodynamics, with motility/invasion capacity showing the highest sensitivity to [NAD(H)] decrease. Extracellular supplementation of NAD(+) or re-expression of NAMPT abolished the effects. The effects of NAD(H) decrease on cell motility appeared parallel coupled with diminished pyruvate-lactate conversion by lactate dehydrogenase (LDH) and with changes in intracellular and extracellular pH. The addition of lactic acid rescued and knockdown of LDH-A replicated the effects of [NAD(H)] on motility. Combined, our observations demonstrate that [NAD(H)] is an important metabolic component of cancer cell motility. Nutrient or drug-mediated modulation of NAD(H) levels may therefore represent a new option for blocking the invasive behavior of tumors.
Collapse
Affiliation(s)
- Remco van Horssen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
MICAL, the flavoenzyme participating in cytoskeleton dynamics. Int J Mol Sci 2013; 14:6920-59. [PMID: 23535333 PMCID: PMC3645671 DOI: 10.3390/ijms14046920] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/02/2013] [Accepted: 03/11/2013] [Indexed: 01/01/2023] Open
Abstract
MICAL (from the Molecule Interacting with CasL) indicates a family of recently discovered cytosolic, multidomain proteins, which uniquely couple an N-terminal FAD-containing monooxygenase-like domain to typical calponine homology, LIM and coiled-coil protein-interaction modules. Genetic and cell biology approaches have demonstrated an essential role of the catalytic activity of the monooxygenase-like domain in transducing the signal initiated by semaphorins interaction with their plexin receptors, which results in local actin cytoskeleton disassembly as part of fundamental processes that include differentiation, migration and cell-cell contacts in neuronal and non-neuronal cell types. This review focuses on the structure-function relations of the MICAL monooxygenase-like domain as they are emerging from the available in vitro studies on mouse, human and Drosophila MICAL forms that demonstrated a NADPH-dependent actin depolymerizing activity of MICAL. With Drosophila MICAL forms, actin depolymerization was demonstrated to be associated to conversion of Met44 to methionine sulfone through a postulated hydroxylating reaction. Arguments supporting the concept that MICAL effect on F-actin may be reversible will be discussed.
Collapse
|
238
|
Siebold C, Jones EY. Structural insights into semaphorins and their receptors. Semin Cell Dev Biol 2013; 24:139-45. [PMID: 23253452 DOI: 10.1016/j.semcdb.2012.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Ten years ago nothing was known of the three-dimensional structure of members of the semaphorin family of cell guidance cues, nor of their major receptors, the plexins. The structural biology of this cell surface ligand-receptor system has now come of age. Detailed atomic level information is available on the architecture of semaphorin and plexin ectodomains and their recognition complexes. Similarly the structure of the plexin cytoplasmic region, and its interactions with members of the Rho family of small GTPases have been unveiled. These structural analyses, in combination with biochemical, biophysical and cellular studies, have progressed our understanding of this signalling system into the realm of molecular mechanism.
Collapse
Affiliation(s)
- Christian Siebold
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | | |
Collapse
|
239
|
Plexin A3 and turnout regulate motor axonal branch morphogenesis in zebrafish. PLoS One 2013; 8:e54071. [PMID: 23349787 PMCID: PMC3549987 DOI: 10.1371/journal.pone.0054071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/10/2012] [Indexed: 02/01/2023] Open
Abstract
During embryogenesis motor axons navigate to their target muscles, where individual motor axons develop complex branch morphologies. The mechanisms that control axonal branching morphogenesis have been studied intensively, yet it still remains unclear when branches begin to form or how branch locations are determined. Live cell imaging of individual zebrafish motor axons reveals that the first axonal branches are generated at the ventral extent of the myotome via bifurcation of the growth cone. Subsequent branches are generated by collateral branching restricted to their synaptic target field along the distal portion of the axon. This precisely timed and spatially restricted branching process is disrupted in turnout mutants we identified in a forward genetic screen. Molecular genetic mapping positioned the turnout mutation within a 300 kb region encompassing eight annotated genes, however sequence analysis of all eight open reading frames failed to unambiguously identify the turnout mutation. Chimeric analysis and single cell labeling reveal that turnout function is required cell non-autonomously for intraspinal motor axon guidance and peripheral branch formation. turnout mutant motor axons form the first branch on time via growth cone bifurcation, but unlike wild-type they form collateral branches precociously, when the growth cone is still navigating towards the ventral myotome. These precocious collateral branches emerge along the proximal region of the axon shaft typically devoid of branches, and they develop into stable, permanent branches. Furthermore, we find that null mutants of the guidance receptor plexin A3 display identical motor axon branching defects, and time lapse analysis reveals that precocious branch formation in turnout and plexin A3 mutants is due to increased stability of otherwise short-lived axonal protrusions. Thus, plexin A3 dependent intrinsic and turnout dependent extrinsic mechanisms suppress collateral branch morphogenesis by destabilizing membrane protrusions before the growth cone completes navigation into the synaptic target field.
Collapse
|
240
|
Yang T, Terman JR. Regulating small G protein signaling to coordinate axon adhesion and repulsion. Small GTPases 2012; 4:34-41. [PMID: 23247636 DOI: 10.4161/sgtp.22765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Small GTPases play critical roles in diverse biological events including regulating both the cytoskeletal and adhesive properties of cells. The importance of small GTPases to these events stems from their ability to be turned on and off, respectively, by specific GEFs and GAPs. In neurons, for example, regulation of small GTPase activity by extracellular guidance cues controls axonal and dendritic process shape, extension and navigation. Here, we discuss recent findings that indicate a specific regulator of small GTPase signaling, the Plexin transmembrane GAP, is differentially controlled by specific extracellular cues to guide growing axons. In particular, Plexins are receptors for one of the largest families of axon guidance cues, Semaphorins and negatively regulate cell morphology and motility by serving as GAPs for Ras/Rap family GTPases. Recent observations reveal that Plexin's GAP activity is controlled by the cAMP-dependent protein kinase (PKA), which phosphorylates Plexin and generates a binding site for the phospho-serine/threonine binding protein 14-3-3ε. This PKA-mediated Plexin-14-3-3ε interaction prevents Plexin from associating with its GTPase substrate, and thus antagonizes Semaphorin signaling. We now further examine these interactions and how they provide a new logic by which axon guidance signaling pathways over-ride one another to steer growing axons. We also further explore how Plexin interacting proteins, including Ras, PKA and 14-3-3 may interact with the Plexin GAP domain. Our observations also further indicate that 14-3-3 proteins may have conserved roles in the regulation of GTPase activity.
Collapse
Affiliation(s)
- Taehong Yang
- Departments of Neuroscience and Pharmacology; The University of Texas Southwestern Medical Center; Dallas, TX USA
| | | |
Collapse
|
241
|
Abstract
Many of the best-studied actin regulatory proteins use non-covalent means to modulate the properties of actin. Yet, actin is also susceptible to covalent modifications of its amino acids. Recent work is increasingly revealing that actin processing and its covalent modifications regulate important cellular events. In addition, numerous pathogens express enzymes that specifically use actin as a substrate to regulate their hosts' cells. Actin post-translational alterations have been linked to different normal and disease processes and the effects associated with metabolic and environmental stressors. Herein, we highlight specific co-translational and post-translational modifications of actin and discuss the current understanding of the role that these modifications play in regulating actin.
Collapse
Affiliation(s)
- Jonathan R Terman
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
242
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
243
|
Semaphorin 4D/Plexin-B1-mediated M-Ras GAP activity regulates actin-based dendrite remodeling through Lamellipodin. J Neurosci 2012; 32:8293-305. [PMID: 22699910 DOI: 10.1523/jneurosci.0799-12.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Semaphorins have been identified as repulsive guidance molecules in the developing nervous system. We recently reported that the semaphorin 4D (Sema4D) receptor Plexin-B1 induces repulsion in axon and dendrites by functioning as a GTPase-activating protein (GAP) for R-Ras and M-Ras, respectively. In axons, Sema4D stimulation induces growth cone collapse, and downregulation of R-Ras activity by Plexin-B1-mediated GAP activity is required for the action. Axonal R-Ras GAP activity downregulates phosphatidylinositol 3-kinase signaling pathway, and thereby induces inactivation of a microtubule assembly promoter protein, CRMP-2. However, in contrast to the well studied roles of semaphorins and plexins in axonal guidance, signaling molecules linking M-Ras GAP to dendritic cytoskeleton remain obscure. Here we identified an Ena/VASP ligand, Lamellipodin (Lpd), as a novel effector of M-Ras in dendrites. Lpd was expressed in F-actin-rich distal dendritic processes and was required for both basal and M-Ras-mediated dendrite development. Subcellular fractionation showed M-Ras-dependent membrane translocation of Lpd, which was suppressed by Sema4D. Furthermore, the Ena/VASP-binding region within Lpd was required for dendrite development, and its membrane targeting was sufficient to overcome the Sema4D-mediated reduction of dendritic outgrowth and disappearance of F-actin from distal dendrites. Furthermore, in utero electroporation experiments also indicated that regulation of the M-Ras-Lpd system by the GAP activity of Plexin is involved in the normal development of cortical dendrites in vivo. Overall, our study sheds light on how repulsive guidance molecules regulate actin cytoskeleton in dendrites, revealing a novel mechanism that the M-Ras-Lpd system regulates actin-based dendrite remodeling by Sema/Plexin in rats or mice of either sex.
Collapse
|
244
|
Tochhawng L, Deng S, Pervaiz S, Yap CT. Redox regulation of cancer cell migration and invasion. Mitochondrion 2012; 13:246-53. [PMID: 22960576 DOI: 10.1016/j.mito.2012.08.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 08/03/2012] [Accepted: 08/10/2012] [Indexed: 12/18/2022]
Abstract
Cancer cell migration and invasion are the initial steps in metastasis. Through a series of cellular events, including cytoskeletal remodeling resulting in phenotype changes and degradation of the extracellular matrix, cells are able to detach from the primary tumor and metastasize to distant sites. These changes occur in response to intracellular signaling mechanisms triggered via cell surface receptor stimulation or signal amplification within the cell. Amongst the active molecules that participate in relaying cellular signals are the reactive oxygen species (ROS). Initially identified to participate in defense mechanisms to ward off invading pathogens, ROS are now considered to have important roles in several other biological processes including cancer development. In this report, we review recent evidence pointing towards the involvement of ROS in tumor progression. We discuss the biology of ROS and their roles at different stages during the process of cancer cell migration and invasion.
Collapse
|
245
|
Abstract
Semaphorins are key players in the control of neural circuit development. Recent studies have uncovered several exciting and novel aspects of neuronal semaphorin signalling in various cellular processes--including neuronal polarization, topographical mapping and axon sorting--that are crucial for the assembly of functional neuronal connections. This progress is important for further understanding the many neuronal and non-neuronal functions of semaphorins and for gaining insight into their emerging roles in the perturbed neural connectivity that is observed in some diseases. This Review discusses recent advances in semaphorin research, focusing on novel aspects of neuronal semaphorin receptor regulation and previously unexplored cellular functions of semaphorins in the nervous system.
Collapse
|
246
|
Yang T, Terman JR. 14-3-3ε couples protein kinase A to semaphorin signaling and silences plexin RasGAP-mediated axonal repulsion. Neuron 2012; 74:108-21. [PMID: 22500634 DOI: 10.1016/j.neuron.2011.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2011] [Indexed: 10/28/2022]
Abstract
The biochemical means through which multiple signaling pathways are integrated in navigating axons is poorly understood. Semaphorins are among the largest families of axon guidance cues and utilize Plexin (Plex) receptors to exert repulsive effects on axon extension. However, Semaphorin repulsion can be silenced by other distinct cues and signaling cascades, raising questions of the logic underlying these events. We now uncover a simple biochemical switch that controls Semaphorin/Plexin repulsive guidance. Plexins are Ras/Rap family GTPase activating proteins (GAPs) and we find that the PlexA GAP domain is phosphorylated by the cAMP-dependent protein kinase (PKA). This PlexA phosphorylation generates a specific binding site for 14-3-3ε, a phospho-binding protein that we find to be necessary for axon guidance. These PKA-mediated Plexin-14-3-3ε interactions prevent PlexA from interacting with its Ras family GTPase substrate and antagonize Semaphorin repulsion. Our results indicate that these interactions switch repulsion to adhesion and identify a point of convergence for multiple guidance molecules.
Collapse
Affiliation(s)
- Taehong Yang
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
247
|
Zaromytidou AI. Actin gets the oxidation treatment from Mical. Nat Cell Biol 2012. [DOI: 10.1038/ncb2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|