201
|
Mwilambwe-Tshilobo L, Spreng RN. Social exclusion reliably engages the default network: A meta-analysis of Cyberball. Neuroimage 2020; 227:117666. [PMID: 33359341 DOI: 10.1016/j.neuroimage.2020.117666] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
Social exclusion refers to the experience of being disregarded or rejected by others and has wide-ranging negative consequences for well-being and cognition. Cyberball, a game where a ball is virtually tossed between players, then leads to the exclusion of the research participant, is a common method used to examine the experience of social exclusion. The neural correlates of social exclusion remain a topic of debate, particularly with regards to the role of the dorsal anterior cingulate cortex (dACC) and the concept of social pain. Here we conducted a quantitative meta-analysis using activation likelihood estimation (ALE) to identify brain activity reliably engaged by social exclusion during Cyberball task performance (Studies = 53; total N = 1,817 participants). Results revealed consistent recruitment in ventral anterior cingulate and posterior cingulate cortex, inferior and superior frontal gyri, posterior insula, and occipital pole. No reliable activity was observed in dACC. Using a probabilistic atlas to define dACC, fewer than 15% of studies reported peak coordinates in dACC. Meta-analytic connectivity mapping suggests patterns of co-activation are consistent with the topography of the default network. Reverse inference for cognition associated with reliable Cyberball activity computed in Neurosynth revealed social exclusion to be associated with cognitive terms Social, Autobiographical, Mental States, and Theory of Mind. Taken together, these findings highlight the role of the default network in social exclusion and warns against interpretations of the dACC as a key region involved in the experience of social exclusion in humans.
Collapse
Affiliation(s)
- Laetitia Mwilambwe-Tshilobo
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - R Nathan Spreng
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Verdun, QC, Canada; McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada.
| |
Collapse
|
202
|
Song SY, Zhai XM, Dai JH, Lu LL, Shan CJ, Hong J, Cao JL, Zhang LC. The CSF-Contacting Nucleus Receives Anatomical Inputs From the Cerebral Cortex: A Combination of Retrograde Tracing and 3D Reconstruction Study in Rat. Front Neuroanat 2020; 14:600555. [PMID: 33328908 PMCID: PMC7714914 DOI: 10.3389/fnana.2020.600555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
Objective This study aimed to investigate the direct monosynaptic projections from cortical functional regions to the cerebrospinal fluid (CSF)-contacting nucleus for understanding the functions of the CSF-contacting nucleus. Methods The Sprague-Dawley rats received cholera toxin B subunit (CB) injections into the CSF-contacting nucleus. After 7-10 days of survival time, the rats were perfused, and the whole brain and spinal cord were sliced under a freezing microtome at 40 μm. All sections were treated with the CB immunofluorescence reaction. The retrogradely labeled neurons in different cortical areas were revealed under a confocal microscope. The distribution features were further illustrated under 3D reconstruction. Results The retrogradely labeled neurons were identified in the olfactory, orbital, cingulate, insula, retrosplenial, somatosensory, motor, visual, auditory, association, rhinal, and parietal cortical areas. A total of 12 functional areas and 34 functional subregions showed projections to the CSF-contacting nucleus in different cell intensities. Conclusion According to the connectivity patterns, we conclude that the CSF-contacting nucleus participates in cognition, emotion, pain, visceral activity, etc. The present study firstly reveals the cerebral cortex→CSF-contacting nucleus connections, which implies the multiple functions of this special nucleus in neural and body fluid regulations.
Collapse
Affiliation(s)
- Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Meng Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia-Hao Dai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Lei-Lei Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Jing Shan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia Hong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
203
|
Monosov IE, Haber SN, Leuthardt EC, Jezzini A. Anterior Cingulate Cortex and the Control of Dynamic Behavior in Primates. Curr Biol 2020; 30:R1442-R1454. [PMID: 33290716 PMCID: PMC8197026 DOI: 10.1016/j.cub.2020.10.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The brain mechanism for controlling continuous behavior in dynamic contexts must mediate action selection and learning across many timescales, responding differentially to the level of environmental uncertainty and volatility. In this review, we argue that a part of the frontal cortex known as the anterior cingulate cortex (ACC) is particularly well suited for this function. First, the ACC is interconnected with prefrontal, parietal, and subcortical regions involved in valuation and action selection. Second, the ACC integrates diverse, behaviorally relevant information across multiple timescales, producing output signals that temporally encapsulate decision and learning processes and encode high-dimensional information about the value and uncertainty of future outcomes and subsequent behaviors. Third, the ACC signals behaviorally relevant information flexibly, displaying the capacity to represent information about current and future states in a valence-, context-, task- and action-specific manner. Fourth, the ACC dynamically controls instrumental- and non-instrumental information seeking behaviors to resolve uncertainty about future outcomes. We review electrophysiological and circuit disruption studies in primates to develop this point, discuss its relationship to novel therapeutics for neuropsychiatric disorders in humans, and conclude by relating ongoing research in primates to studies of medial frontal cortical regions in rodents.
Collapse
Affiliation(s)
- Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Department of Electrical Engineering, Washington University, St. Louis, MO 63130, USA; Department of Neurosurgery School of Medicine, Washington University, St. Louis, MO 63110, USA; Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14627, USA; Basic Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Eric C Leuthardt
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Department of Neurosurgery School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Ahmad Jezzini
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
204
|
Hoffman HG, Patterson DR, Rodriguez RA, Peña R, Beck W, Meyer WJ. Virtual Reality Analgesia for Children With Large Severe Burn Wounds During Burn Wound Debridement. FRONTIERS IN VIRTUAL REALITY 2020; 1:602299. [PMID: 33585833 PMCID: PMC7880045 DOI: 10.3389/frvir.2020.602299] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The objective of this study was to compare the effect of adjunctive virtual reality vs. standard analgesic pain medications during burn wound cleaning/debridement. Participants were predominantly Hispanic children aged 6-17 years of age, with large severe burn injuries (TBSA = 44%) reporting moderate or higher baseline pain during burn wound care. Using a randomized between-groups design, participants were randomly assigned to one of two groups, (a) the Control Group = pain medications only or (b) the VR Group = pain medications + virtual reality. A total of 50 children (88% Hispanic) with large severe burns (mean TBSA > 10%) received severe burn wound cleaning sessions. For the primary outcome measure of worst pain (intensity) on Study Day 1, using a between groups ANOVA, burn injured children in the group that received virtual reality during wound care showed significantly less pain intensity than the No VR control group, [mean worst pain ratings for the No VR group = 7.46 (SD = 2.93) vs. 5.54 (SD = 3.56), F (1,48) = 4.29, <0.05, MSE = 46.00]. Similarly, one of the secondary pain measures, "lowest pain during wound care" was significantly lower in the VR group, No VR = 4.29 (SD = 3.75) vs. 1.68 (2.04) for the VR group, F(147) = 9.29, < 0.005, MSE = 83.52 for Study Day 1. The other secondary pain measures showed the predicted pattern on Study Day 1, but were non-significant. Regarding whether VR reduced pain beyond Study Day 1, absolute change in pain intensity (analgesia = baseline pain minus the mean of the worst pain scores on Study days 1-10) was significantly greater for the VR group, F (148) = 4.88, p < 0.05, MSE = 34.26, partial eta squared = 0.09, but contrary to predictions, absolute change scores were non-significant for all secondary measures.
Collapse
Affiliation(s)
- Hunter G. Hoffman
- Department of Mechanical Engineering, College of Engineering, University of Washington, Seattle, WA, United States
- Department of Psychology, University of Washington, Washington, ME, United States
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - David R. Patterson
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States
| | - Robert A. Rodriguez
- University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Shriners Hospitals for Children Galveston, Galveston, TX, United States
| | - Raquel Peña
- University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Shriners Hospitals for Children Galveston, Galveston, TX, United States
| | - Wanda Beck
- Shriners Hospitals for Children Galveston, Galveston, TX, United States
| | - Walter J. Meyer
- Department of Radiology, University of Washington, Seattle, WA, United States
- University of Texas Medical Branch at Galveston, Galveston, TX, United States
- Shriners Hospitals for Children Galveston, Galveston, TX, United States
| |
Collapse
|
205
|
Horing B, Beadle SC, Inks Z, Robb A, Muth ER, Babu SV. A virtual experimenter does not increase placebo hypoalgesia when delivering an interactive expectancy manipulation. Sci Rep 2020; 10:20353. [PMID: 33230290 PMCID: PMC7684301 DOI: 10.1038/s41598-020-77453-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Lack of standardization and unblinding threaten the research of mechanisms involved in expectancy effects on pain. We evaluated a computer-controlled virtual experimenter (VEx) to avoid these issues. Fifty-four subjects underwent a baseline-retest heat pain protocol. Between sessions, they received an expectancy manipulation (placebo or no-treatment) delivered by VEx or text-only control condition. The VEx provided standardized "social" interaction with the subjects. Pain ratings and psychological state/trait measures were recorded. We found an interaction of expectancy and delivery on pain improvement following the intervention. In the text conditions, placebo was followed by lower pain, whereas in the VEx conditions, placebo and no-treatment were followed by a comparable pain decrease. Secondary analyses indicated that this interaction was mirrored by decreases of negative mood and anxiety. Furthermore, changes in continuous pain were moderated by expectation of pain relief. However, retrospective pain ratings show an effect of expectancy but not of delivery. We conclude that we successfully applied an automated protocol for inducing expectancy effects on pain. The effect of the VEx regardless of treatment may be due to interactions of attention allocation and locus of control. This points to the diversity of expectancy mechanisms, and has implications for research and computer-based treatment applications.
Collapse
Affiliation(s)
- Bjoern Horing
- Affective Neuroscience Group, Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Sarah C Beadle
- Department of Psychology, Clemson University, Clemson, SC, USA
| | - Zachariah Inks
- Division of Human Centered Computing, School of Computing, Clemson University, Clemson, SC, USA
| | - Andrew Robb
- Division of Human Centered Computing, School of Computing, Clemson University, Clemson, SC, USA
| | - Eric R Muth
- Department of Psychology, Clemson University, Clemson, SC, USA
- Division of Research and Economic Development, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Sabarish V Babu
- Division of Human Centered Computing, School of Computing, Clemson University, Clemson, SC, USA
| |
Collapse
|
206
|
Oliva V, Gregory R, Davies WE, Harrison L, Moran R, Pickering AE, Brooks JCW. Parallel cortical-brainstem pathways to attentional analgesia. Neuroimage 2020; 226:117548. [PMID: 33186712 PMCID: PMC7836236 DOI: 10.1016/j.neuroimage.2020.117548] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 01/04/2023] Open
Abstract
Pain demands attention, yet pain can be reduced by focusing attention elsewhere. The neural processes involved in this robust psychophysical phenomenon, attentional analgesia, are still being defined. Our previous fMRI study linked activity in the brainstem triad of locus coeruleus (LC), rostral ventromedial medulla (RVM) and periaqueductal grey (PAG) with attentional analgesia. Here we identify and model the functional interactions between these regions and the cortex in healthy human subjects (n = 57), who received painful thermal stimuli whilst simultaneously performing a visual attention task. RVM activity encoded pain intensity while contralateral LC activity correlated with attentional analgesia. Psycho-Physiological Interaction analysis and Dynamic Causal Modelling identified two parallel paths between forebrain and brainstem. These connections are modulated by attentional demand: a bidirectional anterior cingulate cortex (ACC) - right-LC loop, and a top-down influence of task on ACC-PAG-RVM. By recruiting discrete brainstem circuits, the ACC is able to modulate nociceptive input to reduce pain in situations of conflicting attentional demand.
Collapse
Affiliation(s)
- Valeria Oliva
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Rob Gregory
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Anaesthesia, Pain and Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom
| | - Wendy-Elizabeth Davies
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Anaesthesia, Pain and Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom
| | - Lee Harrison
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, United Kingdom
| | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Anaesthesia, Pain and Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom
| | - Jonathan C W Brooks
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, United Kingdom.
| |
Collapse
|
207
|
Archibald J, MacMillan EL, Graf C, Kozlowski P, Laule C, Kramer JLK. Metabolite activity in the anterior cingulate cortex during a painful stimulus using functional MRS. Sci Rep 2020; 10:19218. [PMID: 33154474 PMCID: PMC7645766 DOI: 10.1038/s41598-020-76263-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
To understand neurochemical brain responses to pain, proton magnetic resonance spectroscopy (1H-MRS) is used in humans in vivo to examine various metabolites. Recent MRS investigations have adopted a functional approach, where acquisitions of MRS are performed over time to track task-related changes. Previous studies suggest glutamate is of primary interest, as it may play a role during cortical processing of noxious stimuli. The objective of this study was to examine the metabolic effect (i.e., glutamate) in the anterior cingulate cortex during noxious stimulation using fMRS. The analysis addressed changes in glutamate and glutamate + glutamine (Glx) associated with the onset of pain, and the degree by which fluctuations in metabolites corresponded with continuous pain outcomes. Results suggest healthy participants undergoing tonic noxious stimulation demonstrated increased concentrations of glutamate and Glx at the onset of pain. Subsequent reports of pain were not accompanied by corresponding changes in glutamate of Glx concentrations. An exploratory analysis on sex revealed large effect size changes in glutamate at pain onset in female participants, compared with medium-sized effects in male participants. We propose a role for glutamate in the ACC related to the detection of a noxious stimulus.
Collapse
Affiliation(s)
- J Archibald
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada.
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada.
| | - E L MacMillan
- Department of Radiology, University of British Columbia, Vancouver, Canada
- ImageTech Lab, Simon Fraser University, Surrey, Canada
- Philips Healthcare Canada, Markham, Canada
| | - C Graf
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - P Kozlowski
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Hughill Center, Vancouver, Canada
- Department of Radiology, University of British Columbia, Vancouver, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, Canada
| | - C Laule
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Hughill Center, Vancouver, Canada
- Department of Radiology, University of British Columbia, Vancouver, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - J L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Center for Brain Health (DMCH), Vancouver, Canada
- Hughill Center, Vancouver, Canada
| |
Collapse
|
208
|
Acute effects of alcohol on error-elicited negative affect during a cognitive control task. Psychopharmacology (Berl) 2020; 237:3383-3397. [PMID: 32944790 PMCID: PMC7572864 DOI: 10.1007/s00213-020-05619-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE Alcohol intoxication can dampen negative affective reactions to stressors. Recently, it has been proposed that these acute anxiolytic effects of alcohol may extend to dampening of negative affective reactions to error commission during cognitive control tasks. Nonetheless, empirical verification of this claim is lacking. OBJECTIVES Test the acute effect of alcohol on negative affective reactions to errors during an effort-demanding cognitive control task. METHODS Healthy, young adult social drinkers (N = 96 [49 women], 21-36 years old) were randomly assigned to consume alcohol (0.80 g/kg; n = 33 [15 female]), active placebo (0.04 g/kg; n = 33 [18 women]), or a non-alcoholic control beverage (n = 30 [16 women]) before completing the Eriksen flanker task. Corrugator supercilii (Corr) activation, a psychophysiological index of negative affect, was tracked across the task. Two neurophysiological reactions to errors, the error-related negativity (ERN) and the error positivity (Pe), were also measured. RESULTS Erroneous actions increased Corr activation in the control and (to a lesser extent) placebo groups, but not in the alcohol group. Error-induced Corr activation was coupled to ERN and Pe in the control, but not in the alcohol and placebo groups. Error-induced Corr activation was not coupled to post-error performance adjustments in any group. CONCLUSIONS The ability of alcohol to dampen error-related negative affect was verified. It was also shown that placebo alone can disrupt coupling of affective and (neuro)cognitive reactions to errors. Although its behavioral relevance remains to be demonstrated, more attention should be paid to the role of affect in action monitoring and cognitive control processes.
Collapse
|
209
|
Rustamov N, Wagenaar-Tison A, Doyer E, Piché M. Electrophysiological investigation of the contribution of attention to altered pain inhibition processes in patients with irritable bowel syndrome. J Physiol Sci 2020; 70:46. [PMID: 33023474 PMCID: PMC10717774 DOI: 10.1186/s12576-020-00774-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 11/10/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder associated with chronic abdominal pain and altered pain processing. The aim of this study was to examine whether attentional processes contribute to altered pain inhibition processes in patients with IBS. Nine female patients with IBS and nine age-/sex-matched controls were included in a pain inhibition paradigm using counter-stimulation and distraction with electroencephalography. Patients with IBS showed no inhibition of pain-related brain activity by heterotopic noxious counter-stimulation (HNCS) or selective attention. In the control group, HNCS and selective attention decreased the N100, P260 and high-gamma oscillation power. In addition, pain-related high-gamma power in sensorimotor, anterior cingulate and left dorsolateral prefrontal cortex was decreased by HNCS and selective attention in the control group, but not in patients with IBS. These results indicate that the central pain inhibition deficit in IBS reflects interactions between several brain processes related to pain and attention.
Collapse
Affiliation(s)
- Nabi Rustamov
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Alice Wagenaar-Tison
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Elysa Doyer
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.
- CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.
| |
Collapse
|
210
|
Abstract
Conflict-monitoring theory proposes that conflict between incompatible responses is registered by a dedicated monitoring system, and that this conflict signal triggers changes of attentional filters and adapts control processes according to the current task demands. Extending the conflict-monitoring theory, it has been suggested that conflict elicits a negative affective reaction, and that it is this affective signal that is monitored and then triggers control adaptation. This review article summarizes research on a potential signaling function of affect for cognitive control. First, we provide an overview of the conflict-monitoring theory, discuss neurophysiological and behavioral markers of monitoring and control adaptation, and introduce the affective-signaling hypothesis. In a second part, we review relevant studies that address the questions of (i) whether conflict elicits negative affect, (ii) whether negative affect is monitored, and (iii) whether affect modulates control. In sum, the reviewed literature supports the claim that conflict and errors trigger negative affect and provides some support for the claim that affect modulates control. However, studies on the monitoring of negative affect and the influence of phasic affect on control are ambiguous. On the basis of these findings, in a third part, we critically reassess the affective-signaling hypothesis, discuss relevant challenges to this account, and suggest future research strategies.
Collapse
|
211
|
Matsumoto Y, Fujino Y, Furue H. Anti-nociceptive and anxiolytic effects of systemic flupirtine and its direct inhibitory actions on in vivo neuronal mechanical sensory responses in the adult rat anterior cingulate cortex. Biochem Biophys Res Commun 2020; 531:528-534. [DOI: 10.1016/j.bbrc.2020.07.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022]
|
212
|
Abstract
PURPOSE OF REVIEW The purpose of this paper is to review and synthesize current literature in which neurochemical and structural brain imaging were used to investigate chronic migraine (CM) pathophysiology and to further discuss the clinical implications. RECENT FINDINGS Spectroscopic and structural MRI studies have shown the presence of both impaired metabolism and structural alterations in the brain of CM patients. Metabolic changes in key brain regions support the notion of altered energetics and homeostasis as part of CM pathophysiology. Furthermore, CM, like other chronic pain disorders, may undergo structural reorganization in pain-related brain regions following near persistent endogenous painful input. Finally, both imaging techniques may provide potential biomarkers of disease state and progression and may help guide novel therapeutic interventions or strategies. Spectroscopic and structural MRI have revealed novel aspects of CM pathophysiology. Findings from the former support the metabolic theory of migraine pathogenesis.
Collapse
Affiliation(s)
- Kuan-Lin Lai
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - David M Niddam
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
- Institute of Brain Science, School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
213
|
Friesner ID, Martinez E, Zhou H, Gould JD, Li A, Chen ZS, Zhang Q, Wang J. Ketamine normalizes high-gamma power in the anterior cingulate cortex in a rat chronic pain model. Mol Brain 2020; 13:129. [PMID: 32967695 PMCID: PMC7513294 DOI: 10.1186/s13041-020-00670-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022] Open
Abstract
Chronic pain alters cortical and subcortical plasticity, causing enhanced sensory and affective responses to peripheral nociceptive inputs. Previous studies have shown that ketamine had the potential to inhibit abnormally amplified affective responses of single neurons by suppressing hyperactivity in the anterior cingulate cortex (ACC). However, the mechanism of this enduring effect has yet to be understood at the network level. In this study, we recorded local field potentials from the ACC of freely moving rats. Animals were injected with complete Freund’s adjuvant (CFA) to induce persistent inflammatory pain. Mechanical stimulations were administered to the hind paw before and after CFA administration. We found a significant increase in the high-gamma band (60–100 Hz) power in response to evoked pain after CFA treatment. Ketamine, however, reduced the high-gamma band power in response to evoked pain in CFA-treated rats. In addition, ketamine had a sustained effect on the high-gamma band power lasting up to five days after a single dose administration. These results demonstrate that ketamine has the potential to alter maladaptive neural responses in the ACC induced by chronic pain.
Collapse
Affiliation(s)
- Isabel D Friesner
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA
| | - Erik Martinez
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA
| | - Haocheng Zhou
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA
| | | | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA
| | - Zhe Sage Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA.,Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, 10016, USA.,Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA.
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, 10016, USA. .,Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, 10016, USA. .,Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
214
|
Florin E, Koschmieder KC, Schnitzler A, Becker S. Recovery of Impaired Endogenous Pain Modulation by Dopaminergic Medication in Parkinson's Disease. Mov Disord 2020; 35:2338-2343. [DOI: 10.1002/mds.28241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/21/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine University Düsseldorf Düsseldorf Germany
| | - Kim C. Koschmieder
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine University Düsseldorf Düsseldorf Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty Heinrich‐Heine University Düsseldorf Düsseldorf Germany
| | - Susanne Becker
- Integrative Spinal Research, Department of Chiropractic Medicine Balgrist University Hospital, University of Zurich Zurich Switzerland
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim Heidelberg University Mannheim Germany
| |
Collapse
|
215
|
Beltran Serrano G, Pooch Rodrigues L, Schein B, Zortea M, Torres ILS, Fregni F, Caumo W. The Hypnotic Analgesia Suggestion Mitigated the Effect of the Transcranial Direct Current Stimulation on the Descending Pain Modulatory System: A Proof of Concept Study. J Pain Res 2020; 13:2297-2311. [PMID: 32982393 PMCID: PMC7502396 DOI: 10.2147/jpr.s253747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Objective We evaluated whether active(a)-tDCS combined with hypnotic analgesia suggestion (HS) would be more effective than a single active(a)-tDCS, and/or sham-(s)-tDCS and s-tDCS/HS on the following outcomes: function of descending pain modulatory system (DPMS) during the conditioned pain modulation test (CPM-test) (primary outcome), heat pain threshold (HPT), heat pain tolerance (HPTo) and cold pressor test (CPT) (secondary outcomes). We also examined whether their effects are related to neuroplasticity state evaluated by serum brain-derived-neurotropic factor (BDNF). Materials and Methods Forty-eight females received one session of one of the four interventions (a-tDCS/HS, s-tDCS/HS, a-tDCS, and s-tDCS) in an incomplete randomized crossover sequence. The a-tDCS or s-tDCS was applied over the left dorsolateral prefrontal cortex (DLPFC) for 30 minutes at 2mA. Results A generalized linear model revealed a significant main effect for the intervention group (P <0.032). The delta-(Δ) pain score on the Numerical Pain Scale (NPS0-10) during CPM-test in the a-tDCS/HS group was -0.25 (0.43). The (Δ) pain score on NPS (0-10) during CPM-test in the other three groups was a-tDCS=-0.54 (0.41), HS -0.01 (0.41) and s-tDCS/HS=-0.19 (0.43). A-tDCS/HS intervention increased the CPT substantially compared to all other interventions. Also, higher baseline levels of BDNF were associated with a larger change in CPT and HPTo. Conclusion These findings indicate that the HS combined with a-tDCS mitigated the effect of the a-tDCS on the DPMS. The a-tDCS up-regulates the inhibition on DPMS, and the HS improved pain tolerance. And, together they enhanced the reaction time substantially upon the CPT. Clinical Trial Registration www.ClinicalTrials.gov, identifier NCT03744897.
Collapse
Affiliation(s)
- Gerardo Beltran Serrano
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain and Neuromodulation at Hospital De Clínicas De Porto Alegre (HCPA), Porto Alegre, Brazil.,Psychology Department, Universidad Catolica De Cuenca, UCACUE, Cuenca, Ecuador
| | - Laura Pooch Rodrigues
- Laboratory of Pain and Neuromodulation at Hospital De Clínicas De Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Bruno Schein
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain and Neuromodulation at Hospital De Clínicas De Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Maxciel Zortea
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain and Neuromodulation at Hospital De Clínicas De Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Iraci Lucenada Silva Torres
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Department of Pharmacology, Institute of Health Sciences (ICBS), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Pharmacology of Pain and Neuromodulation: Pre-Clinical Investigations Research Group, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Fregni
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain and Neuromodulation at Hospital De Clínicas De Porto Alegre (HCPA), Porto Alegre, Brazil.,Pharmacology of Pain and Neuromodulation: Pre-Clinical Investigations Research Group, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
216
|
McIlwrath SL, Montera MA, Gott KM, Yang Y, Wilson CM, Selwyn R, Westlund KN. Manganese-enhanced MRI reveals changes within brain anxiety and aversion circuitry in rats with chronic neuropathic pain- and anxiety-like behaviors. Neuroimage 2020; 223:117343. [PMID: 32898676 PMCID: PMC8858643 DOI: 10.1016/j.neuroimage.2020.117343] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 01/31/2023] Open
Abstract
Chronic pain often predicts the onset of psychological distress. Symptoms including anxiety and depression after pain chronification reportedly are caused by brain remodeling/recruitment of the limbic and reward/aversion circuitries. Pain is the primary precipitating factor that has caused opioid overprescribing and continued overuse of opioids leading to the current opioid epidemic. Yet experimental pain therapies often fail in clinical trials. Better understanding of underlying pathologies contributing to pain chronification is needed to address these chronic pain related issues. In the present study, a chronic neuropathic pain model persisting 10 weeks was studied. The model develops both anxiety- and pain-related behavioral measures to mimic clinical pain. The manganese-enhanced magnetic resonance imaging (MEMRI) utilized improved MRI signal contrast in brain regions with higher neuronal activity in the rodent chronic constriction trigeminal nerve injury (CCI-ION) model. T1-weighted MEMRI signal intensity was increased compared to controls in supraspinal regions of the anxiety and aversion circuitry, including anterior cingulate gyrus (ACC), amygdala, habenula, caudate, ventrolateral and dorsomedial periaqueductal gray (PAG). Despite continuing mechanical hypersensitivity, MEMRI T1 signal intensity as the neuronal activity measure, was not significantly different in thalamus and decreased in somatosensory cortex (S1BF) of CCI-ION rats compared to naïve controls. This is consistent with decreased fMRI BOLD signal intensity in thalamus and cortex of patients with longstanding trigeminal neuropathic pain reportedly associated with gray matter volume decrease in these regions. Significant increase in MEMRI T2 signal intensity in thalamus of CCI-ION animals was indication of tissue water content, cell dysfunction and/or reactive astrogliosis. Decreased T2 signal intensity in S1BF cortex of rats with CCI-ION was similar to findings of reduced T2 signals in clinical patients with chronic orofacial pain indicating prolonged astrocyte activation. These findings support use of MEMRI and chronic rodent models for preclinical studies and therapeutic trials to reveal brain sites activated only after neuropathic pain has persisted in timeframes relevant to clinical pain and to observe treatment effects not possible in short-term models which do not have evidence of anxiety-like behaviors. Potential improvement is predicted in the success rate of preclinical drug trials in future studies with this model.
Collapse
Affiliation(s)
| | - Marena A Montera
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Katherine M Gott
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Yirong Yang
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Colin M Wilson
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Reed Selwyn
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Karin N Westlund
- Research Services New Mexico VA HealthCare System Albuquerque NM 87108 USA; University of New Mexico Health Sciences Center, Albuquerque, NM USA
| |
Collapse
|
217
|
Beach PA, Cowan RL, Dietrich MS, Bruehl SP, Atalla SW, Monroe TB. Thermal Psychophysics and Associated Brain Activation Patterns Along a Continuum of Healthy Aging. PAIN MEDICINE (MALDEN, MASS.) 2020; 21:1779-1792. [PMID: 31769853 PMCID: PMC7553022 DOI: 10.1093/pm/pnz281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To examine psychophysical and brain activation patterns to innocuous and painful thermal stimulation along a continuum of healthy older adults. DESIGN Single center, cross-sectional, within-subjects design. METHODS Thermal perceptual psychophysics (warmth, mild, and moderate pain) were tested in 37 healthy older adults (65-97 years, median = 73 years). Percept thresholds (oC) and unpleasantness ratings (0-20 scale) were obtained and then applied during functional magnetic resonance imaging scanning. General linear modeling assessed effects of age on psychophysical results. Multiple linear regressions were used to test the main and interaction effects of brain activation against age and psychophysical reports. Specifically, differential age effects were examined by comparing percent-signal change slopes between those above/below age 73 (a median split). RESULTS Advancing age was associated with greater thresholds for thermal perception (z = 2.09, P = 0.037), which was driven by age and warmth detection correlation (r = 0.33, P = 0.048). Greater warmth detection thresholds were associated with reduced hippocampal activation in "older" vs "younger" individuals (>/<73 years; beta < 0.40, P < 0.01). Advancing age, in general, was correlated with greater activation of the middle cingulate gyrus (beta > 0.44, P < 0.01) during mild pain. Differential age effects were found for prefrontal activation during moderate pain. In "older" individuals, higher moderate pain thresholds and greater degrees of moderate pain unpleasantness correlated with lesser prefrontal activation (anterolateral prefrontal cortex and middle-frontal operculum; beta < -0.39, P < 0.009); the opposite pattern was found in "younger" individuals. CONCLUSIONS Advancing age may lead to altered thermal sensation and (in some circumstances) altered pain perception secondary to age-related changes in attention/novelty detection and cognitive functions.
Collapse
Affiliation(s)
- Paul A Beach
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Ronald L Cowan
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mary S Dietrich
- Biostatistics, School of Medicine and School of Nursing, Vanderbilt University, Nashville, Tennessee
| | - Stephen P Bruehl
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sebastian W Atalla
- Center of Healthy Aging, The Ohio State University College of Nursing, Columbus, Ohio, USA
| | - Todd B Monroe
- Center of Healthy Aging, The Ohio State University College of Nursing, Columbus, Ohio, USA
| |
Collapse
|
218
|
Yamagishi A, Lee J, Sato N. Oxytocin in the anterior cingulate cortex is involved in helping behaviour. Behav Brain Res 2020; 393:112790. [DOI: 10.1016/j.bbr.2020.112790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 05/27/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
|
219
|
De Ridder D, Vanneste S. The Bayesian brain in imbalance: Medial, lateral and descending pathways in tinnitus and pain: A perspective. PROGRESS IN BRAIN RESEARCH 2020; 262:309-334. [PMID: 33931186 DOI: 10.1016/bs.pbr.2020.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tinnitus and pain share similarities in their anatomy, pathophysiology, clinical picture and treatments. Based on what is known in the pain field, a heuristic model can be proposed for the pathophysiolgy of tinnitus. This heuristic pathophysiological model suggests that pain and tinnitus are the consequence of an imbalance between two pain/tinnitus evoking pathways, i.e., a lateral sensory pathway and a medial affective pathway, both of which are not balanced anymore by a pain/noise inhibitory pathway. Mechanistically, based on the Bayesian brain concept, it can be explained by a switch occuring under influence of the rostral to dorsal anterior cingulate cortex of its prior predictions, i.e., a reference resetting, in which the pain/tinnitus state is considered as the new reference state. This reference resetting is confirmed by the nucleus accumbens as part of the reward system and maintained by connectivity changes between the nucleus accumbens and the pregenual anterior cingulate cortex. As a consequence it can be suggested to treat pain/tinnitus via reconditioning, either surgically or non-surgically. The model can also be used to develop objective measures for tinnitus and pain via supervised machine learning.
Collapse
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Sven Vanneste
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
220
|
Ponsel S, Zhang J, Pilz M, Yanovsky Y, Brankačk J, Draguhn A. Alterations of distributed neuronal network oscillations during acute pain in freely-moving mice. IBRO Rep 2020; 9:195-206. [PMID: 32944670 PMCID: PMC7481812 DOI: 10.1016/j.ibror.2020.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/07/2020] [Indexed: 01/01/2023] Open
Abstract
Injection of capsaicine in mice causes prolonged acute pain and characteristic changes in neuronal network oscillations. Changes are most prominent in higher-order phenomena like interregional oscillation coherence. Power in standard frequency bands is largely unaltered. Behavioral states related to acute pain can be predicted from network activity by a logistic regression classifier.
The experience of pain involves the activation of multiple brain areas. Pain-specific activity patterns within and between these local networks remain, however, largely unknown. We measured neuronal network oscillations in different relevant regions of the mouse brain during acute pain, induced by subcutaneous injection of capsaicin into the left hind paw. Field potentials were recorded from primary somatosensory cortex, anterior cingulate cortex (ACC), posterior insula, ventral posterolateral thalamic nucleus, parietal cortex, central nucleus of the amygdala and olfactory bulb. Analysis included power spectra of local signals as well as interregional coherences and cross-frequency coupling (CFC). Capsaicin injection caused hypersensitivity to mechanical stimuli for at least one hour. At the same time, CFC between low (1−12 Hz) and fast frequencies (80−120 Hz) was increased in the ACC, as well as interregional coherence of low frequency oscillations (< 30 Hz) between several networks. However, these changes were not significant anymore after multiple comparison corrections. Using a variable selection method (elastic net) and a logistic regression classifier, however, the pain state was reliably predicted by combining parameters of power and coherence from various regions. Distinction between capsaicin and saline injection was also possible when data were restricted to frequencies <30 Hz, as used in clinical electroencephalography (EEG). Our findings indicate that changes of distributed brain oscillations may provide a functional signature of acute pain or pain-related alterations in activity.
Collapse
Affiliation(s)
- Simon Ponsel
- Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | - Jiaojiao Zhang
- Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | - Maximilian Pilz
- Institute of Medical Biometry and Informatics, Heidelberg University, Germany
| | - Yevgenij Yanovsky
- Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | - Jurij Brankačk
- Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
221
|
Silvestrini N, Chen JI, Piché M, Roy M, Vachon-Presseau E, Woo CW, Wager TD, Rainville P. Distinct fMRI patterns colocalized in the cingulate cortex underlie the after-effects of cognitive control on pain. Neuroimage 2020; 217:116898. [DOI: 10.1016/j.neuroimage.2020.116898] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 01/22/2023] Open
|
222
|
Badidi G, Baulieu M, Vercherin P, De Pasquale V, Gavid M, Prades JM. Thyroid surgery under hypnosis: A 50-case series. Eur Ann Otorhinolaryngol Head Neck Dis 2020; 138:13-17. [PMID: 32703738 DOI: 10.1016/j.anorl.2020.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The study objective was to compare patient satisfaction after thyroid lobo-isthmectomy under hypnoanesthesia versus general anesthesia. METHODS A retrospective study included 100 patients undergoing lobo-isthmectomy. A group of 50 patients under hypnoanesthesia was compared to a control group of 50 patients under general anesthesia. Satisfaction was assessed on questionnaire between three and six months after surgery. We also compared secondary criteria: procedure time, blood loss, intraoperative comfort, postoperative pain, postoperative complications and time to resumption of daily activities. RESULTS Our study showed good overall satisfaction in patients operated under hypnoanesthesia, for equivalent operative safety and complications rate compared to general anesthesia. For comparable analgesia, postoperative pain was lower, but not significantly, in the Hypnosis group, while the rate of nausea and vomiting was significantly lower (p<0.05). Postoperative convalescence was shorter in the Hypnosis group: 3.7 versus 9.2 days (p<0.001). CONCLUSION In thyroid surgery, hypnoanesthesia has real advantages over general anesthesia in that it places the patient at the center of the care team's attention. His or her active participation is essential during the process, bringing a new dimension to care, beneficial for the patient. However, it must be reserved for minimally invasive procedures in which organization is anticipated in full collaboration within teams that are willing and experienced.
Collapse
Affiliation(s)
- G Badidi
- Service d'ORL et Chirurgie Cervico-Faciale, CHU de St-Etienne Hôpital Nord, St-Etienne, France.
| | - M Baulieu
- Service d'Anesthésie et Réanimation, CHU de St-Etienne Hôpital Nord, St-Etienne, France
| | - P Vercherin
- Service de Santé Publique et Information Médicale, CHU de St-Etienne Hôpital Nord, St-Etienne, France
| | - V De Pasquale
- Service d'Anesthésie et Réanimation, CHU de St-Etienne Hôpital Nord, St-Etienne, France
| | - M Gavid
- Service d'ORL et Chirurgie Cervico-Faciale, CHU de St-Etienne Hôpital Nord, St-Etienne, France
| | - J M Prades
- Service d'ORL et Chirurgie Cervico-Faciale, CHU de St-Etienne Hôpital Nord, St-Etienne, France
| |
Collapse
|
223
|
Berkovich-Ohana A, Dor-Ziderman Y, Trautwein FM, Schweitzer Y, Nave O, Fulder S, Ataria Y. The Hitchhiker's Guide to Neurophenomenology - The Case of Studying Self Boundaries With Meditators. Front Psychol 2020; 11:1680. [PMID: 32793056 PMCID: PMC7385412 DOI: 10.3389/fpsyg.2020.01680] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
This paper is a practical guide to neurophenomenology. Varela's neurophenomenological research program (NRP) aspires to bridge the gap between, and integrate, first-person (1P) and third-person (3P) approaches to understanding the mind. It does so by suggesting a methodological framework allowing these two irreducible phenomenal domains to relate and reciprocally support the investigation of one another. While highly appealing theoretically, neurophenomenology invites researchers to a challenging methodological endeavor. Based on our experience with empirical neurophenomenological implementation, we offer practical clarifications and insights learnt along the way. In the first part of the paper, we outline the theoretical principles of the NRP and briefly present the field of 1P research. We speak to the importance of phenomenological training and outline the utility of cooperating with meditators as skilled participants. We suggest that 1P accounts of subjective experience can be placed on a complexity continuum ranging between thick and thin phenomenology, highlighting the tension and trade-off inherent to the neurophenomenological attempt to naturalize phenomenology. We then outline a typology of bridges, which create mutual constraints between 1P and 3P approaches, and argue for the utility of alternating between the bridges depending on the available experimental resources, domain of interest and level of sought articulation. In the second part of the paper, we demonstrate how the theory can be put into practice by describing a decade of neurophenomenological studies investigating the sense of self with increasing focus on its embodied, and minimal, aspects. These aspects are accessed via the dissolution of the sense-of-boundaries, shedding new light on the multi-dimensionality and flexibility of embodied selfhood. We emphasize the evolving neurophenomenological dialogue, showing how consecutive studies, placed differently on the thin-to-thick 1P continuum, advance the research project by using the bridging principles appropriate for each stage.
Collapse
Affiliation(s)
- Aviva Berkovich-Ohana
- Department of Learning, Instruction and Teacher Education, Faculty of Education, University of Haifa, Haifa, Israel
- Department of Counseling and Human Development, Faculty of Education, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Yair Dor-Ziderman
- Department of Learning, Instruction and Teacher Education, Faculty of Education, University of Haifa, Haifa, Israel
- Department of Counseling and Human Development, Faculty of Education, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center, University of Haifa, Haifa, Israel
| | - Fynn-Mathis Trautwein
- Edmond J. Safra Brain Research Center, University of Haifa, Haifa, Israel
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Freiburg im Breisgau, Germany
| | - Yoav Schweitzer
- Department of Learning, Instruction and Teacher Education, Faculty of Education, University of Haifa, Haifa, Israel
- Department of Counseling and Human Development, Faculty of Education, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center, University of Haifa, Haifa, Israel
| | - Ohad Nave
- Department of Cognitive Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Yochai Ataria
- Department of Psychology, Tel-Hai Academic College, Tel Hai, Israel
| |
Collapse
|
224
|
Okine BN, Mc Laughlin G, Gaspar JC, Harhen B, Roche M, Finn DP. Antinociceptive Effects of the GPR55 Antagonist CID16020046 Injected into the Rat Anterior Cingulate Cortex. Neuroscience 2020; 443:19-29. [PMID: 32673629 DOI: 10.1016/j.neuroscience.2020.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
The G-protein coupled receptor, GPR55, modulates nociceptive processing. Given the expression of GPR55 in the anterior cingulate cortex (ACC), a key brain region involved in the cognitive and affective dimensions of pain, the present study tested the hypothesis that GPR55 signalling in the ACC facilitates inflammatory pain behaviour in rats. The expression of GPR55 in the ACC was confirmed by both western blotting and immunostaining, with evidence for neuronal localisation. Microinjection of the selective GPR55 antagonist CID16020046 into the ACC of adult male Sprague-Dawley rats significantly reduced second phase formalin-evoked nociceptive behaviour compared with vehicle-treated controls. CID16020046 administration was associated with a reduction in phosphorylation of extracellular signal-regulated kinase (ERK), a downstream target of GPR55 activation, in the ACC. Intra-ACC administration of CID16020046 prevented the formalin-induced increases in expression of mRNA coding for the immediate early gene and marker of neuronal activity, c-Fos, in the ipsilateral dorsal horn of the spinal cord. Intra-plantar injection of formalin reduced tissue levels of the endogenous GPR55 ligand 2-arachidonoyl-sn-glycero-3-phosphoinositol (2-AGPI) in the ACC, likely reflecting its increased release/utilisation. These data suggest that endogenous activation of GPR55 signalling and increased ERK phosphorylation in the ACC facilitates inflammatory pain via top-down modulation of descending pain control.
Collapse
Affiliation(s)
- Bright N Okine
- Pharmacology and Therapeutics, NCBES, National University of Ireland, Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Gemma Mc Laughlin
- Pharmacology and Therapeutics, NCBES, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Jessica C Gaspar
- Pharmacology and Therapeutics, NCBES, National University of Ireland, Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Brendan Harhen
- Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, NCBES, National University of Ireland, Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, University Road, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, NCBES, National University of Ireland, Galway, University Road, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, University Road, Galway, Ireland.
| |
Collapse
|
225
|
Jin T, Chen R, Shao M, Yang X, Ma L, Wang F. Dorsal hippocampus- and ACC-projecting medial septum neurons differentially contribute to the recollection of episodic-like memory. FASEB J 2020; 34:11741-11753. [PMID: 32652689 DOI: 10.1096/fj.202000398r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 11/11/2022]
Abstract
Episodic memory refers to the recollection of previous experiences containing specific temporal, spatial, and emotional information. The ability to recollect episodic memory requires coordination of multiple brain regions, including the hippocampus (HPC) and the cingulate cortex. While the afferents into HPC and cingulate cortex that orchestrate the episodic memory remain unclear. The medial septum (MS), one of the anatomical location of cholinergic centers, innervates not only the dorsal HPC (dHPC), but also the cingulate and entorhinal cortices. By using "What-Where-When" episodic-like memory (ELM) behavioral model and viral tracing, we found that MS neurons projected to dHPC and anterior cingulate cortex (ACC), which exerted distinct impacts on ELM recollection. Chemogenetic inhibition of the dHPC-projecting MS neurons disrupted "What-Where-When" ELM recollection as well as object location, object-in-place, and recency recognition memories recollection, while chemogenetic inhibition of the ACC-projecting MS neurons only disrupted "What-Where-When" ELM recollection. Moreover, neither dHPC- nor ACC-projecting MS neurons were involved in novel object recognition memory recollection or locomotor activity. Immunostaining showed that ACC- and dHPC-projecting MS neurons are partially overlapped populations. These findings reveal an unsuspected division of ELM processing and provide the potential mechanism that the recollection of episodic memory need the coordination of MS neurons projecting to dHPC and ACC.
Collapse
Affiliation(s)
- Tao Jin
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ruyan Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mingshuo Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiao Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lan Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Feifei Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
226
|
Lackner JM. Skills over pills? A clinical gastroenterologist's primer in cognitive behavioral therapy for irritable bowel syndrome. Expert Rev Gastroenterol Hepatol 2020; 14:601-618. [PMID: 32510249 DOI: 10.1080/17474124.2020.1780118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Irritable bowel syndrome is a common, painful, and often disabling GI disorder for which there is no satisfactory medical or dietary treatment. The past 10 years have seen the development and validation of a number of psychological treatments of which CBT is arguably the most effective based on two recently conducted multiple site trials from two investigative teams in the UK and USA. AREAS COVERED The purpose of this review is to describe the principles, processes, procedures, and empirical basis supporting CBT and distinguish it from other psychological treatments available to clinical GE whose patients suffer from refractory IBS. EXPERT OPINION The efficacy of CBT in treating refractory IBS patients is well established but there is limited understanding of why it works and for whom it is most beneficial. Further, its availability is generally limited to tertiary care settings which may undermine its value proposition if improved self-management is not accompanied by other health-care efficiencies. Systematic efforts to increase both the efficiency of CBT and the way it is delivered (e.g. digital therapeutics, integration into primary care) is critical to optimizing CBT's potential and reducing the public health burden IBS imposes.
Collapse
Affiliation(s)
- Jeffrey M Lackner
- Jacobs School of Medicine and Biomedical Science, University at Buffalo, SUNY , Buffalo, NY, USA
| |
Collapse
|
227
|
Tobimatsu S. Neuromagnetic oscillations in the human sensory systems: A mini review of our series and literature. Neurosci Res 2020; 156:117-129. [PMID: 31874215 DOI: 10.1016/j.neures.2019.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/06/2019] [Accepted: 11/27/2019] [Indexed: 11/19/2022]
Abstract
Oscillatory neuronal (electrical) activity in defined frequency ranges supports synchronous interactions between anatomically distinct regions of the human brain during cognitive tasks. Here, the author reviews our previous studies that focused on the neuromagnetic oscillations in the sensory systems in response to the external stimuli in normal healthy subjects and neurological disorders. A magnetoencephalography was applied to evaluate the neuromagnetic oscillations in humans. We have demonstrated that the oscillatory gamma synchronization binds the primary and secondary somatosensory areas (S1 and S2) in humans. This functional coupling is modulated by aging. In people who stutter, functional and structural reorganization of the right auditory cortex appears to be a compensatory mechanism for impaired left auditory cortex function. This may be partly caused by increased right hemispheric local phase synchronization and increased inter-hemispheric phase synchronization. We have also found that the hippocampus modulates auditory processing differently under normal conditions and in epileptic patients with hippocampal sclerosis. This indicates that altered neural synchronization may provide useful information about possible functional deterioration in patients with unilateral mesial temporal lobe epilepsy. Finally, supraspinal (cortical) mechanism is responsible for pain perception and pain relief via neural oscillations. Together, neuronal synchronization plays an important role in distributed cortico-cortical processing.
Collapse
Affiliation(s)
- Shozo Tobimatsu
- Department of Clinical Neurophysiology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
228
|
Pilitsis JG, Fahey M, Custozzo A, Chakravarthy K, Capobianco R. Composite Score Is a Better Reflection of Patient Response to Chronic Pain Therapy Compared With Pain Intensity Alone. Neuromodulation 2020; 24:68-75. [PMID: 32592618 DOI: 10.1111/ner.13212] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The pain Numeric Rating Scale (NRS) score became standard when pain was introduced as the fifth vital sign in the 1990s. Although plagued with issues, it remains the basis for primary outcome measures in clinical trials for chronic pain therapies. Multidimensional composite scoring that considers all aspects of the chronic pain experience may provide a more meaningful response measure. Herein we propose a multidimensional responder index. MATERIALS AND METHODS Data were extracted from an ongoing prospective, multicenter study on DeRidder Burst spinal cord stimulation (B-SCS) for chronic back and/or leg pain (NCT03082261). The analysis cohort consisted of subjects who completed the NRS, Pain Catastrophizing Scale (PCS), EuroQol-5D (EQ-5D), and eight-item Patient-Reported Outcomes Measurement Information System Physical Function preoperatively and at 12 months after implant. RESULTS A principal component analysis showed that each of the four measures contributed equally to the variance in the data set, confirming that pain score should not be used alone. Subjects who failed to respond on NRS responded on both PCS and EQ-5D. Eighty-one percent of subjects responded on at least two measures. The responder algorithm yielded an 84% success rate at both 6- and 12-month time points. CONCLUSIONS Our study suggests that therapeutic response, similar to the chronic pain experience, is multidimensional. Careful consideration should be made to incorporate composite endpoints in future SCS clinical trials.
Collapse
Affiliation(s)
- Julie G Pilitsis
- Department of Neurosurgery, Albany Medical Center, Albany, NY, USA.,Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Marie Fahey
- Neuromodulation Division, Abbott, Austin, TX, USA
| | - Amanda Custozzo
- Department of Neurosurgery, Albany Medical Center, Albany, NY, USA
| | - Krishnan Chakravarthy
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, La Jolla, CA, USA.,Department of Anesthesiology and Pain Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | | |
Collapse
|
229
|
Chronic Restraint Stress Affects Network Oscillations in the Anterior Cingulate Cortex in Mice. Neuroscience 2020; 437:172-183. [PMID: 32335214 DOI: 10.1016/j.neuroscience.2020.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022]
Abstract
The anterior cingulate cortex (ACC) is vulnerable to stress. Its dysfunction is observed in psychiatric disorders manifested as alterations in network oscillations. Mechanisms linking stress load to disturbed emotional-cognitive behaviors are of essential importance to further elucidate therapeutic strategies for psychiatric diseases. Here, we analyzed the effects of chronic restraint stress (CRS) load in juvenile mice on kainic acid (KA)-induced network oscillations in ACC slice preparations and on the forced swim test (FST). The immobility time (IT) was shortened at the beginning of the FST in CRS mice. Power spectral density (PSD) obtained from KA-induced oscillations in field potentials in the superficial layers of the ACC were altered in slices from the CRS mice. The PSD was decreased in CRS mice at the alpha (8-12 Hz), beta (13-30 Hz), low gamma (30-50 Hz), and high gamma (50-80 Hz) components. Noradrenaline increased the PSD of the theta (3-8 Hz) components in both the control and CRS groups, and also in alpha components only in the CRS group. Dopamine did not modulate the PSD of any frequency components in the control mice, whereas it enhanced the PSD of theta and alpha components in CRS mice. It was suggested that chronic stress load affects the dynamics of the network oscillations in the ACC with enhanced cathecolaminergic modulation.
Collapse
|
230
|
Kuner R, Kuner T. Cellular Circuits in the Brain and Their Modulation in Acute and Chronic Pain. Physiol Rev 2020; 101:213-258. [PMID: 32525759 DOI: 10.1152/physrev.00040.2019] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic, pathological pain remains a global health problem and a challenge to basic and clinical sciences. A major obstacle to preventing, treating, or reverting chronic pain has been that the nature of neural circuits underlying the diverse components of the complex, multidimensional experience of pain is not well understood. Moreover, chronic pain involves diverse maladaptive plasticity processes, which have not been decoded mechanistically in terms of involvement of specific circuits and cause-effect relationships. This review aims to discuss recent advances in our understanding of circuit connectivity in the mammalian brain at the level of regional contributions and specific cell types in acute and chronic pain. A major focus is placed on functional dissection of sub-neocortical brain circuits using optogenetics, chemogenetics, and imaging technological tools in rodent models with a view towards decoding sensory, affective, and motivational-cognitive dimensions of pain. The review summarizes recent breakthroughs and insights on structure-function properties in nociceptive circuits and higher order sub-neocortical modulatory circuits involved in aversion, learning, reward, and mood and their modulation by endogenous GABAergic inhibition, noradrenergic, cholinergic, dopaminergic, serotonergic, and peptidergic pathways. The knowledge of neural circuits and their dynamic regulation via functional and structural plasticity will be beneficial towards designing and improving targeted therapies.
Collapse
Affiliation(s)
- Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; and Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; and Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
231
|
Xiang A, Liu H, Qu X, Liu S, Shen X. Approach Behavior Induced by 10.6-μm Laser Stimulation at Acupoint ST36 in a Rat Model of Incisional Pain. Photobiomodul Photomed Laser Surg 2020; 38:385-391. [DOI: 10.1089/photob.2019.4762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anfeng Xiang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Liu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyi Qu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Liu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueyong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
232
|
Su Q, Song Y, Zhao R, Liang M. A review on the ongoing quest for a pain signature in the human brain. BRAIN SCIENCE ADVANCES 2020. [DOI: 10.26599/bsa.2019.9050024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Developing an objective biomarker for pain assessment is crucial for understanding neural coding mechanisms of pain in the human brain as well as for effective treatment of pain disorders. Neuroimaging techniques have been proven to be powerful tools in the ongoing quest for a pain signature in the human brain. Although there is still a long way to go before achieving a truly successful pain signature based on neuroimaging techniques, important progresses have been made through great efforts in the last two decades by the Pain Society. Here, we focus on neural responses to transient painful stimuli in healthy people, and review the relevant studies on the identification of a neuroimaging signature for pain.
Collapse
Affiliation(s)
- Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for China, Tianjin 300060, China
- These authors contributed equally to this work
| | - Yingchao Song
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300070, China
- These authors contributed equally to this work
| | - Rui Zhao
- Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
233
|
Abstract
People often experience two types of pain: social pain and physical pain. The former is related to psychological distance from other people or social groups, whereas the latter is associated with actual or potential tissue damage. Social pain caused by interpersonal interactions causes negative feelings in individuals and has negative consequences to the same degree as physical pain. Various studies have shown an interaction between social pain and physical pain, not only in behavioral performance but also in activities within shared neural regions. Accordingly, the present paper reviews: (1) the interaction between social pain and physical pain in individuals’ behavioral performances; and (2) the overlap in neural circuitry as regards the processing of social pain and physical pain. Understanding the relationship between social pain and physical pain might provide new insights into the nature of these two types of pain, and thus may further contribute to the treatment of illnesses associated with both types of painful experience.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqi Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhuo Kong
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
234
|
Kummer KK, Mitrić M, Kalpachidou T, Kress M. The Medial Prefrontal Cortex as a Central Hub for Mental Comorbidities Associated with Chronic Pain. Int J Mol Sci 2020; 21:E3440. [PMID: 32414089 PMCID: PMC7279227 DOI: 10.3390/ijms21103440] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic pain patients frequently develop and suffer from mental comorbidities such as depressive mood, impaired cognition, and other significant constraints of daily life, which can only insufficiently be overcome by medication. The emotional and cognitive components of pain are processed by the medial prefrontal cortex, which comprises the anterior cingulate cortex, the prelimbic, and the infralimbic cortex. All three subregions are significantly affected by chronic pain: magnetic resonance imaging has revealed gray matter loss in all these areas in chronic pain conditions. While the anterior cingulate cortex appears hyperactive, prelimbic, and infralimbic regions show reduced activity. The medial prefrontal cortex receives ascending, nociceptive input, but also exerts important top-down control of pain sensation: its projections are the main cortical input of the periaqueductal gray, which is part of the descending inhibitory pain control system at the spinal level. A multitude of neurotransmitter systems contributes to the fine-tuning of the local circuitry, of which cholinergic and GABAergic signaling are particularly emerging as relevant components of affective pain processing within the prefrontal cortex. Accordingly, factors such as distraction, positive mood, and anticipation of pain relief such as placebo can ameliorate pain by affecting mPFC function, making this cortical area a promising target region for medical as well as psychosocial interventions for pain therapy.
Collapse
Affiliation(s)
| | | | | | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.K.K.); (M.M.); (T.K.)
| |
Collapse
|
235
|
Cyna AM. Little words BIG impact: Perioperative communication for children with burns. Anaesth Intensive Care 2020; 48:123-128. [PMID: 32356481 DOI: 10.1177/0310057x20914909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anaesthetists are key members of teams caring for burn-injured children in almost every aspect of their management. Their role can involve initial resuscitation, intensive care, analgesia, and anaesthesia for multiple procedures both acutely and subsequently for scar management. As key members of burns management teams, effective communication with patients and their families as well as other members of the burn care team is vital. There is little guidance, however, addressing how the anaesthetist might communicate and optimise anaesthetic burns care of children pre-, intra-, and postoperatively. Advances in the understanding of the neurobiology of communication suggests that we need to consider positive (placebo) or negative (nocebo) subconscious processes. Learnable language structures GREAT (Greeting, Rapport, Expectations, Addressing concerns, Tacit agreement) and LAURS (Listening, Acceptance, Utilisation, Reframing, Suggestion) can facilitate any patient or family interaction ensuring children and their parents feel they are being heard and understood. Talking about finishing rather than starting when about to perform a potentially painful procedure can also facilitate burns care with children. Other strategies include the avoidance of nocebo communications or apologising before a painful procedure and, instead, focusing on therapeutic (placebo) alternatives. Children do not view pain in the same way as adults do, and techniques such as play therapy and hypnosis can be valuable adjuncts to traditional analgesia administration in burns care, with the added benefit of minimising side-effects. The use of regular time-outs during prolonged burns surgeries is a helpful communication strategy between the anaesthetist and other members of the burns team that can optimise patient safety. Communication is a core clinical skill in the practice of anaesthesia during paediatric burns care and is an area for future research.
Collapse
Affiliation(s)
- Allan M Cyna
- Department of Women's Anaesthesia, Women's and Children's Hospital, Adelaide, Australia.,Discipline of Acute Care Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
236
|
Bonin EA, Lejeune N, Thibaut A, Cassol H, Antonopoulos G, Wannez S, Martial C, Schnakers C, Laureys S, Chatelle C. Nociception Coma Scale-Revised Allows to Identify Patients With Preserved Neural Basis for Pain Experience. THE JOURNAL OF PAIN 2020; 21:742-750. [DOI: 10.1016/j.jpain.2019.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/05/2019] [Accepted: 11/11/2019] [Indexed: 01/18/2023]
|
237
|
Kirketeig T, Schultheis C, Zuidema X, Hunter CW, Deer T. Burst Spinal Cord Stimulation: A Clinical Review. PAIN MEDICINE 2020; 20:S31-S40. [PMID: 31152175 PMCID: PMC6544556 DOI: 10.1093/pm/pnz003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective Clinical review on outcomes using burst spinal cord stimulation (SCS) in the treatment of chronic, intractable pain. Design Narrative clinical literature review conducted utilizing a priori search terms including key words for burst spinal cord stimulation. Synthesis and reporting of data from publications including an overview of comparative SCS outcomes. Results Burst SCS demonstrated greater pain relief over tonic stimulation in multiple studies, which included blinded, sham-controlled, randomized trials. Additionally, burst stimulation impacts multiple dimensions of pain, including somatic pain as well as emotional and psychological elements. Patient preference is weighted toward burst over tonic due to increased pain relief, a lack of paresthesias, and impression of change in condition. Conclusion Burst SCS has been shown to be both statistically and clinically superior to tonic stimulation and may provide additional benefits through different mechanisms of action. Further high-quality controlled studies are warranted to not only elucidate the basic mechanisms of burst SCS but also address how this unique stimulation signature/pattern may more adequately handle the multiple affective dimensions of pain in varying patient populations.
Collapse
Affiliation(s)
- Terje Kirketeig
- Multidisciplinary Pain Clinic, Uppsala University Hospital, Uppsala, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Carsten Schultheis
- Departement für Interventionelle Schmerzmedizin, Krankenhaus Neuwerk "Maria von den Aposteln" Muskulo-Skeletales Zentrum Mönchengladbach, Germany
| | - Xander Zuidema
- Department of Anesthesiology and Pain Management, Diakonessenhuis Utrecht, Utrecht, the Netherlands
| | - Corey W Hunter
- Ainsworth Institute of Pain Management, New York, New York
| | - Timothy Deer
- The Spine and Nerve Center of the Virginias, Charleston, West Virginia, USA
| |
Collapse
|
238
|
Appel PR. A Philosophical Approach to the Rehabilitation of the Patient with Persistent Pain. AMERICAN JOURNAL OF CLINICAL HYPNOSIS 2020; 62:330-343. [PMID: 32216629 DOI: 10.1080/00029157.2019.1709152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The use of hypnosis to promote hypnoanalgesia has a long history and has been written about anecdotally as well as having been researched in the last several decades. Research has been both clinical in nature and, in the laboratory, trying to understand the brain physiology and processes involved. This article is not about a review of the research. It is about sharing what I have learned to do clinically using hypnosis to treat patients with persistent pain over the last 40 plus years. Due to the restraints of limited space, I can only discuss the various techniques briefly. I will describe a philosophical perspective that has served me well and driven my approach to treatment. I will discuss the concept of self-regulation training along the dimensions of Sensation, Affect, Cognition, and Behavior and share how hypnosis has been incorporated in working within each of those aspects of experiencing.
Collapse
Affiliation(s)
- Philip R. Appel
- MedStar National Rehabilitation Hospital, Washington DC, USA
| |
Collapse
|
239
|
Kim H. Stability or Plasticity? - A Hierarchical Allostatic Regulation Model of Medial Prefrontal Cortex Function for Social Valuation. Front Neurosci 2020; 14:281. [PMID: 32296303 PMCID: PMC7138052 DOI: 10.3389/fnins.2020.00281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
The medial prefrontal cortex (mPFC) has long been recognized as the key component of the neurocircuitry involved in various social as well as non-social behaviors, however, little is known regarding the organizing principle of distinctive subregions in the mPFC that integrates a wide range of mPFC functions. The present study proposes a hierarchical model of mPFC functionality, where three functionally dissociable subregions, namely, the ventromedial prefrontal cortex (vmPFC), rostromedial prefrontal cortex (rmPFC), and dorsomedial prefrontal cortex (dmPFC), are differentially involved in computing values of decision-making. According to this model, the mPFC subregions interact with each other in such a way that more dorsal regions utilize additional external sensory information from environment to predict and prevent conflicts occurring in more ventral regions tuned to internal bodily signals, thereby exerting the hierarchically organized allostatic regulatory control over homeostatic reflexes. This model also emphasizes the role of the thalamic reticular nucleus (TRN) in arbitrating the transitions between different thalamo-cortical loops, detecting conflicts between competing options for decision-making, and in shifting flexibly between decision modes. The hierarchical architecture of the mPFC working in conjunction with the TRN may play a key role in adjusting the internal (bodily) needs to suit the constraints of external (environmental) variables better, thus effectively addressing the stability-plasticity dilemma.
Collapse
Affiliation(s)
- Hackjin Kim
- Department of Psychology, Korea University, Seoul, South Korea
| |
Collapse
|
240
|
Singh A, Patel D, Li A, Hu L, Zhang Q, Liu Y, Guo X, Robinson E, Martinez E, Doan L, Rudy B, Chen ZS, Wang J. Mapping Cortical Integration of Sensory and Affective Pain Pathways. Curr Biol 2020; 30:1703-1715.e5. [PMID: 32220320 DOI: 10.1016/j.cub.2020.02.091] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
Pain is an integrated sensory and affective experience. Cortical mechanisms of sensory and affective integration, however, remain poorly defined. Here, we investigate the projection from the primary somatosensory cortex (S1), which encodes the sensory pain information, to the anterior cingulate cortex (ACC), a key area for processing pain affect, in freely behaving rats. By using a combination of optogenetics, in vivo electrophysiology, and machine learning analysis, we find that a subset of neurons in the ACC receives S1 inputs, and activation of the S1 axon terminals increases the response to noxious stimuli in ACC neurons. Chronic pain enhances this cortico-cortical connection, as manifested by an increased number of ACC neurons that respond to S1 inputs and the magnified contribution of these neurons to the nociceptive response in the ACC. Furthermore, modulation of this S1→ACC projection regulates aversive responses to pain. Our results thus define a cortical circuit that plays a potentially important role in integrating sensory and affective pain signals.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Divya Patel
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Anna Li
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Lizbeth Hu
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Yaling Liu
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Xinling Guo
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Eric Robinson
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Erik Martinez
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Lisa Doan
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Bernardo Rudy
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA
| | - Zhe S Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
241
|
An exploratory proton MRS examination of gamma-aminobutyric acid, glutamate, and glutamine and their relationship to affective aspects of chronic pain. Neurosci Res 2020; 163:10-17. [PMID: 32171782 DOI: 10.1016/j.neures.2020.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 01/24/2023]
Abstract
Veterans experience chronic pain more frequently than civilians. Identification of neurobiological mechanisms underlying the pathophysiology of chronic pain in a veteran population may aid in the development of novel treatment targets. In this pilot proof-of-concept study, veterans with chronic pain (N = 61) and no chronic pain (N = 19) completed clinical interviews, self-report questionnaires inquiring about pain history, interference of pain with daily life, and pain catastrophizing, as well as measures of depressive and anxious symptoms. Veterans also underwent single-voxel proton (1H) magnetic resonance spectroscopy (MRS) at 3 T in the anterior cingulate cortex (ACC) using a two-dimensional (2D) J-resolved point spectroscopy sequence. We found no group difference in neurometabolites between veterans with and without chronic pain; however, pain intensity, negative thinking about pain, and description of pain in affective terms were associated with lower GABA/Cre in the ACC. In addition, the Glu/GABA ratio in the ACC was positively associated with anxiety and depressive symptoms in veterans with chronic pain. Reductions in GABA in the ACC may contribute to increased pain intensity and greater pain catastrophizing in veterans with chronic pain. Furthermore, a disturbance in the excitatory-inhibitory balance may contribute to the anxious and depressive symptoms related to chronic pain. Given the pilot nature of the study, these findings must be considered preliminary.
Collapse
|
242
|
DeSouza DD, Stimpson KH, Baltusis L, Sacchet MD, Gu M, Hurd R, Wu H, Yeomans DC, Willliams N, Spiegel D. Association between Anterior Cingulate Neurochemical Concentration and Individual Differences in Hypnotizability. Cereb Cortex 2020; 30:3644-3654. [PMID: 32108220 DOI: 10.1093/cercor/bhz332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hypnosis is the oldest form of Western psychotherapy and a powerful evidence-based treatment for numerous disorders. Hypnotizability is variable between individuals; however, it is a stable trait throughout adulthood, suggesting that neurophysiological factors may underlie hypnotic responsiveness. One brain region of particular interest in functional neuroimaging studies of hypnotizability is the anterior cingulate cortex (ACC). Here, we examined the relationships between the neurochemicals, GABA, and glutamate, in the ACC and hypnotizability in healthy individuals. Participants underwent a magnetic resonance imaging (MRI) session, whereby T1-weighted anatomical and MEGA-PRESS spectroscopy scans were acquired. Voxel placement over the ACC was guided by a quantitative meta-analysis of functional neuroimaging studies of hypnosis. Hypnotizability was assessed using the Hypnotic Induction Profile (HIP), and self-report questionnaires to assess absorption (TAS), dissociation (DES), and negative affect were completed. ACC GABA concentration was positively associated with HIP scores such that the higher the GABA concentration, the more hypnotizable an individual. An exploratory analysis of questionnaire subscales revealed a negative relationship between glutamate and the absorption and imaginative involvement subscale of the DES. These results provide a putative neurobiological basis for individual differences in hypnotizability and can inform our understanding of treatment response to this growing psychotherapeutic tool.
Collapse
Affiliation(s)
- Danielle D DeSouza
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Katy H Stimpson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Laima Baltusis
- Center for Cognitive and Neurobiological Imaging, Stanford University, Palo Alto, CA, USA
| | - Matthew D Sacchet
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard Medical School, Belmont MA, USA
| | - Meng Gu
- Radiology and Radiological Sciences, Stanford University, Palo Alto, CA, USA
| | - Ralph Hurd
- Radiology and Radiological Sciences, Stanford University, Palo Alto, CA, USA
| | - Hua Wu
- Center for Cognitive and Neurobiological Imaging, Stanford University, Palo Alto, CA, USA
| | - David C Yeomans
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, USA
| | - Nolan Willliams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - David Spiegel
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
243
|
Timme S, Brand R. Affect and exertion during incremental physical exercise: Examining changes using automated facial action analysis and experiential self-report. PLoS One 2020; 15:e0228739. [PMID: 32045442 PMCID: PMC7012425 DOI: 10.1371/journal.pone.0228739] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Recent research indicates that affective responses during exercise are an important determinant of future exercise and physical activity. Thus far these responses have been measured with standardized self-report scales, but this study used biometric software for automated facial action analysis to analyze the changes that occur during physical exercise. A sample of 132 young, healthy individuals performed an incremental test on a cycle ergometer. During that test the participants' faces were video-recorded and the changes were algorithmically analyzed at frame rate (30 fps). Perceived exertion and affective valence were measured every two minutes with established psychometric scales. Taking into account anticipated inter-individual variability, multilevel regression analysis was used to model how affective valence and ratings of perceived exertion (RPE) covaried with movement in 20 facial action areas. We found the expected quadratic decline in self-reported affective valence (more negative) as exercise intensity increased. Repeated measures correlation showed that the facial action mouth open was linked to changes in (highly intercorrelated) affective valence and RPE. Multilevel trend analyses were calculated to investigate whether facial actions were typically linked to either affective valence or RPE. These analyses showed that mouth open and jaw drop predicted RPE, whereas (additional) nose wrinkle was indicative for the decline in affective valence. Our results contribute to the view that negative affect, escalating with increasing exercise intensity, may be the body's essential warning signal that physiological overload is imminent. We conclude that automated facial action analysis provides new options for researchers investigating feelings during exercise. In addition, our findings offer physical educators and coaches a new way of monitoring the affective state of exercisers, without interrupting and asking them.
Collapse
Affiliation(s)
- Sinika Timme
- Sport and Exercise Psychology, University of Potsdam, Potsdam, Germany
| | - Ralf Brand
- Sport and Exercise Psychology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
244
|
Guo X, Zhang Q, Singh A, Wang J, Chen ZS. Granger causality analysis of rat cortical functional connectivity in pain. J Neural Eng 2020; 17:016050. [PMID: 31945754 DOI: 10.1088/1741-2552/ab6cba] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) are two of the most important cortical brain regions encoding the sensory-discriminative and affective-emotional aspects of pain, respectively. However, the functional connectivity of these two areas during pain processing remains unclear. Developing methods to dissect the functional connectivity and directed information flow between cortical pain circuits can reveal insight into neural mechanisms of pain perception. APPROACH We recorded multichannel local field potentials (LFPs) from the S1 and ACC in freely behaving rats under various conditions of pain stimulus (thermal versus mechanical) and pain state (naive versus chronic pain). We applied Granger causality (GC) analysis to the LFP recordings and inferred frequency-dependent GC statistics between the S1 and ACC. MAIN RESULTS We found an increased information flow during noxious pain stimulus presentation in both S1[Formula: see text]ACC and ACC[Formula: see text]S1 directions, especially at theta and gamma frequency bands. Similar results were found for thermal and mechanical pain stimuli. The chronic pain state shares common observations, except for further elevated GC measures especially in the gamma band. Furthermore, time-varying GC analysis revealed a negative correlation between the direction-specific and frequency-dependent GC and animal's paw withdrawal latency. In addition, we used computer simulations to investigate the impact of model mismatch, noise, missing variables, and common input on the conditional GC estimate. We also compared the GC results with the transfer entropy (TE) estimates. SIGNIFICANCE Our results reveal functional connectivity and directed information flow between the S1 and ACC during various pain conditions. The dynamic GC analysis support the hypothesis of cortico-cortical information loop in pain perception, consistent with the computational predictive coding paradigm.
Collapse
Affiliation(s)
- Xinling Guo
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. Department of Psychiatry, New York University School of Medicine, New York, NY 10016, United States of America
| | | | | | | | | |
Collapse
|
245
|
Yang FP, Chao AS, Lin SH, Chao A, Wang TH, Chang YL, Chang HS, Wang JJ. Functional human brain connectivity during labor and its alteration under epidural analgesia. Brain Imaging Behav 2020; 14:2647-2658. [PMID: 31900889 DOI: 10.1007/s11682-019-00216-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study used functional magnetic resonance imaging to explore the neural networks of pain during labor and its relief. It was hypothesized that epidural analgesia would affect the neural activities and the underlying network connectivity. Analysis using dynamic causal modelling and functional connectivity was performed to investigate the spatial activity and network connection of labor pain with and without epidural analgesia. This Institutional Review Board approved study acquired Magnetic Resonance Imaging from 15 healthy women of spontaneous normal delivery (with/without epidural analgesia = 7/8, aged 29.6 ± 2.3 and 29.3 ± 4.8 years old respectively) using a 1.5 Tesla scanner. Numerical rating score of pain was evaluated by a research nurse in the beginning of the first stage of labor and approximately 30 min after imaging examination. Six regions of interested from the activated clusters and literature were selected for dynamic causal modelling, which included primary and secondary somatosensory cortex, middle frontal gyrus, anterior cingulate cortex, insula and lentiform. Functional connectivity was calculated from selected sensory and affective regions. All analyses were performed by using software of statistical parametric mapping version 8 and CONN functional connectivity toolbox. The result showed that the experience of labor pain can lead to activations within a distributed brain network. The pain relief from epidural analgesia can be accompanied with altered functional connectivity, which was most evident in the cingulo-frontal system. The present study, therefore, provides an overview of a pain-related neural network that occur during labor and upon epidural analgesia.
Collapse
Affiliation(s)
- Fan-Pei Yang
- Department of Foreign Languages and Literature, National Tsing Hua University, Hsinchu, Taiwan
| | - An-Shine Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan
| | - Sung-Han Lin
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 WenHua 1st Road, TaoYuan county, Taiwan
| | - Anne Chao
- Department of Anesthesia, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Hao Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan
| | - Yao-Lung Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan
| | - Hong-Shiu Chang
- Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan City, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 WenHua 1st Road, TaoYuan county, Taiwan.
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan.
| |
Collapse
|
246
|
Kissiwaa SA, Patel SD, Winters BL, Bagley EE. Opioids differentially modulate two synapses important for pain processing in the amygdala. Br J Pharmacol 2020; 177:420-431. [PMID: 31596498 PMCID: PMC6989950 DOI: 10.1111/bph.14877] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Pain is a subjective experience involving sensory discriminative and emotionally aversive components. Consistent with its role in pain processing and emotions, the amygdala modulates the aversive component of pain. The laterocapsular region of the central nucleus of the amygdala (CeLC) receives nociceptive information from the parabrachial nucleus (PB) and polymodal, including nociceptive, inputs from the basolateral nucleus of the amygdala (BLA). Opioids are strong analgesics and reduce both the sensory discriminative and the affective component of pain. However, it is unknown whether opioids regulate activity at the two nociceptive inputs to the amygdala. EXPERIMENTAL APPROACH Using whole-cell electrophysiology, optogenetics, and immunohistochemistry, we investigated whether opioids inhibit the rat PB-CeLC and BLA-CeLC synapses. KEY RESULTS Opioids inhibited glutamate release at the PB-CeLC and BLA-CeLC synapses. Opioid inhibition is via the μ-receptor at the PB-CeLC synapse, while at the BLA-CeLC synapse, inhibition is via μ-receptors in all neurons and via δ-receptors and κ-receptors in a subset of neurons. CONCLUSIONS AND IMPLICATIONS Agonists of μ-receptors inhibited two of the synaptic inputs carrying nociceptive information into the laterocapsular amygdala. Therefore, μ-receptor agonists, such as morphine, will inhibit glutamate release from PB and BLA in the CeLC, and this could serve as a mechanism through which opioids reduce the affective component of pain and pain-induced associative learning. The lower than expected regulation of BLA synaptic outputs by δ-receptors does not support the proposal that opioid receptor subtypes segregate into subnuclei of brain regions.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/metabolism
- Amygdala/physiopathology
- Analgesics, Opioid/pharmacology
- Animals
- Glutamic Acid/metabolism
- Male
- Neural Inhibition/drug effects
- Nociception/drug effects
- Nociceptive Pain/metabolism
- Nociceptive Pain/physiopathology
- Nociceptive Pain/prevention & control
- Optogenetics
- Pain Perception/drug effects
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Synapses/drug effects
- Synapses/metabolism
Collapse
Affiliation(s)
- Sarah A. Kissiwaa
- Discipline of Pharmacology and Charles Perkins CentreThe University of SydneySydneyNSWAustralia
| | - Sahil D. Patel
- Discipline of Pharmacology and Charles Perkins CentreThe University of SydneySydneyNSWAustralia
| | - Bryony L. Winters
- Pain Management Research Institute, Kolling Institute of Medical ResearchThe University of Sydney, Royal North Shore HospitalSt LeonardsNSWAustralia
| | - Elena E. Bagley
- Discipline of Pharmacology and Charles Perkins CentreThe University of SydneySydneyNSWAustralia
| |
Collapse
|
247
|
Casiglia E, Finatti F, Tikhonoff V, Stabile MR, Mitolo M, Albertini F, Gasparotti F, Facco E, Lapenta AM, Venneri A. MECHANISMS OF HYPNOTIC ANALGESIA EXPLAINED BY FUNCTIONAL MAGNETIC RESONANCE (fMRI). Int J Clin Exp Hypn 2020; 68:1-15. [PMID: 31914368 DOI: 10.1080/00207144.2020.1685331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypnotic-focused analgesia (HFA) was produced in 20 highly hypnotizable subjects receiving nociceptive stimulations while undergoing functional magnetic resonance imaging (fMRI). The fMRI pattern in brain cortex activation while receiving a painful stimulus was recorded both during nonhypnosis and during HFA. The scanning protocol included the acquisition of a T1-weighted structural scan, 4 functional scans, a T2-weighted axial scan, and a fluid attenuated inversion recovery (FLAIR) scan. Total imaging time, including localization and structural image acquisitions, was approximately 60 minutes. Without HFA, the subjects reported subjective presence of pain, and the cortex primary sensory areas S1, S2, and S3 were activated. During HFA, the subjects reported complete absence of subjective pain and S1, S2, and S3 were deactivated. The findings suggest that HFA may prevent painful stimuli from reaching the sensory brain cortex, possibly through a gate-control mechanism.
Collapse
Affiliation(s)
- Edoardo Casiglia
- Studium Patavinum, University of Padova, Padova, Italy.,Department of Medicine, University of Padova, Italy.,Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy
| | - Francesco Finatti
- Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy.,School of Pathology, University of Padova, Italy
| | - Valérie Tikhonoff
- Department of Medicine, University of Padova, Italy.,Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy
| | - Maria R Stabile
- Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy.,Department of Neurorehabilitation, Foundation Hospital San Camillo, Venice, Italy
| | - Micaela Mitolo
- Department of Neurorehabilitation, Foundation Hospital San Camillo, Venice, Italy.,Functional Magnetic Resonance Unit, Hospital S. Orsola-Malpighi, Bologna, Italy
| | - Federica Albertini
- Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy.,School of Emergency Medicine, University of Padova, Italy
| | - Federica Gasparotti
- Department of Medicine, University of Padova, Italy.,Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy
| | - Enrico Facco
- Studium Patavinum, University of Padova, Padova, Italy.,Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy.,Department of Neuroscience, University of Padova, Italy
| | - Antonio M Lapenta
- Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
248
|
Wu Z, Luo Q, Wu H, Wu Z, Zheng Y, Yang Y, He J, Ding Y, Yu R, Peng H. Amplitude of Low-Frequency Oscillations in Major Depressive Disorder With Childhood Trauma. Front Psychiatry 2020; 11:596337. [PMID: 33551867 PMCID: PMC7862335 DOI: 10.3389/fpsyt.2020.596337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Major Depressive Disorder (MDD) with childhood trauma is one of the functional subtypes of depression. Frequency-dependent changes in the amplitude of low-frequency fluctuations (ALFF) have been reported in MDD patients. However, there are few studies on ALFF about MDD with childhood trauma. Resting-state functional magnetic resonance imaging was used to measure the ALFF in 69 MDD patients with childhood trauma (28.7 ± 9.6 years) and 30 healthy subjects (28.12 ± 4.41 years). Two frequency bands (slow-5: 0.010-0.027 Hz; slow-4: 0.027-0.073 Hz) were analyzed. Compared with controls, the MDD with childhood trauma had decreased ALFF in left S1 (Primary somatosensory cortex), and increased ALFF in left insula. More importantly, significant group × frequency interactions were found in right dorsal anterior cingulate cortex (dACC). Our finding may provide insights into the pathophysiology of MDD with childhood trauma.
Collapse
Affiliation(s)
- Zhuoying Wu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huawang Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyao Wu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuling Yang
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianfei He
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Ding
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
249
|
Lee IS, Necka EA, Atlas LY. Distinguishing pain from nociception, salience, and arousal: How autonomic nervous system activity can improve neuroimaging tests of specificity. Neuroimage 2020; 204:116254. [PMID: 31604122 PMCID: PMC6911655 DOI: 10.1016/j.neuroimage.2019.116254] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022] Open
Abstract
Pain is a subjective, multidimensional experience that is distinct from nociception. A large body of work has focused on whether pain processing is supported by specific, dedicated brain circuits. Despite advances in human neuroscience and neuroimaging analysis, dissociating acute pain from other sensations has been challenging since both pain and non-pain stimuli evoke salience and arousal responses throughout the body and in overlapping brain circuits. In this review, we discuss these challenges and propose that brain-body interactions in pain can be leveraged in order to improve tests for pain specificity. We review brain and bodily responses to pain and nociception and extant efforts toward identifying pain-specific brain networks. We propose that autonomic nervous system activity should be used as a surrogate measure of salience and arousal to improve these efforts and enable researchers to parse out pain-specific responses in the brain, and demonstrate the feasibility of this approach using example fMRI data from a thermal pain paradigm. This new approach will improve the accuracy and specificity of functional neuroimaging analyses and help to overcome current difficulties in assessing pain specific responses in the human brain.
Collapse
Affiliation(s)
- In-Seon Lee
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth A Necka
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
250
|
Garland EL, Brintz CE, Hanley AW, Roseen EJ, Atchley RM, Gaylord SA, Faurot KR, Yaffe J, Fiander M, Keefe FJ. Mind-Body Therapies for Opioid-Treated Pain: A Systematic Review and Meta-analysis. JAMA Intern Med 2020; 180:91-105. [PMID: 31682676 PMCID: PMC6830441 DOI: 10.1001/jamainternmed.2019.4917] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022]
Abstract
Importance Mind-body therapies (MBTs) are emerging as potential tools for addressing the opioid crisis. Knowing whether mind-body therapies may benefit patients treated with opioids for acute, procedural, and chronic pain conditions may be useful for prescribers, payers, policy makers, and patients. Objective To evaluate the association of MBTs with pain and opioid dose reduction in a diverse adult population with clinical pain. Data Sources For this systematic review and meta-analysis, the MEDLINE, Embase, Emcare, CINAHL, PsycINFO, and Cochrane Library databases were searched for English-language randomized clinical trials and systematic reviews from date of inception to March 2018. Search logic included (pain OR analgesia OR opioids) AND mind-body therapies. The gray literature, ClinicalTrials.gov, and relevant bibliographies were also searched. Study Selection Randomized clinical trials that evaluated the use of MBTs for symptom management in adults also prescribed opioids for clinical pain. Data Extraction and Synthesis Independent reviewers screened citations, extracted data, and assessed risk of bias. Meta-analyses were conducted using standardized mean differences in pain and opioid dose to obtain aggregate estimates of effect size with 95% CIs. Main Outcomes and Measures The primary outcome was pain intensity. The secondary outcomes were opioid dose, opioid misuse, opioid craving, disability, or function. Results Of 4212 citations reviewed, 60 reports with 6404 participants were included in the meta-analysis. Overall, MBTs were associated with pain reduction (Cohen d = -0.51; 95% CI, -0.76 to -0.26) and reduced opioid dose (Cohen d = -0.26; 95% CI, -0.44 to -0.08). Studies tested meditation (n = 5), hypnosis (n = 25), relaxation (n = 14), guided imagery (n = 7), therapeutic suggestion (n = 6), and cognitive behavioral therapy (n = 7) interventions. Moderate to large effect size improvements in pain outcomes were found for meditation (Cohen d = -0.70), hypnosis (Cohen d = -0.54), suggestion (Cohen d = -0.68), and cognitive behavioral therapy (Cohen d = -0.43) but not for other MBTs. Although most meditation (n = 4 [80%]), cognitive-behavioral therapy (n = 4 [57%]), and hypnosis (n = 12 [63%]) studies found improved opioid-related outcomes, fewer studies of suggestion, guided imagery, and relaxation reported such improvements. Most MBT studies used active or placebo controls and were judged to be at low risk of bias. Conclusions and Relevance The findings suggest that MBTs are associated with moderate improvements in pain and small reductions in opioid dose and may be associated with therapeutic benefits for opioid-related problems, such as opioid craving and misuse. Future studies should carefully quantify opioid dosing variables to determine the association of mind-body therapies with opioid-related outcomes.
Collapse
Affiliation(s)
- Eric L. Garland
- Center on Mindfulness and Integrative Health Intervention Development, University of Utah, Salt Lake City
- College of Social Work, University of Utah, Salt Lake City
| | - Carrie E. Brintz
- Program on Integrative Medicine, Physical Medicine and Rehabilitation, University of North Carolina at Chapel Hill, Chapel Hill
| | - Adam W. Hanley
- Center on Mindfulness and Integrative Health Intervention Development, University of Utah, Salt Lake City
- College of Social Work, University of Utah, Salt Lake City
| | - Eric J. Roseen
- Department of Family Medicine, Boston University and Boston University School of Medicine, Boston, Massachusetts
- Department of Rehabilitation Science, Massachusetts General Hospital Institute of Health Professions, Boston, Massachusetts
| | - Rachel M. Atchley
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts
| | - Susan A. Gaylord
- Program on Integrative Medicine, Physical Medicine and Rehabilitation, University of North Carolina at Chapel Hill, Chapel Hill
| | - Keturah R. Faurot
- Program on Integrative Medicine, Physical Medicine and Rehabilitation, University of North Carolina at Chapel Hill, Chapel Hill
| | - Joanne Yaffe
- College of Social Work, University of Utah, Salt Lake City
| | | | - Francis J. Keefe
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
- Department of Anesthesiology, Duke University, Durham, North Carolina
- Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|