201
|
Abe T, Kuwahara T. Targeting of Lysosomal Pathway Genes for Parkinson's Disease Modification: Insights From Cellular and Animal Models. Front Neurol 2021; 12:681369. [PMID: 34194386 PMCID: PMC8236816 DOI: 10.3389/fneur.2021.681369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
Previous genetic studies on hereditary Parkinson's disease (PD) have identified a set of pathogenic gene mutations that have strong impacts on the pathogenicity of PD. In addition, genome-wide association studies (GWAS) targeted to sporadic PD have nominated an increasing number of genetic variants that influence PD susceptibility. Although the clinical and pathological characteristics in hereditary PD are not identical to those in sporadic PD, α-synuclein, and LRRK2 are definitely associated with both types of PD, with LRRK2 mutations being the most frequent cause of autosomal-dominant PD. On the other hand, a significant portion of risk genes identified from GWAS have been associated with lysosomal functions, pointing to a critical role of lysosomes in PD pathogenesis. Experimental studies have suggested that the maintenance or upregulation of lysosomal activity may protect against neuronal dysfunction or degeneration. Here we focus on the roles of representative PD gene products that are implicated in lysosomal pathway, namely LRRK2, VPS35, ATP13A2, and glucocerebrosidase, and provide an overview of their disease-associated functions as well as their cooperative actions in the pathogenesis of PD, based on the evidence from cellular and animal models. We also discuss future perspectives of targeting lysosomal activation as a possible strategy to treat neurodegeneration.
Collapse
Affiliation(s)
- Tetsuro Abe
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
202
|
TFEB protein expression is reduced in aged brains and its overexpression mitigates senescence-associated biomarkers and memory deficits in mice. Neurobiol Aging 2021; 106:26-36. [PMID: 34229273 DOI: 10.1016/j.neurobiolaging.2021.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022]
Abstract
Identification of molecules and molecular pathways that can ameliorate aging-associated decline in cognitive function is crucial. Here we report that the protein levels of transcription factor EB (TFEB) were markedly reduced in both the cytosolic and nuclear fractions of the frontal cortex and hippocampus at 18-months of age relative to 6 months in the normal male wild-type mice. In the transgenic mice with ectopic expression of flag-TFEB in neurons, we observed that the levels of actin-normalized PGC1α and mtTFA were significantly increased in both the cortex and the hippocampus. Additionally, we confirmed increased mitochondria numbers in the flag-TFEB mice by transmission electron microscopy. Most importantly, TFEB expression in the 18-month-old transgenic mice mitigated markers of senescence including P16INK4a, γ-H2AX, and lamin B1, and improved memory skills implying that TFEB may exert an anti-aging effect by modulating neuronal senescence. Taken together these data strongly support that TFEB can be a useful therapeutic target for brain senescent cells to help overcome the age-related issues in cognition and possibly, achieve healthy aging.
Collapse
|
203
|
Wang C, Haas M, Yeo SK, Sebti S, Fernández ÁF, Zou Z, Levine B, Guan JL. Enhanced autophagy in Becn1F121A/F121A knockin mice counteracts aging-related neural stem cell exhaustion and dysfunction. Autophagy 2021; 18:409-422. [PMID: 34101533 DOI: 10.1080/15548627.2021.1936358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Macroautophagy/autophagy is emerging as a major pathway that regulates both aging and stem cell function. Previous studies have demonstrated a positive correlation of autophagy with longevity; however, these studies did not directly address the consequence of altered autophagy in stem cells during aging. In this study, we used Becn1F121A/F121A knockin mice (designated as Becn1 KI mice) with the F121A allele in the autophagy gene Becn1 to investigate the consequences of enhanced autophagy in postnatal neural stem cells (NSCs) during aging. We found that increased autophagy protected NSCs from exhaustion and promoted neurogenesis in old (≥18-months-old) mice compared with age-matched wild-type (WT) mice, although it did not affect NSCs in young (3-months-old) mice. After pharmacologically-induced elimination of proliferative cells in the subventricular zone (SVZ), there was enhanced re-activation of quiescent NSCs in old Becn1 KI mice as compared to those in WT mice, with more efficient exit from quiescent status to generate proliferative cells and neuroblasts. Moreover, there was also improved maintenance and increased neuronal differentiation of NSCs isolated from the SVZ of old Becn1 KI mice in in vitro assays. Lastly, the increased neurogenesis in Becn1 KI mice was associated with better olfactory function in aged animals. Together, our results suggest a protective role of increased autophagy in aging NSCs, which may help the development of novel strategies to treat age-related neurodegeneration.
Collapse
Affiliation(s)
- Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Salwa Sebti
- Center for Autophagy Research, Department of Internal Medicine, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Álvaro F Fernández
- Center for Autophagy Research, Department of Internal Medicine, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhongju Zou
- Center for Autophagy Research, Department of Internal Medicine, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
204
|
Han JH, Jang KW, Myung CS. Garcinia cambogia attenuates adipogenesis by affecting CEBPB and SQSTM1/p62-mediated selective autophagic degradation of KLF3 through RPS6KA1 and STAT3 suppression. Autophagy 2021; 18:518-539. [PMID: 34101546 DOI: 10.1080/15548627.2021.1936356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The overexpansion of adipose tissues leads to obesity and eventually results in metabolic disorders. Garcinia cambogia (G. cambogia) has been used as an antiobesity supplement. However, the molecular mechanisms underlying the effects of G. cambogia on cellular processes have yet to be fully understood. Here, we discovered that G. cambogia attenuated the expression of CEBPB (CCAAT/enhancer binding protein (C/EBP), beta), an important adipogenic factor, suppressing its transcription in differentiated cells. In addition, G. cambogia inhibited macroautophagic/autophagic flux by decreasing autophagy-related gene expression and autophagosome formation. Notably, G. cambogia markedly elevated the expression of KLF3 (Kruppel-like factor 3 (basic)), a negative regulator of adipogenesis, by reducing SQSTM1/p62-mediated selective autophagic degradation. Furthermore, increased KLF3 induced by G. cambogia interacted with CTBP2 (C-terminal binding protein 2) to form a transcriptional repressor complex and inhibited Cebpa and Pparg transcription. Importantly, we found that RPS6KA1 and STAT3 were involved in the G. cambogia-mediated regulation of CEBPB and autophagic flux. In an obese animal model, G. cambogia reduced high-fat diet (HFD)-induced obesity by suppressing epididymal and inguinal subcutaneous white adipose tissue mass and adipocyte size, which were attributed to the regulation of targets that had been consistently identified in vitro. These findings provide new insight into the mechanism of G. cambogia-mediated regulation of adipogenesis and suggest molecular links to therapeutic targets for the treatment of obesity.
Collapse
Affiliation(s)
- Joo-Hui Han
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Keun-Woo Jang
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Chang-Seon Myung
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
205
|
Kim H, Seong J. Fluorescent Protein-Based Autophagy Biosensors. MATERIALS 2021; 14:ma14113019. [PMID: 34199451 PMCID: PMC8199620 DOI: 10.3390/ma14113019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/16/2022]
Abstract
Autophagy is an essential cellular process of self-degradation for dysfunctional or unnecessary cytosolic constituents and organelles. Dysregulation of autophagy is thus involved in various diseases such as neurodegenerative diseases. To investigate the complex process of autophagy, various biochemical, chemical assays, and imaging methods have been developed. Here we introduce various methods to study autophagy, in particular focusing on the review of designs, principles, and limitations of the fluorescent protein (FP)-based autophagy biosensors. Different physicochemical properties of FPs, such as pH-sensitivity, stability, brightness, spectral profile, and fluorescence resonance energy transfer (FRET), are considered to design autophagy biosensors. These FP-based biosensors allow for sensitive detection and real-time monitoring of autophagy progression in live cells with high spatiotemporal resolution. We also discuss future directions utilizing an optobiochemical strategy to investigate the in-depth mechanisms of autophagy. These cutting-edge technologies will further help us to develop the treatment strategies of autophagy-related diseases.
Collapse
Affiliation(s)
- Heejung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea
- Correspondence:
| |
Collapse
|
206
|
Anandhan A, Kirwan KR, Corenblum MJ, Madhavan L. Enhanced NRF2 expression mitigates the decline in neural stem cell function during aging. Aging Cell 2021; 20:e13385. [PMID: 34128307 PMCID: PMC8208782 DOI: 10.1111/acel.13385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/10/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Although it is known that aging affects neural stem progenitor cell (NSPC) biology in fundamental ways, the underlying dynamics of this process are not fully understood. Our previous work identified a specific critical period (CP) of decline in NSPC activity and function during middle age (13–15 months), and revealed the reduced expression of the redox‐sensitive transcription factor, NRF2, as a key mediator of this process. Here, we investigated whether augmenting NRF2 expression could potentially mitigate the NSPC decline across the identified CP. NRF2 expression in subventricular zone (SVZ) NSPCs was upregulated via GFP tagged recombinant adeno‐associated viral vectors (AAV‐NRF2‐eGFP), and its cellular and behavioral effects compared to animals that received control vectors (AAV‐eGFP). The vectors were administered into the SVZs of aging rats, at time points either before or after the CP. Results indicate that animals that had received AAV‐NRF2‐eGFP, prior to the CP (11 months of age), exhibited substantially improved behavioral function (fine olfactory discrimination and motor tasks) in comparison to those receiving control viruses. Further analysis revealed that NSPC proliferation, self‐renewal, neurogenesis, and migration to the olfactory bulb had significantly increased upon NRF2 upregulation. On the other hand, increasing NRF2 after the CP (at 20 months of age) produced no notable changes in NSPC activity at either cellular or behavioral levels. These results, for the first time, indicate NRF2 pathway modulation as a means to support NSPC function with age and highlight a critical time‐dependency for activating NRF2 to enhance NSPC function.
Collapse
Affiliation(s)
- Annadurai Anandhan
- Department of Neurology University of Arizona Tucson AZ USA
- Pharmacology and Toxicology University of Arizona Tucson AZ USA
| | - Konner R. Kirwan
- Neuroscience and Cognitive Science Undergraduate Program Tucson AZ USA
| | | | - Lalitha Madhavan
- Department of Neurology University of Arizona Tucson AZ USA
- Bio5 Institute University of ArizonaTucsonAZUSA
- Evelyn F McKnight Brain Institute University of Arizona Tucson AZ USA
| |
Collapse
|
207
|
Pourpirali R, Mahmoudnezhad A, Oroojalian F, Zarghami N, Pilehvar Y. Prolonged proliferation and delayed senescence of the adipose-derived stem cells grown on the electrospun composite nanofiber co-encapsulated with TiO 2 nanoparticles and metformin-loaded mesoporous silica nanoparticles. Int J Pharm 2021; 604:120733. [PMID: 34044059 DOI: 10.1016/j.ijpharm.2021.120733] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
This study was aimed to investigate the effects of the Poly-ε-Caprolactone/Gelatin nanofibers (PCL/GEL NFs) co-encapsulated with TiO2 nanoparticles (nTiO2) and metformin-loaded mesoporous silica nanoparticles (MET@MSNs) on prolonging the in vitro expansion of human adipose-derived stem cells (hADSCs) without inducing cellular senescence and aging. FTIR, BET, FE-SEM, and TEM were applied to characterize the fabricated MET@MSNs and electrospun composite NFs. The presence of inorganic particles, nTiO2 and MSNs, in the scaffolds improved their mechanical properties and led to a more sustained release of MET with almost the lack of the initial burst release from nTiO2/MET@MSNs-loaded NFs. The enhanced adhesion, metabolic activity, and proliferation rate of the hADSCs grown on nTiO2/MET@MSNs-loaded NFs were demonstrated via FE-SEM images, MTT test and PicoGreen assay, respectively, over 28 days of culture. Furthermore, the irregular nanofibrillar structures and the impact of sustained release of MET led to a significant upregulation in the mRNA levels of autophagy (Atg-5, Atg-7, Atg-12, and Beclin-1) and stemness (Nanog3, Sox-2, and Oct-4) markers as well as a considerable down-regulation of p16INK4A senescence marker. Further, the upregulation of hTERT, enhanced activity of telomerase, and increased telomere length were more pronounced in the hADSCs cultured on nTiO2/MET@MSNs-loaded NFs as compared to other types of NFs. Overall, our findings demonstrated the potential of the fabricated nanocomposite platform for counteracting cellular senescence and achieving sufficient quantities of fresh hADSCs with preserved stemness for various stem cell-based regenerative medicine purposes.
Collapse
Affiliation(s)
- Raheleh Pourpirali
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Aydin Mahmoudnezhad
- Department of Medical Microbiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
208
|
Lysosomal Regulation of Metabolism in Quiescent Hematopoietic Stem Cells: More than Just Autophagy. Cell Stem Cell 2021; 28:374-377. [PMID: 33667358 DOI: 10.1016/j.stem.2021.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The depth of quiescence in hematopoietic stem cells (HSCs) dictates their potency and is sensitive to metabolic perturbations. Recent evidence suggests that lysosomal functions distinct from autophagic processes are pivotal in regulating quiescence versus activation by potential control of the access to a nutrient reservoir required for HSC activation.
Collapse
|
209
|
Orhon I, Rocchi C, Villarejo-Zori B, Serrano Martinez P, Baanstra M, Brouwer U, Boya P, Coppes R, Reggiori F. Autophagy induction during stem cell activation plays a key role in salivary gland self-renewal. Autophagy 2021; 18:293-308. [PMID: 34009100 PMCID: PMC8942426 DOI: 10.1080/15548627.2021.1924036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Relatively quiescent tissues like salivary glands (SGs) respond to stimuli such as injury to expand, replace and regenerate. Resident stem/progenitor cells are key in this process because, upon activation, they possess the ability to self-renew. Macroautophagy/autophagy contributes to and regulates differentiation in adult tissues, but an important question is whether this pathway promotes stem cell self-renewal in tissues. We took advantage of a 3D organoid system that allows assessing the self-renewal of mouse SGs stem cells (SGSCs). We found that autophagy in dormant SGSCs has slower flux than self-renewing SGSCs. Importantly, autophagy enhancement upon SGSCs activation is a self-renewal feature in 3D organoid cultures and SGs regenerating in vivo. Accordingly, autophagy ablation in SGSCs inhibits self-renewal whereas pharmacological stimulation promotes self-renewal of mouse and human SGSCs. Thus, autophagy is a key pathway for self-renewal activation in low proliferative adult tissues, and its pharmacological manipulation has the potential to promote tissue regeneration.
Collapse
Affiliation(s)
- Idil Orhon
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cecilia Rocchi
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Beatriz Villarejo-Zori
- Department of Cellular and Molecular Biology, Centro De Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Paola Serrano Martinez
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mirjam Baanstra
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Uilke Brouwer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro De Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Rob Coppes
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
210
|
Tao J, Yang P, Xie L, Pu Y, Guo J, Jiao J, Sun L, Lu D. Gastrodin induces lysosomal biogenesis and autophagy to prevent the formation of foam cells via AMPK-FoxO1-TFEB signalling axis. J Cell Mol Med 2021; 25:5769-5781. [PMID: 33973365 PMCID: PMC8184689 DOI: 10.1111/jcmm.16600] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Abnormal accumulation of lipids and massive deposition of foam cells is a primary event in the pathogenesis of atherosclerosis. Recent studies have demonstrated that autophagy and lysosomal function of atherosclerotic macrophages are impaired, which exacerbates the accumulation of lipid in macrophages and formation of foam cells. Gastrodin, a major active component of Gastrodia elata Bl., has exerted a protective effect on nervous system, but the effect of gastrodin on atherosclerotic vascular disease remains unknown. We aimed to evaluate the effect of gastrodin on autophagy and lysosomal function of foam cells and explored the mechanism underlying gastrodin's effect on the formation of foam cells. In an in vitro foam cell model constructed by incubating macrophages with oxygenized low-density lipoproteins (ox-LDL), our results showed that lysosomal function and autophagy of foam cells were compromised. Gastrodin restored lysosomal function and autophagic activity via the induction of lysosomal biogenesis and autophagy. The restoration of lysosomal function and autophagic activity enhanced cholesterol efflux from macrophages, therefore, reducing lipid accumulation and preventing formation of foam cells. AMP-activated protein kinase (AMPK) was activated by gastrodin to promote phosphorylation and nuclear translocation of forkhead box O1 (FoxO1), subsequently resulting in increased transcription factor EB (TFEB) expression. TFEB was activated by gastrodin to promote lysosomal biogenesis and autophagy. Our study revealed that the effect of gastrodin on foam cell formation and that induction of lysosomal biogenesis and autophagy of foam cells through AMPK-FoxO1-TFEB signalling axis may be a novel therapeutic target of atherosclerosis.
Collapse
Affiliation(s)
- Jun Tao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Ping Yang
- Department of Anatomy, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Liqiu Xie
- Department of Cardiology, the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yuwei Pu
- Department of Cardiology, the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jiazhi Guo
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Jianlin Jiao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Lin Sun
- Department of Cardiology, the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Di Lu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| |
Collapse
|
211
|
Raj SD, Fann DY, Wong E, Kennedy BK. Natural products as geroprotectors: An autophagy perspective. Med Res Rev 2021; 41:3118-3155. [PMID: 33973253 DOI: 10.1002/med.21815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Over the past decade, significant attention has been given to repurposing Food and Drug Administration approved drugs to treat age-related diseases. In contrast, less consideration has been given to natural bioactive compounds. Consequently, there have been limited attempts to translate these compounds. Autophagy is a fundamental biological pathway linked to aging, and numerous strategies to enhance autophagy have been shown to extend lifespan. Interestingly, there are a number of natural products that are reported to modulate autophagy, and here we describe a number of them that activate autophagy through diverse molecular and cellular mechanisms. Among these, Urolithin A, Spermidine, Resveratrol, Fatty Acids and Phospholipids, Trehalose and Lithium are featured in detail. Finally, we outline possible strategies to optimise and increase the translatability of natural products, with the overall aim of delaying the ageing process and improving human healthspan.
Collapse
Affiliation(s)
- Stephen D Raj
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore
| | - David Y Fann
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore
| | - Esther Wong
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian K Kennedy
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Agency for Science, Technology and Research (A*STAR), Singapore Institute for Clinical Sciences, Singapore
| |
Collapse
|
212
|
Ilyinsky NS, Nesterov SV, Shestoperova EI, Fonin AV, Uversky VN, Gordeliy VI. On the Role of Normal Aging Processes in the Onset and Pathogenesis of Diseases Associated with the Abnormal Accumulation of Protein Aggregates. BIOCHEMISTRY (MOSCOW) 2021; 86:275-289. [PMID: 33838629 DOI: 10.1134/s0006297921030056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aging is a prime systemic cause of various age-related diseases, in particular, proteinopathies. In fact, most diseases associated with protein misfolding are sporadic, and their incidence increases with aging. This review examines the process of protein aggregate formation, the toxicity of such aggregates, the organization of cellular systems involved in proteostasis, and the impact of protein aggregates on important cellular processes leading to proteinopathies. We also analyze how manifestations of aging (mitochondrial dysfunction, dysfunction of signaling systems, changes in the genome and epigenome) facilitate pathogenesis of various proteinopathies either directly, by increasing the propensity of key proteins for aggregation, or indirectly, through dysregulation of stress responses. Such analysis might help in outlining approaches for treating proteinopathies and extending healthy longevity.
Collapse
Affiliation(s)
- Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| | - Semen V Nesterov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.,Institute of Cytochemistry and Molecular Pharmacology, Moscow, 115404, Russia
| | - Elizaveta I Shestoperova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexander V Fonin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.,Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Vladimir N Uversky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.,Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.,Forschungszentrum Juelich, Juelich, 52428, Germany.,Institut de Biologie Structurale, Grenoble, 38000, France
| |
Collapse
|
213
|
Ibrayeva A, Bay M, Pu E, Jörg DJ, Peng L, Jun H, Zhang N, Aaron D, Lin C, Resler G, Hidalgo A, Jang MH, Simons BD, Bonaguidi MA. Early stem cell aging in the mature brain. Cell Stem Cell 2021; 28:955-966.e7. [PMID: 33848469 PMCID: PMC10069280 DOI: 10.1016/j.stem.2021.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Stem cell dysfunction drives many age-related disorders. Identifying mechanisms that initially compromise stem cell behavior represent early targets to promote tissue function later in life. Here, we pinpoint multiple factors that disrupt neural stem cell (NSC) behavior in the adult hippocampus. Clonal tracing showed that NSCs exhibit asynchronous depletion by identifying short-term NSCs (ST-NSCs) and long-term NSCs (LT-NSCs). ST-NSCs divide rapidly to generate neurons and deplete in the young brain. Meanwhile, multipotent LT-NSCs are maintained for months but are pushed out of homeostasis by lengthening quiescence. Single-cell transcriptome analysis of deep NSC quiescence revealed several hallmarks of molecular aging in the mature brain and identified tyrosine-protein kinase Abl1 as an NSC aging factor. Treatment with the Abl inhibitor imatinib increased NSC activation without impairing NSC maintenance in the middle-aged brain. Our study indicates that hippocampal NSCs are particularly vulnerable and adaptable to cellular aging.
Collapse
Affiliation(s)
- Albina Ibrayeva
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Davis School - Buck Institute Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90033, USA
| | - Maxwell Bay
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Elbert Pu
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - David J Jörg
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; Gurdon Institute, University of Cambridge, Cambridge CB3 0HE, UK
| | - Lei Peng
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Heechul Jun
- Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Naibo Zhang
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Daniel Aaron
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Congrui Lin
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Galen Resler
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Axel Hidalgo
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mi-Hyeon Jang
- Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; Gurdon Institute, University of Cambridge, Cambridge CB3 0HE, UK
| | - Michael A Bonaguidi
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, University of Southern California, Los Angeles, CA 90033, USA; Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA; USC Davis School - Buck Institute Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA; Davis School of Gerontology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
214
|
Bin Imtiaz MK, Jaeger BN, Bottes S, Machado RAC, Vidmar M, Moore DL, Jessberger S. Declining lamin B1 expression mediates age-dependent decreases of hippocampal stem cell activity. Cell Stem Cell 2021; 28:967-977.e8. [PMID: 33631115 DOI: 10.1016/j.stem.2021.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/19/2020] [Accepted: 01/21/2021] [Indexed: 01/04/2023]
Abstract
Neural stem cells (NSCs) generate neurons throughout life in the hippocampal dentate gyrus. With advancing age, levels of neurogenesis sharply drop, which has been associated with a decline in hippocampal memory function. However, cell-intrinsic mechanisms mediating age-related changes in NSC activity remain largely unknown. Here, we show that the nuclear lamina protein lamin B1 (LB1) is downregulated with age in mouse hippocampal NSCs, whereas protein levels of SUN-domain containing protein 1 (SUN1), previously implicated in Hutchinson-Gilford progeria syndrome (HGPS), increase. Balancing the levels of LB1 and SUN1 in aged NSCs restores the strength of the endoplasmic reticulum diffusion barrier that is associated with segregation of aging factors in proliferating NSCs. Virus-based restoration of LB1 expression in aged NSCs enhances stem cell activity in vitro and increases progenitor cell proliferation and neurogenesis in vivo. Thus, we here identify a mechanism that mediates age-related decline of neurogenesis in the mammalian hippocampus.
Collapse
Affiliation(s)
- Muhammad Khadeesh Bin Imtiaz
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Baptiste N Jaeger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Sara Bottes
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Raquel A C Machado
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Mojca Vidmar
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
215
|
Yang C, Wang X. Lysosome biogenesis: Regulation and functions. J Cell Biol 2021; 220:212053. [PMID: 33950241 PMCID: PMC8105738 DOI: 10.1083/jcb.202102001] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are degradation centers and signaling hubs in cells and play important roles in cellular homeostasis, development, and aging. Changes in lysosome function are essential to support cellular adaptation to multiple signals and stimuli. Therefore, lysosome biogenesis and activity are regulated by a wide variety of intra- and extracellular cues. Here, we summarize current knowledge of the regulatory mechanisms of lysosome biogenesis, including synthesis of lysosomal proteins and their delivery via the endosome-lysosome pathway, reformation of lysosomes from degradative vesicles, and transcriptional regulation of lysosomal genes. We survey the regulation of lysosome biogenesis in response to nutrient and nonnutrient signals, the cell cycle, stem cell quiescence, and cell fate determination. Finally, we discuss lysosome biogenesis and functions in the context of organismal development and aging.
Collapse
Affiliation(s)
- Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaochen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
216
|
Wang R, Li X, Yoon J. Organelle-Targeted Photosensitizers for Precision Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19543-19571. [PMID: 33900741 DOI: 10.1021/acsami.1c02019] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Subcellular organelles are the cornerstones of cells, and destroying them will cause cell dysfunction and even death. Therefore, realizing precise organelle targeting of photosensitizers (PSs) can help reduce PS dosage, minimize side effects, avoid drug resistance, and enhance therapeutic efficacy in photodynamic therapy (PDT). Organelle-targeted PSs provide a new paradigm for the construction of the next generation of PSs and may provide implementable strategies for future precision medicine. In this Review, the recent targeting strategies of different organelles and the corresponding design principles of molecular and nanostructured PSs are summarized and discussed. The current challenges and opportunities in organelle-targeted PDT are also presented.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis for Energy and the Environment, Fujian Provincial Key Laboratory for Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
217
|
CHIR99021 Augmented the Function of Late Endothelial Progenitor Cells by Preventing Replicative Senescence. Int J Mol Sci 2021; 22:ijms22094796. [PMID: 33946516 PMCID: PMC8124445 DOI: 10.3390/ijms22094796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are specialized cells in circulating blood, well known for their ability to form new vascular structures. Aging and various ailments such as diabetes, atherosclerosis and cardiovascular disease make EPCs vulnerable to decreasing in number, which affects their migration, proliferation and angiogenesis. Myocardial ischemia is also linked to a reduced number of EPCs and their endothelial functional role, which hinders proper blood circulation to the myocardium. The current study shows that an aminopyrimidine derivative compound (CHIR99021) induces the inhibition of GSK-3β in cultured late EPCs. GSK-3β inhibition subsequently inhibits mTOR by blocking the phosphorylation of TSC2 and lysosomal localization of mTOR. Furthermore, suppression of GSK-3β activity considerably increased lysosomal activation and autophagy. The activation of lysosomes and autophagy by GSK-3β inhibition not only prevented replicative senescence of the late EPCs but also directed their migration, proliferation and angiogenesis. To conclude, our results demonstrate that lysosome activation and autophagy play a crucial role in blocking the replicative senescence of EPCs and in increasing their endothelial function. Thus, the findings provide an insight towards the treatment of ischemia-associated cardiovascular diseases based on the role of late EPCs.
Collapse
|
218
|
Tikhonova AN, Lasry A, Austin R, Aifantis I. Cell-by-Cell Deconstruction of Stem Cell Niches. Cell Stem Cell 2021; 27:19-34. [PMID: 32619515 DOI: 10.1016/j.stem.2020.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Single-cell sequencing approaches offer exploration of tissue architecture at unprecedented resolution. These tools are especially powerful when deconvoluting highly specialized microenvironments, such as stem cell (SC) niches. Here, we review single-cell studies that map the cellular and transcriptional makeup of stem and progenitor niches and discuss how these high-resolution analyses fundamentally advance our understanding of how niche factors shape SC biology and activity. In-depth characterization of the blueprint of SC-niche crosstalk, as well as understanding how it becomes dysregulated, will undoubtedly inform the development of more efficient therapies for malignancies and other pathologies.
Collapse
Affiliation(s)
- Anastasia N Tikhonova
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - Audrey Lasry
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Rebecca Austin
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Iannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
219
|
He Z, Ye S, Xing Y, Jiu Y, Zhong J. UNC93B1 curbs cytosolic DNA signaling by promoting STING degradation. Eur J Immunol 2021; 51:1672-1685. [PMID: 33837956 DOI: 10.1002/eji.202048901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/21/2021] [Accepted: 12/17/2020] [Indexed: 01/28/2023]
Abstract
UNC93B1 is a trafficking chaperone of endosomal Toll-like receptors (TLRs) and plays an essential role in the TLR-mediated innate signaling. However, whether it is also involved in other innate immune sensing or cellular pathways remains largely unexplored. Here we investigated the role of UNC93B1 in cytosolic DNA-triggered cGAS-STING signaling in mouse and human cell lines. We showed that while UNC93B1 deficiency blunts the signal transduction by TLR3, it augments innate immune responses to cytosolic DNA stimulation and DNA virus infection. Mechanistic study reveals a distinct action of UNC93B1 upon STING, but not other parts along the cGAS-STING-TBK1 axis, through regulating the protein level of STING at both resting and cytosolic DNA-stimulated conditions. UNC93B1 can directly interact and traffic along with STING, and the disruption of this interaction causes accumulation of STING that subsequently leads to augmented signaling responses upon its activation. These findings reveal a new function of UNC93B1 in negatively regulating STING-mediated signaling responses.
Collapse
Affiliation(s)
- Zhenliang He
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sichao Ye
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Xing
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- Unit of Viral Hepatitis, Institut Pasteur of Shanghai, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
220
|
Cao Y, Li R, Shen M, Li C, Zou Y, Jiang Q, Liu S, Lu C, Li H, Liu H, Cai Y. DDRGK1, a crucial player of ufmylation system, is indispensable for autophagic degradation by regulating lysosomal function. Cell Death Dis 2021; 12:416. [PMID: 33879777 PMCID: PMC8058061 DOI: 10.1038/s41419-021-03694-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/21/2023]
Abstract
DDRGK domain-containing protein 1 (DDRGK1) is an important component of the newly discovered ufmylation system and its absence has been reported to induce extensive endoplasmic reticulum (ER) stress. Recently, emerging evidence indicates that the ufmylation system is correlated with autophagy, although the exact mechanism remains largely unknown. To explore the regulation mechanism of DDRGK1 on autophagy, in this study, we established an immortalized mouse embryonic fibroblast (MEF) cell lines harvested from the DDRGK1F/F:ROSA26-CreERT2 mice, in which DDRGK1 depletion can be induced by 4-hydroxytamoxifen (4-OHT) treatment. Here, we show that DDRGK1 deficiency in MEFs has a dual effect on autophagy, which leads to a significant accumulation of autophagosomes. On one hand, it promotes autophagy induction by impairing mTOR signaling; on the other hand, it blocks autophagy degradation by inhibiting autophagosome-lysosome fusion. This dual effect of DDRGK1 depletion on autophagy ultimately aggravates apoptosis in MEFs. Further studies reveal that DDRGK1 loss is correlated with suppressed lysosomal function, including impaired Cathepsin D (CTSD) expression, aberrant lysosomal pH, and v-ATPase accumulation, which might be a potential trigger for impairment in autophagy process. Hence, this study confirms a crucial role of DDRGK1 as an autophagy regulator by controlling lysosomal function. It may provide a theoretical basis for the treatment strategies of various physiological diseases caused by DDRGK1 deficiency.
Collapse
Affiliation(s)
- Yan Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Rongyang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chengyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yan Zou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qiang Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shuo Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chunwan Lu
- School of life sciences, Tianjin University, 300072, Tianjin, China
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Yafei Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
221
|
Rojas-Vázquez S, Blasco-Chamarro L, López-Fabuel I, Martínez-Máñez R, Fariñas I. Vascular Senescence: A Potential Bridge Between Physiological Aging and Neurogenic Decline. Front Neurosci 2021; 15:666881. [PMID: 33958987 PMCID: PMC8093510 DOI: 10.3389/fnins.2021.666881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/25/2021] [Indexed: 01/25/2023] Open
Abstract
The adult mammalian brain contains distinct neurogenic niches harboring populations of neural stem cells (NSCs) with the capacity to sustain the generation of specific subtypes of neurons during the lifetime. However, their ability to produce new progeny declines with age. The microenvironment of these specialized niches provides multiple cellular and molecular signals that condition NSC behavior and potential. Among the different niche components, vasculature has gained increasing interest over the years due to its undeniable role in NSC regulation and its therapeutic potential for neurogenesis enhancement. NSCs are uniquely positioned to receive both locally secreted factors and adhesion-mediated signals derived from vascular elements. Furthermore, studies of parabiosis indicate that NSCs are also exposed to blood-borne factors, sensing and responding to the systemic circulation. Both structural and functional alterations occur in vasculature with age at the cellular level that can affect the proper extrinsic regulation of NSCs. Additionally, blood exchange experiments in heterochronic parabionts have revealed that age-associated changes in blood composition also contribute to adult neurogenesis impairment in the elderly. Although the mechanisms of vascular- or blood-derived signaling in aging are still not fully understood, a general feature of organismal aging is the accumulation of senescent cells, which act as sources of inflammatory and other detrimental signals that can negatively impact on neighboring cells. This review focuses on the interactions between vascular senescence, circulating pro-senescence factors and the decrease in NSC potential during aging. Understanding the mechanisms of NSC dynamics in the aging brain could lead to new therapeutic approaches, potentially include senolysis, to target age-dependent brain decline.
Collapse
Affiliation(s)
- Sara Rojas-Vázquez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
| | - Laura Blasco-Chamarro
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Irene López-Fabuel
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valencia, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
222
|
Babcock KR, Page JS, Fallon JR, Webb AE. Adult Hippocampal Neurogenesis in Aging and Alzheimer's Disease. Stem Cell Reports 2021; 16:681-693. [PMID: 33636114 PMCID: PMC8072031 DOI: 10.1016/j.stemcr.2021.01.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Cognitive deficits associated with Alzheimer's disease (AD) severely impact daily life for the millions of affected individuals. Progressive memory impairment in AD patients is associated with degeneration of the hippocampus. The dentate gyrus of the hippocampus, a region critical for learning and memory functions, is a site of adult neurogenesis in mammals. Recent evidence in humans indicates that hippocampal neurogenesis likely persists throughout life, but declines with age and is strikingly impaired in AD. Our understanding of how neurogenesis supports learning and memory in healthy adults is only beginning to emerge. The extent to which decreased neurogenesis contributes to cognitive decline in aging and AD remains poorly understood. However, studies in rodent models of AD and other neurodegenerative diseases raise the possibility that targeting neurogenesis may ameliorate cognitive dysfunction in AD. Here, we review recent progress in understanding how adult neurogenesis is impacted in the context of aging and AD.
Collapse
Affiliation(s)
- Kelsey R Babcock
- Graduate Program in Neuroscience, Brown University, Providence, RI 02912, USA
| | - John S Page
- Warren Alpert Medical School of Brown University, Providence, RI 02912, USA; Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Brown University, Providence, RI 02912, USA
| | - Ashley E Webb
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Brown University, Providence, RI 02912, USA; Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Center on the Biology of Aging, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
223
|
Abstract
The health of a cell requires proper functioning, regulation, and quality control of its organelles, the membrane-enclosed compartments inside the cell that carry out its essential biochemical tasks. Aging commonly perturbs organelle homeostasis, causing problems to cellular health that can spur the initiation and progression of degenerative diseases and related pathologies. Here, we discuss emerging evidence indicating that age-related defects in organelle homeostasis stem in part from dysfunction of the autophagy-lysosome system, a pivotal player in cellular quality control and damage clearance. We also highlight natural examples from biology where enhanced activity of the autophagy-lysosome system might be harnessed to erase age-related organelle damage, raising potential implications for cellular rejuvenation.
Collapse
|
224
|
Belenguer G, Duart-Abadia P, Domingo-Muelas A, Morante-Redolat JM, Fariñas I. Cell population analysis of the adult murine subependymal neurogenic lineage by flow cytometry. STAR Protoc 2021; 2:100425. [PMID: 33899012 PMCID: PMC8056273 DOI: 10.1016/j.xpro.2021.100425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This protocol provides a flow-cytometry-based procedure to classify and isolate all cells of the adult rodent subependymal zone (SEZ) neurogenic lineage, without the need for reporter mice, into different cell populations, including three neural stem cell (NSC) fractions with molecular signatures that are coherent with single-cell transcriptomics. Additionally, their cycling behavior can be assessed by means of 5-ethynyl-2′-deoxyuridine (EdU) incorporation. Our method allows the isolation of different NSC fractions and the functional assay of their cycling heterogeneity and quiescence-activation transitions. For complete details on the use, execution, and outcomes of this protocol, please refer to Belenguer et al. (2021). The subependymal neurogenic lineage can be stratified with a set of surface markers Cytometry-based classification and isolation of three distinct neural stem cell states Nucleoside incorporation can be combined to score cycling dynamics and cell transitions Tips for accurate dissection of the subependymal neurogenic niche
Collapse
Affiliation(s)
- Germán Belenguer
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100 Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain
| | - Pere Duart-Abadia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100 Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain
| | - Ana Domingo-Muelas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100 Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain
| | - Jose Manuel Morante-Redolat
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100 Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100 Burjassot, Spain.,Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain
| |
Collapse
|
225
|
ER-associated degradation preserves hematopoietic stem cell quiescence and self-renewal by restricting mTOR activity. Blood 2021; 136:2975-2986. [PMID: 33150381 DOI: 10.1182/blood.2020007975] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023] Open
Abstract
Hematopoietic stem cells (HSC) self-renew to sustain stem cell pools and differentiate to generate all types of blood cells. HSCs remain in quiescence to sustain their long-term self-renewal potential. It remains unclear whether protein quality control is required for stem cells in quiescence when RNA content, protein synthesis, and metabolic activities are profoundly reduced. Here, we report that protein quality control via endoplasmic reticulum-associated degradation (ERAD) governs the function of quiescent HSCs. The Sel1L/Hrd1 ERAD genes are enriched in the quiescent and inactive HSCs, and conditional knockout of Sel1L in hematopoietic tissues drives HSCs to hyperproliferation, which leads to complete loss of HSC self-renewal and HSC depletion. Mechanistically, ERAD deficiency via Sel1L knockout leads to activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, we identify Ras homolog enriched in brain (Rheb), an activator of mTOR, as a novel protein substrate of Sel1L/Hrd1 ERAD, which accumulates upon Sel1L deletion and HSC activation. Importantly, inhibition of mTOR, or Rheb, rescues HSC defects in Sel1L knockout mice. Protein quality control via ERAD is, therefore, a critical checkpoint that governs HSC quiescence and self-renewal by Rheb-mediated restriction of mTOR activity.
Collapse
|
226
|
Klickstein JA, Mukkavalli S, Raman M. AggreCount: an unbiased image analysis tool for identifying and quantifying cellular aggregates in a spatially defined manner. J Biol Chem 2021; 295:17672-17683. [PMID: 33454006 PMCID: PMC7762942 DOI: 10.1074/jbc.ra120.015398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/13/2020] [Indexed: 01/17/2023] Open
Abstract
Protein quality control is maintained by a number of integrated cellular pathways that monitor the folding and functionality of the cellular proteome. Defects in these pathways lead to the accumulation of misfolded or faulty proteins that may become insoluble and aggregate over time. Protein aggregates significantly contribute to the development of a number of human diseases such as amyotrophic lateral sclerosis, Huntington's disease, and Alzheimer's disease. In vitro, imaging-based, cellular studies have defined key biomolecular components that recognize and clear aggregates; however, no unifying method is available to quantify cellular aggregates, limiting our ability to reproducibly and accurately quantify these structures. Here we describe an ImageJ macro called AggreCount to identify and measure protein aggregates in cells. AggreCount is designed to be intuitive, easy to use, and customizable for different types of aggregates observed in cells. Minimal experience in coding is required to utilize the script. Based on a user-defined image, AggreCount will report a number of metrics: (i) total number of cellular aggregates, (ii) percentage of cells with aggregates, (iii) aggregates per cell, (iv) area of aggregates, and (v) localization of aggregates (cytosol, perinuclear, or nuclear). A data table of aggregate information on a per cell basis, as well as a summary table, is provided for further data analysis. We demonstrate the versatility of AggreCount by analyzing a number of different cellular aggregates including aggresomes, stress granules, and inclusion bodies caused by huntingtin polyglutamine expansion.
Collapse
Affiliation(s)
- Jacob Aaron Klickstein
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Sirisha Mukkavalli
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
227
|
Formation and integration of new neurons in the adult hippocampus. Nat Rev Neurosci 2021; 22:223-236. [PMID: 33633402 DOI: 10.1038/s41583-021-00433-z] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Neural stem cells (NSCs) generate new neurons throughout life in the mammalian brain. Adult-born neurons shape brain function, and endogenous NSCs could potentially be harnessed for brain repair. In this Review, focused on hippocampal neurogenesis in rodents, we highlight recent advances in the field based on novel technologies (including single-cell RNA sequencing, intravital imaging and functional observation of newborn cells in behaving mice) and characterize the distinct developmental steps from stem cell activation to the integration of newborn neurons into pre-existing circuits. Further, we review current knowledge of how levels of neurogenesis are regulated, discuss findings regarding survival and maturation of adult-born cells and describe how newborn neurons affect brain function. The evidence arguing for (and against) lifelong neurogenesis in the human hippocampus is briefly summarized. Finally, we provide an outlook of what is needed to improve our understanding of the mechanisms and functional consequences of adult neurogenesis and how the field may move towards more translational relevance in the context of acute and chronic neural injury and stem cell-based brain repair.
Collapse
|
228
|
Cochard LM, Levros LC, Joppé SE, Pratesi F, Aumont A, Fernandes KJL. Manipulation of EGFR-Induced Signaling for the Recruitment of Quiescent Neural Stem Cells in the Adult Mouse Forebrain. Front Neurosci 2021; 15:621076. [PMID: 33841077 PMCID: PMC8032885 DOI: 10.3389/fnins.2021.621076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
The ventricular-subventricular zone (V-SVZ) is the principal neurogenic niche in the adult mammalian forebrain. Neural stem/progenitor cell (NSPC) activity within the V-SVZ is controlled by numerous of extrinsic factors, whose downstream effects on NSPC proliferation, survival and differentiation are transduced via a limited number of intracellular signaling pathways. Here, we investigated the relationship between age-related changes in NSPC output and activity of signaling pathways downstream of the epidermal growth factor receptor (EGFR), a major regulator of NSPC activity. Biochemical experiments indicated that age-related decline of NSPC activity in vivo is accompanied by selective deficits amongst various EGFR-induced signal pathways within the V-SVZ niche. Pharmacological loss-of-function signaling experiments with cultured NSPCs revealed both overlap and selectivity in the biological functions modulated by the EGFR-induced PI3K/AKT, MEK/ERK and mTOR signaling modules. Specifically, while all three modules promoted EGFR-mediated NSPC proliferation, only mTOR contributed to NSPC survival and only MEK/ERK repressed NSPC differentiation. Using a gain-of-function in vivo genetic approach, we electroporated a constitutively active EGFR construct into a subpopulation of quiescent, EGFR-negative neural stem cells (qNSCs); this ectopic activation of EGFR signaling enabled qNSCs to divide in 3-month-old early adult mice, but not in mice at middle-age or carrying familial Alzheimer disease mutations. Thus, (i) individual EGFR-induced signaling pathways have dissociable effects on NSPC proliferation, survival, and differentiation, (ii) activation of EGFR signaling is sufficient to stimulate qNSC cell cycle entry during early adulthood, and (iii) the proliferative effects of EGFR-induced signaling are dominantly overridden by anti-proliferative signals associated with aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Loïc M Cochard
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montreal, Montreal, QC, Canada
| | - Louis-Charles Levros
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montreal, Montreal, QC, Canada
| | - Sandra E Joppé
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montreal, Montreal, QC, Canada
| | - Federico Pratesi
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montreal, Montreal, QC, Canada
| | - Anne Aumont
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montreal, Montreal, QC, Canada
| | - Karl J L Fernandes
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montreal, Montreal, QC, Canada
| |
Collapse
|
229
|
Büeler H. Mitochondrial and Autophagic Regulation of Adult Neurogenesis in the Healthy and Diseased Brain. Int J Mol Sci 2021; 22:ijms22073342. [PMID: 33805219 PMCID: PMC8036818 DOI: 10.3390/ijms22073342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.
Collapse
Affiliation(s)
- Hansruedi Büeler
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
230
|
Marescal O, Cheeseman IM. Cellular Mechanisms and Regulation of Quiescence. Dev Cell 2021; 55:259-271. [PMID: 33171109 DOI: 10.1016/j.devcel.2020.09.029] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
Quiescence is a state of reversible proliferative arrest in which cells are not actively dividing and yet retain the capacity to reenter the cell cycle upon receiving an appropriate stimulus. Quiescent cells are remarkably diverse-they reside in different locations throughout the body, serve distinct roles, and are activated by a variety of signals. Despite this diversity, all quiescent cells must be able to persist in a nondividing state without compromising their proliferative potential, which requires changes to core cellular programs. How drastically different cell types are able to implement extensive changes to their gene-expression programs, metabolism, and cellular structures to induce a common cellular state is a fascinating question in cell and developmental biology. In this review, we explore the diversity of quiescent cells and highlight the unifying characteristics that define the quiescent state.
Collapse
Affiliation(s)
- Océane Marescal
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
231
|
Jeong SJ, Stitham J, Evans TD, Zhang X, Rodriguez-Velez A, Yeh YS, Tao J, Takabatake K, Epelman S, Lodhi IJ, Schilling JD, DeBosch BJ, Diwan A, Razani B. Trehalose causes low-grade lysosomal stress to activate TFEB and the autophagy-lysosome biogenesis response. Autophagy 2021; 17:3740-3752. [PMID: 33706671 DOI: 10.1080/15548627.2021.1896906] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The autophagy-lysosome system is an important cellular degradation pathway that recycles dysfunctional organelles and cytotoxic protein aggregates. A decline in this system is pathogenic in many human diseases including neurodegenerative disorders, fatty liver disease, and atherosclerosis. Thus there is intense interest in discovering therapeutics aimed at stimulating the autophagy-lysosome system. Trehalose is a natural disaccharide composed of two glucose molecules linked by a ɑ-1,1-glycosidic bond with the unique ability to induce cellular macroautophagy/autophagy and with reported efficacy on mitigating several diseases where autophagy is dysfunctional. Interestingly, the mechanism by which trehalose induces autophagy is unknown. One suggested mechanism is its ability to activate TFEB (transcription factor EB), the master transcriptional regulator of autophagy-lysosomal biogenesis. Here we describe a potential mechanism involving direct trehalose action on the lysosome. We find trehalose is endocytically taken up by cells and accumulates within the endolysosomal system. This leads to a low-grade lysosomal stress with mild elevation of lysosomal pH, which acts as a potent stimulus for TFEB activation and nuclear translocation. This process appears to involve inactivation of MTORC1, a known negative regulator of TFEB which is sensitive to perturbations in lysosomal pH. Taken together, our data show the trehalose can act as a weak inhibitor of the lysosome which serves as a trigger for TFEB activation. Our work not only sheds light on trehalose action but suggests that mild alternation of lysosomal pH can be a novel method of inducing the autophagy-lysosome system.Abbreviations: ASO: antisense oligonucleotide; AU: arbitrary units; BMDM: bone marrow-derived macrophages; CLFs: crude lysosomal fractions; CTSD: cathepsin D; LAMP: lysosomal associated membrane protein; LIPA/LAL: lipase A, lysosomal acid type; MAP1LC3: microtubule-associated protein 1 light chain 3; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; pMAC: peritoneal macrophages; SLC2A8/GLUT8: solute carrier family 2, (facilitated glucose transporter), member 8; TFEB: transcription factor EB; TMR: tetramethylrhodamine; TREH: trehalase.
Collapse
Affiliation(s)
- Se-Jin Jeong
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeremiah Stitham
- Department of Medicine, Division of Endocrinology, Metabolism, Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Trent D Evans
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiangyu Zhang
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Astrid Rodriguez-Velez
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Yu-Sheng Yeh
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Joan Tao
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Koki Takabatake
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Slava Epelman
- Peter Munk Cardiac Center, Ted Rogers Centre for Heart Failure Research and the Toronto General Hospital Research Institute, University of Toronto, Toronto, ON, Canada
| | - Irfan J Lodhi
- Department of Medicine, Division of Endocrinology, Metabolism, Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Joel D Schilling
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian J DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Abhinav Diwan
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.,John Cochran VA Medical Center, St. Louis, MO, USA
| | - Babak Razani
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.,John Cochran VA Medical Center, St. Louis, MO, USA
| |
Collapse
|
232
|
Yuizumi N, Harada Y, Kuniya T, Sunabori T, Koike M, Wakabayashi M, Ishihama Y, Suzuki Y, Kawaguchi D, Gotoh Y. Maintenance of neural stem-progenitor cells by the lysosomal biosynthesis regulators TFEB and TFE3 in the embryonic mouse telencephalon. STEM CELLS (DAYTON, OHIO) 2021; 39:929-944. [PMID: 33609411 DOI: 10.1002/stem.3359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/26/2021] [Indexed: 11/09/2022]
Abstract
Lysosomes have recently been implicated in regulation of quiescence in adult neural stem cells (NSCs). Whether lysosomes regulate the differentiation of neural stem-progenitor cells (NPCs) in the embryonic brain has remained unknown, however. We here show that lysosomes are more abundant in rapidly dividing NPCs than in differentiating neurons in the embryonic mouse neocortex and ganglionic eminence. The genes for TFEB and TFE3, master regulators of lysosomal biosynthesis, as well as other lysosome-related genes were also expressed at higher levels in NPCs than in differentiating neurons. Anatomic analysis revealed accumulation of lysosomes at the apical and basal endfeet of NPCs. Knockdown of TFEB and TFE3, or that of the lysosomal transporter Slc15a4, resulted in premature differentiation of neocortical NPCs. Conversely, forced expression of an active form of TFEB (TFEB-AA) suppressed neuronal differentiation of NPCs in association with upregulation of NPC-related genes. These results together point to a previously unappreciated role for TFEB and TFE3, and possibly for lysosomes, in maintenance of the undifferentiated state of embryonic NPCs. We further found that lysosomes are even more abundant in an NPC subpopulation that rarely divides and includes the embryonic origin of adult NSCs than in the majority of NPCs that divide frequently for construction of the embryonic brain, and that overexpression of TFEB-AA also suppressed the cell cycle of neocortical NPCs. Our results thus also implicate lysosomes in establishment of the slowly dividing, embryonic origin of adult NSCs.
Collapse
Affiliation(s)
- Naoya Yuizumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yujin Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takaaki Kuniya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takehiko Sunabori
- Department of Cell Biology and Neuroscience, Juntendo University of Medicine, Tokyo, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University of Medicine, Tokyo, Japan
| | - Masaki Wakabayashi
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Daichi Kawaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
233
|
Targeting reactive oxygen species in stem cells for bone therapy. Drug Discov Today 2021; 26:1226-1244. [PMID: 33684524 DOI: 10.1016/j.drudis.2021.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have emerged as key players in regulating the fate and function of stem cells from both non-hematopoietic and hematopoietic lineages in bone marrow, and thus affect the osteoblastogenesis-osteoclastogenesis balance and bone homeostasis. Accumulating evidence has linked ROS and associated oxidative stress with the progression of bone disorders, and ROS-based therapeutic strategies have appeared to achieve favorable outcomes in bone. We review current knowledge of the multifactorial roles and mechanisms of ROS as a target in bone pathology. In addition, we discuss emerging ROS-based therapeutic strategies that show potential for bone therapy. Finally, we highlight the opportunities and challenges facing ROS-targeted stem cell therapeutics for improving bone health.
Collapse
|
234
|
Benito-Cuesta I, Ordóñez-Gutiérrez L, Wandosell F. AMPK activation does not enhance autophagy in neurons in contrast to MTORC1 inhibition: different impact on β-amyloid clearance. Autophagy 2021; 17:656-671. [PMID: 32075509 PMCID: PMC8032230 DOI: 10.1080/15548627.2020.1728095] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/08/2020] [Accepted: 02/06/2020] [Indexed: 01/04/2023] Open
Abstract
The physiological AKT-MTORC1 and AMPK signaling pathways are considered key nodes in the regulation of anabolism-catabolism, and particularly of macroautophagy/autophagy. Indeed, it is reported that these are altered processes in neurodegenerative proteinopathies such as Alzheimer disease (AD), mainly characterized by deposits of β-amyloid (Aβ) and hyperphosphorylated MAPT. These accumulations disrupt the optimal neuronal proteostasis, and hence, the recovery/enhancement of autophagy has been proposed as a therapeutic approach against these proteinopathies. The purpose of the present study was to characterize the modulation of autophagy by MTORC1 and AMPK signaling pathways in the highly specialized neurons, as well as their repercussions on Aβ production. Using a double transgenic mice model of AD, we demonstrated that MTORC1 inhibition, either in vivo or ex vivo (primary neuronal cultures), was able to reduce amyloid secretion through moderate autophagy induction in neurons. The pharmacological prevention of autophagy in neurons augmented the Aβ secretion and reversed the effect of rapamycin, confirming the anti-amyloidogenic effects of autophagy in neurons. Inhibition of AMPK with compound C generated the expected decrease in autophagy induction, though surprisingly did not increase the Aβ secretion. In contrast, increased activity of AMPK with metformin, AICAR, 2DG, or by gene overexpression did not enhance autophagy but had different effects on Aβ secretion: whereas metformin and 2DG diminished the secreted Aβ levels, AICAR and PRKAA1/AMPK gene overexpression increased them. We conclude that AMPK has a significantly different role in primary neurons than in other reported cells, lacking a direct effect on autophagy-dependent amyloidosis.Abbreviations: 2DG: 2-deoxy-D-glucose; Aβ: β-amyloid; ACACA: acetyl-CoA carboxylase alpha; ACTB: actin beta; AD: Alzheimer disease; AICAR: 5-aminoimidazole-4-carboxamide-1-β-riboside; AKT: AKT kinases group (AKT1 [AKT serine/threonine kinase 1], AKT2 and AKT3); AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; APP: amyloid beta precursor protein; APP/PSEN1: B6.Cg-Tg (APPSwe, PSEN1dE9) 85Dbo/J; ATG: autophagy related; ATP: adenosine triphosphate; BafA1: bafilomycin A1; CA: constitutively active; CGN: cerebellar granule neuron; CoC/compound C: dorsommorphin dihydrochloride; ELISA: enzyme-linked immunosorbent assay; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; Gmax: GlutaMAX™; IN1: PIK3C3/VPS34-IN1; KI: kinase-inactive; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3; MAPT/TAU: microtubule associated protein tau; Metf: metformin; MRT: MRT68921; MTORC1: mechanistic target of rapamycin kinase complex 1; NBR1: NBR1 autophagy cargo receptor; PRKAA: 5'-AMP-activated protein kinase catalytic subunit alpha; PtdIns3K: phosphatidylinositol 3-kinase; Rapa: rapamycin; RPS6KB1/S6K: ribosomal protein S6 (RPS6) kinase polypeptide 1; SCR: scramble; SQSTM1/p62: sequestosome 1; ULK1/2: unc-51 like autophagy activating kinase 1/2; WT: wild type.
Collapse
Affiliation(s)
- Irene Benito-Cuesta
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Lara Ordóñez-Gutiérrez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
- Alzheimer's Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
235
|
Sikora E, Bielak-Zmijewska A, Dudkowska M, Krzystyniak A, Mosieniak G, Wesierska M, Wlodarczyk J. Cellular Senescence in Brain Aging. Front Aging Neurosci 2021; 13:646924. [PMID: 33732142 PMCID: PMC7959760 DOI: 10.3389/fnagi.2021.646924] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.
Collapse
Affiliation(s)
- Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Anna Bielak-Zmijewska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Magdalena Dudkowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Adam Krzystyniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Grazyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Malgorzata Wesierska
- Laboratory of Neuropsychology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| |
Collapse
|
236
|
Harris L, Rigo P, Stiehl T, Gaber ZB, Austin SHL, Masdeu MDM, Edwards A, Urbán N, Marciniak-Czochra A, Guillemot F. Coordinated changes in cellular behavior ensure the lifelong maintenance of the hippocampal stem cell population. Cell Stem Cell 2021; 28:863-876.e6. [PMID: 33581058 PMCID: PMC8110946 DOI: 10.1016/j.stem.2021.01.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Neural stem cell numbers fall rapidly in the hippocampus of juvenile mice but stabilize during adulthood, ensuring lifelong hippocampal neurogenesis. We show that this stabilization of stem cell numbers in young adults is the result of coordinated changes in stem cell behavior. Although proliferating neural stem cells in juveniles differentiate rapidly, they increasingly return to a resting state of shallow quiescence and progress through additional self-renewing divisions in adulthood. Single-cell transcriptomics, modeling, and label retention analyses indicate that resting cells have a higher activation rate and greater contribution to neurogenesis than dormant cells, which have not left quiescence. These changes in stem cell behavior result from a progressive reduction in expression of the pro-activation protein ASCL1 because of increased post-translational degradation. These cellular mechanisms help reconcile current contradictory models of hippocampal neural stem cell (NSC) dynamics and may contribute to the different rates of decline of hippocampal neurogenesis in mammalian species, including humans. More proliferating hippocampal stem cells return to shallow quiescence with age Dormant stem cells enter deeper quiescence with age These changes drive the transition from developmental to adult neurogenesis Increasing degradation of ASCL1 protein by HUWE1 coordinates these changes
Collapse
Affiliation(s)
- Lachlan Harris
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Piero Rigo
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Thomas Stiehl
- Institute of Applied Mathematics, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany; Bioquant Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Zachary B Gaber
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sophie H L Austin
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Maria Del Mar Masdeu
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Amelia Edwards
- Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Noelia Urbán
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany; Bioquant Center, Heidelberg University, 69120 Heidelberg, Germany
| | - François Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
237
|
Abstract
Quiescence is a cellular state in which a cell remains out of the cell cycle but retains the capacity to divide. The unique ability of adult stem cells to maintain quiescence is crucial for life-long tissue homeostasis and regenerative capacity. Quiescence has long been viewed as an inactive state but recent studies have shown that it is in fact an actively regulated process and that adult stem cells are highly reactive to extrinsic stimuli. This has fuelled hopes of boosting the reactivation potential of adult stem cells to improve tissue function during ageing. In this Review, we provide a perspective of the quiescent state and discuss how quiescent adult stem cells transition into the cell cycle. We also discuss current challenges in the field, highlighting recent technical advances that could help overcome some of these challenges.
Collapse
Affiliation(s)
- Noelia Urbán
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter Campus (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China
| |
Collapse
|
238
|
Kim JH, Park I, Shin HR, Rhee J, Seo JY, Jo YW, Yoo K, Hann SH, Kang JS, Park J, Kim YL, Moon JY, Choi MH, Kong YY. The hypothalamic-pituitary-gonadal axis controls muscle stem cell senescence through autophagosome clearance. J Cachexia Sarcopenia Muscle 2021; 12:177-191. [PMID: 33244887 PMCID: PMC7890269 DOI: 10.1002/jcsm.12653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND With organismal aging, the hypothalamic-pituitary-gonadal (HPG) activity gradually decreases, resulting in the systemic functional declines of the target tissues including skeletal muscles. Although the HPG axis plays an important role in health span, how the HPG axis systemically prevents functional aging is largely unknown. METHODS We generated muscle stem cell (MuSC)-specific androgen receptor (Ar) and oestrogen receptor 2 (Esr2) double knockout (dKO) mice and pharmacologically inhibited (Antide) the HPG axis to mimic decreased serum levels of sex steroid hormones in aged mice. After short-term and long-term sex hormone signalling ablation, the MuSCs were functionally analysed, and their aging phenotypes were compared with those of geriatric mice (30-month-old). To investigate pathways associated with sex hormone signalling disruption, RNA sequencing and bioinformatic analyses were performed. RESULTS Disrupting the HPG axis results in impaired muscle regeneration [wild-type (WT) vs. dKO, P < 0.0001; Veh vs. Antide, P = 0.004]. The expression of DNA damage marker (in WT = 7.0 ± 1.6%, dKO = 32.5 ± 2.6%, P < 0.01; in Veh = 13.4 ± 4.5%, Antide = 29.7 ± 5.5%, P = 0.028) and senescence-associated β-galactosidase activity (in WT = 3.8 ± 1.2%, dKO = 10.3 ± 1.6%, P < 0.01; in Veh = 2.1 ± 0.4%, Antide = 9.6 ± 0.8%, P = 0.005), as well as the expression levels of senescence-associated genes, p16Ink4a and p21Cip1 , was significantly increased in the MuSCs, indicating that genetic and pharmacological inhibition of the HPG axis recapitulates the progressive aging process of MuSCs. Mechanistically, the ablation of sex hormone signalling reduced the expression of transcription factor EB (Tfeb) and Tfeb target gene in MuSCs, suggesting that sex hormones directly induce the expression of Tfeb, a master regulator of the autophagy-lysosome pathway, and consequently autophagosome clearance. Transduction of the Tfeb in naturally aged MuSCs increased muscle mass [control geriatric MuSC transplanted tibialis anterior (TA) muscle = 34.3 ± 2.9 mg, Tfeb-transducing geriatric MuSC transplanted TA muscle = 44.7 ± 6.7 mg, P = 0.015] and regenerating myofibre size [eMyHC+ tdTomato+ myofibre cross-section area (CSA) in control vs. Tfeb, P = 0.002] after muscle injury. CONCLUSIONS Our data show that the HPG axis systemically controls autophagosome clearance in MuSCs through Tfeb and prevents MuSCs from senescence, suggesting that sustained HPG activity throughout life regulates autophagosome clearance to maintain the quiescence of MuSCs by preventing senescence until advanced age.
Collapse
Affiliation(s)
- Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hijai R Shin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,The Paul F. Glenn Center for Aging Research, University of California, Berkeley, CA, USA
| | - Joonwoo Rhee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Yun Seo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Young-Woo Jo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sang-Hyeon Hann
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jong-Seol Kang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jieon Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Lynne Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ju-Yeon Moon
- College of Pharmacy, The Catholic University of Korea, Gyeonggi-do, South Korea
| | - Man Ho Choi
- Molecular Recognition Research Center, KIST, Seoul, South Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
239
|
Heng D, Sheng X, Tian C, Li J, Liu L, Gou M, Liu L. Mtor inhibition by INK128 extends functions of the ovary reconstituted from germline stem cells in aging and premature aging mice. Aging Cell 2021; 20:e13304. [PMID: 33448083 PMCID: PMC7884035 DOI: 10.1111/acel.13304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
Stem cell transplantation has been generally considered as promising therapeutics in preserving or recovering functions of lost, damaged, or aging tissues. Transplantation of primordial germ cells (PGCs) or oogonia stem cells (OSCs) can reconstitute ovarian functions that yet sustain for only short period of time, limiting potential application of stem cells in preservation of fertility and endocrine function. Here, we show that mTOR inhibition by INK128 extends the follicular and endocrine functions of the reconstituted ovaries in aging and premature aging mice following transplantation of PGCs/OSCs. Follicular development and endocrine functions of the reconstituted ovaries by transplanting PGCs into kidney capsule of the recipient mice were maintained by INK128 treatment for more than 12 weeks, in contrast to the controls for only about 4 weeks without receiving the mTOR inhibitors. Comparatively, rapamycin also can prolong the ovarian functions but for limited time. Furthermore, our data reveal that INK128 promotes mitochondrial function in addition to its known function in suppression of immune response and inflammation. Taken together, germline stem cell transplantation in combination with mTOR inhibition by INK128 improves and extends the reconstituted ovarian and endocrine functions in reproductive aging and premature aging mice.
Collapse
Affiliation(s)
- Dai Heng
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Xiaoyan Sheng
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
- Animal Resources CenterNankai UniversityTianjinChina
| | - Chenglei Tian
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Jie Li
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Mo Gou
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
- Animal Resources CenterNankai UniversityTianjinChina
| |
Collapse
|
240
|
Bedrosian TA, Houtman J, Eguiguren JS, Ghassemzadeh S, Rund N, Novaresi NM, Hu L, Parylak SL, Denli AM, Randolph‐Moore L, Namba T, Gage FH, Toda T. Lamin B1 decline underlies age-related loss of adult hippocampal neurogenesis. EMBO J 2021; 40:e105819. [PMID: 33300615 PMCID: PMC7849303 DOI: 10.15252/embj.2020105819] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 02/03/2023] Open
Abstract
Neurogenesis in the adult hippocampus declines with age, a process that has been implicated in cognitive and emotional impairments. However, the mechanisms underlying this decline have remained elusive. Here, we show that the age-dependent downregulation of lamin B1, one of the nuclear lamins in adult neural stem/progenitor cells (ANSPCs), underlies age-related alterations in adult hippocampal neurogenesis. Our results indicate that higher levels of lamin B1 in ANSPCs safeguard against premature differentiation and regulate the maintenance of ANSPCs. However, the level of lamin B1 in ANSPCs declines during aging. Precocious loss of lamin B1 in ANSPCs transiently promotes neurogenesis but eventually depletes it. Furthermore, the reduction of lamin B1 in ANSPCs recapitulates age-related anxiety-like behavior in mice. Our results indicate that the decline in lamin B1 underlies stem cell aging and impacts the homeostasis of adult neurogenesis and mood regulation.
Collapse
Affiliation(s)
- Tracy A Bedrosian
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
- Institute for Genomic MedicineNationwide Children's HospitalColumbusOHUSA
| | - Judith Houtman
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE)DresdenGermany
| | - Juan Sebastian Eguiguren
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE)DresdenGermany
| | - Saeed Ghassemzadeh
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Nicole Rund
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE)DresdenGermany
| | - Nicole M Novaresi
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Lauren Hu
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Sarah L. Parylak
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Ahmet M Denli
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | | | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Neuroscience Center, HiLIFE‐Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Fred H Gage
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Tomohisa Toda
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE)DresdenGermany
- Paul F. Glenn Center for Biology of Aging Research at the Salk InstituteLa JollaCAUSA
| |
Collapse
|
241
|
Auzmendi-Iriarte J, Matheu A. Impact of Chaperone-Mediated Autophagy in Brain Aging: Neurodegenerative Diseases and Glioblastoma. Front Aging Neurosci 2021; 12:630743. [PMID: 33633561 PMCID: PMC7901968 DOI: 10.3389/fnagi.2020.630743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Brain aging is characterized by a time-dependent decline of tissue integrity and function, and it is a major risk for neurodegenerative diseases and brain cancer. Chaperone-mediated autophagy (CMA) is a selective form of autophagy specialized in protein degradation, which is based on the individual translocation of a cargo protein through the lysosomal membrane. Regulation of processes such as proteostasis, cellular energetics, or immune system activity has been associated with CMA, indicating its pivotal role in tissue homeostasis. Since first studies associating Parkinson’s disease (PD) to CMA dysfunction, increasing evidence points out that CMA is altered in both physiological and pathological brain aging. In this review article, we summarize the current knowledge regarding the impact of CMA during aging in brain physiopathology, highlighting the role of CMA in neurodegenerative diseases and glioblastoma, the most common and aggressive brain tumor in adults.
Collapse
Affiliation(s)
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,IKERBASQUE, Basque Foundation, Bilbao, Spain
| |
Collapse
|
242
|
Mongiardi MP, Pellegrini M, Pallini R, Levi A, Falchetti ML. Cancer Response to Therapy-Induced Senescence: A Matter of Dose and Timing. Cancers (Basel) 2021; 13:484. [PMID: 33513872 PMCID: PMC7865402 DOI: 10.3390/cancers13030484] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence participates to fundamental processes like tissue remodeling in embryo development, wound healing and inhibition of preneoplastic cell growth. Most senescent cells display common hallmarks, among which the most characteristic is a permanent (or long lasting) arrest of cell division. However, upon senescence, different cell types acquire distinct phenotypes, which also depend on the specific inducing stimuli. Senescent cells are metabolically active and secrete a collection of growth factors, cytokines, proteases, and matrix-remodeling proteins collectively defined as senescence-associated secretory phenotype, SASP. Through SASP, senescent cells modify their microenvironment and engage in a dynamic dialog with neighbor cells. Senescence of neoplastic cells, at least temporarily, reduces tumor expansion, but SASP of senescent cancer cells as well as SASP of senescent stromal cells in the tumor microenvironment may promote the growth of more aggressive cancer subclones. Here, we will review recent data on the mechanisms and the consequences of cancer-therapy induced senescence, enlightening the potentiality and the risk of senescence inducing treatments.
Collapse
Affiliation(s)
- Maria Patrizia Mongiardi
- CNR-Institute of Biochemistry and Cell Biology, Campus Adriano Buzzati Traverso, Via Ercole Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy; (M.P.M.); (M.P.); (A.L.)
| | - Manuela Pellegrini
- CNR-Institute of Biochemistry and Cell Biology, Campus Adriano Buzzati Traverso, Via Ercole Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy; (M.P.M.); (M.P.); (A.L.)
| | - Roberto Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy;
| | - Andrea Levi
- CNR-Institute of Biochemistry and Cell Biology, Campus Adriano Buzzati Traverso, Via Ercole Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy; (M.P.M.); (M.P.); (A.L.)
| | - Maria Laura Falchetti
- CNR-Institute of Biochemistry and Cell Biology, Campus Adriano Buzzati Traverso, Via Ercole Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy; (M.P.M.); (M.P.); (A.L.)
| |
Collapse
|
243
|
Gengatharan A, Malvaut S, Marymonchyk A, Ghareghani M, Snapyan M, Fischer-Sternjak J, Ninkovic J, Götz M, Saghatelyan A. Adult neural stem cell activation in mice is regulated by the day/night cycle and intracellular calcium dynamics. Cell 2021; 184:709-722.e13. [PMID: 33482084 DOI: 10.1016/j.cell.2020.12.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/25/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023]
Abstract
Neural stem cells (NSCs) in the adult brain transit from the quiescent state to proliferation to produce new neurons. The mechanisms regulating this transition in freely behaving animals are, however, poorly understood. We customized in vivo imaging protocols to follow NSCs for several days up to months, observing their activation kinetics in freely behaving mice. Strikingly, NSC division is more frequent during daylight and is inhibited by darkness-induced melatonin signaling. The inhibition of melatonin receptors affected intracellular Ca2+ dynamics and promoted NSC activation. We further discovered a Ca2+ signature of quiescent versus activated NSCs and showed that several microenvironmental signals converge on intracellular Ca2+ pathways to regulate NSC quiescence and activation. In vivo NSC-specific optogenetic modulation of Ca2+ fluxes to mimic quiescent-state-like Ca2+ dynamics in freely behaving mice blocked NSC activation and maintained their quiescence, pointing to the regulatory mechanisms mediating NSC activation in freely behaving animals.
Collapse
Affiliation(s)
- Archana Gengatharan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Alina Marymonchyk
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Majid Ghareghani
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Marina Snapyan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Judith Fischer-Sternjak
- Division of Physiological Genomics, BioMedical Center, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center, Munich, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center, Munich, Germany; Department of Cell Biology and Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Magdalena Götz
- Division of Physiological Genomics, BioMedical Center, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
244
|
Liu Y, Subedi K, Baride A, Romanova S, Callegari E, Huber CC, Wang X, Wang H. Peripherally misfolded proteins exacerbate ischemic stroke-induced neuroinflammation and brain injury. J Neuroinflammation 2021; 18:29. [PMID: PMID:33472658 PMCID: PMC7818745 DOI: 10.1186/s12974-021-02081-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Protein aggregates can be found in peripheral organs, such as the heart, kidney, and pancreas, but little is known about the impact of peripherally misfolded proteins on neuroinflammation and brain functional recovery following ischemic stroke. METHODS Here, we studied the ischemia/reperfusion (I/R) induced brain injury in mice with cardiomyocyte-restricted overexpression of a missense (R120G) mutant small heat shock protein, αB-crystallin (CryABR120G), by examining neuroinflammation and brain functional recovery following I/R in comparison to their non-transgenic (Ntg) littermates. To understand how peripherally misfolded proteins influence brain functionality, exosomes were isolated from CryABR120G and Ntg mouse blood and were used to treat wild-type (WT) mice and primary cortical neuron-glia mix cultures. Additionally, isolated protein aggregates from the brain following I/R were isolated and subjected to mass-spectrometric analysis to assess whether the aggregates contained the mutant protein, CryABR120G. To determine whether the CryABR120G misfolding can self-propagate, a misfolded protein seeding assay was performed in cell cultures. RESULTS Our results showed that CryABR120G mice exhibited dramatically increased infarct volume, delayed brain functional recovery, and enhanced neuroinflammation and protein aggregation in the brain following I/R when compared to the Ntg mice. Intriguingly, mass-spectrometric analysis of the protein aggregates isolated from CryABR120G mouse brains confirmed presence of the mutant CryABR120G protein in the brain. Importantly, intravenous administration of WT mice with the exosomes isolated from CryABR120G mouse blood exacerbated I/R-induced cerebral injury in WT mice. Moreover, incubation of the CryABR120G mouse exosomes with primary neuronal cultures induced pronounced protein aggregation. Transduction of CryABR120G aggregate seeds into cell cultures caused normal CryAB proteins to undergo dramatic aggregation and form large aggregates, suggesting self-propagation of CryABR120G misfolding in cells. CONCLUSIONS These results suggest that peripherally misfolded proteins in the heart remotely enhance neuroinflammation and exacerbate brain injury following I/R likely through exosomes, which may represent an underappreciated mechanism underlying heart-brain crosstalk.
Collapse
Affiliation(s)
- Yanying Liu
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Kalpana Subedi
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Aravind Baride
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | - Svetlana Romanova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Christa C Huber
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
245
|
Royall LN, Jessberger S. How stem cells remember their past. Curr Opin Cell Biol 2021; 69:17-22. [PMID: 33429112 DOI: 10.1016/j.ceb.2020.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022]
Abstract
Somatic stem cells are required for tissue development, homeostasis, and repair. Recent data suggested that previous biographical experiences of individual stem cells influence their behavior in the context of tissue formation and govern stem cell responses to external stimuli. Here we provide a concise review how a cell's biography, for example, previous rounds of cell divisions or the age-dependent accumulation of cellular damage, is remembered in stem cells and how previous experiences affect the segregation of cellular components, thus guiding cellular behavior in vertebrate stem cells. Further, we suggest future directions of research that may help to unravel the molecular underpinnings of how past experiences guide future cellular behavior.
Collapse
Affiliation(s)
- Lars N Royall
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
246
|
Lee JH, Kim JY, Noh S, Lee H, Lee SY, Mun JY, Park H, Chung WS. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 2020; 590:612-617. [PMID: 33361813 DOI: 10.1038/s41586-020-03060-3] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
In the adult hippocampus, synapses are constantly formed and eliminated1,2. However, the exact function of synapse elimination in the adult brain, and how it is regulated, are largely unknown. Here we show that astrocytic phagocytosis3 is important for maintaining proper hippocampal synaptic connectivity and plasticity. By using fluorescent phagocytosis reporters, we find that excitatory and inhibitory synapses are eliminated by glial phagocytosis in the CA1 region of the adult mouse hippocampus. Unexpectedly, we found that astrocytes have a major role in the neuronal activity-dependent elimination of excitatory synapses. Furthermore, mice in which astrocytes lack the phagocytic receptor MEGF10 show a reduction in the elimination of excitatory synapses; as a result, excessive but functionally impaired synapses accumulate. Finally, Megf10-knockout mice show defective long-term synaptic plasticity and impaired formation of hippocampal memories. Together, our data provide strong evidence that astrocytes eliminate unnecessary excitatory synaptic connections in the adult hippocampus through MEGF10, and that this astrocytic function is crucial for maintaining circuit connectivity and thereby supporting cognitive function.
Collapse
Affiliation(s)
- Joon-Hyuk Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji-Young Kim
- Research Group for Neurovascular Unit, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Seulgi Noh
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.,Research Group for Neural Circuit, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyoeun Lee
- Research Group for Neurovascular Unit, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Se Young Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji Young Mun
- Research Group for Neural Circuit, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyungju Park
- Research Group for Neurovascular Unit, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea. .,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
247
|
Mouthon MA, Morizur L, Dutour L, Pineau D, Kortulewski T, Boussin FD. Syndecan-1 Stimulates Adult Neurogenesis in the Mouse Ventricular-Subventricular Zone after Injury. iScience 2020; 23:101784. [PMID: 33294792 PMCID: PMC7695966 DOI: 10.1016/j.isci.2020.101784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/25/2020] [Accepted: 11/05/2020] [Indexed: 11/28/2022] Open
Abstract
The production of neurons from neural stem cells (NSCs) persists throughout life in the mouse ventricular-subventricular zone (V-SVZ). We have previously reported that NSCs from adult V-SVZ are contained in cell populations expressing the carbohydrate SSEA-1/LeX, which exhibit either characteristics of quiescent NSCs (qNSCs) or of actively dividing NSCs (aNSCs) based on the absence or the presence of EGF-receptor, respectively. Using the fluorescence ubiquitination cell cycle indicator-Cdt1 transgenic mice to mark cells in G0/G1 phase of the cell cycle, we uncovered a subpopulation of qNSCs which were primed to enter the cell cycle in vitro. Besides, we found that treatment with Syndecan-1, a heparan sulfate proteoglycan involved in NSC proliferation, hastened the division of qNSCs and increased proliferation of aNSCs shortening their G1 phase in vitro. Furthermore, administration of Syndecan-1 ameliorated the recovery of neurogenic populations in the V-SVZ after radiation-induced injury providing potential cure for neurogenesis decline during brain aging or after injury. A subpopulation of quiescent NSCs are primed to enter cell cycle The content of primed quiescent NSCs decreases rapidly with age Syndecan-1 favors cell cycle progression of NSCs in vitro and in vivo
Collapse
Affiliation(s)
- Marc-André Mouthon
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| | - Lise Morizur
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| | - Léa Dutour
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| | - Donovan Pineau
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| | - Thierry Kortulewski
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| | - François D Boussin
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
248
|
Lee H, Koh JY. Roles for H + /K + -ATPase and zinc transporter 3 in cAMP-mediated lysosomal acidification in bafilomycin A1-treated astrocytes. Glia 2020; 69:1110-1125. [PMID: 33314298 DOI: 10.1002/glia.23952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022]
Abstract
Vacuolar ATPase (v-ATPase) is the main proton pump that acidifies vesicles such as lysosomes. Disruption in the lysosomal localization of v-ATPase leads to lysosomal dysfunction, thus contributing to the pathogenesis of lysosomal storage disorders and neurodegenerative diseases such as Alzheimer's disease. Recent studies showed that increases in cyclic AMP (cAMP) levels acidify lysosomes and consequently enhance autophagy flux. Although the upregulation of v-ATPase function may be the key mechanism underlying the cAMP-mediated lysosomal acidification, it is unknown whether a mechanism independent of v-ATPase may be contributing to this phenomenon. In the present study, we modeled v-ATPase dysfunction in brain cells by blocking lysosomal acidification in cortical astrocytes through treatment with bafilomycin A1, a selective v-ATPase inhibitor. We observed that cAMP reversed the pH changes via the activation of protein kinase A; interestingly, cAMP also increased autophagy flux even in the presence of bafilomycin A1, suggesting the presence of an alternative route of proton entry. Notably, pharmacological inhibitors and siRNAs of H+ /K+ -ATPase markedly shifted the lysosomal pH toward more alkaline values in bafilomycin A1/cAMP-treated astrocytes, suggesting that H+ /K+ -ATPase may be the alternative route of proton entry for lysosomal acidification. Furthermore, the cAMP-mediated reversal of lysosomal pH was nullified in the absence of ZnT3 that interacts with H+ /K+ -ATPase. Our results suggest that the H+ /K+ -ATPase/ZnT3 complex is recruited to lysosomes in a cAMP-dependent manner and functions as an alternative proton pump for lysosomes when the v-ATPase function is downregulated, thus providing insight into the potential development of a new class of lysosome-targeted therapeutics in neurodegenerative diseases.
Collapse
Affiliation(s)
- Huikyong Lee
- Neural Injury Laboratory, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae-Young Koh
- Neural Injury Laboratory, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
249
|
Zaro BW, Noh JJ, Mascetti VL, Demeter J, George B, Zukowska M, Gulati GS, Sinha R, Flynn RA, Banuelos A, Zhang A, Wilkinson AC, Jackson P, Weissman IL. Proteomic analysis of young and old mouse hematopoietic stem cells and their progenitors reveals post-transcriptional regulation in stem cells. eLife 2020; 9:e62210. [PMID: 33236985 PMCID: PMC7688314 DOI: 10.7554/elife.62210] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
The balance of hematopoietic stem cell (HSC) self-renewal and differentiation is critical for a healthy blood supply; imbalances underlie hematological diseases. The importance of HSCs and their progenitors have led to their extensive characterization at genomic and transcriptomic levels. However, the proteomics of hematopoiesis remains incompletely understood. Here we report a proteomics resource from mass spectrometry of mouse young adult and old adult mouse HSCs, multipotent progenitors and oligopotent progenitors; 12 cell types in total. We validated differential protein levels, including confirmation that Dnmt3a protein levels are undetected in young adult mouse HSCs until forced into cycle. Additionally, through integrating proteomics and RNA-sequencing datasets, we identified a subset of genes with apparent post-transcriptional repression in young adult mouse HSCs. In summary, we report proteomic coverage of young and old mouse HSCs and progenitors, with broader implications for understanding mechanisms for stem cell maintenance, niche interactions and fate determination.
Collapse
Affiliation(s)
- Balyn W Zaro
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Joseph J Noh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Victoria L Mascetti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Benson George
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Monika Zukowska
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Gunsagar S Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Ryan A Flynn
- Department of Chemistry, Stanford UniversityStanfordUnited States
| | - Allison Banuelos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Allison Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Peter Jackson
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
- Department of Developmental Biology and the Stanford UC-Berkeley Stem Cell InstituteStanfordUnited States
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
250
|
High-resolution mouse subventricular zone stem-cell niche transcriptome reveals features of lineage, anatomy, and aging. Proc Natl Acad Sci U S A 2020; 117:31448-31458. [PMID: 33229571 DOI: 10.1073/pnas.2014389117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adult neural stem cells (NSC) serve as a reservoir for brain plasticity and origin for certain gliomas. Lineage tracing and genomic approaches have portrayed complex underlying heterogeneity within the major anatomical location for NSC, the subventricular zone (SVZ). To gain a comprehensive profile of NSC heterogeneity, we utilized a well-validated stem/progenitor-specific reporter transgene in concert with single-cell RNA sequencing to achieve unbiased analysis of SVZ cells from infancy to advanced age. The magnitude and high specificity of the resulting transcriptional datasets allow precise identification of the varied cell types embedded in the SVZ including specialized parenchymal cells (neurons, glia, microglia) and noncentral nervous system cells (endothelial, immune). Initial mining of the data delineates four quiescent NSC and three progenitor-cell subpopulations formed in a linear progression. Further evidence indicates that distinct stem and progenitor populations reside in different regions of the SVZ. As stem/progenitor populations progress from neonatal to advanced age, they acquire a deficiency in transition from quiescence to proliferation. Further data mining identifies stage-specific biological processes, transcription factor networks, and cell-surface markers for investigation of cellular identities, lineage relationships, and key regulatory pathways in adult NSC maintenance and neurogenesis.
Collapse
|