201
|
Miao H, Wei Y, Lee SG, Wu Z, Kaur J, Kim WJ. Glia-specific expression of neuropeptide receptor Lgr4 regulates development and adult physiology in Drosophila. J Neurosci Res 2024; 102:e25271. [PMID: 38284837 DOI: 10.1002/jnr.25271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 01/30/2024]
Abstract
Similar to the human brain, Drosophila glia may well be divided into several subtypes that each carries out specific functions. Glial GPCRs play key roles in crosstalk between neurons and glia. Drosophila Lgr4 (dLgr4) is a human relaxin receptor homolog involved in angiogenesis, cardiovascular regulation, collagen remodeling, and wound healing. A recent study suggests that ilp7 might be the ligand for Lgr4 and regulates escape behavior of Drosophila larvae. Here we demonstrate that Drosophila Lgr4 expression in glial cells, not neurons, is necessary for early development, adult behavior, and lifespan. Reducing the Lgr4 level in glial cells disrupts Drosophila development, while knocking down other LGR family members in glia has no impact. Adult-specific knockdown of Lgr4 in glia but not neurons reduce locomotion, male reproductive success, and animal longevity. The investigation of how glial expression of Lgr4 contributes to this behavioral alteration will increase our understanding of how insulin signaling via glia selectively modulates neuronal activity and behavior.
Collapse
Affiliation(s)
- Hongyu Miao
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Yanan Wei
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Seung Gee Lee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Zekun Wu
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Jasdeep Kaur
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Woo Jae Kim
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
202
|
Qu S, Zhou X, Wang Z, Wei Y, Zhou H, Zhang X, Zhu Q, Wang Y, Yang Q, Jiang L, Ma Y, Gao Y, Kong L, Zhang L. The effects of methylphenidate and atomoxetine on Drosophila brain at single-cell resolution and potential drug repurposing for ADHD treatment. Mol Psychiatry 2024; 29:165-185. [PMID: 37957291 PMCID: PMC11078728 DOI: 10.1038/s41380-023-02314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
The stimulant methylphenidate (MPH) and the non-stimulant atomoxetine (ATX) are frequently used for the treatment of attention-deficit/hyperactivity disorder (ADHD); however, the function of these drugs in different types of brain cells and their effects on related genes remain largely unknown. To address these questions, we built a pipeline for the simultaneous examination of the activity behavior and transcriptional responses of Drosophila melanogaster at single-cell resolution following drug treatment. We selected the Drosophila with significantly increased locomotor activities (hyperactivity-like behavior) following the administration of each drug in comparison with the control (same food as the drug-treated groups with 5% sucrose, yeast, and blue food dye solution) using EasyFlyTracker. Subsequently, single cell RNA sequencing (scRNASEQ) was used to capture the transcriptome of 82,917 cells, unsupervised clustering analysis of which yielded 28 primary cell clusters representing the major cell types in adult Drosophila brain. Indeed, both neuronal and glial cells responded to MPH and ATX. Further analysis of differentially expressed genes (DEGs) revealed distinct transcriptional changes associated with these two drugs, such as two well-studied dopamine receptor genes (Dop2R and DopEcR) were responsive to MPH but not to ATX at their optimal doses, in addition to genes involved in dopamine metabolism pathways such as Syt1, Sytalpha, Syt7, and Ih in different cell types. More importantly, MPH also suppressed the expression of genes encoding other neurotransmitter receptors and synaptic signaling molecules in many cell types, especially those for Glu and GABA, while the responsive effects of ATX were much weaker. In addition to monoaminergic neuronal transmitters, other neurotransmitters have also shown a similar pattern with respect to a stronger effect associated with MPH than with ATX. Moreover, we identified four distinct glial cell subtypes responsive to the two drugs and detected a greater number of differentially expressed genes associated with ensheathing and astrocyte-like glia. Furthermore, our study provides a rich resource of candidate target genes, supported by drug set enrichment analysis (P = 2.10E-4; hypergeometric test), for the further exploration of drug repurposing. The whole list of candidates can be found at ADHDrug ( http://adhdrug.cibr.ac.cn/ ). In conclusion, we propose a fast and cost-efficient pipeline to explore the underlying molecular mechanisms of ADHD drug treatment in Drosophila brain at single-cell resolution, which may further facilitate drug repurposing applications.
Collapse
Affiliation(s)
- Susu Qu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| | - Xiangyu Zhou
- Chinese Institute for Brain Research, Beijing, China
| | - Zhicheng Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Yi Wei
- Chinese Institute for Brain Research, Beijing, China
| | - Han Zhou
- Chinese Institute for Brain Research, Beijing, China
| | | | - Qingjie Zhu
- Chinese Institute for Brain Research, Beijing, China
| | - Yanmin Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Likun Jiang
- Department of Computer Science, Xiamen University, Xiamen, China
| | - Yuan Ma
- Chinese Institute for Brain Research, Beijing, China
| | - Yuan Gao
- Chinese Institute for Brain Research, Beijing, China
| | - Lei Kong
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
203
|
Sun C, Shao Y, Iqbal J. Insect Insights at the Single-Cell Level: Technologies and Applications. Cells 2023; 13:91. [PMID: 38201295 PMCID: PMC10777908 DOI: 10.3390/cells13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Single-cell techniques are a promising way to unravel the complexity and heterogeneity of transcripts at the cellular level and to reveal the composition of different cell types and functions in a tissue or organ. In recent years, advances in single-cell RNA sequencing (scRNA-seq) have further changed our view of biological systems. The application of scRNA-seq in insects enables the comprehensive characterization of both common and rare cell types and cell states, the discovery of new cell types, and revealing how cell types relate to each other. The recent application of scRNA-seq techniques to insect tissues has led to a number of exciting discoveries. Here we provide an overview of scRNA-seq and its application in insect research, focusing on biological applications, current challenges, and future opportunities to make new discoveries with scRNA-seq in insects.
Collapse
Affiliation(s)
- Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junaid Iqbal
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
204
|
Bonanno SL, Sanfilippo P, Eamani A, Sampson MM, Binu K, Li K, Burns GD, Makar ME, Zipursky SL, Krantz DE. Constitutive and conditional epitope-tagging of endogenous G protein coupled receptors in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573472. [PMID: 38234787 PMCID: PMC10793450 DOI: 10.1101/2023.12.27.573472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
To visualize the cellular and subcellular localization of neuromodulatory G-protein coupled receptors (GPCRs) in Drosophila , we implement a molecular strategy recently used to add epitope tags to ionotropic receptors at their endogenous loci. Leveraging evolutionary conservation to identify sites more likely to permit insertion of a tag, we generated constitutive and conditional tagged alleles for Drosophila 5-HT1A, 5-HT2A, 5-HT2B, Octβ1R, Octβ2R, two isoforms of OAMB, and mGluR. The conditional alleles allow for the restricted expression of tagged receptor in specific cell types, an option not available for any previous reagents to label these proteins. We show that 5-HT1A and 5-HT2B localize to the mushroom bodies and central complex respectively, as predicted by their roles in sleep. By contrast, the unexpected enrichment of Octβ1R in the central complex and of 5-HT1A and 5-HT2A to nerve terminals in lobular columnar cells in the visual system suggest new hypotheses about their function at these sites. Using an additional tagged allele of the serotonin transporter, a marker of serotonergic tracts, we demonstrate diverse spatial relationships between postsynaptic 5-HT receptors and presynaptic 5-HT neurons, consistent with the importance of both synaptic and volume transmission. Finally, we use the conditional allele of 5-HT1A to show that it localizes to distinct sites within the mushroom bodies as both a postsynaptic receptor in Kenyon cells and a presynaptic autoreceptor. Significance Statement In Drosophila , despite remarkable advances in both connectomic and genomic studies, antibodies to many aminergic GPCRs are not available. We have overcome this obstacle using evolutionary conservation to identify loci in GPCRs amenable to epitope-tagging, and CRISPR/Cas9 genome editing to generated eight novel lines. This method also may be applied to other GPCRs and allows cell-specific expression of the tagged locus. We have used the tagged alleles we generated to address several questions that remain poorly understood. These include the relationship between pre- and post-synaptic sites that express the same receptor, and the use of relatively distant targets by pre-synaptic release sites that may employ volume transmission as well as standard synaptic signaling.
Collapse
|
205
|
Brown NC, Gordon B, McDonough-Goldstein CE, Misra S, Findlay GD, Clark AG, Wolfner MF. The seminal odorant binding protein Obp56g is required for mating plug formation and male fertility in Drosophila melanogaster. eLife 2023; 12:e86409. [PMID: 38126735 PMCID: PMC10834028 DOI: 10.7554/elife.86409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
In Drosophila melanogaster and other insects, the seminal fluid proteins (SFPs) and male sex pheromones that enter the female with sperm during mating are essential for fertility and induce profound post-mating effects on female physiology. The SFPs in D. melanogaster and other taxa include several members of the large gene family known as odorant binding proteins (Obps). Work in Drosophila has shown that some Obp genes are highly expressed in the antennae and can mediate behavioral responses to odorants, potentially by binding and carrying these molecules to odorant receptors. These observations have led to the hypothesis that the seminal Obps might act as molecular carriers for pheromones or other compounds important for male fertility, though functional evidence in any species is lacking. Here, we used functional genetics to test the role of the seven seminal Obps in D. melanogaster fertility and the post-mating response (PMR). We found that Obp56g is required for male fertility and the induction of the PMR, whereas the other six genes are dispensable. We found males lacking Obp56g fail to form a mating plug in the mated female's reproductive tract, leading to ejaculate loss and reduced sperm storage, likely due to its expression in the male ejaculatory bulb. We also examined the evolutionary history of these seminal Obp genes, as several studies have documented rapid evolution and turnover of SFP genes across taxa. We found extensive lability in gene copy number and evidence of positive selection acting on two genes, Obp22a and Obp51a. Comparative RNAseq data from the male reproductive tract of multiple Drosophila species revealed that Obp56g shows high male reproductive tract expression in a subset of taxa, though conserved head expression across the phylogeny. Together, these functional and expression data suggest that Obp56g may have been co-opted for a reproductive function over evolutionary time.
Collapse
Affiliation(s)
- Nora C Brown
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Benjamin Gordon
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Geoffrey D Findlay
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
- Department of Biology, College of the Holy CrossWorcesterUnited States
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | | |
Collapse
|
206
|
Sur A, Wang Y, Capar P, Margolin G, Prochaska MK, Farrell JA. Single-cell analysis of shared signatures and transcriptional diversity during zebrafish development. Dev Cell 2023; 58:3028-3047.e12. [PMID: 37995681 PMCID: PMC11181902 DOI: 10.1016/j.devcel.2023.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/24/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
During development, animals generate distinct cell populations with specific identities, functions, and morphologies. We mapped transcriptionally distinct populations across 489,686 cells from 62 stages during wild-type zebrafish embryogenesis and early larval development (3-120 h post-fertilization). Using these data, we identified the limited catalog of gene expression programs reused across multiple tissues and their cell-type-specific adaptations. We also determined the duration each transcriptional state is present during development and identify unexpected long-term cycling populations. Focused clustering and transcriptional trajectory analyses of non-skeletal muscle and endoderm identified transcriptional profiles and candidate transcriptional regulators of understudied cell types and subpopulations, including the pneumatic duct, individual intestinal smooth muscle layers, spatially distinct pericyte subpopulations, and recently discovered best4+ cells. To enable additional discoveries, we make this comprehensive transcriptional atlas of early zebrafish development available through our website, Daniocell.
Collapse
Affiliation(s)
- Abhinav Sur
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Yiqun Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paulina Capar
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Gennady Margolin
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Morgan Kathleen Prochaska
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Jeffrey A Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA.
| |
Collapse
|
207
|
Guo ZH, Wu Y, Wang S, Zhang Q, Shi JM, Wang YB, Chen ZH. scInterpreter: a knowledge-regularized generative model for interpretably integrating scRNA-seq data. BMC Bioinformatics 2023; 24:481. [PMID: 38104057 PMCID: PMC10724984 DOI: 10.1186/s12859-023-05579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND The rapid emergence of single-cell RNA-seq (scRNA-seq) data presents remarkable opportunities for broad investigations through integration analyses. However, most integration models are black boxes that lack interpretability or are hard to train. RESULTS To address the above issues, we propose scInterpreter, a deep learning-based interpretable model. scInterpreter substantially outperforms other state-of-the-art (SOTA) models in multiple benchmark datasets. In addition, scInterpreter is extensible and can integrate and annotate atlas scRNA-seq data. We evaluated the robustness of scInterpreter in a variety of situations. Through comparison experiments, we found that with a knowledge prior, the training process can be significantly accelerated. Finally, we conducted interpretability analysis for each dimension (pathway) of cell representation in the embedding space. CONCLUSIONS The results showed that the cell representations obtained by scInterpreter are full of biological significance. Through weight sorting, we found several new genes related to pathways in PBMC dataset. In general, scInterpreter is an effective and interpretable integration tool. It is expected that scInterpreter will bring great convenience to the study of single-cell transcriptomics.
Collapse
Affiliation(s)
- Zhen-Hao Guo
- College of Electronics and Information Engineering, Tongji University, Shanghai, 200000, China
- Department of Clinical Anesthesiology, Faculty of Anesthesiology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Yan Wu
- College of Electronics and Information Engineering, Tongji University, Shanghai, 200000, China.
| | - Siguo Wang
- EIT Institute for Advanced Study, Ningbo, 315201, Zhejiang, China
| | - Qinhu Zhang
- EIT Institute for Advanced Study, Ningbo, 315201, Zhejiang, China
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Science, Nanning, 530007, China
| | - Jin-Ming Shi
- Department of Endocrinology, Aviation General Hospital, Beijing, 100000, China
| | - Yan-Bin Wang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Zhan-Heng Chen
- Department of Clinical Anesthesiology, Faculty of Anesthesiology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China.
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Science, Nanning, 530007, China.
| |
Collapse
|
208
|
Pan X, Alvarez AN, Ma M, Lu S, Crawford MW, Briere LC, Kanca O, Yamamoto S, Sweetser DA, Wilson JL, Napier RJ, Pruneda JN, Bellen HJ. Allelic strengths of encephalopathy-associated UBA5 variants correlate between in vivo and in vitro assays. eLife 2023; 12:RP89891. [PMID: 38079206 PMCID: PMC10712953 DOI: 10.7554/elife.89891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and endoplasmic reticulum stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least 12 different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remain to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Albert N Alvarez
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Michael W Crawford
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - David A Sweetser
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for ChildrenBostonUnited States
| | - Jenny L Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science UniversityPortlandUnited States
| | - Ruth J Napier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
- VA Portland Health Care SystemPortlandUnited States
- Division of Arthritis & Rheumatic Diseases, Oregon Health & Science UniversityPortlandUnited States
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
209
|
Katheder NS, Browder KC, Chang D, De Maziere A, Kujala P, van Dijk S, Klumperman J, Lu TC, Li H, Lai Z, Sangaraju D, Jasper H. Nicotinic acetylcholine receptor signaling maintains epithelial barrier integrity. eLife 2023; 12:e86381. [PMID: 38063293 PMCID: PMC10764009 DOI: 10.7554/elife.86381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/31/2023] [Indexed: 01/04/2024] Open
Abstract
Disruption of epithelial barriers is a common disease manifestation in chronic degenerative diseases of the airways, lung, and intestine. Extensive human genetic studies have identified risk loci in such diseases, including in chronic obstructive pulmonary disease (COPD) and inflammatory bowel diseases. The genes associated with these loci have not fully been determined, and functional characterization of such genes requires extensive studies in model organisms. Here, we report the results of a screen in Drosophila melanogaster that allowed for rapid identification, validation, and prioritization of COPD risk genes that were selected based on risk loci identified in human genome-wide association studies (GWAS). Using intestinal barrier dysfunction in flies as a readout, our results validate the impact of candidate gene perturbations on epithelial barrier function in 56% of the cases, resulting in a prioritized target gene list. We further report the functional characterization in flies of one family of these genes, encoding for nicotinic acetylcholine receptor (nAchR) subunits. We find that nAchR signaling in enterocytes of the fly gut promotes epithelial barrier function and epithelial homeostasis by regulating the production of the peritrophic matrix. Our findings identify COPD-associated genes critical for epithelial barrier maintenance, and provide insight into the role of epithelial nAchR signaling for homeostasis.
Collapse
Affiliation(s)
- Nadja S Katheder
- Regenerative Medicine, Genentech, South San Francisco, United States
| | - Kristen C Browder
- Regenerative Medicine, Genentech, South San Francisco, United States
| | - Diana Chang
- Human Genetics, Genentech, South San Francisco, United States
| | - Ann De Maziere
- Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pekka Kujala
- Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Suzanne van Dijk
- Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, United States
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Zijuan Lai
- Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, United States
| | - Dewakar Sangaraju
- Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, United States
| | - Heinrich Jasper
- Regenerative Medicine, Genentech, South San Francisco, United States
| |
Collapse
|
210
|
Mohr SE, Kim AR, Hu Y, Perrimon N. Finding information about uncharacterized Drosophila melanogaster genes. Genetics 2023; 225:iyad187. [PMID: 37933691 PMCID: PMC10697813 DOI: 10.1093/genetics/iyad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023] Open
Abstract
Genes that have been identified in the genome but remain uncharacterized with regards to function offer an opportunity to uncover novel biological information. Novelty is exciting but can also be a barrier. If nothing is known, how does one start planning and executing experiments? Here, we provide a recommended information-mining workflow and a corresponding guide to accessing information about uncharacterized Drosophila melanogaster genes, such as those assigned only a systematic coding gene identifier. The available information can provide insights into where and when the gene is expressed, what the function of the gene might be, whether there are similar genes in other species, whether there are known relationships to other genes, and whether any other features have already been determined. In addition, available information about relevant reagents can inspire and facilitate experimental studies. Altogether, mining available information can help prioritize genes for further study, as well as provide starting points for experimental assays and other analyses.
Collapse
Affiliation(s)
- Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ah-Ram Kim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
211
|
Koehler S, Huber TB. Insights into human kidney function from the study of Drosophila. Pediatr Nephrol 2023; 38:3875-3887. [PMID: 37171583 PMCID: PMC10584755 DOI: 10.1007/s00467-023-05996-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
Biological and biomedical research using Drosophila melanogaster as a model organism has gained recognition through several Nobel prizes within the last 100 years. Drosophila exhibits several advantages when compared to other in vivo models such as mice and rats, as its life cycle is very short, animal maintenance is easy and inexpensive and a huge variety of transgenic strains and tools are publicly available. Moreover, more than 70% of human disease-causing genes are highly conserved in the fruit fly. Here, we explain the use of Drosophila in nephrology research and describe two kidney tissues, Malpighian tubules and the nephrocytes. The latter are the homologous cells to mammalian glomerular podocytes and helped to provide insights into a variety of signaling pathways due to the high morphological similarities and the conserved molecular make-up between nephrocytes and podocytes. In recent years, nephrocytes have also been used to study inter-organ communication as links between nephrocytes and the heart, the immune system and the muscles have been described. In addition, other tissues such as the eye and the reproductive system can be used to study the functional role of proteins being part of the kidney filtration barrier.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
212
|
Jin P, Zhu B, Jia Y, Zhang Y, Wang W, Shen Y, Zhong Y, Zheng Y, Wang Y, Tong Y, Zhang W, Li S. Single-cell transcriptomics reveals the brain evolution of web-building spiders. Nat Ecol Evol 2023; 7:2125-2142. [PMID: 37919396 PMCID: PMC10697844 DOI: 10.1038/s41559-023-02238-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Spiders are renowned for their efficient capture of flying insects using intricate aerial webs. How the spider nervous systems evolved to cope with this specialized hunting strategy and various environmental clues in an aerial space remains unknown. Here we report a brain-cell atlas of >30,000 single-cell transcriptomes from a web-building spider (Hylyphantes graminicola). Our analysis revealed the preservation of ancestral neuron types in spiders, including the potential coexistence of noradrenergic and octopaminergic neurons, and many peptidergic neuronal types that are lost in insects. By comparing the genome of two newly sequenced plesiomorphic burrowing spiders with three aerial web-building spiders, we found that the positively selected genes in the ancestral branch of web-building spiders were preferentially expressed (42%) in the brain, especially in the three mushroom body-like neuronal types. By gene enrichment analysis and RNAi experiments, these genes were suggested to be involved in the learning and memory pathway and may influence the spiders' web-building and hunting behaviour. Our results provide key sources for understanding the evolution of behaviour in spiders and reveal how molecular evolution drives neuron innovation and the diversification of associated complex behaviours.
Collapse
Affiliation(s)
- Pengyu Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bingyue Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinjun Jia
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yiming Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Guangxi Normal University, Guilin, China
| | - Yunxiao Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yami Zheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Tong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
213
|
Lee S, Aubee JI, Lai EC. Regulation of alternative splicing and polyadenylation in neurons. Life Sci Alliance 2023; 6:e202302000. [PMID: 37793776 PMCID: PMC10551640 DOI: 10.26508/lsa.202302000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Cell-type-specific gene expression is a fundamental feature of multicellular organisms and is achieved by combinations of regulatory strategies. Although cell-restricted transcription is perhaps the most widely studied mechanism, co-transcriptional and post-transcriptional processes are also central to the spatiotemporal control of gene functions. One general category of expression control involves the generation of multiple transcript isoforms from an individual gene, whose balance and cell specificity are frequently tightly regulated via diverse strategies. The nervous system makes particularly extensive use of cell-specific isoforms, specializing the neural function of genes that are expressed more broadly. Here, we review regulatory strategies and RNA-binding proteins that direct neural-specific isoform processing. These include various classes of alternative splicing and alternative polyadenylation events, both of which broadly diversify the neural transcriptome. Importantly, global alterations of splicing and alternative polyadenylation are characteristic of many neural pathologies, and recent genetic studies demonstrate how misregulation of individual neural isoforms can directly cause mutant phenotypes.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Joseph I Aubee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
214
|
Xu W, Li G, Chen Y, Ye X, Song W. A novel antidiuretic hormone governs tumour-induced renal dysfunction. Nature 2023; 624:425-432. [PMID: 38057665 DOI: 10.1038/s41586-023-06833-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Maintenance of renal function and fluid transport are essential for vertebrates and invertebrates to adapt to physiological and pathological challenges. Human patients with malignant tumours frequently develop detrimental renal dysfunction and oliguria, and previous studies suggest the involvement of chemotherapeutic toxicity and tumour-associated inflammation1,2. However, how tumours might directly modulate renal functions remains largely unclear. Here, using conserved tumour models in Drosophila melanogaster3, we characterized isoform F of ion transport peptide (ITPF) as a fly antidiuretic hormone that is secreted by a subset of yki3SA gut tumour cells, impairs renal function and causes severe abdomen bloating and fluid accumulation. Mechanistically, tumour-derived ITPF targets the G-protein-coupled receptor TkR99D in stellate cells of Malpighian tubules-an excretory organ that is equivalent to renal tubules4-to activate nitric oxide synthase-cGMP signalling and inhibit fluid excretion. We further uncovered antidiuretic functions of mammalian neurokinin 3 receptor (NK3R), the homologue of fly TkR99D, as pharmaceutical blockade of NK3R efficiently alleviates renal tubular dysfunction in mice bearing different malignant tumours. Together, our results demonstrate a novel antidiuretic pathway mediating tumour-renal crosstalk across species and offer therapeutic opportunities for the treatment of cancer-associated renal dysfunction.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Gerui Li
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Yuan Chen
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
| | - Wei Song
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
215
|
Yoon SH, Cho B, Lee D, Kim H, Shim J, Nam JW. Molecular traces of Drosophila hemocytes reveal transcriptomic conservation with vertebrate myeloid cells. PLoS Genet 2023; 19:e1011077. [PMID: 38113249 PMCID: PMC10763942 DOI: 10.1371/journal.pgen.1011077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 01/03/2024] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Drosophila hemocytes serve as the primary defense system against harmful threats, allowing the animals to thrive. Hemocytes are often compared to vertebrate innate immune system cells due to the observed functional similarities between the two. However, the similarities have primarily been established based on a limited number of genes and their functional homologies. Thus, a systematic analysis using transcriptomic data could offer novel insights into Drosophila hemocyte function and provide new perspectives on the evolution of the immune system. Here, we performed cross-species comparative analyses using single-cell RNA sequencing data from Drosophila and vertebrate immune cells. We found several conserved markers for the cluster of differentiation (CD) genes in Drosophila hemocytes and validated the role of CG8501 (CD59) in phagocytosis by plasmatocytes, which function much like macrophages in vertebrates. By comparing whole transcriptome profiles in both supervised and unsupervised analyses, we showed that Drosophila hemocytes are largely homologous to vertebrate myeloid cells, especially plasmatocytes to monocytes/macrophages and prohemocyte 1 (PH1) to hematopoietic stem cells. Furthermore, a small subset of prohemocytes with hematopoietic potential displayed homology with hematopoietic progenitor populations in vertebrates. Overall, our results provide a deeper understanding of molecular conservation in the Drosophila immune system.
Collapse
Affiliation(s)
- Sang-Ho Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Bio-BigData Research Center, Hanyang University, Seoul, Republic of Korea
| | - Bumsik Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Daewon Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Hanji Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Bio-BigData Research Center, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Bio-BigData Research Center, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
216
|
Yin Z, Ding G, Xue Y, Yu X, Dong J, Huang J, Ma J, He F. A postmeiotically bifurcated roadmap of honeybee spermatogenesis marked by phylogenetically restricted genes. PLoS Genet 2023; 19:e1011081. [PMID: 38048317 PMCID: PMC10721206 DOI: 10.1371/journal.pgen.1011081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/14/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Haploid males of hymenopteran species produce gametes through an abortive meiosis I followed by meiosis II that can either be symmetric or asymmetric in different species. Thus, one spermatocyte could give rise to two spermatids with either equal or unequal amounts of cytoplasm. It is currently unknown what molecular features accompany these postmeiotic sperm cells especially in species with asymmetric meiosis II such as bees. Here we present testis single-cell RNA sequencing datasets from the honeybee (Apis mellifera) drones of 3 and 14 days after emergence (3d and 14d). We show that, while 3d testes exhibit active, ongoing spermatogenesis, 14d testes only have late-stage spermatids. We identify a postmeiotic bifurcation in the transcriptional roadmap during spermatogenesis, with cells progressing toward the annotated spermatids (SPT) and small spermatids (sSPT), respectively. Despite an overall similarity in their transcriptomic profiles, sSPTs express the fewest genes and the least RNA content among all the sperm cell types. Intriguingly, sSPTs exhibit a relatively high expression level for Hymenoptera-restricted genes and a high mutation load, suggesting that the special meiosis II during spermatogenesis in the honeybee is accompanied by phylogenetically young gene activities.
Collapse
Affiliation(s)
- Zhiyong Yin
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guiling Ding
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingdi Xue
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xianghui Yu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaxing Huang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Ma
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang, China
| | - Feng He
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang, China
| |
Collapse
|
217
|
Anderson JT, Henikoff S, Ahmad K. Chromosome-specific maturation of the epigenome in the Drosophila male germline. eLife 2023; 12:RP89373. [PMID: 38032818 PMCID: PMC10688970 DOI: 10.7554/elife.89373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Spermatogenesis in the Drosophila male germline proceeds through a unique transcriptional program controlled both by germline-specific transcription factors and by testis-specific versions of core transcriptional machinery. This program includes the activation of genes on the heterochromatic Y chromosome, and reduced transcription from the X chromosome, but how expression from these sex chromosomes is regulated has not been defined. To resolve this, we profiled active chromatin features in the testes from wildtype and meiotic arrest mutants and integrate this with single-cell gene expression data from the Fly Cell Atlas. These data assign the timing of promoter activation for genes with germline-enriched expression throughout spermatogenesis, and general alterations of promoter regulation in germline cells. By profiling both active RNA polymerase II and histone modifications in isolated spermatocytes, we detail widespread patterns associated with regulation of the sex chromosomes. Our results demonstrate that the X chromosome is not enriched for silencing histone modifications, implying that sex chromosome inactivation does not occur in the Drosophila male germline. Instead, a lack of dosage compensation in spermatocytes accounts for the reduced expression from this chromosome. Finally, profiling uncovers dramatic ubiquitinylation of histone H2A and lysine-16 acetylation of histone H4 across the Y chromosome in spermatocytes that may contribute to the activation of this heterochromatic chromosome.
Collapse
Affiliation(s)
- James T Anderson
- Basic Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
| |
Collapse
|
218
|
Liang S, Li Y, Chen Y, Huang H, Zhou R, Ma T. Application and prospects of single-cell and spatial omics technologies in woody plants. FORESTRY RESEARCH 2023; 3:27. [PMID: 39526269 PMCID: PMC11524316 DOI: 10.48130/fr-2023-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2024]
Abstract
Over the past decade, high-throughput sequencing and high-resolution single-cell transcriptome sequencing technologies have undergone rapid development, leading to significant breakthroughs. Traditional molecular biology methods are limited in their ability to unravel cellular-level heterogeneity within woody plant tissues. Consequently, techniques such as single-cell transcriptomics, single-cell epigenetics, and spatial transcriptomics are rapidly gaining popularity in the study of woody plants. In this review, we provide a comprehensive overview of the development of these technologies, with a focus on their applications and the challenges they present in single-cell transcriptome research in woody plants. In particular, we delve into the similarities and differences among the results of current studies and analyze the reasons behind these differences. Furthermore, we put forth potential solutions to overcome the challenges encountered in single-cell transcriptome applications in woody plants. Finally, we discuss the application directions of these techniques to address key challenges in woody plant research in the future.
Collapse
Affiliation(s)
- Shaoming Liang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiling Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Heng Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ran Zhou
- School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
219
|
Ripoll-Sánchez L, Watteyne J, Sun H, Fernandez R, Taylor SR, Weinreb A, Bentley BL, Hammarlund M, Miller DM, Hobert O, Beets I, Vértes PE, Schafer WR. The neuropeptidergic connectome of C. elegans. Neuron 2023; 111:3570-3589.e5. [PMID: 37935195 PMCID: PMC7615469 DOI: 10.1016/j.neuron.2023.09.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/02/2023] [Accepted: 09/29/2023] [Indexed: 11/09/2023]
Abstract
Efforts are ongoing to map synaptic wiring diagrams, or connectomes, to understand the neural basis of brain function. However, chemical synapses represent only one type of functionally important neuronal connection; in particular, extrasynaptic, "wireless" signaling by neuropeptides is widespread and plays essential roles in all nervous systems. By integrating single-cell anatomical and gene-expression datasets with biochemical analysis of receptor-ligand interactions, we have generated a draft connectome of neuropeptide signaling in the C. elegans nervous system. This network is characterized by high connection density, extended signaling cascades, autocrine foci, and a decentralized topology, with a large, highly interconnected core containing three constituent communities sharing similar patterns of input connectivity. Intriguingly, several key network hubs are little-studied neurons that appear specialized for peptidergic neuromodulation. We anticipate that the C. elegans neuropeptidergic connectome will serve as a prototype to understand how networks of neuromodulatory signaling are organized.
Collapse
Affiliation(s)
- Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Psychiatry, Cambridge University, Cambridge, UK
| | - Jan Watteyne
- Department of Biology, KU Leuven, Leuven, Belgium
| | - HaoSheng Sun
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Fernandez
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexis Weinreb
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Barry L Bentley
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
| | - Marc Hammarlund
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Oliver Hobert
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Petra E Vértes
- Department of Psychiatry, Cambridge University, Cambridge, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
220
|
Huang Q, Chen X, Yu H, Ji L, Shi Y, Cheng X, Chen H, Yu J. Structure and molecular basis of spermatid elongation in the Drosophila testis. Open Biol 2023; 13:230136. [PMID: 37935354 PMCID: PMC10645079 DOI: 10.1098/rsob.230136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
Spermatid elongation is a crucial event in the late stage of spermatogenesis in the Drosophila testis, eventually leading to the formation of mature sperm after meiosis. During spermatogenesis, significant structural and morphological changes take place in a cluster of post-meiotic germ cells, which are enclosed in a microenvironment surrounded by somatic cyst cells. Microtubule-based axoneme assembly, formation of individualization complexes and mitochondria maintenance are key processes involved in the differentiation of elongated spermatids. They provide important structural foundations for accessing male fertility. How these structures are constructed and maintained are basic questions in the Drosophila testis. Although the roles of several genes in different structures during the development of elongated spermatids have been elucidated, the relationships between them have not been widely studied. In addition, the genetic basis of spermatid elongation and the regulatory mechanisms involved have not been thoroughly investigated. In the present review, we focus on current knowledge with regard to spermatid axoneme assembly, individualization complex and mitochondria maintenance. We also touch upon promising directions for future research to unravel the underlying mechanisms of spermatid elongation in the Drosophila testis.
Collapse
Affiliation(s)
- Qiuru Huang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Hao Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Li Ji
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yi Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xinmeng Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| |
Collapse
|
221
|
Sun M, Ma M, Deng B, Li N, Peng Q, Pan Y. A neural pathway underlying hunger modulation of sexual receptivity in Drosophila females. Cell Rep 2023; 42:113243. [PMID: 37819758 DOI: 10.1016/j.celrep.2023.113243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Accepting or rejecting a mate is one of the most crucial decisions a female will make, especially when faced with food shortage. Previous studies have identified the core neural circuity from sensing male courtship or mating status to decision-making for sexual receptivity in Drosophila females, but how hunger and satiety states modulate female receptivity is poorly understood. Here, we identify the neural circuit and its neuromodulation underlying the hunger modulation of female receptivity. We find that adipokinetic hormone receptor (AkhR)-expressing neurons inhibit sexual receptivity in a starvation-dependent manner. AkhR neurons are octopaminergic and act on a subset of Octβ1R-expressing LH421 neurons. Knocking down Octβ1R expression in LH421 neurons eliminates starvation-induced suppression of female receptivity. We further find that LH421 neurons inhibit the sex-promoting pC1 neurons via GABA-resistant to dieldrin (Rdl) signaling. pC1 neurons also integrate courtship stimulation and mating status and thus serve as a common integrator of multiple internal and external cues for decision-making.
Collapse
Affiliation(s)
- Mengshi Sun
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Mingze Ma
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Na Li
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| |
Collapse
|
222
|
Fuse N, Hashiba H, Ishibashi K, Suzuki T, Nguyen QD, Fujii K, Ikeda-Ohtsubo W, Kitazawa H, Tanimoto H, Kurata S. Neural control of redox response and microbiota-triggered inflammation in Drosophila gut. Front Immunol 2023; 14:1268611. [PMID: 37965334 PMCID: PMC10642236 DOI: 10.3389/fimmu.2023.1268611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Background The neural system plays a critical role in controlling gut immunity, and the gut microbiota contributes to this process. However, the roles and mechanisms of gut-brain-microbiota interactions remain unclear. To address this issue, we employed Drosophila as a model organism. We have previously shown that NP3253 neurons, which are connected to the brain and gut, are essential for resistance to oral bacterial infections. Here, we aimed to investigate the role of NP3253 neurons in the regulation of gut immunity. Methods We performed RNA-seq analysis of the adult Drosophila gut after genetically inactivating the NP3253 neurons. Flies were reared under oral bacterial infection and normal feeding conditions. In addition, we prepared samples under germ-free conditions to evaluate the role of the microbiota in gut gene expression. We knocked down the genes regulated by NP3253 neurons and examined their susceptibility to oral bacterial infections. Results We found that immune-related gene expression was upregulated in NP3253 neuron-inactivated flies compared to the control. However, this upregulation was abolished in axenic flies, suggesting that the immune response was abnormally activated by the microbiota in NP3253 neuron-inactivated flies. In addition, redox-related gene expression was downregulated in NP3253 neuron-inactivated flies, and this downregulation was also observed in axenic flies. Certain redox-related genes were required for resistance to oral bacterial infections, suggesting that NP3253 neurons regulate the redox responses for gut immunity in a microbiota-independent manner. Conclusion These results show that NP3253 neurons regulate the appropriate gene expression patterns in the gut and contribute to maintain homeostasis during oral infections.
Collapse
Affiliation(s)
- Naoyuki Fuse
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Haruka Hashiba
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kentaro Ishibashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuro Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Quang-Dat Nguyen
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kiho Fujii
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | - Haruki Kitazawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- The Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Japan
| | - Hiromu Tanimoto
- The Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- The Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Japan
| |
Collapse
|
223
|
Clifton BD, Hariyani I, Kimura A, Luo F, Nguyen A, Ranz JM. Paralog transcriptional differentiation in the D. melanogaster-specific gene family Sdic across populations and spermatogenesis stages. Commun Biol 2023; 6:1069. [PMID: 37864070 PMCID: PMC10589255 DOI: 10.1038/s42003-023-05427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
How recently originated gene copies become stable genomic components remains uncertain as high sequence similarity of young duplicates precludes their functional characterization. The tandem multigene family Sdic is specific to Drosophila melanogaster and has been annotated across multiple reference-quality genome assemblies. Here we show the existence of a positive correlation between Sdic copy number and total expression, plus vast intrastrain differences in mRNA abundance among paralogs, using RNA-sequencing from testis of four strains with variable paralog composition. Single cell and nucleus RNA-sequencing data expose paralog expression differentiation in meiotic cell types within testis from third instar larva and adults. Additional RNA-sequencing across synthetic strains only differing in their Y chromosomes reveal a tissue-dependent trans-regulatory effect on Sdic: upregulation in testis and downregulation in male accessory gland. By leveraging paralog-specific expression information from tissue- and cell-specific data, our results elucidate the intraspecific functional diversification of a recently expanded tandem gene family.
Collapse
Affiliation(s)
- Bryan D Clifton
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA.
| | - Imtiyaz Hariyani
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Ashlyn Kimura
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Fangning Luo
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Alvin Nguyen
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
224
|
Mamiya A, Sustar A, Siwanowicz I, Qi Y, Lu TC, Gurung P, Chen C, Phelps JS, Kuan AT, Pacureanu A, Lee WCA, Li H, Mhatre N, Tuthill JC. Biomechanical origins of proprioceptor feature selectivity and topographic maps in the Drosophila leg. Neuron 2023; 111:3230-3243.e14. [PMID: 37562405 PMCID: PMC10644877 DOI: 10.1016/j.neuron.2023.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/28/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023]
Abstract
Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems.
Collapse
Affiliation(s)
- Akira Mamiya
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pralaksha Gurung
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chenghao Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aaron T Kuan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natasha Mhatre
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
225
|
Sato K, Yamamoto D. Molecular and cellular origins of behavioral sex differences: a tiny little fly tells a lot. Front Mol Neurosci 2023; 16:1284367. [PMID: 37928065 PMCID: PMC10622783 DOI: 10.3389/fnmol.2023.1284367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Behavioral sex differences primarily derive from the sexually dimorphic organization of neural circuits that direct the behavior. In Drosophila melanogaster, the sex-determination genes fruitless (fru) and doublesex (dsx) play pivotal roles in producing the sexual dimorphism of neural circuits for behavior. Here we examine three neural groups expressing fru and/or dsx, i.e., the P1 cluster, aSP-f and aSP-g cluster pairs and aDN cluster, in which causal relationships between the dimorphic behavior and dimorphic neural characteristics are best illustrated. aSP-f, aSP-g and aDN clusters represent examples where fru or dsx switches cell-autonomously their neurite structures between the female-type and male-type. Processed sensory inputs impinging on these neurons may result in outputs that encode different valences, which culminate in the execution of distinct behavior according to the sex. In contrast, the P1 cluster is male-specific as its female counterpart undergoes dsx-driven cell death, which lowers the threshold for the induction of male-specific behaviors. We propose that the products of fru and dsx genes, as terminal selectors in sexually dimorphic neuronal wiring, induce and maintain the sex-typical chromatin state at postembryonic stages, orchestrating the transcription of effector genes that shape single neuron structures and govern cell survival and death.
Collapse
Affiliation(s)
- Kosei Sato
- Neuro-ICT Laboratory, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Daisuke Yamamoto
- Neuro-ICT Laboratory, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
226
|
Pang LY, DeLuca S, Zhu H, Urban JM, Spradling AC. Chromatin and gene expression changes during female Drosophila germline stem cell development illuminate the biology of highly potent stem cells. eLife 2023; 12:RP90509. [PMID: 37831064 PMCID: PMC10575629 DOI: 10.7554/elife.90509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Highly potent animal stem cells either self renew or launch complex differentiation programs, using mechanisms that are only partly understood. Drosophila female germline stem cells (GSCs) perpetuate without change over evolutionary time and generate cystoblast daughters that develop into nurse cells and oocytes. Cystoblasts initiate differentiation by generating a transient syncytial state, the germline cyst, and by increasing pericentromeric H3K9me3 modification, actions likely to suppress transposable element activity. Relatively open GSC chromatin is further restricted by Polycomb repression of testis or somatic cell-expressed genes briefly active in early female germ cells. Subsequently, Neijre/CBP and Myc help upregulate growth and reprogram GSC metabolism by altering mitochondrial transmembrane transport, gluconeogenesis, and other processes. In all these respects GSC differentiation resembles development of the totipotent zygote. We propose that the totipotent stem cell state was shaped by the need to resist transposon activity over evolutionary timescales.
Collapse
Affiliation(s)
- Liang-Yu Pang
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Steven DeLuca
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Haolong Zhu
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - John M Urban
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Allan C Spradling
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| |
Collapse
|
227
|
Anderson J, Henikoff S, Ahmad K. Chromosome-specific maturation of the epigenome in the Drosophila male germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529909. [PMID: 37873332 PMCID: PMC10592605 DOI: 10.1101/2023.02.24.529909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Spermatogenesis in the Drosophila male germline proceeds through a unique transcriptional program controlled both by germline-specific transcription factors and by testis-specific versions of core transcriptional machinery. This program includes the activation of genes on the heterochromatic Y chromosome, and reduced transcription from the X chromosome, but how expression from these sex chromosomes is regulated has not been defined. To resolve this, we profiled active chromatin features in the testes from wildtype and meiotic arrest mutants and integrate this with single-cell gene expression data from the Fly Cell Atlas. These data assign the timing of promoter activation for genes with germline-enriched expression throughout spermatogenesis, and general alterations of promoter regulation in germline cells. By profiling both active RNA polymerase II and histone modifications in isolated spermatocytes, we detail widespread patterns associated with regulation of the sex chromosomes. Our results demonstrate that the X chromosome is not enriched for silencing histone modifications, implying that sex chromosome inactivation does not occur in the Drosophila male germline. Instead, a lack of dosage compensation in spermatocytes accounts for the reduced expression from this chromosome. Finally, profiling uncovers dramatic ubiquitinylation of histone H2A and lysine-16 acetylation of histone H4 across the Y chromosome in spermatocytes that may contribute to the activation of this heterochromatic chromosome.
Collapse
Affiliation(s)
- James Anderson
- Basic Sciences Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, USA
| |
Collapse
|
228
|
Najle SR, Grau-Bové X, Elek A, Navarrete C, Cianferoni D, Chiva C, Cañas-Armenteros D, Mallabiabarrena A, Kamm K, Sabidó E, Gruber-Vodicka H, Schierwater B, Serrano L, Sebé-Pedrós A. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 2023; 186:4676-4693.e29. [PMID: 37729907 PMCID: PMC10580291 DOI: 10.1016/j.cell.2023.08.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.
Collapse
Affiliation(s)
- Sebastián R Najle
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Damiano Cianferoni
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Chiva
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Arrate Mallabiabarrena
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany; Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany; American Museum of Natural History, Richard Gilder Graduate School, NY, USA
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
229
|
Sun Z, Nystul TG, Zhong G. Single-cell RNA sequencing identifies eggplant as a regulator of germ cell development in Drosophila. EMBO Rep 2023; 24:e56475. [PMID: 37603128 PMCID: PMC10561367 DOI: 10.15252/embr.202256475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Drosophila ovarian germline stem cells (GSCs) are a powerful model for stem cell research. In this study, we use single-cell RNA sequencing (scRNA-seq), an RNAi screen and bioinformatic analysis, to identify genes involved in germ cell differentiation, including 34 genes with upregulated expression during early germ cell development and 19 genes that may regulate germ cell differentiation. Among these, a gene we have named eggplant (eggpl) is highly expressed in GSCs and downregulated in early daughter cells. RNAi knockdown of eggpl causes germ cell proliferation and differentiation defects. In flies fed a rich yeast diet, the expression of eggpl is significantly lower and knockdown or knockout of eggpl phenocopies a rich diet. In addition, eggpl knockdown suppresses the reduction in germ cell proliferation caused by inhibition of the insulin effector PI3K. These findings suggest that downregulation of eggpl links nutritional status to germ cell proliferation and differentiation. Collectively, this study provides new insights into the signaling networks that regulate early germ cell development and identifies eggpl as a key player in this process.
Collapse
Affiliation(s)
- Zhipeng Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of EducationSouth China Agricultural UniversityGuangzhouChina
| | | | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural AffairsSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of EducationSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
230
|
Bilska B, Damulewicz M, Abaquita TAL, Pyza E. Changes in heme oxygenase level during development affect the adult life of Drosophila melanogaster. Front Cell Neurosci 2023; 17:1239101. [PMID: 37876913 PMCID: PMC10591093 DOI: 10.3389/fncel.2023.1239101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Heme oxygenase (HO) has been shown to control various cellular processes in both mammals and Drosophila melanogaster. Here, we investigated how changes in HO levels in neurons and glial cells during development affect adult flies, by using the TARGET Drosophila system to manipulate the expression of the ho gene. The obtained data showed differences in adult survival, maximum lifespan, climbing, locomotor activity, and sleep, which depended on the level of HO (after ho up-regulation or downregulation), the timing of expression (chronic or at specific developmental stages), cell types (neurons or glia), sex (males or females), and age of flies. In addition to ho, the effects of changing the mRNA level of the Drosophila CNC factor gene (NRF2 homolog in mammals and master regulator of HO), were also examined to compare with those observed after changing ho expression. We showed that HO levels in neurons and glia must be maintained at an appropriate physiological level during development to ensure the well-being of adults. We also found that the downregulation of ho in either neurons or glia in the brain is compensated by ho expressed in the retina.
Collapse
Affiliation(s)
| | | | | | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| |
Collapse
|
231
|
Sun X, Shen J, Perrimon N, Kong X, Wang D. The endoribonuclease Arlr is required to maintain lipid homeostasis by downregulating lipolytic genes during aging. Nat Commun 2023; 14:6254. [PMID: 37803019 PMCID: PMC10558556 DOI: 10.1038/s41467-023-42042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
While disorders in lipid metabolism have been associated with aging and age-related diseases, how lipid metabolism is regulated during aging is poorly understood. Here, we characterize the Drosophila endoribonuclease CG2145, an ortholog of mammalian EndoU that we named Age-related lipid regulator (Arlr), as a regulator of lipid homeostasis during aging. In adult adipose tissues, Arlr is necessary for maintenance of lipid storage in lipid droplets (LDs) as flies age, a phenotype that can be rescued by either high-fat or high-glucose diet. Interestingly, RNA-seq of arlr mutant adipose tissues and RIP-seq suggest that Arlr affects lipid metabolism through the degradation of the mRNAs of lipolysis genes - a model further supported by the observation that knockdown of Lsd-1, regucalcin, yip2 or CG5162, which encode genes involved in lipolysis, rescue the LD defects of arlr mutants. In addition, we characterize DendoU as a functional paralog of Arlr and show that human ENDOU can rescue arlr mutants. Altogether, our study reveals a role of ENDOU-like endonucleases as negative regulator of lipolysis.
Collapse
Affiliation(s)
- Xiaowei Sun
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Xue Kong
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dan Wang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
232
|
Song X, Cui L, Wu M, Wang S, Song Y, Liu Z, Xue Z, Chen W, Zhang Y, Li H, Sun L, Liang X. DCX-EMAP is a core organizer for the ultrastructure of Drosophila mechanosensory organelles. J Cell Biol 2023; 222:e202209116. [PMID: 37651176 PMCID: PMC10471123 DOI: 10.1083/jcb.202209116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Mechanoreceptor cells develop specialized mechanosensory organelles (MOs), where force-sensitive channels and supporting structures are organized in an orderly manner to detect forces. It is intriguing how MOs are formed. Here, we address this issue by studying the MOs of fly ciliated mechanoreceptors. We show that the main structure of the MOs is a compound cytoskeleton formed of short microtubules and electron-dense materials (EDMs). In a knock-out mutant of DCX-EMAP, this cytoskeleton is nearly absent, suggesting that DCX-EMAP is required for the formation of the MOs and in turn fly mechanotransduction. Further analysis reveals that DCX-EMAP expresses in fly ciliated mechanoreceptors and localizes to the MOs. Moreover, it plays dual roles by promoting the assembly/stabilization of the microtubules and the accumulation of the EDMs in the MOs. Therefore, DCX-EMAP serves as a core ultrastructural organizer of the MOs, and this finding provides novel molecular insights as to how fly MOs are formed.
Collapse
Affiliation(s)
- Xuewei Song
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lihong Cui
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Menghua Wu
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Wang
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yinlong Song
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhen Liu
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhaoyu Xue
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Chen
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yingjie Zhang
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hui Li
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Landi Sun
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
- Guangzhou Laboratory, Guangzhou, China
| | - Xin Liang
- IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
233
|
Dondi C, Vogler G, Gupta A, Walls SM, Kervadec A, Romero MR, Diop SB, Goode J, Thomas JB, Colas AR, Bodmer R, Montminy M, Ocorr K. The nutrient sensor CRTC & Sarcalumenin / Thinman represent a new pathway in cardiac hypertrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560407. [PMID: 37873259 PMCID: PMC10592890 DOI: 10.1101/2023.10.02.560407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Obesity and type 2 diabetes are at epidemic levels and a significant proportion of these patients are diagnosed with left ventricular hypertrophy. CREB R egulated T ranscription C o-activator ( CRTC ) is a key regulator of metabolism in mammalian hepatocytes, where it is activated by calcineurin (CaN) to increase expression of gluconeogenic genes. CaN is known its role in pathological cardiac hypertrophy, however, a role for CRTC in the heart has not been identified. In Drosophila , CRTC null mutants have little body fat and exhibit severe cardiac restriction, myofibrillar disorganization, cardiac fibrosis and tachycardia, all hallmarks of heart disease. Cardiac-specific knockdown of CRTC , or its coactivator CREBb , mimicked the reduced body fat and heart defects of CRTC null mutants. Comparative gene expression in CRTC loss- or gain-of-function fly hearts revealed contra-regulation of genes involved in glucose, fatty acid, and amino acid metabolism, suggesting that CRTC also acts as a metabolic switch in the heart. Among the contra-regulated genes with conserved CREB binding sites, we identified the fly ortholog of Sarcalumenin, which is a Ca 2+ -binding protein in the sarcoplasmic reticulum. Cardiac knockdown recapitulated the loss of CRTC cardiac restriction and fibrotic phenotypes, suggesting it is a downstream effector of CRTC we named thinman ( tmn ). Importantly, cardiac overexpression of either CaN or CRTC in flies caused hypertrophy that was reversed in a CRTC mutant background, suggesting CRTC mediates hypertrophy downstream of CaN, perhaps as an alternative to NFAT. CRTC novel role in the heart is likely conserved in vertebrates as knockdown in zebrafish also caused cardiac restriction, as in fl ies. These data suggest that CRTC is involved in myocardial cell maintenance and that CaN-CRTC- Sarcalumenin/ tmn signaling represents a novel and conserved pathway underlying cardiac hypertrophy.
Collapse
|
234
|
Kim BY, Gellert HR, Church SH, Suvorov A, Anderson SS, Barmina O, Beskid SG, Comeault AA, Crown KN, Diamond SE, Dorus S, Fujichika T, Hemker JA, Hrcek J, Kankare M, Katoh T, Magnacca KN, Martin RA, Matsunaga T, Medeiros MJ, Miller DE, Pitnick S, Simoni S, Steenwinkel TE, Schiffer M, Syed ZA, Takahashi A, Wei KHC, Yokoyama T, Eisen MB, Kopp A, Matute D, Obbard DJ, O'Grady PM, Price DK, Toda MJ, Werner T, Petrov DA. Single-fly assemblies fill major phylogenomic gaps across the Drosophilidae Tree of Life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560517. [PMID: 37873137 PMCID: PMC10592941 DOI: 10.1101/2023.10.02.560517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Long-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab. Here, we build upon our previous methods to perform amplification-free ONT sequencing of single wild flies obtained either directly from the field or from ethanol-preserved specimens in museum collections, greatly improving the representation of lesser studied drosophilid taxa in whole-genome data. Using Illumina Novaseq X Plus and ONT P2 sequencers with R10.4.1 chemistry, we set a new benchmark for inexpensive hybrid genome assembly at US $150 per genome while assembling genomes from as little as 35 ng of genomic DNA from a single fly. We present 183 new genome assemblies for 179 species as a resource for drosophilid systematics, phylogenetics, and comparative genomics. Of these genomes, 62 are from pooled lab strains and 121 from single adult flies. Despite the sample limitations of working with small insects, most single-fly diploid assemblies are comparable in contiguity (>1Mb contig N50), completeness (>98% complete dipteran BUSCOs), and accuracy (>QV40 genome-wide with ONT R10.4.1) to assemblies from inbred lines. We present a well-resolved multi-locus phylogeny for 360 drosophilid and 4 outgroup species encompassing all publicly available (as of August 2023) genomes for this group. Finally, we present a Progressive Cactus whole-genome, reference-free alignment built from a subset of 298 suitably high-quality drosophilid genomes. The new assemblies and alignment, along with updated laboratory protocols and computational pipelines, are released as an open resource and as a tool for studying evolution at the scale of an entire insect family.
Collapse
Affiliation(s)
| | | | - Samuel H Church
- Department of Ecology and Evolutionary Biology, Yale University, USA
| | - Anton Suvorov
- Department of Biological Sciences, Virginia Tech, USA
| | - Sean S Anderson
- Department of Biology, University of North Carolina Chapel Hill, USA
| | - Olga Barmina
- Department of Evolution and Ecology, University of California Davis, USA
| | | | - Aaron A Comeault
- School of Environmental and Natural Sciences, Bangor University, UK
| | - K Nicole Crown
- Department of Biology, Case Western Reserve University, USA
| | | | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, USA
| | - Takako Fujichika
- Department of Biological Sciences, Tokyo Metropolitan University, Japan
| | - James A Hemker
- Department of Developmental Biology, Stanford University, USA
| | - Jan Hrcek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Czechia
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Toru Katoh
- Department of Biological Sciences, Hokkaido University, Japan
| | - Karl N Magnacca
- Hawaii Invertebrate Program, Division of Forestry & Wildlife, State of Hawaii, USA
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, USA
| | - Teruyuki Matsunaga
- Department of Complexity Science and Engineering, The University of Tokyo, Japan
| | | | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics; Department of Laboratory Medicine and Pathology, University of Washington, USA
| | - Scott Pitnick
- Center for Reproductive Evolution, Department of Biology, Syracuse University, USA
| | - Sara Simoni
- Department of Biology, Stanford University, USA
| | | | - Michele Schiffer
- Daintree Rainforest Observatory, James Cook University, Australia
| | - Zeeshan A Syed
- Center for Reproductive Evolution, Department of Biology, Syracuse University, USA
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, Japan
| | - Kevin H-C Wei
- Department of Zoology, The University of British Columbia
| | | | - Michael B Eisen
- Department of Cell and Molecular Biology, University of California Berkeley, United States
- Howard Hughes Medical Institute,University of California Berkeley, United States
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California Davis, USA
| | - Daniel Matute
- Department of Biology, University of North Carolina Chapel Hill, USA
| | - Darren J Obbard
- Institute of Ecology and Evolution, University of Edinburgh, UK
| | | | - Donald K Price
- School of Life Sciences, University of Nevada Las Vegas, USA
| | | | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, USA
- CZ Biohub, Investigator
| |
Collapse
|
235
|
Martelli F, Ravenscroft TA, Hutchison W, Batterham P. Tissue-specific transcriptome analyses in Drosophila provide novel insights into the mode of action of the insecticide spinosad and the function of its target, nAChRα6. PEST MANAGEMENT SCIENCE 2023; 79:3913-3925. [PMID: 37248207 DOI: 10.1002/ps.7585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND The insecticides spinosad and imidacloprid are neurotoxins with distinct modes of action. Both target nicotinic acetylcholine receptors (nAChRs), albeit different subunits. Spinosad is an allosteric modulator, that upon binding initiates endocytosis of its target, nAChRα6. Imidacloprid binding triggers excessive neuronal ion influx. Despite these differences, low-dose effects converge downstream in the precipitation of oxidative stress and neurodegeneration. RESULTS Using RNA-sequencing, we compared the transcriptional signatures of spinosad and imidacloprid, at low-dose exposures. Both insecticides cause up-regulation of glutathione S-transferase and cytochrome P450 genes in the brain and down-regulation in the fat body, whereas reduced expression of immune-related genes is observed in both tissues. Spinosad shows unique impacts on genes involved in lysosomal function, protein folding, and reproduction. Co-expression analyses revealed little to no correlation between genes affected by spinosad and nAChRα6 expressing neurons, but a positive correlation with glial cell markers. We also detected and experimentally confirmed nAChRα6 expression in fat body cells and male germline cells. This led us to uncover lysosomal dysfunction in the fat body following spinosad exposure, and a fitness cost in spinosad-resistant (nAChRα6 null) males - oxidative stress in testes, and reduced fertility. CONCLUSION Spinosad and imidacloprid share transcriptional perturbations in immunity-, energy homeostasis-, and oxidative stress-related genes. Low doses of other neurotoxic insecticides should be investigated for similar impacts. While target-site spinosad resistance mutation has evolved in the field, this may have a fitness cost. Our findings demonstrate the power of tissue-specific transcriptomics approach and the use of single-cell transcriptome data. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Felipe Martelli
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - William Hutchison
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Philip Batterham
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
236
|
Russell SL, Castillo JR, Sullivan WT. Wolbachia endosymbionts manipulate the self-renewal and differentiation of germline stem cells to reinforce fertility of their fruit fly host. PLoS Biol 2023; 21:e3002335. [PMID: 37874788 PMCID: PMC10597519 DOI: 10.1371/journal.pbio.3002335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023] Open
Abstract
The alphaproteobacterium Wolbachia pipientis infects arthropod and nematode species worldwide, making it a key target for host biological control. Wolbachia-driven host reproductive manipulations, such as cytoplasmic incompatibility (CI), are credited for catapulting these intracellular bacteria to high frequencies in host populations. Positive, perhaps mutualistic, reproductive manipulations also increase infection frequencies, but are not well understood. Here, we identify molecular and cellular mechanisms by which Wolbachia influences the molecularly distinct processes of germline stem cell (GSC) self-renewal and differentiation. We demonstrate that wMel infection rescues the fertility of flies lacking the translational regulator mei-P26 and is sufficient to sustain infertile homozygous mei-P26-knockdown stocks indefinitely. Cytology revealed that wMel mitigates the impact of mei-P26 loss through restoring proper pMad, Bam, Sxl, and Orb expression. In Oregon R files with wild-type fertility, wMel infection elevates lifetime egg hatch rates. Exploring these phenotypes through dual-RNAseq quantification of eukaryotic and bacterial transcripts revealed that wMel infection rescues and offsets many gene expression changes induced by mei-P26 loss at the mRNA level. Overall, we show that wMel infection beneficially reinforces host fertility at mRNA, protein, and phenotypic levels, and these mechanisms may promote the emergence of mutualism and the breakdown of host reproductive manipulations.
Collapse
Affiliation(s)
- Shelbi L. Russell
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jennie Ruelas Castillo
- Division of Infectious Diseases, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - William T. Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
237
|
Velten B, Stegle O. Principles and challenges of modeling temporal and spatial omics data. Nat Methods 2023; 20:1462-1474. [PMID: 37710019 DOI: 10.1038/s41592-023-01992-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/31/2023] [Indexed: 09/16/2023]
Abstract
Studies with temporal or spatial resolution are crucial to understand the molecular dynamics and spatial dependencies underlying a biological process or system. With advances in high-throughput omic technologies, time- and space-resolved molecular measurements at scale are increasingly accessible, providing new opportunities to study the role of timing or structure in a wide range of biological questions. At the same time, analyses of the data being generated in the context of spatiotemporal studies entail new challenges that need to be considered, including the need to account for temporal and spatial dependencies and compare them across different scales, biological samples or conditions. In this Review, we provide an overview of common principles and challenges in the analysis of temporal and spatial omics data. We discuss statistical concepts to model temporal and spatial dependencies and highlight opportunities for adapting existing analysis methods to data with temporal and spatial dimensions.
Collapse
Affiliation(s)
- Britta Velten
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK.
- Centre for Organismal Studies (COS) and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.
| | - Oliver Stegle
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK.
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
238
|
Rosen Y, Brbić M, Roohani Y, Swanson K, Li Z, Leskovec J. Towards Universal Cell Embeddings: Integrating Single-cell RNA-seq Datasets across Species with SATURN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526939. [PMID: 36778387 PMCID: PMC9915700 DOI: 10.1101/2023.02.03.526939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Analysis of single-cell datasets generated from diverse organisms offers unprecedented opportunities to unravel fundamental evolutionary processes of conservation and diversification of cell types. However, inter-species genomic differences limit the joint analysis of cross-species datasets to homologous genes. Here, we present SATURN, a deep learning method for learning universal cell embeddings that encodes genes' biological properties using protein language models. By coupling protein embeddings from language models with RNA expression, SATURN integrates datasets profiled from different species regardless of their genomic similarity. SATURN has a unique ability to detect functionally related genes co-expressed across species, redefining differential expression for cross-species analysis. We apply SATURN to three species whole-organism atlases and frog and zebrafish embryogenesis datasets. We show that cell embeddings learnt in SATURN can be effectively used to transfer annotations across species and identify both homologous and species-specific cell types, even across evolutionarily remote species. Finally, we use SATURN to reannotate the five species Cell Atlas of Human Trabecular Meshwork and Aqueous Outflow Structures and find evidence of potentially divergent functions between glaucoma associated genes in humans and other species.
Collapse
Affiliation(s)
- Yanay Rosen
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Maria Brbić
- School of Computer and Communication Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Yusuf Roohani
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Kyle Swanson
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Ziang Li
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Jure Leskovec
- Department of Computer Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
239
|
Hirschhäuser A, Molitor D, Salinas G, Großhans J, Rust K, Bogdan S. Single-cell transcriptomics identifies new blood cell populations in Drosophila released at the onset of metamorphosis. Development 2023; 150:dev201767. [PMID: 37681301 PMCID: PMC10560556 DOI: 10.1242/dev.201767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Drosophila blood cells called hemocytes form an efficient barrier against infections and tissue damage. During metamorphosis, hemocytes undergo tremendous changes in their shape and behavior, preparing them for tissue clearance. Yet, the diversity and functional plasticity of pupal blood cells have not been explored. Here, we combine single-cell transcriptomics and high-resolution microscopy to dissect the heterogeneity and plasticity of pupal hemocytes. We identified undifferentiated and specified hemocytes with different molecular signatures associated with distinct functions such as antimicrobial, antifungal immune defense, cell adhesion or secretion. Strikingly, we identified a highly migratory and immune-responsive pupal cell population expressing typical markers of the posterior signaling center (PSC), which is known to be an important niche in the larval lymph gland. PSC-like cells become restricted to the abdominal segments and are morphologically very distinct from typical Hemolectin (Hml)-positive plasmatocytes. G-TRACE lineage experiments further suggest that PSC-like cells can transdifferentiate to lamellocytes triggered by parasitoid wasp infestation. In summary, we present the first molecular description of pupal Drosophila blood cells, providing insights into blood cell functional diversification and plasticity during pupal metamorphosis.
Collapse
Affiliation(s)
- Alexander Hirschhäuser
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | - Darius Molitor
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| | - Katja Rust
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| |
Collapse
|
240
|
Corthals K, Andersson V, Churcher A, Reimegård J, Enjin A. Genetic atlas of hygro-and thermosensory cells in the vinegar fly Drosophila melanogaster. Sci Rep 2023; 13:15202. [PMID: 37709909 PMCID: PMC10502013 DOI: 10.1038/s41598-023-42506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
The ability of animals to perceive and respond to sensory information is essential for their survival in diverse environments. While much progress has been made in understanding various sensory modalities, the sense of hygrosensation, which involves the detection and response to humidity, remains poorly understood. In this study, we focused on the hygrosensory, and closely related thermosensory, systems in the vinegar fly Drosophila melanogaster to unravel the molecular profile of the cells of these senses. Using a transcriptomic analysis of over 37,000 nuclei, we identified twelve distinct clusters of cells corresponding to temperature-sensing arista neurons, humidity-sensing sacculus neurons, and support cells relating to these neurons. By examining the expression of known and novel marker genes, we validated the identity of these clusters and characterized their gene expression profiles. We found that each cell type could be characterized by a unique expression profile of ion channels, GPCR signaling molecules, synaptic vesicle cycle proteins, and cell adhesion molecules. Our findings provide valuable insights into the molecular basis of hygro- and thermosensation. Understanding the mechanisms underlying hygro- and thermosensation may shed light on the broader understanding of sensory systems and their adaptation to different environmental conditions in animals.
Collapse
Affiliation(s)
- Kristina Corthals
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Vilma Andersson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Allison Churcher
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, 901 87, Umeå, Sweden
| | - Johan Reimegård
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Anders Enjin
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
241
|
Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol 2023; 23:563-579. [PMID: 36922638 PMCID: PMC10017071 DOI: 10.1038/s41577-023-00848-y] [Citation(s) in RCA: 232] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Macrophages are innate immune cells that form a 3D network in all our tissues, where they phagocytose dying cells and cell debris, immune complexes, bacteria and other waste products. Simultaneously, they produce growth factors and signalling molecules - such activities not only promote host protection in response to invading microorganisms but are also crucial for organ development and homeostasis. There is mounting evidence of macrophages orchestrating fundamental physiological processes, such as blood vessel formation, adipogenesis, metabolism and central and peripheral neuronal function. In parallel, novel methodologies have led to the characterization of tissue-specific macrophages, with distinct subpopulations of these cells showing different developmental trajectories, transcriptional programmes and life cycles. Here, we summarize our growing knowledge of macrophage diversity and how macrophage subsets orchestrate tissue development and function. We further interrelate macrophage ontogeny with their core functions across tissues, that is, the signalling events within the macrophage niche that may control organ functionality during development, homeostasis and ageing. Finally, we highlight the open questions that will need to be addressed by future studies to better understand the tissue-specific functions of distinct macrophage subsets.
Collapse
Affiliation(s)
- Elvira Mass
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Centre for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
242
|
Cullen G, Gilligan JB, Guhlin JG, Dearden PK. Germline progenitors and oocyte production in the honeybee queen ovary. Genetics 2023; 225:iyad138. [PMID: 37487025 PMCID: PMC10471204 DOI: 10.1093/genetics/iyad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
Understanding the reproduction of honeybee queens is crucial to support populations of this economically important insect. Here we examine the structure of the honeybee ovary to determine the nature of the germline progenitors in the ovary. Using a panel of marker genes that mark somatic or germline tissue in other insects we determine which cells in the honeybee ovary are somatic and which germline. We examine patterns of cell division and demonstrate that, unlike Drosophila, there is no evidence of single germline stem cells that provide the germline in honeybees. Germline progenitors are clustered in groups of 8 cells, joined by a polyfusome, and collections of these, in each ovariole, appear to maintain the germline during reproduction. We also show that these 8-cell clusters can divide and that their division occurs such that the numbers of germline progenitors are relatively constant over the reproductive life of queen honeybees. This information helps us to understand the diversity of structures in insect reproduction, and provide information to better support honeybee reproduction.
Collapse
Affiliation(s)
- Georgia Cullen
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| | - Joshua B Gilligan
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Biological Heritage National Science Challenge, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| | - Joseph G Guhlin
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Genomics Aotearoa, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| | - Peter K Dearden
- Laboratory for Evolution and Development, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Biological Heritage National Science Challenge, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
- Genomics Aotearoa, Biochemistry Department, University of Otago, Dunedin, 9054, Aotearoa-New Zealand
| |
Collapse
|
243
|
Kim ES, Rajan A, Chang K, Govindarajan S, Gulick C, English E, Rodriguez B, Bloomfield O, Nakada S, Beard C, O’Connor S, Mastroianni S, Downey E, Feigenbaum M, Tolentino C, Pace A, Khan M, Moon S, DiPrima J, Syed A, Lin F, Abukhadra Y, Bacon I, Beckerle J, Cho S, Donkor NE, Garberg L, Harrington A, Hoang M, Lawani N, Noori A, Park E, Parsons E, Oravitan P, Chen M, Molina C, Richmond C, Reddi A, Huang J, Shugrue C, Coviello R, Unver S, Indelicarto M, Islamovic E, McIlroy R, Yang A, Hamad M, Griffin E, Ahmed Z, Alla A, Fitzgerald P, Choi A, Das T, Cheng Y, Yu J, Roderiques T, Lee E, Liu L, Harper J, Wang J, Suhr C, Tan M, Luque J, Tam AR, Chen E, Triff M, Zimmermann L, Zhang E, Wood J, Clark K, Kpodonu N, Dey A, Ecker A, Chuang M, López RKS, Sun H, Wei Z, Stone H, Chi CYJ, Silvestri A, Orloff P, Nedumaran N, Zou A, Ünver L, Page O, Kim M, Chan TYT, Tulloch A, Hernandez A, Pillai A, Chen C, Chowdhury N, Huang L, Mudide A, Paik G, Wingate A, Quinn L, Conybere C, Baumgardt LL, Buckley R, et alKim ES, Rajan A, Chang K, Govindarajan S, Gulick C, English E, Rodriguez B, Bloomfield O, Nakada S, Beard C, O’Connor S, Mastroianni S, Downey E, Feigenbaum M, Tolentino C, Pace A, Khan M, Moon S, DiPrima J, Syed A, Lin F, Abukhadra Y, Bacon I, Beckerle J, Cho S, Donkor NE, Garberg L, Harrington A, Hoang M, Lawani N, Noori A, Park E, Parsons E, Oravitan P, Chen M, Molina C, Richmond C, Reddi A, Huang J, Shugrue C, Coviello R, Unver S, Indelicarto M, Islamovic E, McIlroy R, Yang A, Hamad M, Griffin E, Ahmed Z, Alla A, Fitzgerald P, Choi A, Das T, Cheng Y, Yu J, Roderiques T, Lee E, Liu L, Harper J, Wang J, Suhr C, Tan M, Luque J, Tam AR, Chen E, Triff M, Zimmermann L, Zhang E, Wood J, Clark K, Kpodonu N, Dey A, Ecker A, Chuang M, López RKS, Sun H, Wei Z, Stone H, Chi CYJ, Silvestri A, Orloff P, Nedumaran N, Zou A, Ünver L, Page O, Kim M, Chan TYT, Tulloch A, Hernandez A, Pillai A, Chen C, Chowdhury N, Huang L, Mudide A, Paik G, Wingate A, Quinn L, Conybere C, Baumgardt LL, Buckley R, Kolberg Z, Pattison R, Shazli AA, Ganske P, Sfragara L, Strub A, Collier B, Tamana H, Ravindran D, Howden J, Stewart M, Shimizu S, Braniff J, Fong M, Gutman L, Irvine D, Malholtra S, Medina J, Park J, Yin A, Abromavage H, Barrett B, Chen J, Cho R, Dilatush M, Gaw G, Gu C, Huang J, Kilby H, Markel E, McClure K, Phillips W, Polaski B, Roselli A, Saint-Cyr S, Shin E, Tatum K, Tumpunyawat T, Wetherill L, Ptaszynska S, Zeleznik M, Pesendorfer A, Nolan A, Tao J, Sammeta D, Nicholson L, Dinh GV, Foltz M, Vo A, Ross M, Tokarski A, Hariharan S, Wang E, Baziuk M, Tay A, Wong YHM, Floyd J, Cui A, Pierre K, Coppisetti N, Kutam M, Khurjekar D, Gadzi A, Gubbay B, Pedretti S, Belovich S, Yeung T, Fey M, Shaffer L, Li A, Beritela G, Huyghue K, Foster G, Durso-Finley G, Thierfelder Q, Kiernan H, Lenkowsky A, Thomas T, Cheng N, Chao O, L’Etoile-Goga P, King A, McKinley P, Read N, Milberg D, Lin L, Wong M, Gilman I, Brown S, Chen L, Kosai J, Verbinsky M, Belshaw-Hood A, Lee H, Zhou C, Lobo M, Tse A, Tran K, Lewis K, Sonawane P, Ngo J, Zuzga S, Chow L, Huynh V, Yang W, Lim S, Stites B, Chang S, Cruz-Balleza R, Pelta M, Kujawski S, Yuan C, Standen-Bloom E, Witt O, Anders K, Duane A, Huynh N, Lester B, Fung-Lee S, Fung M, Situ M, Canigiula P, Dijkgraaf M, Romero W, Baula SK, Wong K, Xu I, Martinez B, Nuygen R, Norris L, Nijensohn N, Altman N, Maajid E, Burkhardt O, Chanda J, Doscher C, Gopal A, Good A, Good J, Herrera N, Lanting L, Liem S, Marks A, McLaughlin E, Lee A, Mohr C, Patton E, Pyarali N, Oczon C, Richards D, Good N, Goss S, Khan A, Madonia R, Mitchell V, Sun N, Vranka T, Garcia D, Arroyo F, Morales E, Camey S, Cano G, Bernabe A, Arroyo J, Lopez Y, Gonzalez E, Zumba B, Garcia J, Vargas E, Trinidad A, Candelaria N, Valdez V, Campuzano F, Pereznegron E, Medrano J, Gutierrez J, Gutierrez E, Abrego ET, Gutierrez D, Ortiz C, Barnes A, Arms E, Mitchell L, Balanzá C, Bradford J, Detroy H, Ferguson D, Guillermo E, Manapragada A, Nanula D, Serna B, Singh K, Sramaty E, Wells B, Wiggins M, Dowling M, Schmadeke G, Cafferky S, Good S, Reese M, Fleig M, Gannett A, Cain C, Lee M, Oberto P, Rinehart J, Pan E, Mathis SA, Joiner J, Barr L, Evans CJ, Baena-Lopez A, Beatty A, Collette J, Smullen R, Suttie J, Chisholm T, Rotondo C, Lewis G, Turner V, Stark L, Fox E, Amirapu A, Park S, Lantz N, Rankin AE, Kim SK, Kockel L. Generation of LexA enhancer-trap lines in Drosophila by an international scholastic network. G3 (BETHESDA, MD.) 2023; 13:jkad124. [PMID: 37279923 PMCID: PMC10468311 DOI: 10.1093/g3journal/jkad124] [Show More Authors] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Conditional gene regulation in Drosophila through binary expression systems like the LexA-LexAop system provides a superb tool for investigating gene and tissue function. To increase the availability of defined LexA enhancer trap insertions, we present molecular, genetic, and tissue expression studies of 301 novel Stan-X LexA enhancer traps derived from mobilization of the index SX4 line. This includes insertions into distinct loci on the X, II, and III chromosomes that were not previously associated with enhancer traps or targeted LexA constructs, an insertion into ptc, and seventeen insertions into natural transposons. A subset of enhancer traps was expressed in CNS neurons known to produce and secrete insulin, an essential regulator of growth, development, and metabolism. Fly lines described here were generated and characterized through studies by students and teachers in an international network of genetics classes at public, independent high schools, and universities serving a diversity of students, including those underrepresented in science. Thus, a unique partnership between secondary schools and university-based programs has produced and characterized novel resources in Drosophila, establishing instructional paradigms devoted to unscripted experimental science.
Collapse
Affiliation(s)
- Ella S Kim
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Arjun Rajan
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | - Eva English
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | - Sarah O’Connor
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | - Emma Downey
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | | | - Abigail Pace
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Marina Khan
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Soyoun Moon
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Jordan DiPrima
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Amber Syed
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Flora Lin
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | | | | | - Sophia Cho
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Mai Hoang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Nosa Lawani
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Ayush Noori
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Euwie Park
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | | | - Adith Reddi
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Jason Huang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | - Selma Unver
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Alana Yang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Mahdi Hamad
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Zara Ahmed
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Asha Alla
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Audrey Choi
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Tanya Das
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Joshua Yu
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Ethan Lee
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | - Jason Wang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Chris Suhr
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Max Tan
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | - Emma Chen
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Max Triff
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Eric Zhang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Jackie Wood
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Nat Kpodonu
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Antar Dey
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Harry Sun
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Zijing Wei
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Henry Stone
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | | | - Leyla Ünver
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Oscair Page
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Minseo Kim
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | | | | | - Lina Huang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Lily Quinn
- Haileybury School, Hertford SG13 7NU, UK
| | | | | | | | | | | | | | - Pia Ganske
- Haileybury School, Hertford SG13 7NU, UK
| | | | | | | | | | | | | | | | | | - Julia Braniff
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Melanie Fong
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Lucy Gutman
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Danny Irvine
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sahil Malholtra
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jillian Medina
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - John Park
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Alicia Yin
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Breanna Barrett
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jacqueline Chen
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Rachelle Cho
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Mac Dilatush
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Gabriel Gaw
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Caitlin Gu
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jupiter Huang
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Houston Kilby
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ethan Markel
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Katie McClure
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - William Phillips
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Benjamin Polaski
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Amelia Roselli
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Soleil Saint-Cyr
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ellie Shin
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Kylan Tatum
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Tai Tumpunyawat
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Lucia Wetherill
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sara Ptaszynska
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Maddie Zeleznik
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Anna Nolan
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jeffrey Tao
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Divya Sammeta
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Laney Nicholson
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Giao Vu Dinh
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Merrin Foltz
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - An Vo
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Maggie Ross
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Andrew Tokarski
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Samika Hariharan
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Elaine Wang
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Martha Baziuk
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ashley Tay
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Jax Floyd
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Aileen Cui
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Kieran Pierre
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Nikita Coppisetti
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Matthew Kutam
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Dhruv Khurjekar
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Anthony Gadzi
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ben Gubbay
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sophia Pedretti
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sofiya Belovich
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Tiffany Yeung
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Mercy Fey
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Layla Shaffer
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Arthur Li
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Kyle Huyghue
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Greg Foster
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Quinn Thierfelder
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Holly Kiernan
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Andrew Lenkowsky
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Tesia Thomas
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Nicole Cheng
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Olivia Chao
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Pia L’Etoile-Goga
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Alexa King
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Paris McKinley
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Nicole Read
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - David Milberg
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Leila Lin
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Melinda Wong
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Io Gilman
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Samantha Brown
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Lila Chen
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Jordyn Kosai
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Mark Verbinsky
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Honon Lee
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Cathy Zhou
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Maya Lobo
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Asia Tse
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Kyle Tran
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Kira Lewis
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Pratmesh Sonawane
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Jonathan Ngo
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Sophia Zuzga
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Lillian Chow
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Vianne Huynh
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Wenyi Yang
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Samantha Lim
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Brandon Stites
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Shannon Chang
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Michaela Pelta
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Stella Kujawski
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Christopher Yuan
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Oliver Witt
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Karina Anders
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Audrey Duane
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Nancy Huynh
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Benjamin Lester
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Samantha Fung-Lee
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Melanie Fung
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Mandy Situ
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Paolo Canigiula
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Matijs Dijkgraaf
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Wilbert Romero
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Kimberly Wong
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Ivana Xu
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Reena Nuygen
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Lucy Norris
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Noah Nijensohn
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Naomi Altman
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Elise Maajid
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | | | | | | | - Alex Gopal
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Aaron Good
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Jonah Good
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | - Sophia Liem
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Anila Marks
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | - Audrey Lee
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Collin Mohr
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Emma Patton
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | | | - Nathan Good
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | - Adeeb Khan
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | - Natasha Sun
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | | | | | | | | | | | | | | | | | - Bryan Zumba
- Pritzker College Prep, Chicago, IL 60639, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jake Bradford
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | | | | | | | | | | | | | - Khushi Singh
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Emily Sramaty
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Brian Wells
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | | | - Melissa Dowling
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | | | | | | | | | | | | | - Cory Cain
- Pritzker College Prep, Chicago, IL 60639, USA
| | - Melody Lee
- Harvard-Westlake School, Los Angeles, CA 90077, USA
| | | | | | | | | | | | - Leslie Barr
- Westtown School, West Chester, PA 19382, USA
| | - Cory J Evans
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | | | - Andrea Beatty
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | - Robert Smullen
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Jeanne Suttie
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | | | | | | | | | - Elizabeth Fox
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Anjana Amirapu
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Sangbin Park
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicole Lantz
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lutz Kockel
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
244
|
Tu R, Tang XA, Xu R, Ping Z, Yu Z, Xie T. Gap junction-transported cAMP from the niche controls stem cell progeny differentiation. Proc Natl Acad Sci U S A 2023; 120:e2304168120. [PMID: 37603749 PMCID: PMC10468610 DOI: 10.1073/pnas.2304168120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/23/2023] Open
Abstract
The niche has been shown to control stem cell self-renewal in different tissue types and organisms. Recently, a separate niche has been proposed to control stem cell progeny differentiation, called the differentiation niche. However, it remains poorly understood whether and how the differentiation niche directly signals to stem cell progeny to control their differentiation. In the Drosophila ovary, inner germarial sheath (IGS) cells contribute to two separate niche compartments for controlling both germline stem cell (GSC) self-renewal and progeny differentiation. In this study, we show that IGS cells express Inx2 protein, which forms gap junctions (GJs) with germline-specific Zpg protein to control stepwise GSC lineage development, including GSC self-renewal, germline cyst formation, meiotic double-strand DNA break formation, and oocyte specification. Germline-specific Zpg and IGS-specific Inx2 knockdowns cause similar defects in stepwise GSC development. Additionally, secondary messenger cAMP is transported from IGS cells to GSCs and their progeny via GJs to activate PKA signaling for controlling stepwise GSC development. Therefore, this study demonstrates that the niche directly controls GSC progeny differentiation via the GJ-cAMP-PKA signaling axis, which provides important insights into niche control of stem cell differentiation and highlights the importance of GJ-transported cAMP in tissue regeneration. This may represent a general strategy for the niche to control adult stem cell development in various tissue types and organisms since GJs and cAMP are widely distributed.
Collapse
Affiliation(s)
- Renjun Tu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region (SAR), China
| | - Xiaohan Alex Tang
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region (SAR), China
| | - Rui Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region (SAR), China
| | - Zhaohua Ping
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region (SAR), China
- Stowers Institute for Medical Research, Kansas City, MO64110
| |
Collapse
|
245
|
Lyu C, Li Z, Luo L. Toward building a library of cell type-specific drivers across developmental stages. Proc Natl Acad Sci U S A 2023; 120:e2312196120. [PMID: 37590431 PMCID: PMC10466085 DOI: 10.1073/pnas.2312196120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Affiliation(s)
- Cheng Lyu
- HHMI, Stanford University, Stanford, CA94305
- Department of Biology, Stanford University, Stanford, CA94305
| | - Zhuoran Li
- HHMI, Stanford University, Stanford, CA94305
- Department of Biology, Stanford University, Stanford, CA94305
| | - Liqun Luo
- HHMI, Stanford University, Stanford, CA94305
- Department of Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
246
|
Amini S, Doyle JJ, Libault M. The evolving definition of plant cell type. FRONTIERS IN PLANT SCIENCE 2023; 14:1271070. [PMID: 37692436 PMCID: PMC10485272 DOI: 10.3389/fpls.2023.1271070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Sahand Amini
- Center for Plant Science Innovation, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jeffrey J. Doyle
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, United States
- School of Integrative Plant Science, Plant Breeding & Genetics Section, Cornell University, Ithaca, NY, United States
| | - Marc Libault
- Center for Plant Science Innovation, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
247
|
Kim HS, Parker DJ, Hardiman MM, Munkácsy E, Jiang N, Rogers AN, Bai Y, Brent C, Mobley JA, Austad SN, Pickering AM. Early-adulthood spike in protein translation drives aging via juvenile hormone/germline signaling. Nat Commun 2023; 14:5021. [PMID: 37596266 PMCID: PMC10439225 DOI: 10.1038/s41467-023-40618-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
Protein translation (PT) declines with age in invertebrates, rodents, and humans. It has been assumed that elevated PT at young ages is beneficial to health and PT ends up dropping as a passive byproduct of aging. In Drosophila, we show that a transient elevation in PT during early-adulthood exerts long-lasting negative impacts on aging trajectories and proteostasis in later-life. Blocking the early-life PT elevation robustly improves life-/health-span and prevents age-related protein aggregation, whereas transiently inducing an early-life PT surge in long-lived fly strains abolishes their longevity/proteostasis benefits. The early-life PT elevation triggers proteostatic dysfunction, silences stress responses, and drives age-related functional decline via juvenile hormone-lipid transfer protein axis and germline signaling. Our findings suggest that PT is adaptively suppressed after early-adulthood, alleviating later-life proteostatic burden, slowing down age-related functional decline, and improving lifespan. Our work provides a theoretical framework for understanding how lifetime PT dynamics shape future aging trajectories.
Collapse
Affiliation(s)
- Harper S Kim
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Danitra J Parker
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, 77030, USA
| | - Madison M Hardiman
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Nisi Jiang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Aric N Rogers
- MDI Biological Laboratory, Bar Harbor, ME, 04672, USA
| | - Yidong Bai
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Colin Brent
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, 35249, USA
| | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Andrew M Pickering
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, TX, 77030, USA.
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
248
|
Page N, Taxiarchi C, Tonge D, Kuburic J, Chesters E, Kriezis A, Kyrou K, Game L, Nolan T, Galizi R. Single-cell profiling of Anopheles gambiae spermatogenesis defines the onset of meiotic silencing and premeiotic overexpression of the X chromosome. Commun Biol 2023; 6:850. [PMID: 37582841 PMCID: PMC10427639 DOI: 10.1038/s42003-023-05224-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
Understanding development and genetic regulation in the Anopheles gambiae germline is essential to engineer effective genetic control strategies targeting this malaria mosquito vector. These include targeting the germline to induce sterility or using regulatory sequences to drive transgene expression for applications such as gene drive. However, only very few germline-specific regulatory elements have been characterised with the majority showing leaky expression. This has been shown to considerably reduce the efficiency of current genetic control strategies, which rely on regulatory elements with more tightly restricted spatial and/or temporal expression. Meiotic silencing of the sex chromosomes limits the flexibility of transgene expression to develop effective sex-linked genetic control strategies. Here, we build on our previous study, dissecting gametogenesis into four distinct cell populations, using single-cell RNA sequencing to define eight distinct cell clusters and associated germline cell-types using available marker genes. We reveal overexpression of X-linked genes in a distinct cluster of pre-meiotic cells and document the onset of meiotic silencing of the X chromosome in a subcluster of cells in the latter stages of spermatogenesis. This study provides a comprehensive dataset, characterising the expression of distinct cell types through spermatogenesis and widening the toolkit for genetic control of malaria mosquitoes.
Collapse
Affiliation(s)
- Nicole Page
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Daniel Tonge
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Jasmina Kuburic
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Emily Chesters
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Antonios Kriezis
- Department of Life Sciences, Imperial College London, London, UK
| | - Kyros Kyrou
- Department of Life Sciences, Imperial College London, London, UK
| | - Laurence Game
- Genomics Facility, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Roberto Galizi
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK.
| |
Collapse
|
249
|
Petsakou A, Liu Y, Liu Y, Comjean A, Hu Y, Perrimon N. Epithelial Ca 2+ waves triggered by enteric neurons heal the gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553227. [PMID: 37645990 PMCID: PMC10461974 DOI: 10.1101/2023.08.14.553227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A fundamental and unresolved question in regenerative biology is how tissues return to homeostasis after injury. Answering this question is essential for understanding the etiology of chronic disorders such as inflammatory bowel diseases and cancer. We used the Drosophila midgut to investigate this question and discovered that during regeneration a subpopulation of cholinergic enteric neurons triggers Ca2+ currents among enterocytes to promote return of the epithelium to homeostasis. Specifically, we found that down-regulation of the cholinergic enzyme Acetylcholinesterase in the epithelium enables acetylcholine from defined enteric neurons, referred as ARCENs, to activate nicotinic receptors in enterocytes found near ARCEN-innervations. This activation triggers high Ca2+ influx that spreads in the epithelium through Inx2/Inx7 gap junctions promoting enterocyte maturation followed by reduction of proliferation and inflammation. Disrupting this process causes chronic injury consisting of ion imbalance, Yki activation and increase of inflammatory cytokines together with hyperplasia, reminiscent of inflammatory bowel diseases. Altogether, we found that during gut regeneration the conserved cholinergic pathway facilitates epithelial Ca2+ waves that heal the intestinal epithelium. Our findings demonstrate nerve- and bioelectric-dependent intestinal regeneration which advance the current understanding of how a tissue returns to its homeostatic state after injury and could ultimately help existing therapeutics.
Collapse
Affiliation(s)
| | - Yifang Liu
- Department of Genetics, Harvard Medical School, Boston, USA
| | - Ying Liu
- Department of Genetics, Harvard Medical School, Boston, USA
| | - Aram Comjean
- Department of Genetics, Harvard Medical School, Boston, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, USA
- Howard Hughes Medical Institute, Boston, USA
| |
Collapse
|
250
|
Saavedra P, Dumesic PA, Hu Y, Filine E, Jouandin P, Binari R, Wilensky SE, Rodiger J, Wang H, Chen W, Liu Y, Spiegelman BM, Perrimon N. REPTOR and CREBRF encode key regulators of muscle energy metabolism. Nat Commun 2023; 14:4943. [PMID: 37582831 PMCID: PMC10427696 DOI: 10.1038/s41467-023-40595-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Metabolic flexibility of muscle tissue describes the adaptive capacity to use different energy substrates according to their availability. The disruption of this ability associates with metabolic disease. Here, using a Drosophila model of systemic metabolic dysfunction triggered by yorkie-induced gut tumors, we show that the transcription factor REPTOR is an important regulator of energy metabolism in muscles. We present evidence that REPTOR is activated in muscles of adult flies with gut yorkie-tumors, where it modulates glucose metabolism. Further, in vivo studies indicate that sustained activity of REPTOR is sufficient in wildtype muscles to repress glycolysis and increase tricarboxylic acid (TCA) cycle metabolites. Consistent with the fly studies, higher levels of CREBRF, the mammalian ortholog of REPTOR, reduce glycolysis in mouse myotubes while promoting oxidative metabolism. Altogether, our results define a conserved function for REPTOR and CREBRF as key regulators of muscle energy metabolism.
Collapse
Affiliation(s)
- Pedro Saavedra
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Phillip A Dumesic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth Filine
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Patrick Jouandin
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Montpellier, France
| | - Richard Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Sarah E Wilensky
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weihang Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|