201
|
Expanding therapeutic strategies for intracellular bacterial infections through conjugates of apoptotic body-antimicrobial peptides. Drug Discov Today 2023; 28:103444. [PMID: 36400344 DOI: 10.1016/j.drudis.2022.103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Macrophage intracellular infections are difficult to treat because conventional antibiotics tend to have poor penetration of mammalian cells. As a consequence, the immune response is affected and bacteria remain protected inside macrophages. The use of antimicrobial peptides (AMPs) is one of the alternatives developed as new treatments because of their broad spectrum of action. To improve drug delivery into the intracellular space, extracellular vesicles (EVs) have emerged as an innovative strategy for drug delivery. In particular, apoptotic bodies (ApoBDs) are EVs that exhibit attraction to macrophages, which makes them a promising means of improving AMP delivery to treat macrophage intracellular infections. Here, we review important aspects that should be taken into account when developing ApoBD-AMP conjugates.
Collapse
|
202
|
Deng C, Hu Y, Conceição M, Wood MJA, Zhong H, Wang Y, Shao P, Chen J, Qiu L. Oral delivery of layer-by-layer coated exosomes for colitis therapy. J Control Release 2023; 354:635-650. [PMID: 36634710 DOI: 10.1016/j.jconrel.2023.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have attracted much attention as a potential cell-free therapy for ulcerative colitis (UC), mainly due to their anti-inflammatory, tissue repair, and immunomodulatory properties. Although intravenous injection of MSC-Exos is able to improve UC to a certain extent, oral administration of exosomes is the preferred method to treat gastrointestinal diseases such as UC. However, exosomes contain proteins and nucleic acids that are vulnerable to degradation by the gastrointestinal environment, making oral administration difficult to implement. Layer-by-layer (LbL) self-assembly technology provides a promising strategy for the oral delivery of exosomes. Therefore, an efficient LbL-Exos self-assembly system was constructed in this study for the oral delivery of exosomes targeted to the colon to improve UC treatment. Biocompatible and biodegradable N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) and oxidized konjac glucomannan (OKGM) polysaccharides were used as the outer layers to provide colon targeting and to protect exosomes from degradation. Similar to plain exosomes, LbL-Exos had a similar structure and features, but LbL provided controlled release of exosomes in the inflammatory colon. Compared with intravenous administration, oral administration of LbL-Exos could effectively alleviate UC using half the number of exosomes. Mechanistic studies showed that LbL-Exos were internalized by macrophages and intestinal epithelial cells to exert anti-inflammatory and tissue repair effects and therefore alleviate UC. Furthermore, the LbL-Exos system was able to improve UC via MAPK/NF-κB signaling pathway inhibition. Overall, our data show that LbL-MSC-Exos can alleviate UC after oral administration and therefore may constitute a new strategy for UC treatment in the future.
Collapse
Affiliation(s)
- Chao Deng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yiwei Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Jiangyin Center for Disease Control and Prevention, Jiangyin 214434, China
| | | | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Hongyao Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yan Wang
- Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, China
| | - Ping Shao
- Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, China.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Lipeng Qiu
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK; School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
203
|
Patel NJ, Ashraf A, Chung EJ. Extracellular Vesicles as Regulators of the Extracellular Matrix. Bioengineering (Basel) 2023; 10:136. [PMID: 36829629 PMCID: PMC9952427 DOI: 10.3390/bioengineering10020136] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Extracellular vesicles (EVs) are small membrane-bound vesicles secreted into the extracellular space by all cell types. EVs transfer their cargo which includes nucleic acids, proteins, and lipids to facilitate cell-to-cell communication. As EVs are released and move from parent to recipient cell, EVs interact with the extracellular matrix (ECM) which acts as a physical scaffold for the organization and function of cells. Recent work has shown that EVs can modulate and act as regulators of the ECM. This review will first discuss EV biogenesis and the mechanism by which EVs are transported through the ECM. Additionally, we discuss how EVs contribute as structural components of the matrix and as components that aid in the degradation of the ECM. Lastly, the role of EVs in influencing recipient cells to remodel the ECM in both pathological and therapeutic contexts is examined.
Collapse
Affiliation(s)
- Neil J. Patel
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Anisa Ashraf
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
204
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
205
|
Extracellular Vesicles and Viruses: Two Intertwined Entities. Int J Mol Sci 2023; 24:ijms24021036. [PMID: 36674550 PMCID: PMC9861478 DOI: 10.3390/ijms24021036] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Viruses share many attributes in common with extracellular vesicles (EVs). The cellular machinery that is used for EV production, packaging of substrates and secretion is also commonly manipulated by viruses for replication, assembly and egress. Viruses can increase EV production or manipulate EVs to spread their own genetic material or proteins, while EVs can play a key role in regulating viral infections by transporting immunomodulatory molecules and viral antigens to initiate antiviral immune responses. Ultimately, the interactions between EVs and viruses are highly interconnected, which has led to interesting discoveries in their associated roles in the progression of different diseases, as well as the new promise of combinational therapeutics. In this review, we summarize the relationships between viruses and EVs and discuss major developments from the past five years in the engineering of virus-EV therapies.
Collapse
|
206
|
Zhang Y, Ge T, Huang M, Qin Y, Liu T, Mu W, Wang G, Jiang L, Li T, Zhao L, Wang J. Extracellular Vesicles Expressing CD19 Antigen Improve Expansion and Efficacy of CD19-Targeted CAR-T Cells. Int J Nanomedicine 2023; 18:49-63. [PMID: 36636644 PMCID: PMC9830716 DOI: 10.2147/ijn.s390720] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Background CAR-T cell therapy is effective in the treatment of certain hematological malignancies, and the expansion and functional persistence of CAR-T cells in vivo are crucial to clinical efficacy. The aim of this study was to investigate the potential of extracellular vesicles (EVs) modified with the CAR antigen to promote the efficacy of CAR-T cells in vivo. Methods We generated HEK293T-derived EVs to present the CD19 antigen as the CAR target. In vitro, EVs expressing CD19 antigen (CD19 EVs) were co-incubated with anti-CD19 CAR-T cells. Then, proliferation, cytokine secretion, CD107a expression, tumor killing, subsets, and immune checkpoint expression were measured to assess CAR-T cell function. After infusion of CD19 EVs pretreated CAR-T cells into a lymphoma xenograft mouse model, flow cytometry and digital PCR were used to measure the expansion of CAR-T cells, and tumor volumes were continuously monitored to assess the anti-tumor efficacy of CAR-T cells in vivo. Another mouse model was created to investigate the effect of in vivo injection of CD19 EVs on the functional persistence of CAR-T cells, and safety was determined by histopathology of the main organs. Results CD19 EVs activated CAR-T cells in an antigen-specific and dose-dependent manner and promoted the selective expansion and cytokine secretion of co-cultured CAR-T cells. Specifically, CD19 EVs preferably increased the expansion of the CAR-T subpopulation with a high surface CD19-CAR density and consequently enhanced the anti-tumor activity of CAR-T cells. Futhermore, CD19-EVs-primed CAR-T cells achieved superior proliferation and anti-tumor effects in a mouse model with lymphoma xenograft. In vivo administration of CD19 EVs promoted the functional persistence of CAR-T cells in the xenograft mouse model. Conclusion Our findings indicate that antigen-expressing EVs can be utilized as a boost to improve CAR-T cell efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Tong Ge
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Meijuan Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yun Qin
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Tianjiao Liu
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Gaoxiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Lijun Jiang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Tongjuan Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Lei Zhao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Correspondence: Lei Zhao; Jue Wang, Email ;
| | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
207
|
De Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1835. [PMID: 35898167 PMCID: PMC10078256 DOI: 10.1002/wnan.1835] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina P. De Sousa
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
| | - Izadora Rossi
- School of Human SciencesLondon Metropolitan UniversityLondonUK
- Federal University of ParanáCuritibaBrazil
| | | | - Marcel Ivan Ramirez
- Federal University of ParanáCuritibaBrazil
- Carlos Chagas Institute (ICC)CuritibaBrazil
| | - Dan Stratton
- Open UniversityThe School of Life, Health and Chemical SciencesMilton KeynesUK
| | - Jameel Malhador Inal
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
- School of Human SciencesLondon Metropolitan UniversityLondonUK
| |
Collapse
|
208
|
Williams S, Jalal AR, Lewis MP, Davies OG. A survey to evaluate parameters governing the selection and application of extracellular vesicle isolation methods. J Tissue Eng 2023; 14:20417314231155114. [PMID: 36911574 PMCID: PMC9996742 DOI: 10.1177/20417314231155114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/19/2023] [Indexed: 03/11/2023] Open
Abstract
Extracellular vesicles (EVs) continue to gain interest across the scientific community for diagnostic and therapeutic applications. As EV applications diversify, it is essential that researchers are aware of challenges, in particular the compatibility of EV isolation methods with downstream applications and their clinical translation. We report outcomes of the first cross-comparison study looking to determine parameters (EV source, starting volume, operator experience, application and implementation parameters such as cost and scalability) governing the selection of popular EV isolation methods across disciplines. Our findings highlighted an increased clinical focus, with 36% of respondents applying EVs in therapeutics and diagnostics. Data indicated preferential selection of ultracentrifugation for therapeutic applications, precipitation reagents in clinical settings and size exclusion chromatography for diagnostic applications utilising biofluids. Method selection was influenced by operator experience, with increased method diversity when EV research was not the respondents primary focus. Application and implementation criteria were indicated to be major influencers in method selection, with UC and SEC chosen for their abilities to process large and small volumes, respectively. Overall, we identified parameters influencing method selection across the breadth of EV science, providing a valuable overview of practical considerations for the effective translation of research outcomes.
Collapse
Affiliation(s)
- Soraya Williams
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Aveen R Jalal
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Owen G Davies
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
209
|
Cai R, Wang L, Zhang W, Liu B, Wu Y, Pang J, Ma C. The role of extracellular vesicles in periodontitis: pathogenesis, diagnosis, and therapy. Front Immunol 2023; 14:1151322. [PMID: 37114060 PMCID: PMC10126335 DOI: 10.3389/fimmu.2023.1151322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis is a prevalent disease and one of the leading causes of tooth loss. Biofilms are initiating factor of periodontitis, which can destroy periodontal tissue by producing virulence factors. The overactivated host immune response is the primary cause of periodontitis. The clinical examination of periodontal tissues and the patient's medical history are the mainstays of periodontitis diagnosis. However, there is a lack of molecular biomarkers that can be used to identify and predict periodontitis activity precisely. Non-surgical and surgical treatments are currently available for periodontitis, although both have drawbacks. In clinical practice, achieving the ideal therapeutic effect remains a challenge. Studies have revealed that bacteria produce extracellular vesicles (EVs) to export virulence proteins to host cells. Meanwhile, periodontal tissue cells and immune cells produce EVs that have pro- or anti-inflammatory effects. Accordingly, EVs play a critical role in the pathogenesis of periodontitis. Recent studies have also presented that the content and composition of EVs in saliva and gingival crevicular fluid (GCF) can serve as possible periodontitis diagnostic indicators. In addition, studies have indicated that stem cell EVs may encourage periodontal regeneration. In this article, we mainly review the role of EVs in the pathogenesis of periodontitis and discuss their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Rong Cai
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Bing Liu
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianliang Pang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| | - Chufan Ma
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| |
Collapse
|
210
|
Zhao H, Li Z, Wang Y, Zhou K, Li H, Bi S, Wang Y, Wu W, Huang Y, Peng B, Tang J, Pan B, Wang B, Chen Z, Zhang Z. Bioengineered MSC-derived exosomes in skin wound repair and regeneration. Front Cell Dev Biol 2023; 11:1029671. [PMID: 36923255 PMCID: PMC10009159 DOI: 10.3389/fcell.2023.1029671] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
Refractory skin defects such as pressure ulcers, diabetic ulcers, and vascular ulcers represent a challenge for clinicians and researchers in many aspects. The treatment strategies for wound healing have high cost and limited efficacy. To ease the financial and psychological burden on patients, a more effective therapeutic approach is needed to address the chronic wound. MSC-derived exosomes (MSC-exosomes), the main bioactive extracellular vesicles of the paracrine effect of MSCs, have been proposed as a new potential cell-free approach for wound healing and skin regeneration. The benefits of MSC-exosomes include their ability to promote angiogenesis and cell proliferation, increase collagen production, regulate inflammation, and finally improve tissue regenerative capacity. However, poor targeting and easy removability of MSC-exosomes from the wound are major obstacles to their use in clinical therapy. Thus, the concept of bioengineering technology has been introduced to modify exosomes, enabling higher concentrations and construction of particles of greater stability with specific therapeutic capability. The use of biomaterials to load MSC-exosomes may be a promising strategy to concentrate dose, create the desired therapeutic efficacy, and maintain a sustained release effect. The beneficial role of MSC-exosomes in wound healing is been widely accepted; however, the potential of bioengineering-modified MSC-exosomes remains unclear. In this review, we attempt to summarize the therapeutic applications of modified MSC-exosomes in wound healing and skin regeneration. The challenges and prospects of bioengineered MSC-exosomes are also discussed.
Collapse
Affiliation(s)
- Hanxing Zhao
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Yixi Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhou
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Hairui Li
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Siwei Bi
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yudong Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqing Wu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yeqian Huang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Peng
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Jun Tang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoyun Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhixing Chen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
211
|
Qu Q, Fu B, Long Y, Liu ZY, Tian XH. Current Strategies for Promoting the Large-scale Production of Exosomes. Curr Neuropharmacol 2023; 21:1964-1979. [PMID: 36797614 PMCID: PMC10514529 DOI: 10.2174/1570159x21666230216095938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 02/18/2023] Open
Abstract
Exosomes, as nanoscale biological vesicles, have been shown to have great potential for biomedical applications. However, the low yield of exosomes limits their application. In this review, we focus on methods to increase exosome yield. Two main strategies are used to increase exosome production, one is based on genetic manipulation of the exosome biogenesis and release pathway, and the other is by pretreating parent cells, changing the culture method or adding different components to the medium. By applying these strategies, exosomes can be produced on a large scale to facilitate their practical application in the clinic.
Collapse
Affiliation(s)
- Qing Qu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Bin Fu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Yong Long
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Zi-Yu Liu
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| | - Xiao-Hong Tian
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang, 110122, China
| |
Collapse
|
212
|
Ma C, Qi X, Wei YF, Li Z, Zhang HL, Li H, Yu FL, Pu YN, Huang YC, Ren YX. Amelioration of ligamentum flavum hypertrophy using umbilical cord mesenchymal stromal cell-derived extracellular vesicles. Bioact Mater 2023; 19:139-154. [PMID: 35475028 PMCID: PMC9014323 DOI: 10.1016/j.bioactmat.2022.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
Ligamentum flavum (LF) hypertrophy (LFH) has been recognised as one of the key contributors to lumbar spinal stenosis. Currently, no effective methods are available to ameliorate this hypertrophy. In this study, human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hUCMSC-EVs) were introduced for the first time as promising vehicles for drug delivery to treat LFH. The downregulation of miR-146a-5p and miR-221-3p expressions in human LF tissues negatively correlated with increased LF thickness. The hUCMSC-EVs enriched with these two miRNAs significantly suppressed LFH in vivo and notably ameliorated the progression of transforming growth factor β1(TGF-β1)-induced fibrosis in vitro after delivering these two miRNAs to mouse LF cells. The results further demonstrated that miR-146a-5p and miR-221-3p directly bonded to the 3′-UTR regions of SMAD4 mRNA, thereby inhibiting the TGF-β/SMAD4 signalling pathway. Therefore, this translational study determined the effectiveness of a hUCMSC-EVs-based approach for the treatment of LFH and revealed the critical target of miR-146a-5p and miR-221-3p. Our findings provide new insights into promising therapeutics using a hUCMSC-EVs-based delivery system for patients with lumbar spinal stenosis. The downregulation of miR-146a-5p and miR-221-3p expressions were negatively correlated with the development of LFH. MiR-146a-5p and miR-221-3p enriched in hUCMSC-EVs prevent the fibrosis of LF by targeting SMAD4. hUCMSC-EVs are effective as bioactive vehicles to ameliorate the progression of LFH. hUCMSC-EVs-based delivery system is a promising therapy for the patients with lumbar spinal stenosis.
Collapse
|
213
|
Norouzi-Barough L, Asgari Khosroshahi A, Gorji A, Zafari F, Shahverdi Shahraki M, Shirian S. COVID-19-Induced Stroke and the Potential of Using Mesenchymal Stem Cells-Derived Extracellular Vesicles in the Regulation of Neuroinflammation. Cell Mol Neurobiol 2023; 43:37-46. [PMID: 35025001 PMCID: PMC8755896 DOI: 10.1007/s10571-021-01169-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke (IS) is a known neurological complication of COVID-19 infection, which is associated with high mortality and disability. Following IS, secondary neuroinflammation that occurs can play both harmful and beneficial roles and lead to further injury or repair of damaged neuronal tissue, respectively. Since inflammation plays a pivotal role in the pathogenesis of COVID-19-induced stroke, targeting neuroinflammation could be an effective strategy for modulating the immune responses following ischemic events. Numerous investigations have indicated that the application of mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) improves functional recovery following stroke, mainly through reducing neuroinflammation as well as promoting neurogenesis and angiogenesis. Therefore, MSC-EVs can be applied for the regulation of SARS-CoV-2-mediated inflammation and the management of COVID-19- related ischemic events. In this study, we have first described the advantages and disadvantages of neuroinflammation in the pathological evolution after IS and summarized the characteristics of neuroinflammation in COVID-19-related stroke. Then, we have discussed the potential benefit of MSC-EVs in the regulation of inflammatory responses after COVID-19-induced ischemic events.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ali Gorji
- Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universitat Münster, Munster, Germany
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Fariba Zafari
- Cellular and Molecular Research Center, Research Institute for Prevention of Non- Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
- Shiraz Molecular Pathology Research Center, Dr. Daneshbod Pathol Lab, Shiraz, Iran.
| |
Collapse
|
214
|
Wang C, Xu M, Fan Q, Li C, Zhou X. Therapeutic potential of exosome-based personalized delivery platform in chronic inflammatory diseases. Asian J Pharm Sci 2023; 18:100772. [PMID: 36896446 PMCID: PMC9989662 DOI: 10.1016/j.ajps.2022.100772] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
In the inflammatory microenvironment, there are numerous exosomes secreted by immune cells (Macrophages, neutrophils, dendritic cells), mesenchymal stem cells (MSCs) and platelets as intercellular communicators, which participate in the regulation of inflammation by modulating gene expression and releasing anti-inflammatory factors. Due to their good biocompatibility, accurate targeting, low toxicity and immunogenicity, these exosomes are able to selectively deliver therapeutic drugs to the site of inflammation through interactions between their surface-antibody or modified ligand with cell surface receptors. Therefore, the role of exosome-based biomimetic delivery strategies in inflammatory diseases has attracted increasing attention. Here we review current knowledge and techniques for exosome identification, isolation, modification and drug loading. More importantly, we highlight progress in using exosomes to treat chronic inflammatory diseases such as rheumatoid arthritis (RA), osteoarthritis (OA), atherosclerosis (AS), and inflammatory bowel disease (IBD). Finally, we also discuss their potential and challenges as anti-inflammatory drug carriers.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
215
|
Wu M, Wang M, Jia H, Wu P. Extracellular vesicles: emerging anti-cancer drugs and advanced functionalization platforms for cancer therapy. Drug Deliv 2022; 29:2513-2538. [PMID: 35915054 PMCID: PMC9347476 DOI: 10.1080/10717544.2022.2104404] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Increasing evidences show that unmodified extracellular vesicles (EVs) derived from various cells can effectively inhibit the malignant progression of different types of tumors by delivering the bioactive molecules. Therefore, EVs are expected to be developed as emerging anticancer drugs. Meanwhile, unmodified EVs as an advanced and promising nanocarrier that is frequently used in targeted delivery therapeutic cargos and personalized reagents for the treatment and diagnosis of cancer. To improve the efficacy of EV-based treatments, researchers are trying to engineering EVs as an emerging nanomedicine translational therapy platform through biological, physical and chemical approaches, which can be broaden and altered to enhance their therapeutic capability. EVs loaded with therapeutic components such as tumor suppressor drugs, siRNAs, proteins, peptides, and conjugates exhibit significantly enhanced anti-tumor effects. Moreover, the design and preparation of tumor-targeted modified EVs greatly enhance the specificity and effectiveness of tumor therapy, and these strategies are expected to become novel ideas for tumor precision medicine. This review will focus on reviewing the latest research progress of functionalized EVs, clarifying the superior biological functions and powerful therapeutic potential of EVs, for researchers to explore new design concepts based on EVs and build next-generation nanomedicine therapeutic platforms.
Collapse
Affiliation(s)
- Manling Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of UST C, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Children’s Hospital, Hefei, Anhui, P.R. China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Haoyuan Jia
- Department of Clinical Laboratory, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, P.R. China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of UST C, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Children’s Hospital, Hefei, Anhui, P.R. China
| |
Collapse
|
216
|
Deng DK, Zhang JJ, Gan D, Zou JK, Wu RX, Tian Y, Yin Y, Li X, Chen FM, He XT. Roles of extracellular vesicles in periodontal homeostasis and their therapeutic potential. J Nanobiotechnology 2022; 20:545. [PMID: 36585740 PMCID: PMC9801622 DOI: 10.1186/s12951-022-01757-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Periodontal tissue is a highly dynamic and frequently stimulated area where homeostasis is easily destroyed, leading to proinflammatory periodontal diseases. Bacteria-bacteria and cell-bacteria interactions play pivotal roles in periodontal homeostasis and disease progression. Several reviews have comprehensively summarized the roles of bacteria and stem cells in periodontal homeostasis. However, they did not describe the roles of extracellular vesicles (EVs) from bacteria and cells. As communication mediators evolutionarily conserved from bacteria to eukaryotic cells, EVs secreted by bacteria or cells can mediate interactions between bacteria and their hosts, thereby offering great promise for the maintenance of periodontal homeostasis. This review offers an overview of EV biogenesis, the effects of EVs on periodontal homeostasis, and recent advances in EV-based periodontal regenerative strategies. Specifically, we document the pathogenic roles of bacteria-derived EVs (BEVs) in periodontal dyshomeostasis, focusing on plaque biofilm formation, immune evasion, inflammatory pathway activation and tissue destruction. Moreover, we summarize recent advancements in cell-derived EVs (CEVs) in periodontal homeostasis, emphasizing the multifunctional biological effects of CEVs on periodontal tissue regeneration. Finally, we discuss future challenges and practical perspectives for the clinical translation of EV-based therapies for periodontitis.
Collapse
Affiliation(s)
- Dao-Kun Deng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiu-Jiu Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Dian Gan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jie-Kang Zou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yi Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xuan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
217
|
Ma X, Liu B, Fan L, Liu Y, Zhao Y, Ren T, Li Y, Li Y. Native and engineered exosomes for inflammatory disease. NANO RESEARCH 2022; 16:6991-7006. [PMID: 36591564 PMCID: PMC9793369 DOI: 10.1007/s12274-022-5275-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/24/2023]
Abstract
Exosomes are extracellular vesicles which carry specific molecular information from donor cells and act as an intercellular communication vehicle, which have emerged as a novel cell-free strategy for the treatment of many diseases including inflammatory disease. Recently, rising studies have developed exosome-based strategies for novel inflammation therapy due to their biocompatibility and bioactivity. Researchers not only use native exosomes as therapeutic agents for inflammation, but also strive to make up for the natural defects of exosomes through engineering methods to improve and update the property of exosomes for enhanced therapeutic effects. The engineered exosomes can improve cargo-loading efficiency, targeting ability, stability, etc., to achieve combined and diverse treatment strategies in inflammation diseases. Herein, a comprehensive overview of the recent advances in application studies of native and engineered exosomes as well as the engineered methods is provided. Meanwhile, potential application prospects, possible challenges, and the development of clinical researches of exosome treatment strategy are concluded from plentiful examples, which may be able to provide guidance and suggestions for the future research and application of exosomes.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Bingbing Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Limin Fan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yiqiong Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Tianbin Ren
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yan Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| |
Collapse
|
218
|
Deville S, Garcia Romeu H, Oeyen E, Mertens I, Nelissen I, Salvati A. Macrophages Release Extracellular Vesicles of Different Properties and Composition Following Exposure to Nanoparticles. Int J Mol Sci 2022; 24:ijms24010260. [PMID: 36613705 PMCID: PMC9820242 DOI: 10.3390/ijms24010260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles are membrane-bound carriers with complex cargoes, which play a major role in intercellular communication, for instance, in the context of the immune response. Macrophages are known to release extracellular vesicles in response to different stimuli, and changes in their size, number, and composition may provide important insights into the responses induced. Macrophages are also known to be highly efficient in clearing nanoparticles, when in contact with them, and in triggering the immune system. However, little is known about how the nature and composition of the vesicles released by these cells may vary upon nanoparticle exposure. In order to study this, in this work, alveolar-like macrophages were exposed to a panel of nanoparticles with varying surface and composition, including amino-modified and carboxylated polystyrene and plain silica. We previously showed that these nanoparticles induced very different responses in these cells. Here, experimental conditions were carefully tuned in order to separate the extracellular vesicles released by the macrophages several hours after exposure to sub-toxic concentrations of the same nanoparticles. After separation, different methods, including high-sensitivity flow cytometry, TEM imaging, Western blotting, and nanoparticle tracking analysis, were combined in order to characterize the extracellular vesicles. Finally, proteomics was used to determine their composition and how it varied upon exposure to the different nanoparticles. Our results show that depending on the nanoparticles' properties. The macrophages produced extracellular vesicles of varying number, size, and protein composition. This indicates that macrophages release specific signals in response to nanoparticles and overall suggests that extracellular vesicles can reflect subtle responses to nanoparticles and nanoparticle impact on intercellular communication.
Collapse
Affiliation(s)
- Sarah Deville
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Health Unit, Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | - Hector Garcia Romeu
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Eline Oeyen
- Health Unit, Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
- Centre for Proteomics (CfP), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Inge Mertens
- Health Unit, Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
- Centre for Proteomics (CfP), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Inge Nelissen
- Health Unit, Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
- Correspondence: (I.N.); (A.S.); Tel.: +32-14-33-51-07 (I.N.); +31-5036-39831 (A.S.)
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Correspondence: (I.N.); (A.S.); Tel.: +32-14-33-51-07 (I.N.); +31-5036-39831 (A.S.)
| |
Collapse
|
219
|
Jeske R, Chen X, Mulderrig L, Liu C, Cheng W, Zeng OZ, Zeng C, Guan J, Hallinan D, Yuan X, Li Y. Engineering Human Mesenchymal Bodies in a Novel 3D-Printed Microchannel Bioreactor for Extracellular Vesicle Biogenesis. Bioengineering (Basel) 2022; 9:795. [PMID: 36551001 PMCID: PMC9774207 DOI: 10.3390/bioengineering9120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Human Mesenchymal Stem Cells (hMSCs) and their derived products hold potential in tissue engineering and as therapeutics in a wide range of diseases. hMSCs possess the ability to aggregate into "spheroids", which has been used as a preconditioning technique to enhance their therapeutic potential by upregulating stemness, immunomodulatory capacity, and anti-inflammatory and pro-angiogenic secretome. Few studies have investigated the impact on hMSC aggregate properties stemming from dynamic and static aggregation techniques. hMSCs' main mechanistic mode of action occur through their secretome, including extracellular vesicles (EVs)/exosomes, which contain therapeutically relevant proteins and nucleic acids. In this study, a 3D printed microchannel bioreactor was developed to dynamically form hMSC spheroids and promote hMSC condensation. In particular, the manner in which dynamic microenvironment conditions alter hMSC properties and EV biogenesis in relation to static cultures was assessed. Dynamic aggregation was found to promote autophagy activity, alter metabolism toward glycolysis, and promote exosome/EV production. This study advances our knowledge on a commonly used preconditioning technique that could be beneficial in wound healing, tissue regeneration, and autoimmune disorders.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Logan Mulderrig
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Aero-Propulsion, Mechatronics and Energy Center, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
| | - Chang Liu
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Wenhao Cheng
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Olivia Z. Zeng
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Changchun Zeng
- High Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Daniel Hallinan
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, Florida A&M University (FAMU)-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
220
|
Ferreira B, Lourenço Á, Sousa MDC. Protozoa-Derived Extracellular Vesicles on Intercellular Communication with Special Emphasis on Giardia lamblia. Microorganisms 2022; 10:microorganisms10122422. [PMID: 36557675 PMCID: PMC9788250 DOI: 10.3390/microorganisms10122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Parasitic diseases are an important worldwide problem threatening human health and affect millions of people. Acute diarrhea, intestinal bleeding, malabsorption of nutrients and nutritional deficiency are some of the issues related to intestinal parasitic infections. Parasites are experts in subvert the host immune system through different kinds of mechanisms. There are evidences that extracellular vesicles (EVs) have an important role in dissemination of the disease and in modulating the host immune system. Released by almost all types of cells, these nanovesicles are a natural secretory product containing multiple components of interest. The EVs are classified as apoptotic bodies, microvesicles, exosomes, ectosomes, and microparticles, according to their physical characteristics, biochemical composition and cell of origin. Interestingly, EVs play an important role in intercellular communication between parasites as well as with the host cells. Concerning Giardia lamblia, it is known that this parasite release EVs during it life cycle that modulate the parasite growth and adherence as well the immune system of the host. Here we review the recently updates on protozoa EVs, with particular emphasis on the role of EVs released by the flagellate protozoa G. lamblia in cellular communication and its potential for future applications as vaccine, therapeutic agent, drug delivery system and as diagnostic or prognostic biomarker.
Collapse
Affiliation(s)
- Bárbara Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIVG-Vasco da Gama Research Center, EUVG-Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Ágata Lourenço
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Maria do Céu Sousa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
221
|
Cao Y, Tan J, Zhao H, Deng T, Hu Y, Zeng J, Li J, Cheng Y, Tang J, Hu Z, Hu K, Xu B, Wang Z, Wu Y, Lobie PE, Ma S. Bead-jet printing enabled sparse mesenchymal stem cell patterning augments skeletal muscle and hair follicle regeneration. Nat Commun 2022; 13:7463. [PMID: 36460667 PMCID: PMC9718784 DOI: 10.1038/s41467-022-35183-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) holds promise to repair severe traumatic injuries. However, current transplantation practices limit the potential of this technique, either by losing the viable MSCs or reducing the performance of resident MSCs. Herein, we design a "bead-jet" printer, specialized for high-throughput intra-operative formulation and printing of MSCs-laden Matrigel beads. We show that high-density encapsulation of MSCs in Matrigel beads is able to augment MSC function, increasing MSC proliferation, migration, and extracellular vesicle production, compared with low-density bead or high-density bulk encapsulation of the equivalent number of MSCs. We find that the high-density MSCs-laden beads in sparse patterns demonstrate significantly improved therapeutic performance, by regenerating skeletal muscles approaching native-like cell density with reduced fibrosis, and regenerating skin with hair follicle growth and increased dermis thickness. MSC proliferation within 1-week post-transplantation and differentiation at 3 - 4 weeks post-transplantation are suggested to contribute therapy augmentation. We expect this "bead-jet" printing system to strengthen the potential of MSC transplantation.
Collapse
Affiliation(s)
- Yuanxiong Cao
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Jiayi Tan
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Haoran Zhao
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Ting Deng
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Yunxia Hu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Junhong Zeng
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Jiawei Li
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Yifan Cheng
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Jiyuan Tang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Zhiwei Hu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Keer Hu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Bing Xu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
- Shenzhen Bay Laboratory, 518055, Shenzhen, China
| | - Zitian Wang
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Yaojiong Wu
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
| | - Peter E Lobie
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China
- Shenzhen Bay Laboratory, 518055, Shenzhen, China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, 518055, Shenzhen, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), 518055, Shenzhen, China.
- Shenzhen Bay Laboratory, 518055, Shenzhen, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
222
|
Jung D, Shin S, Kang S, Jung I, Ryu S, Noh S, Choi S, Jeong J, Lee BY, Kim K, Kim CS, Yoon JH, Lee C, Bucher F, Kim Y, Im S, Song B, Yea K, Baek M. Reprogramming of T cell-derived small extracellular vesicles using IL2 surface engineering induces potent anti-cancer effects through miRNA delivery. J Extracell Vesicles 2022; 11:e12287. [PMID: 36447429 PMCID: PMC9709340 DOI: 10.1002/jev2.12287] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
T cell-derived small extracellular vesicles (sEVs) exhibit anti-cancer effects. However, their anti-cancer potential should be reinforced to enhance clinical applicability. Herein, we generated interleukin-2-tethered sEVs (IL2-sEVs) from engineered Jurkat T cells expressing IL2 at the plasma membrane via a flexible linker to induce an autocrine effect. IL2-sEVs increased the anti-cancer ability of CD8+ T cells without affecting regulatory T (Treg ) cells and down-regulated cellular and exosomal PD-L1 expression in melanoma cells, causing their increased sensitivity to CD8+ T cell-mediated cytotoxicity. Its effect on CD8+ T and melanoma cells was mediated by several IL2-sEV-resident microRNAs (miRNAs), whose expressions were upregulated by the autocrine effects of IL2. Among the miRNAs, miR-181a-3p and miR-223-3p notably reduced the PD-L1 protein levels in melanoma cells. Interestingly, miR-181a-3p increased the activity of CD8+ T cells while suppressing Treg cell activity. IL2-sEVs inhibited tumour progression in melanoma-bearing immunocompetent mice, but not in immunodeficient mice. The combination of IL2-sEVs and existing anti-cancer drugs significantly improved anti-cancer efficacy by decreasing PD-L1 expression in vivo. Thus, IL2-sEVs are potential cancer immunotherapeutic agents that regulate both immune and cancer cells by reprogramming miRNA levels.
Collapse
Affiliation(s)
- Dokyung Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Sanghee Shin
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Sung‐Min Kang
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Inseong Jung
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Suyeon Ryu
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Soojeong Noh
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Sung‐Jin Choi
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Jongwon Jeong
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Beom Yong Lee
- Department of New BiologyDGISTDaeguRepublic of Korea
| | - Kwang‐Soo Kim
- Department of New BiologyDGISTDaeguRepublic of Korea
| | | | - Jong Hyuk Yoon
- Department of Neural Development and DiseaseKorea Brain Research InstituteDaeguRepublic of Korea
| | - Chan‐Hyeong Lee
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Yong‐Nyun Kim
- Division of Translational ScienceNational Cancer Center 323Ilsan‐ro, Ilsandong‐guGoyang‐siGyeonggi‐doRepublic of Korea
| | - Sin‐Hyeog Im
- Department of Life SciencesPohang University of Science and Technology (POSTECH)Gyeongsangbuk‐doRepublic of Korea
- Institute of Convergence ScienceYonsei UniversitySeoulRepublic of Korea
- ImmunoBiomePohangRepublic of Korea
| | - Byoung‐Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and BiophysicsNational Institute on Alcohol Abuse and Alcoholism (NIAAA)BethesdaMarylandUSA
| | - Kyungmoo Yea
- Department of New BiologyDGISTDaeguRepublic of Korea
- New Biology Research CenterDGISTDaeguRepublic of Korea
| | - Moon‐Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
223
|
Lian MQ, Chng WH, Liang J, Yeo HQ, Lee CK, Belaid M, Tollemeto M, Wacker MG, Czarny B, Pastorin G. Plant-derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications. J Extracell Vesicles 2022; 11:e12283. [PMID: 36519808 PMCID: PMC9753580 DOI: 10.1002/jev2.12283] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) represent a diverse class of lipid bilayer membrane vesicles released by both animal and plant cells. These ubiquitous vesicles are involved in intercellular communication and transport of various biological cargos, including proteins, lipids, and nucleic acids. In recent years, interest in plant-derived EVs has increased tremendously, as they serve as a scalable and sustainable alternative to EVs derived from mammalian sources. In vitro and in vivo findings have demonstrated that these plant-derived vesicles (PDVs) possess intrinsic therapeutic activities that can potentially treat diseases and improve human health. In addition, PDVs can also act as efficient and biocompatible drug carriers. While preclinical studies have shown promising results, there are still several challenges and knowledge gaps that have to be addressed for the successful translation of PDVs into clinical applications, especially in view of the lack of standardised protocols for material handling and PDV isolation from various plant sources. This review provides the readers with a quick overview of the current understanding and research on PDVs, critically analysing the current challenges and highlighting the immense potential of PDVs as a novel class of therapeutics to treat human diseases. It is expected that this work will guide scientists to address the knowledge gaps currently associated with PDVs and promote new advances in plant-based therapeutic solutions.
Collapse
Affiliation(s)
| | - Wei Heng Chng
- Department of PharmacyNational University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering Programme, NUS Graduate SchoolNational University of SingaporeSingaporeSingapore
| | - Jeremy Liang
- Department of ChemistryNational University of SingaporeSingaporeSingapore
| | - Hui Qing Yeo
- Department of PharmacyNational University of SingaporeSingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Choon Keong Lee
- Department of PharmacyNational University of SingaporeSingaporeSingapore
| | - Mona Belaid
- Institute of Pharmaceutical ScienceKing's College LondonLondonUnited Kingdom
| | - Matteo Tollemeto
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| | | | - Bertrand Czarny
- School of Materials Science & EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Giorgia Pastorin
- Department of PharmacyNational University of SingaporeSingaporeSingapore
| |
Collapse
|
224
|
Schürz M, Danmayr J, Jaritsch M, Klinglmayr E, Benirschke HM, Matea C, Zimmerebner P, Rauter J, Wolf M, Gomes FG, Kratochvil Z, Heger Z, Miller A, Heuser T, Stanojlovic V, Kiefer J, Plank T, Johnson L, Himly M, Blöchl C, Huber CG, Hintersteiner M, Meisner‐Kober N. EVAnalyzer: High content imaging for rigorous characterisation of single extracellular vesicles using standard laboratory equipment and a new open-source ImageJ/Fiji plugin. J Extracell Vesicles 2022; 11:e12282. [PMID: 36437554 PMCID: PMC9702573 DOI: 10.1002/jev2.12282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Extracellular vesicle (EV) research increasingly demands for quantitative characterisation at the single vesicle level to address heterogeneity and complexity of EV subpopulations. Emerging, commercialised technologies for single EV analysis based on, for example, imaging flow cytometry or imaging after capture on chips generally require dedicated instrumentation and proprietary software not readily accessible to every lab. This limits their implementation for routine EV characterisation in the rapidly growing EV field. We and others have shown that single vesicles can be detected as light diffraction limited fluorescent spots using standard confocal and widefield fluorescence microscopes. Advancing this simple strategy into a process for routine EV quantitation, we developed 'EVAnalyzer', an ImageJ/Fiji (Fiji is just ImageJ) plugin for automated, quantitative single vesicle analysis from imaging data. Using EVAnalyzer, we established a robust protocol for capture, (immuno-)labelling and fluorescent imaging of EVs. To exemplify the application scope, the process was optimised and systematically tested for (i) quantification of EV subpopulations, (ii) validation of EV labelling reagents, (iii) in situ determination of antibody specificity, sensitivity and species cross-reactivity for EV markers and (iv) optimisation of genetic EV engineering. Additionally, we show that the process can be applied to synthetic nanoparticles, allowing to determine siRNA encapsulation efficiencies of lipid-based nanoparticles (LNPs) and protein loading of SiO2 nanoparticles. EVAnalyzer further provides a pipeline for automated quantification of cell uptake at the single cell-single vesicle level, thereby enabling high content EV cell uptake assays and plate-based screens. Notably, the entire procedure from sample preparation to the final data output is entirely based on standard reagents, materials, laboratory equipment and open access software. In summary, we show that EVAnalyzer enables rigorous characterisation of EVs with generally accessible tools. Since we further provide the plugin as open-source code, we expect EVAnalyzer to not only be a resource of immediate impact, but an open innovation platform for the EV and nanoparticle research communities.
Collapse
Affiliation(s)
- Melanie Schürz
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Joachim Danmayr
- Department of Informatics and MathematicsFernuniversität HagenHagenGermany
| | - Maria Jaritsch
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Eva Klinglmayr
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Heloisa Melo Benirschke
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Cristian‐Tudor Matea
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Patrick Zimmerebner
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Jakob Rauter
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Martin Wolf
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
| | - Fausto Gueths Gomes
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
| | - Zdenek Kratochvil
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
| | - Zbynek Heger
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
| | - Andrew Miller
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
- Veterinary Research InstituteBrnoCzech Republic
- KP Therapeutics (Europe) sro.BrnoCzech Republic
| | | | - Vesna Stanojlovic
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Jana Kiefer
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Tanja Plank
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Litty Johnson
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Martin Himly
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Constantin Blöchl
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | - Christian G. Huber
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| | | | - Nicole Meisner‐Kober
- Department of Biosciences and Medical BiologyParis Lodron University SalzburgSalzburgAustria
| |
Collapse
|
225
|
Zheng W, He R, Liang X, Roudi S, Bost J, Coly P, van Niel G, Andaloussi SEL. Cell-specific targeting of extracellular vesicles through engineering the glycocalyx. J Extracell Vesicles 2022; 11:e12290. [PMID: 36463392 PMCID: PMC9719568 DOI: 10.1002/jev2.12290] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Extracellular vesicles (EVs) are promising carriers for the delivery of a variety of chemical and biological drugs. However, their efficacy is limited by the lack of cellular specificity. Available methods to improve the tissue specificity of EVs predominantly rely on surface display of proteins and peptides, largely overlooking the dense glycocalyx that constitutes the outermost layer of EVs. In the present study, we report a reconfigurable glycoengineering strategy that can endogenously display glycans of interest on EV surface. Briefly, EV producer cells are genetically engineered to co-express a glycosylation domain (GD) inserted into the large extracellular loop of CD63 (a well-studied EV scaffold protein) and fucosyltransferase VII (FUT7) or IX (FUT9), so that the engineered EVs display the glycan of interest. Through this strategy, we showcase surface display of two types of glycan ligands, sialyl Lewis X (sLeX) and Lewis X, on EVs and achieve high specificity towards activated endothelial cells and dendritic cells, respectively. Moreover, the endothelial cell-targeting properties of sLeX-EVs were combined with the intrinsic therapeutic effects of mesenchymal stem cells (MSCs), leading to enhanced attenuation of endothelial damage. In summary, this study presents a reconfigurable glycoengineering strategy to produce EVs with strong cellular specificity and highlights the glycocalyx as an exploitable trait for engineering EVs.
Collapse
Affiliation(s)
- Wenyi Zheng
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
| | - Rui He
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
- Experimental Cancer Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
| | - Xiuming Liang
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
| | - Samantha Roudi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
| | - Jeremy Bost
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
| | - Pierre‐Michael Coly
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266ParisFrance
- GHU Paris Psychiatrie et NeurosciencesHôpital Sainte AnneParisFrance
| | - Guillaume van Niel
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266ParisFrance
- GHU Paris Psychiatrie et NeurosciencesHôpital Sainte AnneParisFrance
| | - Samir E. L. Andaloussi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetHuddingeSweden
- Centre for Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalHuddingeSweden
- EVOX Therapeutics LimitedOxfordUK
| |
Collapse
|
226
|
Multimodal imaging distribution assessment of a liposomal antibiotic in an infectious disease model. J Control Release 2022; 352:199-210. [PMID: 36084816 DOI: 10.1016/j.jconrel.2022.08.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022]
Abstract
Liposomes are promising targeted drug delivery systems with the potential to improve the efficacy and safety profile of certain classes of drugs. Though attractive, there are unique analytical challenges associated with the development of liposomal drugs including human dose prediction given these are multi-component drug delivery systems. In this study, we developed a multimodal imaging approach to provide a comprehensive distribution assessment for an antibacterial drug, GSK2485680, delivered as a liposomal formulation (Lipo680) in a mouse thigh model of bacterial infection to support human dose prediction. Positron emission tomography (PET) imaging was used to track the in vivo biodistribution of Lipo680 over 48 h post-injection providing a clear assessment of the uptake in various tissues and, importantly, the selective accumulation at the site of infection. In addition, a pharmacokinetic model was created to evaluate the kinetics of Lipo680 in different tissues. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was then used to quantify the distribution of GSK2485680 and to qualitatively assess the distribution of a liposomal lipid throughout sections of infected and non-infected hindlimb tissues at high spatial resolution. Through the combination of both PET and MALDI IMS, we observed excellent correlation between the Lipo680-radionuclide signal detected by PET with the GSK2485680 and lipid component signals detected by MALDI IMS. This multimodal translational method can reduce drug attrition by generating comprehensive biodistribution profiles of drug delivery systems to provide mechanistic insight and elucidate safety concerns. Liposomal formulations have potential to deliver therapeutics across a broad array of different indications, and this work serves as a template to aid in delivering future liposomal drugs to the clinic.
Collapse
|
227
|
Lau H, Han DW, Park J, Lehner E, Kals C, Arzt C, Bayer E, Auer D, Schally T, Grasmann E, Fang H, Lee J, Lee HS, Han J, Gimona M, Rohde E, Bae S, Oh SW. GMP-compliant manufacturing of biologically active cell-derived vesicles produced by extrusion technology. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e70. [PMID: 38938599 PMCID: PMC11080851 DOI: 10.1002/jex2.70] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/08/2022] [Accepted: 11/01/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) released by a variety of cell types have been shown to act as a natural delivery system for bioactive molecules such as RNAs and proteins. EV therapy holds great promise as a safe and cell-free therapy for many immunological and degenerative diseases. However, translation to clinical application is limited by several factors, including insufficient large-scale manufacturing technologies and low yield. We have developed a novel drug delivery platform technology, BioDrone™, based on cell-derived vesicles (CDVs) produced from diverse cell sources by using a proprietary extrusion process. This extrusion technology generates nanosized vesicles in far greater numbers than naturally obtained EVs. We demonstrate that the CDVs are surrounded by a lipid bilayer membrane with a correct membrane topology. Physical, biochemical and functional characterisation results demonstrate the potential of CDVs to act as effective therapeutics. Umbilical cord mesenchymal stem cell (UCMSC)-derived CDVs exhibit a biological activity that is similar to UCMSCs or UCMSC-derived EVs. Lastly, we present the establishment of a GMP-compliant process to allow the production of a large number of UCMSC-CDVs in a reproducible manner. GMP-compliant manufacturing of CDVs will facilitate the preclinical and clinical evaluation of these emerging therapeutics in anti-inflammatory or regenerative medicine. This study also represents a crucial step in the development of this novel drug delivery platform based on CDVs.
Collapse
Affiliation(s)
| | - Dong Woo Han
- BioDrone Research InstituteMDimune Inc.SeoulKorea
| | - Jinhee Park
- BioDrone Research InstituteMDimune Inc.SeoulKorea
| | - Edwine Lehner
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
| | - Carina Kals
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
| | - Claudia Arzt
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV‐TT)SalzburgAustria
| | - Elisabeth Bayer
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
| | - Daniela Auer
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
| | - Tanja Schally
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
| | - Eva Grasmann
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV‐TT)SalzburgAustria
| | - Han Fang
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV‐TT)SalzburgAustria
| | - Jae‐Young Lee
- Department of Ophthalmology, Eunpyeong St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Hyun Soo Lee
- Department of Ophthalmology, Eunpyeong St. Mary's Hospital, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Jinah Han
- BioDrone Therapeutics Inc.SeattleUSA
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV‐TT)SalzburgAustria
- Research Program “Nanovesicular Therapies”Paracelsus Medical UniversitySalzburgAustria
| | - Eva Rohde
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical UniversitySalzburgAustria
| | - Shingyu Bae
- BioDrone Research InstituteMDimune Inc.SeoulKorea
| | - Seung Wook Oh
- BioDrone Research InstituteMDimune Inc.SeoulKorea
- BioDrone Therapeutics Inc.SeattleUSA
| |
Collapse
|
228
|
Lei Y, Zhang Q, Kuang G, Wang X, Fan Q, Ye F. Functional biomaterials for osteoarthritis treatment: From research to application. SMART MEDICINE 2022; 1:e20220014. [PMID: 39188730 PMCID: PMC11235767 DOI: 10.1002/smmd.20220014] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 08/28/2024]
Abstract
Osteoarthritis (OA) is a common disease that endangers millions of middle-aged and elderly people worldwide. Researchers from different fields have made great efforts and achieved remarkable progress in the pathogenesis and treatment of OA. However, there is still no cure for OA. In this review, we discuss the pathogenesis of OA and summarize the current clinical therapies. Moreover, we introduce various natural and synthetic biomaterials for drug release, cartilage transplantation, and joint lubricant during the OA treatment. We also present our perspectives and insights on OA treatment in the future. We hope that this review will foster communication and collaboration among biological, clinical, and biomaterial researchers, paving the way for OA therapeutic breakthroughs.
Collapse
Affiliation(s)
- Yang Lei
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Qingfei Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Gaizheng Kuang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Xiaochen Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
229
|
Ng WC, Lokanathan Y, Baki MM, Fauzi MB, Zainuddin AA, Azman M. Tissue Engineering as a Promising Treatment for Glottic Insufficiency: A Review on Biomolecules and Cell-Laden Hydrogel. Biomedicines 2022; 10:3082. [PMID: 36551838 PMCID: PMC9775346 DOI: 10.3390/biomedicines10123082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Glottic insufficiency is widespread in the elderly population and occurs as a result of secondary damage or systemic disease. Tissue engineering is a viable treatment for glottic insufficiency since it aims to restore damaged nerve tissue and revitalize aging muscle. After injection into the biological system, injectable biomaterial delivers cost- and time-effectiveness while acting as a protective shield for cells and biomolecules. This article focuses on injectable biomaterials that transport cells and biomolecules in regenerated tissue, particularly adipose, muscle, and nerve tissue. We propose Wharton's Jelly mesenchymal stem cells (WJMSCs), induced pluripotent stem cells (IP-SCs), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin growth factor-1 (IGF-1) and extracellular vesicle (EV) as potential cells and macromolecules to be included into biomaterials, with some particular testing to support them as a promising translational medicine for vocal fold regeneration.
Collapse
Affiliation(s)
- Wan-Chiew Ng
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Marina Mat Baki
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ani Amelia Zainuddin
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mawaddah Azman
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
230
|
Muñiz-García A, Wilm B, Murray P, Cross MJ. Extracellular Vesicles from Human Umbilical Cord-Derived MSCs Affect Vessel Formation In Vitro and Promote VEGFR2-Mediated Cell Survival. Cells 2022; 11:cells11233750. [PMID: 36497011 PMCID: PMC9735515 DOI: 10.3390/cells11233750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) have emerged as novel tools in regenerative medicine. Angiogenesis modulation is widely studied for the treatment of ischaemic diseases, wound healing, and tissue regeneration. Here, we have shown that EVs from human umbilical cord-derived MSCs can affect VEGFR2 signalling, a master regulator of angiogenesis homeostasis, via altering the phosphorylation of AKT. This translates into an inhibition of apoptosis, promoting exclusively cell survival, but not proliferation, in human microvascular endothelial cells. Interestingly, when comparing EVs from normoxic cells to those obtained from hypoxia (1% O2) preconditioned cells, hypoxia-derived EVs appear to have a slightly enhanced effect. Furthermore, when studied in a longer term endothelial-fibroblast co-culture angiogenesis model in vitro, both EV populations demonstrated a positive effect on vessel formation, evidenced by increased vessel networks with tubes of significantly larger diameters. Our data reveals that EVs selectively target components of the angiogenic pathway, promoting VEGFR2-mediated cell survival via enhancement of AKT activation. Our data show that EVs are able to enhance specific components of the VEGF signalling pathway and may have therapeutic potential to support endothelial cell survival.
Collapse
Affiliation(s)
- Ana Muñiz-García
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: (P.M.); (M.J.C.)
| | - Michael J. Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
- Correspondence: (P.M.); (M.J.C.)
| |
Collapse
|
231
|
Padinharayil H, Alappat RR, Joy LM, Anilkumar KV, Wilson CM, George A, Valsala Gopalakrishnan A, Madhyastha H, Ramesh T, Sathiyamoorthi E, Lee J, Ganesan R. Advances in the Lung Cancer Immunotherapy Approaches. Vaccines (Basel) 2022; 10:1963. [PMID: 36423060 PMCID: PMC9693102 DOI: 10.3390/vaccines10111963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Despite the progress in the comprehension of LC progression, risk, immunologic control, and treatment choices, it is still the primary cause of cancer-related death. LC cells possess a very low and heterogeneous antigenicity, which allows them to passively evade the anticancer defense of the immune system by educating cytotoxic lymphocytes (CTLs), tumor-infiltrating lymphocytes (TILs), regulatory T cells (Treg), immune checkpoint inhibitors (ICIs), and myeloid-derived suppressor cells (MDSCs). Though ICIs are an important candidate in first-line therapy, consolidation therapy, adjuvant therapy, and other combination therapies involving traditional therapies, the need for new predictive immunotherapy biomarkers remains. Furthermore, ICI-induced resistance after an initial response makes it vital to seek and exploit new targets to benefit greatly from immunotherapy. As ICIs, tumor mutation burden (TMB), and microsatellite instability (MSI) are not ideal LC predictive markers, a multi-parameter analysis of the immune system considering tumor, stroma, and beyond can be the future-oriented predictive marker. The optimal patient selection with a proper adjuvant agent in immunotherapy approaches needs to be still revised. Here, we summarize advances in LC immunotherapy approaches with their clinical and preclinical trials considering cancer models and vaccines and the potential of employing immunology to predict immunotherapy effectiveness in cancer patients and address the viewpoints on future directions. We conclude that the field of lung cancer therapeutics can benefit from the use of combination strategies but with comprehension of their limitations and improvements.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Liji Maria Joy
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Kavya V. Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Cornelia M. Wilson
- Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich CT13 9ND, UK
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| |
Collapse
|
232
|
de Almeida Fuzeta M, Gonçalves PP, Fernandes-Platzgummer A, Cabral JMS, Bernardes N, da Silva CL. From Promise to Reality: Bioengineering Strategies to Enhance the Therapeutic Potential of Extracellular Vesicles. Bioengineering (Basel) 2022; 9:675. [PMID: 36354586 PMCID: PMC9687169 DOI: 10.3390/bioengineering9110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) have been the focus of great attention over the last decade, considering their promising application as next-generation therapeutics. EVs have emerged as relevant mediators of intercellular communication, being associated with multiple physiological processes, but also in the pathogenesis of several diseases. Given their natural ability to shuttle messages between cells, EVs have been explored both as inherent therapeutics in regenerative medicine and as drug delivery vehicles targeting multiple diseases. However, bioengineering strategies are required to harness the full potential of EVs for therapeutic use. For that purpose, a good understanding of EV biology, from their biogenesis to the way they are able to shuttle messages and establish interactions with recipient cells, is needed. Here, we review the current state-of-the-art on EV biology, complemented by representative examples of EVs roles in several pathophysiological processes, as well as the intrinsic therapeutic properties of EVs and paradigmatic strategies to produce and develop engineered EVs as next-generation drug delivery systems.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro P. Gonçalves
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nuno Bernardes
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
233
|
Dar GH, Badierah R, Nathan EG, Bhat MA, Dar AH, Redwan EM. Extracellular vesicles: A new paradigm in understanding, diagnosing and treating neurodegenerative disease. Front Aging Neurosci 2022; 14:967231. [PMID: 36408114 PMCID: PMC9669424 DOI: 10.3389/fnagi.2022.967231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/29/2022] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders (NDs) are becoming one of the leading causes of disability and death across the globe due to lack of timely preventions and treatments. Concurrently, intensive research efforts are being carried out to understand the etiology of these age-dependent disorders. Extracellular vesicles (EVs)-biological nanoparticles released by cells-are gaining tremendous attention in understanding their role in pathogenesis and progression of NDs. EVs have been found to transmit pathogenic proteins of NDs between neurons. Moreover, the ability of EVs to exquisitely surmount natural biological barriers, including blood-brain barrier and in vivo safety has generated interest in exploring them as potential biomarkers and function as natural delivery vehicles of drugs to the central nervous system. However, limited knowledge of EV biogenesis, their heterogeneity and lack of adequate isolation and analysis tools have hampered their therapeutic potential. In this review, we cover the recent advances in understanding the role of EVs in neurodegeneration and address their role as biomarkers and delivery vehicles to the brain.
Collapse
Affiliation(s)
- Ghulam Hassan Dar
- Department of Biochemistry, S.P. College, Cluster University Srinagar, Srinagar, India
- Hassan Khoyihami Memorial Degree College, Bandipora, India
| | - Raied Badierah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Erica G. Nathan
- Department of Oncology, Cambridge Cancer Center, Cambridge, United Kingdom
| | | | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Elrashdy M. Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), The City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
234
|
Pan W, Feng J, Luo T, Tan Y, Situ B, Nieuwland R, Guo J, Liu C, Zhang H, Chen J, Zhang W, Chen J, Chen X, Chen H, Zheng L, Chen J, Li B. Rapid and efficient isolation platform for plasma extracellular vesicles: EV-FISHER. J Extracell Vesicles 2022; 11:e12281. [PMID: 36404468 PMCID: PMC9676503 DOI: 10.1002/jev2.12281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles (EVs) have found diverse applications in clinical theranostics. However, the current techniques to isolate plasma EVs suffer from burdensome procedures and limited yield. Herein, we report a rapid and efficient EV isolation platform, namely, EV-FISHER, constructed from the metal-organic framework featuring cleavable lipid probes (PO4 3- -spacer-DNA-cholesterol, PSDC). The EV-FISHER baits EVs from plasma by cholesterol and separates them with an ordinary centrifuge. The captured EVs could be released and collected upon subsequent cleavage of PSDC by deoxyribonuclease I. We conclude that EV-FISHER dramatically outperforms the ultracentrifugation (UC) in terms of time (∼40 min vs. 240 min), isolation efficiency (74.2% vs. 18.1%), and isolation requirement (12,800 g vs. 135,000 g). In addition to the stable performance in plasma, EV-FISHER also exhibited excellent compatibility with downstream single-EV flow cytometry, enabling the identification of glypican-1 (GPC-1) EVs for early diagnosis, clinical stages differentiation, and therapeutic efficacy evaluation in breast cancer cohorts. This work portrays an efficient strategy to isolate EVs from complicated biological fluids with promising potential to facilitate EVs-based theranostics.
Collapse
Affiliation(s)
- Wei‐Lun Pan
- Department of Laboratory MedicineNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jun‐Jie Feng
- Department of Laboratory MedicineNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Ting‐Ting Luo
- Department of Laboratory MedicineNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yong Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Bo Situ
- Department of Laboratory MedicineNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Vesicle Observation CentreAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Jing‐Yun Guo
- Breast Center, Department of General Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Chun‐Chen Liu
- Department of Laboratory MedicineNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Han Zhang
- Department of Laboratory MedicineNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Jing Chen
- Department of Laboratory MedicineNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Wen‐Hua Zhang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina
| | - Jun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xian‐Hua Chen
- Department of Clinical LaboratoryLiuzhou Municipal Liutie Central HospitalLiuzhouChina
| | - Hong‐Yue Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Lei Zheng
- Department of Laboratory MedicineNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Jin‐Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Bo Li
- Department of Laboratory MedicineNanfang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
235
|
MSC-EV therapy for bone/cartilage diseases. Bone Rep 2022; 17:101636. [DOI: 10.1016/j.bonr.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
|
236
|
Advantage of extracellular vesicles in hindering the CD47 signal for cancer immunotherapy. J Control Release 2022; 351:727-738. [DOI: 10.1016/j.jconrel.2022.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022]
|
237
|
Subhan BS, Ki M, Verzella A, Shankar S, Rabbani PS. Behind the Scenes of Extracellular Vesicle Therapy for Skin Injuries and Disorders. Adv Wound Care (New Rochelle) 2022; 11:575-597. [PMID: 34806432 PMCID: PMC9419953 DOI: 10.1089/wound.2021.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/10/2021] [Indexed: 01/29/2023] Open
Abstract
Significance: Skin wounds and disorders compromise the protective functions of skin and patient quality of life. Although accessible on the surface, they are challenging to address due to paucity of effective therapies. Exogenous extracellular vesicles (EVs) and cell-free derivatives of adult multipotent stromal cells (MSCs) are developing as a treatment modality. Knowledge of origin MSCs, EV processing, and mode of action is necessary for directed use of EVs in preclinical studies and methodical translation. Recent Advances: Nanoscale to microscale EVs, although from nonskin cells, induce functional responses in cutaneous wound cellular milieu. EVs allow a shift from cell-based to cell-free/derived modalities by carrying the MSC beneficial factors but eliminating risks associated with MSC transplantation. EVs have demonstrated striking efficacy in resolution of preclinical wound models, specifically within the complexity of skin structure and wound pathology. Critical Issues: To facilitate comparison across studies, tissue sources and processing of MSCs, culture conditions, isolation and preparations of EVs, and vesicle sizes require standardization as these criteria influence EV types and contents, and potentially determine the induced biological responses. Procedural parameters for all steps preceding the actual therapeutic administration may be the key to generating EVs that demonstrate consistent efficacy through known mechanisms. We provide a comprehensive review of such parameters and the subsequent tissue, cellular and molecular impact of the derived EVs in different skin wounds/disorders. Future Directions: We will gain more complete knowledge of EV-induced effects in skin, and specificity for different wounds/conditions. The safety and efficacy of current preclinical xenogenic applications will favor translation into allogenic clinical applications of EVs as a biologic.
Collapse
Affiliation(s)
- Bibi S. Subhan
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Michelle Ki
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Alexandra Verzella
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Shruthi Shankar
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Piul S. Rabbani
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
238
|
Li M, Wang J, Guo P, Jin L, Tan X, Zhang Z, Zhanghuang C, Mi T, Liu J, Wang Z, Wu X, Wei G, He D. Exosome mimetics derived from bone marrow mesenchymal stem cells ablate neuroblastoma tumor in vitro and in vivo. BIOMATERIALS ADVANCES 2022; 142:213161. [PMID: 36308859 DOI: 10.1016/j.bioadv.2022.213161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE To develop exosome-mimetics derived from bone marrow mesenchymal stem cells (EM) as a novel nanoscale drug delivery system(nanoDDS) with improved tumor targeting activity, therapeutic effect, and biosafety, and to evaluate the therapeutic effect of doxorubicin loaded EM (EM-Dox) on neuroblastoma (NB) in vitro and in vivo. METHODS EM was prepared by serial extrusion of bone marrow mesenchymal stem cells (BMSCs), ammonium sulfate gradient method was used to promote the active loading of doxorubicin, and EM-Dox was obtained after removal of free doxorubicin by dialysis. The obtained EM and EM-Dox were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), Western Blot assay(WB), and the yield of exosomes and EM was further compared. Confocal fluorescent microscopy was used to verify the uptake of EM-Dox and free doxorubicin (Free-Dox) by NB cells. CCK-8 assay, cell cycle assay, and cell apoptosis assay were used to evaluate the antitumor effect of EM-Dox on NB cells in vitro. In addition, the targeted therapeutic effect and biosafety of EM-Dox against NB were evaluated in tumor-bearing nude mice. RESULTS TEM, NTA, and WB verified that both EM and EM-Dox feature highly similar morphology, size and marker protein expression in comparison with naturally occurred exosomes, but the particle size of EM-Dox increased slightly after loading doxorubicin. The protein yield and particle yield of EM-Dox were 16.8 and 26.3-folds higher than those of exosomes, respectively. Confocal fluorescent microscopy showed that EM and doxorubicin had a definite co-localization. EM-Dox was readily internalized in two well-established human NB cell lines. The intracellular content of doxorubicin in cells treated with EM-Dox was significantly higher than that treated with Free-Dox. CCK-8 assay and flow cytometry confirmed that EM-Dox could inhibit NB cell proliferation, induce G2/M phase cell cycle arrest, and promote NB cell apoptosis in vitro. In vivo bioluminescence imaging results demonstrated that EM-Dox effectively targets NB tumors in vivo. Compared with Free-Dox, EM-Dox had a significantly increased inhibitory effect against NB tumor proliferation and progression in vivo, without inducing any myocardial injury. CONCLUSIONS EM-Dox showed significantly increased anti-tumor activity in comparison with free doxorubicin in vitro and in vivo, and scalable EMs may represent a new class of NanoDDS that can potentially replace naturally occurred exosomes in preclinical or clinical translations.
Collapse
Affiliation(s)
- Mujie Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jinkui Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Peng Guo
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiaojun Tan
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Chenghao Zhanghuang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jiayan Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Zhang Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xin Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
239
|
Lin J, Lv J, Yu S, Chen Y, Wang H, Chen J. Transcript Engineered Extracellular Vesicles Alleviate Alloreactive Dynamics in Renal Transplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202633. [PMID: 36073846 PMCID: PMC9631077 DOI: 10.1002/advs.202202633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Direct contact of membrane molecules and cytokine interactions orchestrate immune homeostasis. However, overcoming the threshold of distance and velocity barriers, and achieving adhesion mediated immune interaction remain difficult. Here, inspired by the natural chemotaxis of regulatory T cells, multifunctionalized FOXP3 genetic engineered extracellular vesicles, termed Foe-TEVs, are designed, which display with adhesive molecules, regulatory cytokines, and coinhibitory contact molecules involving CTLA-4 and PD-1, by limited exogenous gene transduction. Foe-TEVs effectively adhere to the tubular, endothelial, and glomerular regions of allogeneic injury in the renal allograft, mitigating cell death in situ and chronic fibrosis transition. Remarkably, transcript engineering reverses the tracking velocity of vesicles to a retained phenotype and enhanced arrest coefficient by a factor of 2.16, directly interacting and attenuating excessive allosensitization kinetics in adaptive lymphoid organs. In murine allogeneic transplantation, immune adhesive Foe-TEVs alleviate pathological responses, restore renal function with well ordered ultrastructure and improved glomerular filtration rate, and prolong the survival period of the recipient from 30.16 to 92.81 days, demonstrating that the delivery of extracellular vesicles, genetically engineered for immune adhesive, is a promising strategy for the treatment of graft rejection.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
- Zhejiang University‐University of Edinburgh InstituteSchool of MedicineZhejiang UniversityHangzhouZhejiang Province310003P. R. China
| | - Junhao Lv
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
| | - Shiping Yu
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
| | - Ying Chen
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
| | - Huiping Wang
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
| | - Jianghua Chen
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineKey Laboratory of Kidney Disease Prevention and Control TechnologyNational Key Clinical Department of Kidney DiseasesInstitute of NephrologyZhejiang University, and Zhejiang Clinical Research Center of Kidney and Urinary System DiseaseHangzhouZhejiang Province310003P. R. China
| |
Collapse
|
240
|
Lv K, Wang Y, Lou P, Liu S, Zhou P, Yang L, Lu Y, Cheng J, Liu J. Extracellular vesicles as advanced therapeutics for the resolution of organ fibrosis: Current progress and future perspectives. Front Immunol 2022; 13:1042983. [PMCID: PMC9630482 DOI: 10.3389/fimmu.2022.1042983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Organ fibrosis is a serious health challenge worldwide, and its global incidence and medical burden are increasing dramatically each year. Fibrosis can occur in nearly all major organs and ultimately lead to organ dysfunction. However, current clinical treatments cannot slow or reverse the progression of fibrosis to end-stage organ failure, and thus advanced anti-fibrotic therapeutics are urgently needed. As a type of naturally derived nanovesicle, native extracellular vesicles (EVs) from multiple cell types (e.g., stem cells, immune cells, and tissue cells) have been shown to alleviate organ fibrosis in many preclinical models through multiple effective mechanisms, such as anti-inflammation, pro-angiogenesis, inactivation of myofibroblasts, and fibrinolysis of ECM components. Moreover, the therapeutic potency of native EVs can be further enhanced by multiple engineering strategies, such as genetic modifications, preconditionings, therapeutic reagent-loadings, and combination with functional biomaterials. In this review, we briefly introduce the pathology and current clinical treatments of organ fibrosis, discuss EV biology and production strategies, and particularly focus on important studies using native or engineered EVs as interventions to attenuate tissue fibrosis. This review provides insights into the development and translation of EV-based nanotherapies into clinical applications in the future.
Collapse
Affiliation(s)
- Ke Lv
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhuo Wang
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Lou
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Pingya Zhou
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Jingping Liu,
| |
Collapse
|
241
|
Yu W, Li S, Zhang G, Xu HHK, Zhang K, Bai Y. New frontiers of oral sciences: Focus on the source and biomedical application of extracellular vesicles. Front Bioeng Biotechnol 2022; 10:1023700. [PMID: 36338125 PMCID: PMC9627311 DOI: 10.3389/fbioe.2022.1023700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
Extracellular vesicles (EVs) are a class of nanoparticles that are derived from almost any type of cell in the organism tested thus far and are present in all body fluids. With the capacity to transfer "functional cargo and biological information" to regulate local and distant intercellular communication, EVs have developed into an attractive focus of research for various physiological and pathological conditions. The oral cavity is a special organ of the human body. It includes multiple types of tissue, and it is also the beginning of the digestive tract. Moreover, the oral cavity harbors thousands of bacteria. The importance and particularity of oral function indicate that EVs derived from oral cavity are quite complex but promising for further research. This review will discuss the extensive source of EVs in the oral cavity, including both cell sources and cell-independent sources. Besides, accumulating evidence supports extensive biomedical applications of extracellular vesicles in oral tissue regeneration and development, diagnosis and treatment of head and neck tumors, diagnosis and therapy of systemic disease, drug delivery, and horizontal gene transfer (HGT). The immune cell source, odontoblasts and ameloblasts sources, diet source and the application of EVs in tooth development and HGT were reviewed for the first time. In conclusion, we concentrate on the extensive source and potential applications offered by these nanovesicles in oral science.
Collapse
Affiliation(s)
- Wenting Yu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Shengnan Li
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Guohao Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hockin H. K. Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ke Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
242
|
Mullen M, Williams K, LaRocca T, Duke V, Hambright WS, Ravuri SK, Bahney CS, Ehrhart N, Huard J. Mechanical strain drives exosome production, function, and miRNA cargo in C2C12 muscle progenitor cells. J Orthop Res 2022; 41:1186-1197. [PMID: 36250617 DOI: 10.1002/jor.25467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/19/2022] [Accepted: 10/08/2022] [Indexed: 02/04/2023]
Abstract
Mesenchymal stem cells (MSCs) have been proven to promote tissue repair. However, concerns related to their clinical application and regulatory hurdles remain. Recent data has demonstrated the proregenerative secretome of MSCs can result in similar effects in the absence of the cells themselves. Within the secretome, exosomes have emerged as a promising regenerative component. Exosomes, which are nanosized lipid vesicles secreted by cells, encapsulate micro-RNA (miRNA), RNA, and proteins that drive MSCs regenerative potential with cell specific content. As such, there is an opportunity to optimize the regenerative potential of MSCs, and thus their secreted exosome fraction, to improve clinical efficacy. Exercise is one factor that has been shown to improve muscle progenitor cell function and regenerative potential. However, the effect of exercise on MSC exosome content and function is still unclear. To address this, we used an in vitro culture system to evaluate the effects of mechanical strain, an exercise mimetic, on C2C12 (muscle progenitor cell) exosome production and proregenerative function. Our results indicate that the total exosome production is increased by mechanical strain and can be regulated with different tensile loading regimens. Furthermore, we found that exosomes from mechanically stimulated cells increase proliferation and myogenic differentiation of naïve C2C12 cells. Lastly, we show that exosomal miRNA cargo is differentially expressed following strain. Gene ontology mapping suggests positive regulation of bone morphogenetic protein signaling, regulation of actin-filament-based processes, and muscle cell apoptosis may be at least partially responsible for the proregenerative effects of exosomes from mechanically stimulated C2C12 muscle progenitor cells.
Collapse
Affiliation(s)
- Michael Mullen
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute (SPRI), Vail, Colorado, USA
| | - Katherine Williams
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Tom LaRocca
- Deptartment of Health and Exercise Science, Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, USA
| | - Victoria Duke
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute (SPRI), Vail, Colorado, USA
| | - William S Hambright
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute (SPRI), Vail, Colorado, USA
| | - Sudheer K Ravuri
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute (SPRI), Vail, Colorado, USA
| | - Chelsea S Bahney
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute (SPRI), Vail, Colorado, USA.,Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA.,Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital (ZSFG), University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Nicole Ehrhart
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA.,Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, USA
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute (SPRI), Vail, Colorado, USA.,Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
243
|
Shen Q, Huang Z, Ma L, Yao J, Luo T, Zhao Y, Xiao Y, Jin Y. Extracellular vesicle miRNAs promote the intestinal microenvironment by interacting with microbes in colitis. Gut Microbes 2022; 14:2128604. [PMID: 36176029 PMCID: PMC9542864 DOI: 10.1080/19490976.2022.2128604] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a global disease with no cure. Disruption of the microbial ecosystem is considered to be an important cause of IBD. Extracellular vesicles (EVs) are vital participants in cell-cell and cell-organism communication. Both host-derived EVs and bacteria-derived membrane vesicles (OMVs) contribute to homeostasis in the intestine. However, the roles of EVs-miRNAs and MVs in host-microbe interactions in colitis remain unclear. In the present study, the animal model of colitis was established by dextran sulfate sodium (DSS) to investigate the changes of miRNAs in colonic EVs from colitis. Several miRNAs were significantly altered in colitis EVs. miR-181b-5p transplantation inhibited M1 macrophage polarization and promoted M2 polarization to reduce the levels of inflammation both in acute and remission of chronic colitis. miR-200b-3p could interact with bacteria and regulate the composition of the microbiota, which contributed to intestinal barrier integrity and homeostasis. Notably, MVs from normal feces could effectively reverse the composition of the intestinal microbiota, restore the intestinal barrier and rescue colitis, and BMVs from colitis would also have similar effects after miR-200b-3p treatment. Our results preliminarily identify a vesicle-based host-microbe interaction cycle in colitis and provide new ideas for colitis treatment.
Collapse
Affiliation(s)
- Qichen Shen
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhuizui Huang
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiachen Yao
- Health Informatics Centre, Department of Learning, Informatics, Management and Ethics, Karolinska Institute, Stockholm, Sweden
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Yingping Xiao Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 298, Desheng Middle Road, Hangzhou, People’ Republic of China
| | - Yuanxiang Jin
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China,CONTACT Yuanxiang Jin College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, People’ Republic of China
| |
Collapse
|
244
|
Obeng EM, Fianu I, Danquah MK. Multivalent ACE2 engineering-A promising pathway for advanced coronavirus nanomedicine development. NANO TODAY 2022; 46:101580. [PMID: 35942040 PMCID: PMC9350675 DOI: 10.1016/j.nantod.2022.101580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 05/06/2023]
Abstract
The spread of coronavirus diseases has resulted in a clarion call to develop potent drugs and vaccines even as different strains appear beyond human prediction. An initial step that is integral to the viral entry into host cells results from an active-targeted interaction of the viral spike (S) proteins and the cell surface receptor, called angiotensin-converting enzyme 2 (ACE2). Thus, engineered ACE2 has been an interesting decoy inhibitor against emerging coronavirus infestation. This article discusses promising innovative ACE2 engineering pathways for current and emerging coronavirus therapeutic development. First, we provide a brief discussion of some ACE2-associated human coronaviruses and their cell invasion mechanism. Then, we describe and contrast the individual spike proteins and ACE2 receptor interactions, highlighting crucial hotspots across the ACE2-associated coronaviruses. Lastly, we address the importance of multivalency in ACE2 nanomedicine engineering and discuss novel approaches to develop and achieve multivalent therapeutic outcomes. Beyond coronaviruses, these approaches will serve as a paradigm to develop new and improved treatment technologies against pathogens that use ACE2 receptor for invasion.
Collapse
Affiliation(s)
- Eugene M Obeng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Isaac Fianu
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, 615 McCallie Ave, Chattanooga, TN 37403, United States
| |
Collapse
|
245
|
Abstract
Lifestyle factors are modifiable behavioral factors that have a significant impact on health and longevity. Diet-induced obesity and physical activity/exercise are two prevalent lifestyle factors that have strong relationships to overall health. The mechanisms linking obesity to negative health outcomes and the mechanisms linking increased participation in physical activity/exercise to positive health outcomes are beginning to be elucidated. Chronic inflammation, due in part to overproduction of myeloid cells from hematopoietic stem cells (HSCs) in the bone marrow, is an established mechanism responsible for the negative health effects of obesity. Recent work has shown that exercise training can reverse the aberrant myelopoiesis present in obesity in part by restoring the bone marrow microenvironment. Specifically, exercise training reduces marrow adipose tissue, increases HSC retention factor expression, and reduces pro-inflammatory cytokine levels in the bone marrow. Other, novel mechanistic factors responsible for these exercise-induced effects, including intercellular communication using extracellular vesicles (EVs), is beginning to be explored. This review will summarize the recent literature describing the effects of exercise on hematopoiesis in individuals with obesity and introduce the potential contribution of EVs to this process.
Collapse
|
246
|
Oh C, Koh D, Jeon HB, Kim KM. The Role of Extracellular Vesicles in Senescence. Mol Cells 2022; 45:603-609. [PMID: 36058888 PMCID: PMC9448646 DOI: 10.14348/molcells.2022.0056] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/08/2022] [Accepted: 06/18/2022] [Indexed: 01/10/2023] Open
Abstract
Cells can communicate in a variety of ways, such as by contacting each other or by secreting certain factors. Recently, extracellular vesicles (EVs) have been proposed to be mediators of cell communication. EVs are small vesicles with a lipid bilayer membrane that are secreted by cells and contain DNA, RNAs, lipids, and proteins. These EVs are secreted from various cell types and can migrate and be internalized by recipient cells that are the same or different than those that secrete them. EVs harboring various components are involved in regulating gene expression in recipient cells. These EVs may also play important roles in the senescence of cells and the accumulation of senescent cells in the body. Studies on the function of EVs in senescent cells and the mechanisms through which nonsenescent and senescent cells communicate through EVs are being actively conducted. Here, we summarize studies suggesting that EVs secreted from senescent cells can promote the senescence of other cells and that EVs secreted from nonsenescent cells can rejuvenate senescent cells. In addition, we discuss the functional components (proteins, RNAs, and other molecules) enclosed in EVs that enter recipient cells.
Collapse
Affiliation(s)
- Chaehwan Oh
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Dahyeon Koh
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hyeong Bin Jeon
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Kyoung Mi Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
247
|
Zhou M, Li YJ, Tang YC, Hao XY, Xu WJ, Xiang DX, Wu JY. Apoptotic bodies for advanced drug delivery and therapy. J Control Release 2022; 351:394-406. [PMID: 36167267 DOI: 10.1016/j.jconrel.2022.09.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) have emerged as promising candidates for multiple biomedical applications. Major types of EVs include exosomes, microvesicles, and apoptotic bodies (ABs). ABs are conferred most properties from parent cells in the final stages of apoptosis. A wide variety of sources and stable morphological features are endowed to ABs by the rigorous apoptotic program. ABs accommodate more functional biomolecules by relying on the larger volume and maintaining their naturalness in circulation. The predominant body surface ratio of ABs facilitates their recognition by recipient cells and is advantageous for interactions with microenvironments. ABs can modulate and alleviate symptoms of numerous diseases for their origins, circulation, and high biocompatibility. In addition, ABs have been emerging in disease diagnosis, immunotherapy, regenerative therapy, and drug delivery. Here, we aim to present a thorough discussion on current knowledge about ABs. Of particular interest, we will summarize the application of AB-based strategies for diagnosis and disease therapy. Perspectives for the development of ABs in biomedical applications are highlighted.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China
| | - Yong-Jiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China
| | - Yu-Cheng Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China
| | - Xin-Yan Hao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China
| | - Wen-Jie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China.
| | - Jun-Yong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan, China; Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, Hunan Province, China.
| |
Collapse
|
248
|
Song M, Cui M, Fang Z, Liu K. Advanced research on extracellular vesicles based oral drug delivery systems. J Control Release 2022; 351:560-572. [PMID: 36179765 DOI: 10.1016/j.jconrel.2022.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
The oral route is the most convenient and simplest mode of administration. Nevertheless, orally administration of some commonly used therapeutic drugs, such as polypeptides, therapeutic proteins, small-molecule drugs, and nucleic acids, remains a major challenge due to the harsh gastrointestinal environment and the limited oral bioavailability. Extracellular vesicles (EVs) are diverse, nanoscale phospholipid vesicles that are actively released by cells and play crucial roles in intercellular communications. Some EVs have been shown to survive with the gastrointestinal tract (GIT) and can cross biological barriers. The potential of EVs to cross the GIT barrier makes them promising natural delivery carriers for orally administered drugs. Here, we introduce the uniqueness of EVs and their feasibility as oral drug delivery vehicles (ODDVs). Then we provide a general description of the different cellular EVs based oral drug delivery systems (ODDSs) currently under study and emphasize the contribution of endogenous features and multifunctional properties of EVs to the delivery performance. The current obstacles of moving EVs based ODDSs from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Mengdi Song
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Mingxiao Cui
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Zhou Fang
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Kehai Liu
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
249
|
Lin C, Guo J, Jia R. Roles of Regulatory T Cell-Derived Extracellular Vesicles in Human Diseases. Int J Mol Sci 2022; 23:11206. [PMID: 36232505 PMCID: PMC9569925 DOI: 10.3390/ijms231911206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Regulatory T (Treg) cells play crucial roles in maintaining immune self-tolerance and immune homeostasis, and closely associated with many human diseases. Recently, Treg cells-derived extracellular vesicles (Treg-EVs) have been demonstrated as a novel cell-contact independent inhibitory mechanism of Treg cells. Treg-EVs contain many specific biological molecules, which are delivered to target cells and modulate immune responses by inhibiting T cell proliferation, inducing T cell apoptosis, and changing the cytokine expression profiles of target cells. The abnormal quantity or function of Treg-EVs is associated with several types of human diseases or conditions, such as transplant rejection, inflammatory diseases, autoimmune diseases, and cancers. Treg-EVs are promising novel potential targets for disease diagnosis, therapy, and drug transport. Moreover, Treg-EVs possess distinct advantages over Treg cell-based immunotherapies. However, the therapeutic potential of Treg-EVs is limited by some factors, such as the standardized protocol for isolation and purification, large scale production, and drug loading efficiency. In this review, we systematically describe the structure, components, functions, and basic mechanisms of action of Treg-EVs and discuss the emerging roles in pathogenesis and the potential application of Treg-EVs in human diseases.
Collapse
Affiliation(s)
- Can Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
250
|
CD73-Adenosinergic Axis Mediates the Protective Effect of Extracellular Vesicles Derived from Mesenchymal Stromal Cells on Ischemic Renal Damage in a Rat Model of Donation after Circulatory Death. Int J Mol Sci 2022; 23:ijms231810681. [PMID: 36142593 PMCID: PMC9501320 DOI: 10.3390/ijms231810681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/21/2022] Open
Abstract
We propose a new organ-conditioning strategy based on mesenchymal stromal cell (MSCs)/extracellular vesicle (EVs) delivery during hypothermic perfusion. MSCs/EVs marker CD73 is present on renal proximal tubular cells, and it protects against renal ischemia-reperfusion injury by converting adenosine monophosphate into adenosine (ADO). In this study, after checking if CD73-silenced EVs (EVsi) would impact in vitro tubular-cell proliferation, we perfused kidneys of a rat model of donation after circulatory death, with Belzer solution (BS) alone, BS supplemented with MSCs, EVs, or EVsi. The ADO and ATP levels were measured in the effluents and tissues. Global renal ischemic damage score (GRS), and tubular cell proliferation index (IPT) were evaluated in the tissue. EVsi did not induce cell proliferation in vitro. Ex vivo kidneys perfused with BS or BS + EVsi showed the worst GRS and higher effluent ADO levels than the MSC- and EV-perfused kidneys. In the EV-perfused kidneys, the tissue and effluent ATP levels and IPT were the highest, but not if CD73 was silenced. Tissue ATP content was positively correlated with tissue ADO content and negatively correlated with effluent ADO level in all groups. In conclusion, kidney conditioning with EVs protects against ischemic damage by activating the CD73/ADO system.
Collapse
|