201
|
Barbosa Lima A, Cannavan FS, Navarrete AA, Teixeira WG, Kuramae EE, Tsai SM. Amazonian dark Earth and plant species from the Amazon region contribute to shape rhizosphere bacterial communities. MICROBIAL ECOLOGY 2015; 69:855-66. [PMID: 25103911 DOI: 10.1007/s00248-014-0472-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 07/25/2014] [Indexed: 05/09/2023]
Abstract
Amazonian Dark Earths (ADE) or Terra Preta de Índio formed in the past by pre-Columbian populations are highly sustained fertile soils supported by microbial communities that differ from those extant in adjacent soils. These soils are found in the Amazon region and are considered as a model soil when compared to the surrounding and background soils. The aim of this study was to assess the effects of ADE and its surrounding soil on the rhizosphere bacterial communities of two leguminous plant species that frequently occur in the Amazon region in forest sites (Mimosa debilis) and open areas (Senna alata). Bacterial community structure was evaluated using terminal restriction fragment length polymorphism (T-RFLP) and bacterial community composition by V4 16S rRNA gene region pyrosequencing. T-RFLP analysis showed effect of soil types and plant species on rhizosphere bacterial community structure. Differential abundance of bacterial phyla, such as Acidobacteria, Actinobacteria, Verrucomicrobia, and Firmicutes, revealed that soil type contributes to shape the bacterial communities. Furthermore, bacterial phyla such as Firmicutes and Nitrospira were mostly influenced by plant species. Plant roots influenced several soil chemical properties, especially when plants were grown in ADE. These results showed that differences observed in rhizosphere bacterial community structure and composition can be influenced by plant species and soil fertility due to variation in soil attributes.
Collapse
Affiliation(s)
- Amanda Barbosa Lima
- Laboratory of Cellular and Molecular Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil,
| | | | | | | | | | | |
Collapse
|
202
|
Gschwendtner S, Leberecht M, Engel M, Kublik S, Dannenmann M, Polle A, Schloter M. Effects of Elevated Atmospheric CO2 on Microbial Community Structure at the Plant-Soil Interface of Young Beech Trees (Fagus sylvatica L.) Grown at Two Sites with Contrasting Climatic Conditions. MICROBIAL ECOLOGY 2015; 69:867-878. [PMID: 25370887 DOI: 10.1007/s00248-014-0527-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
Soil microbial community responses to elevated atmospheric CO2 concentrations (eCO2) occur mainly indirectly via CO2-induced plant growth stimulation leading to quantitative as well as qualitative changes in rhizodeposition and plant litter. In order to gain insight into short-term, site-specific effects of eCO2 on the microbial community structure at the plant-soil interface, young beech trees (Fagus sylvatica L.) from two opposing mountainous slopes with contrasting climatic conditions were incubated under ambient (360 ppm) CO2 concentrations in a greenhouse. One week before harvest, half of the trees were incubated for 2 days under eCO2 (1,100 ppm) conditions. Shifts in the microbial community structure in the adhering soil as well as in the root rhizosphere complex (RRC) were investigated via TRFLP and 454 pyrosequencing based on 16S ribosomal RNA (rRNA) genes. Multivariate analysis of the community profiles showed clear changes of microbial community structure between plants grown under ambient and elevated CO2 mainly in RRC. Both TRFLP and 454 pyrosequencing showed a significant decrease in the microbial diversity and evenness as a response of CO2 enrichment. While Alphaproteobacteria dominated by Rhizobiales decreased at eCO2, Betaproteobacteria, mainly Burkholderiales, remained unaffected. In contrast, Gammaproteobacteria and Deltaproteobacteria, predominated by Pseudomonadales and Myxococcales, respectively, increased at eCO2. Members of the order Actinomycetales increased, whereas within the phylum Acidobacteria subgroup Gp1 decreased, and the subgroups Gp4 and Gp6 increased under atmospheric CO2 enrichment. Moreover, Planctomycetes and Firmicutes, mainly members of Bacilli, increased under eCO2. Overall, the effect intensity of eCO2 on soil microbial communities was dependent on the distance to the roots. This effect was consistent for all trees under investigation; a site-specific effect of eCO2 in response to the origin of the trees was not observed.
Collapse
Affiliation(s)
- Silvia Gschwendtner
- Research Unit Environmental Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
203
|
El-Sayed WS, Ibrahim RA. Diversity and phylogenetic analysis of endosymbiotic bacteria of the date palm root borer Oryctes agamemnon (Coleoptera: Scarabaeidae). BMC Microbiol 2015; 15:88. [PMID: 25899000 PMCID: PMC4415217 DOI: 10.1186/s12866-015-0422-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/08/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The date palm root borer Oryctes agamemnon (Coleoptera: Scarabaeidae) is one of the major pests of palms. In Saudi Arabia, both larvae and adults of Oryctes are particularly troublesome, especially during the establishment of young date palm orchards. Endosymbiotic bacteria are known to have a key role in food digestion and insecticide resistance mechanisms, and therefore are essential to their host insect. Identification of these bacteria in their insect host can lead to development of new insect pest control strategies. RESULTS Metagenomic DNA from larval midgut of the date palm root borer, O. agamemnon, was analyzed for endosymbiotic bacterial communities using denatured gradient gel electrophoresis (DGGE) utilizing 16S rRNA genes. The DGGE fingerprints with metagenomic DNA showed predominance of eleven major operational taxonomic units (OTUs) identified as members of Photobacterium, Vibrio, Allomonas, Shewanella, Cellulomonas, and Citrobacter, as well as uncultured bacteria, including some uncultured Vibrio members. DGGE profiles also showed shifts in the dominant bacterial populations of the original soil compared with those that existed in the larval midguts. The endosymbiotic bacterial community was dominated by members of the family Vibrionaceae (54.5%), followed by uncultured bacteria (18.2%), Enterobacteriaceae (9.1%), Shewanellaceae (9.1%), and Cellulomonadaceae (9.1%). Phylogenetic studies confirmed the affiliation of the dominant OTUs into specified families revealed by clustering of each phylotype to its corresponding clade. Relative frequency of each phylotype in larval midguts revealed predominance of Vibrio furnisii and Vibrio navarrensis, followed by uncultured bacterial spp., then Cellulomonas hominis, Shewanella algae, and Citrobacter freundii. CONCLUSION Analysis of metagenomic DNA for endosymbiotic bacterial communities from the midgut of Oryctes larvae showed strong selection of specific bacterial populations that may have a key role in digestion, as well as other benefits to the larvae of O. agamemnon. Determination of the distinct endosymbiotic community structure and its possible biological functions within the insect could provide us with basic information for future pest control research.
Collapse
Affiliation(s)
- Wael S El-Sayed
- Biology Department, Faculty of Science, Taibah University, Almadinah Almunawarah, 344, Saudi Arabia. .,Microbiology Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - Reda A Ibrahim
- Biology Department, Faculty of Science, Taibah University, Almadinah Almunawarah, 344, Saudi Arabia. .,Department of Economic Entomology, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| |
Collapse
|
204
|
Investigation of salivary function and oral microbiota of radiation caries-free people with nasopharyngeal carcinoma. PLoS One 2015; 10:e0123137. [PMID: 25860481 PMCID: PMC4393271 DOI: 10.1371/journal.pone.0123137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/17/2015] [Indexed: 02/05/2023] Open
Abstract
Radiation caries have been reported to be correlated with radiotherapy-induced destruction of salivary function and changes in oral microbiota. There have been no published reports detailing patients who have remained radiation caries-free following radiotherapy for nasopharyngeal carcinoma. The aim of this study was to investigate the relationship between salivary function, oral microbiota and the absence of radiation caries. Twelve radiation caries-free patients and nine patients exhibiting radiation caries following irradiated nasopharyngeal carcinoma were selected. V40, the dose at which the volume of the contralateral parotid gland receives more than 40 Gy, was recorded. Stimulated saliva flow rate, pH values and buffering capacity were examined to assess salivary function. Stimulated saliva was used for molecular profiling by Denaturing Gradient Gel Electrophoresis. Mutans streptococci and Lactobacilli in saliva were also cultivated. There were no significant differences in V40 between radiation caries-free individuals and those with radiation caries. Compared with normal values, the radiation caries-free group had significantly decreased simulated saliva flow rate, while there were no significant differences in the saliva pH value and buffering capacity. Similar results were observed in the radiation caries group. There was no statistical difference in microbial diversity, composition and log CFU counts in cultivation from the radiation caries-free group and the radiation caries group. Eleven genera were detected in these two groups, among which Streptococcus spp. and Neisseria spp. had the highest distribution. Our results suggest that changes in salivary function and in salivary microbiota do not explain the absence of radiation caries in radiation caries-free individuals.
Collapse
|
205
|
Daly KR, Mooney SJ, Bennett MJ, Crout NMJ, Roose T, Tracy SR. Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2305-14. [PMID: 25740922 PMCID: PMC4407651 DOI: 10.1093/jxb/eru509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/25/2014] [Accepted: 11/28/2014] [Indexed: 05/23/2023]
Abstract
Understanding the dynamics of water distribution in soil is crucial for enhancing our knowledge of managing soil and water resources. The application of X-ray computed tomography (CT) to the plant and soil sciences is now well established. However, few studies have utilized the technique for visualizing water in soil pore spaces. Here this method is utilized to visualize the water in soil in situ and in three-dimensions at successive reductive matric potentials in bulk and rhizosphere soil. The measurements are combined with numerical modelling to determine the unsaturated hydraulic conductivity, providing a complete picture of the hydraulic properties of the soil. The technique was performed on soil cores that were sampled adjacent to established roots (rhizosphere soil) and from soil that had not been influenced by roots (bulk soil). A water release curve was obtained for the different soil types using measurements of their pore geometries derived from CT imaging and verified using conventional methods, such as pressure plates. The water, soil, and air phases from the images were segmented and quantified using image analysis. The water release characteristics obtained for the contrasting soils showed clear differences in hydraulic properties between rhizosphere and bulk soil, especially in clay soil. The data suggest that soils influenced by roots (rhizosphere soil) are less porous due to increased aggregation when compared with bulk soil. The information and insights obtained on the hydraulic properties of rhizosphere and bulk soil will enhance our understanding of rhizosphere biophysics and improve current water uptake models.
Collapse
Affiliation(s)
- Keith R Daly
- Bioengineering Sciences Research Group, Faculty of Engineering and Environment, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Sacha J Mooney
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Neil M J Crout
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Tiina Roose
- Bioengineering Sciences Research Group, Faculty of Engineering and Environment, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Saoirse R Tracy
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| |
Collapse
|
206
|
Figuerola ELM, Guerrero LD, Türkowsky D, Wall LG, Erijman L. Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale. Environ Microbiol 2015; 17:678-88. [PMID: 24803003 DOI: 10.1111/1462-2920.12497] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/28/2014] [Indexed: 11/28/2022]
Abstract
The goal of this study was to investigate the spatial turnover of soil bacterial communities in response to environmental changes introduced by the practices of soybean monoculture or crop rotations, relative to grassland soils. Amplicon sequencing of the 16S rRNA gene was used to analyse bacterial diversity in producer fields through three successive cropping cycles within one and a half years, across a regional scale of the Argentinean Pampas. Unlike local diversity, which was not significantly affected by land use type, agricultural management had a strong influence on β-diversity patterns. Distributions of pairwise distances between all soils samples under soybean monoculture had significantly lower β-diversity and narrower breadth compared with distributions of pairwise distances between soils managed with crop rotation. Interestingly, good agricultural practices had similar degree of β-diversity as natural grasslands. The higher phylogenetic relatedness of bacterial communities in soils under monoculture across the region was likely determined by the observed loss of endemic species, and affected mostly to phyla with low regional diversity, such as Acidobacteria, Verrucomicrobia and the candidates phyla SPAM and WS3. These results suggest that the implementation of good agricultural practices, including crop rotation, may be critical for the long-term conservation of soil biodiversity.
Collapse
Affiliation(s)
- Eva L M Figuerola
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr Héctor N. Torres' (INGEBI-CONICET), Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
207
|
Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 2015; 46:7-21. [PMID: 26221084 PMCID: PMC4512045 DOI: 10.1590/s1517-838246120131354] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 06/06/2014] [Indexed: 11/26/2022] Open
Abstract
The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e. polyaromatic hydrocarbons (PAHs) due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa , Pseudomons fluoresens , Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective.
Collapse
Affiliation(s)
- Sandeep Bisht
- Department of Molecular Biology and Biotechnology, VCSG College of Horticulture, Uttarakhand University of Horticulture & Forestry, Uttarakhand, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, India
| | - Bhavya Bhargava
- Department of Floriculture & Landscaping Architecture, VCSG College of Horticulture, Uttarakhand University of Horticulture & Forestry, Uttarakhand, India
| | - Shivesh Sharma
- Department of Biotechnology, National Institute of Technology, Allahabad, India
| | - Vivek Kumar
- Amity Institutite of Microbial Technology, Amity Univeristy, Noida, India
| | - Krishan D. Sharma
- VCSG College of Horticulture, Uttarakhand University of Horticulture & Forestry, Uttarakhand, India
| |
Collapse
|
208
|
Aleklett K, Leff JW, Fierer N, Hart M. Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities. PeerJ 2015; 3:e804. [PMID: 25755932 PMCID: PMC4349149 DOI: 10.7717/peerj.804] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/06/2015] [Indexed: 02/01/2023] Open
Abstract
Plant roots are known to harbor large and diverse communities of bacteria. It has been suggested that plant identity can structure these root-associated communities, but few studies have specifically assessed how the composition of root microbiota varies within and between plant species growing under natural conditions. We assessed the community composition of endophytic and epiphytic bacteria through high throughput sequencing using 16S rDNA derived from root tissues collected from a population of a wild, clonal plant (Orange hawkweed-Pilosella aurantiaca) as well as two neighboring plant species (Oxeye daisy-Leucanthemum vulgare and Alsike clover-Trifolium hybridum). Our first goal was to determine if plant species growing in close proximity, under similar environmental conditions, still hosted unique root microbiota. Our results showed that plants of different species host distinct bacterial communities in their roots. In terms of community composition, Betaproteobacteria (especially the family Oxalobacteraceae) were found to dominate in the root microbiota of L. vulgare and T. hybridum samples, whereas the root microbiota of P. aurantiaca had a more heterogeneous distribution of bacterial abundances where Gammaproteobacteria and Acidobacteria occupied a larger portion of the community. We also explored the extent of individual variance within each plant species investigated, and found that in the plant species thought to have the least genetic variance among individuals (P. aurantiaca) still hosted just as diverse microbial communities. Whether all plant species host their own distinct root microbiota and plants more closely related to each other share more similar bacterial communities still remains to be fully explored, but among the plants examined in this experiment there was no trend that the two species belonging to the same family shared more similarities in terms of bacterial community composition.
Collapse
Affiliation(s)
- Kristin Aleklett
- Department of Biology, University of British Columbia-Okanagan , Canada
| | - Jonathan W Leff
- Cooperative Institute for Research in Environmental Sciences and the Department of Ecology and Evolutionary Biology, University of Colorado , Boulder, CO , USA
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences and the Department of Ecology and Evolutionary Biology, University of Colorado , Boulder, CO , USA
| | - Miranda Hart
- Department of Biology, University of British Columbia-Okanagan , Canada
| |
Collapse
|
209
|
Cavalca L, Corsini A, Canzi E, Zanchi R. Rhizobacterial communities associated with spontaneous plant species in long-term arsenic contaminated soils. World J Microbiol Biotechnol 2015; 31:735-46. [PMID: 25700744 DOI: 10.1007/s11274-015-1826-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
The microbial community composition in three soil fractions (bulk soil, rhizosphere and rhizoplane) of the root-soil system of a thistle, Cirsium arvense, and of a tufted hair grass, Deschampsia caespitosa, was investigated. The two spontaneous wild plant species were predominant in two Italian lands contaminated since centuries by arsenic and at present show high levels of arsenic (from 215 to 12,500 mg kg(-1)). In order to better understand how the rhizobacterial ecosystem responds to a long-term arsenic contamination in term of composition and functioning, culture-independent techniques (DAPI counts, fluorescence in situ hybridization and denaturing gradient gel electrophoresis analysis) along with cultivation-based methods were applied. Microbial community structure was qualitatively similar in the two root-soil systems, but some quantitative differences were observed. Bacteria of the α-, β-, and γ-subclasses of the Proteobacteria were dominant in all fractions, while the subdominant groups (Cytophagaceae, gram-positive spore-forming, and filamentous bacteria) were significantly more abundant in the root-soil system of D. caespitosa. As regards to arsenic resistant strains, Firmicutes, Actinobacteria, Enterobacteria and γ-Proteobacteria were isolated from soil system of both plants. Our results suggest that the response to a high level of arsenic contamination governed the rhizosphere microbial community structure together with the soil structure and the plant host type effects. Data from this study can provide better understanding of complex bacterial communities in metal-polluted soils, as well as useful information of indigenous bacterial strains with potential application to soil remediation.
Collapse
Affiliation(s)
- Lucia Cavalca
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | | | | | | |
Collapse
|
210
|
Lee SH, Kim SY, Ding W, Kang H. Impact of elevated CO2 and N addition on bacteria, fungi, and archaea in a marsh ecosystem with various types of plants. Appl Microbiol Biotechnol 2015; 99:5295-305. [DOI: 10.1007/s00253-015-6385-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 10/24/2022]
|
211
|
Mukherjee S, Sipilä T, Pulkkinen P, Yrjälä K. Secondary successional trajectories of structural and catabolic bacterial communities in oil-polluted soil planted with hybrid poplar. Mol Ecol 2015; 24:628-42. [DOI: 10.1111/mec.13053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Shinjini Mukherjee
- Department of Biosciences; MEM-Group; University of Helsinki; PO Box 56 FI-00014 Helsinki Finland
| | - Timo Sipilä
- Department of Biosciences; University of Helsinki; PO Box 65 FI-00014 Helsinki Finland
| | - Pertti Pulkkinen
- The Finnish Forest Research Institute; Haapastensyrjäntie 34 FI-12600 Läyliäinen Finland
| | - Kim Yrjälä
- Department of Biosciences; MEM-Group; University of Helsinki; PO Box 56 FI-00014 Helsinki Finland
| |
Collapse
|
212
|
Pereira C, Santos L, Silva AP, Silva YJ, Cunha A, Romalde JL, Nunes ML, Almeida A. Seasonal variation of bacterial communities in shellfish harvesting waters: preliminary study before applying phage therapy. MARINE POLLUTION BULLETIN 2015; 90:68-77. [PMID: 25484114 DOI: 10.1016/j.marpolbul.2014.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
The recurrent emergence of infections outbreaks associated with shellfish consumption is an important health problem, which results in substantial economic losses to the seafood industry. Even after depuration, shellfish is still involved in outbreaks caused by pathogenic bacteria, which increases the demand for new efficient strategies to control the shellfish infection transmission. Phage therapy during the shellfish depuration is a promising approach, but its success depends on a detailed understanding of the dynamics of bacterial communities in the harvesting waters. This study intends to evaluate the seasonal dynamics of the overall bacterial communities, disease-causing bacterial populations and bacterial sanitary quality indicators in two authorized harvesting-zones at Ria de Aveiro. During the hot season, the total bacterial community presented high complexity and new prevalent populations of the main shellfish pathogenic bacteria emerged. These results indicate that the spring/summer season is a critical period during which phage therapy should be applied.
Collapse
Affiliation(s)
- C Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - L Santos
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - A P Silva
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Y J Silva
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - A Cunha
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - J L Romalde
- Departamento de Microbiología e Parasitología e CIBUS e Facultad de Biologia, Universidade de Santiago de Compostela e Campus Universitario Sur., 15782 Santiago de Compostela (A Coruña), Spain
| | - M L Nunes
- National Institute of Biological Resources (INRB, IP/L-IPIMAR), Av. Brasília, 1449-006 Lisbon, Portugal
| | - A Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
213
|
Breidenbach B, Conrad R. Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage. Front Microbiol 2015; 5:752. [PMID: 25620960 PMCID: PMC4288041 DOI: 10.3389/fmicb.2014.00752] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/11/2014] [Indexed: 01/13/2023] Open
Abstract
We studied the resident (16S rDNA) and the active (16S rRNA) members of soil archaeal and bacterial communities during rice plant development by sampling three growth stages (vegetative, reproductive and maturity) under field conditions. Additionally, the microbial community was investigated in two non-flooded fields (unplanted, cultivated with upland maize) in order to monitor the reaction of the microbial communities to non-flooded, dry conditions. The abundance of Bacteria and Archaea was monitored by quantitative PCR showing an increase in 16S rDNA during reproductive stage and stable 16S rRNA copies throughout the growth season. Community profiling by T-RFLP indicated a relatively stable composition during rice plant growth whereas pyrosequencing revealed minor changes in relative abundance of a few bacterial groups. Comparison of the two non-flooded fields with flooded rice fields showed that the community composition of the Bacteria was slightly different, while that of the Archaea was almost the same. Only the relative abundance of Methanosarcinaceae and Soil Crenarchaeotic Group increased in non-flooded vs. flooded soil. The abundance of bacterial and archaeal 16S rDNA copies was highest in flooded rice fields, followed by non-flooded maize and unplanted fields. However, the abundance of ribosomal RNA (active microbes) was similar indicating maintenance of a high level of ribosomal RNA under the non-flooded conditions, which were unfavorable for anaerobic bacteria and methanogenic archaea. This maintenance possibly serves as preparedness for activity when conditions improve. In summary, the analyses showed that the bacterial and archaeal communities inhabiting Philippine rice field soil were relatively stable over the season but reacted upon change in field management.
Collapse
Affiliation(s)
| | - Ralf Conrad
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| |
Collapse
|
214
|
Gu D, Xu H, He Y, Zhao F, Huang M. Remediation of Urban River Water by Pontederia Cordata Combined with Artificial Aeration: Organic Matter and Nutrients Removal and Root-Adhered Bacterial Communities. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:1105-1114. [PMID: 25951335 DOI: 10.1080/15226514.2015.1045121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Macrophyte combined with artificial aeration is a promising in situ remediation approach for urban rivers polluted with nutrients and organic matter. However, seasonal variations and aeration effects on phytoremediation performance and root-adhered microbial communities are still unclear. In this study, Pontederia cordata was used to treat polluted urban river water under various aeration intensities. Results showed that the highest removal efficiencies of chemical oxygen demand (COD(Cr)) and total nitrogen (TN) were attained under aeration of 30 L min(-1) in spring and summer and 15 L min(-1) in autumn, while total phosphorus (TP) removal reached maximum with aeration of 15 L min(-1) in all seasons. Moderate aeration was beneficial for increasing the diversity of root-adhered bacteria communities, and the shift of bacterial community structure was more pronounced in spring and autumn with varying aeration intensity. The dual effect, i.e. turbulence and dissolved oxygen (DO), of aeration on the removal of COD(Cr) and TN prevailed over the individual effect of DO, while DO was the most influential factor for TP removal and the root-adhered bacterial community diversity. P. cordata combined with 15 L min(-1) aeration was deemed to be the best condition tested in this study.
Collapse
Affiliation(s)
- Dungang Gu
- a Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University , Shanghai , 200241 , China
| | | | | | | | | |
Collapse
|
215
|
Quiza L, St-Arnaud M, Yergeau E. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. FRONTIERS IN PLANT SCIENCE 2015; 6:507. [PMID: 26236319 PMCID: PMC4500914 DOI: 10.3389/fpls.2015.00507] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/25/2015] [Indexed: 05/18/2023]
Abstract
The goal of microbiome engineering is to manipulate the microbiome toward a certain type of community that will optimize plant functions of interest. For instance, in crop production the goal is to reduce disease susceptibility, increase nutrient availability increase abiotic stress tolerance and increase crop yields. Various approaches can be devised to engineer the plant-microbiome, but one particularly promising approach is to take advantage of naturally evolved plant-microbiome communication channels. This is, however, very challenging as the understanding of the plant-microbiome communication is still mostly rudimentary and plant-microbiome interactions varies between crops species (and even cultivars), between individual members of the microbiome and with environmental conditions. In each individual case, many aspects of the plant-microorganisms relationship should be thoroughly scrutinized. In this article we summarize some of the existing plant-microbiome engineering studies and point out potential avenues for further research.
Collapse
Affiliation(s)
- Liliana Quiza
- Energy, Mining and Environment, National Research Council Canada, MontréalQC, Canada
- Institut de Recherche en Biologie Végétale – Jardin Botanique de Montréal and Université de Montréal, MontréalQC, Canada
| | - Marc St-Arnaud
- Institut de Recherche en Biologie Végétale – Jardin Botanique de Montréal and Université de Montréal, MontréalQC, Canada
| | - Etienne Yergeau
- Energy, Mining and Environment, National Research Council Canada, MontréalQC, Canada
- *Correspondence: Etienne Yergeau, National Research Council Canada, 6100 Royalmount Avenue, Montréal, QC H4P 2R2, Canada,
| |
Collapse
|
216
|
Wittulsky S, Pellegrin C, Giannakopoulou A, Böni R. A snapshot of molecular plant-microbe interaction research. THE NEW PHYTOLOGIST 2015; 205:468-471. [PMID: 25521069 DOI: 10.1111/nph.13194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Sebastian Wittulsky
- Lab of Excellence ARBRE, Tree-Microbe Interactions Department, INRA - Nancy, Nancy, Champenoux, France
| | | | | | | |
Collapse
|
217
|
Cardinale M, Grube M, Erlacher A, Quehenberger J, Berg G. Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ Microbiol 2015; 17:239-52. [PMID: 25367329 DOI: 10.1111/1462-2920.12686] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 11/29/2022]
Abstract
Lettuce is one of the most common raw foods worldwide, but occasionally also involved in pathogen outbreaks. To understand the correlative structure of the bacterial community as a network, we studied root microbiota of eight ancient and modern Lactuca sativa cultivars and the wild ancestor Lactuca serriola by pyrosequencing of 16S rRNA gene amplicon libraries. The lettuce microbiota was dominated by Proteobacteria and Bacteriodetes, as well as abundant Chloroflexi and Actinobacteria. Cultivar specificity comprised 12.5% of the species. Diversity indices were not different between lettuce cultivar groups but higher than in L. serriola, suggesting that domestication lead to bacterial diversification in lettuce root system. Spearman correlations between operational taxonomic units (OTUs) showed that co-occurrence prevailed over co-exclusion, and complementary fluorescence in situ hybridization-confocal laser scanning microscopy (FISH-CLSM) analyses revealed that this pattern results from both potential interactions and habitat sharing. Predominant taxa, such as Pseudomonas, Flavobacterium and Sphingomonadaceae rather suggested interactions, even though these are not necessarily part of significant modules in the co-occurrence networks. Without any need for complex interactions, single organisms are able to invade into this microbial network and to colonize lettuce plants, a fact that can influence the susceptibility to pathogens. The approach to combine co-occurrence analysis and FISH-CLSM allows reliably reconstructing and interpreting microbial interaction networks.
Collapse
Affiliation(s)
- Massimiliano Cardinale
- Institute of Plant Sciences, University of Graz, Graz, Austria; Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | | | | | | |
Collapse
|
218
|
Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T. Roots shaping their microbiome: global hotspots for microbial activity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:403-24. [PMID: 26243728 DOI: 10.1146/annurev-phyto-082712-102342] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Land plants interact with microbes primarily at roots. Despite the importance of root microbial communities for health and nutrient uptake, the current understanding of the complex plant-microbe interactions in the rhizosphere is still in its infancy. Roots provide different microhabitats at the soil-root interface: rhizosphere soil, rhizoplane, and endorhizosphere. We discuss technical aspects of their differentiation that are relevant for the functional analysis of their different microbiomes, and we assess PCR (polymerase chain reaction)-based methods to analyze plant-associated bacterial communities. Development of novel primers will allow a less biased and more quantitative view of these global hotspots of microbial activity. Based on comparison of microbiome data for the different root-soil compartments and on knowledge of bacterial functions, a three-step enrichment model for shifts in community structure from bulk soil toward roots is presented. To unravel how plants shape their microbiome, a major research field is likely to be the coupling of reductionist and molecular ecological approaches, particularly for specific plant genotypes and mutants, to clarify causal relationships in complex root communities.
Collapse
Affiliation(s)
- Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, D-28334 Bremen, Germany; , , , ,
| | | | | | | | | |
Collapse
|
219
|
Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina. Antonie van Leeuwenhoek 2014; 107:575-88. [PMID: 25527391 DOI: 10.1007/s10482-014-0353-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
Abstract
Plants interact with a myriad of microbial cells in the rhizosphere, an environment that is considered to be important for plant development. However, the differential structuring of rhizosphere microbial communities due to plant cultivation under differential agricultural practices remains to be described for most plant species. Here we describe the rhizosphere microbiome of grapevine cultivated under conventional and organic practices, using a combination of cultivation-independent approaches. The quantification of bacterial 16S rRNA and nifH genes, by quantitative PCR (qPCR), revealed similar amounts of these genes in the rhizosphere in both vineyards. PCR-DGGE was used to detect differences in the structure of bacterial communities, including both the complete whole communities and specific fractions, such as Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and those harboring the nitrogen-fixing related gene nifH. When analyzed by a multivariate approach (redundancy analysis), the shifts observed in the bacterial communities were poorly explained by variations in the physical and chemical characteristics of the rhizosphere. These approaches were complemented by high-throughput sequencing (67,830 sequences) based on the V6 region of the 16S rRNA gene, identifying the major bacterial groups present in the rhizosphere of grapevines: Proteobacteria, Actinobacteria, Firmicutes, Bacteriodetes, Acidobacteria, Cloroflexi, Verrucomicrobia and Planctomycetes, which occur in distinct proportions in the rhizosphere from each vineyard. The differences might be related to the selection of plant metabolism upon distinct reservoirs of microbial cells found in each vineyard. The results fill a gap in the knowledge of the rhizosphere of grapevines and also show distinctions in these bacterial communities due to agricultural practices.
Collapse
|
220
|
Borruso L, Zerbe S, Brusetti L. Bacterial community structures as a diagnostic tool for watershed quality assessment. Res Microbiol 2014; 166:38-44. [PMID: 25499766 DOI: 10.1016/j.resmic.2014.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/01/2022]
Abstract
The analysis of bacterial community structures can be considered a promising instrument when assessing the quality and health of a body of water. Here, the representation of a new biological approach to studying such pollutant-based impact on freshwater sediments is explored. To test our hypothesis, sediment samples of Phragmites australis (common reed)-associated rhizosphere were collected at sites affected by different types and levels of pollution, all located in Zhangye, Gansu Province, China. The analyzed bacterial community structures showed a varying pattern according to the presence, characteristics and level of contaminants. Results of the study showed that bacterial community structures could be effectively used as diagnostic tools to map watershed quality status.
Collapse
Affiliation(s)
- Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, I-39100 Bolzano, Italy
| | - Stefan Zerbe
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, I-39100 Bolzano, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, I-39100 Bolzano, Italy.
| |
Collapse
|
221
|
Cui H, Yang X, Lu D, Jin H, Yan Z, Chen J, Li X, Qin B. Isolation and characterization of bacteria from the rhizosphere and bulk soil of Stellera chamaejasme L. Can J Microbiol 2014; 61:171-81. [PMID: 25654446 DOI: 10.1139/cjm-2014-0543] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study is the first to describe the composition and characteristics of culturable bacterial isolates from the rhizosphere and bulk soil of the medicinal plant Stellera chamaejasme L. at different growth stages. Using a cultivation-dependent approach, a total of 148 isolates showing different phenotypic properties were obtained from the rhizosphere and bulk soil. Firmicutes and Actinobacteria were the major bacterial groups in both the rhizosphere and bulk soil at all 4 growth stages of S. chamaejasme. The diversity of the bacterial community in the rhizosphere was higher than that in bulk soil in flowering and fruiting stages. The abundance of bacterial communities in the rhizosphere changed with the growth stages and had a major shift at the fruiting stage. Dynamic changes of bacterial abundance and many bacterial groups in the rhizosphere were similar to those in bulk soil. Furthermore, most bacterial isolates exhibited single or multiple biochemical activities associated with S. chamaejasme growth, which revealed that bacteria with multiple physiological functions were abundant and widespread in the rhizosphere and bulk soil. These results are essential (i) for understanding the ecological roles of bacteria in the rhizosphere and bulk soil and (ii) as a foundation for further evaluating their efficacy as effective S. chamaejasme growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- Haiyan Cui
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Lanzhou 730000, People's Republic of China., Graduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Nallanchakravarthula S, Mahmood S, Alström S, Finlay RD. Influence of soil type, cultivar and Verticillium dahliae on the structure of the root and rhizosphere soil fungal microbiome of strawberry. PLoS One 2014; 9:e111455. [PMID: 25347069 PMCID: PMC4210224 DOI: 10.1371/journal.pone.0111455] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/02/2014] [Indexed: 12/31/2022] Open
Abstract
Sustainable management of crop productivity and health necessitates improved understanding of the ways in which rhizosphere microbial populations interact with each other, with plant roots and their abiotic environment. In this study we examined the effects of different soils and cultivars, and the presence of a soil-borne fungal pathogen, Verticillium dahliae, on the fungal microbiome of the rhizosphere soil and roots of strawberry plants, using high-throughput pyrosequencing. Fungal communities of the roots of two cultivars, Honeoye and Florence, were statistically distinct from those in the rhizosphere soil of the same plants, with little overlap. Roots of plants growing in two contrasting field soils had high relative abundance of Leptodontidium sp. C2 BESC 319 g whereas rhizosphere soil was characterised by high relative abundance of Trichosporon dulcitum or Cryptococcus terreus, depending upon the soil type. Differences between different cultivars were not as clear. Inoculation with the pathogen V. dahliae had a significant influence on community structure, generally decreasing the number of rhizosphere soil- and root-inhabiting fungi. Leptodontidium sp. C2 BESC 319 g was the dominant fungus responding positively to inoculation with V. dahliae. The results suggest that 1) plant roots select microorganisms from the wider rhizosphere pool, 2) that both rhizosphere soil and root inhabiting fungal communities are influenced by V. dahliae and 3) that soil type has a stronger influence on both of these communities than cultivar.
Collapse
Affiliation(s)
- Srivathsa Nallanchakravarthula
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| | - Shahid Mahmood
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sadhna Alström
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roger D. Finlay
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
223
|
Kouzuma A, Kaku N, Watanabe K. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells. Appl Microbiol Biotechnol 2014; 98:9521-6. [DOI: 10.1007/s00253-014-6138-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 11/29/2022]
|
224
|
Babin D, Vogel C, Zühlke S, Schloter M, Pronk GJ, Heister K, Spiteller M, Kögel-Knabner I, Smalla K. Soil mineral composition matters: response of microbial communities to phenanthrene and plant litter addition in long-term matured artificial soils. PLoS One 2014; 9:e106865. [PMID: 25222697 PMCID: PMC4164357 DOI: 10.1371/journal.pone.0106865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/08/2014] [Indexed: 11/30/2022] Open
Abstract
The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of complex interactions in soils for bioremediation applications.
Collapse
Affiliation(s)
- Doreen Babin
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany
| | - Cordula Vogel
- Lehrstuhl für Bodenkunde, Technische Universität München, Freising-Weihenstephan, Germany
| | - Sebastian Zühlke
- Institut für Umweltforschung (INFU), Lehrstuhl für Umweltchemie und Analytische Chemie der Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| | - Michael Schloter
- Research Unit for Environmental Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Geertje Johanna Pronk
- Lehrstuhl für Bodenkunde, Technische Universität München, Freising-Weihenstephan, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
| | - Katja Heister
- Lehrstuhl für Bodenkunde, Technische Universität München, Freising-Weihenstephan, Germany
| | - Michael Spiteller
- Institut für Umweltforschung (INFU), Lehrstuhl für Umweltchemie und Analytische Chemie der Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| | - Ingrid Kögel-Knabner
- Lehrstuhl für Bodenkunde, Technische Universität München, Freising-Weihenstephan, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany
- * E-mail:
| |
Collapse
|
225
|
Carbone S, Vittori Antisari L, Gaggia F, Baffoni L, Di Gioia D, Vianello G, Nannipieri P. Bioavailability and biological effect of engineered silver nanoparticles in a forest soil. JOURNAL OF HAZARDOUS MATERIALS 2014; 280:89-96. [PMID: 25133850 DOI: 10.1016/j.jhazmat.2014.07.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
The extensive use of silver nanoparticles (SNPs) as antimicrobial in food, clothing and medicine, leads inevitably to a loss of such nanomaterial in soil and water. Little is known about the effects of soil contamination, in particular, on microbial cells, which play a fundamental ecological role. In this work, the impact of SNPs on forest soil has been studied, investigating eco-physiological indicators of microbial biomass and microbial diversity with culture-dependent and independent techniques. Moreover, SNPs bioavailability and uptake were assessed. Soil samples were spiked with SNPs at two different concentrations (10 and 100 μg g(-1)dw) and incubated with the relative controls for 30, 60 and 90 days. The overall parameters showed a significant influence of the SNPs on the soil microbial community, revealing a marked shift after 60 days of incubation.
Collapse
Affiliation(s)
- S Carbone
- Dipartimento di Scienze Agrarie, Alma Mater Studiorum - Università di Bologna, Via Fanin 40, 40127 Bologna, Italy.
| | - L Vittori Antisari
- Dipartimento di Scienze Agrarie, Alma Mater Studiorum - Università di Bologna, Via Fanin 40, 40127 Bologna, Italy
| | - F Gaggia
- Dipartimento di Scienze Agrarie, Alma Mater Studiorum - Università di Bologna, Via Fanin 40, 40127 Bologna, Italy
| | - L Baffoni
- Dipartimento di Scienze Agrarie, Alma Mater Studiorum - Università di Bologna, Via Fanin 40, 40127 Bologna, Italy
| | - D Di Gioia
- Dipartimento di Scienze Agrarie, Alma Mater Studiorum - Università di Bologna, Via Fanin 40, 40127 Bologna, Italy
| | - G Vianello
- Dipartimento di Scienze Agrarie, Alma Mater Studiorum - Università di Bologna, Via Fanin 40, 40127 Bologna, Italy
| | - P Nannipieri
- Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Università degli Studi di Firenze, Piazzale delle Cascine 18, 50144 Firenze, Italy
| |
Collapse
|
226
|
Johnston-Monje D, Mousa WK, Lazarovits G, Raizada MN. Impact of swapping soils on the endophytic bacterial communities of pre-domesticated, ancient and modern maize. BMC PLANT BIOLOGY 2014; 14:233. [PMID: 25227492 PMCID: PMC4189167 DOI: 10.1186/s12870-014-0233-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 08/27/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Endophytes are microbes that live within plants such as maize (corn, Zea mays L.) without causing disease. It is generally assumed that most endophytes originate from soil. If this is true, then as humans collected, domesticated, bred and migrated maize globally from its native Mexico, they moved the species away from its native population of endophyte donors. The migration of maize persists today, as breeders collect wild and exotic seed (as sources of diverse alleles) from sites of high genetic diversity in Mexico for breeding programs on distant soils. When transported to new lands, it is unclear whether maize permits only selective colonization of microbes from the Mexican soils on which it co-evolved, tolerates shifts in soil-derived endophytes, or prevents colonization of soil-based microbes in favour of seed-transmitted microbes. To test these hypotheses, non-sterilized seeds of three types of maize (pre-domesticated-Mexican, ancient-Mexican, modern-temperate) were planted side-by-side on indigenous Mexican soil, Canadian temperate soil or sterilized sand. The impact of these soil swaps on founder bacterial endophyte communities was tested using 16S-rDNA profiling, culturing and microbial trait phenotyping. RESULTS Multivariate analysis showed that bacterial 16S-rDNA TRFLP profiles from young, surface-sterilized maize plants were more similar when the same host genotype was grown on the different soils than when different maize genotypes were grown on the same soil. There appeared to be two reasons for this result. First, the largest fraction of bacterial 16S-signals from soil-grown plants was shared with parental seeds and/or plants grown on sterilized sand, suggesting significant inheritance of candidate endophytes. The in vitro activities of soil-derived candidate endophytes could be provided by bacteria that were isolated from sterile sand grown plants. Second, many non-inherited 16S-signals from sibling plants grown on geographically-distant soils were shared with one another, suggesting maize can select microbes with similar TRFLP peak sizes from diverse soils. Wild, pre-domesticated maize did not possess more unique 16S-signals when grown on its native Mexican soil than on Canadian soil, pointing against long-term co-evolutionary selection. The modern hybrid did not reject more soil-derived 16S-signals than did ancestral maize, pointing against such rejection as a mechanism that contributes to yield stability across environments. A minor fraction of 16S-signals was uniquely associated with any one soil. CONCLUSION Within the limits of TRFLP profiling, the candidate bacterial endophyte populations of pre-domesticated, ancient and modern maize are partially buffered against the effects of geographic migration --- from a Mexican soil associated with ancestral maize, to a Canadian soil associated with modern hybrid agriculture. These results have implications for understanding the effects of domestication, migration, ex situ seed conservation and modern breeding, on the microbiome of one of the world's most important food crops.
Collapse
Affiliation(s)
- David Johnston-Monje
- />Department of Plant Agriculture, University of Guelph, 50 Stone Road, Guelph, ON N1G 2W1 Canada
- />A&L Biologicals, Agroecology Research Services Centre, 2136 Jetstream Road, London, ON N5V 3P5 Canada
| | - Walaa Kamel Mousa
- />Department of Plant Agriculture, University of Guelph, 50 Stone Road, Guelph, ON N1G 2W1 Canada
- />Department of Pharmacognosy, Mansoura University, Mansoura, 35516 Egypt
| | - George Lazarovits
- />A&L Biologicals, Agroecology Research Services Centre, 2136 Jetstream Road, London, ON N5V 3P5 Canada
| | - Manish N Raizada
- />Department of Plant Agriculture, University of Guelph, 50 Stone Road, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
227
|
Borruso L, Bacci G, Mengoni A, De Philippis R, Brusetti L. Rhizosphere effect and salinity competing to shape microbial communities in Phragmites australis (Cav.) Trin. ex-Steud. FEMS Microbiol Lett 2014; 359:193-200. [PMID: 25131902 DOI: 10.1111/1574-6968.12565] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/01/2014] [Indexed: 11/29/2022] Open
Abstract
Rhizobacterial communities associated with Phragmites australis (Cav.) Trin. ex Steud. in a hypersaline pond close to Wuliangsuhai Lake (Inner Mongolia - China) were investigated and compared with the microbial communities in bulk sediments of the same pond. Microbiological analyses have been done by automated ribosomal intergenic spacer analysis (ARISA) and partial 16S rRNA gene 454 pyrosequencing. Although community richness was higher in the rhizosphere samples than in bulk sediments, the salinity seemed to be the major factor shaping the structure of the microbial communities. Halanaerobiales was the most abundant taxon found in all the different samples and Desulfosalsimonas was observed to be present more in the rhizosphere rather than in bulk sediment.
Collapse
Affiliation(s)
- Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Bozen/Bolzano, Italy
| | | | | | | | | |
Collapse
|
228
|
Bevivino A, Paganin P, Bacci G, Florio A, Pellicer MS, Papaleo MC, Mengoni A, Ledda L, Fani R, Benedetti A, Dalmastri C. Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region. PLoS One 2014; 9:e105515. [PMID: 25144665 PMCID: PMC4140800 DOI: 10.1371/journal.pone.0105515] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/23/2014] [Indexed: 11/18/2022] Open
Abstract
Land-use change is considered likely to be one of main drivers of biodiversity changes in grassland ecosystems. To gain insight into the impact of land use on the underlying soil bacterial communities, we aimed at determining the effects of agricultural management, along with seasonal variations, on soil bacterial community in a Mediterranean ecosystem where different land-use and plant cover types led to the creation of a soil and vegetation gradient. A set of soils subjected to different anthropogenic impact in a typical Mediterranean landscape, dominated by Quercus suber L., was examined in spring and autumn: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards (ploughed and grass covered). Land uses affected the chemical and structural composition of the most stabilised fractions of soil organic matter and reduced soil C stocks and labile organic matter at both sampling season. A significant effect of land uses on bacterial community structure as well as an interaction effect between land uses and season was revealed by the EP index. Cluster analysis of culture-dependent DGGE patterns showed a different seasonal distribution of soil bacterial populations with subgroups associated to different land uses, in agreement with culture-independent T-RFLP results. Soils subjected to low human inputs (cork-oak forest and pasture) showed a more stable bacterial community than those with high human input (vineyards and managed meadow). Phylogenetic analysis revealed the predominance of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla with differences in class composition across the site, suggesting that the microbial composition changes in response to land uses. Taken altogether, our data suggest that soil bacterial communities were seasonally distinct and exhibited compositional shifts that tracked with changes in land use and soil management. These findings may contribute to future searches for bacterial bio-indicators of soil health and sustainable productivity.
Collapse
Affiliation(s)
- Annamaria Bevivino
- ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) Casaccia Research Center, Technical Unit for Sustainable Development and Innovation of Agro-Industrial System, Rome, Italy
- * E-mail:
| | - Patrizia Paganin
- ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) Casaccia Research Center, Technical Unit for Sustainable Development and Innovation of Agro-Industrial System, Rome, Italy
| | - Giovanni Bacci
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Research Centre for the Soil-Plant System, Rome, Italy
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Florence, Italy
| | - Alessandro Florio
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Research Centre for the Soil-Plant System, Rome, Italy
| | - Maite Sampedro Pellicer
- ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) Casaccia Research Center, Technical Unit for Sustainable Development and Innovation of Agro-Industrial System, Rome, Italy
| | - Maria Cristiana Papaleo
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Florence, Italy
| | - Alessio Mengoni
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Florence, Italy
| | - Luigi Ledda
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Florence, Italy
| | - Anna Benedetti
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Research Centre for the Soil-Plant System, Rome, Italy
| | - Claudia Dalmastri
- ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) Casaccia Research Center, Technical Unit for Sustainable Development and Innovation of Agro-Industrial System, Rome, Italy
| |
Collapse
|
229
|
Ciccazzo S, Esposito A, Rolli E, Zerbe S, Daffonchio D, Brusetti L. Different pioneer plant species select specific rhizosphere bacterial communities in a high mountain environment. SPRINGERPLUS 2014; 3:391. [PMID: 25110631 PMCID: PMC4125605 DOI: 10.1186/2193-1801-3-391] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/22/2014] [Indexed: 11/28/2022]
Abstract
The rhizobacterial communities of 29 pioneer plants belonging to 12 species were investigated in an alpine ecosystem to assess if plants from different species could select for specific rhizobacterial communities. Rhizospheres and unvegetated soils were collected from a floristic pioneer stage plot at 2,400 m a.s.l. in the forefield of Weisskugel Glacier (Matsch Valley, South Tyrol, Italy), after 160 years of glacier retreat. To allow for a culture-independent perspective, total environmental DNA was extracted from both rhizosphere and bare soil samples and analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and Denaturing Gradient Gel Electrophoresis (DGGE). ARISA fingerprinting showed that rhizobacterial genetic structure was extremely different from bare soil bacterial communities while rhizobacterial communities clustered strictly together according to the plant species. Sequencing of DGGE bands showed that rhizobacterial communities were mainly composed of Acidobacteria and Proteobacteria whereas bare soil was colonized by Acidobacteria and Clostridia. UniFrac significance calculated on DGGE results confirmed the rhizosphere effect exerted by the 12 species and showed different bacterial communities (P < 0.05) associated with all the plant species. These results pointed out that specific rhizobacterial communities were selected by pioneer plants of different species in a high mountain ecosystem characterized by oligotrophic and harsh environmental conditions, during an early primary succession.
Collapse
Affiliation(s)
- Sonia Ciccazzo
- DeFENS, Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Alfonso Esposito
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Eleonora Rolli
- DeFENS, Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Stefan Zerbe
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Daniele Daffonchio
- DeFENS, Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| |
Collapse
|
230
|
Winston ME, Hampton-Marcell J, Zarraonaindia I, Owens SM, Moreau CS, Gilbert JA, Hartsel J, Kennedy SJ, Gibbons SM. Understanding cultivar-specificity and soil determinants of the cannabis microbiome. PLoS One 2014; 9:e99641. [PMID: 24932479 PMCID: PMC4059704 DOI: 10.1371/journal.pone.0099641] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/17/2014] [Indexed: 11/19/2022] Open
Abstract
Understanding microbial partnerships with the medicinally and economically important crop Cannabis has the potential to affect agricultural practice by improving plant fitness and production yield. Furthermore, Cannabis presents an interesting model to explore plant-microbiome interactions as it produces numerous secondary metabolic compounds. Here we present the first description of the endorhiza-, rhizosphere-, and bulk soil-associated microbiome of five distinct Cannabis cultivars. Bacterial communities of the endorhiza showed significant cultivar-specificity. When controlling cultivar and soil type the microbial community structure was significantly different between plant cultivars, soil types, and between the endorhiza, rhizosphere and soil. The influence of soil type, plant cultivar and sample type differentiation on the microbial community structure provides support for a previously published two-tier selection model, whereby community composition across sample types is determined mainly by soil type, while community structure within endorhiza samples is determined mainly by host cultivar.
Collapse
Affiliation(s)
- Max E. Winston
- The Field Museum, Department of Science and Education, Chicago, Illinois, United States of America
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Jarrad Hampton-Marcell
- Argonne National Laboratory, Institute for Genomic and Systems Biology, Lemont, Illinois, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Iratxe Zarraonaindia
- Argonne National Laboratory, Institute for Genomic and Systems Biology, Lemont, Illinois, United States of America
- Basque Country Government, Bilbao, Spain
| | - Sarah M. Owens
- Argonne National Laboratory, Institute for Genomic and Systems Biology, Lemont, Illinois, United States of America
- Computation Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Corrie S. Moreau
- The Field Museum, Department of Science and Education, Chicago, Illinois, United States of America
| | - Jack A. Gilbert
- Argonne National Laboratory, Institute for Genomic and Systems Biology, Lemont, Illinois, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Josh Hartsel
- Cannavest, San Diego, California, United States of America
| | | | - S. M. Gibbons
- Argonne National Laboratory, Institute for Genomic and Systems Biology, Lemont, Illinois, United States of America
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
231
|
Berg G, Grube M, Schloter M, Smalla K. Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 2014; 5:148. [PMID: 24926286 PMCID: PMC4045152 DOI: 10.3389/fmicb.2014.00148] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 03/20/2014] [Indexed: 11/16/2022] Open
Abstract
Most eukaryotes develop close interactions with microorganisms that are essential for their performance and survival. Thus, eukaryotes and prokaryotes in nature can be considered as meta-organisms or holobionts. Consequently, microorganisms that colonize different plant compartments contain the plant's second genome. In this respect, many studies in the last decades have shown that plant-microbe interactions are not only crucial for better understanding plant growth and health, but also for sustainable crop production in a changing world. This mini-review acting as editorial presents retrospectives and future perspectives for plant microbiome studies as well as information gaps in this emerging research field. In addition, the contribution of this research topic to the solution of various issues is discussed.
Collapse
Affiliation(s)
- Gabriele Berg
- Austrian Centre of Industrial BiotechnologyGraz, Austria
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| | - Martin Grube
- Institute of Plant Sciences, University of GrazGraz, Austria
| | - Michael Schloter
- Environmental Genomics, Helmholtz Zentrum MünchenOberschleissheim, Germany
| | - Kornelia Smalla
- Julius Kühn-Institute (JKI), Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated PlantsBraunschweig, Germany
| |
Collapse
|
232
|
Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl Microbiol Biotechnol 2014; 98:6375-85. [PMID: 24752839 DOI: 10.1007/s00253-014-5720-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
Abstract
Plants harbors complex and variable microbial communities. Endophytic bacteria play an important function and potential role more effectively in developing sustainable systems of crop production. To examine how endophytic bacteria in sugar beet (Beta vulgaris L.) vary across both host growth period and location, PCR-based Illumina was applied to revealed the diversity and stability of endophytic bacteria in sugar beet on the north slope of Tianshan mountain, China. A total of 60.84 M effective sequences of 16S rRNA gene V3 region were obtained from sugar beet samples. These sequences revealed huge amount of operational taxonomic units (OTUs) in sugar beet, that is, 19-121 OTUs in a beet sample, at 3 % cutoff level and sequencing depth of 30,000 sequences. We identified 13 classes from the resulting 449,585 sequences. Alphaproteobacteria were the dominant class in all sugar beets, followed by Acidobacteria, Gemmatimonadetes and Actinobacteria. A marked difference in the diversity of endophytic bacteria in sugar beet for different growth periods was evident. The greatest number of OTUs was detected during rossette formation (109 OTUs) and tuber growth (146 OTUs). Endophytic bacteria diversity was reduced during seedling growth (66 OTUs) and sucrose accumulation (95 OTUs). Forty-three OTUs were common to all four periods. There were more tags of Alphaproteobacteria and Gammaproteobacteria in Shihezi than in Changji. The dynamics of endophytic bacteria communities were influenced by plant genotype and plant growth stage. To the best of our knowledge, this study is the first application of PCR-based Illumina pyrosequencing to characterize and compare multiple sugar beet samples.
Collapse
|
233
|
Erlacher A, Cardinale M, Grosch R, Grube M, Berg G. The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front Microbiol 2014; 5:175. [PMID: 24795707 PMCID: PMC4001036 DOI: 10.3389/fmicb.2014.00175] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/31/2014] [Indexed: 11/24/2022] Open
Abstract
Lettuce belongs to the most commonly raw eaten food worldwide and its microbiome plays an important role for both human and plant health. Yet, little is known about the impact of potentially occurring pathogens and beneficial inoculants of the indigenous microorganisms associated with lettuce. To address this question we studied the impact of the phytopathogenic fungus Rhizoctonia solani and the biological control agent Bacillus amyloliquefaciens FZB42 on the indigenous rhizosphere and phyllosphere community of greenhouse-grown lettuce at two plant stages. The rhizosphere and phyllosphere gammaproteobacterial microbiomes of lettuce plants showed clear differences in their overall and core microbiome composition as well as in corresponding diversity indices. The rhizosphere was dominated by Xanthomonadaceae (48%) and Pseudomonadaceae (37%) with Rhodanobacter, Pseudoxanthomonas, Dokdonella, Luteimonas, Steroidobacter, Thermomonas as core inhabitants, while the dominating taxa associated to phyllosphere were Pseudomonadaceae (54%), Moraxellaceae (16%) and Enterobacteriaceae (25%) with Alkanindiges, Pantoea and a group of Enterobacteriaceae unclassified at genus level. The preferential occurrence of enterics in the phyllosphere was the most significant difference between both habitats. Additional enhancement of enterics on the phyllosphere was observed in bottom rot diseased lettuce plants, while Acinetobacter and Alkanindiges were identified as indicators of healthy plants. Interestingly, the microbial diversity was enhanced by treatment with both the pathogen, and the co-inoculated biological control agent. The highest impact and bacterial diversity was found by Rhizoctonia inoculation, but FZB42 lowered the impact of Rhizoctonia on the microbiome. This study shows that the indigenous microbiome shifts as a consequence to pathogen attack but FZB42 can compensate these effects, which supports their role as biocontrol agent and suggests a novel mode of action.
Collapse
Affiliation(s)
- Armin Erlacher
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
- Institute of Plant Sciences, University of GrazGraz, Austria
| | - Massimiliano Cardinale
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
- Institute of Plant Sciences, University of GrazGraz, Austria
| | - Rita Grosch
- Leibniz-Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
| | - Martin Grube
- Institute of Plant Sciences, University of GrazGraz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| |
Collapse
|
234
|
Schreiter S, Ding GC, Heuer H, Neumann G, Sandmann M, Grosch R, Kropf S, Smalla K. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front Microbiol 2014; 5:144. [PMID: 24782839 PMCID: PMC3986527 DOI: 10.3389/fmicb.2014.00144] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/20/2014] [Indexed: 01/13/2023] Open
Abstract
The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected 3 and 7 weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas, and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three soils. The number of rhizosphere responders was highest 3 weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce.
Collapse
Affiliation(s)
- Susanne Schreiter
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut Braunschweig, Germany ; Department of Plant Health, Leibniz Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V. Großbeeren, Germany
| | - Guo-Chun Ding
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut Braunschweig, Germany ; College of Resources and Environmental Sciences, China Agricultural University Beijing, China
| | - Holger Heuer
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut Braunschweig, Germany
| | - Günter Neumann
- Institute of Crop Science (340h), Hohenheim University Stuttgart, Germany
| | - Martin Sandmann
- Department of Plant Health, Leibniz Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V. Großbeeren, Germany
| | - Rita Grosch
- Department of Plant Health, Leibniz Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V. Großbeeren, Germany
| | - Siegfried Kropf
- Department for Biometrics und Medical Informatics, Otto von Guericke University Magdeburg, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut Braunschweig, Germany
| |
Collapse
|
235
|
Marques JM, da Silva TF, Vollu RE, Blank AF, Ding GC, Seldin L, Smalla K. Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol Ecol 2014; 88:424-35. [PMID: 24597529 DOI: 10.1111/1574-6941.12313] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 02/21/2014] [Accepted: 02/23/2014] [Indexed: 11/30/2022] Open
Abstract
The hypothesis that sweet potato genotypes containing different starch yields in their tuberous roots can affect the bacterial communities present in the rhizosphere (soil adhering to tubers) was tested in this study. Tuberous roots of field-grown sweet potato of genotypes IPB-149 (commercial genotype), IPB-052, and IPB-137 were sampled three and six months after planting and analyzed by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing analysis of 16S rRNA genes PCR-amplified from total community DNA. The statistical analysis of the DGGE fingerprints showed that both plant age and genotypes influenced the bacterial community structure in the tuber rhizosphere. Pyrosequencing analysis showed that the IPB-149 and IPB-052 (both with high starch content) displayed similar bacterial composition in the tuber rhizosphere, while IPB-137 with the lowest starch content was distinct. In comparison with bulk soil, higher 16S rRNA gene copy numbers (qPCR) and numerous genera with significantly increased abundance in the tuber rhizosphere of IPB-137 (Sphingobium, Pseudomonas, Acinetobacter, Stenotrophomonas, Chryseobacterium) indicated a stronger rhizosphere effect. The genus Bacillus was strongly enriched in the tuber rhizosphere samples of all sweet potato genotypes studied, while other genera showed a plant genotype-dependent abundance. This is the first report on the molecular identification of bacteria being associated with the tuber rhizosphere of different sweet potato genotypes.
Collapse
Affiliation(s)
- Joana M Marques
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
236
|
Wang S, Guo L, Seneviratne CJ, Huang B, Han J, Peng L, Liu X, Zhang C. Biofilm formation of salivary microbiota on dental restorative materials analyzed by denaturing gradient gel electrophoresis and sequencing. Dent Mater J 2014; 33:325-31. [PMID: 24598237 DOI: 10.4012/dmj.2013-152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The microbial diversity of biofilms formed on the surfaces of amalgam, glass-ionomer cement, and resin composite was analyzed by denaturing gradient gel electrophoresis (DGGE). The V2-V3 region of salivary microbial 16S rDNA gene sequences of planktonic and biofilm bacteria, after 1 day and 1 week of incubation, was amplified by polymerase chain reaction (PCR) and analyzed by DGGE. The amounts of strongly adherent phylotypes after 1 day and 1 week on the three dental restorative materials were more than those on hydroxyapatite. Streptococcus salivarius was detected in both loosely adherent and strong adherent groups of all 1-day samples. At 1 week, the amounts of loosely adherent and strongly adherent phylotypes present on the three restorative materials ranked in this ascending order: glass-ionomer cement < resin composite < amalgam. Results of DGGE analysis suggested that glass-ionomer cement was the best material of choice in terms of suppressing bacterial phylotypes in biofilms.
Collapse
Affiliation(s)
- Shuai Wang
- Comprehensive Dental Care (Endodontics), Faculty of Dentistry, The University of Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
237
|
Prashar P, Kapoor N, Sachdeva S. Rhizosphere: its structure, bacterial diversity and significance. REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2014; 13:63-77. [PMID: 0 DOI: 10.1007/s11157-013-9317-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
238
|
Schmidt R, Köberl M, Mostafa A, Ramadan EM, Monschein M, Jensen KB, Bauer R, Berg G. Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Front Microbiol 2014; 5:64. [PMID: 24600444 PMCID: PMC3928675 DOI: 10.3389/fmicb.2014.00064] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/01/2014] [Indexed: 12/04/2022] Open
Abstract
Plant-associated bacteria fulfill important functions for plant growth and health. However, our knowledge about the impact of bacterial treatments on the host's microbiome and physiology is limited. The present study was conducted to assess the impact of bacterial inoculants on the microbiome of chamomile plants Chamomilla recutita (L.) Rauschert grown in a field under organic management in Egypt. Chamomile seedlings were inoculated with three indigenous Gram-positive strains (Streptomyces subrutilus Wbn2-11, Bacillus subtilis Co1-6, Paenibacillus polymyxa Mc5Re-14) from Egypt and three European Gram-negative strains (Pseudomonas fluorescens L13-6-12, Stenotrophomonas rhizophila P69, Serratia plymuthica 3Re4-18) already known for their beneficial plant-microbe interaction. Molecular fingerprints of 16S rRNA gene as well as real-time PCR analyses did not show statistically significant differences for all applied bacterial antagonists compared to the control. In contrast, a pyrosequencing analysis of the 16S rRNA gene libraries revealed significant differences in the community structure of bacteria between the treatments. These differences could be clearly shown by a shift within the community structure and corresponding beta-diversity indices. Moreover, B. subtilis Co1-6 and P. polymyxa Mc5Re-14 showed an enhancement of the bioactive secondary metabolite apigenin-7-O-glucoside. This indicates a possible new function of bacterial inoculants: to interact with the plant microbiome as well as to influence the plant metabolome.
Collapse
Affiliation(s)
- Ruth Schmidt
- Institute for Environmental Biotechnology, Graz University of Technology Graz, Austria
| | - Martina Köberl
- Institute for Environmental Biotechnology, Graz University of Technology Graz, Austria
| | - Amr Mostafa
- Faculty of Agriculture, SEKEM, Heliopolis University, Ain Shams University Cairo, Egypt
| | - Elshahat M Ramadan
- Faculty of Agriculture, SEKEM, Heliopolis University, Ain Shams University Cairo, Egypt
| | - Marlene Monschein
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz Graz, Austria
| | | | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz Graz, Austria
| | - Gabriele Berg
- Institute for Environmental Biotechnology, Graz University of Technology Graz, Austria
| |
Collapse
|
239
|
Haesler F, Hagn A, Engel M, Schloter M. Impact of elevated atmospheric O3 on the actinobacterial community structure and function in the rhizosphere of European beech (Fagus sylvatica L.). Front Microbiol 2014; 5:36. [PMID: 24575080 PMCID: PMC3920289 DOI: 10.3389/fmicb.2014.00036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/20/2014] [Indexed: 11/30/2022] Open
Abstract
Many bacteria belonging to the phylum of Actinobacteria are known as antagonists against phytpathogenic microbes. This study aimed to analyze the effect of ozone on the actinobacterial community of the rhizosphere of four years old European beech (Fagus sylvatica L.) trees during different time points of the vegetation period. Effects of ozone on the total community structure of Actinobacteria were studied based on the analysis of 16S rRNA gene amplicons. In addition effects of the ozone treatment on the diversity of potential biocontrol active Actionobacteria being able to produce antibiotics were characterized by using the type II polyketide synthases (PKS) genes as marker. Season as well as ozone treatments had a significant effect on parts of the actinobacterial rhizosphere community of European beech. However on the basis of the performed analysis, the diversity of Actinobacteria possessing type II PKS genes is neither affected by seasonal changes nor by the ozone treatments, indicating no influence of the investigated treatments on the biocontrol active part of the actinobacterial community.
Collapse
Affiliation(s)
| | | | | | - Michael Schloter
- Research Unit for Environmental Genomics, Helmholtz Zentrum München - German Research Centre for Environmental HealthNeuherberg, Germany
| |
Collapse
|
240
|
Hunter PJ, Teakle GR, Bending GD. Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica. FRONTIERS IN PLANT SCIENCE 2014; 5:27. [PMID: 24575103 PMCID: PMC3920115 DOI: 10.3389/fpls.2014.00027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/22/2014] [Indexed: 05/21/2023]
Abstract
Brassicas are among the most widely grown and important crops worldwide. Phosphorus (P) is a key mineral element in the growth of all plants and is largely supplied as inorganic rock-phosphate, a dwindling resource, which is likely to be an increasingly significant factor in global agriculture. In order to develop crops which can abstract P from the soil, utilize it more efficiently, require less of it or obtain more from other sources such as soil organic P reservoirs, a detailed understanding the factors that influence P metabolism and cycling in plants and associated soil is required. This review focuses on the current state of understanding of root traits, rhizodeposition and rhizosphere community interaction as it applies to P solubilization and acquisition, with particular reference to Brassica species. Physical root characteristics, exudation of organic acids (particularly malate and citrate) and phosphatase enzymes are considered and the potential mechanisms of control of these responses to P deficiency examined. The influence of rhizodeposits on the development of the rhizosphere microbial community is discussed and the specific features of this community in response to P deficiency are considered; specifically production of phosphatases, phytases and phosphonate hydrolases. Finally various potential approaches for improving overall P use efficiency in Brassica production are discussed.
Collapse
Affiliation(s)
- Paul J. Hunter
- School of Life Sciences, University of WarwickCoventry, UK
| | | | | |
Collapse
|
241
|
Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Greer CW. Microbial expression profiles in the rhizosphere of willows depend on soil contamination. THE ISME JOURNAL 2014; 8:344-58. [PMID: 24067257 PMCID: PMC3906822 DOI: 10.1038/ismej.2013.163] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 11/09/2022]
Abstract
The goal of phytoremediation is to use plants to immobilize, extract or degrade organic and inorganic pollutants. In the case of organic contaminants, plants essentially act indirectly through the stimulation of rhizosphere microorganisms. A detailed understanding of the effect plants have on the activities of rhizosphere microorganisms could help optimize phytoremediation systems and enhance their use. In this study, willows were planted in contaminated and non-contaminated soils in a greenhouse, and the active microbial communities and the expression of functional genes in the rhizosphere and bulk soil were compared. Ion Torrent sequencing of 16S rRNA and Illumina sequencing of mRNA were performed. Genes related to carbon and amino-acid uptake and utilization were upregulated in the willow rhizosphere, providing indirect evidence of the compositional content of the root exudates. Related to this increased nutrient input, several microbial taxa showed a significant increase in activity in the rhizosphere. The extent of the rhizosphere stimulation varied markedly with soil contamination levels. The combined selective pressure of contaminants and rhizosphere resulted in higher expression of genes related to competition (antibiotic resistance and biofilm formation) in the contaminated rhizosphere. Genes related to hydrocarbon degradation were generally more expressed in contaminated soils, but the exact complement of genes induced was different for bulk and rhizosphere soils. Together, these results provide an unprecedented view of microbial gene expression in the plant rhizosphere during phytoremediation.
Collapse
Affiliation(s)
- Etienne Yergeau
- National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada
| | - Sylvie Sanschagrin
- National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada
| | - Christine Maynard
- National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada
| | - Marc St-Arnaud
- Biodiversity Center, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec, Canada
| |
Collapse
|
242
|
Berg G, Mahnert A, Moissl-Eichinger C. Beneficial effects of plant-associated microbes on indoor microbiomes and human health? Front Microbiol 2014; 5:15. [PMID: 24523719 PMCID: PMC3905206 DOI: 10.3389/fmicb.2014.00015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/10/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology Graz, Austria
| | - Alexander Mahnert
- Institute of Environmental Biotechnology, Graz University of Technology Graz, Austria
| | | |
Collapse
|
243
|
Thompson CL. Analysis of community dynamics in environmental samples using denaturing gradient gel electrophoresis. Methods Mol Biol 2014; 1096:45-55. [PMID: 24515359 DOI: 10.1007/978-1-62703-712-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Denaturing gradient gel electrophoresis (DGGE) is a culture-independent fingerprinting technique that allows for rapid comparative analysis of changes to microbial communities. 16S rRNA genes amplified from environmental samples can be separated based on their melting behavior in a denaturing gradient of urea and formamide. A fingerprint of the microbial community is generated with each band on the gel assumed to correspond to a different bacterial species. Community dynamics can then be assessed through statistical analysis of DGGE profiles and the sequencing of excised bands.
Collapse
Affiliation(s)
- Claire L Thompson
- Department of Biogeochemistry, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
244
|
Chakraborty S, Persaud V, Vanegas S, Gautier G, Esiobu N. Analysis of the Human Oral Microbiome of Smokers and Non-Smokers Using PCR-RFLP and Ribotyping. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.410073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
245
|
Bouizgarne B, Ait Ben Aouamar A. Diversity of Plant Associated Actinobacteria. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2014. [DOI: 10.1007/978-3-319-05936-5_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
246
|
Köberl M, Schmidt R, Ramadan EM, Bauer R, Berg G. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Front Microbiol 2013; 4:400. [PMID: 24391634 PMCID: PMC3868918 DOI: 10.3389/fmicb.2013.00400] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/05/2013] [Indexed: 01/22/2023] Open
Abstract
Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants’ flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.
Collapse
Affiliation(s)
- Martina Köberl
- Institute for Environmental Biotechnology, Graz University of Technology Graz, Austria
| | - Ruth Schmidt
- Institute for Environmental Biotechnology, Graz University of Technology Graz, Austria
| | - Elshahat M Ramadan
- Faculty of Agriculture, SEKEM, Heliopolis University, Ain Shams University Cairo, Egypt
| | - Rudolf Bauer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz Graz, Austria
| | - Gabriele Berg
- Institute for Environmental Biotechnology, Graz University of Technology Graz, Austria
| |
Collapse
|
247
|
Paungfoo-Lonhienne C, Lonhienne TGA, Yeoh YK, Webb RI, Lakshmanan P, Chan CX, Lim PE, Ragan MA, Schmidt S, Hugenholtz P. A new species of Burkholderia isolated from sugarcane roots promotes plant growth. Microb Biotechnol 2013; 7:142-54. [PMID: 24350979 PMCID: PMC3937718 DOI: 10.1111/1751-7915.12105] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/07/2013] [Indexed: 01/21/2023] Open
Abstract
Sugarcane is a globally important food, biofuel and biomaterials crop. High nitrogen (N) fertilizer rates aimed at increasing yield often result in environmental damage because of excess and inefficient application. Inoculation with diazotrophic bacteria is an attractive option for reducing N fertilizer needs. However, the efficacy of bacterial inoculants is variable, and their effective formulation remains a knowledge frontier. Here, we take a new approach to investigating diazotrophic bacteria associated with roots using culture-independent microbial community profiling of a commercial sugarcane variety (Q208(A) ) in a field setting. We first identified bacteria that were markedly enriched in the rhizosphere to guide isolation and then tested putative diazotrophs for the ability to colonize axenic sugarcane plantlets (Q208(A) ) and promote growth in suboptimal N supply. One isolate readily colonized roots, fixed N2 and stimulated growth of plantlets, and was classified as a new species, Burkholderia australis sp. nov. Draft genome sequencing of the isolate confirmed the presence of nitrogen fixation. We propose that culture-independent identification and isolation of bacteria that are enriched in rhizosphere and roots, followed by systematic testing and confirming their growth-promoting capacity, is a necessary step towards designing effective microbial inoculants.
Collapse
Affiliation(s)
- Chanyarat Paungfoo-Lonhienne
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld, 4072, Australia; ARC Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Singh AK, Rai GK, Singh M, Dubey SK. Bacterial community structure in the rhizosphere of a Cry1Ac Bt-brinjal crop and comparison to its non-transgenic counterpart in the tropical soil. MICROBIAL ECOLOGY 2013; 66:927-39. [PMID: 24046073 DOI: 10.1007/s00248-013-0287-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/30/2013] [Indexed: 05/26/2023]
Abstract
To elucidate whether the transgenic crop alters the rhizospheric bacterial community structure, a 2-year study was performed with Cry1Ac gene-inserted brinjal crop (Bt) and their near isogenic non-transformed trait (non-Bt). The event of Bt crop (VRBT-8) was screened using an insect bioassay and enzyme-linked immunosorbent assay. Soil moisture, NH4 (+)-N, NO3 (-)-N, and PO4 (-)-P level had non-significant variation. Quantitative polymerase chain reaction revealed that abundance of bacterial 16S rRNA gene copies were lower in soils associated with Bt brinjal. Microbial biomass carbon (MBC) showed slight reduction in Bt brinjal soils. Higher MBC values in the non-Bt crop soil may be attributed to increased root activity and availability of readily metabolizable carbon compounds. The restriction fragment length polymorphism of PCR-amplified rRNA gene fragments detected 13 different bacterial groups with the exclusive presence of β-Proteobacteria, Chloroflexus, Planctomycetes, and Fusobacteria in non-Bt, and Cyanobacteria and Bacteroidetes in Bt soils, respectively, reflecting minor changes in the community structure. Despite the detection of Cry1Ac protein in the rhizospheric soil, the overall impact of Cry1Ac expressing Bt brinjal was less compared to that due to seasonal changes.
Collapse
|
249
|
The abundance and diversity of soil fungi in continuously monocropped chrysanthemum. ScientificWorldJournal 2013; 2013:632920. [PMID: 24260019 PMCID: PMC3821950 DOI: 10.1155/2013/632920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022] Open
Abstract
Chrysanthemum is an important ornamental plant which is increasingly being monocropped. Monocropping is known to affect both fungal abundance and species diversity. Here, quantitative PCR allied with DGGE analysis was used to show that fungi were more abundant in the rhizosphere than in the bulk soil and that the fungal populations changed during the growth cycle of the chrysanthemum. The majority of amplified fragments appeared to derive from Fusarium species, and F. oxysporum and F. solani proved to be the major pathogenic species which are built up by monocropping.
Collapse
|
250
|
Pangesti N, Pineda A, Pieterse CMJ, Dicke M, van Loon JJA. Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms. FRONTIERS IN PLANT SCIENCE 2013; 4:414. [PMID: 24167508 PMCID: PMC3805956 DOI: 10.3389/fpls.2013.00414] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/29/2013] [Indexed: 05/22/2023]
Abstract
Plants are members of complex communities and function as a link between above- and below-ground organisms. Associations between plants and soil-borne microbes commonly occur and have often been found beneficial for plant fitness. Root-associated microbes may trigger physiological changes in the host plant that influence interactions between plants and aboveground insects at several trophic levels. Aboveground, plants are under continuous attack by insect herbivores and mount multiple responses that also have systemic effects on belowground microbes. Until recently, both ecological and mechanistic studies have mostly focused on exploring these below- and above-ground interactions using simplified systems involving both single microbe and herbivore species, which is far from the naturally occurring interactions. Increasing the complexity of the systems studied is required to increase our understanding of microbe-plant-insect interactions and to gain more benefit from the use of non-pathogenic microbes in agriculture. In this review, we explore how colonization by either single non-pathogenic microbe species or a community of such microbes belowground affects plant growth and defense and how this affects the interactions of plants with aboveground insects at different trophic levels. Moreover, we review how plant responses to foliar herbivory by insects belonging to different feeding guilds affect interactions of plants with non-pathogenic soil-borne microbes. The role of phytohormones in coordinating plant growth, plant defenses against foliar herbivores while simultaneously establishing associations with non-pathogenic soil microbes is discussed.
Collapse
Affiliation(s)
- Nurmi Pangesti
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
| | - Ana Pineda
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht UniversityUtrecht, Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
| | - Joop J. A. van Loon
- Laboratory of Entomology, Wageningen UniversityWageningen, Netherlands
- *Correspondence: Joop J. A. van Loon, Laboratory of Entomology, Wageningen University, PO Box 8031, 6700 EH Wageningen, Netherlands e-mail:
| |
Collapse
|