201
|
Yamamoto K, Watanabe H, Ishihama A. Expression levels of transcription factors in Escherichia coli: growth phase- and growth condition-dependent variation of 90 regulators from six families. Microbiology (Reading) 2014; 160:1903-1913. [DOI: 10.1099/mic.0.079889-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression pattern of the genome in Escherichia coli is controlled by regulating the utilization of a limited number of RNA polymerases between a total of 4600 genes on its genome. The distribution pattern of RNA polymerase on the genome changes after two steps of protein–protein interaction with seven sigma subunits and about 300 transcription factors (TFs). Based on a systematic search for the regulation target promoters recognized by each TF, we propose two novel concepts: each TF regulates a number of target promoters; and each promoter is regulated by many TFs. In parallel, attempts have been made to determine the intracellular concentrations of all TFs using two systems: quantitative immunoblot analysis using TF-specific antibodies; and reporter assay of TF promoter activities. The direct measurement of TF protein level has so far been published for a set of 60 regulators with known functions. This study describes the determination of growth phase-dependent expression levels of 90 TFs using the reporter assay system. The translational fusion vector was constructed from the TF promoter sequence including an N-terminal proximal TF segment and the reporter GFP. At the beginning of cell growth, high-level expression was observed only for a small number of TFs. In the exponential phase, approximately 80 % TFs are expressed, but the expressed TF species change upon transfer to the stationary phase. Significant changes in the pattern of TF expression were observed between aerobic and anaerobic conditions. The list of intracellular levels of TFs provides further understanding to the transcription regulation of the E. coli genome under various stressful conditions.
Collapse
Affiliation(s)
- Kaneyoshi Yamamoto
- Research Institute of Micro-Nano Technology, Hosei University, Koganei, Tokyo 185-8584, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 185-8584, Japan
| | - Hiroki Watanabe
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 185-8584, Japan
| | - Akira Ishihama
- Research Institute of Micro-Nano Technology, Hosei University, Koganei, Tokyo 185-8584, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 185-8584, Japan
| |
Collapse
|
202
|
Abstract
Mononuclear iron enzymes can tightly bind non-activating metals. How do cells avoid mismetallation? The model bacterium Escherichia coli may control its metal pools so that thermodynamics favor the correct metallation of each enzyme. This system is disrupted, however, by superoxide and hydrogen peroxide. These species oxidize ferrous iron and thereby displace it from many iron-dependent mononuclear enzymes. Ultimately, zinc binds in its place, confers little activity, and imposes metabolic bottlenecks. Data suggest that E. coli compensates by using thiols to extract the zinc and by importing manganese to replace the catalytic iron atom. Manganese resists oxidants and provides substantial activity.
Collapse
Affiliation(s)
- James A Imlay
- From the Department of Microbiology, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
203
|
Gundlach J, Winter J. Evolution of Escherichia coli for maximum HOCl resistance through constitutive expression of the OxyR regulon. Microbiology (Reading) 2014; 160:1690-1704. [DOI: 10.1099/mic.0.074815-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exposure of cells to stress impairs cellular functions and may cause killing or adaptation. Adaptation can be facilitated by stress-induced mutagenesis or epigenetic changes, i.e. phenotypic variation without mutations. Upon exposure to HOCl, which is produced by the innate immune system upon bacterial infection, bacteria trigger stress responses that enable increased survival against the stress. Here, we addressed the question whether bacteria can adapt to high HOCl doses and if so, how the acquired resistance is facilitated. We evolved Escherichia coli cells for maximum HOCl resistance by successively increasing the HOCl concentration in the cultivation medium. HOCl-resistant cells showed broad stress resistance but did not carry any chromosomal mutations as revealed by whole-genome sequencing. According to proteome analysis and analysis of transcript levels of stress-related genes, HOCl resistance was accompanied by altered levels of outer-membrane proteins A, C, F and W, and, most prominently, a constitutively expressed OxyR regulon. Induction of the OxyR regulon is facilitated by a partially oxidized OxyR leading to increased levels of antioxidant proteins such as Dps, AhpC/AhpF and KatG. These changes were maintained in evolved strains even when they were cultivated without stress for a prolonged time, indicating epigenetic changes contributed to stress resistance. This indicated that maximum HOCl resistance was conferred by the accumulated action of the OxyR stress response and other factors such as altered levels of outer-membrane proteins.
Collapse
Affiliation(s)
- Jasmin Gundlach
- Center for Integrated Protein Science Munich, Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Jeannette Winter
- Center for Integrated Protein Science Munich, Department Chemie, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
204
|
Kim S, Bang YJ, Kim D, Lim JG, Oh MH, Choi SH. Distinct characteristics of OxyR2, a new OxyR-type regulator, ensuring expression of Peroxiredoxin 2 detoxifying low levels of hydrogen peroxide inVibrio vulnificus. Mol Microbiol 2014; 93:992-1009. [DOI: 10.1111/mmi.12712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Suyeon Kim
- National Research Laboratory of Molecular Microbiology and Toxicology; Department of Agricultural Biotechnology; Center for Food Safety and Toxicology; Seoul National University; Seoul 151-921 Korea
| | - Ye-Ji Bang
- National Research Laboratory of Molecular Microbiology and Toxicology; Department of Agricultural Biotechnology; Center for Food Safety and Toxicology; Seoul National University; Seoul 151-921 Korea
| | - Dukyun Kim
- National Research Laboratory of Molecular Microbiology and Toxicology; Department of Agricultural Biotechnology; Center for Food Safety and Toxicology; Seoul National University; Seoul 151-921 Korea
| | - Jong Gyu Lim
- National Research Laboratory of Molecular Microbiology and Toxicology; Department of Agricultural Biotechnology; Center for Food Safety and Toxicology; Seoul National University; Seoul 151-921 Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science; Dankook University; Cheonan 330-714 Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology; Department of Agricultural Biotechnology; Center for Food Safety and Toxicology; Seoul National University; Seoul 151-921 Korea
| |
Collapse
|
205
|
Kim J, Park W. Oxidative stress response in Pseudomonas putida. Appl Microbiol Biotechnol 2014; 98:6933-46. [PMID: 24957251 DOI: 10.1007/s00253-014-5883-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/30/2022]
Abstract
Pseudomonas putida is widely distributed in nature and is capable of degrading various organic compounds due to its high metabolic versatility. The survival capacity of P. putida stems from its frequent exposure to various endogenous and exogenous oxidative stresses. Oxidative stress is an unavoidable consequence of interactions with various reactive oxygen species (ROS)-inducing agents existing in various niches. ROS could facilitate the evolution of bacteria by mutating genomes. Aerobic bacteria maintain defense mechanisms against oxidative stress throughout their evolution. To overcome the detrimental effects of oxidative stress, P. putida has developed defensive cellular systems involving induction of stress-sensing proteins and detoxification enzymes as well as regulation of oxidative stress response networks. Genetic responses to oxidative stress in P. putida differ markedly from those observed in Escherichia coli and Salmonella spp. Two major redox-sensing transcriptional regulators, SoxR and OxyR, are present and functional in the genome of P. putida. However, the novel regulators FinR and HexR control many genes belonging to the E. coli SoxR regulon. Oxidative stress can be generated by exposure to antibiotics, and iron homeostasis in P. putida is crucial for bacterial cell survival during treatment with antibiotics. This review highlights and summarizes current knowledge of oxidative stress in P. putida, as a model soil bacterium, together with recent studies from molecular genetics perspectives.
Collapse
Affiliation(s)
- Jisun Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5Ga, Seungbuk-Ku, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
206
|
King T, Kocharunchitt C, Gobius K, Bowman JP, Ross T. Global genome response of Escherichia coli O157∶H7 Sakai during dynamic changes in growth kinetics induced by an abrupt temperature downshift. PLoS One 2014; 9:e99627. [PMID: 24926786 PMCID: PMC4057180 DOI: 10.1371/journal.pone.0099627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/17/2014] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli O157∶H7 is a mesophilic food-borne pathogen. We investigated the growth kinetics of E. coli O157∶H7 Sakai during an abrupt temperature downshift from 35°C to either 20°C, 17°C, 14°C or 10°C; as well as the molecular mechanisms enabling growth after cold stress upon an abrupt downshift from 35°C to 14°C in an integrated transcriptomic and proteomic analysis. All downshifts caused a lag period of growth before growth resumed at a rate typical of the post-shift temperature. Lag and generation time increased with the magnitude of the shift or with the final temperature, while relative lag time displayed little variation across the test range. Analysis of time-dependent molecular changes revealed, in keeping with a decreased growth rate at lower temperature, repression of genes and proteins involved in DNA replication, protein synthesis and carbohydrate catabolism. Consistent with cold-induced remodelling of the bacterial cell envelope, alterations occurred in the expression of genes and proteins involved in transport and binding. The RpoS regulon exhibited sustained induction confirming its importance in adaptation and growth at 14°C. The RpoE regulon was transiently induced, indicating a potential role for this extracytoplasmic stress response system in the early phase of low temperature adaptation during lag phase. Interestingly, genes previously reported to be amongst the most highly up-regulated under oxidative stress were consistently down-regulated. This comprehensive analysis provides insight into the molecular mechanisms operating during adaptation of E. coli to growth at low temperature and is relevant to its physiological state during chilling in foods, such as carcasses.
Collapse
Affiliation(s)
- Thea King
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food and Health Sciences, North Ryde, New South Wales, Australia
- * E-mail:
| | - Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Kari Gobius
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - John P. Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
207
|
Miller HK, Kwuan L, Schwiesow L, Bernick DL, Mettert E, Ramirez HA, Ragle JM, Chan PP, Kiley PJ, Lowe TM, Auerbuch V. IscR is essential for yersinia pseudotuberculosis type III secretion and virulence. PLoS Pathog 2014; 10:e1004194. [PMID: 24945271 PMCID: PMC4055776 DOI: 10.1371/journal.ppat.1004194] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 05/06/2014] [Indexed: 11/19/2022] Open
Abstract
Type III secretion systems (T3SS) are essential for virulence in dozens of pathogens, but are not required for growth outside the host. Therefore, the T3SS of many bacterial species are under tight regulatory control. To increase our understanding of the molecular mechanisms behind T3SS regulation, we performed a transposon screen to identify genes important for T3SS function in the food-borne pathogen Yersinia pseudotuberculosis. We identified two unique transposon insertions in YPTB2860, a gene that displays 79% identity with the E. coliiron-sulfur cluster regulator, IscR. A Y. pseudotuberculosis iscR in-frame deletion mutant (ΔiscR) was deficient in secretion of Ysc T3SS effector proteins and in targeting macrophages through the T3SS. To determine the mechanism behind IscR control of the Ysc T3SS, we carried out transcriptome and bioinformatic analysis to identify Y. pseudotuberculosis genes regulated by IscR. We discovered a putative IscR binding motif upstream of the Y. pseudotuberculosis yscW-lcrF operon. As LcrF controls transcription of a number of critical T3SS genes in Yersinia, we hypothesized that Yersinia IscR may control the Ysc T3SS through LcrF. Indeed, purified IscR bound to the identified yscW-lcrF promoter motif and mRNA levels of lcrF and 24 other T3SS genes were reduced in Y. pseudotuberculosis in the absence of IscR. Importantly, mice orally infected with the Y. pseudotuberculosis ΔiscR mutant displayed decreased bacterial burden in Peyer's patches, mesenteric lymph nodes, spleens, and livers, indicating an essential role for IscR in Y. pseudotuberculosis virulence. This study presents the first characterization of Yersinia IscR and provides evidence that IscR is critical for virulence and type III secretion through direct regulation of the T3SS master regulator, LcrF. Bacterial pathogens use regulators that sense environmental cues to enhance their fitness. Here, we identify a transcriptional regulator in the human gut pathogen, Yersinia pseudotuberculosis, which controls a specialized secretion system essential for bacterial growth in mammalian tissues. This regulator was shown in other bacterial species to alter its activity in response to changes in iron concentration and oxidative stress, but has never been studied in Yersinia. Importantly, Y. pseudotuberculosis experiences large changes in iron bioavailability upon transit from the gut to deeper tissues and iron is a critical component in Yersinia virulence, as individuals with iron overload disorders have enhanced susceptibility to systemic Yersinia infections. Our work places this iron-modulated transcriptional regulator within the regulatory network that controls virulence gene expression in Y. pseudotuberculosis, identifying it as a potential new target for antimicrobial agents.
Collapse
Affiliation(s)
- Halie K. Miller
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Laura Kwuan
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Leah Schwiesow
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - David L. Bernick
- Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Erin Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hector A. Ramirez
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - James M. Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Patricia P. Chan
- Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Todd M. Lowe
- Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
208
|
Gama-Castro S, Rinaldi F, López-Fuentes A, Balderas-Martínez YI, Clematide S, Ellendorff TR, Santos-Zavaleta A, Marques-Madeira H, Collado-Vides J. Assisted curation of regulatory interactions and growth conditions of OxyR in E. coli K-12. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau049. [PMID: 24903516 PMCID: PMC4207228 DOI: 10.1093/database/bau049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Given the current explosion of data within original publications generated in the field of genomics, a recognized bottleneck is the transfer of such knowledge into comprehensive databases. We have for years organized knowledge on transcriptional regulation reported in the original literature of Escherichia coli K-12 into RegulonDB (http://regulondb.ccg.unam.mx), our database that is currently supported by >5000 papers. Here, we report a first step towards the automatic biocuration of growth conditions in this corpus. Using the OntoGene text-mining system (http://www.ontogene.org), we extracted and manually validated regulatory interactions and growth conditions in a new approach based on filters that enable the curator to select informative sentences from preprocessed full papers. Based on a set of 48 papers dealing with oxidative stress by OxyR, we were able to retrieve 100% of the OxyR regulatory interactions present in RegulonDB, including the transcription factors and their effect on target genes. Our strategy was designed to extract, as we did, their growth conditions. This result provides a proof of concept for a more direct and efficient curation process, and enables us to define the strategy of the subsequent steps to be implemented for a semi-automatic curation of original literature dealing with regulation of gene expression in bacteria. This project will enhance the efficiency and quality of the curation of knowledge present in the literature of gene regulation, and contribute to a significant increase in the encoding of the regulatory network of E. coli. RegulonDB Database URL:http://regulondb.ccg.unam.mx OntoGene URL:http://www.ontogene.org
Collapse
Affiliation(s)
- Socorro Gama-Castro
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Fabio Rinaldi
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Alejandra López-Fuentes
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Yalbi Itzel Balderas-Martínez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Simon Clematide
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Tilia Renate Ellendorff
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Alberto Santos-Zavaleta
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Hernani Marques-Madeira
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| |
Collapse
|
209
|
Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli. J Bacteriol 2014; 196:2718-27. [PMID: 24837290 DOI: 10.1128/jb.01579-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The expression pattern of the Escherichia coli genome is controlled in part by regulating the utilization of a limited number of RNA polymerases among a total of its approximately 4,600 genes. The distribution pattern of RNA polymerase changes from modulation of two types of protein-protein interactions: the interaction of core RNA polymerase with seven species of the sigma subunit for differential promoter recognition and the interaction of RNA polymerase holoenzyme with about 300 different species of transcription factors (TFs) with regulatory functions. We have been involved in the systematic search for the target promoters recognized by each sigma factor and each TF using the newly developed Genomic SELEX system. In parallel, we developed the promoter-specific (PS)-TF screening system for identification of the whole set of TFs involved in regulation of each promoter. Understanding the regulation of genome transcription also requires knowing the intracellular concentrations of the sigma subunits and TFs under various growth conditions. This report describes the intracellular levels of 65 species of TF with known function in E. coli K-12 W3110 at various phases of cell growth and at various temperatures. The list of intracellular concentrations of the sigma factors and TFs provides a community resource for understanding the transcription regulation of E. coli under various stressful conditions in nature.
Collapse
|
210
|
García-Santamarina S, Boronat S, Hidalgo E. Reversible Cysteine Oxidation in Hydrogen Peroxide Sensing and Signal Transduction. Biochemistry 2014; 53:2560-80. [DOI: 10.1021/bi401700f] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sarela García-Santamarina
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Susanna Boronat
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| |
Collapse
|
211
|
Intracellular hydrogen peroxide and superoxide poison 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase, the first committed enzyme in the aromatic biosynthetic pathway of Escherichia coli. J Bacteriol 2014; 196:1980-91. [PMID: 24659765 DOI: 10.1128/jb.01573-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In Escherichia coli, aromatic compound biosynthesis is the process that has shown the greatest sensitivity to hydrogen peroxide stress. This pathway has long been recognized to be sensitive to superoxide as well, but the molecular target was unknown. Feeding experiments indicated that the bottleneck lies early in the pathway, and the suppressive effects of fur mutations and manganese supplementation suggested the involvement of a metalloprotein. The 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (DAHP synthase) activity catalyzes the first step in the pathway, and it is provided by three isozymes known to rely upon a divalent metal. This activity progressively declined when cells were stressed with either oxidant. The purified enzyme was activated more strongly by ferrous iron than by other metals, and only this metalloform could be inactivated by hydrogen peroxide or superoxide. We infer that iron is the prosthetic metal in vivo. Both oxidants displace the iron atom from the enzyme. In peroxide-stressed cells, the enzyme accumulated as an apoprotein, potentially with an oxidized cysteine residue. In superoxide-stressed cells, the enzyme acquired a nonactivating zinc ion in its active site, an apparent consequence of the repeated ejection of iron. Manganese supplementation protected the activity in both cases, which matches the ability of manganese to metallate the enzyme and to provide substantial oxidant-resistant activity. DAHP synthase thus belongs to a family of mononuclear iron-containing enzymes that are disabled by oxidative stress. To date, all the intracellular injuries caused by physiological doses of these reactive oxygen species have arisen from the oxidation of reduced iron centers.
Collapse
|
212
|
Vidovic S, Korber DR. Escherichia coli O157: Insights into the adaptive stress physiology and the influence of stressors on epidemiology and ecology of this human pathogen. Crit Rev Microbiol 2014; 42:83-93. [PMID: 24601836 DOI: 10.3109/1040841x.2014.889654] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Escherichia coli O157, a foodborne pathogen of major concern for public health, has been associated with numerous outbreaks of haemorrhagic colitis and hemolytic uremic syndrome worldwide. Human infection with E. coli O157 has been primarily associated with the food-chain transmission route. This transmission route commonly elicits a multi-faceted adaptive stress response of E. coli O157 for an extended period of time prior to human infection. Several recent research articles have indicated that E. coli O157:H7 has evolved unique survival characteristics which can affect the epidemiology and ecology of this zoonotic pathogen. This review article summarizes the recent knowledge of the molecular responses of E. coli O157 to the most common stressors found within the human food chain, and further emphasizes the influence of these stressors on the epidemiology and ecology of E. coli O157.
Collapse
Affiliation(s)
- Sinisa Vidovic
- a Department of Food and Bioproducts Sciences , University of Saskatchewan , Saskatchewan , Canada
| | - Darren R Korber
- a Department of Food and Bioproducts Sciences , University of Saskatchewan , Saskatchewan , Canada
| |
Collapse
|
213
|
Kocharunchitt C, King T, Gobius K, Bowman JP, Ross T. Global genome response of Escherichia coli O157∶H7 Sakai during dynamic changes in growth kinetics induced by an abrupt downshift in water activity. PLoS One 2014; 9:e90422. [PMID: 24594867 PMCID: PMC3940904 DOI: 10.1371/journal.pone.0090422] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/30/2014] [Indexed: 01/10/2023] Open
Abstract
The present study was undertaken to investigate growth kinetics and time-dependent change in global expression of Escherichia coli O157∶H7 Sakai upon an abrupt downshift in water activity (aw). Based on viable count data, shifting E. coli from aw 0.993 to aw 0.985 or less caused an apparent loss, then recovery, of culturability. Exponential growth then resumed at a rate characteristic for the aw imposed. To understand the responses of this pathogen to abrupt osmotic stress, we employed an integrated genomic and proteomic approach to characterize its cellular response during exposure to a rapid downshift but still within the growth range from aw 0.993 to aw 0.967. Of particular interest, genes and proteins with cell envelope-related functions were induced during the initial loss and subsequent recovery of culturability. This implies that cells undergo remodeling of their envelope composition, enabling them to adapt to osmotic stress. Growth at low aw, however, involved up-regulating additional genes and proteins, which are involved in the biosynthesis of specific amino acids, and carbohydrate catabolism and energy generation. This suggests their important role in facilitating growth under such stress. Finally, we highlighted the ability of E. coli to activate multiple stress responses by transiently inducing the RpoE and RpoH regulons to control protein misfolding, while simultaneously activating the master stress regulator RpoS to mediate long-term adaptation to hyperosmolality. This investigation extends our understanding of the potential mechanisms used by pathogenic E. coli to adapt, survive and grow under osmotic stress, which could potentially be exploited to aid the selection and/or development of novel strategies to inactivate this pathogen.
Collapse
Affiliation(s)
- Chawalit Kocharunchitt
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| | - Thea King
- Commonwealth Scientific and Industrial Research Organisation Animal, Food and Health Sciences, North Ryde, New South Wales, Australia
| | - Kari Gobius
- Commonwealth Scientific and Industrial Research Organisation Animal, Food and Health Sciences, Werribee, Victoria, Australia
| | - John P. Bowman
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
214
|
Mai-Prochnow A, Murphy AB, McLean KM, Kong MG, Ostrikov KK. Atmospheric pressure plasmas: infection control and bacterial responses. Int J Antimicrob Agents 2014; 43:508-17. [PMID: 24637224 DOI: 10.1016/j.ijantimicag.2014.01.025] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 12/26/2022]
Abstract
Cold atmospheric pressure plasma (APP) is a recent, cutting-edge antimicrobial treatment. It has the potential to be used as an alternative to traditional treatments such as antibiotics and as a promoter of wound healing, making it a promising tool in a range of biomedical applications with particular importance for combating infections. A number of studies show very promising results for APP-mediated killing of bacteria, including removal of biofilms of pathogenic bacteria such as Pseudomonas aeruginosa. However, the mode of action of APP and the resulting bacterial response are not fully understood. Use of a variety of different plasma-generating devices, different types of plasma gases and different treatment modes makes it challenging to show reproducibility and transferability of results. This review considers some important studies in which APP was used as an antibacterial agent, and specifically those that elucidate its mode of action, with the aim of identifying common bacterial responses to APP exposure. The review has a particular emphasis on mechanisms of interactions of bacterial biofilms with APP.
Collapse
Affiliation(s)
- Anne Mai-Prochnow
- CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070, Australia.
| | - Anthony B Murphy
- CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070, Australia
| | - Keith M McLean
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Michael G Kong
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Suite 422, 4211 Monarch Way, Norfolk, VA 23529, USA
| | - Kostya Ken Ostrikov
- CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070, Australia
| |
Collapse
|
215
|
Haussig JM, Matuschewski K, Kooij TWA. Identification of vital and dispensable sulfur utilization factors in the Plasmodium apicoplast. PLoS One 2014; 9:e89718. [PMID: 24586983 PMCID: PMC3931816 DOI: 10.1371/journal.pone.0089718] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/23/2014] [Indexed: 11/18/2022] Open
Abstract
Iron-sulfur [Fe-S] clusters are ubiquitous and critical cofactors in diverse biochemical processes. They are assembled by distinct [Fe-S] cluster biosynthesis pathways, typically in organelles of endosymbiotic origin. Apicomplexan parasites, including Plasmodium, the causative agent of malaria, harbor two separate [Fe-S] cluster biosynthesis pathways in the their mitochondrion and apicoplast. In this study, we systematically targeted the five nuclear-encoded sulfur utilization factors (SUF) of the apicoplast [Fe-S] cluster biosynthesis pathway by experimental genetics in the murine malaria model parasite Plasmodium berghei. We show that four SUFs, namely SUFC, D, E, and S are refractory to targeted gene deletion, validating them as potential targets for antimalarial drug development. We achieved targeted deletion of SUFA, which encodes a potential [Fe-S] transfer protein, indicative of a dispensable role during asexual blood stage growth in vivo. Furthermore, no abnormalities were observed during Plasmodium life cycle progression in the insect and mammalian hosts. Fusion of a fluorescent tag to the endogenous P. berghei SUFs demonstrated that all loci were accessible to genetic modification and that all five tagged SUFs localize to the apicoplast. Together, our experimental genetics analysis identifies the key components of the SUF [Fe-S] cluster biosynthesis pathway in the apicoplast of a malarial parasite and shows that absence of SUFC, D, E, or S is incompatible with Plasmodium blood infection in vivo.
Collapse
Affiliation(s)
- Joana M. Haussig
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Taco W. A. Kooij
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
216
|
Lim JG, Park JH, Choi SH. Low cell density regulator AphA upregulates the expression of Vibrio vulnificus iscR gene encoding the Fe-S cluster regulator IscR. J Microbiol 2014; 52:413-21. [PMID: 24535746 DOI: 10.1007/s12275-014-3592-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 12/19/2022]
Abstract
IscR is a global transcriptional regulator that contributes to the pathogenesis of Vibrio vulnificus, a food-borne pathogen. In the present study, the regulatory mechanism for the iscR expression of V. vulnificus was evaluated. The expression of iscR was found to be upregulated by a transcriptional regulator AphA, a homologue of the low cell density regulator AphA of the Vibrio species, in the exponential phase of growth. The promoter activity of iscR appeared to be activated and repressed by AphA and IscR, respectively. EMSA and DNase I protection assay showed that both AphA and IscR bind to the iscR regulatory region and the binding site for AphA overlapped with part of the binding site for IscR. Further mutational analysis suggested that AphA upregulates the iscR expression only in the presence of functional IscR. An examination of the roles of AphA and the binding sites revealed that the binding of AphA would hinder the IscR-mediated repression of the iscR transcription. The combined results show that V. vulnificus AphA upregulates iscR expression by antagonizing its negative autoregulation.
Collapse
Affiliation(s)
- Jong Gyu Lim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul, 151-921, Republic of Korea
| | | | | |
Collapse
|
217
|
Moyano AJ, Tobares RA, Rizzi YS, Krapp AR, Mondotte JA, Bocco JL, Saleh MC, Carrillo N, Smania AM. A long-chain flavodoxin protects Pseudomonas aeruginosa from oxidative stress and host bacterial clearance. PLoS Genet 2014; 10:e1004163. [PMID: 24550745 PMCID: PMC3923664 DOI: 10.1371/journal.pgen.1004163] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/20/2013] [Indexed: 12/12/2022] Open
Abstract
Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for flavodoxin from P. aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments. Coping with toxic reactive oxygen species (ROS) generated as by-products of aerobic metabolism is a major challenge for O2-thriving organisms, which deploy multilevel responses to prevent ROS-triggered damage, including membrane modifications, induction of antioxidant and repair systems and/or replacement of ROS-sensitive targets by resistant isofunctional versions, among others. The opportunistic pathogen Pseudomonas aeruginosa is frequently exposed to ROS in the environment as well as within the host, and we describe herein a new response by which this microorganism can deal with oxidative stress. This pathway depends on a previously uncharacterized gene that we named fldP (for flavodoxin from P. aeruginosa), which encodes a flavoprotein that belongs to the family of long-chain flavodoxins. FldP exhibited a protective role against ROS-dependent physiological and mutational damage, and contributed to the survival of P. aeruginosa during in vivo infection of flies as well as within mammalian macrophagic cells. Thus, fldP increases the adaptive repertoire of P. aeruginosa to face oxidative stress.
Collapse
Affiliation(s)
- Alejandro J. Moyano
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Romina A. Tobares
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yanina S. Rizzi
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana R. Krapp
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan A. Mondotte
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - José L. Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrea M. Smania
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
218
|
Choi S, Kim Y, Oh S, Oh S, Chun T, Kim S. Inhibitory effect of skatole (3-methylindole) on enterohemorrhagic Escherichia coli
O157:H7 ATCC 43894 biofilm formation mediated by elevated endogenous oxidative stress. Lett Appl Microbiol 2014; 58:454-61. [DOI: 10.1111/lam.12212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/05/2013] [Accepted: 12/20/2013] [Indexed: 12/23/2022]
Affiliation(s)
- S.H. Choi
- Division of Food Bioscience and Technology; Korea University; Seoul Korea
| | - Y. Kim
- BK21 Plus Graduate Program; Department of Animal Science and Institute of Rare Earth for Biological Application; Chonbuk National University; Jeonju Korea
| | - S. Oh
- BK21 Plus Graduate Program; Department of Animal Science and Institute of Rare Earth for Biological Application; Chonbuk National University; Jeonju Korea
| | - S. Oh
- Division of Animal Science; Institute of Agricultural Science and Technology; Chonnam National University; Gwangju Korea
| | - T. Chun
- Division of Biotechnology; School of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - S.H. Kim
- Division of Food Bioscience and Technology; Korea University; Seoul Korea
| |
Collapse
|
219
|
Boronat S, Domènech A, Paulo E, Calvo IA, García-Santamarina S, García P, Encinar del Dedo J, Barcons A, Serrano E, Carmona M, Hidalgo E. Thiol-based H2O2 signalling in microbial systems. Redox Biol 2014; 2:395-9. [PMID: 24563858 PMCID: PMC3926117 DOI: 10.1016/j.redox.2014.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/16/2014] [Indexed: 11/19/2022] Open
Abstract
Cysteine residues, and in particular their thiolate groups, react not only with reactive oxygen species but also with electrophiles and with reactive nitrogen species. Thus, cysteine oxidation has often been linked to the toxic effects of some of these reactive molecules. However, thiol-based switches are common in protein sensors of antioxidant cascades, in both prokaryotic and eukaryotic organisms. We will describe here three redox sensors, the transcription factors OxyR, Yap1 and Pap1, which respond by disulfide bond formation to hydrogen peroxide stress, focusing specially on the differences among the three peroxide-sensing mechanisms.
Collapse
|
220
|
Lim JG, Choi SH. IscR is a global regulator essential for pathogenesis of Vibrio vulnificus and induced by host cells. Infect Immun 2014; 82:569-78. [PMID: 24478072 PMCID: PMC3911388 DOI: 10.1128/iai.01141-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 11/11/2013] [Indexed: 12/12/2022] Open
Abstract
A mutant that exhibited less cytotoxic activity toward INT-407 human intestinal epithelial cells than the wild type was screened from a random transposon mutant library of Vibrio vulnificus, and an open reading frame encoding an Fe-S cluster regulator, IscR, was identified using a transposon-tagging method. A mutational analysis demonstrated that IscR contributes to mouse mortality as well as cytotoxicity toward the INT-407 cells, indicating that IscR is essential for the pathogenesis of V. vulnificus. A whole-genome microarray analysis revealed that IscR influenced the expression of 67 genes, of which 52 were upregulated and 15 were downregulated. Among these, 12 genes most likely involved in motility and adhesion to host cells, hemolytic activity, and survival under oxidative stress of the pathogen during infection were selected and experimentally verified to be upregulated by IscR. Accordingly, the disruption of iscR resulted in a significant reduction in motility and adhesion to INT-407 cells, in hemolytic activity, and in resistance to reactive oxygen species (ROS) such as H2O2 and tert-butyl hydroperoxide (t-BOOH). Furthermore, the present study demonstrated that iscR expression was induced by exposure of V. vulnificus to the INT-407 cells, and the induction appeared to be mediated by ROS generated by the host cells during infection. Consequently, the combined results indicated that IscR is a global regulator that contributes to the overall success in the pathogenesis of V. vulnificus by regulating the expression of various virulence and survival genes in addition to Fe-S cluster genes.
Collapse
Affiliation(s)
- Jong Gyu Lim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea
| | | |
Collapse
|
221
|
|
222
|
Investigating the responses of Cronobacter sakazakii to garlic-drived organosulfur compounds: a systematic study of pathogenic-bacterium injury by use of high-throughput whole-transcriptome sequencing and confocal micro-raman spectroscopy. Appl Environ Microbiol 2013; 80:959-71. [PMID: 24271174 DOI: 10.1128/aem.03460-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present the results of a study using high-throughput whole-transcriptome sequencing (RNA-seq) and vibrational spectroscopy to characterize and fingerprint pathogenic-bacterium injury under conditions of unfavorable stress. Two garlic-derived organosulfur compounds were found to be highly effective antimicrobial compounds against Cronobacter sakazakii, a leading pathogen associated with invasive infection of infants and causing meningitis, necrotizing entercolitis, and bacteremia. RNA-seq shows changes in gene expression patterns and transcriptomic response, while confocal micro-Raman spectroscopy characterizes macromolecular changes in the bacterial cell resulting from this chemical stress. RNA-seq analyses showed that the bacterial response to ajoene differed from the response to diallyl sulfide. Specifically, ajoene caused downregulation of motility-related genes, while diallyl sulfide treatment caused an increased expression of cell wall synthesis genes. Confocal micro-Raman spectroscopy revealed that the two compounds appear to have the same phase I antimicrobial mechanism of binding to thiol-containing proteins/enzymes in bacterial cells generating a disulfide stretching band but different phase II antimicrobial mechanisms, showing alterations in the secondary structures of proteins in two different ways. Diallyl sulfide primarily altered the α-helix and β-sheet, as reflected in changes in amide I, while ajoene altered the structures containing phenylalanine and tyrosine. Bayesian probability analysis validated the ability of principal component analysis to differentiate treated and control C. sakazakii cells. Scanning electron microscopy confirmed cell injury, showing significant morphological variations in cells following treatments by these two compounds. Findings from this study aid in the development of effective intervention strategies to reduce the risk of C. sakazakii contamination in the food production environment and on food contact surfaces, reducing the risks to susceptible consumers.
Collapse
|
223
|
Protection from oxidative stress relies mainly on derepression of OxyR-dependent KatB and Dps in Shewanella oneidensis. J Bacteriol 2013; 196:445-58. [PMID: 24214945 DOI: 10.1128/jb.01077-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella thrives in redox-stratified environments where accumulation of H2O2 becomes inevitable because of the chemical oxidation of reduced metals, sulfur species, or organic molecules. As a research model, the representative species Shewanella oneidensis has been extensively studied for its response to various stresses. However, little progress has been made toward an understanding of the physiological and genetic responses of this bacterium to oxidative stress, which is critically relevant to its application as a dissimilatory metal-reducing bacterium. In this study, we systematically investigated the mechanism underlying the response to H2O2 at cellular, genomic, and molecular levels. Using transcriptional profiling, we found that S. oneidensis is hypersensitive to H2O2 in comparison with Escherichia coli, and well-conserved defense genes such as ahpCF, katB, katG, and dps appear to form the first line of defense, whereas iron-sulfur-protecting proteins may not play a significant role. Subsequent identification and characterization of an analogue of the E. coli oxyR gene revealed that S. oneidensis OxyR is the master regulator that mediates the bacterial response to H2O2-induced oxidative stress by directly repressing or activating the defense genes. The sensitivity of S. oneidensis to H2O2 is likely attributable to the lack of an inducible manganese import mechanism during stress. To cope with stress, major strategies that S. oneidensis adopts include rapid removal of the oxidant and restriction of intracellular iron concentrations, both of which are achieved predominantly by derepression of the katB and dps genes.
Collapse
|
224
|
OxyR contributes to the virulence of a Clonal Group A Escherichia coli strain (O17:K+:H18) in animal models of urinary tract infection, subcutaneous infection, and systemic sepsis. Microb Pathog 2013; 64:1-5. [DOI: 10.1016/j.micpath.2013.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 11/23/2022]
|
225
|
Saccà ML, Fajardo C, Nande M, Martín M. Effects of nano zero-valent iron on Klebsiella oxytoca and stress response. MICROBIAL ECOLOGY 2013; 66:806-12. [PMID: 23893265 DOI: 10.1007/s00248-013-0269-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/10/2013] [Indexed: 05/20/2023]
Abstract
Nano zero-valent iron (NZVI) is a new option for contaminated soil and groundwater treatment, despite little is known on their impact on environmental microorganisms. Klebsiella oxytoca K5 strain, isolated from the NZVI-treated soil, was used to investigate the bacterial, phenotypical and molecular response to commercial NZVI exposure. Cytotoxicity assays at three NZVI concentrations (1, 5 and 10 mg mL(-1)) suggested a negligible bacteriostatic effect and the lack of bactericidal effect. Structural changes were analysed by electronic microscopy. Scanning electron microscopy revealed the presence of NZVI around some bacterial cells, but no apparent morphological changes were seen. NZVI attachment to the cell surface was confirmed by transmission electron microscopy, although most of them were not affected. A proteomic approach (two-dimensional electrophoresis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry) was used to investigate NZVI impact. For the first time to our knowledge, results revealed that exposure of a soil bacterium to NZVI resulted in the overproduction of tryptophanase, associated with oxidative stress response. K5 may set up an adaptative stress response involving indole as a signal molecule to inform the bacterial population about environmental changes. These findings would improve knowledge on the molecular mechanisms underlying bacterial response to NZVI exposure.
Collapse
Affiliation(s)
- Maria Ludovica Saccà
- Campus de Excelencia Internacional de Moncloa, Edificio del Real Jardín Botánico Alfonso XIII, Ciudad Universitaria, 28040, Madrid, Spain,
| | | | | | | |
Collapse
|
226
|
Kreuzer KN. DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harb Perspect Biol 2013; 5:a012674. [PMID: 24097899 DOI: 10.1101/cshperspect.a012674] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized.
Collapse
Affiliation(s)
- Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
227
|
Svintradze DV, Peterson DL, Collazo-Santiago EA, Lewis JP, Wright HT. Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2091-103. [PMID: 24100327 PMCID: PMC3792645 DOI: 10.1107/s0907444913019471] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/15/2013] [Indexed: 11/10/2022]
Abstract
OxyR transcriptionally regulates Escherichia coli oxidative stress response genes through a reversibly reducible cysteine disulfide biosensor of cellular redox status. Structural changes induced by redox changes in these cysteines are conformationally transmitted to the dimer subunit interfaces, which alters dimer and tetramer interactions with DNA. In contrast to E. coli OxyR regulatory-domain structures, crystal structures of Porphyromonas gingivalis OxyR regulatory domains show minimal differences in dimer configuration on changes in cysteine disulfide redox status. This locked configuration of the P. gingivalis OxyR regulatory-domain dimer closely resembles the oxidized (activating) form of the E. coli OxyR regulatory-domain dimer. It correlates with the observed constitutive activation of some oxidative stress genes in P. gingivalis and is attributable to a single amino-acid insertion in P. gingivalis OxyR relative to E. coli OxyR. Modelling of full-length P. gingivalis, E. coli and Neisseria meningitidis OxyR-DNA complexes predicts different modes of DNA binding for the reduced and oxidized forms of each.
Collapse
Affiliation(s)
- David V. Svintradze
- OCMB Philips Institute, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
- Institute for Structural Biology and Drug Discovery of Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23219-1540, USA
| | - Darrell L. Peterson
- Institute for Structural Biology and Drug Discovery of Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23219-1540, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0614, USA
| | - Evys A. Collazo-Santiago
- OCMB Philips Institute, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | - Janina P. Lewis
- OCMB Philips Institute, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | - H. Tonie Wright
- Institute for Structural Biology and Drug Discovery of Virginia Commonwealth University, Virginia Commonwealth University, Richmond, VA 23219-1540, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0614, USA
| |
Collapse
|
228
|
Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli. Mol Syst Biol 2013; 9:643. [PMID: 23385483 PMCID: PMC3588905 DOI: 10.1038/msb.2012.76] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/08/2012] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli cells were evolved over 500 generations and profiled in four abiotic stressors to observe several cases of emerging cross-stress behavior whereby adaptation to one stressful environment provided fitness advantage when exposed to a second stressor. ![]()
Cross-stress dependencies were found to be ubiquitous, highly interconnected and can emerge within short timeframes. Several targets were implicated in adaptation and cross-stress protection, including genes related to iron transport and flagella. Adaptation in a first stress can lead to higher fitness to a second stress when compared with cells adapted only in the latter environment. Adaptation to any specific stress and the growth media was found to be generally independent.
Bacterial populations have a remarkable capacity to cope with extreme environmental fluctuations in their natural environments. In certain cases, adaptation to one stressful environment provides a fitness advantage when cells are exposed to a second stressor, a phenomenon that has been coined as cross-stress protection. A tantalizing question in bacterial physiology is how the cross-stress behavior emerges during evolutionary adaptation and what the genetic basis of acquired stress resistance is. To address these questions, we evolved Escherichia coli cells over 500 generations in five environments that include four abiotic stressors. Through growth profiling and competition assays, we identified several cases of positive and negative cross-stress behavior that span all strain–stress combinations. Resequencing the genomes of the evolved strains resulted in the identification of several mutations and gene amplifications, whose fitness effect was further assessed by mutation reversal and competition assays. Transcriptional profiling of all strains under a specific stress, NaCl-induced osmotic stress, and integration with resequencing data further elucidated the regulatory responses and genes that are involved in this phenomenon. Our results suggest that cross-stress dependencies are ubiquitous, highly interconnected, and can emerge within short timeframes. The high adaptive potential that we observed argues that bacterial populations occupy a genotypic space that enables a high phenotypic plasticity during adaptation in fluctuating environments.
Collapse
|
229
|
da Silva Neto JF, Lourenço RF, Marques MV. Global transcriptional response of Caulobacter crescentus to iron availability. BMC Genomics 2013; 14:549. [PMID: 23941329 PMCID: PMC3751524 DOI: 10.1186/1471-2164-14-549] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 08/09/2013] [Indexed: 01/22/2023] Open
Abstract
Background In the alpha subclass of proteobacteria iron homeostasis is controlled by diverse iron responsive regulators. Caulobacter crescentus, an important freshwater α-proteobacterium, uses the ferric uptake repressor (Fur) for such purpose. However, the impact of the iron availability on the C. crescentus transcriptome and an overall perspective of the regulatory networks involved remain unknown. Results In this work we report the identification of iron-responsive and Fur-regulated genes in C. crescentus using microarray-based global transcriptional analyses. We identified 42 genes that were strongly upregulated both by mutation of fur and by iron limitation condition. Among them, there are genes involved in iron uptake (four TonB-dependent receptor gene clusters, and feoAB), riboflavin biosynthesis and genes encoding hypothetical proteins. Most of these genes are associated with predicted Fur binding sites, implicating them as direct targets of Fur-mediated repression. These data were validated by β-galactosidase and EMSA assays for two operons encoding putative transporters. The role of Fur as a positive regulator is also evident, given that 27 genes were downregulated both by mutation of fur and under low-iron condition. As expected, this group includes many genes involved in energy metabolism, mostly iron-using enzymes. Surprisingly, included in this group are also TonB-dependent receptors genes and the genes fixK, fixT and ftrB encoding an oxygen signaling network required for growth during hypoxia. Bioinformatics analyses suggest that positive regulation by Fur is mainly indirect. In addition to the Fur modulon, iron limitation altered expression of 113 more genes, including induction of genes involved in Fe-S cluster assembly, oxidative stress and heat shock response, as well as repression of genes implicated in amino acid metabolism, chemotaxis and motility. Conclusions Using a global transcriptional approach, we determined the C. crescentus iron stimulon. Many but not all of iron responsive genes were directly or indirectly controlled by Fur. The iron limitation stimulon overlaps with other regulatory systems, such as the RpoH and FixK regulons. Altogether, our results showed that adaptation of C. crescentus to iron limitation not only involves increasing the transcription of iron-acquisition systems and decreasing the production of iron-using proteins, but also includes novel genes and regulatory mechanisms.
Collapse
Affiliation(s)
- José F da Silva Neto
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av Prof Lineu Prestes 1374, 05508-000 São Paulo, Brazil.
| | | | | |
Collapse
|
230
|
Identification of Salmonella enterica serovar Typhimurium genes regulated during biofilm formation on cholesterol gallstone surfaces. Infect Immun 2013; 81:3770-80. [PMID: 23897604 DOI: 10.1128/iai.00647-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salmonella spp. are able to form biofilms on abiotic and biotic surfaces. In vivo studies in our laboratory have shown that Salmonella can form biofilms on the surfaces of cholesterol gallstones in the gallbladders of mice and human carriers. Biofilm formation on gallstones has been demonstrated to be a mechanism of persistence. The purpose of this work was to identify and evaluate Salmonella sp. cholesterol-dependent biofilm factors. Differential gene expression analysis between biofilms on glass or cholesterol-coated surfaces and subsequent quantitative real-time PCR (qRT-PCR) revealed that type 1 fimbria structural genes and a gene encoding a putative outer membrane protein (ycfR) were specifically upregulated in Salmonella enterica serovar Typhimurium biofilms grown on cholesterol-coated surfaces. Spatiotemporal expression of ycfR and FimA verified their regulation during biofilm development on cholesterol-coated surfaces. Surprisingly, confocal and scanning electron microscopy demonstrated that a mutant of type 1 fimbria structural genes (ΔfimAICDHF) and a ycfR mutant showed increased biofilm formation on cholesterol-coated surfaces. In vivo experiments using Nramp1(+/+) mice harboring gallstones showed that only the ΔycfR mutant formed extensive biofilms on mouse gallstones at 7 and 21 days postinfection; ΔfimAICDHF was not observed on gallstone surfaces after the 7-day-postinfection time point. These data suggest that in Salmonella spp., wild-type type 1 fimbriae are important for attachment to and/or persistence on gallstones at later points of chronic infection, whereas YcfR may represent a specific potential natural inhibitor of initial biofilm formation on gallstones.
Collapse
|
231
|
Gu M, Imlay JA. Superoxide poisons mononuclear iron enzymes by causing mismetallation. Mol Microbiol 2013; 89:123-34. [PMID: 23678969 PMCID: PMC3731988 DOI: 10.1111/mmi.12263] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2013] [Indexed: 11/30/2022]
Abstract
Superoxide (O(2)(-)) is a primary agent of intracellular oxidative stress. Genetic studies in many organisms have confirmed that excess O(2)(-) disrupts metabolism, but to date only a small family of [4Fe-4S] dehydratases have been identified as direct targets. This investigation reveals that in Escherichia coli O(2)(-) also poisons a broader cohort of non-redox enzymes that employ ferrous iron atoms as catalytic cofactors. These enzymes were inactivated by O(2)(-) both in vitro and in vivo. Although the enzymes are known targets of hydrogen peroxide, the outcome with O(2)(-) differs substantially. When purified enzymes were damaged by O(2)(-) in vitro, activity could be completely restored by iron addition, indicating that the O(2)(-) treatment generated an apoprotein without damaging the protein polypeptide. Superoxide stress inside cells caused the progressive mismetallation of these enzymes with zinc, which confers little activity. When O(2)(-) stress was terminated, cells gradually restored activity by extracting zinc from the proteins. The overloading of cells with zinc caused mismetallation even without O(2)(-) stress. These results support a model in which O(2)(-) repeatedly excises iron from these enzymes, allowing zinc to compete with iron for remetallation of their apoprotein forms. This action substantially expands the physiological imprint of O(2)(-) stress.
Collapse
Affiliation(s)
- Mianzhi Gu
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| |
Collapse
|
232
|
Wadhawan S, Gautam S, Sharma A. A component of gamma-radiation-induced cell death in E. coli is programmed and interlinked with activation of caspase-3 and SOS response. Arch Microbiol 2013; 195:545-57. [PMID: 23807199 DOI: 10.1007/s00203-013-0906-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/23/2013] [Accepted: 05/28/2013] [Indexed: 12/16/2022]
Abstract
The current study deals with the molecular mechanism of radiation-induced cell death (RICD) in Escherichia coli. Irradiated E. coli cells displayed markers similar to those found in eukaryotic programmed cell death (PCD) such as caspase-3 activation and phosphatidylserine externalization. RICD was found to be suppressed upon pretreatment with sublethal concentrations of rifampicin or chloramphenicol, indicating the requirement of de novo gene expression. RICD was also found to be inhibited by cell permeable inhibitors of caspase-3 or poly (ADP-ribose) polymerase, indicating the involvement of PCD during RICD in E. coli. Radiation-induced SOS response was alleviated as observed with decrease in LexA level and also reduced cell filamentation frequency in the presence of caspase inhibitor. Further, the inhibitor-mediated rescue was not observed in single-gene knockouts of umuC, umuD, recB and ruvA, the genes which are associated with SOS response. This implies a linkage between SOS response and PCD in radiation-exposed E. coli cells.
Collapse
Affiliation(s)
- Surbhi Wadhawan
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | |
Collapse
|
233
|
Xie K, Peng H, Hu H, Wang W, Zhang X. OxyR, an important oxidative stress regulator to phenazines production and hydrogen peroxide resistance in Pseudomonas chlororaphis GP72. Microbiol Res 2013; 168:646-53. [PMID: 23778235 DOI: 10.1016/j.micres.2013.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/19/2013] [Indexed: 12/21/2022]
Abstract
Pseudomonas chlororaphis GP72 is an important plant growth-promoting rhizobacteria (PGPR) with a wide-spectrum antibiotic activity toward several soil-borne pathogens. The adaption of this strain to different environmental oxidative stress and redox phenazine pigment by the predicted regulator OxyR were investigated. The deletion of oxyR led to a significant reduction of the viability, production of three phenazine derivatives and resistance to hydrogen peroxide and paraquat on the KB agar plates. However, the mutant ΔoxyR grew better with shorter delay. In addition, the mutant ΔoxyR showed an increased resistance to hydrogen peroxide, which occurred at the concentration varying from 1.0mM to 5.0mM in the KB broth, as compared with the wild type. In addition, the biofilm formation ability was obviously enhanced and influenced by the different oxidants in the mutant. Quantitative RT-PCR experiments indicated that the expression of katG, ahpC, ahpD and phzE were increased in the oxyR mutant background in response to hydrogen peroxide. katG was mainly responsible for the enhanced resistance to hydrogen peroxide. The loss of oxyR is suggested to benefit the hydrogen peroxide inducible gene expression. Thus, OxyR is an important global regulator that regulates multiple pathways to enhance the survival of P. chlororaphis GP72 exposed to different oxidative stresses.
Collapse
Affiliation(s)
- Kan Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | | | | | |
Collapse
|
234
|
Gupta V, Carroll KS. Sulfenic acid chemistry, detection and cellular lifetime. Biochim Biophys Acta Gen Subj 2013; 1840:847-75. [PMID: 23748139 DOI: 10.1016/j.bbagen.2013.05.040] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND Reactive oxygen species-mediated cysteine sulfenic acid modification has emerged as an important regulatory mechanism in cell signaling. The stability of sulfenic acid in proteins is dictated by the local microenvironment and ability of antioxidants to reduce this modification. Several techniques for detecting this cysteine modification have been developed, including direct and in situ methods. SCOPE OF REVIEW This review presents a historical discussion of sulfenic acid chemistry and highlights key examples of this modification in proteins. A comprehensive survey of available detection techniques with advantages and limitations is discussed. Finally, issues pertaining to rates of sulfenic acid formation, reduction, and chemical trapping methods are also covered. MAJOR CONCLUSIONS Early chemical models of sulfenic acid yielded important insights into the unique reactivity of this species. Subsequent pioneering studies led to the characterization of sulfenic acid formation in proteins. In parallel, the discovery of oxidant-mediated cell signaling pathways and pathological oxidative stress has led to significant interest in methods to detect these modifications. Advanced methods allow for direct chemical trapping of protein sulfenic acids directly in cells and tissues. At the same time, many sulfenic acids are short-lived and the reactivity of current probes must be improved to sample these species, while at the same time, preserving their chemical selectivity. Inhibitors with binding scaffolds can be rationally designed to target sulfenic acid modifications in specific proteins. GENERAL SIGNIFICANCE Ever increasing roles for protein sulfenic acids have been uncovered in physiology and pathology. A more complete understanding of sulfenic acid-mediated regulatory mechanisms will continue to require rigorous and new chemical insights. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Vinayak Gupta
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | |
Collapse
|
235
|
Teramoto H, Inui M, Yukawa H. OxyR acts as a transcriptional repressor of hydrogen peroxide-inducible antioxidant genes in Corynebacterium glutamicum R. FEBS J 2013; 280:3298-312. [PMID: 23621709 DOI: 10.1111/febs.12312] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/02/2013] [Accepted: 04/24/2013] [Indexed: 12/13/2022]
Abstract
OxyR, a LysR-type transcriptional regulator, has been established as a redox-responsive activator of antioxidant genes in bacteria. This study shows that OxyR acts as a transcriptional repressor of katA, dps, ftn and cydA in Corynebacterium glutamicum R. katA encodes H2O2-detoxifing enzyme catalase, dps and ftn are implicated in iron homeostasis and cydA encodes a subunit of cytochrome bd oxidase. Quantitative RT-PCR analyses revealed that expression of katA and dps, but not of ftn and cydA, was induced by H2O2. Disruption of the oxyR gene encoding OxyR resulted in a marked increase in katA and dps mRNAs to a level higher than that induced by H2O2, and the oxyR-deficient mutant showed a H2O2-resistant phenotype. This is in contrast to the conventional OxyR-dependent regulatory model. ftn and cydA were also upregulated by oxyR disruption but to a smaller extent. Electrophoretic mobility shift assays revealed that the OxyR protein specifically binds to all four upstream regions of the respective genes under reducing conditions. We observed that the oxidized form of OxyR similarly bound to not only the target promoter regions, but also nonspecific DNA fragments. Based on these findings, we propose that the transcriptional repression by OxyR is alleviated under oxidative stress conditions in a titration mechanism due to the decreased specificity of its DNA-binding activity. DNase I footprinting analyses revealed that the OxyR-binding site in the four target promoters is ~ 50 bp in length and has multiple T-N11-A motifs, a feature of LysR-type transcriptional regulators, but no significant overall sequence conservation.
Collapse
Affiliation(s)
- Haruhiko Teramoto
- Research Institute of Innovative Technology for the Earth, Kyoto, Japan
| | | | | |
Collapse
|
236
|
Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 2013; 11:443-54. [PMID: 23712352 DOI: 10.1038/nrmicro3032] [Citation(s) in RCA: 1068] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxic environments are hazardous. Molecular oxygen adventitiously abstracts electrons from many redox enzymes, continuously forming intracellular superoxide and hydrogen peroxide. These species can destroy the activities of metalloenzymes and the integrity of DNA, forcing organisms to protect themselves with scavenging enzymes and repair systems. Nevertheless, elevated levels of oxidants quickly poison bacteria, and both microbial competitors and hostile eukaryotic hosts exploit this vulnerability by assaulting these bacteria with peroxides or superoxide-forming antibiotics. In response, bacteria activate elegant adaptive strategies. In this Review, I summarize our current knowledge of oxidative stress in Escherichia coli, the model organism for which our understanding of damage and defence is most well developed.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
237
|
Da Re S, Valle J, Charbonnel N, Beloin C, Latour-Lambert P, Faure P, Turlin E, Le Bouguénec C, Renauld-Mongénie G, Forestier C, Ghigo JM. Identification of commensal Escherichia coli genes involved in biofilm resistance to pathogen colonization. PLoS One 2013; 8:e61628. [PMID: 23667443 PMCID: PMC3646849 DOI: 10.1371/journal.pone.0061628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/12/2013] [Indexed: 12/24/2022] Open
Abstract
Protection provided by host bacterial microbiota against microbial pathogens is a well known but ill-understood property referred to as the barrier effect, or colonization resistance. Despite recent genome-wide analyses of host microbiota and increasing therapeutic interest, molecular analysis of colonization resistance is hampered by the complexity of direct in vivo experiments. Here we developed an in vitro-to-in vivo approach to identification of genes involved in resistance of commensal bacteria to exogenous pathogens. We analyzed genetic responses induced in commensal Escherichia coli upon entry of a diarrheagenic enteroaggregative E. coli or an unrelated Klebsiella pneumoniae pathogen into a biofilm community. We showed that pathogens trigger specific responses in commensal bacteria and we identified genes involved in limiting colonization of incoming pathogens within commensal biofilm. We tested the in vivo relevance of our findings by comparing the extent of intestinal colonization by enteroaggregative E. coli and K. pneumoniae pathogens in mice pre-colonized with E. coli wild type commensal strain, or mutants corresponding to identified colonization resistance genes. We demonstrated that the absence of yiaF and bssS (yceP) differentially alters pathogen colonization in the mouse gut. This study therefore identifies previously uncharacterized colonization resistance genes and provides new approaches to unravelling molecular aspects of commensal/pathogen competitive interactions.
Collapse
Affiliation(s)
- Sandra Da Re
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Jaione Valle
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Nicolas Charbonnel
- Université d'Auvergne-Clermont 1, Laboratoire de Bactériologie, Clermont-Ferrand, France
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Patricia Latour-Lambert
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Philippe Faure
- Université Pierre et Marie Curie, Equipe Neurophysiologie et Comportement (NPC) - UMR 7102, Paris, France
| | - Evelyne Turlin
- Institut Pasteur, Unité des Membranes Bactériennes, Département de Microbiologie, Paris, France
| | - Chantal Le Bouguénec
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, Département de Microbiologie, Paris, France
| | | | - Christiane Forestier
- Université d'Auvergne-Clermont 1, Laboratoire de Bactériologie, Clermont-Ferrand, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
- * E-mail:
| |
Collapse
|
238
|
Arvizu-Gómez JL, Hernández-Morales A, Aguilar JRP, Álvarez-Morales A. Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: physiology of phytopathogenic bacteria. BMC Microbiol 2013; 13:81. [PMID: 23587016 PMCID: PMC3639832 DOI: 10.1186/1471-2180-13-81] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/08/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Low temperatures play key roles in the development of most plant diseases, mainly because of their influence on the expression of various virulence factors in phytopathogenic bacteria. Thus far, studies regarding this environmental parameter have focused on specific themes and little is known about phytopathogenic bacteria physiology under these conditions. To obtain a global view regarding phytopathogenic bacteria strategies in response to physiologically relevant temperature changes, we used DNA microarray technology to compare the gene expression profile of the model bacterial pathogen P. syringae pv. phaseolicola NPS3121 grown at 18°C and 28°C. RESULTS A total of 236 differentially regulated genes were identified, of which 133 were up-regulated and 103 were down-regulated at 18°C compared to 28°C. The majority of these genes are involved in pathogenicity and virulence processes. In general, the results of this study suggest that the expression profile obtained may be related to the fact that low temperatures induce oxidative stress in bacterial cells, which in turn influences the expression of iron metabolism genes. The expression also appears to be correlated with the profile expression obtained in genes related to motility, biofilm production, and the type III secretion system. CONCLUSIONS From the data obtained in this study, we can begin to understand the strategies used by this phytopathogen during low temperature growth, which can occur in host interactions and disease development.
Collapse
Affiliation(s)
| | - Alejandro Hernández-Morales
- Unidad Académica Multidisciplinaria Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, Cd. Valles, San Luis Potosí, CP 79060, Mexico
| | - Juan Ramiro Pacheco Aguilar
- Laboratorio de Plantas y Biotecnología Agrícola. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las campanas S/N, CU. Col. Las Campanas, Querétaro Qro, CP 76010, Mexico
| | - Ariel Álvarez-Morales
- Departamento de Ingeniería Genética, CINVESTAV-IPN Unidad Irapuato, Apdo Postal 629, Irapuato, Gto, CP 36821, Mexico
| |
Collapse
|
239
|
Nonnative disulfide bond formation activates the σ32-dependent heat shock response in Escherichia coli. J Bacteriol 2013; 195:2807-16. [PMID: 23585533 DOI: 10.1128/jb.00127-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of nonnative disulfide bonds in the cytoplasm, so-called disulfide stress, is an integral component of oxidative stress. Quantification of the extent of disulfide bond formation in the cytoplasm of Escherichia coli revealed that disulfide stress is associated with oxidative stress caused by hydrogen peroxide, paraquat, and cadmium. To separate the impact of disulfide bond formation from unrelated effects of these oxidative stressors in subsequent experiments, we worked with two complementary approaches. We triggered disulfide stress either chemically by diamide treatment of cells or genetically in a mutant strain lacking the major disulfide-reducing systems TrxB and Gor. Studying the proteomic response of E. coli exposed to disulfide stress, we found that intracellular disulfide bond formation is a particularly strong inducer of the heat shock response. Real-time quantitative PCR experiments showed that disulfide stress induces the heat shock response in E. coli σ(32) dependently. However, unlike heat shock treatment, which induces these genes transiently, transcripts of σ(32)-dependent genes accumulated over time in disulfide stress-treated cells. Analyzing the stability of σ(32), we found that this constant induction can be attributed to an increase of the half-life of σ(32) upon disulfide stress. This is concomitant with aggregation of E. coli proteins treated with diamide. We conclude that oxidative stress triggers the heat shock response in E. coli σ(32) dependently. The component of oxidative stress responsible for the induction of heat shock genes is disulfide stress. Nonnative disulfide bond formation in the cytoplasm causes protein unfolding. This stabilizes σ(32) by preventing its DnaK- and FtsH-dependent degradation.
Collapse
|
240
|
Paritala H, Carroll KS. New targets and inhibitors of mycobacterial sulfur metabolism. Infect Disord Drug Targets 2013; 13:85-115. [PMID: 23808874 PMCID: PMC4332622 DOI: 10.2174/18715265113139990022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/08/2013] [Indexed: 11/22/2022]
Abstract
The identification of new antibacterial targets is urgently needed to address multidrug resistant and latent tuberculosis infection. Sulfur metabolic pathways are essential for survival and the expression of virulence in many pathogenic bacteria, including Mycobacterium tuberculosis. In addition, microbial sulfur metabolic pathways are largely absent in humans and therefore, represent unique targets for therapeutic intervention. In this review, we summarize our current understanding of the enzymes associated with the production of sulfated and reduced sulfur-containing metabolites in Mycobacteria. Small molecule inhibitors of these catalysts represent valuable chemical tools that can be used to investigate the role of sulfur metabolism throughout the Mycobacterial lifecycle and may also represent new leads for drug development. In this light, we also summarize recent progress made in the development of inhibitors of sulfur metabolism enzymes.
Collapse
Affiliation(s)
| | - Kate S. Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| |
Collapse
|
241
|
Baez A, Shiloach J. Escherichia coli avoids high dissolved oxygen stress by activation of SoxRS and manganese-superoxide dismutase. Microb Cell Fact 2013; 12:23. [PMID: 23497217 PMCID: PMC3605374 DOI: 10.1186/1475-2859-12-23] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/21/2013] [Indexed: 11/17/2022] Open
Abstract
Background High concentrations of reactive oxygen species (ROS) were reported to cause oxidative stress to E. coli cells associated with reduced or inhibited growth. The high ROS concentrations described in these reports were generated by exposing the bacteria to H2O2 and superoxide-generating chemicals which are non-physiological growth conditions. However, the effect of molecular oxygen on oxidative stress response has not been evaluated. Since the use of oxygen-enriched air is a common strategy to support high density growth of E. coli, it was important to investigate the effect of high dissolved oxygen concentrations on the physiology and growth of E. coli and the way it responds to oxidative stress. Results To determine the effect of elevated oxygen concentrations on the growth characteristics, specific gene expression and enzyme activity in E. coli, the parental and SOD-deficient strain were evaluated when the dissolved oxygen (dO2) level was increased from 30% to 300%. No significant differences in the growth parameters were observed in the parental strain except for a temporary decrease of the respiration and acetate accumulation profile. By performing transcriptional analysis, it was determined that the parental strain responded to the oxidative stress by activating the SoxRS regulon. However, following the dO2 switch, the SOD-deficient strain activated both the SoxRS and OxyR regulons but it was unable to resume its initial growth rate. Conclusion The transcriptional analysis and enzyme activity results indicated that when E. coli is exposed to dO2 shift, the superoxide stress regulator SoxRS is activated and causes the stimulation of the superoxide dismutase system. This enables the E. coli to protect itself from the poisoning effects of oxygen. The OxyR protecting system was not activated, indicating that H2O2 did not increase to stressing levels.
Collapse
Affiliation(s)
- Antonino Baez
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
242
|
Abstract
Recent observations have suggested that classic antibiotics kill bacteria by stimulating the formation of reactive oxygen species (ROS). If true, this notion might guide new strategies to improve antibiotic efficacy. In this study, the model was directly tested. Contrary to the hypothesis, antibiotic treatment did not accelerate the formation of hydrogen peroxide in Escherichia coli and did not elevate intracellular free iron, an essential reactant for the production of lethal damage. Lethality persisted in the absence of oxygen, and DNA repair mutants were not hypersensitive, undermining the idea that toxicity arose from oxidative DNA lesions. We conclude that these antibiotic exposures did not produce ROS and that lethality more likely resulted from the direct inhibition of cell-wall assembly, protein synthesis, and DNA replication.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Microbiology, University of Illinois, Urbana, IL 61801; USA
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801; USA
| |
Collapse
|
243
|
Antibacterial activity of CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine) generating reactive oxygen species. Microbiol Res 2013. [DOI: 10.1016/j.micres.2012.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
244
|
Rothe M, Alpert C, Loh G, Blaut M. Novel insights into E. coli's hexuronate metabolism: KduI facilitates the conversion of galacturonate and glucuronate under osmotic stress conditions. PLoS One 2013; 8:e56906. [PMID: 23437267 PMCID: PMC3578941 DOI: 10.1371/journal.pone.0056906] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/15/2013] [Indexed: 11/20/2022] Open
Abstract
Using a gnotobiotic mouse model, we previously observed the upregulation of 2-deoxy-D-gluconate 3-dehydrogenase (KduD) in intestinal E. coli of mice fed a lactose-rich diet and the downregulation of this enzyme and of 5-keto 4-deoxyuronate isomerase (KduI) on a casein-rich diet. The present study aimed to define the role of the so far poorly characterized E. coli proteins KduD and KduI in vitro. Galacturonate and glucuronate induced kduD and kduI gene expression 3-fold and 7 to 11-fold, respectively, under aerobic conditions as well as 9 to 20-fold and 19 to 54-fold, respectively, under anaerobic conditions. KduI facilitated the breakdown of these hexuronates. In E. coli, galacturonate and glucuronate are normally degraded by UxaABC and UxuAB. However, osmotic stress represses the expression of the corresponding genes in an OxyR-dependent manner. When grown in the presence of galacturonate or glucuronate, kduID-deficient E. coli had a 30% to 80% lower maximal cell density and 1.5 to 2-fold longer doubling times under osmotic stress conditions than wild type E. coli. Growth on lactose promoted the intracellular formation of hexuronates, which possibly explain the induction of KduD on a lactose-rich diet. These results indicate a novel function of KduI and KduD in E. coli and demonstrate the crucial influence of osmotic stress on the gene expression of hexuronate degrading enzymes.
Collapse
Affiliation(s)
- Monique Rothe
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | | | | | | |
Collapse
|
245
|
RpoS contributes to phagocyte oxidase-mediated stress resistance during urinary tract infection by Escherichia coli CFT073. mBio 2013; 4:e00023-13. [PMID: 23404396 PMCID: PMC3573659 DOI: 10.1128/mbio.00023-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common causative agent of community-acquired urinary tract infection (UTI). In order to cause UTI, UPEC must endure stresses ranging from nutrient limitation to host immune components. RpoS (σS), the general stress response sigma factor, directs gene expression under a variety of inhibitory conditions. Our study of rpoS in UPEC strain CFT073 began after we discovered an rpoS-frameshift mutation in one of our laboratory stocks of “wild-type” CFT073. We demonstrate that an rpoS-deletion mutation in CFT073 leads to a colonization defect during UTI of CBA/J mice at 48 hours postinfection (hpi). There is no difference between the growth rates of CFT073 and CFT073 rpoS in urine. This indicates that rpoS is needed for replication and survival in the host rather than being needed to address limitations imposed by urine nutrients. Consistent with previous observations in E. coli K-12, CFT073 rpoS is more sensitive to oxidative stress than the wild type. We demonstrate that peroxide levels are elevated in voided urine from CFT073-infected mice compared to urine from mock-infected mice, which supports the notion that oxidative stress is generated by the host in response to UPEC. In mice that lack phagocyte oxidase, the enzyme complex expressed by phagocytes that produces superoxide, the competitive defect of CFT073 rpoS in bladder colonization is lost. These results demonstrate that σS is important for UPEC survival under conditions of phagocyte oxidase-generated stress during UTI. Though σS affects the pathogenesis of other bacterial species, this is the first work that directly implicates σS as important for UPEC pathogenesis. UPEC must cope with a variety of stressful conditions in the urinary tract during infection. RpoS (σS), the general stress response sigma factor, is known to direct the expression of many genes under a variety of stressful conditions in laboratory-adapted E. coli K-12. Here, we show that σS is needed by the model UPEC strain CFT073 to cope with oxidative stress provided by phagocytes during infection. These findings represent the first report that implicates σS in the fitness of UPEC during infection and support the idea of the need for a better understanding of the effects of this global regulator of gene expression during UTI.
Collapse
|
246
|
Nobre LS, Saraiva LM. Effect of combined oxidative and nitrosative stresses on Staphylococcus aureus transcriptome. Appl Microbiol Biotechnol 2013; 97:2563-73. [PMID: 23389340 DOI: 10.1007/s00253-013-4730-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus is a pathogen responsible for severe community- and nosocomially acquired infections. To fight pathogen intrusion, the innate immune system uses a plethora of weapons, with the generation of oxidative and nitrosative stresses among the most efficient. In this work, the S. aureus genome-wide transcriptional responses to oxidative stress generated by hydrogen peroxide, to nitrosative stress imposed by S-nitrosoglutathione (GSNO), and to the combination of the two were investigated using microarray analysis. The results showed that these stresses have a significant impact on the transcriptome of S. aureus. Hydrogen peroxide modified mainly the mRNA abundance of genes involved in oxidative detoxification and DNA metabolism, which together represent 14 % of the total number of upregulated genes. GSNO caused significant alteration of the expression of gene products with regulatory function. However, the simultaneous addition of GSNO and hydrogen peroxide was found to cause the more significant transcriptomic alteration, affecting ∼10 % of the total transcriptome. In particular, exposure of S. aureus to GSNO plus hydrogen peroxide modified the transcription of genes associated with cell envelope and iron metabolism, including induction of ftnA and dps genes that encode iron-storage and oxidative-protecting proteins. Further studies revealed that when exposed to combined GSNO-hydrogen peroxide stresses, S. aureus has decreased viability, which is enhanced in the presence of iron, and low siderophore activity. Altogether, this study revealed, for the first time, how the combined oxidative and nitrosative stresses inflicted during phagocytosis interfere at the transcriptional level with the S. aureus cellular metabolism.
Collapse
Affiliation(s)
- Lígia S Nobre
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal
| | | |
Collapse
|
247
|
Early steps of double-strand break repair in Bacillus subtilis. DNA Repair (Amst) 2013; 12:162-76. [PMID: 23380520 DOI: 10.1016/j.dnarep.2012.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/04/2012] [Accepted: 12/14/2012] [Indexed: 11/22/2022]
Abstract
All organisms rely on integrated networks to repair DNA double-strand breaks (DSBs) in order to preserve the integrity of the genetic information, to re-establish replication, and to ensure proper chromosomal segregation. Genetic, cytological, biochemical and structural approaches have been used to analyze how Bacillus subtilis senses DNA damage and responds to DSBs. RecN, which is among the first responders to DNA DSBs, promotes the ordered recruitment of repair proteins to the site of a lesion. Cells have evolved different mechanisms for efficient end processing to create a 3'-tailed duplex DNA, the substrate for RecA binding, in the repair of one- and two-ended DSBs. Strand continuity is re-established via homologous recombination (HR), utilizing an intact homologous DNA molecule as a template. In the absence of transient diploidy or of HR, however, two-ended DSBs can be directly re-ligated via error-prone non-homologous end-joining. Here we review recent findings that shed light on the early stages of DSB repair in Firmicutes.
Collapse
|
248
|
Couvé S, Ishchenko AA, Fedorova OS, Ramanculov EM, Laval J, Saparbaev M. Direct DNA Lesion Reversal and Excision Repair in Escherichia coli. EcoSal Plus 2013; 5. [PMID: 26442931 DOI: 10.1128/ecosalplus.7.2.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Indexed: 06/05/2023]
Abstract
Cellular DNA is constantly challenged by various endogenous and exogenous genotoxic factors that inevitably lead to DNA damage: structural and chemical modifications of primary DNA sequence. These DNA lesions are either cytotoxic, because they block DNA replication and transcription, or mutagenic due to the miscoding nature of the DNA modifications, or both, and are believed to contribute to cell lethality and mutagenesis. Studies on DNA repair in Escherichia coli spearheaded formulation of principal strategies to counteract DNA damage and mutagenesis, such as: direct lesion reversal, DNA excision repair, mismatch and recombinational repair and genotoxic stress signalling pathways. These DNA repair pathways are universal among cellular organisms. Mechanistic principles used for each repair strategies are fundamentally different. Direct lesion reversal removes DNA damage without need for excision and de novo DNA synthesis, whereas DNA excision repair that includes pathways such as base excision, nucleotide excision, alternative excision and mismatch repair, proceeds through phosphodiester bond breakage, de novo DNA synthesis and ligation. Cell signalling systems, such as adaptive and oxidative stress responses, although not DNA repair pathways per se, are nevertheless essential to counteract DNA damage and mutagenesis. The present review focuses on the nature of DNA damage, direct lesion reversal, DNA excision repair pathways and adaptive and oxidative stress responses in E. coli.
Collapse
|
249
|
Global stress response in a prokaryotic model of DJ-1-associated Parkinsonism. J Bacteriol 2013; 195:1167-78. [PMID: 23292772 DOI: 10.1128/jb.02202-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YajL is the most closely related Escherichia coli homolog of Parkinsonism-associated protein DJ-1, a protein with a yet-undefined function in the oxidative-stress response. YajL protects cells against oxidative-stress-induced protein aggregation and functions as a covalent chaperone for the thiol proteome, including FeS proteins. To clarify the cellular responses to YajL deficiency, transcriptional profiling of the yajL mutant was performed. Compared to the parental strain, the yajL mutant overexpressed genes coding for chaperones, proteases, chemical chaperone transporters, superoxide dismutases, catalases, peroxidases, components of thioredoxin and glutaredoxin systems, iron transporters, ferritins and FeS cluster biogenesis enzymes, DNA repair proteins, RNA chaperones, and small regulatory RNAs. It also overexpressed the RNA polymerase stress sigma factors sigma S (multiple stresses) and sigma 32 (protein stress) and activated the OxyR and SoxRS oxidative-stress transcriptional regulators, which together trigger the global stress response. The yajL mutant also overexpressed genes involved in septation and adopted a shorter and rounder shape characteristic of stressed bacteria. Biochemical experiments showed that this upregulation of many stress genes resulted in increased expression of stress proteins and improved biochemical function. Thus, protein defects resulting from the yajL mutation trigger the onset of a robust and global stress response in a prokaryotic model of DJ-1-associated Parkinsonism.
Collapse
|
250
|
Genome-wide screening with hydroxyurea reveals a link between nonessential ribosomal proteins and reactive oxygen species production. J Bacteriol 2013; 195:1226-35. [PMID: 23292777 DOI: 10.1128/jb.02145-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We performed a screening of hydroxyurea (HU)-sensitive mutants using a single-gene-deletion mutant collection in Escherichia coli. HU inhibits ribonucleotide reductase (RNR), which leads to arrest of the replication fork. Surprisingly, the wild-type was less resistant to HU than the average for the Keio Collection. Respiration-defective mutants were significantly more resistant to HU, suggesting that the generation of reactive oxygen species (ROS) contributes to cell death. High-throughput screening revealed that 15 mutants were completely sensitive on plates containing 7.5 mM HU. Unexpectedly, translation-related mutants based on COG categorization were the most enriched, and three of them were deletion mutants of nonessential ribosomal proteins (L1, L32, and L36). We found that, in these mutants, an increased membrane stress response was provoked, resulting in increased ROS generation. The addition of OH radical scavenger thiourea rescued the HU sensitivity of these mutants, suggesting that ROS generation is the direct cause of cell death. Conversely, both the deletion of rpsF and the deletion of rimK, which encode S6 and S6 modification enzymes, respectively, showed an HU-resistant phenotype. These mutants increased the copy number of the p15A-based plasmid and exhibited reduced basal levels of SOS response. The data suggest that nonessential proteins indirectly affect the DNA-damaging process.
Collapse
|