201
|
da Silva SJR, Silva CTAD, Guarines KM, Mendes RPG, Pardee K, Kohl A, Pena L. Clinical and Laboratory Diagnosis of SARS-CoV-2, the Virus Causing COVID-19. ACS Infect Dis 2020; 6:2319-2336. [PMID: 32786280 PMCID: PMC7441751 DOI: 10.1021/acsinfecdis.0c00274] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 01/08/2023]
Abstract
In December 2019, a novel beta (β) coronavirus eventually named SARS-CoV-2 emerged in Wuhan, Hubei province, China, causing an outbreak of severe and even fatal pneumonia in humans. The virus has spread very rapidly to many countries across the world, resulting in the World Health Organization (WHO) to declare a pandemic on March 11, 2020. Clinically, the diagnosis of this unprecedented illness, called coronavirus disease-2019 (COVID-19), becomes difficult because it shares many symptoms with other respiratory pathogens, including influenza and parainfluenza viruses. Therefore, laboratory diagnosis is crucial for the clinical management of patients and the implementation of disease control strategies to contain SARS-CoV-2 at clinical and population level. Here, we summarize the main clinical and imaging findings of COVID-19 patients and discuss the advances, features, advantages, and limitations of different laboratory methods used for SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
| | - Caroline Targino Alves da Silva
- Department of Virology, Aggeu
Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz),
50670-420, Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- Department of Virology, Aggeu
Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz),
50670-420, Recife, Pernambuco, Brazil
| | - Renata Pessôa Germano Mendes
- Department of Virology, Aggeu
Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz),
50670-420, Recife, Pernambuco, Brazil
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy,
University of Toronto, Toronto, ON M5S 3M2,
Canada
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus
Research, Glasgow, Scotland G61 1QH, U.K.
| | - Lindomar Pena
- Department of Virology, Aggeu
Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz),
50670-420, Recife, Pernambuco, Brazil
| |
Collapse
|
202
|
Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem 2020; 295:12910-12934. [PMID: 32661197 PMCID: PMC7489918 DOI: 10.1074/jbc.rev120.013930] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Few human pathogens have been the focus of as much concentrated worldwide attention as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19. Its emergence into the human population and ensuing pandemic came on the heels of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), two other highly pathogenic coronavirus spillovers, which collectively have reshaped our view of a virus family previously associated primarily with the common cold. It has placed intense pressure on the collective scientific community to develop therapeutics and vaccines, whose engineering relies on a detailed understanding of coronavirus biology. Here, we present the molecular virology of coronavirus infection, including its entry into cells, its remarkably sophisticated gene expression and replication mechanisms, its extensive remodeling of the intracellular environment, and its multifaceted immune evasion strategies. We highlight aspects of the viral life cycle that may be amenable to antiviral targeting as well as key features of its biology that await discovery.
Collapse
Affiliation(s)
- Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Nandakumar
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jessica M Tucker
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Britt A Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA.
| |
Collapse
|
203
|
Baldassarre A, Paolini A, Bruno SP, Felli C, Tozzi AE, Masotti A. Potential use of noncoding RNAs and innovative therapeutic strategies to target the 5'UTR of SARS-CoV-2. Epigenomics 2020; 12:1349-1361. [PMID: 32875809 PMCID: PMC7466951 DOI: 10.2217/epi-2020-0162] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
After the increasing number of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections all over the world, researchers and clinicians are struggling to find a vaccine or innovative therapeutic strategies to treat this viral infection. The severe acute respiratory syndrome coronavirus infection that occurred in 2002, Middle East respiratory syndrome (MERS) and other more common infectious diseases such as hepatitis C virus, led to the discovery of many RNA-based drugs. Among them, siRNAs and antisense locked nucleic acids have been demonstrated to have effective antiviral effects both in animal models and humans. Owing to the high genomic homology of SARS-CoV-2 and severe acute respiratory syndrome coronavirus (80–82%) the use of these molecules could be employed successfully also to target this emerging coronavirus. Trying to translate this approach to treat COVID-19, we analyzed the common structural features of viral 5’UTR regions that can be targeted by noncoding RNAs and we also identified miRNAs binding sites suitable for designing RNA-based drugs to be employed successfully against SARS-CoV-2.
Collapse
Affiliation(s)
- Antonella Baldassarre
- Children's Hospital Bambino Gesù-IRCCS, Research Laboratories; Multifactorial & Complex Phenotype Research Area, V.le di San Paolo 15, Rome 00146, Italy
| | - Alessandro Paolini
- Children's Hospital Bambino Gesù-IRCCS, Research Laboratories; Multifactorial & Complex Phenotype Research Area, V.le di San Paolo 15, Rome 00146, Italy
| | - Stefania Paola Bruno
- Children's Hospital Bambino Gesù-IRCCS, Research Laboratories; Multifactorial & Complex Phenotype Research Area, V.le di San Paolo 15, Rome 00146, Italy
| | - Cristina Felli
- Children's Hospital Bambino Gesù-IRCCS, Research Laboratories; Multifactorial & Complex Phenotype Research Area, V.le di San Paolo 15, Rome 00146, Italy
| | - Alberto Eugenio Tozzi
- Children's Hospital Bambino Gesù-IRCCS, Research Laboratories; Multifactorial & Complex Phenotype Research Area, V.le di San Paolo 15, Rome 00146, Italy
| | - Andrea Masotti
- Children's Hospital Bambino Gesù-IRCCS, Research Laboratories; Multifactorial & Complex Phenotype Research Area, V.le di San Paolo 15, Rome 00146, Italy
| |
Collapse
|
204
|
Jungreis I, Sealfon R, Kellis M. SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.02.130955. [PMID: 32577641 PMCID: PMC7302193 DOI: 10.1101/2020.06.02.130955] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite its overwhelming clinical importance, the SARS-CoV-2 gene set remains unresolved, hindering dissection of COVID-19 biology. Here, we use comparative genomics to provide a high-confidence protein-coding gene set, characterize protein-level and nucleotide-level evolutionary constraint, and prioritize functional mutations from the ongoing COVID-19 pandemic. We select 44 complete Sarbecovirus genomes at evolutionary distances ideally-suited for protein-coding and non-coding element identification, create whole-genome alignments, and quantify protein-coding evolutionary signatures and overlapping constraint. We find strong protein-coding signatures for all named genes and for 3a, 6, 7a, 7b, 8, 9b, and also ORF3c, a novel alternate-frame gene. By contrast, ORF10, and overlapping-ORFs 9c, 3b, and 3d lack protein-coding signatures or convincing experimental evidence and are not protein-coding. Furthermore, we show no other protein-coding genes remain to be discovered. Cross-strain and within-strain evolutionary pressures largely agree at the gene, amino-acid, and nucleotide levels, with some notable exceptions, including fewer-than-expected mutations in nsp3 and Spike subunit S1, and more-than-expected mutations in Nucleocapsid. The latter also shows a cluster of amino-acid-changing variants in otherwise-conserved residues in a predicted B-cell epitope, which may indicate positive selection for immune avoidance. Several Spike-protein mutations, including D614G, which has been associated with increased transmission, disrupt otherwise-perfectly-conserved amino acids, and could be novel adaptations to human hosts. The resulting high-confidence gene set and evolutionary-history annotations provide valuable resources and insights on COVID-19 biology, mutations, and evolution.
Collapse
Affiliation(s)
- Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Rachel Sealfon
- Center for Computational Biology, Flatiron Institute, New York, NY
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
205
|
Using All-Atom Potentials to Refine RNA Structure Predictions of SARS-CoV-2 Stem Loops. Int J Mol Sci 2020; 21:ijms21176188. [PMID: 32867123 PMCID: PMC7504604 DOI: 10.3390/ijms21176188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/30/2022] Open
Abstract
A considerable amount of rapid-paced research is underway to combat the SARS-CoV-2 pandemic. In this work, we assess the 3D structure of the 5′ untranslated region of its RNA, in the hopes that stable secondary structures can be targeted, interrupted, or otherwise measured. To this end, we have combined molecular dynamics simulations with previous Nuclear Magnetic Resonance measurements for stem loop 2 of SARS-CoV-1 to refine 3D structure predictions of that stem loop. We find that relatively short sampling times allow for loop rearrangement from predicted structures determined in absence of water or ions, to structures better aligned with experimental data. We then use molecular dynamics to predict the refined structure of the transcription regulatory leader sequence (TRS-L) region which includes stem loop 3, and show that arrangement of the loop around exchangeable monovalent potassium can interpret the conformational equilibrium determined by in-cell dimethyl sulfate (DMS) data.
Collapse
|
206
|
Majid S, Farooq R, Khan MS, Rashid S, Bhat SA, Wani HA, Qureshi W. Managing the COVID-19 Pandemic: Research Strategies Based on the Evolutionary and Molecular Characteristics of Coronaviruses. SN COMPREHENSIVE CLINICAL MEDICINE 2020; 2:1767-1776. [PMID: 32864575 PMCID: PMC7445016 DOI: 10.1007/s42399-020-00457-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19), an ongoing global health emergency, is a highly transmittable and pathogenic viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging in Wuhan, China, in December 2019, it spread widely across the world causing panic-worst ever economic depression is visibly predictable. Coronaviruses (CoVs) have emerged as a major public health concern having caused three zoonotic outbreaks; severe acute respiratory syndrome-CoV (SARS-CoV) in 2002-2003, Middle East respiratory syndrome-CoV (MERS-CoV) in 2012, and currently this devastating COVID-19. Research strategies focused on understanding the evolutionary origin, transmission, and molecular basis of SARS-CoV-2 and its pathogenesis need to be urgently formulated to manage the current and possible future coronaviral outbreaks. Current response to the COVID-19 outbreak has been largely limited to monitoring/containment. Although frantic global efforts for developing safe and effective prophylactic and therapeutic agents are on, no licensed antiviral treatment or vaccine exists till date. In this review, research strategies for coping with COVID-19 based on evolutionary and molecular aspects of coronaviruses have been proposed.
Collapse
Affiliation(s)
- Sabhiya Majid
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals , Srinagar, J&K 190010 India
| | - Rabia Farooq
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals , Srinagar, J&K 190010 India
- Department of Basic Medical Sciences, University of Bisha, Bisha, 67714 Saudi Arabia
| | - Mosin S. Khan
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals , Srinagar, J&K 190010 India
| | - Samia Rashid
- Department of Medicine, Government Medical College Srinagar and Associated Hospitals , Srinagar, J&K 190010 India
| | - Showkat A. Bhat
- Department of Biochemistry, Government Medical College Doda, Doda, J&K 182202 India
| | - Hilal A. Wani
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals , Srinagar, J&K 190010 India
| | - Waseem Qureshi
- Registrar Academics, Government Medical College Srinagar, Srinagar, J&K 190010 India
| |
Collapse
|
207
|
Rana AK, Rahmatkar SN, Kumar A, Singh D. Glycogen synthase kinase-3: A putative target to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Cytokine Growth Factor Rev 2020; 58:92-101. [PMID: 32948440 PMCID: PMC7446622 DOI: 10.1016/j.cytogfr.2020.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
The coronavirus disease 19 (COVID-19) outbreak caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) had turned out to be highly pathogenic and transmittable. Researchers throughout the globe are still struggling to understand this strain's aggressiveness in search of putative therapies for its control. Crosstalk between oxidative stress and systemic inflammation seems to support the progression of the infection. Glycogen synthase kinase-3 (Gsk-3) is a conserved serine/threonine kinase that mainly participates in cell proliferation, development, stress, and inflammation in humans. Nucleocapsid protein of SARS-CoV-2 is an important structural protein responsible for viral replication and interferes with the host defence mechanism by the help of Gsk-3 protein. The viral infected cells show activated Gsk-3 protein that degrades the Nuclear factor erythroid 2-related factor (Nrf2) protein, resulting in excessive oxidative stress. Activated Gsk-3 also modulates CREB-DNA activity, phosphorylates NF-κB, and degrades β-catenin, thus provokes systemic inflammation. Interaction between these two pathophysiological events, oxidative stress, and inflammation enhance mucous secretion, coagulation cascade, and hypoxia, which ultimately leads to multiple organs failure, resulting in the death of the infected patient. The present review aims to highlight the pathogenic role of Gsk-3 in viral replication, initiation of oxidative stress, and inflammation during SARS-CoV-2 infection. The review also summarizes the potential Gsk-3 pathway modulators as putative therapeutic interventions in combating the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Shubham Nilkanth Rahmatkar
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Amit Kumar
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India.
| |
Collapse
|
208
|
Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK, Drakoulis N, Tsatsakis A. Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review). Int J Mol Med 2020; 46:467-488. [PMID: 32468014 PMCID: PMC7307820 DOI: 10.3892/ijmm.2020.4608] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
The major impact produced by the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) focused many researchers attention to find treatments that can suppress transmission or ameliorate the disease. Despite the very fast and large flow of scientific data on possible treatment solutions, none have yet demonstrated unequivocal clinical utility against coronavirus disease 2019 (COVID‑19). This work represents an exhaustive and critical review of all available data on potential treatments for COVID‑19, highlighting their mechanistic characteristics and the strategy development rationale. Drug repurposing, also known as drug repositioning, and target based methods are the most used strategies to advance therapeutic solutions into clinical practice. Current in silico, in vitro and in vivo evidence regarding proposed treatments are summarized providing strong support for future research efforts.
Collapse
Affiliation(s)
| | - Horia Paunescu
- Faculty of Medicine, ′Carol Davila′ University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Sterghios A. Moschos
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University
- PulmoBioMed Ltd., Newcastle-Upon-Tyne NE1 8ST, UK
| | | | | | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion
| | | | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | |
Collapse
|
209
|
Lu S, Ye Q, Singh D, Villa E, Cleveland DW, Corbett KD. The SARS-CoV-2 Nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.30.228023. [PMID: 32766587 PMCID: PMC7402048 DOI: 10.1101/2020.07.30.228023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The multifunctional nucleocapsid (N) protein in SARS-CoV-2 binds the ~30 kb viral RNA genome to aid its packaging into the 80-90nm membrane-enveloped virion. The N protein is composed of N-terminal RNA-binding and C-terminal dimerization domains that are flanked by three intrinsically disordered regions. Here we demonstrate that a centrally located 40 amino acid intrinsically disordered domain drives phase separation of N protein when bound to RNA, with the morphology of the resulting condensates affected by inclusion in the RNA of the putative SARS-CoV-2 packaging signal. The SARS-CoV-2 M protein, normally embedded in the virion membrane with its C-terminus extending into the virion core, independently induces N protein phase separation that is dependent on the N protein's C-terminal dimerization domain and disordered region. Three-component mixtures of N+M+RNA form condensates with mutually exclusive compartments containing N+M or N+RNA, including spherical annular structures in which the M protein coats the outside of an N+RNA condensate. These findings support a model in which phase separation of the N protein with both the viral genomic RNA and the SARS-CoV-2 M protein facilitates RNA packaging and virion assembly.
Collapse
Affiliation(s)
- Shan Lu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Qiaozhen Ye
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Digvijay Singh
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 93093
| | - Elizabeth Villa
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 93093
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093
| |
Collapse
|
210
|
Yu J. From Mutation Signature to Molecular Mechanism in the RNA World: A Case of SARS-CoV-2. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:627-639. [PMID: 32739507 PMCID: PMC7391168 DOI: 10.1016/j.gpb.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Jun Yu
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
211
|
Davidson AD, Williamson MK, Lewis S, Shoemark D, Carroll MW, Heesom KJ, Zambon M, Ellis J, Lewis PA, Hiscox JA, Matthews DA. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome Med 2020; 12:68. [PMID: 32723359 PMCID: PMC7386171 DOI: 10.1186/s13073-020-00763-0] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND SARS-CoV-2 is a recently emerged respiratory pathogen that has significantly impacted global human health. We wanted to rapidly characterise the transcriptomic, proteomic and phosphoproteomic landscape of this novel coronavirus to provide a fundamental description of the virus's genomic and proteomic potential. METHODS We used direct RNA sequencing to determine the transcriptome of SARS-CoV-2 grown in Vero E6 cells which is widely used to propagate the novel coronavirus. The viral transcriptome was analysed using a recently developed ORF-centric pipeline. Allied to this, we used tandem mass spectrometry to investigate the proteome and phosphoproteome of the same virally infected cells. RESULTS Our integrated analysis revealed that the viral transcripts (i.e. subgenomic mRNAs) generally fitted the expected transcription model for coronaviruses. Importantly, a 24 nt in-frame deletion was detected in over half of the subgenomic mRNAs encoding the spike (S) glycoprotein and was predicted to remove a proposed furin cleavage site from the S glycoprotein. Tandem mass spectrometry identified over 500 viral peptides and 44 phosphopeptides in virus-infected cells, covering almost all proteins predicted to be encoded by the SARS-CoV-2 genome, including peptides unique to the deleted variant of the S glycoprotein. CONCLUSIONS Detection of an apparently viable deletion in the furin cleavage site of the S glycoprotein, a leading vaccine target, shows that this and other regions of SARS-CoV-2 proteins may readily mutate. The furin site directs cleavage of the S glycoprotein into functional subunits during virus entry or exit and likely contributes strongly to the pathogenesis and zoonosis of this virus. Our data emphasises that the viral genome sequence should be carefully monitored during the growth of viral stocks for research, animal challenge models and, potentially, in clinical samples. Such variations may result in different levels of virulence, morbidity and mortality.
Collapse
Affiliation(s)
- Andrew D Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| | - Maia Kavanagh Williamson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Sebastian Lewis
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Deborah Shoemark
- School of Biochemistry, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Miles W Carroll
- Research and Development Institute, National Infection Service, Public Health, England, Porton Down, Wiltshire, UK
- National Institute Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Kate J Heesom
- Proteomics Facility Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Maria Zambon
- Virus Reference Department, Public Health England (Colindale), London, UK
| | - Joanna Ellis
- Virus Reference Department, Public Health England (Colindale), London, UK
| | - Philip A Lewis
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Julian A Hiscox
- National Institute Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Liverpool Health Partners, Liverpool, UK
| | - David A Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
212
|
Giri R, Bhardwaj T, Shegane M, Gehi BR, Kumar P, Gadhave K, Oldfield CJ, Uversky VN. Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cell Mol Life Sci 2020; 78:1655-1688. [PMID: 32712910 PMCID: PMC7382329 DOI: 10.1007/s00018-020-03603-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/03/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023]
Abstract
The recently emerged coronavirus designated as SARS-CoV-2 (also known as 2019 novel coronavirus (2019-nCoV) or Wuhan coronavirus) is a causative agent of coronavirus disease 2019 (COVID-19), which is rapidly spreading throughout the world now. More than 1.21 million cases of SARS-CoV-2 infection and more than 67,000 COVID-19-associated mortalities have been reported worldwide till the writing of this article, and these numbers are increasing every passing hour. The World Health Organization (WHO) has declared the SARS-CoV-2 spread as a global public health emergency and admitted COVID-19 as a pandemic now. Multiple sequence alignment data correlated with the already published reports on SARS-CoV-2 evolution indicated that this virus is closely related to the bat severe acute respiratory syndrome-like coronavirus (bat SARS-like CoV) and the well-studied human SARS coronavirus (SARS-CoV). The disordered regions in viral proteins are associated with the viral infectivity and pathogenicity. Therefore, in this study, we have exploited a set of complementary computational approaches to examine the dark proteomes of SARS-CoV-2, bat SARS-like, and human SARS CoVs by analysing the prevalence of intrinsic disorder in their proteins. According to our findings, SARS-CoV-2 proteome contains very significant levels of structural order. In fact, except for nucleocapsid, Nsp8, and ORF6, the vast majority of SARS-CoV-2 proteins are mostly ordered proteins containing less intrinsically disordered protein regions (IDPRs). However, IDPRs found in SARS-CoV-2 proteins are functionally important. For example, cleavage sites in its replicase 1ab polyprotein are found to be highly disordered, and almost all SARS-CoV-2 proteins contains molecular recognition features (MoRFs), which are intrinsic disorder-based protein–protein interaction sites that are commonly utilized by proteins for interaction with specific partners. The results of our extensive investigation of the dark side of SARS-CoV-2 proteome will have important implications in understanding the structural and non-structural biology of SARS or SARS-like coronaviruses.
Collapse
Affiliation(s)
- Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India.
| | - Taniya Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Meenakshi Shegane
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Bhuvaneshwari R Gehi
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Moscow region, Pushchino, 142290, Russia
| |
Collapse
|
213
|
Abstract
Purpose of Review Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, is a pandemic causing havoc globally. Currently, there are no Food and Drug Administration (FDA)-approved drugs to treat COVID-19. In the absence of effective treatment, off-label drug use, in lieu of evidence from published randomized, double-blind, placebo-controlled clinical trials, is common in COVID-19. Although it is vital to treat affected patients with antiviral drugs, there is a knowledge gap regarding the use of anti-inflammatory drugs in these patients. Recent Findings Colchicine trials to combat inflammation in COVID-19 patients have not received much attention. We await the results of ongoing colchicine randomized controlled trials in COVID-19, evaluating colchicine's efficacy in treating COVID-19. Summary This review gives a spotlight on colchicine's anti-inflammatory and antiviral properties and why colchicine may help fight COVID-19. This review summarizes colchicine's mechanism of action via the tubulin-colchicine complex. Furthermore, it discussed how colchicine interferes with several inflammatory pathways, including inhibition of neutrophil chemotaxis, adhesion, and mobilization; disruption of superoxide production, inflammasome inhibition, and tumor necrosis factor reduction; and its possible antiviral properties. In addition, colchicine dosing and pharmacokinetics, as well as drug interactions and how they relate to ongoing, colchicine in COVID-19 clinical trials, are examined.
Collapse
Affiliation(s)
- Naomi Schlesinger
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903-0019 USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8082 USA
| | - Luigi Brunetti
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Brunswick, NJ USA
| |
Collapse
|
214
|
Jeong GU, Song H, Yoon GY, Kim D, Kwon YC. Therapeutic Strategies Against COVID-19 and Structural Characterization of SARS-CoV-2: A Review. Front Microbiol 2020; 11:1723. [PMID: 32765482 PMCID: PMC7381222 DOI: 10.3389/fmicb.2020.01723] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/30/2020] [Indexed: 01/18/2023] Open
Abstract
The novel coronavirus, SARS-CoV-2, or 2019-nCoV, which originated in Wuhan, Hubei province, China in December 2019, is a grave threat to public health worldwide. A total of 3,672,238 confirmed cases of coronavirus disease 2019 (COVID-19) and 254,045 deaths were reported globally up to May 7, 2020. However, approved antiviral agents for the treatment of patients with COVID-19 remain unavailable. Drug repurposing of approved antivirals against other viruses such as HIV or Ebola virus is one of the most practical strategies to develop effective antiviral agents against SARS-CoV-2. A combination of repurposed drugs can improve the efficacy of treatment, and structure-based drug design can be employed to specifically target SARS-CoV-2. This review discusses therapeutic strategies using promising antiviral agents against SARS-CoV-2. In addition, structural characterization of potentially therapeutic viral or host cellular targets associated with COVID-19 have been discussed to refine structure-based drug design strategies.
Collapse
Affiliation(s)
- Gi Uk Jeong
- Center for Convergence for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Hanra Song
- Division of Therapeutics and Biotechnology, KRICT, Daejeon, South Korea
| | - Gun Young Yoon
- Center for Convergence for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Doyoun Kim
- Division of Therapeutics and Biotechnology, KRICT, Daejeon, South Korea
| | - Young-Chan Kwon
- Center for Convergence for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| |
Collapse
|
215
|
Gupta A, Kumar S, Kumar R, Choudhary AK, Kumari K, Singh P, Kumar V. COVID-19: Emergence of Infectious Diseases, Nanotechnology Aspects, Challenges, and Future Perspectives. ChemistrySelect 2020; 5:7521-7533. [PMID: 32835089 PMCID: PMC7361534 DOI: 10.1002/slct.202001709] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
Wuhan, a city of China, is the epicenter for the pandemic outbreak of coronavirus disease-2019 (COVID-19). It has become a severe public health challenge to the world and established a public health emergency of international worry. This infectious disease has pulled down the economy of almost all top developed nations. The coronaviruses (CoVs) known for various epidemics caused time to time. Infectious diseases such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS), followed by COVID-19, are all coronaviruses led outbreaks that scourged the history of mankind. CoVs evolved themselves to more infectious, transmissible, and more pandemic with time. To prevent the spread of the SARS-CoV-2, many countries have ordered the complete lockdown to combat the outbreak. This paper briefly discussed the historical background of CoVs and the evolution of human coronaviruses (HCoVs), the case studies and the development of their antiviral medications. The viral infection encountered with present-day challenges and futuristic approaches with the help of nanotechnology to minimize the spread of infectious viruses. The antiviral drugs and their clinical advances, along with herbal medicines for viral inhibition and immunity boosters, are described. Elaboration of tables related to CoVs for the compilation of the literature has been adopted for the better understanding.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of ChemistrySri Venkateswara CollegeUniversity of DelhiIndia.
| | - Sanjay Kumar
- Department of ChemistryDeshbandhu CollegeUniversity of DelhiIndia.
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri VishwavidyalayaHaridwarIndia.
| | | | - Kamlesh Kumari
- Department of ZoologyDeen Dayal Upadhyaya CollegeDelhiIndia.
| | - Prashant Singh
- Department of ChemistryAtma Ram Sanatan Dharma CollegeDelhi UniversityNew DelhiIndia.
| | - Vinod Kumar
- Department of ChemistryKirori Mal CollegeUniversity of DelhiIndia
- Special Centre for Nano SciencesJawaharlal Nehru UniversityDelhiIndia
| |
Collapse
|
216
|
Digard P, Lee HM, Sharp C, Grey F, Gaunt E. Intra-genome variability in the dinucleotide composition of SARS-CoV-2. Virus Evol 2020; 6:veaa057. [PMID: 33029383 PMCID: PMC7454914 DOI: 10.1093/ve/veaa057] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CpG dinucleotides are under-represented in the genomes of single-stranded RNA viruses, and SARS-CoV-2 is no exception to this. Artificial modification of CpG frequency is a valid approach for live attenuated vaccine development; if this is to be applied to SARS-CoV-2, we must first understand the role CpG motifs play in regulating SARS-CoV-2 replication. Accordingly, the CpG composition of the SARS-CoV-2 genome was characterised. CpG suppression among coronaviruses does not differ between virus genera but does vary with host species and primary replication site (a proxy for tissue tropism), supporting the hypothesis that viral CpG content may influence cross-species transmission. Although SARS-CoV-2 exhibits overall strong CpG suppression, this varies considerably across the genome, and the Envelope (E) open reading frame (ORF) and ORF10 demonstrate an absence of CpG suppression. Across the Coronaviridae, E genes display remarkably high variation in CpG composition, with those of SARS and SARS-CoV-2 having much higher CpG content than other coronaviruses isolated from humans. This is an ancestrally derived trait reflecting their bat origins. Conservation of CpG motifs in these regions suggests that they have a functionality which over-rides the need to suppress CpG; an observation relevant to future strategies towards a rationally attenuated SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Paul Digard
- Department of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Hui Min Lee
- Department of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Colin Sharp
- Department of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Finn Grey
- Department of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Eleanor Gaunt
- Department of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
217
|
AlBalwi MA, Khan A, AlDrees M, Gk U, Manie B, Arabi Y, Alabdulkareem I, AlJohani S, Alghoribi M, AlAskar A, AlAjlan A, Hajeer A. Evolving sequence mutations in the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). J Infect Public Health 2020; 13:1544-1550. [PMID: 32654959 PMCID: PMC7328614 DOI: 10.1016/j.jiph.2020.06.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Middle East respiratory syndrome coronavirus (MERS-CoV) has continued to cause sporadic outbreaks of severe respiratory tract infection over the last 8 years. METHODS Complete genome sequencing using next-generation sequencing was performed for MERS-CoV isolates from cases that occurred in Riyadh between 2015 and 2019. Phylogenetic analysis and molecular mutational analysis were carried out to investigate disease severity. RESULTS A total of eight MERS-CoV isolates were subjected to complete genome sequencing. Phylogenetic analysis resulted in the assembly of 7/8 sequences within lineage 3 and one sequence within lineage 4 showing complex genomic recombination. The isolates contained a variety of unique amino acid substitutions in ORF1ab (41), the N protein (10), the S protein (9) and ORF4b (5). CONCLUSION Our study shows that MERS-CoV is evolving. The emergence of new variants carries the potential for increased virulence and could impose a challenge to the global health system. We recommend the sequencing every new MERS-CoV isolate to observe the changes in the virus and relate them to clinical outcomes.
Collapse
Affiliation(s)
- Mohammed Ali AlBalwi
- Department of Pathology & Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Anis Khan
- The University of Sydney, Sydney, Austria
| | - Mohammed AlDrees
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | | | | | - Yaseen Arabi
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Department of Intensive Care Unit, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Ibrahim Alabdulkareem
- Health Sciences Research Center, King Abdullah Bin Abdulaziz University Hospital, Prince Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sameera AlJohani
- Department of Pathology & Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Majed Alghoribi
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ahmed AlAskar
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdulaziz AlAjlan
- Department of Pathology & Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ali Hajeer
- Department of Pathology & Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
218
|
Yang Y, Yan W, Hall B, Jiang X. Characterizing transcriptional regulatory sequences in coronaviruses and their role in recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32587968 DOI: 10.1101/2020.06.21.163410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Novel coronaviruses, including SARS-CoV-2, SARS, and MERS, often originate from recombination events. The mechanism of recombination in RNA viruses is template switching. Coronavirus transcription also involves template switching at specific regions, called transcriptional regulatory sequences (TRS). It is hypothesized but not yet verified that TRS sites are prone to recombination events. Here, we developed a tool called SuPER to systematically identify TRS in coronavirus genomes and then investigated whether recombination is more common at TRS. We ran SuPER on 506 coronavirus genomes and identified 465 TRS-L and 3509 TRS-B. We found that the TRS-L core sequence (CS) and the secondary structure of the leader sequence are generally conserved within coronavirus genera but different between genera. By examining the location of recombination breakpoints with respect to TRS-B CS, we observed that recombination hotspots are more frequently co-located with TRS-B sites than expected.
Collapse
|
219
|
Messina F, Giombini E, Agrati C, Vairo F, Ascoli Bartoli T, Al Moghazi S, Piacentini M, Locatelli F, Kobinger G, Maeurer M, Zumla A, Capobianchi MR, Lauria FN, Ippolito G. COVID-19: viral-host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection. J Transl Med 2020; 18:233. [PMID: 32522207 PMCID: PMC7286221 DOI: 10.1186/s12967-020-02405-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background Epidemiological, virological and pathogenetic characteristics of SARS-CoV-2 infection are under evaluation. A better understanding of the pathophysiology associated with COVID-19 is crucial to improve treatment modalities and to develop effective prevention strategies. Transcriptomic and proteomic data on the host response against SARS-CoV-2 still have anecdotic character; currently available data from other coronavirus infections are therefore a key source of information. Methods We investigated selected molecular aspects of three human coronavirus (HCoV) infections, namely SARS-CoV, MERS-CoV and HCoV-229E, through a network based-approach. A functional analysis of HCoV–host interactome was carried out in order to provide a theoretic host–pathogen interaction model for HCoV infections and in order to translate the results in prediction for SARS-CoV-2 pathogenesis. The 3D model of S-glycoprotein of SARS-CoV-2 was compared to the structure of the corresponding SARS-CoV, HCoV-229E and MERS-CoV S-glycoprotein. SARS-CoV, MERS-CoV, HCoV-229E and the host interactome were inferred through published protein–protein interactions (PPI) as well as gene co-expression, triggered by HCoV S-glycoprotein in host cells. Results Although the amino acid sequences of the S-glycoprotein were found to be different between the various HCoV, the structures showed high similarity, but the best 3D structural overlap shared by SARS-CoV and SARS-CoV-2, consistent with the shared ACE2 predicted receptor. The host interactome, linked to the S-glycoprotein of SARS-CoV and MERS-CoV, mainly highlighted innate immunity pathway components, such as Toll Like receptors, cytokines and chemokines. Conclusions In this paper, we developed a network-based model with the aim to define molecular aspects of pathogenic phenotypes in HCoV infections. The resulting pattern may facilitate the process of structure-guided pharmaceutical and diagnostic research with the prospect to identify potential new biological targets.
Collapse
Affiliation(s)
- Francesco Messina
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Emanuela Giombini
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Chiara Agrati
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Francesco Vairo
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | | | - Samir Al Moghazi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Mauro Piacentini
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesu, Rome, Italy
| | - Gary Kobinger
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Quebec, QC, Canada
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,I. Medizinische Klinik Johannes Gutenberg-Universität, University of Mainz, Mainz, Germany
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, University College London, London, UK.,National Institute for Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Maria R Capobianchi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy.
| | | | - Giuseppe Ippolito
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | | |
Collapse
|
220
|
A Review on the Novel Coronavirus Disease based on In-silico Analysis of Various Drugs and Target Proteins. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.spl1.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Coronavirus Disease (COVID-19) is a new disease that emerged in Wuhan, China which spreads through close contact of people, often by small droplets produced during coughing or sneezing. Detail mechanism by which it spreads between people are under investigation. The World Health Organization (WHO) declared this disease as a pandemic after the severity of the disease increased. Many scientific reports gathered have suggested many drugs that could be potential candidates for the treatment. Although, clinical effectiveness has not been fully evaluated. In this review, we have aggregated the data from few research articles, official news websites and few review papers regarding its phylogenetic relation, genomic constitution, transmission, replication and in-silico analysis done by researchers for few potent drugs that are currently used to cure COVID-19. SARS-CoV-2 belongs to Betacoronavirus genus with Genome structure consists 14 Open Reading Frames (ORFs) that encode 27 proteins. Coronavirus replicates into the host cells having unique mechanisms like ribosome frame-shifting and synthesis of genomic and sub genomic RNAs. In-silico methods have the advantage that they can make fast predictions for a large set of compounds in a high-throughput mode and also make their prediction based on the structure of a compound even before it has been synthesized. In-silico softwares have been used to find or to improve a novel bioactive compound, which may exhibit a strong affinity to a particular target in the drug development process.
Collapse
|
221
|
Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R. A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells 2020; 9:E1267. [PMID: 32443810 PMCID: PMC7291026 DOI: 10.3390/cells9051267] [Citation(s) in RCA: 312] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 01/18/2023] Open
Abstract
The current coronavirus disease-2019 (COVID-19) pandemic is due to the novel coronavirus SARS-CoV-2. The scientific community has mounted a strong response by accelerating research and innovation, and has quickly set the foundation for understanding the molecular determinants of the disease for the development of targeted therapeutic interventions. The replication of the viral genome within the infected cells is a key stage of the SARS-CoV-2 life cycle. It is a complex process involving the action of several viral and host proteins in order to perform RNA polymerization, proofreading and final capping. This review provides an update of the structural and functional data on the key actors of the replicatory machinery of SARS-CoV-2, to fill the gaps in the currently available structural data, which is mainly obtained through homology modeling. Moreover, learning from similar viruses, we collect data from the literature to reconstruct the pattern of interactions among the protein actors of the SARS-CoV-2 RNA polymerase machinery. Here, an important role is played by co-factors such as Nsp8 and Nsp10, not only as allosteric activators but also as molecular connectors that hold the entire machinery together to enhance the efficiency of RNA replication.
Collapse
Affiliation(s)
- Maria Romano
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| | - Giovanni Maga
- Institute of Molecular Genetics, IGM, CNR, 27100 Pavia, Italy;
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| |
Collapse
|
222
|
Porcine Epidemic Diarrhea Virus and the Host Innate Immune Response. Pathogens 2020; 9:pathogens9050367. [PMID: 32403318 PMCID: PMC7281546 DOI: 10.3390/pathogens9050367] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus (CoV), is the causative agent of porcine epidemic diarrhea (PED). PED causes lethal watery diarrhea in piglets, which has led to substantial economic losses in many countries and is a great threat to the global swine industry. Interferons (IFNs) are major cytokines involved in host innate immune defense, which induce the expression of a broad range of antiviral effectors that help host to control and antagonize viral infections. PEDV infection does not elicit a robust IFN response, and some of the mechanisms used by the virus to counteract the host innate immune response have been unraveled. PEDV evades the host innate immune response by two main strategies including: (1) encoding IFN antagonists to disrupt innate immune pathway, and (2) hiding its viral RNA to avoid the exposure of viral RNA to immune sensors. This review highlights the immune evasion mechanisms employed by PEDV, which provides insights for the better understanding of PEDV-host interactions and developing effective vaccines and antivirals against CoVs.
Collapse
|
223
|
van Kasteren PB, van der Veer B, van den Brink S, Wijsman L, de Jonge J, van den Brandt A, Molenkamp R, Reusken CBEM, Meijer A. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J Clin Virol 2020; 128:104412. [PMID: 32416600 PMCID: PMC7206434 DOI: 10.1016/j.jcv.2020.104412] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022]
Abstract
The final months of 2019 witnessed the emergence of a novel coronavirus in the human population. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has since spread across the globe and is posing a major burden on society. Measures taken to reduce its spread critically depend on timely and accurate identification of virus-infected individuals by the most sensitive and specific method available, i.e. real-time reverse transcriptase PCR (RT-PCR). Many commercial kits have recently become available, but their performance has not yet been independently assessed. The aim of this study was to compare basic analytical and clinical performance of selected RT-PCR kits from seven different manufacturers (Altona Diagnostics, BGI, CerTest Biotec, KH Medical, PrimerDesign, R-Biopharm AG, and Seegene). We used serial dilutions of viral RNA to establish PCR efficiency and estimate the 95 % limit of detection (LOD95). Furthermore, we ran a panel of SARS-CoV-2-positive clinical samples (n = 13) for a preliminary evaluation of clinical sensitivity. Finally, we used clinical samples positive for non-coronavirus respiratory viral infections (n = 6) and a panel of RNA from related human coronaviruses to evaluate assay specificity. PCR efficiency was ≥96 % for all assays and the estimated LOD95 varied within a 6-fold range. Using clinical samples, we observed some variations in detection rate between kits. Importantly, none of the assays showed cross-reactivity with other respiratory (corona)viruses, except as expected for the SARS-CoV-1 E-gene. We conclude that all RT-PCR kits assessed in this study may be used for routine diagnostics of COVID-19 in patients by experienced molecular diagnostic laboratories.
Collapse
Affiliation(s)
- Puck B van Kasteren
- National Institute for Public Health and the Environment, Center for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands
| | - Bas van der Veer
- National Institute for Public Health and the Environment, Center for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands
| | - Sharon van den Brink
- National Institute for Public Health and the Environment, Center for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands
| | - Lisa Wijsman
- National Institute for Public Health and the Environment, Center for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands
| | - Jørgen de Jonge
- National Institute for Public Health and the Environment, Center for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands
| | - Annemarie van den Brandt
- National Institute for Public Health and the Environment, Center for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands
| | - Richard Molenkamp
- Erasmus Medical Center, Viroscience Department, 's Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands
| | - Chantal B E M Reusken
- National Institute for Public Health and the Environment, Center for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands
| | - Adam Meijer
- National Institute for Public Health and the Environment, Center for Infectious Disease Control, A. van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands.
| |
Collapse
|
224
|
Lundstrom K. Coronavirus Pandemic-Therapy and Vaccines. Biomedicines 2020; 8:E109. [PMID: 32375268 PMCID: PMC7277397 DOI: 10.3390/biomedicines8050109] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The current coronavirus COVID-19 pandemic, which originated in Wuhan, China, has raised significant social, psychological and economic concerns in addition to direct medical issues. The rapid spread of severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 to almost every country on the globe and the failure to contain the infections have contributed to fear and panic worldwide. The lack of available and efficient antiviral drugs or vaccines has further worsened the situation. For these reasons, it cannot be overstated that an accelerated effort for the development of novel drugs and vaccines is needed. In this context, novel approaches in both gene therapy and vaccine development are essential. Previous experience from SARS- and MERS-coronavirus vaccine and drug development projects have targeted glycoprotein epitopes, monoclonal antibodies, angiotensin receptor blockers and gene silencing technologies, which may be useful for COVID-19 too. Moreover, existing antivirals used for other types of viral infections have been considered as urgent action is necessary. This review aims at providing a background of coronavirus genetics and biology, examples of therapeutic and vaccine strategies taken and potential innovative novel approaches in progress.
Collapse
|
225
|
Danchin A, Marlière P. Cytosine drives evolution of SARS-CoV-2. Environ Microbiol 2020; 22:1977-1985. [PMID: 32291894 PMCID: PMC7262064 DOI: 10.1111/1462-2920.15025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Antoine Danchin
- Kodikos Labs, 24 rue Jean Baldassini, 69007 Lyon/Institut Cochin, 75013 Paris, France
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 81 rue Réaumur, 75002, Paris, France
| |
Collapse
|
226
|
Feasibility of Known RNA Polymerase Inhibitors as Anti-SARS-CoV-2 Drugs. Pathogens 2020; 9:pathogens9050320. [PMID: 32357471 PMCID: PMC7281371 DOI: 10.3390/pathogens9050320] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Coronaviruses (CoVs) are positive-stranded RNA viruses that infect humans and animals. Infection by CoVs such as HCoV-229E, -NL63, -OC43 and -HKU1 leads to the common cold, short lasting rhinitis, cough, sore throat and fever. However, CoVs such as Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and the newest SARS-CoV-2 (the causative agent of COVID-19) lead to severe and deadly diseases with mortality rates ranging between ~1 to 35% depending on factors such as age and pre-existing conditions. Despite continuous global health threats to humans, there are no approved vaccines or drugs targeting human CoVs, and the recent outbreak of COVID-19 emphasizes an urgent need for therapeutic interventions. Using computational and bioinformatics tools, here we present the feasibility of reported broad-spectrum RNA polymerase inhibitors as anti- SARS-CoV-2 drugs targeting its main RNA polymerase, suggesting that investigational and approved nucleoside RNA polymerase inhibitors have potential as anti-SARS-CoV-2 drugs. However, we note that it is also possible for SARS-CoV-2 to evolve and acquire drug resistance mutations against these nucleoside inhibitors.
Collapse
|
227
|
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92:418-423. [PMID: 31967327 PMCID: PMC7167049 DOI: 10.1002/jmv.25681] [Citation(s) in RCA: 1816] [Impact Index Per Article: 363.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
The recent emergence of a novel coronavirus (2019-nCoV), which is causing an outbreak of unusual viral pneumonia in patients in Wuhan, a central city in China, is another warning of the risk of CoVs posed to public health. In this minireview, we provide a brief introduction of the general features of CoVs and describe diseases caused by different CoVs in humans and animals. This review will help understand the biology and potential risk of CoVs that exist in richness in wildlife such as bats.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life SciencesWuhan UniversityWuhanChina
| | - Qianyun Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life SciencesWuhan UniversityWuhanChina
| | - Deyin Guo
- Center for Infection and Immunity Study, School of MedicineSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
228
|
Tao Z, Zhou S, Yao R, Wen K, Da W, Meng Y, Yang K, Liu H, Tao L. COVID-19 will stimulate a new coronavirus research breakthrough: a 20-year bibliometric analysis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:528. [PMID: 32411751 PMCID: PMC7214912 DOI: 10.21037/atm.2020.04.26] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background COVID-19 is currently rampant in China, causing unpredictable harm to humans. This study aimed to quantitatively and qualitatively investigate the research trends on coronaviruses using bibliometric analysis to identify new prevention strategies. Methods All relevant publications on coronaviruses were extracted from 2000–2020 from the Web of Science database. An online analysis platform of literature metrology, bibliographic item co-occurrence matrix builder (BICOMB) and CiteSpace software were used to analyse the publication trends. VOSviewer was used to analyse the keywords and research hotspots and compare COVID-19 information with SARS and MERS information. Results We found a total of 9,760 publications related to coronaviruses published from 2000 to 2020. The Journal of Virology has been the most popular journal in this field over the past 20 years. The United States maintained a top position worldwide and has provided a pivotal influence, followed by China. Among all the institutions, the University of Hong Kong was regarded as a leader for research collaboration. Moreover, Professors Yuen KY and Peiris JSM made great achievements in coronavirus research. We analysed the keywords and identified 5 coronavirus research hotspot clusters. Conclusions We considered the publication information regarding different countries, institutions, authors, journals, etc. by summarizing the literature on coronaviruses over the past 20 years. We analysed the studies on COVID-19 and the SARS and MERS coronaviruses. Notably, COVID-19 must become the research hotspot of coronavirus research, and clinical research on COVID-19 may be the key to defeating this epidemic.
Collapse
Affiliation(s)
- Zhengbo Tao
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang 110001, China
| | - Siming Zhou
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang 110001, China
| | - Renqi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.,Department of Burn Surgery, Changhai Hospital, the Naval Medical University, Shanghai 200433, China
| | - Kaicheng Wen
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang 110001, China
| | - Wacili Da
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang 110001, China
| | - Yan Meng
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang 110001, China
| | - Keda Yang
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang 110001, China
| | - Hang Liu
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Boston, USA
| | - Lin Tao
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang 110001, China.,Institute of Health Sciences of China Medical University, Shenyang 110001, China
| |
Collapse
|
229
|
Srinivasan S, Cui H, Gao Z, Liu M, Lu S, Mkandawire W, Narykov O, Sun M, Korkin D. Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins. Viruses 2020; 12:v12040360. [PMID: 32218151 PMCID: PMC7232164 DOI: 10.3390/v12040360] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022] Open
Abstract
During its first two and a half months, the recently emerged 2019 novel coronavirus, SARS-CoV-2, has already infected over one-hundred thousand people worldwide and has taken more than four thousand lives. However, the swiftly spreading virus also caused an unprecedentedly rapid response from the research community facing the unknown health challenge of potentially enormous proportions. Unfortunately, the experimental research to understand the molecular mechanisms behind the viral infection and to design a vaccine or antivirals is costly and takes months to develop. To expedite the advancement of our knowledge, we leveraged data about the related coronaviruses that is readily available in public databases and integrated these data into a single computational pipeline. As a result, we provide comprehensive structural genomics and interactomics roadmaps of SARS-CoV-2 and use this information to infer the possible functional differences and similarities with the related SARS coronavirus. All data are made publicly available to the research community.
Collapse
Affiliation(s)
- Suhas Srinivasan
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Hongzhu Cui
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.C.); (Z.G.); (M.L.); (S.L.); (W.M.); (D.K.)
| | - Ziyang Gao
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.C.); (Z.G.); (M.L.); (S.L.); (W.M.); (D.K.)
| | - Ming Liu
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.C.); (Z.G.); (M.L.); (S.L.); (W.M.); (D.K.)
| | - Senbao Lu
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.C.); (Z.G.); (M.L.); (S.L.); (W.M.); (D.K.)
| | - Winnie Mkandawire
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.C.); (Z.G.); (M.L.); (S.L.); (W.M.); (D.K.)
| | - Oleksandr Narykov
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Mo Sun
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.C.); (Z.G.); (M.L.); (S.L.); (W.M.); (D.K.)
| | - Dmitry Korkin
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.C.); (Z.G.); (M.L.); (S.L.); (W.M.); (D.K.)
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
- Correspondence:
| |
Collapse
|
230
|
Nucleocapsid Protein Recruitment to Replication-Transcription Complexes Plays a Crucial Role in Coronaviral Life Cycle. J Virol 2020; 94:JVI.01925-19. [PMID: 31776274 PMCID: PMC6997762 DOI: 10.1128/jvi.01925-19] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/21/2022] Open
Abstract
CoVs have long been regarded as relatively harmless pathogens for humans. Severe respiratory tract infection outbreaks caused by severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, however, have caused high pathogenicity and mortality rates in humans. These outbreaks highlighted the relevance of being able to control CoV infections. We used a model CoV, MHV, to investigate the importance of the recruitment of N protein, a central component of CoV virions, to intracellular platforms where CoVs replicate, transcribe, and translate their genomes. By identifying the principal binding partner at these intracellular platforms and generating a specific mutant, we found that N protein recruitment to these locations is crucial for promoting viral RNA synthesis. Moreover, blocking this recruitment strongly inhibits viral infection. Thus, our results explain an important aspect of the CoV life cycle and reveal an interaction of viral proteins that could be targeted in antiviral therapies. Coronavirus (CoV) nucleocapsid (N) proteins are key for incorporating genomic RNA into progeny viral particles. In infected cells, N proteins are present at the replication-transcription complexes (RTCs), the sites of CoV RNA synthesis. It has been shown that N proteins are important for viral replication and that the one of mouse hepatitis virus (MHV), a commonly used model CoV, interacts with nonstructural protein 3 (nsp3), a component of the RTCs. These two aspects of the CoV life cycle, however, have not been linked. We found that the MHV N protein binds exclusively to nsp3 and not other RTC components by using a systematic yeast two-hybrid approach, and we identified two distinct regions in the N protein that redundantly mediate this interaction. A selective N protein variant carrying point mutations in these two regions fails to bind nsp3 in vitro, resulting in inhibition of its recruitment to RTCs in vivo. Furthermore, in contrast to the wild-type N protein, this N protein variant impairs the stimulation of genomic RNA and viral mRNA transcription in vivo and in vitro, which in turn leads to impairment of MHV replication and progeny production. Altogether, our results show that N protein recruitment to RTCs, via binding to nsp3, is an essential step in the CoV life cycle because it is critical for optimal viral RNA synthesis. IMPORTANCE CoVs have long been regarded as relatively harmless pathogens for humans. Severe respiratory tract infection outbreaks caused by severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, however, have caused high pathogenicity and mortality rates in humans. These outbreaks highlighted the relevance of being able to control CoV infections. We used a model CoV, MHV, to investigate the importance of the recruitment of N protein, a central component of CoV virions, to intracellular platforms where CoVs replicate, transcribe, and translate their genomes. By identifying the principal binding partner at these intracellular platforms and generating a specific mutant, we found that N protein recruitment to these locations is crucial for promoting viral RNA synthesis. Moreover, blocking this recruitment strongly inhibits viral infection. Thus, our results explain an important aspect of the CoV life cycle and reveal an interaction of viral proteins that could be targeted in antiviral therapies.
Collapse
|
231
|
Lachheb J, Turki A, Nsiri J, Fathallah I, El Behi I, Larbi I, Ghram A. Molecular characterization of a unique variant of avian infectious bronchitis virus in Tunisia. Poult Sci 2019; 98:4338-4345. [PMID: 31265109 PMCID: PMC7107247 DOI: 10.3382/ps/pez384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/13/2019] [Indexed: 11/20/2022] Open
Abstract
Avian infectious bronchitis virus (IBV) is responsible of significant economic losses for poultry industry around the world, through evolution of its pathogenicity, inadequacy of vaccines, and virus evasion. Such evasion is related to the unstable nature of its RNA, in particular the S glycoprotein encoding gene, which raises great challenges with regard to the control of the disease, along with the lack of proof reading mechanisms of the RNA polymerase. The emergence of new variants might be a reason for the endemic outbreaks that are being reported in Tunisia, in addition to poor vaccination techniques and ineffective prophylactic programs. In the present study, partial nucleotide sequences of the S1 glycoprotein gene and the 3'-untranslated region (UTR) of 2 Tunisian isolates, TN1011/16 and TN1012/16, identified in 2016, were determined. Specific mutations were found in S1 gene as well as in 3'UTR region. Phylogenetic analysis of the S1 nucleotide sequences showed that both isolates are closely related to the Algerian strains, and formed a common cluster within the genotype I. In addition, these isolates were non-recombinant ones, confirming that they are unique variants. Based on their S1 gene sequences, TN1011/16 and TN1012/16 strains were distant from the H120 vaccine strain, commercially used in Tunisia along with the variant vaccine 793B type (4/91). A comparison between nucleotide sequences of their 3'UTR region and S1 gene showed a difference in IBV classification. The obtained results have confirmed that the IBVsequence continues to drift and brings valuable information in relation with its evolution, vaccine development and better control of the disease.
Collapse
Affiliation(s)
- Jihene Lachheb
- Laboratory of Epidemiology and Veterinary Microbiology LR 11 IPT 03, Institut Pasteur of Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 Tunis Belvedere 1002, Tunisia
| | - Aicha Turki
- Laboratory of Epidemiology and Veterinary Microbiology LR 11 IPT 03, Institut Pasteur of Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 Tunis Belvedere 1002, Tunisia
| | - Jihene Nsiri
- Laboratory of Epidemiology and Veterinary Microbiology LR 11 IPT 03, Institut Pasteur of Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 Tunis Belvedere 1002, Tunisia
| | - Imen Fathallah
- Laboratory of Epidemiology and Veterinary Microbiology LR 11 IPT 03, Institut Pasteur of Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 Tunis Belvedere 1002, Tunisia
| | - Imen El Behi
- Laboratory of Epidemiology and Veterinary Microbiology LR 11 IPT 03, Institut Pasteur of Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 Tunis Belvedere 1002, Tunisia
| | - Imen Larbi
- Laboratory of Epidemiology and Veterinary Microbiology LR 11 IPT 03, Institut Pasteur of Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 Tunis Belvedere 1002, Tunisia
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology LR 11 IPT 03, Institut Pasteur of Tunis, University of Tunis El Manar, 13 place Pasteur, BP74 Tunis Belvedere 1002, Tunisia
| |
Collapse
|
232
|
The Porcine Deltacoronavirus Replication Organelle Comprises Double-Membrane Vesicles and Zippered Endoplasmic Reticulum with Double-Membrane Spherules. Viruses 2019; 11:v11111030. [PMID: 31694296 PMCID: PMC6893519 DOI: 10.3390/v11111030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/09/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) was first identified in Hong Kong in 2012 from samples taken from pigs in 2009. PDCoV was subsequently identified in the USA in 2014 in pigs with a history of severe diarrhea. The virus has now been detected in pigs in several countries around the world. Following the development of tissue culture adapted strains of PDCoV, it is now possible to address questions regarding virus-host cell interactions for this genera of coronavirus. Here, we presented a detailed study of PDCoV-induced replication organelles. All positive-strand RNA viruses induce the rearrangement of cellular membranes during virus replication to support viral RNA synthesis, forming the replication organelle. Replication organelles for the Alpha-, Beta-, and Gammacoronavirus genera have been characterized. All coronavirus genera induced the formation of double-membrane vesicles (DMVs). In addition, Alpha- and Betacoronaviruses induce the formation of convoluted membranes, while Gammacoronaviruses induce the formation of zippered endoplasmic reticulum (ER) with tethered double-membrane spherules. However, the structures induced by Deltacoronaviruses, particularly the presence of convoluted membranes or double-membrane spherules, are unknown. Initially, the dynamics of PDCoV strain OH-FD22 replication were assessed with the onset of viral RNA synthesis, protein synthesis, and progeny particle release determined. Subsequently, virus-induced membrane rearrangements were identified in infected cells by electron microscopy. As has been observed for all other coronaviruses studied to date, PDCoV replication was found to induce the formation of double-membrane vesicles. Significantly, however, PDCoV replication was also found to induce the formation of regions of zippered endoplasmic reticulum, small associated tethered vesicles, and double-membrane spherules. These structures strongly resemble the replication organelle induced by avian Gammacoronavirus infectious bronchitis virus.
Collapse
|
233
|
Dinan AM, Keep S, Bickerton E, Britton P, Firth AE, Brierley I. Comparative Analysis of Gene Expression in Virulent and Attenuated Strains of Infectious Bronchitis Virus at Subcodon Resolution. J Virol 2019; 93:e00714-19. [PMID: 31243124 PMCID: PMC6714804 DOI: 10.1128/jvi.00714-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022] Open
Abstract
Like all coronaviruses, avian infectious bronchitis virus (IBV) possesses a long, single-stranded, positive-sense RNA genome (∼27 kb) and has a complex replication strategy that includes the production of a nested set of subgenomic mRNAs (sgmRNAs). Here, we used whole-transcriptome sequencing (RNASeq) and ribosome profiling (RiboSeq) to delineate gene expression in the IBV M41-CK and Beau-R strains at subcodon resolution. RNASeq facilitated a comparative analysis of viral RNA synthesis and revealed two novel transcription junction sites in the attenuated Beau-R strain, one of which would generate a sgmRNA encoding a ribosomally occupied open reading frame (dORF) located downstream of the nucleocapsid coding region. RiboSeq permitted quantification of the translational efficiency of virus gene expression and identified, for the first time, sites of ribosomal pausing on the genome. Quantification of reads flanking the programmed ribosomal frameshifting (PRF) signal at the genomic RNA ORF1a/ORF1b junction revealed that PRF in IBV is highly efficient (33 to 40%). Triplet phasing of RiboSeq data allowed precise determination of reading frames and revealed the translation of two ORFs (ORF4b and ORF4c on sgmRNA IR), which are widely conserved across IBV isolates. Analysis of differential gene expression in infected primary chick kidney cells indicated that the host cell response to IBV occurs primarily at the level of transcription, with global upregulation of immune-related mRNA transcripts following infection and comparatively modest changes in the translation efficiencies of host genes. Cellular genes and gene networks differentially expressed during virus infection were also identified, giving insights into the host cell response to IBV infection.IMPORTANCE IBV is a major avian pathogen and presents a substantial economic burden to the poultry industry. Improved vaccination strategies are urgently needed to curb the global spread of this virus, and the development of suitable vaccine candidates will be aided by an improved understanding of IBV molecular biology. Our high-resolution data have enabled a precise study of transcription and translation in cells infected with both pathogenic and attenuated forms of IBV and expand our understanding of gammacoronaviral gene expression. We demonstrate that gene expression shows considerable intraspecies variation, with single nucleotide polymorphisms being associated with altered production of sgmRNA transcripts, and our RiboSeq data sets enabled us to uncover novel ribosomally occupied ORFs in both strains. The numerous cellular genes and gene networks found to be differentially expressed during virus infection provide insights into the host cell response to IBV infection.
Collapse
Affiliation(s)
- Adam M Dinan
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Keep
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | - Paul Britton
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
234
|
Viehweger A, Krautwurst S, Lamkiewicz K, Madhugiri R, Ziebuhr J, Hölzer M, Marz M. Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res 2019; 29:1545-1554. [PMID: 31439691 DOI: 10.1101/483693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Sequence analyses of RNA virus genomes remain challenging owing to the exceptional genetic plasticity of these viruses. Because of high mutation and recombination rates, genome replication by viral RNA-dependent RNA polymerases leads to populations of closely related viruses, so-called "quasispecies." Standard (short-read) sequencing technologies are ill-suited to reconstruct large numbers of full-length haplotypes of (1) RNA virus genomes and (2) subgenome-length (sg) RNAs composed of noncontiguous genome regions. Here, we used a full-length, direct RNA sequencing (DRS) approach based on nanopores to characterize viral RNAs produced in cells infected with a human coronavirus. By using DRS, we were able to map the longest (∼26-kb) contiguous read to the viral reference genome. By combining Illumina and Oxford Nanopore sequencing, we reconstructed a highly accurate consensus sequence of the human coronavirus (HCoV)-229E genome (27.3 kb). Furthermore, by using long reads that did not require an assembly step, we were able to identify, in infected cells, diverse and novel HCoV-229E sg RNAs that remain to be characterized. Also, the DRS approach, which circumvents reverse transcription and amplification of RNA, allowed us to detect methylation sites in viral RNAs. Our work paves the way for haplotype-based analyses of viral quasispecies by showing the feasibility of intra-sample haplotype separation. Even though several technical challenges remain to be addressed to exploit the potential of the nanopore technology fully, our work illustrates that DRS may significantly advance genomic studies of complex virus populations, including predictions on long-range interactions in individual full-length viral RNA haplotypes.
Collapse
Affiliation(s)
- Adrian Viehweger
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sebastian Krautwurst
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Gießen, 35390 Gießen, Germany
| | - John Ziebuhr
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
- Institute of Medical Virology, Justus Liebig University Gießen, 35390 Gießen, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07743 Jena, Germany
| |
Collapse
|
235
|
Viehweger A, Krautwurst S, Lamkiewicz K, Madhugiri R, Ziebuhr J, Hölzer M, Marz M. Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res 2019; 29:1545-1554. [PMID: 31439691 PMCID: PMC6724671 DOI: 10.1101/gr.247064.118] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/05/2019] [Indexed: 01/09/2023]
Abstract
Sequence analyses of RNA virus genomes remain challenging owing to the exceptional genetic plasticity of these viruses. Because of high mutation and recombination rates, genome replication by viral RNA-dependent RNA polymerases leads to populations of closely related viruses, so-called “quasispecies.” Standard (short-read) sequencing technologies are ill-suited to reconstruct large numbers of full-length haplotypes of (1) RNA virus genomes and (2) subgenome-length (sg) RNAs composed of noncontiguous genome regions. Here, we used a full-length, direct RNA sequencing (DRS) approach based on nanopores to characterize viral RNAs produced in cells infected with a human coronavirus. By using DRS, we were able to map the longest (∼26-kb) contiguous read to the viral reference genome. By combining Illumina and Oxford Nanopore sequencing, we reconstructed a highly accurate consensus sequence of the human coronavirus (HCoV)-229E genome (27.3 kb). Furthermore, by using long reads that did not require an assembly step, we were able to identify, in infected cells, diverse and novel HCoV-229E sg RNAs that remain to be characterized. Also, the DRS approach, which circumvents reverse transcription and amplification of RNA, allowed us to detect methylation sites in viral RNAs. Our work paves the way for haplotype-based analyses of viral quasispecies by showing the feasibility of intra-sample haplotype separation. Even though several technical challenges remain to be addressed to exploit the potential of the nanopore technology fully, our work illustrates that DRS may significantly advance genomic studies of complex virus populations, including predictions on long-range interactions in individual full-length viral RNA haplotypes.
Collapse
Affiliation(s)
- Adrian Viehweger
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sebastian Krautwurst
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Gießen, 35390 Gießen, Germany
| | - John Ziebuhr
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany.,Institute of Medical Virology, Justus Liebig University Gießen, 35390 Gießen, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany.,Leibniz Institute on Aging-Fritz Lipmann Institute, 07743 Jena, Germany
| |
Collapse
|
236
|
Ogando NS, Ferron F, Decroly E, Canard B, Posthuma CC, Snijder EJ. The Curious Case of the Nidovirus Exoribonuclease: Its Role in RNA Synthesis and Replication Fidelity. Front Microbiol 2019; 10:1813. [PMID: 31440227 PMCID: PMC6693484 DOI: 10.3389/fmicb.2019.01813] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
Among RNA viruses, the order Nidovirales stands out for including viruses with the largest RNA genomes currently known. Nidoviruses employ a complex RNA-synthesizing machinery comprising a variety of non-structural proteins (nsps). One of the postulated drivers of the expansion of nidovirus genomes is the presence of a proofreading 3′-to-5′ exoribonuclease (ExoN) belonging to the DEDDh family. ExoN may enhance the fidelity of RNA synthesis by correcting nucleotide incorporation errors made by the RNA-dependent RNA polymerase. Here, we review our current understanding of ExoN evolution, structure, and function. Most experimental data are derived from studies of the ExoN domain of coronaviruses (CoVs), which were triggered by the bioinformatics-based identification of ExoN in the genome of severe acute respiratory syndrome coronavirus (SARS-CoV) and its relatives in 2003. Although convincing data supporting the proofreading hypothesis have been obtained, from biochemical assays and studies with CoV mutants lacking ExoN functionality, the features of ExoN from most other nidovirus families remain to be characterized. Remarkably, viable ExoN knockout mutants were obtained only for two CoVs, mouse hepatitis virus (MHV) and SARS-CoV, whose RNA synthesis and replication kinetics were mildly affected by the lack of ExoN function. In several other CoV species, ExoN inactivation was not tolerated, and knockout mutants could not be rescued when launched using a reverse genetics system. This suggests that ExoN is also critical for primary viral RNA synthesis, a property that poorly matches the profile of an enzyme that would merely boost long-term replication fidelity. In CoVs, ExoN resides in a bifunctional replicase subunit (nsp14) whose C-terminal part has (N7-guanine)-methyltransferase activity. The crystal structure of SARS-CoV nsp14 has shed light on the interplay between these two domains, and on nsp14’s interactions with nsp10, a co-factor that strongly enhances ExoN activity in vitro assays. Further elucidation of the structure-function relationships of ExoN and its interactions with other (viral and/or host) members of the CoV replication machinery will be key to understanding the enzyme’s role in viral RNA synthesis and pathogenesis, and may contribute to the design of new approaches to combat emerging nidoviruses.
Collapse
Affiliation(s)
- Natacha S Ogando
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Francois Ferron
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,European Virus Bioinformatics Center, Jena, Germany
| | - Etienne Decroly
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Bruno Canard
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Clara C Posthuma
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Eric J Snijder
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
237
|
Banerjee A, Baid K, Mossman K. Molecular Pathogenesis of Middle East Respiratory Syndrome (MERS) Coronavirus. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:139-147. [PMID: 32226718 PMCID: PMC7100557 DOI: 10.1007/s40588-019-00122-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 and is listed in the World Health Organization's blueprint of priority diseases that need immediate research. Camels are reservoirs of this virus, and the virus spills over into humans through direct contact with camels. Human-to-human transmission and travel-associated cases have been identified as well. Limited studies have characterized the molecular pathogenesis of MERS-CoV. Most studies have used ectopic expression of viral proteins to characterize MERS-CoV and its ability to modulate antiviral responses in human cells. Studies with live virus are limited, largely due to the requirement of high containment laboratories. In this review, we have summarized current studies on MERS-CoV molecular pathogenesis and have mentioned some recent strategies that are being developed to control MERS-CoV infection. RECENT FINDINGS Multiple antiviral molecules with the potential to inhibit MERS-CoV infection by disrupting virus-receptor interactions are being developed and tested. Although human vaccine candidates are still being developed, a candidate camel vaccine is being tested for efficacy. Combination of supportive treatment with interferon and antivirals is also being explored. SUMMARY New antiviral molecules that inhibit MERS-CoV and host cell receptor interaction may become available in the future. Additional studies are required to identify and characterize the pathogenesis of MERS-CoV EMC/2012 and other circulating strains. An effective MERS-CoV vaccine, for humans and/or camels, along with an efficient combination antiviral therapy may help us prevent future MERS cases.
Collapse
Affiliation(s)
- Arinjay Banerjee
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8 Canada
| | - Kaushal Baid
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8 Canada
| | - Karen Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8 Canada
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Center, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8 Canada
| |
Collapse
|
238
|
SmartBac, a new baculovirus system for large protein complex production. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 1:100003. [PMID: 32337507 PMCID: PMC7173262 DOI: 10.1016/j.yjsbx.2019.100003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/28/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022]
Abstract
Recent revolution of cryo-electron microscopy has opened a new door to solve high-resolution structures of macromolecule complexes without crystallization while how to efficiently obtain homogenous macromolecule complex sample is therefore becoming a bottleneck. Here we report SmartBac, an easy and versatile system for constructing large-sized transfer plasmids used to generate recombinant baculoviruses that express large multiprotein complexes in insect cells. The SmartBac system integrates the univector plasmid-fusion system, Gibson assembly method and polyprotein strategy to construct the final transfer plasmid. The fluorescent proteins are designed co-expressed with the target to monitor transfection and expression efficiencies. A scheme of screening an optimal tagged subunit for efficient purification is provided. Six large multiprotein complexes including the human exocyst complex and dynactin complex were successfully expressed and purified, suggesting a great potential of SmartBac system for its wide application in the future.
Collapse
|
239
|
An H, Cai Z, Yang Y, Wang Z, Liu DX, Fang S. Identification and formation mechanism of a novel noncoding RNA produced by avian infectious bronchitis virus. Virology 2019; 528:176-180. [PMID: 30616206 PMCID: PMC7112027 DOI: 10.1016/j.virol.2018.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
Viral noncoding (nc) RNAs have been shown to play important roles in viral life cycle. Many viruses employ different mechanism to produce ncRNAs. Here, we report that coronavirus infectious bronchitis virus (IBV) produces a novel ncRNA in virus-infected cells. This ncRNA consists of 563 nucleotides excluding a poly(A) tail, is mainly derived from the 3'-untranslated region of IBV genome, and contains a 63-nt-long of terminal leader sequence derived from the 5' end of the viral genome. Using mutagenesis and reverse genetics, we reveal that this ncRNA is a subgenomic RNA generated by discontinuous transcription mechanism.
Collapse
Affiliation(s)
- Hongliu An
- College of Agriculture, Yangtze University, 88 Jingmilu, Jingzhou 434025, Hubei, PR China
| | - Zhichao Cai
- College of Agriculture, Yangtze University, 88 Jingmilu, Jingzhou 434025, Hubei, PR China
| | - Yuying Yang
- College of Animal Sciences, Yangtze University, 88 Jingmilu, Jingzhou 434025, Hubei, PR China
| | - Zhaoxiong Wang
- College of Animal Sciences, Yangtze University, 88 Jingmilu, Jingzhou 434025, Hubei, PR China
| | - Ding Xiang Liu
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, PR China.
| | - Shouguo Fang
- College of Agriculture, Yangtze University, 88 Jingmilu, Jingzhou 434025, Hubei, PR China; College of Animal Sciences, Yangtze University, 88 Jingmilu, Jingzhou 434025, Hubei, PR China.
| |
Collapse
|
240
|
Tsai TL, Su CC, Hsieh CC, Lin CN, Chang HW, Lo CY, Lin CH, Wu HY. Gene Variations in Cis-Acting Elements between the Taiwan and Prototype Strains of Porcine Epidemic Diarrhea Virus Alter Viral Gene Expression. Genes (Basel) 2018; 9:E591. [PMID: 30501108 PMCID: PMC6316102 DOI: 10.3390/genes9120591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 01/30/2023] Open
Abstract
In 2013, the outbreak of porcine epidemic diarrhea (PED) in Taiwan caused serious economic losses. In this study, we examined whether the variations of the cis-acting elements between the porcine epidemic diarrhea virus (PEDV) Taiwan (TW) strain and the prototype strain CV777 alter gene expression. For this aim, we analyzed the variations of the cis-acting elements in the 5' and 3' untranslated regions (UTRs) between the PEDV TW, CV777, and other reference strains. We also determined the previously unidentified transcription regulatory sequence (TRS), a sequence motif required for coronavirus transcription, and found that a nucleotide deletion in the TW strain, in comparison with CV777 strain, immediately downstream of the leader core sequence alters the identity between the leader TRS and the body TRS. Functional analyses using coronavirus defective interfering (DI) RNA revealed that such variations in cis-acting elements for the TW strain compared with the CV777 strain have an influence on the efficiency of gene expression. The current data show for the first time the evolution of PEDV in terms of cis-acting elements and their effects on gene expression, and thus may contribute to our understanding of recent PED outbreaks worldwide.
Collapse
Affiliation(s)
- Tsung-Lin Tsai
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chen-Chang Su
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Ching-Chi Hsieh
- Division of Chest Medicine, Department of Internal Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan.
| | - Chao-Nan Lin
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 91201, Taiwan.
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Chen-Yu Lo
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Ching-Houng Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
241
|
The Endonucleolytic RNA Cleavage Function of nsp1 of Middle East Respiratory Syndrome Coronavirus Promotes the Production of Infectious Virus Particles in Specific Human Cell Lines. J Virol 2018; 92:JVI.01157-18. [PMID: 30111568 DOI: 10.1128/jvi.01157-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/11/2018] [Indexed: 01/10/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) nsp1 suppresses host gene expression in expressed cells by inhibiting translation and inducing endonucleolytic cleavage of host mRNAs, the latter of which leads to mRNA decay. We examined the biological functions of nsp1 in infected cells and its role in virus replication by using wild-type MERS-CoV and two mutant viruses with specific mutations in the nsp1; one mutant lacked both biological functions, while the other lacked the RNA cleavage function but retained the translation inhibition function. In Vero cells, all three viruses replicated efficiently with similar replication kinetics, while wild-type virus induced stronger host translational suppression and host mRNA degradation than the mutants, demonstrating that nsp1 suppressed host gene expression in infected cells. The mutant viruses replicated less efficiently than wild-type virus in Huh-7 cells, HeLa-derived cells, and 293-derived cells, the latter two of which stably expressed a viral receptor protein. In 293-derived cells, the three viruses accumulated similar levels of nsp1 and major viral structural proteins and did not induce IFN-β and IFN-λ mRNAs; however, both mutants were unable to generate intracellular virus particles as efficiently as wild-type virus, leading to inefficient production of infectious viruses. These data strongly suggest that the endonucleolytic RNA cleavage function of the nsp1 promoted MERS-CoV assembly and/or budding in a 293-derived cell line. MERS-CoV nsp1 represents the first CoV gene 1 protein that plays an important role in virus assembly/budding and is the first identified viral protein whose RNA cleavage-inducing function promotes virus assembly/budding.IMPORTANCE MERS-CoV represents a high public health threat. Because CoV nsp1 is a major viral virulence factor, uncovering the biological functions of MERS-CoV nsp1 could contribute to our understanding of MERS-CoV pathogenicity and spur development of medical countermeasures. Expressed MERS-CoV nsp1 suppresses host gene expression, but its biological functions for virus replication and effects on host gene expression in infected cells are largely unexplored. We found that nsp1 suppressed host gene expression in infected cells. Our data further demonstrated that nsp1, which was not detected in virus particles, promoted virus assembly or budding in a 293-derived cell line, leading to efficient virus replication. These data suggest that nsp1 plays an important role in MERS-CoV replication and possibly affects virus-induced diseases by promoting virus particle production in infected hosts. Our data, which uncovered an unexpected novel biological function of nsp1 in virus replication, contribute to further understanding of the MERS-CoV replication strategies.
Collapse
|
242
|
Stewart H, Brown K, Dinan AM, Irigoyen N, Snijder EJ, Firth AE. Transcriptional and Translational Landscape of Equine Torovirus. J Virol 2018; 92:e00589-18. [PMID: 29950409 PMCID: PMC6096809 DOI: 10.1128/jvi.00589-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022] Open
Abstract
The genus Torovirus (subfamily Torovirinae, family Coronaviridae, order Nidovirales) encompasses a range of species that infect domestic ungulates, including cattle, sheep, goats, pigs, and horses, causing an acute self-limiting gastroenteritis. Using the prototype species equine torovirus (EToV), we performed parallel RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) to analyze the relative expression levels of the known torovirus proteins and transcripts, chimeric sequences produced via discontinuous RNA synthesis (a characteristic of the nidovirus replication cycle), and changes in host transcription and translation as a result of EToV infection. RNA sequencing confirmed that EToV utilizes a unique combination of discontinuous and nondiscontinuous RNA synthesis to produce its subgenomic RNAs (sgRNAs); indeed, we identified transcripts arising from both mechanisms that would result in sgRNAs encoding the nucleocapsid. Our ribosome profiling analysis revealed that ribosomes efficiently translate two novel CUG-initiated open reading frames (ORFs), located within the so-called 5' untranslated region. We have termed the resulting proteins U1 and U2. Comparative genomic analysis confirmed that these ORFs are conserved across all available torovirus sequences, and the inferred amino acid sequences are subject to purifying selection, indicating that U1 and U2 are functionally relevant. This study provides the first high-resolution analysis of transcription and translation in this neglected group of livestock pathogens.IMPORTANCE Toroviruses infect cattle, goats, pigs, and horses worldwide and can cause gastrointestinal disease. There is no treatment or vaccine, and their ability to spill over into humans has not been assessed. These viruses are related to important human pathogens, including severe acute respiratory syndrome (SARS) coronavirus, and they share some common features; however, the mechanism that they use to produce sgRNA molecules differs. Here, we performed deep sequencing to determine how equine torovirus produces sgRNAs. In doing so, we also identified two previously unknown open reading frames "hidden" within the genome. Together these results highlight the similarities and differences between this domestic animal virus and related pathogens of humans and livestock.
Collapse
Affiliation(s)
- Hazel Stewart
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Adam M Dinan
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
243
|
Genomic characterization and pathogenicity of a porcine hemagglutinating encephalomyelitis virus strain isolated in China. Virus Genes 2018; 54:672-683. [PMID: 30078094 PMCID: PMC7089186 DOI: 10.1007/s11262-018-1591-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/19/2018] [Indexed: 11/01/2022]
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a member of the genus betacoronavirus within the family coronaviridae, which invades the central nervous system (CNS) via peripheral nervous system and causes encephalomyelitis or vomiting and wasting disease (VWD) in sucking piglets. Up to now, although few complete nucleotide sequences of PHEV have been reported, they are not annotated. This study aimed to illuminate genome characterization, phylogenesis and pathogenicity of the PHEV/2008 strain. The full length of the PHEV/2008 strain genome was 30,684 bp, with a G + C content of 37.27%. The genome included at a minimum of 11 predicted open reading frames (ORFs) flanked by 5' and 3' untranslated regions (UTR) of 211 and 289 nucleotides. The replicase polyproteins pp1a and pp1ab, which had 4382 and 7094 amino acid residues, respectively, were predicted to be cleaved into 16 subunits by two viral proteinases. Phylogenetic analysis based on the complete genome sequence revealed that PHEV/2008 strain was genetically different from other known PHEV types, which represented a novel genotype (GI-1). In addition, we found that PHEV/2008 was neurotropic and highly pathogenic to 4-week-old BALB/c mice. Taken together, this is the first detailed annotated, complete genomic sequence of a new genotype PHEV strain in China.
Collapse
|
244
|
de Wilde AH, Pham U, Posthuma CC, Snijder EJ. Cyclophilins and cyclophilin inhibitors in nidovirus replication. Virology 2018; 522:46-55. [PMID: 30014857 PMCID: PMC7112023 DOI: 10.1016/j.virol.2018.06.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
Cyclophilins (Cyps) belong to the family of peptidyl-prolyl isomerases (PPIases). The PPIase activity of most Cyps is inhibited by the immunosuppressive drug cyclosporin A and several of its non-immunosuppressive analogs, which can also block the replication of nidoviruses (arteriviruses and coronaviruses). Cyclophilins have been reported to play an essential role in the replication of several other RNA viruses, including human immunodeficiency virus-1, hepatitis C virus, and influenza A virus. Likewise, the replication of various nidoviruses was reported to depend on Cyps or other PPIases. This review summarizes our current understanding of this class of nidovirus-host interactions, including the potential function of in particular CypA and the inhibitory effect of Cyp inhibitors. Also the involvement of the FK-506-binding proteins and parvulins is discussed. The nidovirus data are placed in a broader perspective by summarizing the most relevant data on Cyp interactions and Cyp inhibitors for other RNA viruses. Nidovirus replication is inhibited by cyclophilin inhibitors. Arterivirus replication depends on cyclophilin A. Cyclosporin A blocks arterivirus RNA synthesis. Using cyclophilin inhibitors against nidoviruses in vivo needs more investigation.
Collapse
Affiliation(s)
- Adriaan H de Wilde
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Uyen Pham
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C Posthuma
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
245
|
Park WB, Poon LLM, Choi SJ, Choe PG, Song KH, Bang JH, Kim ES, Kim HB, Park SW, Kim NJ, Peiris M, Oh MD. Replicative virus shedding in the respiratory tract of patients with Middle East respiratory syndrome coronavirus infection. Int J Infect Dis 2018; 72:8-10. [PMID: 29753119 PMCID: PMC7110884 DOI: 10.1016/j.ijid.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 01/16/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) sub-genomic mRNAs indicates that the virus is replicative. Sub-genomic mRNA was detected in lower respiratory tract specimens for up to 4 weeks after symptoms developed. In upper respiratory tract specimens, the detection of sub-genomic mRNA and genomic RNA did not correlate.
Background Information on the duration of replicative Middle East respiratory syndrome coronavirus (MERS-CoV) shedding is important for infection control. The detection of MERS-CoV sub-genomic mRNAs indicates that the virus is replicative. This study examined the duration for detecting MERS-CoV sub-genomic mRNA compared with genomic RNA in diverse respiratory specimens. Methods Upper and lower respiratory samples were obtained from 17 MERS-CoV-infected patients. MERS-CoV sub-genomic mRNA was detected by reverse transcription PCR (RT-PCR) and MERS-CoV genomic RNA by real-time RT-PCR. Results In sputum and transtracheal aspirate, sub-genomic mRNA was detected for up to 4 weeks after symptoms developed, which correlated with the detection of genomic RNA. In oropharyngeal and nasopharyngeal swab specimens, the detection of sub-genomic mRNA and genomic RNA did not correlate. Conclusions These findings suggest that MERS-CoV does not replicate well in the upper respiratory tract.
Collapse
Affiliation(s)
- Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Laboratory of Infection and Immunity, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| | - Leo L M Poon
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Su-Jin Choi
- Laboratory of Infection and Immunity, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hwan Bang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Won Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Laboratory of Infection and Immunity, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Laboratory of Infection and Immunity, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea.
| |
Collapse
|
246
|
Hernandez Reyes Y, Provost C, Traesel CK, Jacques M, Gagnon CA. Actinobacillus pleuropneumoniae culture supernatant antiviral effect against porcine reproductive and respiratory syndrome virus occurs prior to the viral genome replication and transcription through actin depolymerization. J Med Microbiol 2018; 67:249-264. [DOI: 10.1099/jmm.0.000659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yenney Hernandez Reyes
- Centre de recherche en infectiologie porcine et avicole (CRIPA) et Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 2M2, Canada
| | - Chantale Provost
- Centre de recherche en infectiologie porcine et avicole (CRIPA) et Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 2M2, Canada
| | - Carolina Kist Traesel
- Centre de recherche en infectiologie porcine et avicole (CRIPA) et Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 2M2, Canada
| | - Mario Jacques
- Centre de recherche en infectiologie porcine et avicole (CRIPA) et Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 2M2, Canada
| | - Carl A. Gagnon
- Centre de recherche en infectiologie porcine et avicole (CRIPA) et Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 2M2, Canada
| |
Collapse
|
247
|
Rappe JCF, de Wilde A, Di H, Müller C, Stalder H, V'kovski P, Snijder E, Brinton MA, Ziebuhr J, Ruggli N, Thiel V. Antiviral activity of K22 against members of the order Nidovirales. Virus Res 2018; 246:28-34. [PMID: 29337162 PMCID: PMC7114538 DOI: 10.1016/j.virusres.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/31/2023]
Abstract
Recently, a novel antiviral compound (K22) that inhibits replication of a broad range of animal and human coronaviruses was reported to interfere with viral RNA synthesis by impairing double-membrane vesicle (DMV) formation (Lundin et al., 2014). Here we assessed potential antiviral activities of K22 against a range of viruses representing two (sub)families of the order Nidovirales, the Arteriviridae (porcine reproductive and respiratory syndrome virus [PRRSV], equine arteritis virus [EAV] and simian hemorrhagic fever virus [SHFV]), and the Torovirinae (equine torovirus [EToV] and White Bream virus [WBV]). Possible effects of K22 on nidovirus replication were studied in suitable cell lines. K22 concentrations significantly decreasing infectious titres of the viruses included in this study ranged from 25 to 50 μM. Reduction of double-stranded RNA intermediates of viral replication in nidovirus-infected cells treated with K22 confirmed the anti-viral potential of K22. Collectively, the data show that K22 has antiviral activity against diverse lineages of nidoviruses, suggesting that the inhibitor targets a critical and conserved step during nidovirus replication.
Collapse
Affiliation(s)
- Julie Christiane Françoise Rappe
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Adriaan de Wilde
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Han Di
- Department of Biology, 623 Petit Science Center, Georgia State University, 161 Jesse Hill Jr Drive, Atlanta, GA 30303, United States.
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany.
| | - Hanspeter Stalder
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Philip V'kovski
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Eric Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Margo A Brinton
- Department of Biology, 623 Petit Science Center, Georgia State University, 161 Jesse Hill Jr Drive, Atlanta, GA 30303, United States.
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany.
| | - Nicolas Ruggli
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| | - Volker Thiel
- Institute for Virology and Immunology IVI, Mittelhäusern and Bern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Switzerland.
| |
Collapse
|
248
|
Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus. Proc Natl Acad Sci U S A 2017; 114:E8895-E8904. [PMID: 29073030 DOI: 10.1073/pnas.1706696114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the order Nidovirales express their structural protein ORFs from a nested set of 3' subgenomic mRNAs (sg mRNAs), and for most of these ORFs, a single genomic transcription regulatory sequence (TRS) was identified. Nine TRSs were previously reported for the arterivirus Simian hemorrhagic fever virus (SHFV). In the present study, which was facilitated by next-generation sequencing, 96 SHFV body TRSs were identified that were functional in both infected MA104 cells and macaque macrophages. The abundance of sg mRNAs produced from individual TRSs was consistent over time in the two different cell types. Most of the TRSs are located in the genomic 3' region, but some are in the 5' ORF1a/1b region and provide alternative sources of nonstructural proteins. Multiple functional TRSs were identified for the majority of the SHFV 3' ORFs, and four previously identified TRSs were found not to be the predominant ones used. A third of the TRSs generated sg mRNAs with variant leader-body junction sequences. Sg mRNAs encoding E', GP2, or ORF5a as their 5' ORF as well as sg mRNAs encoding six previously unreported alternative frame ORFs or 14 previously unreported C-terminal ORFs of known proteins were also identified. Mutation of the start codon of two C-terminal ORFs in an infectious clone reduced virus yield. Mass spectrometry detected one previously unreported protein and suggested translation of some of the C-terminal ORFs. The results reveal the complexity of the transcriptional regulatory mechanism and expanded coding capacity for SHFV, which may also be characteristic of other nidoviruses.
Collapse
|
249
|
Wang C, Meng H, Gao Y, Gao H, Guo K, Almazan F, Sola I, Enjuanes L, Zhang Y, Abrahamyan L. Role of transcription regulatory sequence in regulation of gene expression and replication of porcine reproductive and respiratory syndrome virus. Vet Res 2017; 48:41. [PMID: 28797297 PMCID: PMC5553793 DOI: 10.1186/s13567-017-0445-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/31/2017] [Indexed: 11/10/2022] Open
Abstract
In order to gain insight into the role of the transcription regulatory sequences (TRSs) in the regulation of gene expression and replication of porcine reproductive and respiratory syndrome virus (PRRSV), the enhanced green fluorescent protein (EGFP) gene, under the control of the different structural gene TRSs, was inserted between the N gene and 3'-UTR of the PRRSV genome and EGFP expression was analyzed for each TRS. TRSs of all the studied structural genes of PRRSV positively modulated EGFP expression at different levels. Among the TRSs analyzed, those of GP2, GP5, M, and N genes highly enhanced EGFP expression without altering replication of PRRSV. These data indicated that structural gene TRSs could be an extremely useful tool for foreign gene expression using PRRSV as a vector.
Collapse
Affiliation(s)
- Chengbao Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.,Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Han Meng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Yujin Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Hui Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Kangkang Guo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Fernando Almazan
- Department of Molecular and Cell Biology, Spanish National Centre for Biotechnology, (CNB-CSIC), C/Darwin No. 3, Campus Universidad Autonoma. Cantoblanco, 28049, Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, Spanish National Centre for Biotechnology, (CNB-CSIC), C/Darwin No. 3, Campus Universidad Autonoma. Cantoblanco, 28049, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Spanish National Centre for Biotechnology, (CNB-CSIC), C/Darwin No. 3, Campus Universidad Autonoma. Cantoblanco, 28049, Madrid, Spain
| | - Yanming Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center (CRIPA) and Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada. .,Faculty of Veterinary Medicine, Department of Pathology and Microbiology, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
250
|
Jiang L, Zhao W, Han Z, Chen Y, Zhao Y, Sun J, Li H, Shao Y, Liu L, Liu S. Genome characterization, antigenicity and pathogenicity of a novel infectious bronchitis virus type isolated from south China. INFECTION GENETICS AND EVOLUTION 2017; 54:437-446. [PMID: 28800976 PMCID: PMC7106192 DOI: 10.1016/j.meegid.2017.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/12/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
In 2014, three infectious bronchitis virus (IBV) strains, designated as γCoV/ck/China/I0111/14, γCoV/ck/China/I0114/14 and γCoV/ck/China/I0118/14, were isolated and identified from chickens suspected to be infected with IBV in Guangxi province, China. Based upon data arising from S1 sequence and phylogenetic analyses, the three IBV isolates were genetically different from other known IBV types, which represented a novel genotype (GI-29). Virus cross-neutralization tests, using γCoV/ck/China/I0111/14 as a representative, showed that genotype GI-29 was antigenically different from all other known IBV types, thus representing a novel serotype. Complete genomic analysis showed that GI-29 type viruses were closely related to and might originate from a GX-YL5-like virus by accumulation of substitutions in multiple genes. These GI-29 viral genomes are still evolving and diverging, particularly in the 3′ region, although we cannot rule out the possibility of recombination events occurring. For isolate γCoV/ck/China/I0114/14, we found that recombination events had occurred between nsps 2 and 3 in gene 1 which led to the introduction of a 4/91 gene fragment into the γCoV/ck/China/I0114/14 viral genome. In addition, we found that the GI-29 type γCoV/ck/China/I0111/14 isolate was a nephropathogenic strain and high pathogenic to 1-day-old specific pathogen-free (SPF) chickens although cystic oviducts were not observed in the surviving layer chickens challenged with γCoV/ck/China/I0111/14 isolate. A novel infectious bronchitis virus type, GI-29, has been identified in China. Identification of mutations scattered throughout the GI-29 genome. The GI-29 type is nephropathogenic to specific pathogen-free chickens.
Collapse
Affiliation(s)
- Lei Jiang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Wenjun Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Yuqiu Chen
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Yan Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Huixin Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Liangliang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China.
| |
Collapse
|