201
|
A Micro–Polyethylene Glycol Precipitation Assay as a Relative Solubility Screening Tool for Monoclonal Antibody Design and Formulation Development. J Pharm Sci 2016; 105:2319-27. [DOI: 10.1016/j.xphs.2016.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/25/2016] [Accepted: 05/19/2016] [Indexed: 11/22/2022]
|
202
|
Garcia-Tellez T, Huot N, Ploquin MJ, Rascle P, Jacquelin B, Müller-Trutwin M. Non-human primates in HIV research: Achievements, limits and alternatives. INFECTION GENETICS AND EVOLUTION 2016; 46:324-332. [PMID: 27469027 DOI: 10.1016/j.meegid.2016.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022]
Abstract
An ideal model for HIV-1 research is still unavailable. However, infection of non-human primates (NHP), such as macaques, with Simian Immunodeficiency Virus (SIV) recapitulates most virological, immunological and clinical hallmarks of HIV infection in humans. It has become the most suitable model to study the mechanisms of transmission and physiopathology of HIV/AIDS. On the other hand, natural hosts of SIV, such as African green monkeys and sooty mangabeys that when infected do not progress to AIDS, represent an excellent model to elucidate the mechanisms involved in the capacity of controlling inflammation and disease progression. The use of NHP-SIV models has indeed enriched our knowledge in the fields of: i) viral transmission and viral reservoirs, ii) early immune responses, iii) host cell-virus interactions in tissues, iv) AIDS pathogenesis, v) virulence factors, vi) prevention and vii) drug development. The possibility to control many variables during experimental SIV infection, together with the resemblance between SIV and HIV infections, make the NHP model the most appropriate, so far, for HIV/AIDS research. Nonetheless, some limitations in using these models have to be considered. Alternative models for HIV/AIDS research, such as humanized mice and recombinant forms of HIV-SIV viruses (SHIV) for NHP infection, have been developed. The improvement of SHIV viruses that mimic even better the natural history of HIV infection and of humanized mice that develop a greater variety of human immune cell lineages, is ongoing. None of these models is perfect, but they allow contributing to the progress in managing or preventing HIV infection.
Collapse
Affiliation(s)
- Thalía Garcia-Tellez
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| | - Mickaël J Ploquin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
203
|
Rademeyer C, Korber B, Seaman MS, Giorgi EE, Thebus R, Robles A, Sheward DJ, Wagh K, Garrity J, Carey BR, Gao H, Greene KM, Tang H, Bandawe GP, Marais JC, Diphoko TE, Hraber P, Tumba N, Moore PL, Gray GE, Kublin J, McElrath MJ, Vermeulen M, Middelkoop K, Bekker LG, Hoelscher M, Maboko L, Makhema J, Robb ML, Abdool Karim S, Abdool Karim Q, Kim JH, Hahn BH, Gao F, Swanstrom R, Morris L, Montefiori DC, Williamson C. Features of Recently Transmitted HIV-1 Clade C Viruses that Impact Antibody Recognition: Implications for Active and Passive Immunization. PLoS Pathog 2016; 12:e1005742. [PMID: 27434311 PMCID: PMC4951126 DOI: 10.1371/journal.ppat.1005742] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022] Open
Abstract
The development of biomedical interventions to reduce acquisition of HIV-1 infection remains a global priority, however their potential effectiveness is challenged by very high HIV-1 envelope diversity. Two large prophylactic trials in high incidence, clade C epidemic regions in southern Africa are imminent; passive administration of the monoclonal antibody VRC01, and active immunization with a clade C modified RV144-like vaccines. We have created a large representative panel of C clade viruses to enable assessment of antibody responses to vaccines and natural infection in Southern Africa, and we investigated the genotypic and neutralization properties of recently transmitted clade C viruses to determine how viral diversity impacted antibody recognition. We further explore the implications of these findings for the potential effectiveness of these trials. A panel of 200 HIV-1 Envelope pseudoviruses was constructed from clade C viruses collected within the first 100 days following infection. Viruses collected pre-seroconversion were significantly more resistant to serum neutralization compared to post-seroconversion viruses (p = 0.001). Over 13 years of the study as the epidemic matured, HIV-1 diversified (p = 0.0009) and became more neutralization resistant to monoclonal antibodies VRC01, PG9 and 4E10. When tested at therapeutic levels (10ug/ml), VRC01 only neutralized 80% of viruses in the panel, although it did exhibit potent neutralization activity against sensitive viruses (IC50 titres of 0.42 μg/ml). The Gp120 amino acid similarity between the clade C panel and candidate C-clade vaccine protein boosts (Ce1086 and TV1) was 77%, which is 8% more distant than between CRF01_AE viruses and the RV144 CRF01_AE immunogen. Furthermore, two vaccine signature sites, K169 in V2 and I307 in V3, associated with reduced infection risk in RV144, occurred less frequently in clade C panel viruses than in CRF01_AE viruses from Thailand. Increased resistance of pre-seroconversion viruses and evidence of antigenic drift highlights the value of using panels of very recently transmitted viruses and suggests that interventions may need to be modified over time to track the changing epidemic. Furthermore, high divergence such as that observed in the older clade C epidemic in southern Africa may impact vaccine efficacy, although the correlates of infection risk are yet to be defined in the clade C setting. Findings from this study of acute/early clade C viruses will aid vaccine development, and enable identification of new broad and potent antibodies to combat the HIV-1 C-clade epidemic in southern Africa.
Collapse
Affiliation(s)
- Cecilia Rademeyer
- Division of Medical Virology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and National Health Laboratory Service (NHLS), Cape Town South Africa
| | - Bette Korber
- Los Alamos National Laboratory and New Mexico Consortium, Los Alamos, New Mexico, United States of America
| | - Michael S. Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Elena E. Giorgi
- Los Alamos National Laboratory and New Mexico Consortium, Los Alamos, New Mexico, United States of America
| | - Ruwayhida Thebus
- Division of Medical Virology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and National Health Laboratory Service (NHLS), Cape Town South Africa
| | - Alexander Robles
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Daniel J. Sheward
- Division of Medical Virology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and National Health Laboratory Service (NHLS), Cape Town South Africa
| | - Kshitij Wagh
- Los Alamos National Laboratory and New Mexico Consortium, Los Alamos, New Mexico, United States of America
| | - Jetta Garrity
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Brittany R. Carey
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kelli M. Greene
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Haili Tang
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Gama P. Bandawe
- Division of Medical Virology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and National Health Laboratory Service (NHLS), Cape Town South Africa
| | - Jinny C. Marais
- Division of Medical Virology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and National Health Laboratory Service (NHLS), Cape Town South Africa
| | | | - Peter Hraber
- Los Alamos National Laboratory and New Mexico Consortium, Los Alamos, New Mexico, United States of America
| | - Nancy Tumba
- National Institute for Communicable Diseases (NICD), NHLS & University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- National Institute for Communicable Diseases (NICD), NHLS & University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Glenda E. Gray
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg and South African Medical Research Council, Cape Town, South Africa
| | - James Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Marion Vermeulen
- South African National Blood Service, Weltevreden Park, South Africa
| | - Keren Middelkoop
- Desmond Tutu HIV Centre, Department of Medicine and Institute of Infectious Disease and Molecular Medicine, University of Cape Town (UCT), Cape Town, South Africa
| | - Linda-Gail Bekker
- Desmond Tutu HIV Centre, Department of Medicine and Institute of Infectious Disease and Molecular Medicine, University of Cape Town (UCT), Cape Town, South Africa
| | - Michael Hoelscher
- Department for Infectious Diseases & Tropical Medicine, Klinikum University of Munich, LMU and German Center for Infection Research (DZIF) partner site Munich, Munich, Germany
| | | | - Joseph Makhema
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Jerome H. Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- International Vaccine Institute, Seoul, Republic of Korea
| | - Beatrice H. Hahn
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Feng Gao
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lynn Morris
- National Institute for Communicable Diseases (NICD), NHLS & University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Carolyn Williamson
- Division of Medical Virology & Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and National Health Laboratory Service (NHLS), Cape Town South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- * E-mail:
| |
Collapse
|
204
|
MOLDT B, LE K, CARNATHAN DG, WHITNEY JB, SCHULTZ N, LEWIS MG, BORDUCCHI E, SMITH K, MACKEL JJ, SWEAT SL, HODGES AP, GODZIK A, PARREN PWHI, SILVESTRI G, BAROUCH DH, BURTON DR. Neutralizing antibody affords comparable protection against vaginal and rectal simian/human immunodeficiency virus challenge in macaques. AIDS 2016; 30:1543-51. [PMID: 27243773 PMCID: PMC4915739 DOI: 10.1097/qad.0000000000001102] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Passive administration of broadly neutralizing antibodies has been shown to protect against both vaginal and rectal challenge in the simian/human immunodeficiency virus (SHIV)/macaque model of HIV transmission. However, the relative efficacy of antibody against the two modes of exposure is unknown and, given differences in the composition and immunology of the two tissue compartments, this is an important gap in knowledge. To investigate the significance of the challenge route for antibody-mediated protection, we performed a comparative protection study in macaques using the highly potent human monoclonal antibody, PGT126. DESIGN Animals were administered PGT126 at three different doses before challenged either vaginally or rectally with a single dose of SHIVSF163P3. METHODS Viral loads, PGT126 serum concentrations, and serum neutralizing titers were monitored. RESULTS In vaginally challenged animals, sterilizing immunity was achieved in all animals administered 10 mg/kg, in two of five animals administered 2 mg/kg and in one of five animals administered 0.4 mg/kg PGT126. Comparable protection was observed for the corresponding groups challenged rectally as sterilizing immunity was achieved in three of four animals administered 10 mg/kg, in two of four animals administered 2 mg/kg and in none of four animals administered 0.4 mg/kg PGT126. Serological analysis showed similar serum concentrations of PGT126 and serum neutralization titers in animals administered the same antibody dose. CONCLUSION Our data suggest that broadly neutralizing antibody-mediated protection is not strongly dependent on the mucosal route of challenge, which indicates that a vaccine aimed to induce a neutralizing antibody response would have broadly similar efficacy against both primary transmission routes for HIV.
Collapse
Affiliation(s)
- Brian MOLDT
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - Khoa LE
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | - Diane G. CARNATHAN
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - James B. WHITNEY
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Niccole SCHULTZ
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
| | | | - Erica BORDUCCHI
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaitlin SMITH
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph J. MACKEL
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Shelby L. SWEAT
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Andrew P. HODGES
- Bioinformatics and Systems Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Adam GODZIK
- Bioinformatics and Systems Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | | - Guido SILVESTRI
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Dan H. BAROUCH
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Dennis R. BURTON
- Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
205
|
Optimization of the Solubility of HIV-1-Neutralizing Antibody 10E8 through Somatic Variation and Structure-Based Design. J Virol 2016; 90:5899-5914. [PMID: 27053554 DOI: 10.1128/jvi.03246-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Extraordinary antibodies capable of near pan-neutralization of HIV-1 have been identified. One of the broadest is antibody 10E8, which recognizes the membrane-proximal external region (MPER) of the HIV-1 envelope and neutralizes >95% of circulating HIV-1 strains. If delivered passively, 10E8 might serve to prevent or treat HIV-1 infection. Antibody 10E8, however, is markedly less soluble than other antibodies. Here, we describe the use of both structural biology and somatic variation to develop optimized versions of 10E8 with increased solubility. From the structure of 10E8, we identified a prominent hydrophobic patch; reversion of four hydrophobic residues in this patch to their hydrophilic germ line counterparts resulted in an ∼10-fold decrease in turbidity. We also used somatic variants of 10E8, identified previously by next-generation sequencing, to optimize heavy and light chains; this process yielded several improved variants. Of these, variant 10E8v4 with 26 changes versus the parent 10E8 was the most soluble, with a paratope we showed crystallographically to be virtually identical to that of 10E8, a potency on a panel of 200 HIV-1 isolates also similar to that of 10E8, and a half-life in rhesus macaques of ∼10 days. An anomaly in 10E8v4 size exclusion chromatography that appeared to be related to conformational isomerization was resolved by engineering an interchain disulfide. Thus, by combining a structure-based approach with natural variation in potency and solubility from the 10E8 lineage, we successfully created variants of 10E8 which retained the potency and extraordinary neutralization breadth of the parent 10E8 but with substantially increased solubility. IMPORTANCE Antibody 10E8 could be used to prevent HIV-1 infection, if manufactured and delivered economically. It suffers, however, from issues of solubility, which impede manufacturing. We hypothesized that the physical characteristic of 10E8 could be improved through rational design, without compromising breadth and potency. We used structural biology to identify hydrophobic patches on 10E8, which did not appear to be involved in 10E8 function. Reversion of hydrophobic residues in these patches to their hydrophilic germ line counterparts increased solubility. Next, clues from somatic variants of 10E8, identified by next-generation sequencing, were incorporated. A combination of structure-based design and somatic variant optimization led to 10E8v4, with substantially improved solubility and similar potency compared to the parent 10E8. The cocrystal structure of antibody 10E8v4 with its HIV-1 epitope was highly similar to that with the parent 10E8, despite 26 alterations in sequence and substantially improved solubility. Antibody 10E8v4 may be suitable for manufacturing.
Collapse
|
206
|
Gautam R, Nishimura Y, Pegu A, Nason MC, Klein F, Gazumyan A, Golijanin J, Buckler-White A, Sadjadpour R, Wang K, Mankoff Z, Schmidt SD, Lifson JD, Mascola JR, Nussenzweig MC, Martin MA. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature 2016; 533:105-109. [PMID: 27120156 PMCID: PMC5127204 DOI: 10.1038/nature17677] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023]
Abstract
Despite the success of potent anti-retroviral drugs in controlling human immunodeficiency virus type 1 (HIV-1) infection, little progress has been made in generating an effective HIV-1 vaccine. Although passive transfer of anti-HIV-1 broadly neutralizing antibodies can protect mice or macaques against a single high-dose challenge with HIV or simian/human (SIV/HIV) chimaeric viruses (SHIVs) respectively, the long-term efficacy of a passive antibody transfer approach for HIV-1 has not been examined. Here we show, on the basis of the relatively long-term protection conferred by hepatitis A immune globulin, the efficacy of a single injection (20 mg kg(-1)) of four anti-HIV-1-neutralizing monoclonal antibodies (VRC01, VRC01-LS, 3BNC117, and 10-1074 (refs 9 - 12)) in blocking repeated weekly low-dose virus challenges of the clade B SHIVAD8. Compared with control animals, which required two to six challenges (median = 3) for infection, a single broadly neutralizing antibody infusion prevented virus acquisition for up to 23 weekly challenges. This effect depended on antibody potency and half-life. The highest levels of plasma-neutralizing activity and, correspondingly, the longest protection were found in monkeys administered the more potent antibodies 3BNC117 and 10-1074 (median = 13 and 12.5 weeks, respectively). VRC01, which showed lower plasma-neutralizing activity, protected for a shorter time (median = 8 weeks). The introduction of a mutation that extends antibody half-life into the crystallizable fragment (Fc) domain of VRC01 increased median protection from 8 to 14.5 weeks. If administered to populations at high risk of HIV-1 transmission, such an immunoprophylaxis regimen could have a major impact on virus transmission.
Collapse
Affiliation(s)
- Rajeev Gautam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892 USA; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Martha C. Nason
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
- Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Reza Sadjadpour
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Keyun Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892 USA; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Zachary Mankoff
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892 USA; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Stephen D. Schmidt
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892 USA; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892 USA; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
- Howard Hughes Medical Institute, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Malcolm A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
207
|
Nittayananta W. Passive immunization with HIV-1-neutralizing antibodies: is it effective and safe? Oral Dis 2016; 22:460-2. [PMID: 27009613 DOI: 10.1111/odi.12481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- W Nittayananta
- Excellent Research Laboratory, Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand. .,Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
208
|
Wagh K, Bhattacharya T, Williamson C, Robles A, Bayne M, Garrity J, Rist M, Rademeyer C, Yoon H, Lapedes A, Gao H, Greene K, Louder MK, Kong R, Karim SA, Burton DR, Barouch DH, Nussenzweig MC, Mascola JR, Morris L, Montefiori DC, Korber B, Seaman MS. Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection. PLoS Pathog 2016; 12:e1005520. [PMID: 27028935 PMCID: PMC4814126 DOI: 10.1371/journal.ppat.1005520] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/01/2016] [Indexed: 01/03/2023] Open
Abstract
The identification of a new generation of potent broadly neutralizing HIV-1 antibodies (bnAbs) has generated substantial interest in their potential use for the prevention and/or treatment of HIV-1 infection. While combinations of bnAbs targeting distinct epitopes on the viral envelope (Env) will likely be required to overcome the extraordinary diversity of HIV-1, a key outstanding question is which bnAbs, and how many, will be needed to achieve optimal clinical benefit. We assessed the neutralizing activity of 15 bnAbs targeting four distinct epitopes of Env, including the CD4-binding site (CD4bs), the V1/V2-glycan region, the V3-glycan region, and the gp41 membrane proximal external region (MPER), against a panel of 200 acute/early clade C HIV-1 Env pseudoviruses. A mathematical model was developed that predicted neutralization by a subset of experimentally evaluated bnAb combinations with high accuracy. Using this model, we performed a comprehensive and systematic comparison of the predicted neutralizing activity of over 1,600 possible double, triple, and quadruple bnAb combinations. The most promising bnAb combinations were identified based not only on breadth and potency of neutralization, but also other relevant measures, such as the extent of complete neutralization and instantaneous inhibitory potential (IIP). By this set of criteria, triple and quadruple combinations of bnAbs were identified that were significantly more effective than the best double combinations, and further improved the probability of having multiple bnAbs simultaneously active against a given virus, a requirement that may be critical for countering escape in vivo. These results provide a rationale for advancing bnAb combinations with the best in vitro predictors of success into clinical trials for both the prevention and treatment of HIV-1 infection. In recent years, a new generation of monoclonal antibodies has been isolated from HIV-1 infected individuals that exhibit broad and potent neutralizing activity when tested against diverse strains of virus. There is a high level of interest in the field in determining if these antibodies can be used to prevent or treat HIV-1 infection. Because HIV-1 is adept at escaping from immune recognition, it is generally thought that combinations of multiple antibodies targeting different sites will be required for efficacy, much the same as seen for conventional antiretroviral drugs. How many and which antibodies to include in such combinations is not known. In this study, a new mathematical model was developed and used to accurately predict various measures of neutralizing activity for all possible combinations having a total of 2, 3, or 4 of the most promising antibodies. Through a systematic and comprehensive comparison, we identified optimal combinations of antibodies that best complement one another for enhanced anti-viral activity, and therefore may be most effective for the prevention or treatment of HIV-1 infection. These results provide important parameters that inform the selection of antibodies to develop for clinical use.
Collapse
Affiliation(s)
- Kshitij Wagh
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and NHLS, Cape Town, South Africa
| | - Alex Robles
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Madeleine Bayne
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Jetta Garrity
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Michael Rist
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Cecilia Rademeyer
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and NHLS, Cape Town, South Africa
| | - Hyejin Yoon
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan Lapedes
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kelli Greene
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mark K. Louder
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Rui Kong
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Salim Abdool Karim
- University of KwaZulu-Natal, Durban Department of Immunology and Microbial Science, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Dennis R. Burton
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
| | - John R. Mascola
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Lynn Morris
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- National Institute for Communicable Diseases (NICD), NHLS, University of the Witwatersrand, Johannesburg, South Africa
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bette Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
209
|
Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in infant macaques. Nat Med 2016; 22:362-8. [PMID: 26998834 PMCID: PMC4983100 DOI: 10.1038/nm.4063] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/11/2016] [Indexed: 02/07/2023]
Abstract
Prevention of mother to child transmission (MTCT) of HIV remains a major objective where antenatal care is not readily accessible. We tested anti-HIV-1 human neutralizing monoclonal antibodies (NmAb) as post-exposure therapy in an infant macaque model for intrapartum MTCT. One-month-old rhesus macaques were inoculated orally with SHIVSF162P3. On days 1, 4, 7, and 10 after virus exposure, we injected animals subcutaneously with NmAbs and quantified systemic distribution of NmAbs in multiple tissues within 24 h following administration. Replicating virus was found in multiple tissues by day 1 in animals without treatment. All NmAb-treated macaques were free of virus in blood and tissues at 6 months post-exposure. We detected no anti-SHIV T cell responses in blood or tissues at necropsy, and no virus emerged following CD8+ T cell depletion. These results suggest early passive immunotherapy can eliminate early viral foci and thereby prevent the establishment of viral reservoirs.
Collapse
|
210
|
Bonsignori M, Zhou T, Sheng Z, Chen L, Gao F, Joyce MG, Ozorowski G, Chuang GY, Schramm CA, Wiehe K, Alam SM, Bradley T, Gladden MA, Hwang KK, Iyengar S, Kumar A, Lu X, Luo K, Mangiapani MC, Parks RJ, Song H, Acharya P, Bailer RT, Cao A, Druz A, Georgiev IS, Kwon YD, Louder MK, Zhang B, Zheng A, Hill BJ, Kong R, Soto C, Mullikin JC, Douek DC, Montefiori DC, Moody MA, Shaw GM, Hahn BH, Kelsoe G, Hraber PT, Korber BT, Boyd SD, Fire AZ, Kepler TB, Shapiro L, Ward AB, Mascola JR, Liao HX, Kwong PD, Haynes BF. Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell 2016; 165:449-63. [PMID: 26949186 DOI: 10.1016/j.cell.2016.02.022] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/11/2015] [Accepted: 02/08/2016] [Indexed: 01/16/2023]
Abstract
Antibodies with ontogenies from VH1-2 or VH1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. Here, we define with longitudinal sampling from time-of-infection the development of a VH1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, and extraordinary level of somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled VH1-2. We integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages.
Collapse
Affiliation(s)
- Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Lei Chen
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Morgan A Gladden
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheelah Iyengar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kan Luo
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael C Mangiapani
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongshuo Song
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allen Cao
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Young D Kwon
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anqi Zheng
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brenna J Hill
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rui Kong
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cinque Soto
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael A Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peter T Hraber
- Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Bette T Korber
- Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Scott D Boyd
- Department of Pathology, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University, Boston, MA 02118, USA; Department of Mathematics and Statistics, Boston University, Boston, MA 02118, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Mascola
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Global Health Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
211
|
McGuire AT, Gray MD, Dosenovic P, Gitlin AD, Freund NT, Petersen J, Correnti C, Johnsen W, Kegel R, Stuart AB, Glenn J, Seaman MS, Schief WR, Strong RK, Nussenzweig MC, Stamatatos L. Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice. Nat Commun 2016; 7:10618. [PMID: 26907590 PMCID: PMC4770077 DOI: 10.1038/ncomms10618] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022] Open
Abstract
VRC01-class broadly neutralizing HIV-1 antibodies protect animals from experimental infection and could contribute to an effective vaccine response. Their predicted germline forms (gl) bind Env inefficiently, which may explain why they are not elicited by HIV-1 Env-immunization. Here we show that an optimized Env immunogen can engage multiple glVRC01-class antibodies. Furthermore, this immunogen activates naive B cells expressing the human germline heavy chain of 3BNC60, paired with endogenous mouse light chains in vivo. To address whether it activates B cells expressing the fully humanized gl3BNC60 B-cell receptor (BCR), we immunized mice carrying both the heavy and light chains of gl3BNC60. B cells expressing this BCR display an autoreactive phenotype and fail to respond efficiently to soluble forms of the optimized immunogen, unless it is highly multimerized. Thus, specifically designed Env immunogens can activate naive B cells expressing human BCRs corresponding to precursors of broadly neutralizing HIV-1 antibodies even when the B cells display an autoreactive phenotype. The induction of broadly neutralizing antibodies (bNAbs) is a goal of HIV-1 vaccine research. Here the authors demonstrate the ability of an HIV Env-derived immunogen to bind germline precursors of a class of bNAbs and to activate the corresponding B cells in a knock-in mouse model
Collapse
Affiliation(s)
- Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Matthew D Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Pia Dosenovic
- Laboratory of Molecular Immunology, New York, New York 10065, USA
| | | | - Natalia T Freund
- Laboratory of Molecular Immunology, New York, New York 10065, USA
| | - John Petersen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Colin Correnti
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - William Johnsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Robert Kegel
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Andrew B Stuart
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Jolene Glenn
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, E/CLS-1001, Boston, Massachusetts 02215, USA
| | - William R Schief
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road La Jolla, California 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, 10550 North Torrey Pines Road La Jolla, California 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, 10550 North Torrey Pines Road La Jolla, California 92037, USA.,Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square Cambridge, Massachusetts 02139, USA
| | - Roland K Strong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, New York, New York 10065, USA.,Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, PO Box 19024 Seattle, Washington 98109, USA.,University of Washington, Department of Global Health, 1510 San Juan Road #310e Seattle, Washington 98195, USA
| |
Collapse
|
212
|
Bolton DL, Pegu A, Wang K, McGinnis K, Nason M, Foulds K, Letukas V, Schmidt SD, Chen X, Todd JP, Lifson JD, Rao S, Michael NL, Robb ML, Mascola JR, Koup RA. Human Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral Reservoirs. J Virol 2016; 90:1321-32. [PMID: 26581981 PMCID: PMC4719604 DOI: 10.1128/jvi.02454-15] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/05/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Combination antiretroviral therapy (cART) administered shortly after human immunodeficiency virus type 1 (HIV-1) infection can suppress viremia and limit seeding of the viral reservoir, but lifelong treatment is required for the majority of patients. Highly potent broadly neutralizing HIV-1 monoclonal antibodies (MAbs) can reduce plasma viremia when administered during chronic HIV-1 infection, but the therapeutic potential of these antibodies during acute infection is unknown. We tested the ability of HIV-1 envelope glycoprotein-specific broadly neutralizing MAbs to suppress acute simian-human immunodeficiency virus (SHIV) replication in rhesus macaques. Four groups of macaques were infected with SHIV-SF162P3 and received (i) the CD4-binding-site MAb VRC01; (ii) a combination of a more potent clonal relative of VRC01 (VRC07-523) and a V3 glycan-dependent MAb (PGT121); (iii) daily cART, all on day 10, just prior to expected peak plasma viremia; or (iv) no treatment. Daily cART was initiated 11 days after MAb administration and was continued for 13 weeks in all treated animals. Over a period of 11 days after a single administration, MAb treatment significantly reduced peak viremia, accelerated the decay slope, and reduced total viral replication compared to untreated controls. Proviral DNA in lymph node CD4 T cells was also diminished after treatment with the dual MAb. These data demonstrate the virological effect of potent MAbs and support future clinical trials that investigate HIV-1-neutralizing MAbs as adjunctive therapy with cART during acute HIV-1 infection. IMPORTANCE Treatment of chronic HIV-1 infection with potent broadly neutralizing HIV-1 MAbs has been shown to significantly reduce plasma viremia. However, the antiviral effect of MAb treatment during acute HIV-1 infection is unknown. Here, we demonstrate that MAbs targeting the HIV-1 envelope glycoprotein both suppress acute SHIV plasma viremia and limit CD4 T cell-associated viral DNA. These findings provide support for clinical trials of MAbs as adjunctive therapy with antiretroviral therapy during acute HIV-1 infection.
Collapse
Affiliation(s)
- Diane L Bolton
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA, and Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kathleen McGinnis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Martha Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kathryn Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Valerie Letukas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc./Frederick National Laboratory for Cancer Research, AIDS and Cancer Virus Program, Frederick, Maryland, USA
| | - Srinivas Rao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA, and Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
213
|
Broadly Neutralizing Human Immunodeficiency Virus Type 1 Antibody Gene Transfer Protects Nonhuman Primates from Mucosal Simian-Human Immunodeficiency Virus Infection. J Virol 2016; 89:8334-45. [PMID: 26041300 DOI: 10.1128/jvi.00908-15] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) can prevent lentiviral infection in nonhuman primates and may slow the spread of human immunodeficiency virus type 1 (HIV-1). Although protection by passive transfer of human bnAbs has been demonstrated in monkeys, durable expression is essential for its broader use in humans. Gene-based expression of bnAbs provides a potential solution to this problem, although immune responses to the viral vector or to the antibody may limit its durability and efficacy. Here, we delivered an adeno-associated viral vector encoding a simianized form of a CD4bs bnAb, VRC07, and evaluated its immunogenicity and protective efficacy. The expressed antibody circulated in macaques for 16 weeks at levels up to 66 g/ml, although immune suppression with cyclosporine (CsA) was needed to sustain expression. Gene-delivered simian VRC07 protected against simian-human immunodeficiency virus (SHIV) infection in monkeys 5.5 weeks after treatment. Gene transfer of an anti-HIV antibody can therefore protect against infection by viruses that cause AIDS in primates when the host immune responses are controlled.
Collapse
|
214
|
Hallen MA, Donald BR. comets (Constrained Optimization of Multistate Energies by Tree Search): A Provable and Efficient Protein Design Algorithm to Optimize Binding Affinity and Specificity with Respect to Sequence. J Comput Biol 2016; 23:311-21. [PMID: 26761641 DOI: 10.1089/cmb.2015.0188] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Practical protein design problems require designing sequences with a combination of affinity, stability, and specificity requirements. Multistate protein design algorithms model multiple structural or binding "states" of a protein to address these requirements. comets provides a new level of versatile, efficient, and provable multistate design. It provably returns the minimum with respect to sequence of any desired linear combination of the energies of multiple protein states, subject to constraints on other linear combinations. Thus, it can target nearly any combination of affinity (to one or multiple ligands), specificity, and stability (for multiple states if needed). Empirical calculations on 52 protein design problems showed comets is far more efficient than the previous state of the art for provable multistate design (exhaustive search over sequences). comets can handle a very wide range of protein flexibility and can enumerate a gap-free list of the best constraint-satisfying sequences in order of objective function value.
Collapse
Affiliation(s)
- Mark A Hallen
- 1 Department of Computer Science, Levine Science Research Center, Duke University , North Carolina
- 2 Department of Biochemistry, Duke University Medical Center , Durham, North Carolina
| | - Bruce R Donald
- 1 Department of Computer Science, Levine Science Research Center, Duke University , North Carolina
- 2 Department of Biochemistry, Duke University Medical Center , Durham, North Carolina
- 3 Department of Chemistry, Duke University , Durham, North Carolina
| |
Collapse
|
215
|
Jou JD, Jain S, Georgiev IS, Donald BR. BWM*: A Novel, Provable, Ensemble-based Dynamic Programming Algorithm for Sparse Approximations of Computational Protein Design. J Comput Biol 2016; 23:413-24. [PMID: 26744898 DOI: 10.1089/cmb.2015.0194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sparse energy functions that ignore long range interactions between residue pairs are frequently used by protein design algorithms to reduce computational cost. Current dynamic programming algorithms that fully exploit the optimal substructure produced by these energy functions only compute the GMEC. This disproportionately favors the sequence of a single, static conformation and overlooks better binding sequences with multiple low-energy conformations. Provable, ensemble-based algorithms such as A* avoid this problem, but A* cannot guarantee better performance than exhaustive enumeration. We propose a novel, provable, dynamic programming algorithm called Branch-Width Minimization* (BWM*) to enumerate a gap-free ensemble of conformations in order of increasing energy. Given a branch-decomposition of branch-width w for an n-residue protein design with at most q discrete side-chain conformations per residue, BWM* returns the sparse GMEC in O([Formula: see text]) time and enumerates each additional conformation in merely O([Formula: see text]) time. We define a new measure, Total Effective Search Space (TESS), which can be computed efficiently a priori before BWM* or A* is run. We ran BWM* on 67 protein design problems and found that TESS discriminated between BWM*-efficient and A*-efficient cases with 100% accuracy. As predicted by TESS and validated experimentally, BWM* outperforms A* in 73% of the cases and computes the full ensemble or a close approximation faster than A*, enumerating each additional conformation in milliseconds. Unlike A*, the performance of BWM* can be predicted in polynomial time before running the algorithm, which gives protein designers the power to choose the most efficient algorithm for their particular design problem.
Collapse
Affiliation(s)
- Jonathan D Jou
- 1 Department of Computer Science, Duke University , Durham, North Carolina
| | - Swati Jain
- 1 Department of Computer Science, Duke University , Durham, North Carolina.,2 Department of Biochemistry, Duke University Medical Center , Durham, North Carolina.,3 Department of Computational Biology and Bioinformatics Program, Duke University , Durham, North Carolina
| | - Ivelin S Georgiev
- 1 Department of Computer Science, Duke University , Durham, North Carolina
| | - Bruce R Donald
- 1 Department of Computer Science, Duke University , Durham, North Carolina.,2 Department of Biochemistry, Duke University Medical Center , Durham, North Carolina.,4 Department of Chemistry, Duke University , Durham, North Carolina
| |
Collapse
|
216
|
Abstract
Purpose of review This review highlights recent developments in HIV-1 antibody engineering and discusses the effects of increased polyreactivity on serum half-lives of engineered antibodies. Recent findings Recent studies have uncovered a wealth of information about the relationship between the sequences and efficacies of anti-HIV-1 antibodies through a combination of bioinformatics, structural characterization and in vivo studies. This knowledge has stimulated efforts to enhance antibody breadth and potency for therapeutic use. Although some engineered antibodies have shown increased polyreactivity and short half-lives, promising efforts are circumventing these problems. Summary Antibodies are desirable as therapeutics due to their ability to recognize targets with both specificity and high affinity. Furthermore, the ability of antibodies to stimulate Fc-mediated effector functions can increase their utility. Thus, mAbs have become central to strategies for the treatment of various diseases. Using both targeted and library-based approaches, antibodies can be engineered to improve their therapeutic properties. This article will discuss recent antibody engineering efforts to improve the breadth and potency of anti-HIV-1 antibodies. The polyreactivity of engineered HIV-1 bNAbs and the effect on serum half-life will be explored along with strategies to overcome problems introduced by engineering antibodies. Finally, advances in creating bispecific anti-HIV-1 reagents are discussed.
Collapse
|
217
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight major advances in the development and use of animal models for HIV-1 research during the last year. RECENT FINDINGS Animal model research during the last year has focused on the development and refinement of models; use of these models to explore key questions about HIV entry, immune control, and persistence; and key discoveries with these models testing therapeutic and vaccine concepts. Some of the greatest breakthroughs have been in understanding early events surrounding transmission, the effectiveness of broadly neutralizing human monoclonal antibodies as passive prophylaxis, and some new ideas in the area of eliminating the viral reservoir in established infection. SUMMARY Despite the lack of a flawless HIV-1 infection and pathogenesis model, the field utilizes several models that have already made important contributions to our understanding of early events, immune control, and the potential for novel therapies.
Collapse
|
218
|
Lynch RM, Boritz E, Coates EE, DeZure A, Madden P, Costner P, Enama ME, Plummer S, Holman L, Hendel CS, Gordon I, Casazza J, Conan-Cibotti M, Migueles SA, Tressler R, Bailer RT, McDermott A, Narpala S, O’Dell S, Wolf G, Lifson JD, Freemire BA, Gorelick RJ, Pandey JP, Mohan S, Chomont N, Fromentin R, Chun TW, Fauci AS, Schwartz RM, Koup RA, Douek DC, Hu Z, Capparelli E, Graham BS, Mascola JR, Ledgerwood JE. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci Transl Med 2015; 7:319ra206. [DOI: 10.1126/scitranslmed.aad5752] [Citation(s) in RCA: 344] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
219
|
Abstract
A globally effective vaccine strategy must cope with the broad genetic diversity of HIV and contend with multiple transmission modalities. Understanding correlates of protection and the role of diversity in limiting protective vaccines with those correlates is key. RV144 was the first HIV-1 vaccine trial to demonstrate efficacy against HIV-1 infection. A correlates analysis comparing vaccine-induced immune responses in vaccinated-infected and vaccinated-uninfected volunteers suggested that IgG specific for the V1V2 region of gp120 was associated with reduced risk of HIV-1 infection and that plasma Env IgA was directly correlated with infection risk. RV144 and recent non-human primate (NHP) challenge studies suggest that Env is essential and perhaps sufficient to induce protective antibody responses against mucosally acquired HIV-1. Whether RV144 immune correlates can apply to different HIV vaccines, to populations with different modes and intensity of transmission, or to divergent HIV-1 subtypes remains unknown. Newer prime-boost mosaic and conserved sequence immunization strategies aiming at inducing immune responses of greater breadth and depth as well as the development of immunogens inducing broadly neutralizing antibodies should be actively pursued. Efficacy trials are now planned in heterosexual populations in southern Africa and men who have sex with men in Thailand. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key to answer the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
|
220
|
Ledgerwood JE, Coates EE, Yamshchikov G, Saunders JG, Holman L, Enama ME, DeZure A, Lynch RM, Gordon I, Plummer S, Hendel CS, Pegu A, Conan-Cibotti M, Sitar S, Bailer RT, Narpala S, McDermott A, Louder M, O'Dell S, Mohan S, Pandey JP, Schwartz RM, Hu Z, Koup RA, Capparelli E, Mascola JR, Graham BS. Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults. Clin Exp Immunol 2015; 182:289-301. [PMID: 26332605 PMCID: PMC4636891 DOI: 10.1111/cei.12692] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2015] [Indexed: 12/17/2022] Open
Abstract
VRC-HIVMAB060-00-AB (VRC01) is a broadly neutralizing HIV-1 monoclonal antibody (mAb) isolated from the B cells of an HIV-infected patient. It is directed against the HIV-1 CD4 binding site and is capable of potently neutralizing the majority of diverse HIV-1 strains. This Phase I dose-escalation study in healthy adults was conducted at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA). Primary objectives were the safety, tolerability and pharmacokinetics (PK) of VRC01 intravenous (i.v.) infusion at 5, 20 or 40 mg/kg, given either once (20 mg/kg) or twice 28 days apart (all doses), and of subcutaneous (s.c.) delivery at 5 mg/kg compared to s.c. placebo given twice, 28 days apart. Cumulatively, 28 subjects received 43 VRC01 and nine received placebo administrations. There were no serious adverse events or dose-limiting toxicities. Mean 28-day serum trough concentrations after the first infusion were 35 and 57 μg/ml for groups infused with 20 mg/kg (n = 8) and 40 mg/kg (n = 5) doses, respectively. Mean 28-day trough concentrations after the second infusion were 56 and 89 μg/ml for the same two doses. Over the 5-40 mg/kg i.v. dose range (n = 18), the clearance was 0.016 l/h and terminal half-life was 15 days. After infusion VRC01 retained expected neutralizing activity in serum, and anti-VRC01 antibody responses were not detected. The human monoclonal antibody (mAb) VRC01 was well tolerated when delivered i.v. or s.c. The mAb demonstrated expected half-life and pharmacokinetics for a human immunoglobulin G. The safety and PK results support and inform VRC01 dosing schedules for planning HIV-1 prevention efficacy studies.
Collapse
Affiliation(s)
- J E Ledgerwood
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - E E Coates
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - G Yamshchikov
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - J G Saunders
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - L Holman
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - M E Enama
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - A DeZure
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - R M Lynch
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - I Gordon
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - S Plummer
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - C S Hendel
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - A Pegu
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - M Conan-Cibotti
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - S Sitar
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - R T Bailer
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - S Narpala
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - A McDermott
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - M Louder
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - S O'Dell
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - S Mohan
- Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC, USA
| | - J P Pandey
- Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC, USA
| | - R M Schwartz
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - Z Hu
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - R A Koup
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - E Capparelli
- School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San DiegoSan Diego, CA, USA
| | - J R Mascola
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - B S Graham
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - the VRC 602 Study Team
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
- Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC, USA
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
- School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San DiegoSan Diego, CA, USA
| |
Collapse
|
221
|
Bispecific Antibodies Targeting Different Epitopes on the HIV-1 Envelope Exhibit Broad and Potent Neutralization. J Virol 2015; 89:12501-12. [PMID: 26446600 DOI: 10.1128/jvi.02097-15] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/29/2015] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED The potency and breadth of the recently isolated neutralizing human monoclonal antibodies to HIV-1 have stimulated interest in their use to prevent or to treat HIV-1 infection. Due to the antigenically diverse nature of the HIV-1 envelope (Env), no single antibody is highly active against all viral strains. While the physical combination of two broadly neutralizing antibodies (bNAbs) can improve coverage against the majority of viruses, the clinical-grade manufacturing and testing of two independent antibody products are time and resource intensive. In this study, we constructed bispecific immunoglobulins (IgGs) composed of independent antigen-binding fragments with a common Fc region. We developed four different bispecific IgG variants that included antibodies targeting four major sites of HIV-1 neutralization. We show that these bispecific IgGs display features of both antibody specificities and, in some cases, display improved coverage over the individual parental antibodies. All four bispecific IgGs neutralized 94% to 97% of antigenically diverse viruses in a panel of 206 HIV-1 strains. Among the bispecific IgGs tested, VRC07 × PG9-16 displayed the most favorable neutralization profile. It was superior in breadth to either of the individual antibodies, neutralizing 97% of viruses with a median 50% inhibitory concentration (IC50) of 0.055 μg/ml. This bispecific IgG also demonstrated in vivo pharmacokinetic parameters comparable to those of the parental bNAbs when administered to rhesus macaques. These results suggest that IgG-based bispecific antibodies are promising candidates for the prevention and treatment of HIV-1 infection in humans. IMPORTANCE To prevent or treat HIV-1 infection, antibodies must potently neutralize nearly all strains of HIV-1. Thus, the physical combination of two or more antibodies may be needed to broaden neutralization coverage and diminish the possibility of viral resistance. A bispecific antibody that has two different antibody binding arms could potentially display neutralization characteristics better than those of any single parental antibody. Here we show that bispecific antibodies contain the binding specificities of the two parental antibodies and that a single bispecific antibody can neutralize 97% of viral strains with a high overall potency. These findings support the use of bispecific antibodies for the prevention or treatment of HIV-1 infection.
Collapse
|
222
|
Roberts KE, Gainza P, Hallen MA, Donald BR. Fast gap-free enumeration of conformations and sequences for protein design. Proteins 2015; 83:1859-1877. [PMID: 26235965 DOI: 10.1002/prot.24870] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/14/2015] [Accepted: 07/21/2015] [Indexed: 12/12/2022]
Abstract
Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations, which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically relevant designs.
Collapse
Affiliation(s)
- Kyle E Roberts
- Department of Computer Science, Duke University, Durham, NC
| | - Pablo Gainza
- Department of Computer Science, Duke University, Durham, NC
| | - Mark A Hallen
- Department of Computer Science, Duke University, Durham, NC
| | - Bruce R Donald
- Department of Computer Science, Duke University, Durham, NC.,Department of Biochemistry, Duke University Medical Center, Durham, NC.,Department of Chemistry, Duke University, Durham, NC
| |
Collapse
|
223
|
Breakthrough of SIV strain smE660 challenge in SIV strain mac239-vaccinated rhesus macaques despite potent autologous neutralizing antibody responses. Proc Natl Acad Sci U S A 2015; 112:10780-5. [PMID: 26261312 DOI: 10.1073/pnas.1509731112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although the correlates of immunological protection from human immunodeficiency virus or simian immunodeficiency virus infection remain incompletely understood, it is generally believed that medium to high titers of serum neutralizing antibodies (nAbs) against the challenge virus will prevent infection. This paradigm is based on a series of studies in which passive transfer of HIV-specific nAbs protected rhesus macaques (RMs) from subsequent mucosal challenge with a chimeric human/simian immunodeficiency virus. However, it is unknown whether nAb titers define protection in the setting of active immunization. Here we determined serum nAb titers against breakthrough transmitted/founder (T/F) SIVsmE660-derived envelope glycoprotein (Env) variants from 14 RMs immunized with SIVmac239-based DNA-prime/modified vaccinia virus Ankara-boost vaccine regimens that included GM-CSF or CD40L adjuvants and conferred significant but incomplete protection against repeated low-dose intrarectal challenge. A single Env variant established infection in all RMs except one, with no identifiable genetic signature associated with vaccination breakthrough compared with T/F Envs from four unvaccinated monkeys. Breakthrough T/F Env pseudoviruses were potently neutralized in vitro by heterologous pooled serum from chronically SIVsmE660-infected monkeys at IC50 titers exceeding 1:1,000,000. Remarkably, the T/F Env pseudoviruses from 13 of 14 monkeys were also susceptible to neutralization by autologous prechallenge serum at in vitro IC50 titers ranging from 1:742-1:10,832. These titers were similar to those observed in vaccinated RMs that remained uninfected. These data suggest that the relationship between serum nAb titers and protection from mucosal SIV challenge in the setting of active immunization is more complex than previously recognized, warranting further studies into the balance between immune activation, target cell availability, and protective antibody responses.
Collapse
|
224
|
Burton DR, Mascola JR. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat Immunol 2015; 16:571-6. [PMID: 25988889 DOI: 10.1038/ni.3158] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/26/2015] [Indexed: 02/08/2023]
Abstract
Antibody responses to the HIV-1 envelope glycoproteins can be classified into three groups. Binding but non-neutralizing responses are directed to epitopes that are expressed on isolated envelope glycoproteins but not on the native envelope trimer found on the surface of virions and responsible for mediating the entry of virus into target cells. Strain-specific responses and broadly neutralizing responses, in contrast, target epitopes that are expressed on the native trimer, as revealed by recently resolved structures. The past few years have seen the isolation of many broadly neutralizing antibodies of remarkable potency that have shown prophylactic and therapeutic activities in animal models. These antibodies are helping to guide rational vaccine design and therapeutic strategies for HIV-1.
Collapse
Affiliation(s)
- Dennis R Burton
- 1] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA. [2] International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA. [3] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA. [4] Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
225
|
Excler JL, Robb ML, Kim JH. Prospects for a globally effective HIV-1 vaccine. Vaccine 2015; 33 Suppl 4:D4-12. [PMID: 26100921 DOI: 10.1016/j.vaccine.2015.03.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 11/28/2022]
Abstract
A globally effective vaccine strategy must cope with the broad genetic diversity of HIV and contend with multiple transmission modalities. Understanding correlates of protection and the role of diversity in limiting protective vaccines with those correlates is key. RV144 was the first HIV-1 vaccine trial to demonstrate efficacy against HIV-1 infection. A correlates analysis compared vaccine-induced immune responses in vaccinated-infected and vaccinated-uninfected volunteers suggested that IgG specific for the V1V2 region of gp120 was associated with reduced risk of HIV-1 infection and that plasma Env IgA was directly correlated with infection risk. RV144 and recent NHP challenge studies suggest that Env is essential and perhaps sufficient to induce protective antibody responses against mucosally acquired HIV-1. Whether RV144 immune correlates can apply to different HIV vaccines, to populations with different modes and intensity of transmission, or to divergent HIV-1 subtypes remains unknown. Newer prime-boost mosaic and conserved sequence immunization strategies aiming at inducing immune responses of greater breadth and depth as well as the development of immunogens inducing broadly neutralizing antibodies should be actively pursued. Efficacy trials are now planned in heterosexual populations in southern Africa and MSM in Thailand. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key to answer the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jerome H Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA
| |
Collapse
|
226
|
Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell 2015; 161:1280-92. [PMID: 26004070 DOI: 10.1016/j.cell.2015.05.007] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 01/16/2023]
Abstract
The site on the HIV-1 gp120 glycoprotein that binds the CD4 receptor is recognized by broadly reactive antibodies, several of which neutralize over 90% of HIV-1 strains. To understand how antibodies achieve such neutralization, we isolated CD4-binding-site (CD4bs) antibodies and analyzed 16 co-crystal structures -8 determined here- of CD4bs antibodies from 14 donors. The 16 antibodies segregated by recognition mode and developmental ontogeny into two types: CDR H3-dominated and VH-gene-restricted. Both could achieve greater than 80% neutralization breadth, and both could develop in the same donor. Although paratope chemistries differed, all 16 gp120-CD4bs antibody complexes showed geometric similarity, with antibody-neutralization breadth correlating with antibody-angle of approach relative to the most effective antibody of each type. The repertoire for effective recognition of the CD4 supersite thus comprises antibodies with distinct paratopes arrayed about two optimal geometric orientations, one achieved by CDR H3 ontogenies and the other achieved by VH-gene-restricted ontogenies.
Collapse
|
227
|
Chuang GY, Zhang B, McKee K, O'Dell S, Kwon YD, Zhou T, Blinn J, Lloyd K, Parks R, Von Holle T, Ko SY, Kong WP, Pegu A, Wang K, Baruah K, Crispin M, Mascola JR, Moody MA, Haynes BF, Georgiev IS, Kwong PD. Eliminating antibody polyreactivity through addition of N-linked glycosylation. Protein Sci 2015; 24:1019-30. [PMID: 25800131 DOI: 10.1002/pro.2682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/20/2015] [Accepted: 03/12/2015] [Indexed: 12/13/2022]
Abstract
Antibody polyreactivity can be an obstacle to translating a candidate antibody into a clinical product. Standard tests such as antibody binding to cardiolipin, HEp-2 cells, or nuclear antigens provide measures of polyreactivity, but its causes and the means to resolve are often unclear. Here we present a method for eliminating antibody polyreactivity through the computational design and genetic addition of N-linked glycosylation near known sites of polyreactivity. We used the HIV-1-neutralizing antibody, VRC07, as a test case, since efforts to increase VRC07 potency at three spatially distinct sites resulted in enhanced polyreactivity. The addition of N-linked glycans proximal to the polyreactivity-enhancing mutations at each of the spatially distinct sites resulted in reduced antibody polyreactivity as measured by (i) anti-cardiolipin ELISA, (ii) Luminex AtheNA Multi-Lyte ANA binding, and (iii) HEp-2 cell staining. The reduced polyreactivity trended with increased antibody concentration over time in mice, but not with improved overall protein stability as measured by differential scanning calorimetry. Moreover, glycan proximity to the site of polyreactivity appeared to be a critical factor. The results provide evidence that antibody polyreactivity can result from local, rather than global, features of an antibody and that addition of N-linked glycosylation can be an effective approach to reducing antibody polyreactivity.
Collapse
Affiliation(s)
- Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Julie Blinn
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Krissey Lloyd
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Tarra Von Holle
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Sung-Youl Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Kavitha Baruah
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1, 3QU, United Kingdom
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1, 3QU, United Kingdom
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
228
|
Roberts KE, Donald BR. Improved energy bound accuracy enhances the efficiency of continuous protein design. Proteins 2015; 83:1151-64. [PMID: 25846627 DOI: 10.1002/prot.24808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 11/07/2022]
Abstract
Flexibility and dynamics are important for protein function and a protein's ability to accommodate amino acid substitutions. However, when computational protein design algorithms search over protein structures, the allowed flexibility is often reduced to a relatively small set of discrete side-chain and backbone conformations. While simplifications in scoring functions and protein flexibility are currently necessary to computationally search the vast protein sequence and conformational space, a rigid representation of a protein causes the search to become brittle and miss low-energy structures. Continuous rotamers more closely represent the allowed movement of a side chain within its torsional well and have been successfully incorporated into the protein design framework to design biomedically relevant protein systems. The use of continuous rotamers in protein design enables algorithms to search a larger conformational space than previously possible, but adds additional complexity to the design search. To design large, complex systems with continuous rotamers, new algorithms are needed to increase the efficiency of the search. We present two methods, PartCR and HOT, that greatly increase the speed and efficiency of protein design with continuous rotamers. These methods specifically target the large errors in energetic terms that are used to bound pairwise energies during the design search. By tightening the energy bounds, additional pruning of the conformation space can be achieved, and the number of conformations that must be enumerated to find the global minimum energy conformation is greatly reduced.
Collapse
Affiliation(s)
- Kyle E Roberts
- Department of Computer Science, Duke University, Durham, North Carolina
| | - Bruce R Donald
- Department of Computer Science, Duke University, Durham, North Carolina.,Department of Biochemistry, Duke University Medical Center, Durham, North Carolina.,Department of Chemistry, Duke University, Durham, North Carolina
| |
Collapse
|
229
|
Abstract
PURPOSE OF REVIEW To provide an update on neutralizing antibody targets in the context of the recent HIV-1 envelope trimer structure, describe new antibody isolation technologies, and discuss the implications of these data for HIV-1 prevention and therapy. RECENT FINDINGS Recent advances in B-cell technologies have dramatically expanded the number of antibodies isolated from HIV-infected donors with broadly neutralizing plasma activity. These, together with the first high-resolution crystal and cryo-electron microscopy (cryo-EM) structures of a cleaved, prefusion HIV-1 trimer, have defined new regions susceptible to neutralization. This year, three epitopes in the gp120-gp41 interface were structurally characterized, highlighting the importance of prefusion gp41 as a target. Similar to many other broadly neutralizing antibody epitopes, these new antibodies define a target that is also highly glycan dependent. Collectively, the epitopes for broadly neutralizing antibodies now reveal a continuum of vulnerability spanning the length of the HIV-1 envelope trimer. SUMMARY Progress in the last year has provided support for the use of rationally stabilized whole HIV-1 trimers as immunogens for eliciting antibodies to multiple epitopes. Furthermore, the increasing number of broad and potent antibodies with the potential for synergistic/complementary combinations opens up new avenues for preventing and treating HIV-1 infection.
Collapse
Affiliation(s)
- Constantinos Kurt Wibmer
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), University of the Witwatersrand, Johannesburg
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), University of the Witwatersrand, Johannesburg
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), University of the Witwatersrand, Johannesburg
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
230
|
Viswanathan K, Shriver Z, Babcock GJ. Amino acid interaction networks provide a new lens for therapeutic antibody discovery and anti-viral drug optimization. Curr Opin Virol 2015; 11:122-9. [DOI: 10.1016/j.coviro.2015.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 11/24/2022]
|
231
|
Sustained Delivery of a Broadly Neutralizing Antibody in Nonhuman Primates Confers Long-Term Protection against Simian/Human Immunodeficiency Virus Infection. J Virol 2015; 89:5895-903. [PMID: 25787288 DOI: 10.1128/jvi.00210-15] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/16/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Pathogen-specific neutralizing antibodies protect against many viral infections and can potentially prevent human immunodeficiency virus (HIV) transmission in humans. However, neutralizing antibodies have so far only been shown to protect nonhuman primates (NHP) against lentiviral infection when given shortly before challenge. Thus, the clinical utility and feasibility of passive antibody transfer to confer long-term protection against HIV-1 are still debated. Here, we investigate the potential of a broadly neutralizing HIV-1 antibody to provide long-term protection in a NHP model of HIV-1 infection. A human antibody was simianized to avoid immune rejection and used to sustain therapeutic levels for ∼5 months. Two months after the final antibody administration, animals were completely protected against viral challenge. These findings demonstrate the feasibility and potential of long-term passive antibody for protection against HIV-1 in humans and provide a model to test antibody therapies for other diseases in NHP. IMPORTANCE Antibodies against HIV are potential drugs that may be able to prevent HIV infection in humans. However, the long-term protective capacity of antibodies against HIV has not been assessed. Here, we repetitively administered a macaque version of a human anti-HIV antibody to monkeys, after which the antibody persisted in the blood for >5 months. Moreover, the antibody could be sustained at protective levels for 108 days, conferring protection 52 days after the last dose in a monkey model of HIV infection. Thus, passive antibody transfer can provide durable protection against infection by viruses that cause AIDS in primates.
Collapse
|
232
|
Girard MP, Picot V, Longuet C, Nabel GJ. Report of the 2014 Cent Gardes HIV Vaccine Conference - Part 1: Neutralizing Antibodies; Fondation Mérieux Conference Center, Veyrier du Lac, France, 5-7 October 2014. Vaccine 2015; 33:3605-8. [PMID: 25769208 DOI: 10.1016/j.vaccine.2015.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 11/28/2022]
Abstract
The 2014 Cent Gardes Conference took place on October 5-7 at the Fondation Mérieux Conference Center, on the shores of the Annecy Lake. The aim of the meeting was to review progress in the field of HIV vaccines during the last two years and to explore the promising avenues of future research. The identification of broadly neutralizing antibodies (bNAbs) able to neutralize a majority of circulating HIV strains has encouraged hopes for a highly effective "universal" HIV vaccine. Analysis of B-cell maturation that leads to the production of bNAbs, however, appears extremely complex, and not easily reproduced by classical active immunization. The use of bNAbs for passive immunization is thus being explored as an alternative, either for immunotherapy or prophylaxis. Their delivery by a recombinant adenovirus-associated virus (AAV), also known as vector immunoprophylaxis, has demonstrated proof-of-concept in animal models and is now in early stage clinical trials. Other approaches were discussed at the meeting, such as eliciting long-lasting T cell or mucosal immunity. In spite of remarkable progress, the quest for an efficacious HIV vaccine remains a daunting challenge.
Collapse
Affiliation(s)
- Marc P Girard
- French National Academy of Medicine, 16 rue Bonaparte, 75006 Paris, France.
| | | | | | - Gary J Nabel
- Sanofi, 640 Memorial Drive, Cambridge, MA 021139, United States.
| |
Collapse
|
233
|
Acharya P, Lusvarghi S, Bewley CA, Kwong PD. HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth. Expert Opin Ther Targets 2015; 19:765-83. [PMID: 25724219 DOI: 10.1517/14728222.2015.1010513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The HIV-1 gp120 envelope (Env) glycoprotein mediates attachment of virus to human target cells that display requisite receptors, CD4 and co-receptor, generally CCR5. Despite high-affinity interactions with host receptors and proof-of-principle by the drug maraviroc that interference with CCR5 provides therapeutic benefit, no licensed drug currently targets gp120. AREAS COVERED An overview of the role of gp120 in HIV-1 entry and of sites of potential gp120 vulnerability to therapeutic inhibition is presented. Viral defenses that protect these sites and turn gp120 into a moving labyrinth are discussed together with strategies for circumventing these defenses to allow therapeutic targeting of gp120 sites of vulnerability. EXPERT OPINION The gp120 envelope glycoprotein interacts with host proteins through multiple interfaces and has conserved structural features at these interaction sites. In spite of this, targeting gp120 for therapeutic purposes is challenging. Env mechanisms that have evolved to evade the humoral immune response also shield it from potential therapeutics. Nevertheless, substantial progress has been made in understanding HIV-1 gp120 structure and its interactions with host receptors, and in developing therapeutic leads that potently neutralize diverse HIV-1 strains. Synergies between advances in understanding, needs for therapeutics against novel viral targets and characteristics of breadth and potency for a number of gp120-targetting lead molecules bodes well for gp120 as a HIV-1 therapeutic target.
Collapse
Affiliation(s)
- Priyamvada Acharya
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Vaccine Research Center, Structural Biology Section , Room 4609B, 40 Convent Drive, Bethesda, MD 20892 , USA
| | | | | | | |
Collapse
|
234
|
Jou JD, Jain S, Georgiev I, Donald BR. BWM*: A Novel, Provable, Ensemble-Based Dynamic Programming Algorithm for Sparse Approximations of Computational Protein Design. LECTURE NOTES IN COMPUTER SCIENCE 2015. [DOI: 10.1007/978-3-319-16706-0_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
235
|
Improving neutralization potency and breadth by combining broadly reactive HIV-1 antibodies targeting major neutralization epitopes. J Virol 2014; 89:2659-71. [PMID: 25520506 DOI: 10.1128/jvi.03136-14] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The isolation of broadly neutralizing HIV-1 monoclonal antibodies (MAbs) to distinct epitopes on the viral envelope glycoprotein (Env) provides the potential to use combinations of MAbs for prevention and treatment of HIV-1 infection. Since many of these MAbs have been isolated in the last few years, the potency and breadth of MAb combinations have not been well characterized. In two parallel experiments, we examined the in vitro neutralizing activities of double-, triple-, and quadruple-MAb combinations targeting four distinct epitopes, including the CD4-binding site, the V1V2-glycan region, the V3-glycan supersite, and the gp41 membrane-proximal external region (MPER), using a panel of 125 Env-pseudotyped viruses. All MAb combinations showed substantially improved neutralization breadth compared to the corresponding single MAbs, while the neutralization potency of individual MAbs was maintained. At a 50% inhibitory concentration (IC50) cutoff of 1 μg/ml per antibody, double-MAb combinations neutralized 89 to 98% of viruses, and triple combinations neutralized 98 to 100%. Overall, the improvement of neutralization breadth was closely predicted by an additive-effect model and explained by complementary neutralization profiles of antibodies recognizing distinct epitopes. Subtle but consistent favorable interactions were observed in some MAb combinations, whereas less favorable interactions were observed on a small subset of viruses that are highly sensitive to V3-glycan MAbs. These data demonstrate favorable in vitro combinations of broadly neutralizing HIV-1 MAbs and suggest that such combinations could have utility for HIV-1 prevention and treatment. IMPORTANCE Over the last 5 years, numerous broadly reactive HIV-1-neutralizing MAbs have been isolated from B cells of HIV-1-infected donors. Each of these MAbs binds to one of the major vulnerable sites (epitopes) on the surface of the viral envelope glycoprotein. Since antibodies to distinct viral epitopes could theoretically act together to provide greater potency and breadth of virus neutralization, we tested physical mixtures of double, triple, and quadruple combinations of neutralizing MAbs targeting four major epitopes on HIV-1 Env. When tested together, antibody combinations showed substantially improved neutralization breadth compared to single MAbs. This improvement could be explained by the complementary neutralization profiles of individual MAbs. We further demonstrated that each antibody maintained its full neutralization potency when used in combination with other MAbs. These data provide a rationale for clinical use of antibody-based combinations for HIV-1 prevention and therapy.
Collapse
|
236
|
Abstract
UNLABELLED It is generally acknowledged that human broadly neutralizing antibodies (bNAbs) capable of neutralizing multiple HIV-1 clades are often polyreactive or autoreactive. Whereas polyreactivity or autoreactivity has been proposed to be crucial for neutralization breadth, no systematic, quantitative study of self-reactivity among nonneutralizing HIV-1 Abs (nNAbs) has been performed to determine whether poly- or autoreactivity in bNAbs is a consequence of chronic antigen (Ag) exposure and/or inflammation or a fundamental property of neutralization. Here, we use protein microarrays to assess binding to >9,400 human proteins and find that as a class, bNAbs are significantly more poly- and autoreactive than nNAbs. The poly- and autoreactive property is therefore not due to the infection milieu but rather is associated with neutralization. Our observations are consistent with a role of heteroligation for HIV-1 neutralization and/or structural mimicry of host Ags by conserved HIV-1 neutralization sites. Although bNAbs are more mutated than nNAbs as a group, V(D)J mutation per se does not correlate with poly- and autoreactivity. Infrequent poly- or autoreactivity among nNAbs implies that their dominance in humoral responses is due to the absence of negative control by immune regulation. Interestingly, four of nine bNAbs specific for the HIV-1 CD4 binding site (CD4bs) (VRC01, VRC02, CH106, and CH103) bind human ubiquitin ligase E3A (UBE3A), and UBE3A protein competitively inhibits gp120 binding to the VRC01 bNAb. Among these four bNAbs, avidity for UBE3A was correlated with neutralization breadth. Identification of UBE3A as a self-antigen recognized by CD4bs bNAbs offers a mechanism for the rarity of this bNAb class. IMPORTANCE Eliciting bNAbs is key for HIV-1 vaccines; most Abs elicited by HIV-1 infection or immunization, however, are strain specific or nonneutralizing, and unsuited for protection. Here, we compare the specificities of bNAbs and nNAbs to demonstrate that bNAbs are significantly more poly- and autoreactive than nNAbs. The strong association of poly- and autoreactivity with bNAbs, but not nNAbs from infected patients, indicates that the infection milieu, chronic inflammation and Ag exposure, CD4 T-cell depletion, etc., alone does not cause poly- and autoreactivity. Instead, these properties are fundamentally linked to neutralization breadth, either by the requirement for heteroligation or the consequence of host mimicry by HIV-1. Indeed, we show that human UBE3A shares an epitope(s) with HIV-1 envelope recognized by four CD4bs bNAbs. The poly- and autoreactivity of bNAbs surely contribute to the rarity of membrane-proximal external region (MPER) and CD4bs bNAbs and identify a roadblock that must be overcome to induce protective vaccines.
Collapse
|
237
|
Lacek K, Urbanowicz RA, Troise F, De Lorenzo C, Severino V, Di Maro A, Tarr AW, Ferrara F, Ploss A, Temperton N, Ball JK, Nicosia A, Cortese R, Pessi A. Dramatic potentiation of the antiviral activity of HIV antibodies by cholesterol conjugation. J Biol Chem 2014; 289:35015-28. [PMID: 25342747 PMCID: PMC4263897 DOI: 10.1074/jbc.m114.591826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The broadly neutralizing antibodies HIV 2F5 and 4E10, which bind to overlapping epitopes in the membrane-proximal external region of the fusion protein gp41, have been proposed to use a two-step mechanism for neutralization; first, they bind and preconcentrate at the viral membrane through their long, hydrophobic CDRH3 loops, and second, they form a high affinity complex with the protein epitope. Accordingly, mutagenesis of the CDRH3 can abolish their neutralizing activity, with no change in the affinity for the peptide epitope. We show here that we can mimic this mechanism by conjugating a cholesterol group outside of the paratope of an antibody. Cholesterol-conjugated antibodies bind to lipid raft domains on the membrane, and because of this enrichment, they show increased antiviral potency. In particular, we find that cholesterol conjugation (i) rescues the antiviral activity of CDRH3-mutated 2F5, (ii) increases the antiviral activity of WT 2F5, (iii) potentiates the non-membrane-binding HIV antibody D5 10–100-fold (depending on the virus strain), and (iv) increases synergy between 2F5 and D5. Conjugation can be made at several positions, including variable and constant domains. Cholesterol conjugation therefore appears to be a general strategy to boost the potency of antiviral antibodies, and, because membrane affinity is engineered outside of the antibody paratope, it can complement affinity maturation strategies.
Collapse
Affiliation(s)
- Krzysztof Lacek
- From Ceinge Biotecnologie Avanzate S.C.R.L., Via Gaetano Salvatore 486, 80145 Napoli (NA), Italy, the Laboratory of Virus Molecular Biology, University of Gdansk, 80-822 Gdansk, Poland
| | - Richard A Urbanowicz
- the School of Life Sciences and Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Fulvia Troise
- From Ceinge Biotecnologie Avanzate S.C.R.L., Via Gaetano Salvatore 486, 80145 Napoli (NA), Italy
| | - Claudia De Lorenzo
- From Ceinge Biotecnologie Avanzate S.C.R.L., Via Gaetano Salvatore 486, 80145 Napoli (NA), Italy, the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Napoli (NA), Italy
| | - Valeria Severino
- the Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (CE), Italy
| | - Antimo Di Maro
- the Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (CE), Italy
| | - Alexander W Tarr
- the School of Life Sciences and Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Francesca Ferrara
- the Viral Pseudotype Unit, Infectious Diseases and Allergy group, School of Pharmacy, University of Kent, Kent ME4 4TB, United Kingdom
| | - Alexander Ploss
- the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, and
| | - Nigel Temperton
- the Viral Pseudotype Unit, Infectious Diseases and Allergy group, School of Pharmacy, University of Kent, Kent ME4 4TB, United Kingdom
| | - Jonathan K Ball
- the School of Life Sciences and Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Alfredo Nicosia
- From Ceinge Biotecnologie Avanzate S.C.R.L., Via Gaetano Salvatore 486, 80145 Napoli (NA), Italy, the Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Napoli (NA), Italy
| | - Riccardo Cortese
- From Ceinge Biotecnologie Avanzate S.C.R.L., Via Gaetano Salvatore 486, 80145 Napoli (NA), Italy
| | - Antonello Pessi
- From Ceinge Biotecnologie Avanzate S.C.R.L., Via Gaetano Salvatore 486, 80145 Napoli (NA), Italy, JV Bio, Via Gaetano Salvatore 486, 80145 Napoli (NA), Italy
| |
Collapse
|