201
|
Castillo JA, Secaira-Morocho H, Maldonado S, Sarmiento KN. Diversity and Evolutionary Dynamics of Antiphage Defense Systems in Ralstonia solanacearum Species Complex. Front Microbiol 2020; 11:961. [PMID: 32508782 PMCID: PMC7251935 DOI: 10.3389/fmicb.2020.00961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
Over the years, many researchers have reported a great diversity of bacteriophages infecting members of the Ralstonia solanacearum species complex (RSSC). This diversity has driven bacterial evolution by leading the emergence and maintenance of bacterial defense systems to combat phage infection. In this work, we present an in silico study of the arsenal of defense systems that RSSC harbors and their evolutionary history. For this purpose, we used a combination of genomic, phylogenetic and associative methods. We found that in addition to the CRISPR-Cas system already reported, there are eight other antiphage defense systems including the well-known Restriction-Modification and Toxin-Antitoxin systems. Furthermore, we found a tenth defense system, which is dedicated to reducing the incidence of plasmid transformation in bacteria. We undertook an analysis of the gene gain and loss patterns of the defense systems in 15 genomes of RSSC. Results indicate that the dynamics are inclined toward the gain of defense genes as opposed to the rest of the genes that were preferably lost throughout evolution. This was confirmed by evidence on independent gene acquisition that has occurred by profuse horizontal transfer. The mutation and recombination rates were calculated as a proxy of evolutionary rates. Again, genes encoding the defense systems follow different rates of evolution respect to the rest of the genes. These results lead us to conclude that the evolution of RSSC defense systems is highly dynamic and responds to a different evolutionary regime than the rest of the genes in the genomes of RSSC.
Collapse
Affiliation(s)
- José A Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Henry Secaira-Morocho
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Stephanie Maldonado
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Katlheen N Sarmiento
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| |
Collapse
|
202
|
Mignotte A, Garros C, Gardès L, Balenghien T, Duhayon M, Rakotoarivony I, Tabourin L, Poujol L, Mathieu B, Ibañez-Justicia A, Deniz A, Cvetkovikj A, Purse BV, Ramilo DW, Stougiou D, Werner D, Pudar D, Petrić D, Veronesi E, Jacobs F, Kampen H, Pereira da Fonseca I, Lucientes J, Navarro J, de la Puente JM, Stefanovska J, Searle KR, Khallaayoune K, Culverwell CL, Larska M, Bourquia M, Goffredo M, Bisia M, England M, Robin M, Quaglia M, Miranda-Chueca MÁ, Bødker R, Estrada-Peña R, Carpenter S, Tchakarova S, Boutsini S, Sviland S, Schäfer SM, Ozoliņa Z, Segliņa Z, Vatansever Z, Huber K. The tree that hides the forest: cryptic diversity and phylogenetic relationships in the Palaearctic vector Obsoletus/Scoticus Complex (Diptera: Ceratopogonidae) at the European level. Parasit Vectors 2020; 13:265. [PMID: 32434592 PMCID: PMC7238629 DOI: 10.1186/s13071-020-04114-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/29/2020] [Indexed: 11/27/2022] Open
Abstract
Background Culicoides obsoletus is an abundant and widely distributed Holarctic biting midge species, involved in the transmission of bluetongue virus (BTV) and Schmallenberg virus (SBV) to wild and domestic ruminants. Females of this vector species are often reported jointly with two morphologically very close species, C. scoticus and C. montanus, forming the Obsoletus/Scoticus Complex. Recently, cryptic diversity within C. obsoletus was reported in geographically distant sites. Clear delineation of species and characterization of genetic variability is mandatory to revise their taxonomic status and assess the vector role of each taxonomic entity. Our objectives were to characterize and map the cryptic diversity within the Obsoletus/Scoticus Complex. Methods Portion of the cox1 mitochondrial gene of 3763 individuals belonging to the Obsoletus/Scoticus Complex was sequenced. Populations from 20 countries along a Palaearctic Mediterranean transect covering Scandinavia to Canary islands (North to South) and Canary islands to Turkey (West to East) were included. Genetic diversity based on cox1 barcoding was supported by 16S rDNA mitochondrial gene sequences and a gene coding for ribosomal 28S rDNA. Species delimitation using a multi-marker methodology was used to revise the current taxonomic scheme of the Obsoletus/Scoticus Complex. Results Our analysis showed the existence of three phylogenetic clades (C. obsoletus clade O2, C. obsoletus clade dark and one not yet named and identified) within C. obsoletus. These analyses also revealed two intra-specific clades within C. scoticus and raised questions about the taxonomic status of C. montanus. Conclusions To our knowledge, our study provides the first genetic characterization of the Obsoletus/Scoticus Complex on a large geographical scale and allows a revision of the current taxonomic classification for an important group of vector species of livestock viruses in the Palaearctic region.![]()
Collapse
Affiliation(s)
- Antoine Mignotte
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France. .,Cirad, UMR ASTRE, 34398, Montpellier, France.
| | - Claire Garros
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France. .,Cirad, UMR ASTRE, 34398, Montpellier, France.
| | - Laetitia Gardès
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France.,Cirad, UMR ASTRE, 97170, Petit-Bourg, Guadeloupe, France
| | - Thomas Balenghien
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France.,Cirad, UMR ASTRE, 34398, Montpellier, France.,Institut Agronomique et Vétérinaire Hassan II, Unité Parasitologie et Maladies Parasitaires, 10100, Rabat, Morocco
| | - Maxime Duhayon
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France.,Cirad, UMR ASTRE, 34398, Montpellier, France
| | - Ignace Rakotoarivony
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France.,Cirad, UMR ASTRE, 34398, Montpellier, France
| | - Laura Tabourin
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France.,Cirad, UMR ASTRE, 34398, Montpellier, France
| | - Léa Poujol
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France.,Cirad, UMR ASTRE, 34398, Montpellier, France
| | - Bruno Mathieu
- Institute of Parasitology and Tropical Pathology of Strasbourg, Université de Strasbourg, DIHP UR 7292, 67000, Strasbourg, France
| | - Adolfo Ibañez-Justicia
- Centre for Monitoring of Vectors, National Reference Centre, Netherlands Food and Consumer Product Safety Authority, Wageningen, The Netherlands
| | - Ahmet Deniz
- Veterinary Control Central Research Institute, Ankara, Turkey
| | - Aleksandar Cvetkovikj
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Bethan V Purse
- Centre for Ecology, Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - David W Ramilo
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Despoina Stougiou
- Department of Parasitology-Parasitic Diseases, Entomology & Bee Health, Veterinary Centre of Athens, Athens, Greece
| | - Doreen Werner
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Dubravka Pudar
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Dušan Petrić
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Eva Veronesi
- National Centre for Vector Entomology, Institute of Parasitology, University of Zürich, Zürich, Switzerland
| | - Frans Jacobs
- Centre for Monitoring of Vectors, National Reference Centre, Netherlands Food and Consumer Product Safety Authority, Wageningen, The Netherlands
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Isabel Pereira da Fonseca
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Javier Lucientes
- Department of Animal Pathology, AgriFood Institute of Aragón (IA2) Veterinary Faculty, 50013, Zaragoza, Spain
| | - Javier Navarro
- Departamento de Microbiología, Laboratorio de Producción y Sanidad Animal de Granada, Junta de Andalucía, Granada, Spain
| | - Josue Martinez de la Puente
- Doñana Biological Station, CSIC, Sevilla, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jovana Stefanovska
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Kate R Searle
- Centre for Ecology & Hydrology, Edinburgh, OX10 8BB, UK
| | - Khalid Khallaayoune
- Institut Agronomique et Vétérinaire Hassan II, Unité Parasitologie et Maladies Parasitaires, 10100, Rabat, Morocco
| | - C Lorna Culverwell
- Department of Virology, University of Helsinki, Medicum, Haartmaninkatu 3, Helsinki, 00014, Finland
| | | | - Maria Bourquia
- Cirad, UMR ASTRE, 34398, Montpellier, France.,Institut Agronomique et Vétérinaire Hassan II, Unité Parasitologie et Maladies Parasitaires, 10100, Rabat, Morocco
| | - Maria Goffredo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Campo Boario, 64100, Teramo, Italy
| | - Marina Bisia
- Department of Parasitology-Parasitic Diseases, Entomology & Bee Health, Veterinary Centre of Athens, Athens, Greece
| | | | - Matthew Robin
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst, Chester High Road, Neston, Cheshire, CH64 7TE, UK
| | - Michela Quaglia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Campo Boario, 64100, Teramo, Italy
| | - Miguel Ángel Miranda-Chueca
- Applied Zoology and Animal Conservation Research Group, University of the Balearic Islands UIB, Palma, Spain
| | - René Bødker
- University of Copenhagen, Copenhagen, Denmark
| | - Rosa Estrada-Peña
- Department of Animal Pathology, AgriFood Institute of Aragón (IA2) Veterinary Faculty, 50013, Zaragoza, Spain
| | | | - Simona Tchakarova
- National Diagnostic and Research Veterinary Medical Institute, Sofia, Bulgaria
| | - Sofia Boutsini
- Department of Parasitology-Parasitic Diseases, Entomology & Bee Health, Veterinary Centre of Athens, Athens, Greece
| | | | - Stefanie M Schäfer
- Centre for Ecology, Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Zanda Ozoliņa
- Institute of Food safety, Animal Health and Environment 'BIOR', Riga, Latvia
| | - Zanda Segliņa
- Institute of Food safety, Animal Health and Environment 'BIOR', Riga, Latvia
| | - Zati Vatansever
- Veterinary Control Central Research Institute, Ankara, Turkey
| | - Karine Huber
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
| |
Collapse
|
203
|
Kanzi AM, Trollip C, Wingfield MJ, Barnes I, Van der Nest MA, Wingfield BD. Phylogenomic incongruence in Ceratocystis: a clue to speciation? BMC Genomics 2020; 21:362. [PMID: 32408859 PMCID: PMC7222570 DOI: 10.1186/s12864-020-6772-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/06/2020] [Indexed: 11/26/2022] Open
Abstract
Background The taxonomic history of Ceratocystis, a genus in the Ceratocystidaceae, has been beset with questions and debate. This is due to many of the commonly used species recognition concepts (e.g., morphological and biological species concepts) providing different bases for interpretation of taxonomic boundaries. Species delineation in Ceratocystis primarily relied on genealogical concordance phylogenetic species recognition (GCPSR) using multiple standard molecular markers. Results Questions have arisen regarding the utility of these markers e.g., ITS, BT and TEF1-α due to evidence of intragenomic variation in the ITS, as well as genealogical incongruence, especially for isolates residing in a group referred to as the Latin-American clade (LAC) of the species. This study applied a phylogenomics approach to investigate the extent of phylogenetic incongruence in Ceratocystis. Phylogenomic analyses of a total of 1121 shared BUSCO genes revealed widespread incongruence within Ceratocystis, particularly within the LAC, which was typified by three equally represented topologies. Comparative analyses of the individual gene trees revealed evolutionary patterns indicative of hybridization. The maximum likelihood phylogenetic tree generated from the concatenated dataset comprised of 1069 shared BUSCO genes provided improved phylogenetic resolution suggesting the need for multiple gene markers in the phylogeny of Ceratocystis. Conclusion The incongruence observed among single gene phylogenies in this study call into question the utility of single or a few molecular markers for species delineation. Although this study provides evidence of interspecific hybridization, the role of hybridization as the source of discordance will require further research because the results could also be explained by high levels of shared ancestral polymorphism in this recently diverged lineage. This study also highlights the utility of BUSCO genes as a set of multiple orthologous genes for phylogenomic studies.
Collapse
Affiliation(s)
- Aquillah M Kanzi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.
| | - Conrad Trollip
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia.,Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio Centre, Bundoora, Australia
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Magriet A Van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.,Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Pretoria, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
204
|
Cao L, Zhao C, Wang C, Qin H, Qin Q, Tao M, Zhang C, Zhao R, Liu S. Evolutionary dynamics of 18S and 5S rDNA in autotriploid Carassius auratus. Gene 2020; 737:144433. [PMID: 32014563 DOI: 10.1016/j.gene.2020.144433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
The Carassius auratus (crucian carp) complex of the Dongting water system exhibits coexistence of diploid and triploid forms. As reported, triploid C. auratus is autotriploid origin. Ribosomal DNA (rDNA) with evolutionary conservation is widely used to study polyploidization. Here, we investigated genomic and transcribed rDNA sequences (18S and 5S) in diploid (2nCC, 2n = 100) and triploid (3nCC, 3n = 150) C. auratus. The results showed that the genetic traits and expression of 18S and 5S rDNA from 2nCC individuals were identified in 3nCC individuals. Moreover, pseudogenization of rDNA (18S and 5S) sequences were also observed in both 2nCC and 3nCC individuals, but expression of these variants was not detected. Based on the transcribed rDNA consensus sequence between 2nCC and 3nCC individuals, the functional secondary structures of 18S rRNA (expansion segments, ES6S) and 5S rRNA were predicted. These data demonstrated that complex evolutionary dynamics existed in the rDNA family of C. auratus. The evolutionary conservation of rDNA revealed that autotriploidization could not induce the divergence in Carassius taxa of the Dongting water system. These observations will expand our knowledge of the evolutionary dynamics of the rDNA family in vertebrates.
Collapse
Affiliation(s)
- Liu Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Chun Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Huan Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, PR China; College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China.
| |
Collapse
|
205
|
Schiavinato M, Marcet‐Houben M, Dohm JC, Gabaldón T, Himmelbauer H. Parental origin of the allotetraploid tobacco Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:541-554. [PMID: 31833111 PMCID: PMC7317763 DOI: 10.1111/tpj.14648] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 05/12/2023]
Abstract
Nicotiana section Suaveolentes is an almost all-Australian clade of allopolyploid tobacco species including the important plant model Nicotiana benthamiana. The homology relationships of this clade and its formation are not completely understood. To address this gap, we assessed phylogenies of all individual genes of N. benthamiana and the well studied N. tabacum (section Nicotiana) and their homologues in six diploid Nicotiana species. We generated sets of 44 424 and 65 457 phylogenetic trees of N. benthamiana and N. tabacum genes, respectively, each collectively called a phylome. Members of Nicotiana sections Noctiflorae and Sylvestres were represented as the species closest to N. benthamiana in most of the gene trees. Analyzing the gene trees of the phylome we: (i) dated the hybridization event giving rise to N. benthamiana to 4-5 MyA, and (ii) separated the subgenomes. We assigned 1.42 Gbp of the genome sequence to section Noctiflorae and 0.97 Gbp to section Sylvestres based on phylome analysis. In contrast, read mapping of the donor species did not succeed in separating the subgenomes of N. benthamiana. We show that the maternal progenitor of N. benthamiana was a member of section Noctiflorae, and confirm a member of section Sylvestres as paternal subgenome donor. We also demonstrate that the advanced stage of long-term genome diploidization in N. benthamiana is reflected in its subgenome organization. Taken together, our results underscore the usefulness of phylome analysis for subgenome characterization in hybrid species.
Collapse
Affiliation(s)
- Matteo Schiavinato
- Department of BiotechnologyInstitute of Computational BiologyUniversity of Natural Resources and Life Sciences (BOKU)1190ViennaAustria
| | - Marina Marcet‐Houben
- Bioinformatics and Genomics ProgrammeCentre for Genomic Regulation (CRG)The Barcelona Institute of Science and Technology08003BarcelonaSpain
- ICREABarcelonaSpain
| | - Juliane C. Dohm
- Department of BiotechnologyInstitute of Computational BiologyUniversity of Natural Resources and Life Sciences (BOKU)1190ViennaAustria
| | - Toni Gabaldón
- Bioinformatics and Genomics ProgrammeCentre for Genomic Regulation (CRG)The Barcelona Institute of Science and Technology08003BarcelonaSpain
- ICREABarcelonaSpain
- Present address:
Barcelona Supercomputing Centre (BSC‐CNS) and Institute for Research in Biomedicine (IRB)BarcelonaSpain
| | - Heinz Himmelbauer
- Department of BiotechnologyInstitute of Computational BiologyUniversity of Natural Resources and Life Sciences (BOKU)1190ViennaAustria
| |
Collapse
|
206
|
Bickhart DM, McClure JC, Schnabel RD, Rosen BD, Medrano JF, Smith TPL. Symposium review: Advances in sequencing technology herald a new frontier in cattle genomics and genome-enabled selection. J Dairy Sci 2020; 103:5278-5290. [PMID: 32331872 DOI: 10.3168/jds.2019-17693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/03/2019] [Indexed: 11/19/2022]
Abstract
The cattle reference genome assembly has underpinned major innovations in beef and dairy genetics through genome-enabled selection, including removal of deleterious recessive variants and selection for favorable alleles affecting quantitative production traits. The initial reference assemblies, up to and including UMD3.1 and Btau4.1, were based on a combination of clone-by-clone sequencing of bacterial artificial chromosome clones generated from blood DNA of a Hereford bull and whole-genome shotgun sequencing of blood DNA from his inbred daughter/granddaughter named L1 Dominette 01449 (Dominette). The approach introduced assembly gaps, misassemblies, and errors, and it limited the ability to assemble regions that undergo rearrangement in blood cells, such as immune gene clusters. Nonetheless, the reference supported the creation of genotyping tools and provided a basis for many studies of gene expression. Recently, long-read sequencing technologies have emerged that facilitated a re-assembly of the reference genome, using lung tissue from Dominette to resolve many of the problems and providing a bridge to place historical studies in common context. The new reference, ARS-UCD1.2, successfully assembled germline immune gene clusters and improved overall continuity (i.e., reduction of gaps and inversions) by over 250-fold. This reference properly places nearly all of the legacy genetic markers used for over a decade in the industry. In this review, we discuss the improvements made to the cattle reference; remaining issues present in the assembly; tools developed to support genome-based studies in beef and dairy cattle; and the emergence of newer genome assembly methods that are producing even higher-quality assemblies for other breeds of cattle at a fraction of the cost. The new frontier for cattle genomics research will likely include a transition from the individual Hereford reference genome, to a "pan-genome" reference, representing all the DNA segments existing in commonly used cattle breeds, bringing the cattle reference into line with the current direction of human genome research.
Collapse
Affiliation(s)
- D M Bickhart
- US Dairy Forage Research Center, Agricultural Research Service, USDA, Madison, WI 53705.
| | - J C McClure
- US Dairy Forage Research Center, Agricultural Research Service, USDA, Madison, WI 53705
| | - R D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, 65211; MU Institute for Data Science and Informatics, University of Missouri, Columbia, 65211
| | - B D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705
| | - J F Medrano
- Department of Animal Science, University of California Davis, 95616
| | - T P L Smith
- Meat Animal Research Center, Agricultural Research Service, USDA, Clay Center, NE 68933
| |
Collapse
|
207
|
Arisue N, Palacpac NMQ, Tougan T, Horii T. Characteristic features of the SERA multigene family in the malaria parasite. Parasit Vectors 2020; 13:170. [PMID: 32252804 PMCID: PMC7132891 DOI: 10.1186/s13071-020-04044-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/27/2020] [Indexed: 02/28/2023] Open
Abstract
Serine repeat antigen (SERA) is conserved among species of the genus Plasmodium. Sera genes form a multigene family and are generally tandemly clustered on a single chromosome. Although all Plasmodium species encode multiple sera genes, the number varies between species. Among species, the members share similar sequences and gene organization. SERA possess a central papain-like cysteine protease domain, however, in some members, the active site cysteine residue is substituted with a serine. Recent studies implicate this gene family in a number of aspects in parasite biology and induction of protective immune response. This review summarizes the current understanding on this important gene family in several Plasmodium species. The Plasmodium falciparum (Pf)-sera family, for example, consists of nine gene members. Unlike other multigene families in Plasmodium species, Pf-sera genes do not exhibit antigenic variation. Pf-sera5 nucleotide diversity is also low. Moreover, although Pf-sera5 is highly transcribed during the blood stage of malaria infection, and a large amount is released into the host blood following schizont rupture, in malaria endemic countries the sero-positive rates for Pf-SERA5 are low, likely due to Pf-SERA5 binding of host proteins to avoid immune recognition. As an antigen, the N-terminal 47 kDa domain of Pf-SERA5 is a promising vaccine candidate currently undergoing clinical trials. Pf-SERA5 and Pf-SERA6, as well as P. berghei (Pb)-SERA3, and Pb-SERA5, have been investigated for their roles in parasite egress. Two P. yoelii SERA, which have a serine residue at the protease active center, are implicated in parasite virulence. Overall, these studies provide insight that during the evolution of the Plasmodium parasite, the sera gene family members have increased by gene duplication, and acquired various functions that enable the parasite to survive and successfully maintain infection in the host.![]()
Collapse
Affiliation(s)
- Nobuko Arisue
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Nirianne M Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takahiro Tougan
- Research Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
208
|
Freeman AR, Ophir AG, Sheehan MJ. The giant pouched rat (Cricetomys ansorgei) olfactory receptor repertoire. PLoS One 2020; 15:e0221981. [PMID: 32240170 PMCID: PMC7117715 DOI: 10.1371/journal.pone.0221981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
For rodents, olfaction is essential for locating food, recognizing mates and competitors, avoiding predators, and navigating their environment. It is thought that rodents may have expanded olfactory receptor repertoires in order to specialize in olfactory behavior. Despite being the largest clade of mammals and depending on olfaction relatively little work has documented olfactory repertoires outside of conventional laboratory species. Here we report the olfactory receptor repertoire of the African giant pouched rat (Cricetomys ansorgei), a Muroid rodent distantly related to mice and rats. The African giant pouched rat is notable for its large cortex and olfactory bulbs relative to its body size compared to other sympatric rodents, which suggests anatomical elaboration of olfactory capabilities. We hypothesized that in addition to anatomical elaboration for olfaction, these pouched rats might also have an expanded olfactory receptor repertoire to enable their olfactory behavior. We examined the composition of the olfactory receptor repertoire to better understand how their sensory capabilities have evolved. We identified 1145 intact olfactory genes, and 260 additional pseudogenes within 301 subfamilies from the African giant pouched rat genome. This repertoire is similar to mice and rats in terms of size, pseudogene percentage and number of subfamilies. Analyses of olfactory receptor gene trees revealed that the pouched rat has 6 expansions in different subfamilies compared to mice, rats and squirrels. We identified 81 orthologous genes conserved among 4 rodent species and an additional 147 conserved genes within the Muroid rodents. The orthologous genes shared within Muroidea suggests that there may be a conserved Muroid-specific olfactory receptor repertoire. We also note that the description of this repertoire can serve as a complement to other studies of rodent olfaction, as the pouched rat is an outgroup within Muroidea. Thus, our data suggest that African giant pouched rats are capable of both natural and trained olfactory behaviors with a typical Muriod olfactory receptor repertoire.
Collapse
Affiliation(s)
- Angela R. Freeman
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| | - Alexander G. Ophir
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Michael J. Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
209
|
Gallinari RH, Coletta RD, Araújo P, Menossi M, Nery MF. Bringing to light the molecular evolution of GUX genes in plants. Genet Mol Biol 2020; 43:e20180208. [PMID: 32232316 PMCID: PMC7198009 DOI: 10.1590/1678-4685-gmb-2018-0208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 05/06/2019] [Indexed: 11/30/2022] Open
Abstract
Hemicellulose and cellulose are essential polysaccharides for plant development and major components of cell wall. They are also an important energy source for the production of ethanol from plant biomass, but their conversion to fermentable sugars is hindered by the complex structure of cell walls. The glucuronic acid substitution of xylan (GUX) enzymes attach glucuronic acid to xylan, a major component of hemicellulose, decreasing the efficiency of enzymes used for ethanol production. Since loss-of-function gux mutants of Arabidopsis thaliana enhance enzyme accessibility and cell wall digestion without adverse phenotypes, GUX genes are potential targets for genetically improving energy crops. However, comprehensive identification of GUX in important species and their evolutionary history are largely lacking. Here, we identified putative GUX proteins using hidden Markov model searches with the GT8 domain and a GUX-specific motif, and inferred the phylogenetic relationship of 18 species with Maximum likelihood and Bayesian approaches. Each species presented a variable number of GUX, and their evolution can be explained by a mixture of divergent, concerted and birth-and-death evolutionary models. This is the first broad insight into the evolution of GUX gene family in plants and will potentially guide genetic and functional studies in species used for biofuel production.
Collapse
Affiliation(s)
- Rafael Henrique Gallinari
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Campinas, SP, Brazil
| | - Rafael Della Coletta
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Campinas, SP, Brazil
| | - Pedro Araújo
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Campinas, SP, Brazil
| | - Marcelo Menossi
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Campinas, SP, Brazil
| | - Mariana Freitas Nery
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Campinas, SP, Brazil
| |
Collapse
|
210
|
Zhao B, Zhang X, Li B, Du P, Shi L, Dong Y, Gao X, Sha W, Zhang H. Evolution of major histocompatibility complex class I genes in the sable Martes zibellina (Carnivora, Mustelidae). Ecol Evol 2020; 10:3439-3449. [PMID: 32274000 PMCID: PMC7141072 DOI: 10.1002/ece3.6140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 11/10/2022] Open
Abstract
The molecules encoded by major histocompatibility complex (MHC) genes play an essential role in the adaptive immune response among vertebrates. We investigated the molecular evolution of MHC class I genes in the sable Martes zibellina. We isolated 26 MHC class I sequences, including 12 putatively functional sequences and 14 pseudogene sequences, from 24 individuals from two geographic areas of northeast China. The number of putatively functional sequences found in a single individual ranged from one to five, which might be at least 1-3 loci. We found that both balancing selection and recombination contribute to evolution of MHC class I genes in M. zibellina. In addition, we identified a candidate nonclassical MHC class I lineage in Carnivora, which may have preceded the divergence (about 52-57 Mya) of Caniformia and Feliformia. This may contribute to further understanding of the origin and evolution of nonclassical MHC class I genes. Our study provides important immune information of MHC for M. zibellina, as well as other carnivores.
Collapse
Affiliation(s)
- Baojun Zhao
- College of Life Science Qufu Normal University Qufu China
| | - Xue Zhang
- College of Life Science Qufu Normal University Qufu China
| | - Bo Li
- College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - Pengfei Du
- College of Life Science Qufu Normal University Qufu China
| | - Lupeng Shi
- College of Life Science Qufu Normal University Qufu China
| | - Yuehuan Dong
- College of Life Science Qufu Normal University Qufu China
| | - Xiaodong Gao
- College of Life Science Qufu Normal University Qufu China
| | - Weilai Sha
- College of Life Science Qufu Normal University Qufu China
| | - Honghai Zhang
- College of Life Science Qufu Normal University Qufu China
| |
Collapse
|
211
|
Denton‐Giles M, McCarthy H, Sehrish T, Dijkwel Y, Mesarich CH, Bradshaw RE, Cox MP, Dijkwel PP. Conservation and expansion of a necrosis-inducing small secreted protein family from host-variable phytopathogens of the Sclerotiniaceae. MOLECULAR PLANT PATHOLOGY 2020; 21:512-526. [PMID: 32061186 PMCID: PMC7060139 DOI: 10.1111/mpp.12913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 05/02/2023]
Abstract
Fungal effector proteins facilitate host-plant colonization and have generally been characterized as small secreted proteins (SSPs). We classified and functionally tested SSPs from the secretomes of three closely related necrotrophic phytopathogens: Ciborinia camelliae, Botrytis cinerea, and Sclerotinia sclerotiorum. Alignment of predicted SSPs identified a large protein family that share greater than 41% amino acid identity and that have key characteristics of previously described microbe-associated molecular patterns (MAMPs). Strikingly, 73 of the 75 SSP family members were predicted within the secretome of the host-specialist C. camelliae with single-copy homologs identified in the secretomes of the host generalists S. sclerotiorum and B. cinerea. To explore the potential function of this family of SSPs, 10 of the 73 C. camelliae proteins, together with the single-copy homologs from S. sclerotiorum (SsSSP3) and B. cinerea (BcSSP2), were cloned and expressed as recombinant proteins. Infiltration of SsSSP3 and BcSSP2 into host tissue induced rapid necrosis. In contrast, only one of the 10 tested C. camelliae SSPs was able to induce a limited amount of necrosis. Analysis of chimeric proteins consisting of domains from both a necrosis-inducing and a non-necrosis-inducing SSP demonstrated that the C-terminus of the S. sclerotiorum SSP is essential for necrosis-inducing function. Deletion of the BcSSP2 homolog from B. cinerea did not affect growth or pathogenesis. Thus, this research uncovered a family of highly conserved SSPs present in diverse ascomycetes that exhibit contrasting necrosis-inducing functions.
Collapse
Affiliation(s)
- Matthew Denton‐Giles
- Centre for Crop and Disease ManagementCurtin UniversityPerthAustralia
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Hannah McCarthy
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Tina Sehrish
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Yasmin Dijkwel
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Carl H. Mesarich
- School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Rosie E. Bradshaw
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Murray P. Cox
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Paul P. Dijkwel
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
212
|
Jiao Y, Gu Z, Luo S, Deng Y. Evolutionary and functional analysis of MyD88 genes in pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2020; 99:322-330. [PMID: 32060010 DOI: 10.1016/j.fsi.2020.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is an adapter protein that links toll-like receptor and interleukin 1 receptor-mediated signal transduction. In this study, we identified 20 MyD88 genes from eight mollusk genomes and found that MyD88 was expanded in bivalves. This expansion tends to be tandem duplication. Phylogenetic analysis suggested that the tandem duplication of MyD88 was formed before bivalve differentiation. All of the identified MyD88 contained both of death domain (DD) and toll/interleukin-1 receptor (TIR) domain, and 13 mollusks MyD88 have low complexity regions (LCRs), which were not found in the MyD88 from humans and zebrafish. The genomic structure showed that most of the mollusk MyD88 (14 of 19) contained five conserved introns, four of which were found in humans and zebrafish. Furthermore, the cDNA full length of PfmMyD88-2 (one of the two identified MyD88 in Pincatada fucata martensii) was obtained with 1591 bp, including 260 bp of 5'UTR, 257 bp of 3'UTR, and 1077 bp of open reading frame encoding 358 amino acids. Quantitative real-time PCR analysis demonstrated that PfmMyD88-2 mRNA was widely expressed in all detected tissues. The highest expression level was in the gills and followed by hepatopancreas and feet. After lipopolysaccharide stimulation, PfmMyD88-2 expression level increased and reached the highest level at 12 h and then gradually declined to the normal level. Over-expression of PfmMyD88-2 in HEK293T increased the luciferase activity of the pNF-κB-Luc reporter. We also identified that PfmmiR-4047 could regulate the expression of PfmMyD88-2. These results help us elucidate the mechanism underlying mollusk immune response.
Collapse
Affiliation(s)
- Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Technology Research Center for pearl aquaculture and process, Zhanjiang, 524025, China
| | - Zefeng Gu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Shaojie Luo
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Technology Research Center for pearl aquaculture and process, Zhanjiang, 524025, China.
| |
Collapse
|
213
|
Alpaca ( Vicugna pacos), the first nonprimate species with a phosphoantigen-reactive Vγ9Vδ2 T cell subset. Proc Natl Acad Sci U S A 2020; 117:6697-6707. [PMID: 32139608 DOI: 10.1073/pnas.1909474117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Vγ9Vδ2 T cells are a major γδ T cell population in the human blood expressing a characteristic Vγ9JP rearrangement paired with Vδ2. This cell subset is activated in a TCR-dependent and MHC-unrestricted fashion by so-called phosphoantigens (PAgs). PAgs can be microbial [(E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate, HMBPP] or endogenous (isopentenyl pyrophosphate, IPP) and PAg sensing depends on the expression of B7-like butyrophilin (BTN3A, CD277) molecules. IPP increases in some transformed or aminobisphosphonate-treated cells, rendering those cells a target for Vγ9Vδ2 T cells in immunotherapy. Yet, functional Vγ9Vδ2 T cells have only been described in humans and higher primates. Using a genome-based study, we showed in silico translatable genes encoding Vγ9, Vδ2, and BTN3 in a few nonprimate mammalian species. Here, with the help of new monoclonal antibodies, we directly identified a T cell population in the alpaca (Vicugna pacos), which responds to PAgs in a BTN3-dependent fashion and shows typical TRGV9- and TRDV2-like rearrangements. T cell receptor (TCR) transductants and BTN3-deficient human 293T cells reconstituted with alpaca or human BTN3 or alpaca/human BTN3 chimeras showed that alpaca Vγ9Vδ2 TCRs recognize PAg in the context of human and alpaca BTN3. Furthermore, alpaca BTN3 mediates PAg recognition much better than human BTN3A1 alone and this improved functionality mapped to the transmembrane/cytoplasmic part of alpaca BTN3. In summary, we found remarkable similarities but also instructive differences of PAg-recognition by human and alpaca, which help in better understanding the molecular mechanisms controlling the activation of this prominent population of γδ T cells.
Collapse
|
214
|
Rane RV, Clarke DF, Pearce SL, Zhang G, Hoffmann AA, Oakeshott JG. Detoxification Genes Differ Between Cactus-, Fruit-, and Flower-Feeding Drosophila. J Hered 2020; 110:80-91. [PMID: 30445496 DOI: 10.1093/jhered/esy058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
We use annotated genomes of 14 Drosophila species covering diverse host use phenotypes to test whether 4 gene families that often have detoxification functions are associated with host shifts among species. Bark, slime flux, flower, and generalist necrotic fruit-feeding species all have similar numbers of carboxyl/cholinesterase, glutathione S-transferase, cytochrome P450, and UDP-glucuronosyltransferase genes. However, species feeding on toxic Morinda citrifolia fruit and the fresh fruit-feeding Drosophila suzukii have about 30 and 60 more, respectively. ABC transporters show a different pattern, with the flower-feeding D. elegans and the generalist necrotic fruit and cactus feeder D. hydei having about 20 and >100 more than the other species, respectively. Surprisingly, despite the complex secondary chemistry we find that 3 cactophilic specialists in the mojavensis species cluster have variably fewer genes than any of the other species across all 4 families. We also find 82 positive selection events across the 4 families, with the terminal D. suzukii and M. citrifolia-feeding D. sechellia branches again having the highest number of such events in proportion to their respective branch lengths. Many of the genes involved in these host-use-specific gene number differences or positive selection events lie in specific clades of the gene families that have been recurrently associated with detoxification. Several genes are also found to be involved in multiple duplication and/or positive selection events across the species studied regardless of their host use phenotypes; the most frequently involved are the ABC transporter CG1718, which is not in a specific clade associated with detoxification, and the α-esterase gene cluster, which is.
Collapse
Affiliation(s)
- Rahul V Rane
- CSIRO, Acton, ACT, Australia.,School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - David F Clarke
- CSIRO, Acton, ACT, Australia.,School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China.,Centre for Social Evolution, Department of Biology, University of Copenhagen, København, Denmark
| | - Ary A Hoffmann
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
215
|
Comprehensive phylogenomic analysis of ERF genes in sorghum provides clues to the evolution of gene functions and redundancy among gene family members. 3 Biotech 2020; 10:139. [PMID: 32158635 DOI: 10.1007/s13205-020-2120-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/05/2020] [Indexed: 10/24/2022] Open
Abstract
APETALA2/Ethylene-Responsive transcription factors (AP2/ERF), with their multifunctional roles in plant development, hormone signaling and stress tolerance, are important candidates for engineering crop plants. Here, we report identification and analysis of gene structure, phylogenetic distribution, expression, chromosomal localization and cis-acting promoter analysis of AP2/ERF genes in the C4 crop plant sorghum. We identified 158 ERF genes in sorghum with 52 of them encoding dehydration-responsive binding elements (DREB) while 106 code for ERF subfamily proteins. Phylogenetic analysis organized sorghum ERF proteins into 11 distinct groups exhibiting clade-specific expansion. About 68% ERF genes have paralogs indicating gene duplications as major cause of expansion of ERF family in sorghum. Analysis of spatiotemporal expression patterns using publicly available data revealed their tissue/genotype-preferential accumulation. In addition, 40 ERF genes exhibited differential accumulation in response to heat and/or drought stress. About 25% of the segmental gene pairs and eleven tandem duplicated genes exhibited high correlation (> 0.7) in their expression patterns indicating genetic redundancy. Comparative phylogenomic analysis of sorghum ERFs with 74 genetically characterized ERF genes from other plant species provided significant clues to sorghum ERF functions. Overall data generated here provides an overview of evolutionary relationship among ERF gene family members in sorghum and with respect to previously characterized ERF genes from other plant species. This information will be instrumental in initiating functional genomic studies of ERF candidates in sorghum.
Collapse
|
216
|
Hänske J, Hammacher T, Grenkowitz F, Mansfeld M, Dau TH, Maksimov P, Friedrich C, Zimmermann W, Kammerer R. Natural selection supports escape from concerted evolution of a recently duplicated CEACAM1 paralog in the ruminant CEA gene family. Sci Rep 2020; 10:3404. [PMID: 32099040 PMCID: PMC7042247 DOI: 10.1038/s41598-020-60425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/31/2020] [Indexed: 11/24/2022] Open
Abstract
Concerted evolution is often observed in multigene families such as the CEA gene family. As a result, sequence similarity of paralogous genes is significantly higher than expected from their evolutionary distance. Gene conversion, a “copy paste” DNA repair mechanism that transfers sequences from one gene to another and homologous recombination are drivers of concerted evolution. Nevertheless, some gene family members escape concerted evolution and acquire sufficient sequence differences that orthologous genes can be assigned in descendant species. Reasons why some gene family members can escape while others are captured by concerted evolution are poorly understood. By analyzing the entire CEA gene family in cattle (Bos taurus) we identified a member (CEACAM32) that was created by gene duplication and cooption of a unique transmembrane domain exon in the most recent ancestor of ruminants. CEACAM32 shows a unique, testis-specific expression pattern. Phylogenetic analysis indicated that CEACAM32 is not involved in concerted evolution of CEACAM1 paralogs in ruminants. However, analysis of gene conversion events revealed that CEACAM32 is subject to gene conversion but remarkably, these events are found in the leader exon and intron sequences but not in exons coding for the Ig-like domains. These findings suggest that natural selection hinders gene conversion affecting protein sequences of the mature protein and thereby support escape of CEACAM32 from concerted evolution.
Collapse
Affiliation(s)
- Jana Hänske
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany.,Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen, Dresden, Germany
| | - Tim Hammacher
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Franziska Grenkowitz
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Martin Mansfeld
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Tung Huy Dau
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Pavlo Maksimov
- Institute of Epidemiology, Friedrich-Loeffler-Institute, Greifswald - InselRiems, Germany
| | - Christin Friedrich
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany.,Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Wolfgang Zimmermann
- Tumor Immunology Laboratory, LIFE Center, Department of Urology, Ludwig-Maximilians-University, Munich, Germany
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany.
| |
Collapse
|
217
|
Li C, Huang R, Nie F, Li J, Zhu W, Shi X, Guo Y, Chen Y, Wang S, Zhang L, Chen L, Li R, Liu X, Zheng C, Zhang C, Ma RZ. Organization of the Addax Major Histocompatibility Complex Provides Insights Into Ruminant Evolution. Front Immunol 2020; 11:260. [PMID: 32161588 PMCID: PMC7053375 DOI: 10.3389/fimmu.2020.00260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 12/22/2022] Open
Abstract
Ruminants are critical as prey in transferring solar energy fixed by plants into carnivorous species, yet the genetic signature of the driving forces leading to the evolutionary success of the huge number of ruminant species remains largely unknown. Here we report a complete DNA map of the major histocompatibility complex (MHC) of the addax (Addax nasomaculatus) genome by sequencing a total of 47 overlapping BAC clones previously mapped to cover the MHC region. The addax MHC is composed of 3,224,151 nucleotides, harboring a total of 150 coding genes, 50 tRNA genes, and 14 non-coding RNA genes. The organization of addax MHC was found to be highly conserved to those of sheep and cattle, highlighted by a large piece of chromosome inversion that divided the MHC class II into IIa and IIb subregions. It is now highly possible that all of the ruminant species in the family of Bovidae carry the same chromosome inversion in the MHC region, inherited from a common ancestor of ruminants. Phylogenetic analysis indicated that DY, a ruminant-specific gene located at the boundary of the inversion and highly expressed in dendritic cells, was possibly evolved from DQ, with an estimated divergence time ~140 million years ago. Homology modeling showed that the overall predicted structure of addax DY was similar to that of HLA-DQ2. However, the pocket properties of P1, P4, P6, and P9, which were critical for antigen binding in the addax DY, showed certain distinctive features. Structural analysis suggested that the populations of peptide antigens presented by addax DY and HLA-DQ2 were quite diverse, which in theory could serve to promote microbial regulation in the rumen by ruminant species, contributing to enhanced grass utilization ability. In summary, the results of our study helped to enhance our understanding of the MHC evolution and provided additional supportive evidence to our previous hypothesis that an ancient chromosome inversion in the MHC region of the last common ancestor of ruminants may have contributed to the evolutionary success of current ruminants on our planet.
Collapse
Affiliation(s)
- Chaokun Li
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Rui Huang
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fangyuan Nie
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiujie Li
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Zhu
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqian Shi
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu Guo
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Chen
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiyu Wang
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Limeng Zhang
- Molecular Biology Laboratory of Zhengzhou Normal University, Zhengzhou, China
| | - Longxin Chen
- Molecular Biology Laboratory of Zhengzhou Normal University, Zhengzhou, China
| | - Runting Li
- Molecular Biology Laboratory of Zhengzhou Normal University, Zhengzhou, China
| | - Xuefeng Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Changming Zheng
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Runlin Z Ma
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Molecular Biology Laboratory of Zhengzhou Normal University, Zhengzhou, China
| |
Collapse
|
218
|
Niu G, Shao Z, Liu C, Chen T, Jiao Q, Hong Z. Comparative and evolutionary analyses of the divergence of plant oligosaccharyltransferase STT3 isoforms. FEBS Open Bio 2020; 10:468-483. [PMID: 32011067 PMCID: PMC7050244 DOI: 10.1002/2211-5463.12804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/11/2020] [Accepted: 01/30/2020] [Indexed: 11/08/2022] Open
Abstract
STT3 is a catalytic subunit of hetero-oligomeric oligosaccharyltransferase (OST), which is important for asparagine-linked glycosylation. In mammals and plants, OSTs with different STT3 isoforms exhibit distinct levels of enzymatic efficiency or different responses to stressors. Although two different STT3 isoforms have been identified in both plants and animals, it remains unclear whether these isoforms result from gene duplication in an ancestral eukaryote. Furthermore, the molecular mechanisms underlying the functional divergences between the two STT3 isoforms in plant have not been well elucidated. Here, we conducted phylogenetic analysis of the major evolutionary node species and suggested that gene duplications of STT3 may have occurred independently in animals and plants. Across land plants, the exon-intron structure differed between the two STT3 isoforms, but was highly conserved for each isoform. Most angiosperm STT3a genes had 23 exons with intron phase 0, while STT3b genes had 6 exons with intron phase 2. Characteristic motifs (motif 18 and 19) of STT3s were mapped to different structure domains in the plant STT3 proteins. These two motifs overlap with regions of high nonsynonymous-to-synonymous substitution rates, suggesting the regions may be related to functional difference between STT3a and STT3b. In addition, promoter elements and gene expression profiles were different between the two isoforms, indicating expression pattern divergence of the two genes. Collectively, the identified differences may result in the functional divergence of plant STT3s.
Collapse
Affiliation(s)
- Guanting Niu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Zhuqing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Chuanfa Liu
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
| | - Tianshu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Qingsong Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Zhi Hong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| |
Collapse
|
219
|
Evolutionary Dynamics of the POTE Gene Family in Human and Nonhuman Primates. Genes (Basel) 2020; 11:genes11020213. [PMID: 32085667 PMCID: PMC7073761 DOI: 10.3390/genes11020213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
POTE (prostate, ovary, testis, and placenta expressed) genes belong to a primate-specific gene family expressed in prostate, ovary, and testis as well as in several cancers including breast, prostate, and lung cancers. Due to their tumor-specific expression, POTEs are potential oncogenes, therapeutic targets, and biomarkers for these malignancies. This gene family maps within human and primate segmental duplications with a copy number ranging from two to 14 in different species. Due to the high sequence identity among the gene copies, specific efforts are needed to assemble these loci in order to correctly define the organization and evolution of the gene family. Using single-molecule, real-time (SMRT) sequencing, in silico analyses, and molecular cytogenetics, we characterized the structure, copy number, and chromosomal distribution of the POTE genes, as well as their expression in normal and disease tissues, and provided a comparative analysis of the POTE organization and gene structure in primate genomes. We were able, for the first time, to de novo sequence and assemble a POTE tandem duplication in marmoset that is misassembled and collapsed in the reference genome, thus revealing the presence of a second POTE copy. Taken together, our findings provide comprehensive insights into the evolutionary dynamics of the primate-specific POTE gene family, involving gene duplications, deletions, and long interspersed nuclear element (LINE) transpositions to explain the actual repertoire of these genes in human and primate genomes.
Collapse
|
220
|
Phylogenomic Analyses of Members of the Widespread Marine Heterotrophic Genus Pseudovibrio Suggest Distinct Evolutionary Trajectories and a Novel Genus, Polycladidibacter gen. nov. Appl Environ Microbiol 2020; 86:AEM.02395-19. [PMID: 31811036 PMCID: PMC6997731 DOI: 10.1128/aem.02395-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria belonging to the Pseudovibrio genus are widespread, metabolically versatile, and able to thrive as both free-living and host-associated organisms. Although more than 50 genomes are available, a comprehensive comparative genomics study to resolve taxonomic inconsistencies is currently missing. We analyzed all available genomes and used 552 core genes to perform a robust phylogenomic reconstruction. This in-depth analysis revealed the divergence of two monophyletic basal lineages of strains isolated from polyclad flatworm hosts, namely, Pseudovibrio hongkongensis and Pseudovibrio stylochi These strains have reduced genomes and lack sulfur-related metabolisms and major biosynthetic gene clusters, and their environmental distribution appears to be tightly associated with invertebrate hosts. We showed experimentally that the divergent strains are unable to utilize various sulfur compounds that, in contrast, can be utilized by the type strain Pseudovibrio denitrificans Our analyses suggest that the lineage leading to these two strains has been subject to relaxed purifying selection resulting in great gene loss. Overall genome relatedness indices (OGRI) indicate substantial differences between the divergent strains and the rest of the genus. While 16S rRNA gene analyses do not support the establishment of a different genus for the divergent strains, their substantial genomic, phylogenomic, and physiological differences strongly suggest a divergent evolutionary trajectory and the need for their reclassification. Therefore, we propose the novel genus Polycladidibacter gen. nov.IMPORTANCE The genus Pseudovibrio is commonly associated with marine invertebrates, which are essential for ocean health and marine nutrient cycling. Traditionally, the phylogeny of the genus has been based on 16S rRNA gene analysis. The use of the 16S rRNA gene or any other single marker gene for robust phylogenetic placement has recently been questioned. We used a large set of marker genes from all available Pseudovibrio genomes for in-depth phylogenomic analyses. We identified divergent monophyletic basal lineages within the Pseudovibrio genus, including two strains isolated from polyclad flatworms. These strains showed reduced sulfur metabolism and biosynthesis capacities. The phylogenomic analyses revealed distinct evolutionary trajectories and ecological adaptations that differentiate the divergent strains from the other Pseudovibrio members and suggest that they fall into a novel genus. Our data show the importance of widening the use of phylogenomics for better understanding bacterial physiology, phylogeny, and evolution.
Collapse
|
221
|
Calla B, Wu WY, Dean CAE, Schuler MA, Berenbaum MR. Substrate-specificity of cytochrome P450-mediated detoxification as an evolutionary strategy for specialization on furanocoumarin-containing hostplants: CYP6AE89 in parsnip webworms. INSECT MOLECULAR BIOLOGY 2020; 29:112-123. [PMID: 31393031 DOI: 10.1111/imb.12612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
The parsnip webworm, Depressaria pastinacella, is restricted to two hostplant genera containing six structurally diverse furanocoumarins. Of these, imperatorin is detoxified by a specialized cytochrome P450, CYP6AB3. A previous whole-larva transcriptome analysis confirmed the presence of nine transcripts that belong to the CYP6AE subfamily. Here, by examining midgut-specific gene expression patterns we determined that CYP6AE89 transcripts were highly expressed and furanocoumarin-inducible. Computer docking and energy-minimization of a CYP6AE89 model with all six furanocoumarins showed that 5-methoxylated bergapten and 8-methoxylated xanthotoxin had the smallest distances from the heme to the proton-donor residue in the catalytic I-helix, and that the 5,8-dimethoxylated isopimpinellin and bergapten had the smallest energy-minimized distance from the heme oxygen to the furan ring double bond. To evaluate this prediction, we expressed the CYP6AE89 protein in an Escherichia coli system, and used it to detect high catalytic activity against the two mono-methoxylated linear furanocoumarins - bergapten and xanthotoxin - and weak activity against isopimpinellin. Thus, CYP6AE89, like CYP6AB3, is probably specialized for detoxifying only a subset of hostplant furanocoumarins. A maximum-likelihood tree built with six representative lepidopterans with manually annotated cytochrome P450s shows that CYP6AE89 may have evolved much faster than the other CYP6AE proteins, possibly indicative of host selection pressure.
Collapse
Affiliation(s)
- B Calla
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - W-Y Wu
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - C A E Dean
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - M A Schuler
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - M R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
222
|
Wang ZX, Zhou Y, Lu LF, Lu XB, Ni B, Liu MX, Guan HX, Li S, Zhang YA, Ouyang S. Infectious hematopoietic necrosis virus N protein suppresses fish IFN1 production by targeting the MITA. FISH & SHELLFISH IMMUNOLOGY 2020; 97:523-530. [PMID: 31881328 DOI: 10.1016/j.fsi.2019.12.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Interferon (IFN) is a vital antiviral factor in host in the early stages after the viral invasion. Meanwhile, viruses have to survive by taking advantage of the cellular machinery and complete their replication. As a result, viruses evolved several immune escape mechanisms to inhibit host IFN expression. However, the mechanisms used to escape the host's IFN system are still unclear for infectious hematopoietic necrosis virus (IHNV). In this study, we report that the N protein of IHNV inhibits IFN1 production in rainbow trout by degrading the MITA. Firstly, the upregulation of IFN1 promoter activity stimulated by poly I:C was suppressed by IHNV infection. Consistent with this result, the overexpression of the N protein of IHNV blocked the IFN1 transcription that was activated by poly I:C and MITA. Secondly, MITA was remarkably decreased by the overexpression of N protein at the protein level. Further analysis demonstrated that the N protein targeted MITA and promoted the ubiquitination of MITA. Taken together, these data suggested that the production of rainbow trout IFN1 could be suppressed by the N protein of IHNV via degrading MITA.
Collapse
Affiliation(s)
- Zhao-Xi Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; University of Chinese Academy of Science, Beijing, China
| | - Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Science, Beijing, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Bing Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Ni
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Meng-Xi Liu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fujian Normal University, Fuzhou, 350117, China
| | - Hong-Xin Guan
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fujian Normal University, Fuzhou, 350117, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266337, China; State Key Laboratory of Aquaculture Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.
| | - Songying Ouyang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266337, China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fujian Normal University, Fuzhou, 350117, China
| |
Collapse
|
223
|
Yi L, Dalai M, Su R, Lin W, Erdenedalai M, Luvsantseren B, Chimedtseren C, Wang Z, Hasi S. Whole-genome sequencing of wild Siberian musk deer (Moschus moschiferus) provides insights into its genetic features. BMC Genomics 2020; 21:108. [PMID: 32005147 PMCID: PMC6995116 DOI: 10.1186/s12864-020-6495-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Siberian musk deer, one of the seven species, is distributed in coniferous forests of Asia. Worldwide, the population size of Siberian musk deer is threatened by severe illegal poaching for commercially valuable musk and meat, habitat losses, and forest fire. At present, this species is categorized as Vulnerable on the IUCN Red List. However, the genetic information of Siberian musk deer is largely unexplored. Results Here, we produced 3.10 Gb draft assembly of wild Siberian musk deer with a contig N50 of 29,145 bp and a scaffold N50 of 7,955,248 bp. We annotated 19,363 protein-coding genes and estimated 44.44% of the genome to be repetitive. Our phylogenetic analysis reveals that wild Siberian musk deer is closer to Bovidae than to Cervidae. Comparative analyses showed that the genetic features of Siberian musk deer adapted in cold and high-altitude environments. We sequenced two additional genomes of Siberian musk deer constructed demographic history indicated that changes in effective population size corresponded with recent glacial epochs. Finally, we identified several candidate genes that may play a role in the musk secretion based on transcriptome analysis. Conclusions Here, we present a high-quality draft genome of wild Siberian musk deer, which will provide a valuable genetic resource for further investigations of this economically important musk deer.
Collapse
Affiliation(s)
- Li Yi
- Inner Mongolia Agricultural University / Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, 010018, China
| | - Menggen Dalai
- Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| | - Rina Su
- Inner Mongolia Agricultural University / Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, 010018, China
| | - Weili Lin
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | | | | - Zhen Wang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Surong Hasi
- Inner Mongolia Agricultural University / Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, 010018, China.
| |
Collapse
|
224
|
Piscor D, Paiz LM, Baumgärtner L, Cerqueira FJ, Fernandes CA, Lui RL, Parise-Maltempi PP, Margarido VP. Chromosomal mapping of repetitive sequences in Hyphessobrycon eques (Characiformes, Characidae): a special case of the spreading of 5S rDNA clusters in a genome. Genetica 2020; 148:25-32. [PMID: 31997050 DOI: 10.1007/s10709-020-00086-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/28/2019] [Accepted: 01/20/2020] [Indexed: 01/23/2023]
Abstract
Cytogenetic data showed a variation in diploid chromosome number in the genus Hyphessobrycon ranging from 2n = 46 to 52, and studies involving repetitive DNA sequences are scarce in representatives of this genus. The purpose of this paper was the chromosomal mapping of repetitive sequences (rDNA, histone genes, U snDNA and microsatellites) and investigation of the amplification of 5S rDNA clusters in the Hyphessobrycon eques genome. Two H. eques populations displayed 2n = 52 chromosomes, with the acrocentric pair No. 24 bearing Ag-NORs corresponding with CMA3+/DAPI-. FISH with a 18S rDNA probe identified the NORs on the short (p) arms of the acrocentric pairs Nos. 22 and 24. The 5S rDNA probe visualized signals on almost all chromosomes in genomes of individuals from both populations (40 signals); FISH with H3 histone probe identified two chromosome pairs, with the pericentromeric location of signals; FISH with a U2 snDNA probe identified one chromosome pair bearing signals, on the interstitial chromosomal region. The mononucleotide (A), dinucleotide (CA) and tetranucleotide (GATA) repeats were observed on the centromeric/pericentromeric and/or terminal positions of all chromosomes, while the trinucleotide (CAG) repeat showed signals on few chromosomes. Molecular analysis of 5S rDNA and non-transcribed spacers (NTS) showed microsatellites (GATA and A repeats) and a fragment of retrotransposon (SINE3/5S-Sauria) inside the sequences. This study expanded the available cytogenetic data for H. eques and demonstrated to the dispersion of the 5S rDNA sequences on almost all chromosomes.
Collapse
Affiliation(s)
- Diovani Piscor
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil. .,Universidade Estadual de Mato Grosso do Sul (UEMS), Unidade de Mundo Novo, BR 163, Km 20.2, Mundo Novo, MS, ZIP: 79980-000, Brazil.
| | - Leonardo Marcel Paiz
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Lucas Baumgärtner
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Fiorindo José Cerqueira
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Carlos Alexandre Fernandes
- Universidade Estadual de Mato Grosso do Sul (UEMS), Unidade de Mundo Novo, BR 163, Km 20.2, Mundo Novo, MS, ZIP: 79980-000, Brazil
| | - Roberto Laridondo Lui
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| | - Patricia Pasquali Parise-Maltempi
- Instituto de Biociências, Departamento de Biologia, Laboratório de Citogenética, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Av. 24A, 1515, Rio Claro, SP, ZIP: 13506-900, Brazil
| | - Vladimir Pavan Margarido
- Centro de Ciências Biológicas e da Saúde, Laboratório de Citogenética, Universidade Estadual do Oeste do Paraná (UNIOESTE), Rua Universitária, 2069, Cascavel, PR, ZIP: 85819-110, Brazil
| |
Collapse
|
225
|
C Silva M, Chibucos M, Munro JB, Daugherty S, Coelho MM, C Silva J. Signature of adaptive evolution in olfactory receptor genes in Cory's Shearwater supports molecular basis for smell in procellariiform seabirds. Sci Rep 2020; 10:543. [PMID: 31953474 PMCID: PMC6969042 DOI: 10.1038/s41598-019-56950-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/12/2019] [Indexed: 11/17/2022] Open
Abstract
Olfactory receptors (ORs), encoded by the largest vertebrate multigene family, enable the detection of thousands of unique odorants in the environment and consequently play a critical role in species survival. Here, we advance our knowledge of OR gene evolution in procellariiform seabirds, an avian group which relies on the sense of olfaction for critical ecological functions. We built a cosmid library of Cory's Shearwater (Calonectris borealis) genomic DNA, a model species for the study of olfaction-based navigation, and sequence OR gene-positive cosmid clones with a combination of sequencing technologies. We identified 220 OR open reading frames, 20 of which are full length, intact OR genes, and found a large ratio of partial and pseudogenes to intact OR genes (2:1), suggestive of a dynamic mode of evolution. Phylogenetic analyses revealed that while a few genes cluster with those of other sauropsid species in a γ (gamma) clade that predates the divergence of different avian lineages, most genes belong to an avian-specific γ-c clade, within which sequences cluster by species, suggesting frequent duplication and/or gene conversion events. We identified evidence of positive selection on full length γ-c clade genes. These patterns are consistent with a key role of adaptation in the functional diversification of olfactory receptor genes in a bird lineage that relies extensively on olfaction.
Collapse
Affiliation(s)
- Mónica C Silva
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - Marcus Chibucos
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - James B Munro
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Sean Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - M Manuela Coelho
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
226
|
Bradshaw M, Grewe F, Thomas A, Harrison CH, Lindgren H, Muggia L, St Clair LL, Lumbsch HT, Leavitt SD. Characterizing the ribosomal tandem repeat and its utility as a DNA barcode in lichen-forming fungi. BMC Evol Biol 2020; 20:2. [PMID: 31906844 PMCID: PMC6945747 DOI: 10.1186/s12862-019-1571-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background Regions within the nuclear ribosomal operon are a major tool for inferring evolutionary relationships and investigating diversity in fungi. In spite of the prevalent use of ribosomal markers in fungal research, central features of nuclear ribosomal DNA (nrDNA) evolution are poorly characterized for fungi in general, including lichenized fungi. The internal transcribed spacer (ITS) region of the nrDNA has been adopted as the primary DNA barcode identification marker for fungi. However, little is known about intragenomic variation in the nrDNA in symbiotic fungi. In order to better understand evolution of nrDNA and the utility of the ITS region for barcode identification of lichen-forming fungal species, we generated nearly complete nuclear ribosomal operon sequences from nine species in the Rhizoplaca melanophthalma species complex using short reads from high-throughput sequencing. Results We estimated copy numbers for the nrDNA operon, ranging from nine to 48 copies for members of this complex, and found low levels of intragenomic variation in the standard barcode region (ITS). Monophyly of currently described species in this complex was supported in phylogenetic inferences based on the ITS, 28S, intergenic spacer region, and some intronic regions, independently; however, a phylogenetic inference based on the 18S provided much lower resolution. Phylogenetic analysis of concatenated ITS and intergenic spacer sequence data generated from 496 specimens collected worldwide revealed previously unrecognized lineages in the nrDNA phylogeny. Conclusions The results from our study support the general assumption that the ITS region of the nrDNA is an effective barcoding marker for fungi. For the R. melanophthalma group, the limited amount of potential intragenomic variability in the ITS region did not correspond to fixed diagnostic nucleotide position characters separating taxa within this species complex. Previously unrecognized lineages inferred from ITS sequence data may represent undescribed species-level lineages or reflect uncharacterized aspects of nrDNA evolution in the R. melanophthalma species complex.
Collapse
Affiliation(s)
- Michael Bradshaw
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Felix Grewe
- Grainger Bioinformatics Center, The Field Museum, Chicago, IL, USA
| | - Anne Thomas
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | - Cody H Harrison
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | | | - Lucia Muggia
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127, Trieste, Italy
| | - Larry L St Clair
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA.,M. L. Bean Life Science Museum, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA
| | | | - Steven D Leavitt
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA. .,M. L. Bean Life Science Museum, Brigham Young University, 4102 Life Science Building, Provo, UT, 84602, USA.
| |
Collapse
|
227
|
Shabardina V, Kashima Y, Suzuki Y, Makalowski W. Emergence and Evolution of ERM Proteins and Merlin in Metazoans. Genome Biol Evol 2020; 12:3710-3724. [PMID: 31851361 PMCID: PMC6978628 DOI: 10.1093/gbe/evz265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
Ezrin, radixin, moesin, and merlin are cytoskeletal proteins, whose functions are specific to metazoans. They participate in cell cortex rearrangement, including cell-cell contact formation, and play an important role in cancer progression. Here, we have performed a comprehensive phylogenetic analysis of the proteins spanning 87 species. The results describe a possible mechanism for the protein family origin in the root of Metazoa, paralogs diversification in vertebrates, and acquisition of novel functions, including tumor suppression. In addition, a merlin paralog, present in most vertebrates but lost in mammals, has been described here for the first time. We have also highlighted a set of amino acid variations within the conserved motifs as the candidates for determining physiological differences between ERM paralogs.
Collapse
Affiliation(s)
| | - Yukie Kashima
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Japan
| | | |
Collapse
|
228
|
Liu A, He F, Shen L, Liu R, Wang Z, Zhou J. Convergent degeneration of olfactory receptor gene repertoires in marine mammals. BMC Genomics 2019; 20:977. [PMID: 31842731 PMCID: PMC6916060 DOI: 10.1186/s12864-019-6290-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 11/14/2019] [Indexed: 11/10/2022] Open
Abstract
Background Olfactory receptors (ORs) can bind odor molecules and play a crucial role in odor sensation. Due to the frequent gains and losses of genes during evolution, the number of OR members varies greatly among different species. However, whether the extent of gene gains/losses varies between marine mammals and related terrestrial mammals has not been clarified, and the factors that might underlie these variations are unknown. Results To address these questions, we identified more than 10,000 members of the OR family in 23 mammals and classified them into 830 orthologous gene groups (OGGs) and 281 singletons. Significant differences occurred in the number of OR repertoires and OGGs among different species. We found that all marine mammals had fewer OR genes than their related terrestrial lineages, with the fewest OR genes found in cetaceans, which may be closely related to olfactory degradation. ORs with more gene duplications or loss events tended to be under weaker purifying selection. The average gain and loss rates of OR genes in terrestrial mammals were higher than those of mammalian gene families, while the average gain and loss rates of OR genes in marine mammals were significantly lower and much higher than those of mammalian gene families, respectively. Additionally, we failed to detect any one-to-one orthologous genes in the focal species, suggesting that OR genes are not well conserved among marine mammals. Conclusions Marine mammals have experienced large numbers of OR gene losses compared with their related terrestrial lineages, which may result from the frequent birth-and-death evolution under varied functional constrains. Due to their independent degeneration, OR genes present in each lineage are not well conserved among marine mammals. Our study provides a basis for future research on the olfactory receptor function in mammals from the perspective of evolutionary trajectories.
Collapse
Affiliation(s)
- Ake Liu
- Faculty of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, 046011, People's Republic of China.,School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Funan He
- School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Libing Shen
- Institute of Neuroscience, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Ruixiang Liu
- Faculty of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, 046011, People's Republic of China
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Changzhi, Shanxi, 046011, People's Republic of China.
| | - Jingqi Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
229
|
Morgenthaler AB, Kinney WR, Ebmeier CC, Walsh CM, Snyder DJ, Cooper VS, Old WM, Copley SD. Mutations that improve efficiency of a weak-link enzyme are rare compared to adaptive mutations elsewhere in the genome. eLife 2019; 8:53535. [PMID: 31815667 PMCID: PMC6941894 DOI: 10.7554/elife.53535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
New enzymes often evolve by gene amplification and divergence. Previous experimental studies have followed the evolutionary trajectory of an amplified gene, but have not considered mutations elsewhere in the genome when fitness is limited by an evolving gene. We have evolved a strain of Escherichia coli in which a secondary promiscuous activity has been recruited to serve an essential function. The gene encoding the ‘weak-link’ enzyme amplified in all eight populations, but mutations improving the newly needed activity occurred in only one. Most adaptive mutations occurred elsewhere in the genome. Some mutations increase expression of the enzyme upstream of the weak-link enzyme, pushing material through the dysfunctional metabolic pathway. Others enhance production of a co-substrate for a downstream enzyme, thereby pulling material through the pathway. Most of these latter mutations are detrimental in wild-type E. coli, and thus would require reversion or compensation once a sufficient new activity has evolved.
Collapse
Affiliation(s)
- Andrew B Morgenthaler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, United States
| | - Wallis R Kinney
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, United States
| | - Christopher C Ebmeier
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Corinne M Walsh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, United States.,Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, United States
| | - Daniel J Snyder
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, United States
| | - Vaughn S Cooper
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, United States
| | - William M Old
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Shelley D Copley
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
230
|
Ambrose L, Hanson JO, Riginos C, Xu W, Fordyce S, Cooper RD, Beebe NW. Population genetics of Anopheles koliensis through Papua New Guinea: New cryptic species and landscape topography effects on genetic connectivity. Ecol Evol 2019; 9:13375-13388. [PMID: 31871651 PMCID: PMC6912914 DOI: 10.1002/ece3.5792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 12/01/2022] Open
Abstract
New Guinea is a topographically and biogeographically complex region that supports unique endemic fauna. Studies describing the population connectivity of species through this region are scarce. We present a population and landscape genetic study on the endemic malaria-transmitting mosquito, Anopheles koliensis (Owen). Using mitochondrial and nuclear sequence data, as well as microsatellites, we show the evidence of geographically discrete population structure within Papua New Guinea (PNG). We also confirm the existence of three rDNA ITS2 genotypes within this mosquito and assess reproductive isolation between individuals carrying different genotypes. Microsatellites reveal the clearest population structure and show four clear population units. Microsatellite markers also reveal probable reproductive isolation between sympatric populations in northern PNG with different ITS2 genotypes, suggesting that these populations may represent distinct cryptic species. Excluding individuals belonging to the newly identified putative cryptic species (ITS2 genotype 3), we modeled the genetic differences between A. koliensis populations through PNG as a function of terrain and find that dispersal is most likely along routes with low topographic relief. Overall, these results show that A. koliensis is made up of geographically and genetically discrete populations in Papua New Guinea with landscape topography being important in restricting dispersal.
Collapse
Affiliation(s)
- Luke Ambrose
- School of Biological SciencesUniversity of QueenslandBrisbaneQldAustralia
| | - Jeffrey O. Hanson
- School of Biological SciencesUniversity of QueenslandBrisbaneQldAustralia
| | - Cynthia Riginos
- School of Biological SciencesUniversity of QueenslandBrisbaneQldAustralia
| | - Weixin Xu
- School of Biological SciencesUniversity of QueenslandBrisbaneQldAustralia
| | - Sarah Fordyce
- Department of Forensic MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Robert D. Cooper
- ADF Malaria and Infectious Disease InstituteEnoggeraQldAustralia
| | - Nigel W. Beebe
- School of Biological SciencesUniversity of QueenslandBrisbaneQldAustralia
- CSIROSt LuciaQldAustralia
| |
Collapse
|
231
|
Yamada K, Davydov II, Besnard G, Salamin N. Duplication history and molecular evolution of the rbcS multigene family in angiosperms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6127-6139. [PMID: 31498865 PMCID: PMC6859733 DOI: 10.1093/jxb/erz363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/12/2019] [Indexed: 05/22/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is considered to be the main enzyme determining the rate of photosynthesis. The small subunit of the protein, encoded by the rbcS gene, has been shown to influence the catalytic efficiency, CO2 specificity, assembly, activity, and stability of RuBisCO. However, the evolution of the rbcS gene remains poorly studied. We inferred the phylogenetic tree of the rbcS gene in angiosperms using the nucleotide sequences and found that it is composed of two lineages that may have existed before the divergence of land plants. Although almost all species sampled carry at least one copy of lineage 1, genes of lineage 2 were lost in most angiosperm species. We found the specific residues that have undergone positive selection during the evolution of the rbcS gene. We detected intensive coevolution between each rbcS gene copy and the rbcL gene encoding the large subunit of RuBisCO. We tested the role played by each rbcS gene copy on the stability of the RuBisCO protein through homology modelling. Our results showed that this evolutionary constraint could limit the level of divergence seen in the rbcS gene, which leads to the similarity among the rbcS gene copies of lineage 1 within species.
Collapse
Affiliation(s)
- Kana Yamada
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Iakov I Davydov
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Guillaume Besnard
- Laboratoire Evolution et Diversité Biologique (EDB UMR5174), CNRS-UPS-IRD, University of Toulouse III, Toulouse Cedex, France
| | - Nicolas Salamin
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
232
|
Finet C, Slavik K, Pu J, Carroll SB, Chung H. Birth-and-Death Evolution of the Fatty Acyl-CoA Reductase (FAR) Gene Family and Diversification of Cuticular Hydrocarbon Synthesis in Drosophila. Genome Biol Evol 2019; 11:1541-1551. [PMID: 31076758 PMCID: PMC6546124 DOI: 10.1093/gbe/evz094] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
The birth-and-death evolutionary model proposes that some members of a multigene family are phylogenetically stable and persist as a single copy over time, whereas other members are phylogenetically unstable and undergo frequent duplication and loss. Functional studies suggest that stable genes are likely to encode essential functions, whereas rapidly evolving genes reflect phenotypic differences in traits that diverge rapidly among species. One such class of rapidly diverging traits are insect cuticular hydrocarbons (CHCs), which play dual roles in chemical communications as short-range recognition pheromones as well as protecting the insect from desiccation. Insect CHCs diverge rapidly between related species leading to ecological adaptation and/or reproductive isolation. Because the CHC and essential fatty acid biosynthetic pathways share common genes, we hypothesized that genes involved in the synthesis of CHCs would be evolutionary unstable, whereas those involved in fatty acid-associated essential functions would be evolutionary stable. To test this hypothesis, we investigated the evolutionary history of the fatty acyl-CoA reductases (FARs) gene family that encodes enzymes in CHC synthesis. We compiled a unique data set of 200 FAR proteins across 12 Drosophila species. We uncovered a broad diversity in FAR content which is generated by gene duplications, subsequent gene losses, and alternative splicing. We also show that FARs expressed in oenocytes and presumably involved in CHC synthesis are more unstable than FARs from other tissues. Taken together, our study provides empirical evidence that a comparative approach investigating the birth-and-death evolution of gene families can identify candidate genes involved in rapidly diverging traits between species.
Collapse
Affiliation(s)
- Cédric Finet
- Université de Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, France
| | - Kailey Slavik
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison.,PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Jian Pu
- Department of Entomology, Michigan State University
| | - Sean B Carroll
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison.,Department of Biology, University of Maryland, College Park, MD
| | - Henry Chung
- Department of Entomology, Michigan State University.,Ecology, Evolutionary Biology and Behavior, Michigan State University
| |
Collapse
|
233
|
Sharma V, Hiller M. Losses of human disease-associated genes in placental mammals. NAR Genom Bioinform 2019; 2:lqz012. [PMID: 33575564 PMCID: PMC7671337 DOI: 10.1093/nargab/lqz012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/24/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
We systematically investigate whether losses of human disease-associated genes occurred in other mammals during evolution. We first show that genes lost in any of 62 non-human mammals generally have a lower degree of pleiotropy, and are highly depleted in essential and disease-associated genes. Despite this under-representation, we discovered multiple genes implicated in human disease that are truly lost in non-human mammals. In most cases, traits resembling human disease symptoms are present but not deleterious in gene-loss species, exemplified by losses of genes causing human eye or teeth disorders in poor-vision or enamel-less mammals. We also found widespread losses of PCSK9 and CETP genes, where loss-of-function mutations in humans protect from atherosclerosis. Unexpectedly, we discovered losses of disease genes (TYMP, TBX22, ABCG5, ABCG8, MEFV, CTSE) where deleterious phenotypes do not manifest in the respective species. A remarkable example is the uric acid-degrading enzyme UOX, which we found to be inactivated in elephants and manatees. While UOX loss in hominoids led to high serum uric acid levels and a predisposition for gout, elephants and manatees exhibit low uric acid levels, suggesting alternative ways of metabolizing uric acid. Together, our results highlight numerous mammals that are 'natural knockouts' of human disease genes.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany
| |
Collapse
|
234
|
Fuselli S. Beyond drugs: the evolution of genes involved in human response to medications. Proc Biol Sci 2019; 286:20191716. [PMID: 31640517 DOI: 10.1098/rspb.2019.1716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The genetic variation of our species reflects human demographic history and adaptation to diverse local environments. Part of this genetic variation affects individual responses to exogenous substances, such as food, pollutants and drugs, and plays an important role in drug efficacy and safety. This review provides a synthesis of the evolution of loci implicated in human pharmacological response and metabolism, interpreted within the theoretical framework of population genetics and molecular evolution. In particular, I review and discuss key evolutionary aspects of different pharmacogenes in humans and other species, such as the relationship between the type of substrates and rate of evolution; the selective pressure exerted by landscape variables or dietary habits; expected and observed patterns of rare genetic variation. Finally, I discuss how this knowledge can be translated directly or after the implementation of specific studies, into practical guidelines.
Collapse
Affiliation(s)
- Silvia Fuselli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
235
|
Nagaraju M, Reddy PS, Kumar SA, Kumar A, Rajasheker G, Rao DM, Kavi Kishor PB. Genome-wide identification and transcriptional profiling of small heat shock protein gene family under diverse abiotic stress conditions in Sorghum bicolor (L.). Int J Biol Macromol 2019; 142:822-834. [PMID: 31622710 DOI: 10.1016/j.ijbiomac.2019.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 10/02/2019] [Indexed: 11/24/2022]
Abstract
The small heat shock proteins (sHsps/Hsp20s) are the molecular chaperones that maintain proper folding, trafficking and disaggregation of proteins under diverse abiotic stress conditions. In the present investigation, a genome-wide scan revealed the presence of a total of 47 sHsps in Sorghum bicolor (SbsHsps), distributed across 10 subfamilies, the major subfamily being P (plastid) group with 17 genes. Chromosomes 1 and 3 appear as the hot spot regions for SbsHsps, and majority of them were found acidic, hydrophilic, unstable and intron less. Interestingly, promoter analysis indicated that they are associated with both biotic and abiotic stresses, as well as plant development. Sorghum sHsps exhibited 15 paralogous and 20 orthologous duplications. Expression analysis of 15 genes selected from different subfamilies showed high transcript levels in roots and leaves implying that they are likely to participate in the developmental processes. SbsHsp genes were highly induced by diverse abiotic stresses inferring their critical role in mediating the environmental stress responses. Gene expression data revealed that SbsHsp-02 is a candidate gene expressed in all the tissues under varied stress conditions tested. Our results contribute to the understanding of the complexity of SbsHsp genes and help to analyse them further for functional validation.
Collapse
Affiliation(s)
- M Nagaraju
- Department of Genetics, Osmania University, Hyderabad 500 007, India; Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad 500 007, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Anuj Kumar
- Advance Center for Computational & Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun 248 007, India
| | - G Rajasheker
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | - D Manohar Rao
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| |
Collapse
|
236
|
Yohe LR, Davies KTJ, Simmons NB, Sears KE, Dumont ER, Rossiter SJ, Dávalos LM. Evaluating the performance of targeted sequence capture, RNA-Seq, and degenerate-primer PCR cloning for sequencing the largest mammalian multigene family. Mol Ecol Resour 2019; 20:140-153. [PMID: 31523924 DOI: 10.1111/1755-0998.13093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/27/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022]
Abstract
Multigene families evolve from single-copy ancestral genes via duplication, and typically encode proteins critical to key biological processes. Molecular analyses of these gene families require high-confidence sequences, but the high sequence similarity of the members can create challenges for sequencing and downstream analyses. Focusing on the common vampire bat, Desmodus rotundus, we evaluated how different sequencing approaches performed in recovering the largest mammalian protein-coding multigene family: olfactory receptors (OR). Using the genome as a reference, we determined the proportion of intact protein-coding receptors recovered by: (a) amplicons from degenerate primers sequenced via Sanger technology, (b) RNA-Seq of the main olfactory epithelium, and (c) those genes captured with probes designed from transcriptomes of closely-related species. Our initial re-annotation of the high-quality vampire bat genome resulted in >400 intact OR genes, more than doubling the original estimate. Sanger-sequenced amplicons performed the poorest among the three approaches, detecting <33% of receptors in the genome. In contrast, the transcriptome reliably recovered >50% of the annotated genomic ORs, and targeted sequence capture recovered nearly 75% of annotated genes. Each sequencing approach assembled high-quality sequences, even if it did not recover all receptors in the genome. While some variation may be due to limitations of the study design (e.g., different individuals), variation among approaches was mostly caused by low coverage of some receptors rather than high rates of assembly error. Given this variability, we caution against using the counts of intact receptors per species to model the birth-death process of multigene families. Instead, our results support the use of orthologous sequences to explore and model the evolutionary processes shaping these genes.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA.,Department of Geology and Geophysics, Yale University, Stony Brook, NY, USA
| | - Kalina T J Davies
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
| | - Elizabeth R Dumont
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
237
|
Yohe LR, Davies KTJ, Rossiter SJ, Dávalos LM. Expressed Vomeronasal Type-1 Receptors (V1rs) in Bats Uncover Conserved Sequences Underlying Social Chemical Signaling. Genome Biol Evol 2019; 11:2741-2749. [PMID: 31424505 PMCID: PMC6777432 DOI: 10.1093/gbe/evz179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2019] [Indexed: 01/08/2023] Open
Abstract
In mammals, social and reproductive behaviors are mediated by chemical cues encoded by hyperdiverse families of receptors expressed in the vomeronasal organ. Between species, the number of intact receptors can vary by orders of magnitude. However, the evolutionary processes behind variation in receptor number, and its link to fitness-related behaviors are not well understood. From vomeronasal transcriptomes, we discovered the first evidence of intact vomeronasal type-1 receptor (V1r) genes in bats, and we tested whether putatively functional bat receptors were orthologous to those of related taxa, or whether bats have evolved novel receptors. Instead of lineage-specific duplications, we found that bat V1rs show high levels of orthology to those of their relatives, and receptors are under comparative levels of purifying selection as non-bats. Despite widespread vomeronasal organ loss in bats, V1r copies have been retained for >65 million years. The highly conserved nature of bat V1rs challenges our current understanding of mammalian V1r function and suggests roles other than conspecific recognition or mating initiation in social behavior.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Ecology and Evolution, Stony Brook University, NY
- Department of Geology & Geophysics, Yale University, New Haven, CT
| | - Kalina T J Davies
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, NY
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY
| |
Collapse
|
238
|
Gangele K, Jamsandekar M, Mishra A, Poluri KM. Unraveling the evolutionary origin of ELR motif using fish CXC chemokine CXCL8. FISH & SHELLFISH IMMUNOLOGY 2019; 93:17-27. [PMID: 31310848 DOI: 10.1016/j.fsi.2019.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 05/19/2023]
Abstract
Chemokines are chemotactic proteins involved in host defense through the migration of immune-regulatory cells to the site of infection. Interleukin-8 (CXCL8/IL8) is the most studied "ELR-CXC chemokine/neutrophil activating chemokine (NAC) that regulate neutrophil trafficking during infections and inflammation by binding to its cognate G-protein coupled receptors CXCR1/CXCR2. The "ELR" motif of NAC chemokines is essential for the CXCR1/CXCR2 receptor activation. In order to understand the evolutionary origin of "ELR" motif in the CXC chemokines, a thorough evolutionary study of CXCL8 gene from various fishes and primates was performed. Phylogenetic analysis revealed that the CXCL8 gene can be classified into four distinct lineages (CXCL8-L1a, CXCL8-L1b, CXCL8-L2, and CXCL8-L3), where CXCL8-L1a is the fastest evolving lineage and CXCL8-L3 is the slowest. Selection analysis suggested that The "ELR/DLR" motif containing branches (gadoid and coelacanth) are positively selected. The probable evolutionary trend of "ELR" motif suggested that this motif in ancestor CXCL8 is evolved from the GGR of Lamprey (Agnatha), followed by duplication giving rise to two main motifs in CXCL8 "NXH" in L3 lineage and "ELR/DLR" in L1a/L1b lineages. Although, structural analysis suggested that the overall topology of the CXCL8 proteins is similar, differences do exist at the individual structural elements among the members of different lineages. Functional distance analysis suggested that the CXCL8-L3 lineage is more distant compared to the CXCL8-L1a and L1b lineages from the inferred ancestor. Functional divergence analysis between different lineages suggested that most of the selected residues are important for receptor or glycosaminoglycan binding. Such a functional diversification can be attributed to the novel set of functions adopted by CXCL8 in various species.
Collapse
Affiliation(s)
- Krishnakant Gangele
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Minal Jamsandekar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
239
|
Surm JM, Stewart ZK, Papanicolaou A, Pavasovic A, Prentis PJ. The draft genome of Actinia tenebrosa reveals insights into toxin evolution. Ecol Evol 2019; 9:11314-11328. [PMID: 31641475 PMCID: PMC6802032 DOI: 10.1002/ece3.5633] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
Sea anemones have a wide array of toxic compounds (peptide toxins found in their venom) which have potential uses as therapeutics. To date, the majority of studies characterizing toxins in sea anemones have been restricted to species from the superfamily, Actinioidea. No highly complete draft genomes are currently available for this superfamily, however, highlighting our limited understanding of the genes encoding toxins in this important group. Here we have sequenced, assembled, and annotated a draft genome for Actinia tenebrosa. The genome is estimated to be approximately 255 megabases, with 31,556 protein-coding genes. Quality metrics revealed that this draft genome matches the quality and completeness of other model cnidarian genomes, including Nematostella, Hydra, and Acropora. Phylogenomic analyses revealed strong conservation of the Cnidaria and Hexacorallia core-gene set. However, we found that lineage-specific gene families have undergone significant expansion events compared with shared gene families. Enrichment analysis performed for both gene ontologies, and protein domains revealed that genes encoding toxins contribute to a significant proportion of the lineage-specific genes and gene families. The results make clear that the draft genome of A. tenebrosa will provide insight into the evolution of toxins and lineage-specific genes, and provide an important resource for the discovery of novel biological compounds.
Collapse
Affiliation(s)
- Joachim M. Surm
- Faculty of HealthSchool of Biomedical SciencesQueensland University of TechnologyKelvin GroveQldAustralia
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveQldAustralia
| | - Zachary K. Stewart
- Science and Engineering FacultySchool of Earth, Environmental and Biological SciencesQueensland University of TechnologyBrisbaneQldAustralia
- Institute for Future EnvironmentsQueensland University of TechnologyBrisbaneQldAustralia
| | | | - Ana Pavasovic
- Faculty of HealthSchool of Biomedical SciencesQueensland University of TechnologyKelvin GroveQldAustralia
| | - Peter J. Prentis
- Science and Engineering FacultySchool of Earth, Environmental and Biological SciencesQueensland University of TechnologyBrisbaneQldAustralia
- Institute for Future EnvironmentsQueensland University of TechnologyBrisbaneQldAustralia
| |
Collapse
|
240
|
Ding H, Zhu R, Dong J, Bi D, Jiang L, Zeng J, Huang Q, Liu H, Xu W, Wu L, Kan X. Next-Generation Genome Sequencing of Sedum plumbizincicola Sheds Light on the Structural Evolution of Plastid rRNA Operon and Phylogenetic Implications within Saxifragales. PLANTS (BASEL, SWITZERLAND) 2019; 8:E386. [PMID: 31569538 PMCID: PMC6843225 DOI: 10.3390/plants8100386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 01/21/2023]
Abstract
The genus Sedum, with about 470 recognized species, is classified in the family Crassulaceae of the order Saxifragales. Phylogenetic relationships within the Saxifragales are still unresolved and controversial. In this study, the plastome of S. plumbizincicola was firstly presented, with a focus on the structural analysis of rrn operon and phylogenetic implications within the order Saxifragaceae. The assembled complete plastome of S. plumbizincicola is 149,397 bp in size, with a typical circular, double-stranded, and quadripartite structure of angiosperms. It contains 133 genes, including 85 protein-coding genes (PCGs), 36 tRNA genes, 8 rRNA genes, and four pseudogenes (one ycf1, one rps19, and two ycf15). The predicted secondary structure of S. plumbizincicola 16S rRNA includes three main domains organized in 74 helices. Further, our results confirm that 4.5S rRNA of higher plants is associated with fragmentation of 23S rRNA progenitor. Notably, we also found the sequence of putative rrn5 promoter has some evolutionary implications within the order Saxifragales. Moreover, our phylogenetic analyses suggested that S. plumbizincicola had a closer relationship with S. sarmentosum than S. oryzifolium, and supported the taxonomic revision of Phedimus. Our findings of the present study will be useful for further investigation of the evolution of plastid rRNA operon and phylogenetic relationships within Saxifragales.
Collapse
Affiliation(s)
- Hengwu Ding
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu 241000, Anhui, China.
| | - Ran Zhu
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Jinxiu Dong
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - De Bi
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China.
| | - Lan Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Juhua Zeng
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Qingyu Huang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Huan Liu
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China.
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Longhua Wu
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China.
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
- The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, Wuhu 241000, Anhui, China.
| |
Collapse
|
241
|
O'Connor EA, Westerdahl H, Burri R, Edwards SV. Avian MHC Evolution in the Era of Genomics: Phase 1.0. Cells 2019; 8:E1152. [PMID: 31561531 PMCID: PMC6829271 DOI: 10.3390/cells8101152] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Birds are a wonderfully diverse and accessible clade with an exceptional range of ecologies and behaviors, making the study of the avian major histocompatibility complex (MHC) of great interest. In the last 20 years, particularly with the advent of high-throughput sequencing, the avian MHC has been explored in great depth in several dimensions: its ability to explain ecological patterns in nature, such as mating preferences; its correlation with parasite resistance; and its structural evolution across the avian tree of life. Here, we review the latest pulse of avian MHC studies spurred by high-throughput sequencing. Despite high-throughput approaches to MHC studies, substantial areas remain in need of improvement with regard to our understanding of MHC structure, diversity, and evolution. Recent studies of the avian MHC have nonetheless revealed intriguing connections between MHC structure and life history traits, and highlight the advantages of long-term ecological studies for understanding the patterns of MHC variation in the wild. Given the exceptional diversity of birds, their accessibility, and the ease of sequencing their genomes, studies of avian MHC promise to improve our understanding of the many dimensions and consequences of MHC variation in nature. However, significant improvements in assembling complete MHC regions with long-read sequencing will be required for truly transformative studies.
Collapse
Affiliation(s)
| | | | - Reto Burri
- Department of Population Ecology, Institute of Ecology & Evolution, Friedrich Schiller University Jena, 07737 Jena, Germany.
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
242
|
Harl J, Himmel T, Valkiūnas G, Weissenböck H. The nuclear 18S ribosomal DNAs of avian haemosporidian parasites. Malar J 2019; 18:305. [PMID: 31481072 PMCID: PMC6724295 DOI: 10.1186/s12936-019-2940-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/27/2019] [Indexed: 01/19/2023] Open
Abstract
Background Plasmodium species feature only four to eight nuclear ribosomal units on different chromosomes, which are assumed to evolve independently according to a birth-and-death model, in which new variants originate by duplication and others are deleted throughout time. Moreover, distinct ribosomal units were shown to be expressed during different developmental stages in the vertebrate and mosquito hosts. Here, the 18S rDNA sequences of 32 species of avian haemosporidian parasites are reported and compared to those of simian and rodent Plasmodium species. Methods Almost the entire 18S rDNAs of avian haemosporidians belonging to the genera Plasmodium (7), Haemoproteus (9), and Leucocytozoon (16) were obtained by PCR, molecular cloning, and sequencing ten clones each. Phylogenetic trees were calculated and sequence patterns were analysed and compared to those of simian and rodent malaria species. A section of the mitochondrial CytB was also sequenced. Results Sequence patterns in most avian Plasmodium species were similar to those in the mammalian parasites with most species featuring two distinct 18S rDNA sequence clusters. Distinct 18S variants were also found in Haemoproteus tartakovskyi and the three Leucocytozoon species, whereas the other species featured sets of similar haplotypes. The 18S rDNA GC-contents of the Leucocytozoon toddi complex and the subgenus Parahaemoproteus were extremely high with 49.3% and 44.9%, respectively. The 18S sequences of several species from all three genera showed chimeric features, thus indicating recombination. Conclusion Gene duplication events leading to two diverged main sequence clusters happened independently in at least six out of seven avian Plasmodium species, thus supporting evolution according to a birth-and-death model like proposed for the ribosomal units of simian and rodent Plasmodium species. Patterns were similar in the 18S rDNAs of the Leucocytozoon toddi complex and Haemoproteus tartakovskyi. However, the 18S rDNAs of the other species seem to evolve in concerted fashion like in most eukaryotes, but the presence of chimeric variants indicates that the ribosomal units rather evolve in a semi-concerted manner. The new data may provide a basis for studies testing whether differential expression of distinct 18S rDNA also occurs in avian Plasmodium species and related haemosporidian parasites.
Collapse
Affiliation(s)
- Josef Harl
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Tanja Himmel
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria
| | | | - Herbert Weissenböck
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine, Veterinaerplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
243
|
Rush TA, Golan J, McTaggart A, Kane C, Schneider RW, Aime MC. Variation in the Internal Transcribed Spacer Region of Phakopsora pachyrhizi and Implications for Molecular Diagnostic Assays. PLANT DISEASE 2019; 103:2237-2245. [PMID: 31306089 DOI: 10.1094/pdis-08-18-1426-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phakopsora pachyrhizi, the causal agent of soybean rust (SBR), is a global threat to soybean production. Since the discovery of SBR in the continental United States, quantitative polymerase chain reaction assays based on the internal transcribed spacer (ITS) ribosomal DNA locus were established for its rapid detection. However, insufficient data were initially available to test assays against factors that could give rise to misidentification. This study aimed to reevaluate current assays for (i) the potential for false-positive detection caused by nontarget Phakopsora species and (ii) the potential for false-negative detection caused by intraspecific variation within the ITS locus of P. pachyrhizi. A large amount of intraspecific and intragenomic variation in ITS was detected, including the presence of polymorphic ITS copies within single leaf samples and within single rust sori. The diagnostic assays were not affected by polymorphisms in the ITS region; however, current assays are at risk of false positives when screened against other species of Phakopsora. This study raises caveats to the use of multicopy genes (e.g., ITS) in single-gene detection assays and discusses the pitfalls of inferences concerning the aerobiological pathways of disease spread made in the absence of an evaluation of intragenomic ITS heterogeneity.
Collapse
Affiliation(s)
- Tomás Allen Rush
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Jacob Golan
- Departments of Botany and Bacteriology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Alistair McTaggart
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Ecosciences Precinct, Brisbane, Queensland 4001, Australia
| | - Cade Kane
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - R W Schneider
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
244
|
Dunlap CA, Bowman MJ, Rooney AP. Iturinic Lipopeptide Diversity in the Bacillus subtilis Species Group - Important Antifungals for Plant Disease Biocontrol Applications. Front Microbiol 2019; 10:1794. [PMID: 31440222 PMCID: PMC6693446 DOI: 10.3389/fmicb.2019.01794] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022] Open
Abstract
Iturins and closely related lipopeptides constitute a family of antifungal compounds known as iturinic lipopeptides that are produced by species in the Bacillus subtilis group. The compounds that comprise the family are: iturin, bacillomycin D, bacillomycin F, bacillomycin L, mycosubtilin, and mojavensin. These lipopeptides are prominent in many Bacillus strains that have been commercialized as biological control agents against fungal plant pathogens and as plant growth promoters. The compounds are cyclic heptapeptides with a variable length alkyl sidechain, which confers surface activity properties resulting in an affinity for fungal membranes. Above a certain concentration, enough molecules enter the fungal cell membrane to create a pore in the cell wall, which leads to loss of cell contents and cell death. This study identified 330 iturinic lipopeptide clusters in publicly available genomes from the B. subtilis species group. The clusters were subsequently assigned into distinguishable types on the basis of their unique amino acid sequences and then verified by HPLC MS/MS analysis. The results show some lipopeptides are only produced by one species, whereas certain others can produce up to three. In addition, four species previously not known to produce iturinic lipopeptides were identified. The distribution of these compounds among the B. subtilis group species suggests that they play an important role in their speciation and evolution.
Collapse
Affiliation(s)
- Christopher A Dunlap
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, United States
| | - Michael J Bowman
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, United States
| | - Alejandro P Rooney
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, United States
| |
Collapse
|
245
|
Boso G, Shaffer E, Liu Q, Cavanna K, Buckler-White A, Kozak CA. Evolution of the rodent Trim5 cluster is marked by divergent paralogous expansions and independent acquisitions of TrimCyp fusions. Sci Rep 2019; 9:11263. [PMID: 31375773 PMCID: PMC6677749 DOI: 10.1038/s41598-019-47720-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/23/2019] [Indexed: 01/07/2023] Open
Abstract
Evolution of cellular innate immune genes in response to viral threats represents a rich area of study for understanding complex events that shape mammalian genomes. One of these genes, TRIM5, is a retroviral restriction factor that mediates a post-entry block to infection. Previous studies on the genomic cluster that contains TRIM5 identified different patterns of gene amplification and the independent birth of CypA gene fusions in various primate species. However, the evolution of Trim5 in the largest order of mammals, Rodentia, remains poorly characterized. Here, we present an expansive phylogenetic and genomic analysis of the Trim5 cluster in rodents. Our findings reveal substantial evolutionary changes including gene amplifications, rearrangements, loss and fusion. We describe the first independent evolution of TrimCyp fusion genes in rodents. We show that the TrimCyp gene found in some Peromyscus species was acquired about 2 million years ago. When ectopically expressed, the P. maniculatus TRIMCyp shows anti-retroviral activity that is reversed by cyclosporine, but it does not activate Nf-κB or AP-1 promoters, unlike the primate TRIMCyps. These results describe a complex pattern of differential gene amplification in the Trim5 cluster of rodents and identify the first functional TrimCyp fusion gene outside of primates and tree shrews.
Collapse
Affiliation(s)
- Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Esther Shaffer
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Kathryn Cavanna
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA.
| |
Collapse
|
246
|
Thoma M, Missbach C, Jordan MD, Grosse-Wilde E, Newcomb RD, Hansson BS. Transcriptome Surveys in Silverfish Suggest a Multistep Origin of the Insect Odorant Receptor Gene Family. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
247
|
Simon L, Rabanal FA, Dubos T, Oliver C, Lauber D, Poulet A, Vogt A, Mandlbauer A, Le Goff S, Sommer A, Duborjal H, Tatout C, Probst AV. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana. Nucleic Acids Res 2019. [PMID: 29518237 PMCID: PMC5887818 DOI: 10.1093/nar/gky163] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure. 5S rRNA genes from this locus translocated in the Landsberg erecta ecotype as shown by linkage mapping and chromosome-specific FISH analysis. These variations in 5S rDNA locus organization cause changes in the spatial arrangement of chromosomes in the nucleus. Furthermore, 5S rRNA gene arrangements are highly dynamic with alterations in chromosomal positions through translocations in certain mutants of the RNA-directed DNA methylation pathway and important copy number variations among ecotypes. Finally, variations in 5S rRNA gene sequence, chromatin organization and transcripts indicate differential usage of 5S rDNA loci in distinct ecotypes. We suggest that both the usage of existing and new 5S rDNA loci resulting from translocations may impact neighboring chromatin organization.
Collapse
Affiliation(s)
- Lauriane Simon
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Fernando A Rabanal
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Tristan Dubos
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Cecilia Oliver
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Damien Lauber
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Axel Poulet
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Alexander Vogt
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Ariane Mandlbauer
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Samuel Le Goff
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Andreas Sommer
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Hervé Duborjal
- Plant Engineering Platform, BIOGEMMA, Route d'Ennezat Centre de Recherche de Chappes, 63720 Chappes, France
| | - Christophe Tatout
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Aline V Probst
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| |
Collapse
|
248
|
Redmond AK, Zou J, Secombes CJ, Macqueen DJ, Dooley H. Discovery of All Three Types in Cartilaginous Fishes Enables Phylogenetic Resolution of the Origins and Evolution of Interferons. Front Immunol 2019; 10:1558. [PMID: 31354716 PMCID: PMC6640115 DOI: 10.3389/fimmu.2019.01558] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Interferons orchestrate host antiviral responses in jawed vertebrates. They are categorized into three classes; IFN1 and IFN3 are the primary antiviral cytokine lineages, while IFN2 responds to a broader variety of pathogens. The evolutionary relationships within and between these three classes have proven difficult to resolve. Here, we reassess interferon evolution, considering key phylogenetic pitfalls including taxon sampling, alignment quality, model adequacy, and outgroup choice. We reveal that cartilaginous fishes, and hence the jawed vertebrate ancestor, possess(ed) orthologs of all three interferon classes. We show that IFN3 groups sister to IFN1, resolve the origins of the human IFN3 lineages, and find that intronless IFN3s emerged at least three times. IFN2 genes are highly conserved, except for IFN-γ-rel, which we confirm resulted from a teleost-specific duplication. Our analyses show that IFN1 phylogeny is highly sensitive to phylogenetic error. By accounting for this, we describe a new backbone IFN1 phylogeny that implies several IFN1 genes existed in the jawed vertebrate ancestor. One of these is represented by the intronless IFN1s of tetrapods, including mammalian-like repertoires of reptile IFN1s and a subset of amphibian IFN1s, in addition to newly-identified intron-containing shark IFN1 genes. IFN-f, previously only found in teleosts, likely represents another ancestral jawed vertebrate IFN1 family member, suggesting the current classification of fish IFN1s into two groups based on the number of cysteines may need revision. The providence of the remaining fish IFN1s and the coelacanth IFN1s proved difficult to resolve, but they may also be ancestral jawed vertebrate IFN1 lineages. Finally, a large group of amphibian-specific IFN1s falls sister to all other IFN1s and was likely also present in the jawed vertebrate ancestor. Our results verify that intronless IFN1s have evolved multiple times in amphibians and indicate that no one-to-one orthology exists between mammal and reptile IFN1s. Our data also imply that diversification of the multiple IFN1s present in the jawed vertebrate ancestor has occurred through a rapid birth-death process, consistent with functional maintenance over a 450-million-year host-pathogen arms race. In summary, this study reveals a new model of interferon evolution important to our understanding of jawed vertebrate antiviral immunity.
Collapse
Affiliation(s)
- Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom.,Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Jun Zou
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Christopher J Secombes
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States.,Institute of Marine and Environmental Technology, Baltimore, MD, United States
| |
Collapse
|
249
|
Contraction of the ROS Scavenging Enzyme Glutathione S-Transferase Gene Family in Cetaceans. G3-GENES GENOMES GENETICS 2019; 9:2303-2315. [PMID: 31092607 PMCID: PMC6643896 DOI: 10.1534/g3.119.400224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cetaceans are a group of marine mammals whose ancestors were adaptated for life on land. Life in an aquatic environment poses many challenges for air-breathing mammals. Diving marine mammals have adapted to rapid reoxygenation and reactive oxygen species (ROS)-mediated reperfusion injury. Here, we considered the evolution of the glutathione transferase (GST) gene family which has important roles in the detoxification of endogenously-derived ROS and environmental pollutants. We characterized the cytosolic GST gene family in 21 mammalian species; cetaceans, sirenians, pinnipeds, and their terrestrial relatives. All seven GST classes were identified, showing that GSTs are ubiquitous in mammals. Some GST genes are the product of lineage-specific duplications and losses, in line with a birth-and-death evolutionary model. We detected sites with signatures of positive selection that possibly influence GST structure and function, suggesting that adaptive evolution of GST genes is important for defending mammals from various types of noxious environmental compounds. We also found evidence for loss of alpha and mu GST subclass genes in cetacean lineages. Notably, cetaceans have retained a homolog of at least one of the genes GSTA1, GSTA4, and GSTM1; GSTs that are present in both the cytosol and mitochondria. The observed variation in number and selection pressure on GST genes suggest that the gene family structure is dynamic within cetaceans.
Collapse
|
250
|
Abduriyim S, Zou D, Zhao H. Origin and evolution of the major histocompatibility complex class I region in eutherian mammals. Ecol Evol 2019; 9:7861-7874. [PMID: 31346446 PMCID: PMC6636196 DOI: 10.1002/ece3.5373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 01/09/2023] Open
Abstract
Major histocompatibility complex (MHC) genes in vertebrates are vital in defending against pathogenic infections. To gain new insights into the evolution of MHC Class I (MHCI) genes and test competing hypotheses on the origin of the MHCI region in eutherian mammals, we studied available genome assemblies of nine species in Afrotheria, Xenarthra, and Laurasiatheria, and successfully characterized the MHCI region in six species. The following numbers of putatively functional genes were detected: in the elephant, four, one, and eight in the extended class I region, and κ and β duplication blocks, respectively; in the tenrec, one in the κ duplication block; and in the four bat species, one or two in the β duplication block. Our results indicate that MHCI genes in the κ and β duplication blocks may have originated in the common ancestor of eutherian mammals. In the elephant, tenrec, and all four bats, some MHCI genes occurred outside the MHCI region, suggesting that eutherians may have a more complex MHCI genomic organization than previously thought. Bat-specific three- or five-amino-acid insertions were detected in the MHCI α1 domain in all four bats studied, suggesting that pathogen defense in bats relies on MHCIs having a wider peptide-binding groove, as previously assayed by a bat MHCI gene with a three-amino-acid insertion showing a larger peptide repertoire than in other mammals. Our study adds to knowledge on the diversity of eutherian MHCI genes, which may have been shaped in a taxon-specific manner.
Collapse
Affiliation(s)
- Shamshidin Abduriyim
- Department of Ecology, Hubei Key Laboratory of Cell Homeostasis, College of Life ScienceWuhan UniversityWuhanChina
| | - Da‐Hu Zou
- Department of Ecology, Hubei Key Laboratory of Cell Homeostasis, College of Life ScienceWuhan UniversityWuhanChina
| | - Huabin Zhao
- Department of Ecology, Hubei Key Laboratory of Cell Homeostasis, College of Life ScienceWuhan UniversityWuhanChina
| |
Collapse
|