201
|
Lin A, Andronesi O, Bogner W, Choi I, Coello E, Cudalbu C, Juchem C, Kemp GJ, Kreis R, Krššák M, Lee P, Maudsley AA, Meyerspeer M, Mlynarik V, Near J, Öz G, Peek AL, Puts NA, Ratai E, Tkáč I, Mullins PG, Experts' Working Group on Reporting Standards for MR Spectroscopy. Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4484. [PMID: 33559967 PMCID: PMC8647919 DOI: 10.1002/nbm.4484] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 05/08/2023]
Abstract
The translation of MRS to clinical practice has been impeded by the lack of technical standardization. There are multiple methods of acquisition, post-processing, and analysis whose details greatly impact the interpretation of the results. These details are often not fully reported, making it difficult to assess MRS studies on a standardized basis. This hampers the reviewing of manuscripts, limits the reproducibility of study results, and complicates meta-analysis of the literature. In this paper a consensus group of MRS experts provides minimum guidelines for the reporting of MRS methods and results, including the standardized description of MRS hardware, data acquisition, analysis, and quality assessment. This consensus statement describes each of these requirements in detail and includes a checklist to assist authors and journal reviewers and to provide a practical way for journal editors to ensure that MRS studies are reported in full.
Collapse
Affiliation(s)
- Alexander Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Ovidiu Andronesi
- Department of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - In‐Young Choi
- Department of Neurology, Hoglund Biomedical Imaging CenterUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Eduardo Coello
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Cristina Cudalbu
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Christoph Juchem
- Departments of Biomedical Engineering and RadiologyColumbia UniversityNew YorkNew YorkUSA
| | - Graham J. Kemp
- Department of Musculoskeletal and Ageing Science and Liverpool Magnetic Resonance Imaging Centre (LiMRIC)University of LiverpoolLiverpoolUK
| | - Roland Kreis
- Departments of Radiology and Biomedical ResearchUniversity of BernBernSwitzerland
| | - Martin Krššák
- Department of Medicine III and Department of Biomedical Imaging and Image guided TherapyMedical University of ViennaViennaAustria
| | - Phil Lee
- Department of Radiology, Hoglund Biomedical Imaging CenterUniversity of Kansas Medical CenterKansas CityKansasUSA
| | | | - Martin Meyerspeer
- High Field MR Center, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Vladamir Mlynarik
- Magnetic Resonance Centre of Excellence. Medical University of ViennaViennaAustria
| | - Jamie Near
- Brain Imaging Centre, Douglas Research Centre, Department of PsychiatryMcGill UniversityMontrealQuebecCanada
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of RadiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Aimie L. Peek
- Faculty of Health SciencesUniversity of SydneySydneyAustralia
| | - Nicolaas A. Puts
- Department of Forensic and Neurodevelopmental SciencesSackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College LondonLondonUK
| | - Eva‐Maria Ratai
- A.A. Martinos Center for Biomedical Imaging, Neuroradiology Division, Department of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Ivan Tkáč
- Faculty of Health SciencesUniversity of SydneySydneyAustralia
| | - Paul G. Mullins
- Bangor Imaging Unit, School of PsychologyBangor UniversityBangorGwyneddUK
| | | |
Collapse
|
202
|
Just N. Proton functional magnetic resonance spectroscopy in rodents. NMR IN BIOMEDICINE 2021; 34:e4254. [PMID: 31967711 DOI: 10.1002/nbm.4254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Proton functional magnetic resonance spectroscopy (1 H-fMRS) in the human brain is able to assess and quantify the metabolic response due to localized brain activity. Currently, 1 H-fMRS of the human brain is complementary to functional magnetic resonance imaging (fMRI) and a recommended technique at high field strengths (>7 T) for the investigation of neurometabolic couplings, thereby providing insight into the mechanisms underlying brain activity and brain connectivity. Understanding typical healthy brain metabolism during a task is expected to provide a baseline from which to detect and characterize neurochemical alterations associated with various neurological or psychiatric disorders and diseases. It is of paramount importance to resolve fundamental questions related to the regulation of neurometabolic processes. New techniques such as optogenetics may be coupled to fMRI and fMRS to bring more specificity to investigations of brain cell populations during cerebral activation thus enabling a higher link to molecular changes and therapeutic advances. These rather novel techniques are mainly available for rodent applications and trigger renewed interest in animal fMRS. However, rodent fMRS remains fairly confidential due to its inherent low signal-to-noise ratio and its dependence on anesthesia. For instance, the accurate determination of metabolic concentration changes during stimulation requires robust knowledge of the physiological environment of the measured region of interest linked to anesthesia in most cases. These factors may also have a strong influence on B0 homogeneity. Therefore, a degree of calibration of the stimulus strength and duration may be needed for increased knowledge of the underpinnings of cerebral activity. Here, we propose an early review of the current status of 1 H-fMRS in rodents and summarize current difficulties and future perspectives.
Collapse
Affiliation(s)
- Nathalie Just
- Department of Clinical Radiology, University Hospital Münster, Germany
- INRAE, Centre, Tours Val de Loire, France
| |
Collapse
|
203
|
Nakae S, Kumon M, Murayama K, Ohba S, Sasaki H, Inamasu J, Kuwahara K, Yamada S, Abe M, Hirose Y. Association of preoperative seizures with tumor metabolites quantified by magnetic resonance spectroscopy in gliomas. Sci Rep 2021; 11:7927. [PMID: 33846339 PMCID: PMC8041994 DOI: 10.1038/s41598-021-86487-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Seizures are common in patients with gliomas; however, the mechanisms of epileptogenesis in gliomas have not been fully understood. This study hypothesized that analyzing quantified metabolites using magnetic resonance spectroscopy (MRS) might provide novel insights to better understand the epileptogenesis in gliomas, and specific metabolites might be indicators of preoperative seizures in gliomas. We retrospectively investigated patient information (gender, age at diagnosis of tumor, their survival time) and tumor information (location, histology, genetic features, and metabolites according to MRS) in patients with gliomas. The data were correlated with the incidence of seizure and analyzed statistically. Of 146 adult supratentorial gliomas, isocitrate dehydrogenase (IDH) mutant tumors significantly indicated higher incidence of preoperative seizures than IDH wild-type gliomas. However, MRS study indicated that glutamate concentration in IDH wild-type gliomas was higher than that in IDH mutant gliomas. Glutamate was not associated with high frequency of preoperative seizures in patients with gliomas. Instead, increased total N-acetyl-L-aspartate (tNAA) was significantly associated with them. Moreover, multivariable analysis indicated that increased level of tNAA was an independent predictor of preoperative seizures. According to MRS analysis, tNAA, rather than glutamate, might be a useful to detect preoperative seizures in patient with supratentorial gliomas.
Collapse
Affiliation(s)
- Shunsuke Nakae
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Masanobu Kumon
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kazuhiro Murayama
- Department of Radiology, Fujita Health University, Toyoake, Aichi, Japan
| | - Shigeo Ohba
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University, Tokyo, Japan
| | - Joji Inamasu
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kiyonori Kuwahara
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Seiji Yamada
- Department of Pathology, Fujita Health University, Toyoake, Aichi, Japan
| | - Masato Abe
- Department of Pathology, Fujita Health University, Toyoake, Aichi, Japan
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
204
|
Zhao L, Teng J, Mai W, Su J, Yu B, Nong X, Li C, Wei Y, Duan G, Deng X, Deng D, Chen S. A Pilot Study on the Cutoff Value of Related Brain Metabolite in Chinese Elderly Patients With Mild Cognitive Impairment Using MRS. Front Aging Neurosci 2021; 13:617611. [PMID: 33897404 PMCID: PMC8063036 DOI: 10.3389/fnagi.2021.617611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/12/2021] [Indexed: 11/27/2022] Open
Abstract
Objective: This cross-sectional study aimed to distinguish patients with mild cognitive impairment (MCI) from patients with normal controls (NCs) by measuring the levels of N-acetyl aspartate (NAA), total creatinine (tCr), and choline (Cho) in their hippocampus (HIP) and their posterior cingulate gyrus (PCG) by using proton magnetic resonance spectroscopy (MRS) and to predict the cutoff value on the ratios of metabolites. We further aimed to provide a reference for the diagnosis of MCI in elderly patients in China. Methods: About 69 patients who underwent a clinical diagnosis of the MCI group and 67 patients with NCs, the Mini-Mental Status Examination (MMSE) score, the Montreal Cognitive Assessment (MoCA) score, and MRS of the bilateral HIP and bilateral PCG were considered. The ratio of NAA/tCr and Cho/tCr in the bilateral HIP and bilateral PCG was calculated. The relationship between the ratios of metabolites and the scores of MMSE and MoCA was analyzed, and the possible brain metabolite cutoff point for the diagnosis of MCI was evaluated. Results: Compared with the NC group, the scores of MMSE and MoCA in the MCI group decreased significantly (p < 0.05); the ratio of NAA/tCr in the bilateral HIP and bilateral PCG and the ratio of Cho/tCr at the right HIP in the MCI group decreased significantly (p < 0.05); however, there was no significant difference in the ratio of Cho/tCr in the left HIP and bilateral PCG between the two groups (p > 0.05). The correlation coefficient between MMSE/MoCA and the ratio of NAA/tCr was 0.49–0.56 in the bilateral HIP (p < 0.01). The best cutoff value of NAA/creatine (Cr) in the left HIP and the right HIP was 1.195 and 1.19. Sensitivity, specificity, and the Youden index (YDI) in the left HIP and the right HIP were (0.725, 0.803, 0.528) and (0.754, 0.803, 0.557), respectively. Conclusion: The level of metabolites in the HIP and the PCG of patients with MCI and of those with normal subjects has a certain correlation with the score of their MMSE and MoCA. When the value of NAA/tCr in the left HIP and right HIP is <1.19, it suggests that MCI may have occurred. According to this cutoff point, elderly patients with MCI in China could be screened.
Collapse
Affiliation(s)
- Lihua Zhao
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinlong Teng
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Mai
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiahui Su
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Bihan Yu
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiucheng Nong
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Chong Li
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Yichen Wei
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Gaoxiong Duan
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiangming Deng
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Demao Deng
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Shangjie Chen
- Department of Rehabilitation, Bao'an Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
205
|
Petiet A. Current and Emerging MR Methods and Outcome in Rodent Models of Parkinson's Disease: A Review. Front Neurosci 2021; 15:583678. [PMID: 33897339 PMCID: PMC8058186 DOI: 10.3389/fnins.2021.583678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/05/2021] [Indexed: 12/03/2022] Open
Abstract
Parkinson’s disease (PD) is a major neurodegenerative disease characterized by massive degeneration of the dopaminergic neurons in the substantia nigra pars compacta, α-synuclein-containing Lewy bodies, and neuroinflammation. Magnetic resonance (MR) imaging plays a crucial role in the diagnosis and monitoring of disease progression and treatment. A variety of MR methods are available to characterize neurodegeneration and other disease features such as iron accumulation and metabolic changes in animal models of PD. This review aims at giving an overview of how those physiopathological features of PD have been investigated using various MR methods in rodent models. Toxin-based and genetic-based models of PD are first described. MR methods for neurodegeneration evaluation, iron load, and metabolism alterations are then detailed, and the main findings are provided in those models. Ultimately, future directions are suggested for neuroinflammation and neuromelanin evaluations in new animal models.
Collapse
Affiliation(s)
- Alexandra Petiet
- Centre de Neuroimagerie de Recherche, Institut du Cerveau, Paris, France.,Inserm U1127, CNRS UMR 7225, Sorbonne Universités, Paris, France
| |
Collapse
|
206
|
Esmaeili M, Strasser B, Bogner W, Moser P, Wang Z, Andronesi OC. Whole-Slab 3D MR Spectroscopic Imaging of the Human Brain With Spiral-Out-In Sampling at 7T. J Magn Reson Imaging 2021; 53:1237-1250. [PMID: 33179836 PMCID: PMC8717862 DOI: 10.1002/jmri.27437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metabolic imaging using proton magnetic resonance spectroscopic imaging (MRSI) has increased the sensitivity and spectral resolution at field strengths of ≥7T. Compared to the conventional Cartesian-based spectroscopic imaging, spiral trajectories enable faster data collection, promising the clinical translation of whole-brain MRSI. Technical considerations at 7T, however, lead to a suboptimal sampling efficiency for the spiral-out (SO) acquisitions, as a significant portion of the trajectory consists of rewinders. PURPOSE To develop and implement a spiral-out-in (SOI) trajectory for sampling of whole-brain MRSI at 7T. We hypothesized that SOI will improve the signal-to-noise ratio (SNR) of metabolite maps due to a more efficient acquisition. STUDY TYPE Prospective. SUBJECTS/PHANTOM Five healthy volunteers (28-38 years, three females) and a phantom. FIELD STRENGTH/SEQUENCE Navigated adiabatic spin-echo spiral 3D MRSI at 7T. ASSESSMENT A 3D stack of SOI trajectories was incorporated into an adiabatic spin-echo MRSI sequence with real-time motion and shim correction. Metabolite spectral fitting, SNR, and Cramér-Rao lower bound (CRLB) were obtained. We compared the signal intensity and CRLB of three metabolites of tNAA, tCr, and tCho. Peak SNR (PSNR), structure similarity index (SSIM), and signal-to-artifact ratio were evaluated on water maps. STATISTICAL TESTS The nonparametric Mann-Whitney U-test was used for statistical testing. RESULTS Compared to SO, the SOI trajectory: 1) increased the k-space sampling efficiency by 23%; 2) is less demanding for the gradient hardware, requiring 36% lower Gmax and 26% lower Smax ; 3) increased PSNR of water maps by 4.94 dB (P = 0.0006); 4) resulted in a 29% higher SNR (P = 0.003) and lower CRLB by 26-35% (P = 0.02, tNAA), 35-55% (P = 0.03, tCr), and 22-23% (P = 0.04, tCho), which increased the number of well-fitted voxels (eg, for tCr by 11%, P = 0.03). SOI did not significantly change the signal-to-artifact ratio and SSIM (P = 0.65) compared to SO. DATA CONCLUSION SOI provided more efficient MRSI at 7T compared to SO, which improved the data quality and metabolite quantification. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Morteza Esmaeili
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Diagnostic Imaging, Akershus University Hospital, Lørenskog, Norway
| | - Bernhard Strasser
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Philipp Moser
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Zhe Wang
- Siemens Medical Solutions, Charlestown, Massachusetts, USA
| | - Ovidiu C. Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
207
|
Abstract
Human neuroimaging has had a major impact on the biological understanding of epilepsy and the relationship between pathophysiology, seizure management, and outcomes. This review highlights notable recent advancements in hardware, sequences, methods, analyses, and applications of human neuroimaging techniques utilized to assess epilepsy. These structural, functional, and metabolic assessments include magnetic resonance imaging (MRI), positron emission tomography (PET), and magnetoencephalography (MEG). Advancements that highlight non-invasive neuroimaging techniques used to study the whole brain are emphasized due to the advantages these provide in clinical and research applications. Thus, topics range across presurgical evaluations, understanding of epilepsy as a network disorder, and the interactions between epilepsy and comorbidities. New techniques and approaches are discussed which are expected to emerge into the mainstream within the next decade and impact our understanding of epilepsies. Further, an increasing breadth of investigations includes the interplay between epilepsy, mental health comorbidities, and aberrant brain networks. In the final section of this review, we focus on neuroimaging studies that assess bidirectional relationships between mental health comorbidities and epilepsy as a model for better understanding of the commonalities between both conditions.
Collapse
Affiliation(s)
- Adam M. Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| | - Jerzy P. Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| |
Collapse
|
208
|
Zöllner HJ, Považan M, Hui SC, Tapper S, Edden RA, Oeltzschner G. Comparison of different linear-combination modeling algorithms for short-TE proton spectra. NMR IN BIOMEDICINE 2021; 34:e4482. [PMID: 33530131 PMCID: PMC8935349 DOI: 10.1002/nbm.4482] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/09/2021] [Indexed: 05/08/2023]
Abstract
Short-TE proton MRS is used to study metabolism in the human brain. Common analysis methods model the data as a linear combination of metabolite basis spectra. This large-scale multi-site study compares the levels of the four major metabolite complexes in short-TE spectra estimated by three linear-combination modeling (LCM) algorithms. 277 medial parietal lobe short-TE PRESS spectra (TE = 35 ms) from a recent 3 T multi-site study were preprocessed with the Osprey software. The resulting spectra were modeled with Osprey, Tarquin and LCModel, using the same three vendor-specific basis sets (GE, Philips and Siemens) for each algorithm. Levels of total N-acetylaspartate (tNAA), total choline (tCho), myo-inositol (mI) and glutamate + glutamine (Glx) were quantified with respect to total creatine (tCr). Group means and coefficient of variations of metabolite estimates agreed well for tNAA and tCho across vendors and algorithms, but substantially less so for Glx and mI, with mI systematically estimated as lower by Tarquin. The cohort mean coefficient of determination for all pairs of LCM algorithms across all datasets and metabolites was R 2 ¯ = 0.39, indicating generally only moderate agreement of individual metabolite estimates between algorithms. There was a significant correlation between local baseline amplitude and metabolite estimates (cohort mean R 2 ¯ = 0.10). While mean estimates of major metabolite complexes broadly agree between linear-combination modeling algorithms at group level, correlations between algorithms are only weak-to-moderate, despite standardized preprocessing, a large sample of young, healthy and cooperative subjects, and high spectral quality. These findings raise concerns about the comparability of MRS studies, which typically use one LCM software and much smaller sample sizes.
Collapse
Affiliation(s)
- Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Michal Považan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Steve C.N. Hui
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Sofie Tapper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
209
|
Genovese G, Palombo M, Santin MD, Valette J, Ligneul C, Aigrot MS, Abdoulkader N, Langui D, Millecamps A, Baron-Van Evercooren A, Stankoff B, Lehericy S, Petiet A, Branzoli F. Inflammation-driven glial alterations in the cuprizone mouse model probed with diffusion-weighted magnetic resonance spectroscopy at 11.7 T. NMR IN BIOMEDICINE 2021; 34:e4480. [PMID: 33480101 DOI: 10.1002/nbm.4480] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Inflammation of brain tissue is a complex response of the immune system to the presence of toxic compounds or to cell injury, leading to a cascade of pathological processes that include glial cell activation. Noninvasive MRI markers of glial reactivity would be very useful for in vivo detection and monitoring of inflammation processes in the brain, as well as for evaluating the efficacy of personalized treatments. Due to their specific location in glial cells, myo-inositol (mIns) and choline compounds (tCho) seem to be the best candidates for probing glial-specific intra-cellular compartments. However, their concentrations quantified using conventional proton MRS are not specific for inflammation. In contrast, it has been recently suggested that mIns intra-cellular diffusion, measured using diffusion-weighted MRS (DW-MRS) in a mouse model of reactive astrocytes, could be a specific marker of astrocytic hypertrophy. In order to evaluate the specificity of both mIns and tCho diffusion to inflammation-driven glial alterations, we performed DW-MRS in a volume of interest containing the corpus callosum and surrounding tissue of cuprizone-fed mice after 6 weeks of intoxication, and evaluated the extent of astrocytic and microglial alterations using immunohistochemistry. Both mIns and tCho apparent diffusion coefficients were significantly elevated in cuprizone-fed mice compared with control mice, and histologic evaluation confirmed the presence of severe inflammation. Additionally, mIns and tCho diffusion showed, respectively, strong and moderate correlations with histological measures of astrocytic and microglial area fractions, confirming DW-MRS as a promising tool for specific detection of glial changes under pathological conditions.
Collapse
Affiliation(s)
- Guglielmo Genovese
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Marco Palombo
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, UK
| | - Mathieu D Santin
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), MIRCen, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Clémence Ligneul
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Marie-Stéphane Aigrot
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
- Core Facility ICM Quant, Institut du Cerveau-ICM, Paris, France
| | - Nasteho Abdoulkader
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
| | - Dominique Langui
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
- Core Facility ICM Quant, Institut du Cerveau-ICM, Paris, France
| | | | | | - Bruno Stankoff
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Stéphane Lehericy
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Alexandra Petiet
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Francesca Branzoli
- Center for Neuroimaging Research-CENIR, Paris Brain Institute (Institut du Cerveau-ICM), Paris, France
- Hôpital Pitié-Salpêtrière, ICM, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris, France
| |
Collapse
|
210
|
Vanherp L, Poelmans J, Weerasekera A, Hillen A, Croitor-Sava AR, Sorrell TC, Lagrou K, Vande Velde G, Himmelreich U. Trehalose as quantitative biomarker for in vivo diagnosis and treatment follow-up in cryptococcomas. Transl Res 2021; 230:111-122. [PMID: 33166695 DOI: 10.1016/j.trsl.2020.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022]
Abstract
Brain lesions caused by Cryptococcus neoformans or C. gattii (cryptococcomas) are typically difficult to diagnose correctly and treat effectively, but rapid differential diagnosis and treatment initiation are crucial for good outcomes. In previous studies, cultured cryptococcal isolates and ex vivo lesion material contained high concentrations of the virulence factor and fungal metabolite trehalose. Here, we studied the in vivo metabolic profile of cryptococcomas in the brain using magnetic resonance spectroscopy (MRS) and assessed the relationship between trehalose concentration, fungal burden, and treatment response in order to validate its suitability as marker for early and noninvasive diagnosis and its potential to monitor treatment in vivo. We investigated the metabolites present in early and late stage cryptococcomas using in vivo 1H MRS in a murine model and evaluated changes in trehalose concentrations induced by disease progression and antifungal treatment. Animal data were compared to 1H and 13C MR spectra of Cryptococcus cultures and in vivo data from 2 patients with cryptococcomas in the brain. In vivo MRS allowed the noninvasive detection of high concentrations of trehalose in cryptococcomas and showed a comparable metabolic profile of cryptococcomas in the murine model and human cases. Trehalose concentrations correlated strongly with the fungal burden. Treatment studies in cultures and animal models showed that trehalose concentrations decrease following exposure to effective antifungal therapy. Although further cases need to be studied for clinical validation, this translational study indicates that the noninvasive MRS-based detection of trehalose is a promising marker for diagnosis and therapeutic follow-up of cryptococcomas.
Collapse
Affiliation(s)
- Liesbeth Vanherp
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jennifer Poelmans
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Akila Weerasekera
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, Massachusetts, USA
| | - Amy Hillen
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Anca R Croitor-Sava
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; STADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Tania C Sorrell
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, and Westmead Institute for Medical Research, Centre for Infectious Diseases and Microbiology, Sydney, Australia
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; National Reference Centre for Mycosis, Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
211
|
Stergachis AB, Krier JB, Merugumala SK, Berry GT, Lin AP. Clinical utility of brain MRS imaging of patients with adult-onset non-cirrhotic hyperammonemia. Mol Genet Metab Rep 2021; 27:100742. [PMID: 33763331 PMCID: PMC7973242 DOI: 10.1016/j.ymgmr.2021.100742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/15/2022] Open
Abstract
Adult-onset non-cirrhotic hyperammonemia (NCH) is a rare, but often fatal condition that can result in both reversible and irreversible neurological defects. Here we present five cases of adult-onset non-cirrhotic hyperammonemia wherein brain magnetic resonance spectroscopy (MRS) scans for cerebral glutamine (Gln) and myo-inositol (mI) levels helped guide clinical management. Specifically, we demonstrate that when combined with traditional brain magnetic resonance imaging (MRI) scans, cerebral Gln and mI MRS can help disentangle the reversible from irreversible neurological defects associated with hyperammonemic crisis. Specifically, we demonstrate that whereas an elevated brain MRS Gln level is associated with reversible neurological defects, markedly low mI levels are associated with a risk for irreversible neurological defects such as central pontine myelinolysis. Overall, our findings indicate the utility of brain MRS in guiding clinical care and prognosis in patients with adult-onset non-cirrhotic hyperammonemia.
Collapse
Affiliation(s)
- Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Joel B Krier
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sai K Merugumala
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerard T Berry
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander P Lin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
212
|
Nada A, Leiva-Salinas C, Mahdi E, Mahmoud E, Ahsan H, Cousins JP. Multi-parametric magnetic resonance imaging evaluation of cerebral amyloid angiopathy related inflammation: Case series and review of literature. Clin Imaging 2021; 78:38-44. [PMID: 33740578 DOI: 10.1016/j.clinimag.2021.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Cerebral amyloid angiopathy related inflammation is a rare disorder in the spectrum of cerebral amyloid angiopathy which is characterized by vascular and/or perivascular inflammation related to Aβ deposits. Clinically, the patient typically presents with acute to subacute encephalitis-like symptoms with focal neurological deficits, rapidly cognitive decline, and/or seizures. Typical magnetic resonance imaging findings include asymmetric mass-like non-enhancing white matter hyperintensity with scattered microhemorrhages. Additionally, in these cases diffusion weighted imaging, perfusion weighted imaging and magnetic resonance spectroscopy help to exclude neoplastic processes and could determine the correct diagnosis.
Collapse
Affiliation(s)
- Ayman Nada
- Department of Radiology, University of Missouri Health Care, One Hospital Drive, Columbia, MO, United States of America.
| | - Carlos Leiva-Salinas
- Department of Radiology, University of Missouri Health Care, One Hospital Drive, Columbia, MO, United States of America.
| | - Eman Mahdi
- Department of Radiology, University of Missouri Health Care, One Hospital Drive, Columbia, MO, United States of America.
| | - Esmat Mahmoud
- Department of Diagnostic and Interventional Radiology, National Cancer Institute, Cairo University, Egypt
| | - Humera Ahsan
- Department of Radiology, University of Missouri Health Care, One Hospital Drive, Columbia, MO, United States of America.
| | - Joseph Paul Cousins
- Department of Radiology, University of Missouri Health Care, One Hospital Drive, Columbia, MO, United States of America.
| |
Collapse
|
213
|
Hirano M, Carelli V, De Giorgio R, Pironi L, Accarino A, Cenacchi G, D’Alessandro R, Filosto M, Martí R, Nonino F, Pinna AD, Baldin E, Bax BE, Bolletta A, Bolletta R, Boschetti E, Cescon M, D’Angelo R, Dotti MT, Giordano C, Gramegna LL, Levene M, Lodi R, Mandel H, Morelli MC, Musumeci O, Pugliese A, Scarpelli M, Siniscalchi A, Spinazzola A, Tal G, Torres-Torronteras J, Vignatelli L, Zaidman I, Zoller H, Rinaldi R, Zeviani M. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Position paper on diagnosis, prognosis, and treatment by the MNGIE International Network. J Inherit Metab Dis 2021; 44:376-387. [PMID: 32898308 PMCID: PMC8399867 DOI: 10.1002/jimd.12300] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive disease caused by TYMP mutations and thymidine phosphorylase (TP) deficiency. Thymidine and deoxyuridine accumulate impairing the mitochondrial DNA maintenance and integrity. Clinically, patients show severe and progressive gastrointestinal and neurological manifestations. The onset typically occurs in the second decade of life and mean age at death is 37 years. Signs and symptoms of MNGIE are heterogeneous and confirmatory diagnostic tests are not routinely performed by most laboratories, accounting for common misdiagnosis. Factors predictive of progression and appropriate tests for monitoring are still undefined. Several treatment options showed promising results in restoring the biochemical imbalance of MNGIE. The lack of controlled studies with appropriate follow-up accounts for the limited evidence informing diagnostic and therapeutic choices. The International Consensus Conference (ICC) on MNGIE, held in Bologna, Italy, on 30 March to 31 March 2019, aimed at an evidence-based consensus on diagnosis, prognosis, and treatment of MNGIE among experts, patients, caregivers and other stakeholders involved in caring the condition. The conference was conducted according to the National Institute of Health Consensus Conference methodology. A consensus development panel formulated a set of statements and proposed a research agenda. Specifically, the ICC produced recommendations on: (a) diagnostic pathway; (b) prognosis and the main predictors of disease progression; (c) efficacy and safety of treatments; and (f) research priorities on diagnosis, prognosis, and treatment. The Bologna ICC on diagnosis, management and treatment of MNGIE provided evidence-based guidance for clinicians incorporating patients' values and preferences.
Collapse
Affiliation(s)
- Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York, New York
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Roberto De Giorgio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Loris Pironi
- Clinical Nutrition and Metabolism Unit and Center for Chronic Intestinal Failure, Department of Digestive System, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Anna Accarino
- Digestive System Research Unit, University Hospital Vall d’Hebron / Centro de Investigación Biomédica en Red de Enfermeda des Hepáticas y Digestivas (CIBEREHD); Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | | | - Massimiliano Filosto
- Center for Neuromuscular Diseases, Unit of Neurology, Azienda Socio Sanitaria Territoriale degli Spedali Civili and University of Brescia, Brescia, Italy
| | - Ramon Martí
- Vall d’Hebron Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Autonomous University of Barcelona, Barcelona, Spain
| | - Francesco Nonino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Elisa Baldin
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Bridget Elizabeth Bax
- Institute of Molecular and Clinical Sciences, St George’s University of London, London, UK
| | | | | | - Elisa Boschetti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matteo Cescon
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Roberto D’Angelo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Interaziendale Metropolitana (NeuroMet), - Neurologia AOU S.Orsola-Malpighi, Bologna, Italy
| | - Maria Teresa Dotti
- Neurological and Metabolic Diseases Clinic, Siena Hospital, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Umberto I Policlinic, Rome, Italy
| | - Laura Ludovica Gramegna
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Michelle Levene
- Institute of Molecular and Clinical Sciences, St George’s University of London, London, UK
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Hanna Mandel
- Institute of Human Genetics and Inherited Metabolic Disorders, Galilee Medical Center, Nahariya, Israel
| | - Maria Cristina Morelli
- Department for Care of Organ Failures and Transplants, Internal Medicine for the Treatment of Severe Organ Failures, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Olimpia Musumeci
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessia Pugliese
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Mauro Scarpelli
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria Integrata Verona, Verona, Italy
| | - Antonio Siniscalchi
- Anaesthesiology Intensive Care and Transplantation Unit, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Antonella Spinazzola
- Department of Clinical Movement Neurosciences, Royal Free Campus, University College of London, Queen Square Institute of Neurology, London, UK
| | - Galit Tal
- Metabolic Unit, Ruth Rappaport Children’s Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Javier Torres-Torronteras
- Vall d’Hebron Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Autonomous University of Barcelona, Barcelona, Spain
| | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Irina Zaidman
- Department of Bone Marrow Transplantation, Hadassah University Medical Center, Jerusalem, Israel
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Rita Rinaldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Interaziendale Metropolitana (NeuroMet), - Neurologia AOU S.Orsola-Malpighi, Bologna, Italy
| | - Massimo Zeviani
- Department of Neurosciences, Veneto Institute of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
214
|
Banerjee A, Bhatia V, Didwal G, Singh AK, Saini AG. ADSL Deficiency - The Lesser-Known Metabolic Epilepsy in Infancy. Indian J Pediatr 2021; 88:263-265. [PMID: 32681428 DOI: 10.1007/s12098-020-03435-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/22/2020] [Indexed: 11/25/2022]
Abstract
Adenylosuccinate lyase deficiency is a rare inherited disorder of purine metabolism causing severe neurological impairment ranging from early-onset neonatal epileptic encephalopathy to progressive psychomotor retardation and autism in later life. Diagnostic workup involves the measurement of toxic succinyl purines in body fluids and gene sequencing. The authors describe a 13-mo-old girl with compound heterozygous variants in the ADSL gene, presenting as early-onset seizures, severe neurological impairment, development delay, and hypotonia. Neuroimaging revealed cerebral atrophy, delayed myelination and diffusion restriction in bilateral basal ganglia, thalamus and periventricular white matter. The present case highlights ADSL deficiency as a rare cause of metabolic epilepsy that needs timely recognition and prevention of unnecessary investigations.
Collapse
Affiliation(s)
- Arundhati Banerjee
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vikas Bhatia
- Department of Radiodiagnosis, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gunjan Didwal
- Pediatric Biochemistry Division, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arvind Kumar Singh
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arushi Gahlot Saini
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
215
|
Zhu XH, Lee BY, Tuite P, Coles L, Sathe AG, Chen C, Cloyd J, Low WC, Steer CJ, Chen W. Quantitative Assessment of Occipital Metabolic and Energetic Changes in Parkinson's Patients, Using In Vivo 31P MRS-Based Metabolic Imaging at 7T. Metabolites 2021; 11:metabo11030145. [PMID: 33804401 PMCID: PMC8000945 DOI: 10.3390/metabo11030145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Abnormal energy metabolism associated with mitochondrial dysfunction is thought to be a major contributor to the progression of neurodegenerative diseases such as Parkinson's disease (PD). Recent advancements in the field of magnetic resonance (MR) based metabolic imaging provide state-of-the-art technologies for non-invasively probing cerebral energy metabolism under various brain conditions. In this proof-of-principle clinical study, we employed quantitative 31P MR spectroscopy (MRS) imaging techniques to determine a constellation of metabolic and bioenergetic parameters, including cerebral adenosine triphosphate (ATP) and other phosphorous metabolite concentrations, intracellular pH and nicotinamide adenine dinucleotide (NAD) redox ratio, and ATP production rates in the occipital lobe of cognitive-normal PD patients, and then we compared them with age-sex matched healthy controls. Small but statistically significant differences in intracellular pH, NAD and ATP contents and ATPase enzyme activity between the two groups were detected, suggesting that subtle defects in energy metabolism and mitochondrial function are quantifiable before regional neurological deficits or pathogenesis begin to occur in these patients. Pilot data aiming to evaluate the bioenergetic effect of mitochondrial-protective bile acid, ursodeoxycholic acid (UDCA) were also obtained. These results collectively demonstrated that in vivo 31P MRS-based neuroimaging can non-invasively and quantitatively assess key metabolic-energetic metrics in the human brain. This provides an exciting opportunity to better understand neurodegenerative diseases, their progression and response to treatment.
Collapse
Affiliation(s)
- Xiao-Hong Zhu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence: (X.-H.Z.); (W.C.); Tel.: +1-(612) 626-2001 (X.-H.Z.); Fax: +1-(612) 626-2004 (X.-H.Z.)
| | - Byeong-Yeul Lee
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Paul Tuite
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Lisa Coles
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; (L.C.); (A.G.S.); (J.C.)
| | - Abhishek G. Sathe
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; (L.C.); (A.G.S.); (J.C.)
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Jim Cloyd
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; (L.C.); (A.G.S.); (J.C.)
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Clifford J. Steer
- Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Wei Chen
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence: (X.-H.Z.); (W.C.); Tel.: +1-(612) 626-2001 (X.-H.Z.); Fax: +1-(612) 626-2004 (X.-H.Z.)
| |
Collapse
|
216
|
Emerging Utility of Applied Magnetic Resonance Imaging in the Management of Traumatic Brain Injury. Med Sci (Basel) 2021; 9:medsci9010010. [PMID: 33673012 PMCID: PMC7930990 DOI: 10.3390/medsci9010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a widespread and expensive problem globally. The standard diagnostic workup for new TBI includes obtaining a noncontrast computed tomography image of the head, which provides quick information on operative pathologies. However, given the limited sensitivity of computed tomography for identifying subtle but meaningful changes in the brain, magnetic resonance imaging (MRI) has shown better utility for ongoing management and prognostication after TBI. In recent years, advanced applications of MRI have been further studied and are being implemented as clinical tools to help guide care. These include functional MRI, diffusion tensor imaging, MR perfusion, and MR spectroscopy. In this review, we discuss the scientific basis of each of the above techniques, the literature supporting their use in TBI, and how they may be clinically implemented to improve the care of TBI patients.
Collapse
|
217
|
MRI findings for diagnosis of postoperative foreign body granulomas versus recurrent tumours in patients of brain tumour surgery. Clin Radiol 2021; 76:316.e19-316.e28. [PMID: 33551151 DOI: 10.1016/j.crad.2020.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/24/2020] [Indexed: 11/21/2022]
Abstract
AIM To evaluate the postoperative magnetic resonance imaging (MRI) findings of intracranial foreign body granulomas (FBGs) and true recurrent tumours (RTs) and thus lead to a basis for management decision-making. MATERIALS AND METHODS Twenty-two patients with previous brain tumour surgery were diagnosed clinically with RT and underwent surgery. Re-operative pathology revealed FBG in eight patients and RT in 14 patients. MRI findings before the initial operation were compared to those before the re-operation. RESULTS Features of FBGs versus RTs on MRI were as follows: (1) mean lesion size: 1.3 ± 0.7 (0.5-2.6) versus 3.2 ± 1.7 (1.1-6.3) cm (p=0.001, odds ratio [OR] = 4.18); (2) hypointensity on T2-weighted imaging (WI): 6/8 (75%) versus 0/14 (0%; p<0.001, OR=75.4); (3) non-restricted diffusion on diffusion-WI (DWI): 6/8 (75%) versus 2/14 (14.3%; p=0.008, OR=18); and (4) "ring and bubble" appearance on contrast-enhanced T1WI: 7/8 (87.5%) versus 2/14 (14.3%; p=0.001, OR=42). In comparison with their original tumours, the FBGs in the FBG group showed significantly lower T2 signal intensity, lower signal on DWI, and more cases of non-restricted diffusion on DWI (p=0.04, 0.04, 0.04, respectively). CONCLUSION On brain MRI, FBGs can be differentiated from RTs by their relatively smaller size, hypointensity on T2WI, lack of restricted diffusion on DWI, and "ring and bubble" appearance on contrast-enhanced T1WI. Comparing the MRI findings of the focal lesion in the tumour bed with those of the original tumour is suggested to enhance diagnostic confidence.
Collapse
|
218
|
Bagnato F, Gauthier SA, Laule C, Moore GRW, Bove R, Cai Z, Cohen-Adad J, Harrison DM, Klawiter EC, Morrow SA, Öz G, Rooney WD, Smith SA, Calabresi PA, Henry RG, Oh J, Ontaneda D, Pelletier D, Reich DS, Shinohara RT, Sicotte NL. Imaging Mechanisms of Disease Progression in Multiple Sclerosis: Beyond Brain Atrophy. J Neuroimaging 2021; 30:251-266. [PMID: 32418324 DOI: 10.1111/jon.12700] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinicians involved with different aspects of the care of persons with multiple sclerosis (MS) and scientists with expertise on clinical and imaging techniques convened in Dallas, TX, USA on February 27, 2019 at a North American Imaging in Multiple Sclerosis Cooperative workshop meeting. The aim of the workshop was to discuss cardinal pathobiological mechanisms implicated in the progression of MS and novel imaging techniques, beyond brain atrophy, to unravel these pathologies. Indeed, although brain volume assessment demonstrates changes linked to disease progression, identifying the biological mechanisms leading up to that volume loss are key for understanding disease mechanisms. To this end, the workshop focused on the application of advanced magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging techniques to assess and measure disease progression in both the brain and the spinal cord. Clinical translation of quantitative MRI was recognized as of vital importance, although the need to maintain a relatively short acquisition time mandated by most radiology departments remains the major obstacle toward this effort. Regarding PET, the panel agreed upon its utility to identify ongoing pathological processes. However, due to costs, required expertise, and the use of ionizing radiation, PET was not considered to be a viable option for ongoing care of persons with MS. Collaborative efforts fostering robust study designs and imaging technique standardization across scanners and centers are needed to unravel disease mechanisms leading to progression and discovering medications halting neurodegeneration and/or promoting repair.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Susan A Gauthier
- Judith Jaffe Multiple Sclerosis Center, Department of Neurology, Feil Family Brain and Mind Institute, and Department of Radiology, Weill Cornell Medicine, New York, NY
| | - Cornelia Laule
- Department of Radiology, Pathology, and Laboratory Medicine, Department of Physics and Astronomy, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - George R Wayne Moore
- Department of Pathology and Laboratory Medicine, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Riley Bove
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal and Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Quebec, Canada
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Eric C Klawiter
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sarah A Morrow
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Gülin Öz
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - William D Rooney
- Advanced Imaging Research Center, Departments of Biomedical Engineering, Neurology, and Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Seth A Smith
- Radiology and Radiological Sciences and Vanderbilt University Imaging Institute, Vanderbilt University Medical Center, and Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Roland G Henry
- Departments of Neurology, Radiology and Biomedical Imaging, and the UC San Francisco & Berkeley Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA
| | - Jiwon Oh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Division of Neurology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel Pelletier
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | -
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
219
|
Magnetic resonance imaging of the brainstem in children, part 1: imaging techniques, embryology, anatomy and review of congenital conditions. Pediatr Radiol 2021; 51:172-188. [PMID: 33496830 DOI: 10.1007/s00247-020-04953-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/10/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Part 1 of this series of two articles describes conventional and advanced MRI techniques that are useful for evaluating brainstem pathologies. In addition, it provides a review of the embryology, normal progression of myelination, and clinically and radiologically salient imaging anatomy of the normal brainstem. Finally, it discusses congenital diseases of the brainstem with a focus on distinctive imaging features that allow for differentiating pathologies. Part 2 of this series of two articles includes discussion of neoplasms; infections; and vascular, demyelinating, toxic and metabolic, and miscellaneous disease processes affecting the brainstem. The ultimate goal of this pair of articles is to empower the radiologist to add clinical value in the care of pediatric patients with brainstem pathologies.
Collapse
|
220
|
Testud B, Brun G, Varoquaux A, Hak JF, Appay R, Le Troter A, Girard N, Stellmann JP. Perfusion-weighted techniques in MRI grading of pediatric cerebral tumors: efficiency of dynamic susceptibility contrast and arterial spin labeling. Neuroradiology 2021; 63:1353-1366. [PMID: 33506349 DOI: 10.1007/s00234-021-02640-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/06/2021] [Indexed: 01/23/2023]
Abstract
PURPOSE Dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) perfusion MRI are applied in pediatric brain tumor grading, but their value for clinical daily practice remains unclear. We explored the ability of ASL and DSC to distinguish low- and high-grade lesions, in an unselected cohort of pediatric cerebral tumors. METHODS We retrospectively compared standard perfusion outcomes including blood volume, blood flow, and time parameters from DSC and ASL at 1.5T or 3T MRI scanners of 46 treatment-naive patients by drawing ROI via consensus by two neuroradiologists on the solid portions of every tumor. The discriminant abilities of perfusion parameters were evaluated by receiver operating characteristic (ROC) over the entire cohort and depending on the tumor location and the magnetic field. RESULTS ASL and DSC parameters showed overall low to moderate performances to distinguish low- and high-grade tumors (area under the curve: between 0.548 and 0.697). Discriminant abilities were better for tumors located supratentorially (AUC between 0.777 and 0.810) than infratentorially, where none of the metrics reached significance. We observed a better differentiation between low- and high-grade cancers at 3T than at 1.5-T. For infratentorial tumors, time parameters from DSC performed better than the commonly used metrics (AUC ≥ 0.8). CONCLUSION DSC and ASL show moderate abilities to distinguish low- and high-grade brain tumors in an unselected cohort. Absolute value of K2, TMAX, tMIP, and normalized value of TMAX of the DSC appear as an alternative to conventional parameters for infratentorial tumors. Three Tesla evaluation should be favored over 1.5-Tesla.
Collapse
Affiliation(s)
- B Testud
- Department of Diagnostic and Interventional Neuroradiology, APHM La Timone, 264 Saint Pierre Street, 13385, CEDEX 05, Marseille, France.
| | - G Brun
- Department of Diagnostic and Interventional Neuroradiology, APHM La Timone, 264 Saint Pierre Street, 13385, CEDEX 05, Marseille, France
| | - A Varoquaux
- APHM La Conception, Department of Medical Imaging, Aix Marseille Université, Marseille, France
| | - J F Hak
- Department of Diagnostic and Interventional Neuroradiology, APHM La Timone, 264 Saint Pierre Street, 13385, CEDEX 05, Marseille, France
| | - R Appay
- Department of Pathology and Neuropathology, APHM La Timone, Marseille, France.,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - A Le Troter
- Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France.,APHM La Timone, CEMEREM, Marseille, France
| | - N Girard
- Department of Diagnostic and Interventional Neuroradiology, APHM La Timone, 264 Saint Pierre Street, 13385, CEDEX 05, Marseille, France.,Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - J P Stellmann
- Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France.,APHM La Timone, CEMEREM, Marseille, France
| |
Collapse
|
221
|
Paoletti M, Muzic SI, Marchetti F, Farina LM, Bastianello S, Pichiecchio A. Differential imaging of atypical demyelinating lesions of the central nervous system. Radiol Med 2021; 126:827-842. [PMID: 33486703 DOI: 10.1007/s11547-021-01334-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/11/2021] [Indexed: 01/04/2023]
Abstract
The detection of atypical and sometimes aggressive or tumefactive demyelinating lesions of the central nervous system often poses difficulties in the differential diagnosis. The clinical presentation is generally aspecific, related to the location and similar to a number of different lesions, including neoplasms and other intracranial lesions with mass effect. CSF analysis may also be inconclusive, especially for lesions presenting as a single mass at onset. As a consequence, a brain biopsy is frequently performed for characterization. Advanced MRI imaging plays an important role in directing the diagnosis, reducing the rate of unnecessary biopsies and allowing a prompt start of therapy that is often crucial, especially in the case of infratentorial lesions. In this review, the main pattern of presentation of atypical inflammatory demyelinating diseases is discussed, with particular attention on the differential diagnosis and how to adequately define the correct etiology.
Collapse
Affiliation(s)
- Matteo Paoletti
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, PV, Italy.
| | | | | | - Lisa Maria Farina
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, PV, Italy
| | - Stefano Bastianello
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, PV, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Anna Pichiecchio
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, PV, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
222
|
Gajdošík M, Landheer K, Swanberg KM, Juchem C. INSPECTOR: free software for magnetic resonance spectroscopy data inspection, processing, simulation and analysis. Sci Rep 2021; 11:2094. [PMID: 33483543 PMCID: PMC7822873 DOI: 10.1038/s41598-021-81193-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/28/2020] [Indexed: 12/03/2022] Open
Abstract
In vivo magnetic resonance spectroscopy (MRS) is a powerful tool for biomedical research and clinical diagnostics, allowing for non-invasive measurement and analysis of small molecules from living tissues. However, currently available MRS processing and analytical software tools are limited in their potential for in-depth quality management, access to details of the processing stream, and user friendliness. Moreover, available MRS software focuses on selected aspects of MRS such as simulation, signal processing or analysis, necessitating the use of multiple packages and interfacing among them for biomedical applications. The freeware INSPECTOR comprises enhanced MRS data processing, simulation and analytical capabilities in a one-stop-shop solution for a wide range of biomedical research and diagnostic applications. Extensive data handling, quality management and visualization options are built in, enabling the assessment of every step of the processing chain with maximum transparency. The parameters of the processing can be flexibly chosen and tailored for the specific research problem, and extended confidence information is provided with the analysis. The INSPECTOR software stands out in its user-friendly workflow and potential for automation. In addition to convenience, the functionalities of INSPECTOR ensure rigorous and consistent data processing throughout multi-experiment and multi-center studies.
Collapse
Affiliation(s)
- Martin Gajdošík
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, 3227 Broadway, New York, NY, 10027, USA.
| | - Karl Landheer
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, 3227 Broadway, New York, NY, 10027, USA
| | - Kelley M Swanberg
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, 3227 Broadway, New York, NY, 10027, USA
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, 3227 Broadway, New York, NY, 10027, USA
- Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
223
|
Sharma AA, Nenert R, Mueller C, Maudsley AA, Younger JW, Szaflarski JP. Repeatability and Reproducibility of in-vivo Brain Temperature Measurements. Front Hum Neurosci 2020; 14:598435. [PMID: 33424566 PMCID: PMC7785722 DOI: 10.3389/fnhum.2020.598435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Magnetic resonance spectroscopic imaging (MRSI) is a neuroimaging technique that may be useful for non-invasive mapping of brain temperature (i.e., thermometry) over a large brain volume. To date, intra-subject reproducibility of MRSI-based brain temperature (MRSI-t) has not been investigated. The objective of this repeated measures MRSI-t study was to establish intra-subject reproducibility and repeatability of brain temperature, as well as typical brain temperature range. Methods: Healthy participants aged 23-46 years (N = 18; 7 females) were scanned at two time points ~12-weeks apart. Volumetric MRSI data were processed by reconstructing metabolite and water images using parametric spectral analysis. Brain temperature was derived using the frequency difference between water and creatine (TCRE) for 47 regions of interest (ROIs) delineated by the modified Automated Anatomical Labeling (AAL) atlas. Reproducibility was measured using the coefficient of variation for repeated measures (COVrep), and repeatability was determined using the standard error of measurement (SEM). For each region, the upper and lower bounds of Minimal Detectable Change (MDC) were established to characterize the typical range of TCRE values. Results: The mean global brain temperature over all subjects was 37.2°C with spatial variations across ROIs. There was a significant main effect for time [F (1, 1,591) = 37.0, p < 0.0001] and for brain region [F (46, 1,591) = 2.66, p < 0.0001]. The time*brain region interaction was not significant [F (46, 1,591) = 0.80, p = 0.83]. Participants' TCRE was stable for each ROI across both time points, with ROIs' COVrep ranging from 0.81 to 3.08% (mean COVrep = 1.92%); majority of ROIs had a COVrep <2.0%. Conclusions: Brain temperature measurements were highly consistent between both time points, indicating high reproducibility and repeatability of MRSI-t. MRSI-t may be a promising diagnostic, prognostic, and therapeutic tool for non-invasively monitoring brain temperature changes in health and disease. However, further studies of healthy participants with larger sample size(s) and numerous repeated acquisitions are imperative for establishing a reference range of typical brain TCRE, as well as the threshold above which TCRE is likely pathological.
Collapse
Affiliation(s)
- Ayushe A. Sharma
- Department of Psychology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, United States
| | - Rodolphe Nenert
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, United States
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Christina Mueller
- Department of Psychology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Andrew A. Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jarred W. Younger
- Department of Psychology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Jerzy P. Szaflarski
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, United States
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- Department of Neurosurgery, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
224
|
Otazo R, Lambin P, Pignol JP, Ladd ME, Schlemmer HP, Baumann M, Hricak H. MRI-guided Radiation Therapy: An Emerging Paradigm in Adaptive Radiation Oncology. Radiology 2020; 298:248-260. [PMID: 33350894 DOI: 10.1148/radiol.2020202747] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Radiation therapy (RT) continues to be one of the mainstays of cancer treatment. Considerable efforts have been recently devoted to integrating MRI into clinical RT planning and monitoring. This integration, known as MRI-guided RT, has been motivated by the superior soft-tissue contrast, organ motion visualization, and ability to monitor tumor and tissue physiologic changes provided by MRI compared with CT. Offline MRI is already used for treatment planning at many institutions. Furthermore, MRI-guided linear accelerator systems, allowing use of MRI during treatment, enable improved adaptation to anatomic changes between RT fractions compared with CT guidance. Efforts are underway to develop real-time MRI-guided intrafraction adaptive RT of tumors affected by motion and MRI-derived biomarkers to monitor treatment response and potentially adapt treatment to physiologic changes. These developments in MRI guidance provide the basis for a paradigm change in treatment planning, monitoring, and adaptation. Key challenges to advancing MRI-guided RT include real-time volumetric anatomic imaging, addressing image distortion because of magnetic field inhomogeneities, reproducible quantitative imaging across different MRI systems, and biologic validation of quantitative imaging. This review describes emerging innovations in offline and online MRI-guided RT, exciting opportunities they offer for advancing research and clinical care, hurdles to be overcome, and the need for multidisciplinary collaboration.
Collapse
Affiliation(s)
- Ricardo Otazo
- From the Departments of Medical Physics (R.O.) and Radiology (R.O., H.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; The D-Lab, Department of Precision Medicine, Department of Radiology & Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands (P.L.); Department of Radiation Oncology, Dalhousie University, Halifax, Canada (J.P.P.); Divisions of Medical Physics in Radiology (M.E.L.), Radiology (H.P.S.), and Radiation Oncology/Radiobiology (M.B.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy (M.E.L.) and Faculty of Medicine (M.E.L., M.B.), Heidelberg University, Heidelberg, Germany; and OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (M.B.)
| | - Philippe Lambin
- From the Departments of Medical Physics (R.O.) and Radiology (R.O., H.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; The D-Lab, Department of Precision Medicine, Department of Radiology & Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands (P.L.); Department of Radiation Oncology, Dalhousie University, Halifax, Canada (J.P.P.); Divisions of Medical Physics in Radiology (M.E.L.), Radiology (H.P.S.), and Radiation Oncology/Radiobiology (M.B.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy (M.E.L.) and Faculty of Medicine (M.E.L., M.B.), Heidelberg University, Heidelberg, Germany; and OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (M.B.)
| | - Jean-Philippe Pignol
- From the Departments of Medical Physics (R.O.) and Radiology (R.O., H.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; The D-Lab, Department of Precision Medicine, Department of Radiology & Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands (P.L.); Department of Radiation Oncology, Dalhousie University, Halifax, Canada (J.P.P.); Divisions of Medical Physics in Radiology (M.E.L.), Radiology (H.P.S.), and Radiation Oncology/Radiobiology (M.B.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy (M.E.L.) and Faculty of Medicine (M.E.L., M.B.), Heidelberg University, Heidelberg, Germany; and OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (M.B.)
| | - Mark E Ladd
- From the Departments of Medical Physics (R.O.) and Radiology (R.O., H.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; The D-Lab, Department of Precision Medicine, Department of Radiology & Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands (P.L.); Department of Radiation Oncology, Dalhousie University, Halifax, Canada (J.P.P.); Divisions of Medical Physics in Radiology (M.E.L.), Radiology (H.P.S.), and Radiation Oncology/Radiobiology (M.B.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy (M.E.L.) and Faculty of Medicine (M.E.L., M.B.), Heidelberg University, Heidelberg, Germany; and OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (M.B.)
| | - Heinz-Peter Schlemmer
- From the Departments of Medical Physics (R.O.) and Radiology (R.O., H.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; The D-Lab, Department of Precision Medicine, Department of Radiology & Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands (P.L.); Department of Radiation Oncology, Dalhousie University, Halifax, Canada (J.P.P.); Divisions of Medical Physics in Radiology (M.E.L.), Radiology (H.P.S.), and Radiation Oncology/Radiobiology (M.B.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy (M.E.L.) and Faculty of Medicine (M.E.L., M.B.), Heidelberg University, Heidelberg, Germany; and OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (M.B.)
| | - Michael Baumann
- From the Departments of Medical Physics (R.O.) and Radiology (R.O., H.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; The D-Lab, Department of Precision Medicine, Department of Radiology & Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands (P.L.); Department of Radiation Oncology, Dalhousie University, Halifax, Canada (J.P.P.); Divisions of Medical Physics in Radiology (M.E.L.), Radiology (H.P.S.), and Radiation Oncology/Radiobiology (M.B.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy (M.E.L.) and Faculty of Medicine (M.E.L., M.B.), Heidelberg University, Heidelberg, Germany; and OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (M.B.)
| | - Hedvig Hricak
- From the Departments of Medical Physics (R.O.) and Radiology (R.O., H.H.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065; The D-Lab, Department of Precision Medicine, Department of Radiology & Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre, Maastricht, the Netherlands (P.L.); Department of Radiation Oncology, Dalhousie University, Halifax, Canada (J.P.P.); Divisions of Medical Physics in Radiology (M.E.L.), Radiology (H.P.S.), and Radiation Oncology/Radiobiology (M.B.), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy (M.E.L.) and Faculty of Medicine (M.E.L., M.B.), Heidelberg University, Heidelberg, Germany; and OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (M.B.)
| |
Collapse
|
225
|
Reyes ST, Mohajeri S, Krasinska K, Guo SG, Gu M, Pisani L, Rosenberg J, Spielman DM, Chin FT. GABA Measurement in a Neonatal Fragile X Syndrome Mouse Model Using 1H-Magnetic Resonance Spectroscopy and Mass Spectrometry. Front Mol Neurosci 2020; 13:612685. [PMID: 33390902 PMCID: PMC7775297 DOI: 10.3389/fnmol.2020.612685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/20/2020] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome (FXS) is the leading monogenetic cause of autism spectrum disorder and inherited cause of intellectual disability that affects approximately one in 7,000 males and one in 11,000 females. In FXS, the Fmr1 gene is silenced and prevents the expression of the fragile X mental retardation protein (FMRP) that directly targets mRNA transcripts of multiple GABAA subunits. Therefore, FMRP loss adversely impacts the neuronal firing of the GABAergic system which creates an imbalance in the excitatory/inhibitory ratio within the brain. Current FXS treatment strategies focus on curing symptoms, such as anxiety or decreased social function. While treating symptoms can be helpful, incorporating non-invasive imaging to evaluate how treatments change the brain's biology may explain what molecular aberrations are associated with disease pathology. Thus, the GABAergic system is suitable to explore developing novel therapeutic strategies for FXS. To understand how the GABAergic system may be affected by this loss-of-function mutation, GABA concentrations were examined within the frontal cortex and thalamus of 5-day-old wild type and Fmr1 knockout mice using both 1H magnetic resonance imaging (1H-MRS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our objective was to develop a reliable scanning method for neonatal mice in vivo and evaluate whether 1H-MRS is suitable to capture regional GABA concentration differences at the front end of the critical cortical period where abnormal neurodevelopment occurs due to FMRP loss is first detected. 1H-MRS quantified GABA concentrations in both frontal cortex and thalamus of wild type and Fmr1 knockout mice. To substantiate the results of our 1H-MRS studies, in vitro LC-MS/MS was also performed on brain homogenates from age-matched mice. We found significant changes in GABA concentration between the frontal cortex and thalamus within each mouse from both wild type and Fmr1 knockout mice using 1H-MRS and LC-MS/MS. Significant GABA levels were also detected in these same regions between wild type and Fmr1 knockout mice by LC-MS/MS, validating that FMRP loss directly affects the GABAergic system. Thus, these new findings support the need to develop an effective non-invasive imaging method to monitor novel GABAergic strategies aimed at treating patients with FXS.
Collapse
Affiliation(s)
- Samantha T. Reyes
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Sanaz Mohajeri
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Karolina Krasinska
- Stanford University Mass Spectrometry Laboratory, Stanford University, Stanford, CA, United States
| | - Scarlett G. Guo
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Meng Gu
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Laura Pisani
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Jarrett Rosenberg
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Daniel M. Spielman
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Frederick T. Chin
- Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
226
|
Emir UE, Sood J, Chiew M, Thomas MA, Lane SP. High-resolution metabolic mapping of the cerebellum using 2D zoom magnetic resonance spectroscopic imaging. Magn Reson Med 2020; 85:2349-2358. [PMID: 33283917 DOI: 10.1002/mrm.28614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/03/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE The human cerebellum plays an important role in the functional activity of the cerebrum, ranging from motor to cognitive systems given its relaying role between the spinal cord and cerebrum. The cerebellum poses many challenges to Magnetic Resonance Spectroscopic Imaging (MRSI) due to its caudal location, susceptibility to physiological artifacts, and partial volume artifacts resulting from its complex anatomical structure. Thus, in the present study, we propose a high-resolution MRSI acquisition scheme for the cerebellum. METHODS A zoom or reduced field of view (rFOV) metabolite-cycled MRSI acquisition at 3 Tesla, with a grid of 48 × 48, was developed to achieve a nominal resolution of 62.5 μL. Single-slice rFOV MRSI data were acquired from the cerebellum of 5 healthy subjects with a nominal resolution of 2.5 × 2.5 × 10 mm3 in 9.6 min. Spectra were quantified using the LCModel package. A spatially unbiased atlas template of the cerebellum was used to analyze metabolite distributions in the cerebellum. RESULTS The superior quality of the achieved spectra-enabled generation of high-resolution metabolic maps of total N-acetylaspartate, total Creatine (tCr), total Choline (tCho), glutamate+glutamine, and myo-inositol, with Cramér-Rao lower bounds below 50%. A template-based regions of interest (ROI) analysis resulted in spatially dependent metabolite distributions in 9 ROIs. The group-averaged high-resolution metabolite maps across subjects increased the contrast-to-noise ratio between cerebellum regions. CONCLUSION These findings indicate that very high-resolution metabolite probing of the cerebellum is feasible using rFOV or zoomed MRSI at 3 Tesla.
Collapse
Affiliation(s)
- Uzay E Emir
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Jaiyta Sood
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Micheal Albert Thomas
- Department of Radiology, University of California Los Angeles, Los Angeles, California, USA
| | - Sean P Lane
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
227
|
Attia NM, Sayed SAA, Riad KF, Korany GM. Magnetic resonance spectroscopy in pediatric brain tumors: how to make a more confident diagnosis. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2020. [DOI: 10.1186/s43055-020-0135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Non-invasive diagnosis of pediatric brain tumors can be challenging due to diverse tumor pathologies and similar imaging appearances. Magnetic resonance spectroscopy (MRS), when combined with high spatial resolution anatomic imaging obtained with conventional magnetic resonance imaging (MRI), provides metabolic information within the lesion as well as the surrounding tissue. The differentiation of neoplastic from non-neoplastic lesions and low-grade from high-grade neoplasms is essential for determining the choice of treatment and the best treatment plan. We aimed to measure specific metabolic ratios and evaluate metabolic profiles of various lesions by MRS to assist in making a more confident diagnosis.
Results
The choline/creatine (Cho/Cr), choline/N-acetylaspartate (Cho/NAA), and Cho/NAA+Cr ratios all had statistically significant values for the differentiation between neoplastic and non-neoplastic lesions at cutoffs 1.8, 2, and 0.8 respectively. The Cho/NAA, Cho/Cr, Cho/NAA+Cr, and myo-inositol/creatine (mI/Cr) ratios all had statistically significant values for the differentiation of high-grade from low-grade neoplasms at cutoffs 3.3, 3.5, 1.3, and 1.5 respectively. The presence of a lipid lactate peak was only significant for differentiating high-grade from low-grade neoplasms. Medulloblastomas, diffuse pontine gliomas, and choroid plexus carcinoma all showed characteristic metabolic profiles on MRS. Metastasis showed lower Cho/NAA and Cho/Cr ratios outside the tumor margin than high-grade neoplasms.
Conclusion
The use of certain metabolite ratios with high sensitivity and specificity to distinguish neoplastic from non-neoplastic lesions and low-grade from high-grade neoplasms while assessing the metabolic profile of the lesion aids in the non-invasive diagnosis of pediatric brain tumors. MRS facilitates earlier treatment planning by determining tumor spatial extent and predicting tumor behavior with potential to solve sampling problems of inaccessible and heterogenous lesions as well as unnecessary sampling of benign lesions.
Collapse
|
228
|
Characterization of dysregulated glutamine metabolism in human glioma tissue with 1H NMR. Sci Rep 2020; 10:20435. [PMID: 33235296 PMCID: PMC7686482 DOI: 10.1038/s41598-020-76982-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Gliomas are one of the most common types of brain tumors. Given low survival and high treatment resistance rates, particularly for high grade gliomas, there is a need for specific biomarkers that can be used to stratify patients for therapy and monitor treatment response. Recent work has demonstrated that metabolic reprogramming, often mediated by inflammation, can lead to an upregulation of glutamine as an energy source for cancer cells. As a result, glutamine pathways are an emerging pharmacologic target. The goal of this pilot study was to characterize changes in glutamine metabolism and inflammation in human glioma samples and explore the use of glutamine as a potential biomarker. 1H high-resolution magic angle spinning nuclear magnetic resonance spectra were acquired from ex vivo glioma tissue (n = 16, grades II–IV) to quantify metabolite concentrations. Tumor inflammatory markers were quantified using electrochemiluminescence assays. Glutamate, glutathione, lactate, and alanine, as well as interleukin (IL)-1β and IL-8, increased significantly in samples from grade IV gliomas compared to grades II and III (p ≤ .05). Following dimension reduction of the inflammatory markers using probabilistic principal component analysis, we observed that glutamine, alanine, glutathione, and lactate were positively associated with the first inflammatory marker principal component. Our findings support the hypothesis that glutamine may be a key marker for glioma progression and indicate that inflammation is associated with changes in glutamine metabolism. These results motivate further in vivo investigation of glutamine as a biomarker for tumor progression and treatment response.
Collapse
|
229
|
Franco P, Würtemberger U, Dacca K, Hübschle I, Beck J, Schnell O, Mader I, Binder H, Urbach H, Heiland DH. SPectroscOpic prediction of bRain Tumours (SPORT): study protocol of a prospective imaging trial. BMC Med Imaging 2020; 20:123. [PMID: 33228567 PMCID: PMC7685595 DOI: 10.1186/s12880-020-00522-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/15/2020] [Indexed: 12/26/2022] Open
Abstract
Background The revised 2016 WHO-Classification of CNS-tumours now integrates molecular information of glial brain tumours for accurate diagnosis as well as for the development of targeted therapies. In this prospective study, our aim is to investigate the predictive value of MR-spectroscopy in order to establish a solid preoperative molecular stratification algorithm of these tumours. We will process a 1H MR-spectroscopy sequence within a radiomics analytics pipeline.
Methods Patients treated at our institution with WHO-Grade II, III and IV gliomas will receive preoperative anatomical (T2- and T1-weighted imaging with and without contrast enhancement) and proton MR spectroscopy (MRS) by using chemical shift imaging (MRS) (5 × 5 × 15 mm3 voxel size). Tumour regions will be segmented and co-registered to corresponding spectroscopic voxels.
Raw signals will be processed by a deep-learning approach for identifying patterns in metabolic data that provides information with respect to the histological diagnosis as well patient characteristics obtained and genomic data such as target sequencing and transcriptional data. Discussion By imaging the metabolic profile of a glioma using a customized chemical shift 1H MR spectroscopy sequence and by processing the metabolic profiles with a machine learning tool we intend to non-invasively uncover the genetic signature of gliomas. This work-up will support surgical and oncological decisions to improve personalized tumour treatment.
Trial registration This study was initially registered under another name and was later retrospectively registered under the current name at the German Clinical Trials Register (DRKS) under DRKS00019855.
Collapse
Affiliation(s)
- Pamela Franco
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Str. 64, 79106, Freiburg im Breisgau, Germany. .,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, 79110, Freiburg im Breisgau, Germany.
| | - Urs Würtemberger
- Department of Neuroradiology, Medical Centre, University of Freiburg, Breisacher Str. 64, 79106, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, 79110, Freiburg im Breisgau, Germany
| | - Karam Dacca
- Faculty of Medicine, University of Freiburg, Breisacher Str. 153, 79110, Freiburg im Breisgau, Germany
| | - Irene Hübschle
- Faculty of Medicine, University of Freiburg, Breisacher Str. 153, 79110, Freiburg im Breisgau, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Str. 64, 79106, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, 79110, Freiburg im Breisgau, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Str. 64, 79106, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, 79110, Freiburg im Breisgau, Germany
| | - Irina Mader
- Specialist Centre for Radiology, Schoen Clinic, Vogtareuth, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, 79110, Freiburg im Breisgau, Germany
| | - Harald Binder
- Faculty of Medicine, University of Freiburg, Breisacher Str. 153, 79110, Freiburg im Breisgau, Germany.,Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Centre, University of Freiburg, Stefan-Meier-Str. 26, 79104, Freiburg im Breisgau, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Centre, University of Freiburg, Breisacher Str. 64, 79106, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, 79110, Freiburg im Breisgau, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Centre, University of Freiburg, Breisacher Str. 64, 79106, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, 79110, Freiburg im Breisgau, Germany
| |
Collapse
|
230
|
Abstract
Mild traumatic brain injuries, or concussions, often result in transient brain abnormalities not readily detected by conventional imaging methods. Several advanced imaging studies have been evaluated in the past couple decades to improve understanding of microstructural and functional abnormalities in the brain in patients suffering concussions. The thought remains a functional or pathophysiologic change rather than a structural one. The mechanism of injury, whether direct, indirect, or rotational, may drive specific clinical and radiological presentations. This remains a dynamic and constantly evolving area of research. This article focuses on the current status of imaging and future directions in concussion-related research.
Collapse
|
231
|
Laino ME, Young R, Beal K, Haque S, Mazaheri Y, Corrias G, Bitencourt AG, Karimi S, Thakur SB. Magnetic resonance spectroscopic imaging in gliomas: clinical diagnosis and radiotherapy planning. BJR Open 2020; 2:20190026. [PMID: 33178960 PMCID: PMC7594883 DOI: 10.1259/bjro.20190026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/13/2020] [Accepted: 03/18/2020] [Indexed: 12/23/2022] Open
Abstract
The reprogramming of cellular metabolism is a hallmark of cancer diagnosis and prognosis. Proton magnetic resonance spectroscopic imaging (MRSI) is a non-invasive diagnostic technique for investigating brain metabolism to establish cancer diagnosis and IDH gene mutation diagnosis as well as facilitate pre-operative planning and treatment response monitoring. By allowing tissue metabolism to be quantified, MRSI provides added value to conventional MRI. MRSI can generate metabolite maps from a single volume or multiple volume elements within the whole brain. Metabolites such as NAA, Cho and Cr, as well as their ratios Cho:NAA ratio and Cho:Cr ratio, have been used to provide tumor diagnosis and aid in radiation therapy planning as well as treatment assessment. In addition to these common metabolites, 2-hydroxygluterate (2HG) has also been quantified using MRSI following the recent discovery of IDH mutations in gliomas. This has opened up targeted drug development to inhibit the mutant IDH pathway. This review provides guidance on MRSI in brain gliomas, including its acquisition, analysis methods, and evolving clinical applications.
Collapse
Affiliation(s)
| | - Robert Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Kathryn Beal
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Sofia Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | | | - Giuseppe Corrias
- Department of Radiology, University of Cagliari, 40 Via Università, 09124 Cagliari, Italy
| | | | - Sasan Karimi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | | |
Collapse
|
232
|
Brief mindfulness training increased glutamate metabolism in the anterior cingulate cortex. Neuroreport 2020; 31:1142-1145. [PMID: 32991525 DOI: 10.1097/wnr.0000000000001527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mindfulness meditation has become a promising intervention for promoting health and well-being. Neuroimaging studies have shown its beneficial effects on brain functional activity, connectivity, and structures following months to years of practice. A series of randomized controlled trials indicated that one form of mindfulness meditation, the integrative body-mind training (IBMT) induces brain functional and structural changes in brain regions related to self-control networks such as the anterior cingulate cortex (ACC) after 2-10 h of practice. However, whether IBMT could change brain metabolism in the ACC remains unexplored. Utilizing a noninvasive 3T proton magnetic resonance spectroscopy, our results showed a significant increase in glutamate metabolism in the rostral ACC following 10 h of IBMT, suggesting that brief training not only increases ACC activity and structure, but also induces neurochemical changes in regions of the self-control networks. To our knowledge, this is the first study demonstrating the positive effects on brain metabolism in the ACC following brief intervention, suggesting a potential mechanism and implications of mindfulness meditation in ameliorating disorders such as addiction, depression and schizophrenia, which often involve the dysfunction of self-control networks and glutamatergic system (i.e. lower glutamate metabolism).
Collapse
|
233
|
Ronen I, O'Reilly T, Froeling M, Webb AG. Proton nuclear magnetic resonance J-spectroscopy of phantoms containing brain metabolites on a portable 0.05 T MRI scanner. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 320:106834. [PMID: 33022563 DOI: 10.1016/j.jmr.2020.106834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
We examined approaches for obtaining 1H NMR spectra of brain metabolites on a low-field (B0 = 0.05 T) portable MRI scanner, which was developed in our laboratory with the aim of bringing cost-effective radiological services to populations in underserved, remote regions. The low static magnetic field B0 dictates low signal to noise ratio for metabolites in the mM concentration range, and results in an overall spectral region for the 1H resonances of these metabolites narrower than the linewidth obtainable in our scanner. The narrow spectral range also precludes the possibility of suppressing the large contribution of the water resonance at the acquisition stage. We used a spectroscopic Carr-Purcell-Meiboom-Gill (CPMG) sequence to acquire multiecho data from solutions of J-coupled brain metabolites, focusing on lactic acid, a metabolite whose concentration is negligible in the healthy brain and increases significantly in several disease conditions. The J spectra we obtained for lactate from the Fourier transformation of the multiecho data are spectrally well-resolved for a range of echo spacing values. We show that the J spectra at different echo spacings fit well with simulations of the evolution of echo train signal of the lactate under the same conditions. Applying a J-refocused variant of the CPMG sequence, the J modulation of the echo decay is removed, providing a way for subtracting the large contribution of the non-modulated component in the J spectrum in conditions where notching it using post-processing methods is impossible. We also demonstrate by means of experimental data and simulations that in our experimental conditions, J-spectra of other prominent brain metabolites, such as the neurotransmitter glutamate, do not yield discernible peaks and only contribute to a broad peak at zero frequency.
Collapse
Affiliation(s)
- Itamar Ronen
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Thomas O'Reilly
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andrew G Webb
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
234
|
Saleh MG, Edden RAE, Chang L, Ernst T. Motion correction in magnetic resonance spectroscopy. Magn Reson Med 2020; 84:2312-2326. [PMID: 32301174 PMCID: PMC8386494 DOI: 10.1002/mrm.28287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
In vivo proton magnetic resonance spectroscopy and spectroscopic imaging (MRS/MRSI) are valuable tools to study normal and abnormal human brain physiology. However, they are sensitive to motion, due to strong crusher gradients, long acquisition times, reliance on high magnetic field homogeneity, and particular acquisition methods such as spectral editing. The effects of motion include incorrect spatial localization, phase fluctuations, incoherent averaging, line broadening, and ultimately quantitation errors. Several retrospective methods have been proposed to correct motion-related artifacts. Recent advances in hardware also allow prospective (real-time) correction of the effects of motion, including adjusting voxel location, center frequency, and magnetic field homogeneity. This article reviews prospective and retrospective methods available in the literature and their implications for clinical MRS/MRSI. In combination, these methods can attenuate or eliminate most motion-related artifacts and facilitate the acquisition of high-quality data in the clinical research setting.
Collapse
Affiliation(s)
- Muhammad G. Saleh
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Maryland, USA
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Maryland, USA
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, USA
| | - Thomas Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, USA
| |
Collapse
|
235
|
Steel A, Mikkelsen M, Edden RAE, Robertson CE. Regional balance between glutamate+glutamine and GABA+ in the resting human brain. Neuroimage 2020; 220:117112. [PMID: 32619710 PMCID: PMC9652611 DOI: 10.1016/j.neuroimage.2020.117112] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 12/04/2022] Open
Abstract
Models of healthy brain function and psychiatric conditions assume that excitatory and inhibitory activity are balanced in the human brain at multiple spatial and temporal scales. In human neuroimaging, concentrations of the major excitatory (glutamate) and inhibitory (γ-aminobutyric acid, GABA) neurotransmitters are measured in vivo using magnetic resonance spectroscopy (MRS). However, despite the central importance of E/I balance to theories of brain function, a relationship between regional glutamate and GABA levels in the human brain has not been shown. We addressed this question in a large corpus of edited MRS data collected at 19 different sites (n = 220). Consistent with the notion of E/I balance, we found that levels of glutamate+glutamine (Glx) and GABA+ were highly correlated (R = 0.52, p = 2.86 x 10−14). This relationship held when controlling for site, scanner vendor, and demographics. Controlling for neurochemicals associated with neuronal density and metabolism (i.e. N-acetylaspartate and creatine) significantly reduced the correlation between GABA+ and Glx, suggesting that the levels of GABA+ and Glx may be critically linked to regional metabolism. These results are consistent with the notion that excitation and inhibition are balanced in the human brain.
Collapse
Affiliation(s)
- Adam Steel
- Department of Psychology and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Caroline E Robertson
- Department of Psychology and Brain Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
236
|
Cuypers K, Marsman A. Transcranial magnetic stimulation and magnetic resonance spectroscopy: Opportunities for a bimodal approach in human neuroscience. Neuroimage 2020; 224:117394. [PMID: 32987106 DOI: 10.1016/j.neuroimage.2020.117394] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Over the last decade, there has been an increasing number of studies combining transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS). MRS provides a manner to non-invasively investigate molecular concentrations in the living brain and thus identify metabolites involved in physiological and pathological processes. Particularly the MRS-detectable metabolites glutamate, the major excitatory neurotransmitter, and gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter, are of interest when combining TMS and MRS. TMS is a non-invasive brain stimulation technique that can be applied either as a neuromodulation or neurostimulation tool, specifically targeting glutamatergic and GABAergic mechanisms. The combination of TMS and MRS can be used to evaluate alterations in brain metabolite levels following an interventional TMS protocol such as repetitive TMS (rTMS) or paired associative stimulation (PAS). MRS can also be combined with a variety of non-interventional TMS protocols to identify the interplay between brain metabolite levels and measures of excitability or receptor-mediated inhibition and facilitation. In this review, we provide an overview of studies performed in healthy and patient populations combining MRS and TMS, both as a measurement tool and as an intervention. TMS and MRS may reveal complementary and comprehensive information on glutamatergic and GABAergic neurotransmission. Potentially, connectivity changes and dedicated network interactions can be probed using the combined TMS-MRS approach. Considering the ongoing technical developments in both fields, combined studies hold future promise for investigations of brain network interactions and neurotransmission.
Collapse
Affiliation(s)
- Koen Cuypers
- Department of Movement Sciences, Group Biomedical Sciences, Movement Control & Neuroplasticity Research Group, KU Leuven, 3001 Heverlee, Belgium; REVAL Research Institute, Hasselt University, Agoralaan, Building A, 3590 Diepenbeek, Belgium
| | - Anouk Marsman
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Kettegård Allé 30, 26500 Hvidovre, Denmark.
| |
Collapse
|
237
|
Hoefemann M, Bolliger CS, Chong DGQ, van der Veen JW, Kreis R. Parameterization of metabolite and macromolecule contributions in interrelated MR spectra of human brain using multidimensional modeling. NMR IN BIOMEDICINE 2020; 33:e4328. [PMID: 32542861 DOI: 10.1002/nbm.4328] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Macromolecular signals are crucial constituents of short echo-time 1 H MR spectra with potential clinical implications in themselves as well as essential ramifications for the quantification of the usually targeted metabolites. Their parameterization, needed for general fitting models, is difficult because of their unknown composition. Here, a macromolecular signal parameterization together with metabolite signal quantification including relaxation properties is investigated by multidimensional modeling of interrelated 2DJ inversion-recovery (2DJ-IR) datasets. Simultaneous and iterative procedures for defining the macromolecular background (MMBG) as mono-exponentially or generally decaying signals over TE are evaluated. Varying prior knowledge and restrictions in the metabolite evaluation are tested to examine their impact on results and fitting stability for two sets of three-dimensional spectra acquired with metabolite-cycled PRESS from cerebral gray and white matter locations. One dataset was used for model optimization, and also examining the influence of prior knowledge on estimated parameters. The most promising model was applied to a second dataset. It turned out that the mono-exponential decay model appears to be inadequate to represent TE-dependent signal features of the MMBG. TE-adapted MMBG spectra were therefore determined. For a reliable overall quantification of implicated metabolite concentrations and relaxation times, a general fitting model had to be constrained in terms of the number of fitting variables and the allowed parameter space. With such a model in place, fitting precision for metabolite contents and relaxation times was excellent, while fitting accuracy is difficult to judge and bias was likely influenced by the type of fitting constraints enforced. In summary, the parameterization of metabolite and macromolecule contributions in interrelated MR spectra has been examined by using multidimensional modeling on complex 2DJ-IR datasets. A tightly restricted model allows fitting of individual subject data with high fitting precision documented in small Cramér-Rao lower bounds, good repeatability values and a relatively small spread of estimated concentration and relaxation values for a healthy subject cohort.
Collapse
Affiliation(s)
- Maike Hoefemann
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Christine Sandra Bolliger
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland
- Bruker BioSpin AG, Fällanden, Switzerland
| | - Daniel G Q Chong
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Roland Kreis
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
238
|
Toh CH, Castillo M, Wei KC, Chen PY. MRS as an Aid to Diagnose Malignant Transformation in Low-Grade Gliomas with Increasing Contrast Enhancement. AJNR Am J Neuroradiol 2020; 41:1592-1598. [PMID: 32732270 DOI: 10.3174/ajnr.a6688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/04/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Increased contrast enhancement has been used as a marker of malignant transformation in low-grade gliomas. This marker has been found to have limited accuracy because many low-grade gliomas with increased contrast enhancement remain grade II. We aimed to investigate whether MR spectroscopy can contribute to the diagnosis of malignant transformation in low-grade gliomas with increased contrast enhancement. MATERIALS AND METHODS Patients with low-grade gliomas who had contemporaneous MR spectroscopy and histopathology for tumor regions with increased contrast enhancement between 2004 and 2015 were retrospectively reviewed. Clinical data collected were sex and age, Karnofsky Performance Scale, histologic subtypes, isocitrate dehydrogenase 1 mutation status, disease duration, adjuvant therapy, and post-radiation therapy duration. Imaging data collected were contrast-enhancement size, whole-tumor size, MR spectroscopy metabolite ratios, and tumor grades of regions with increased contrast enhancement. Diagnostic values of these factors on malignant transformation of low-grade gliomas were statistically analyzed. RESULTS A total of 86 patients with 96 MR spectroscopy studies were included. Tumor grades associated with increased contrast enhancement were grade II (n = 42), grade III (n = 27), and grade IV (n = 27). On multivariate analysis, the NAA/Cho ratio was the only significant factor (P < .001; OR, 7.1; 95% CI, 3.2-16.1) diagnostic of malignant transformation. With 0.222 as the cutoff value, the sensitivity, specificity, and accuracy of NAA/Cho for diagnosing malignant transformation were 94.4%, 83.3%, and 89.6%, respectively. CONCLUSIONS MR spectroscopy complements conventional MR imaging in the diagnosis of malignant transformation in a subgroup of low-grade gliomas with increased contrast enhancement.
Collapse
Affiliation(s)
- C H Toh
- From the Departments of Medical Imaging and Intervention (C.H.T.)
| | - M Castillo
- Department of Radiology (M.C.), University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - K-C Wei
- Neurosurgery (K.-C.W., P.-Y.C.), Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - P-Y Chen
- Neurosurgery (K.-C.W., P.-Y.C.), Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| |
Collapse
|
239
|
Lanz B, Abaei A, Braissant O, Choi IY, Cudalbu C, Henry PG, Gruetter R, Kara F, Kantarci K, Lee P, Lutz NW, Marjańska M, Mlynárik V, Rasche V, Xin L, Valette J. Magnetic resonance spectroscopy in the rodent brain: Experts' consensus recommendations. NMR IN BIOMEDICINE 2020; 34:e4325. [PMID: 33565219 PMCID: PMC9429976 DOI: 10.1002/nbm.4325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/29/2020] [Accepted: 04/30/2020] [Indexed: 05/21/2023]
Abstract
In vivo MRS is a non-invasive measurement technique used not only in humans, but also in animal models using high-field magnets. MRS enables the measurement of metabolite concentrations as well as metabolic rates and their modifications in healthy animals and disease models. Such data open the way to a deeper understanding of the underlying biochemistry, related disturbances and mechanisms taking place during or prior to symptoms and tissue changes. In this work, we focus on the main preclinical 1H, 31P and 13C MRS approaches to study brain metabolism in rodent models, with the aim of providing general experts' consensus recommendations (animal models, anesthesia, data acquisition protocols). An overview of the main practical differences in preclinical compared with clinical MRS studies is presented, as well as the additional biochemical information that can be obtained in animal models in terms of metabolite concentrations and metabolic flux measurements. The properties of high-field preclinical MRS and the technical limitations are also described.
Collapse
Affiliation(s)
- Bernard Lanz
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Alireza Abaei
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| | - In-Young Choi
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, US
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, US
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Firat Kara
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, US
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, US
| | - Phil Lee
- Department of Radiology, University of Kansas Medical Center, Kansas City, Kansas, US
| | - Norbert W Lutz
- CNRS, CRMBM, Aix-Marseille University, Marseille, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, US
| | - Vladimír Mlynárik
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Volker Rasche
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Lijing Xin
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives, MIRCen, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, UMR 9199, Fontenay-aux-Roses, France
| |
Collapse
|
240
|
Guo R, Zhao Y, Li Y, Wang T, Li Y, Sutton B, Liang ZP. Simultaneous QSM and metabolic imaging of the brain using SPICE: Further improvements in data acquisition and processing. Magn Reson Med 2020; 85:970-977. [PMID: 32810319 DOI: 10.1002/mrm.28459] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 01/23/2023]
Abstract
PURPOSE To achieve high-resolution mapping of brain tissue susceptibility in simultaneous QSM and metabolic imaging. METHODS Simultaneous QSM and metabolic imaging was first achieved using SPICE (spectroscopic imaging by exploiting spatiospectral correlation), but the QSM maps thus obtained were at relatively low-resolution (2.0 × 3.0 × 3.0 mm3 ). We overcome this limitation using an improved SPICE data acquisition method with the following novel features: 1) sampling (k, t)-space in dual densities, 2) sampling central k-space fully to achieve nominal spatial resolution of 3.0 × 3.0 × 3.0 mm3 for metabolic imaging, and 3) sampling outer k-space sparsely to achieve spatial resolution of 1.0 × 1.0 × 1.9 mm3 for QSM. To keep the scan time short, we acquired spatiospectral encodings in echo-planar spectroscopic imaging trajectories in central k-space but in CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration) trajectories in outer k-space using blipped phase encodings. For data processing and image reconstruction, a union-of-subspaces model was used, effectively incorporating sensitivity encoding, spatial priors, and spectral priors of individual molecules. RESULTS In vivo experiments were carried out to evaluate the feasibility and potential of the proposed method. In a 6-min scan, QSM maps at 1.0 × 1.0 × 1.9 mm3 resolution and metabolic maps at 3.0 × 3.0 × 3.0 mm3 nominal resolution were obtained simultaneously. Compared with the original method, the QSM maps obtained using the new method reveal fine-scale brain structures more clearly. CONCLUSION We demonstrated the feasibility of achieving high-resolution QSM simultaneously with metabolic imaging using a modified SPICE acquisition method. The improved capability of SPICE may further enhance its practical utility in brain mapping.
Collapse
Affiliation(s)
- Rong Guo
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yibo Zhao
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yudu Li
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Tianyao Wang
- Department of Radiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Yao Li
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Brad Sutton
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Zhi-Pei Liang
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
241
|
Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, Batchelor TT, Bindra RS, Chang SM, Chiocca EA, Cloughesy TF, DeGroot JF, Galanis E, Gilbert MR, Hegi ME, Horbinski C, Huang RY, Lassman AB, Le Rhun E, Lim M, Mehta MP, Mellinghoff IK, Minniti G, Nathanson D, Platten M, Preusser M, Roth P, Sanson M, Schiff D, Short SC, Taphoorn MJB, Tonn JC, Tsang J, Verhaak RGW, von Deimling A, Wick W, Zadeh G, Reardon DA, Aldape KD, van den Bent MJ. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol 2020; 22:1073-1113. [PMID: 32328653 PMCID: PMC7594557 DOI: 10.1093/neuonc/noaa106] [Citation(s) in RCA: 706] [Impact Index Per Article: 141.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastomas are the most common form of malignant primary brain tumor and an important cause of morbidity and mortality. In recent years there have been important advances in understanding the molecular pathogenesis and biology of these tumors, but this has not translated into significantly improved outcomes for patients. In this consensus review from the Society for Neuro-Oncology (SNO) and the European Association of Neuro-Oncology (EANO), the current management of isocitrate dehydrogenase wildtype (IDHwt) glioblastomas will be discussed. In addition, novel therapies such as targeted molecular therapies, agents targeting DNA damage response and metabolism, immunotherapies, and viral therapies will be reviewed, as well as the current challenges and future directions for research.
Collapse
Affiliation(s)
- Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Eudocia Quant Lee
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian M Alexander
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jill S Barnholtz-Sloan
- Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Tracy T Batchelor
- Department of Neurology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Susan M Chang
- University of California San Francisco, San Francisco, California, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy F Cloughesy
- David Geffen School of Medicine, Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
| | - John F DeGroot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Monika E Hegi
- Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Raymond Y Huang
- Division of Neuroradiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew B Lassman
- Department of Neurology and Herbert Irving Comprehensive Cancer Center, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Emilie Le Rhun
- University of Lille, Inserm, Neuro-oncology, General and Stereotaxic Neurosurgery service, University Hospital of Lille, Lille, France; Breast Cancer Department, Oscar Lambret Center, Lille, France and Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Ingo K Mellinghoff
- Department of Neurology and Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - David Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, USA
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany
| | - Matthias Preusser
- Division of Oncology, Department of Medicine, Medical University of Vienna, Vienna, Austria
| | - Patrick Roth
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - David Schiff
- University of Virginia School of Medicine, Division of Neuro-Oncology, Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Susan C Short
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Martin J B Taphoorn
- Department of Neurology, Medical Center Haaglanden, The Hague and Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Jonathan Tsang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, USA
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Andreas von Deimling
- Neuropathology and Clinical Cooperation Unit Neuropathology, University Heidelberg and German Cancer Center, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology and Neuro-oncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Gelareh Zadeh
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, Canada
| | - David A Reardon
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
242
|
Wilson M. Adaptive baseline fitting for 1 H MR spectroscopy analysis. Magn Reson Med 2020; 85:13-29. [PMID: 32797656 DOI: 10.1002/mrm.28385] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE Accurate baseline modeling is essential for reliable MRS analysis and interpretation-particularly at short echo-times, where enhanced metabolite information coincides with elevated baseline interference. The degree of baseline smoothness is a key analysis parameter for metabolite estimation, and in this study, a new method is presented to estimate its optimal value. METHODS An adaptive baseline fitting algorithm (ABfit) is described, incorporating a spline basis into a frequency-domain analysis model, with a penalty parameter to enforce baseline smoothness. A series of candidate analyses are performed over a range of smoothness penalties, as part of a 4-stage algorithm, and the Akaike information criterion is used to estimate the appropriate penalty. ABfit is applied to a set of simulated spectra with differing baseline features and experimentally acquired 2D MRSI-both at a field strength of 3 Tesla. RESULTS Simulated analyses demonstrate metabolite errors result from 2 main sources: bias from an inflexible baseline (underfitting) and increased variance from an overly flexible baseline (overfitting). In the case of an ideal flat baseline, ABfit is shown to correctly estimate a highly rigid baseline, and for more realistic spectra a reasonable compromise between bias and variance is found. Analysis of experimentally acquired data demonstrates good agreement with known correlations between metabolite ratios and the contributing volumes of gray and white matter tissue. CONCLUSIONS ABfit has been shown to perform accurate baseline estimation and is suitable for fully automated routine MRS analysis.
Collapse
Affiliation(s)
- Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
243
|
Borbath T, Murali-Manohar S, Wright AM, Henning A. In vivo characterization of downfield peaks at 9.4 T: T 2 relaxation times, quantification, pH estimation, and assignments. Magn Reson Med 2020; 85:587-600. [PMID: 32783249 DOI: 10.1002/mrm.28442] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Relaxation times are a valuable asset when determining spectral assignments. In this study, apparent T2 relaxation times ( T 2 app ) of downfield peaks are reported in the human brain at 9.4 T and are used to guide spectral assignments of some downfield metabolite peaks. METHODS Echo time series of downfield metabolite spectra were acquired at 9.4 T using a metabolite-cycled semi-LASER sequence. Metabolite spectral fitting was performed using LCModel V6.3-1L while fitting a pH sweep to estimate the pH of the homocarnosine (hCs) imidazole ring. T 2 app were calculated by fitting the resulting relative amplitudes of the peaks to a mono-exponential decay across the TE series. Furthermore, estimated tissue concentrations of molecules were calculated using the relaxation times and internal water as a reference. RESULTS T 2 app of downfield metabolites are reported within a range from 16 to 32 ms except for homocarnosine with T 2 app of 50 ms. Correcting T 2 app for exchange rates ( T 2 c o r r ) resulted in relaxation times between 20 and 33 ms. The estimated pH values based on hCs imidazole range from 7.07 to 7.12 between subjects. Furthermore, analyzing the linewidths of the downfield peaks and their T 2 app contribution led to possible peak assignments. CONCLUSION T 2 app relaxation times were longer for the assigned metabolite peaks compared to the unassigned peaks. Tissue pH estimation in vivo with proton MRS and simultaneous quantification of amide protons at 8.30 ± 0.15 ppm is likely possible. Based on concentration, linewidth, and exchange rates measurements, tentative peak assignments are discussed for adenosine triphosphate (ATP), N-acetylaspartylglutamate (NAAG), and urea.
Collapse
Affiliation(s)
- Tamas Borbath
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Saipavitra Murali-Manohar
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Andrew Martin Wright
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive & Systems Neuroscience, Tübingen, Germany
| | - Anke Henning
- High-Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
244
|
Farnè M, Tedesco GM, Bedetti C, Mencarelli A, Rogaia D, Colavito D, Di Cara G, Stangoni G, Troiani S, Ferlini A, Prontera P. A patient with novel MBOAT7 variant: The cerebellar atrophy is progressive and displays a peculiar neurometabolic profile. Am J Med Genet A 2020; 182:2377-2383. [PMID: 32744787 DOI: 10.1002/ajmg.a.61773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/13/2020] [Accepted: 05/30/2020] [Indexed: 12/26/2022]
Abstract
Mutations in the MBOAT7 gene have been described in 43 patients, belonging to 18 families, showing nonspecific clinical features (intellectual disability [ID], seizures, microcephaly or macrocephaly, and mild to moderate cerebellar atrophy) that make the clinical diagnosis difficult. Here we report the first Italian patient, a 22.5-year-old female, one of the oldest reported, born to apparently consanguineous parents. She shows severe ID, macrocephaly, seizures, aggressive outbursts, hyperphagia. We also documented progressive atrophy of the cerebellar vermis, that appeared not before the age of 7. The whole-exome sequencing of the trio identified a novel homozygous variant c.1057_1058delGCinsCA (p.Ala353His) in the MBOAT7 gene. The variant is considered to be likely pathogenic, since it is absent from population database and it lies in a highly conserved amino acid residue. This disorder has a neurometabolic pathogenesis, implicating a phospholipid remodeling abnormalities. A brain hydrogen-magnetic resonance spectroscopy (H-MRS) examination in our patient disclosed a peculiar neurometabolic profile in the cerebellar hemispheric region. This new finding could address the clinical suspicion of MBOAT7-related disorder, among the wide range of genetic conditions associated with ID and cerebellar atrophy. Moreover, the documented progression of cerebellar atrophy and the worsening of the disease only after some years open to the possibility of a therapeutic window after birth.
Collapse
Affiliation(s)
- Marianna Farnè
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy.,Medical Genetics Unit, Department of Medical Sciences, Ferrara University Hospital, Italy
| | - Giovanna M Tedesco
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy.,Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, Padova, Italy.,Genetics Unit, "Mauro Baschirotto" Institute for Rare Diseases (B.I.R.D.), Costozza di Longare, Vicenza, Italy
| | | | - Amedea Mencarelli
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Daniela Rogaia
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | | | - Giuseppe Di Cara
- Pediatric Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Gabriela Stangoni
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Stefania Troiani
- Division of Neonatology and Neonatal Intensive Care Unit, Santa Maria della Misericordia Hospital of Perugia, Perugia, Italy
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, Ferrara University Hospital, Italy
| | - Paolo Prontera
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| |
Collapse
|
245
|
Effect of Methionine Diet on Time-Related Metabolic and Histopathological Changes of Rat Hippocampus in the Model of Global Brain Ischemia. Biomolecules 2020; 10:biom10081128. [PMID: 32751764 PMCID: PMC7465067 DOI: 10.3390/biom10081128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Hyperhomocysteinemia (hHcy) represents a strong risk factor for atherosclerosis-associated diseases, like stroke, dementia or Alzheimer's disease. A methionine (Met)-rich diet leads to an elevated level of homocysteine in plasma and might cause pathological alterations across the brain. The hippocampus is being constantly studied for its selective vulnerability linked with neurodegeneration. This study explores metabolic and histo-morphological changes in the rat hippocampus after global ischemia in the hHcy conditions using a combination of proton magnetic resonance spectroscopy and magnetic resonance-volumetry as well as immunohistochemical analysis. After 4 weeks of a Met-enriched diet at a dose of 2 g/kg of animal weight/day, adult male Wistar rats underwent 4-vessel occlusion lasting for 15 min, followed by a reperfusion period varying from 3 to 7 days. Histo-morphological analyses showed that the subsequent ischemia-reperfusion insult (IRI) aggravates the extent of the sole hHcy-induced degeneration of the hippocampal neurons. Decreased volume in the grey matter, extensive changes in the metabolic ratio, deeper alterations in the number and morphology of neurons, astrocytes and their processes were demonstrated in the hippocampus 7 days post-ischemia in the hHcy animals. Our results suggest that the combination of the two risk factors (hHcy and IRI) endorses and exacerbates the rat hippocampal neurodegenerative processes.
Collapse
|
246
|
Sawlani V, Patel MD, Davies N, Flintham R, Wesolowski R, Ughratdar I, Pohl U, Nagaraju S, Petrik V, Kay A, Jacob S, Sanghera P, Wykes V, Watts C, Poptani H. Multiparametric MRI: practical approach and pictorial review of a useful tool in the evaluation of brain tumours and tumour-like lesions. Insights Imaging 2020; 11:84. [PMID: 32681296 PMCID: PMC7367972 DOI: 10.1186/s13244-020-00888-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
MRI has a vital role in the assessment of intracranial lesions. Conventional MRI has limited specificity and multiparametric MRI using diffusion-weighted imaging, perfusion-weighted imaging and magnetic resonance spectroscopy allows more accurate assessment of the tissue microenvironment. The purpose of this educational pictorial review is to demonstrate the role of multiparametric MRI for diagnosis, treatment planning and for assessing treatment response, as well as providing a practical approach for performing and interpreting multiparametric MRI in the clinical setting. A variety of cases are presented to demonstrate how multiparametric MRI can help differentiate neoplastic from non-neoplastic lesions compared to conventional MRI alone.
Collapse
Affiliation(s)
- Vijay Sawlani
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK.
- University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Markand Dipankumar Patel
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
- University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nigel Davies
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
| | - Robert Flintham
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
| | - Roman Wesolowski
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
| | - Ismail Ughratdar
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
| | - Ute Pohl
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
| | - Santhosh Nagaraju
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
| | - Vladimir Petrik
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
| | - Andrew Kay
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
| | - Saiju Jacob
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
- University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Paul Sanghera
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
| | - Victoria Wykes
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
- University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Colin Watts
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
- University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Harish Poptani
- Centre for Pre-Clinical Imaging, Department of Cellular and Molecular Physiology, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| |
Collapse
|
247
|
Bisdas S, Schäfer R, Kolb R, Bender B, Klose U. Lactate as clinical tumour biomarker: Optimization of lactate detection and quantification in MR spectroscopic imaging of glioblastomas. Eur J Radiol 2020; 130:109171. [PMID: 32668356 DOI: 10.1016/j.ejrad.2020.109171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/28/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Increased lactate (Lac) level in brain tumours is in vivo detectable by 1H MR spectroscopy (MRS) but is frequently overlapped by strong lipid signals, which either leads to a weak quality of the Lac signal or even inhibit its detection. We sought to optimize the separation of Lac from lipid signals in intermediate-echo time MRS acquisitions thus allowing its applicability as clinical biomarker in glioblastomas. METHODS Data of 27 patients with glioblastoma multiforme (GBM) were analysed using standard post-processing software as well as in-house modified technique based on the same commercially available software. The patients' Lac concentration values provided by the MRS post-processing technique were converted to realistic concentrations by using an appropriately calibrated phantom. The Cramér-Rao lower bound (%CR) was the principal criterion for estimating the quality of the MRS post-processing results. RESULTS Based on the ex vivo calibration, the analysis of the in vivo MR spectroscopy measurements led to an improvement of the %CR(Lac) value from 18 % to 8 %. In a single case, the detection of Lac was achievable only by the modified technique, as Lac signal was contaminated with lipids using the standard analysis. The resulting in vivo Lac values from the modified analysis (median: 4.77 mmol/l, range: 1.5-9.2) were considered as a realistic order of magnitude for the metabolite concentrations, whereas no Lac was identified in the normal appearing white matter. This qualified also Lac mapping as a biomarker for regional heterogeneity in GBM. CONCLUSIONS The proposed methodology is a promising first step for more reliable analysis of Lac signal, decontaminating it from lipid peaks in MRS, and may help to establish Lac as a biomarker for brain tumours in clinical routine.
Collapse
Affiliation(s)
- Sotirios Bisdas
- MR Research Group, Department of Neuroradiology, University Hospital Tübingen, Hoppe-Seyler Str. 3, 72076 Tübingen, Germany; Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, WC1N 3BG, United Kingdom.
| | - Rita Schäfer
- MR Research Group, Department of Neuroradiology, University Hospital Tübingen, Hoppe-Seyler Str. 3, 72076 Tübingen, Germany
| | - Rupert Kolb
- MR Research Group, Department of Neuroradiology, University Hospital Tübingen, Hoppe-Seyler Str. 3, 72076 Tübingen, Germany
| | - Benjamin Bender
- MR Research Group, Department of Neuroradiology, University Hospital Tübingen, Hoppe-Seyler Str. 3, 72076 Tübingen, Germany
| | - Uwe Klose
- MR Research Group, Department of Neuroradiology, University Hospital Tübingen, Hoppe-Seyler Str. 3, 72076 Tübingen, Germany
| |
Collapse
|
248
|
Vavla M, Montanaro D, Pizzighello S, Frijia F, Arrigoni F, Baratto A, Piccoli G, Paparella G, Martinuzzi A. Brain Magnetic Spectroscopy Imaging and Hereditary Spastic Paraplegia: A Focused Systematic Review on Current Landmarks and Future Perspectives. Front Neurol 2020; 11:515. [PMID: 32765386 PMCID: PMC7381200 DOI: 10.3389/fneur.2020.00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/11/2020] [Indexed: 11/21/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive neuroimaging technique used to investigate in vivo brain metabolites. MRS could provide a sensitive tool for the study of hereditary spastic paraplegia (HSP) by helping to unveil the underlying biochemical mechanisms and monitoring response to treatment. This focused systematic review aimed to summarize the brain metabolite findings in studies performed in genetically determined HSP. The second aim was to provide a critical analysis and recommendations for well-designed protocols for future studies. Fourteen MRS studies have been analyzed with overall 61 HSP patients, falling within a wide range of age at onset, disease duration, and age at the MRS scan, including children and adults. The genetic diagnosis included several subtypes (SPG2/3/4/5/10/11/28/31/54). SPG11 and SPG54 have been more frequently investigated. The MRS methodology included different MR field strength, not easily comparable spectra areas varying from whole brain to various cortical areas, brain stem and cerebellum sampling. No consistency in disease severity and other outcome measures was observed. The main MRS findings corresponded to the white matter metabolite abnormalities in the corticospinal tracts. In summary, this focused review provides insights on the current knowledge of brain metabolites in HSP and, in particular, in SPG11 and SPG54. Despite the inhomogeneity of the studies to date reported, brain metabolites as assessed by MRS could represent potentially useful diagnostic markers and prognostic indicators of disease progression in HSP. Specific recommendations regarding the MRS technical protocol, CNS area sampling, study design, and applicability of findings are given.
Collapse
Affiliation(s)
- Marinela Vavla
- SOS Neuromotor Unit, Department of Pieve di Soligo, Scientific Institute, IRCCS E. Medea, Treviso, Italy
- SOS Neuromotor Unit, Department of Conegliano, Scientific Institute, IRCCS E. Medea, Treviso, Italy
- Department of Women's and Children's Health, University of Padova, Padua, Italy
- *Correspondence: Marinela Vavla ;
| | - Domenico Montanaro
- U.O.C. Risonanza Magnetica Specialistica e Neuroradiologia, Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - Silvia Pizzighello
- SOS Neuromotor Unit, Department of Pieve di Soligo, Scientific Institute, IRCCS E. Medea, Treviso, Italy
| | - Francesca Frijia
- U.O.C Bioengineering and Clinical Technology, Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Alessandra Baratto
- Department of Radiology S. Maria dei Battuti Hospital-Conegliano, Treviso, Italy
| | - Gianluca Piccoli
- Department of Radiology S. Maria dei Battuti Hospital-Conegliano, Treviso, Italy
| | - Gabriella Paparella
- SOS Neuromotor Unit, Department of Pieve di Soligo, Scientific Institute, IRCCS E. Medea, Treviso, Italy
| | - Andrea Martinuzzi
- SOS Neuromotor Unit, Department of Pieve di Soligo, Scientific Institute, IRCCS E. Medea, Treviso, Italy
- SOS Neuromotor Unit, Department of Conegliano, Scientific Institute, IRCCS E. Medea, Treviso, Italy
| |
Collapse
|
249
|
Molloy AR, Najac C, Viswanath P, Lakhani A, Subramani E, Batsios G, Radoul M, Gillespie AM, Pieper RO, Ronen SM. MR-detectable metabolic biomarkers of response to mutant IDH inhibition in low-grade glioma. Theranostics 2020; 10:8757-8770. [PMID: 32754276 PMCID: PMC7392019 DOI: 10.7150/thno.47317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1mut) are reported in 70-90% of low-grade gliomas and secondary glioblastomas. IDH1mut catalyzes the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG), an oncometabolite which drives tumorigenesis. Inhibition of IDH1mut is therefore an emerging therapeutic approach, and inhibitors such as AG-120 and AG-881 have shown promising results in phase 1 and 2 clinical studies. However, detection of response to these therapies prior to changes in tumor growth can be challenging. The goal of this study was to identify non-invasive clinically translatable metabolic imaging biomarkers of IDH1mut inhibition that can serve to assess response. Methods: IDH1mut inhibition was confirmed using an enzyme assay and 1H- and 13C- magnetic resonance spectroscopy (MRS) were used to investigate the metabolic effects of AG-120 and AG-881 on two genetically engineered IDH1mut-expressing cell lines, NHAIDH1mut and U87IDH1mut. Results:1H-MRS indicated a significant decrease in steady-state 2-HG following treatment, as expected. This was accompanied by a significant 1H-MRS-detectable increase in glutamate. However, other metabolites previously linked to 2-HG were not altered. 13C-MRS also showed that the steady-state changes in glutamate were associated with a modulation in the flux of glutamine to both glutamate and 2-HG. Finally, hyperpolarized 13C-MRS was used to show that the flux of α-KG to both glutamate and 2-HG was modulated by treatment. Conclusion: In this study, we identified potential 1H- and 13C-MRS-detectable biomarkers of response to IDH1mut inhibition in gliomas. Although further studies are needed to evaluate the utility of these biomarkers in vivo, we expect that in addition to a 1H-MRS-detectable drop in 2-HG, a 1H-MRS-detectable increase in glutamate, as well as a hyperpolarized 13C-MRS-detectable change in [1-13C] α-KG flux, could serve as metabolic imaging biomarkers of response to treatment.
Collapse
Affiliation(s)
- Abigail R Molloy
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Aliya Lakhani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Russell O Pieper
- Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
250
|
Sung D, Risk BB, Owusu‐Ansah M, Zhong X, Mao H, Fleischer CC. Optimized truncation to integrate multi-channel MRS data using rank-R singular value decomposition. NMR IN BIOMEDICINE 2020; 33:e4297. [PMID: 32249522 PMCID: PMC7317403 DOI: 10.1002/nbm.4297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 06/01/2023]
Abstract
Multi-channel phased receive arrays have been widely adopted for magnetic resonance imaging (MRI) and spectroscopy (MRS). An important step in the use of receive arrays for MRS is the combination of spectra collected from individual coil channels. The goal of this work was to implement an improved strategy termed OpTIMUS (i.e., optimized truncation to integrate multi-channel MRS data using rank-R singular value decomposition) for combining data from individual channels. OpTIMUS relies on spectral windowing coupled with a rank-R decomposition to calculate the optimal coil channel weights. MRS data acquired from a brain spectroscopy phantom and 11 healthy volunteers were first processed using a whitening transformation to remove correlated noise. Whitened spectra were then iteratively windowed or truncated, followed by a rank-R singular value decomposition (SVD) to empirically determine the coil channel weights. Spectra combined using the vendor-supplied method, signal/noise2 weighting, previously reported whitened SVD (rank-1), and OpTIMUS were evaluated using the signal-to-noise ratio (SNR). Significant increases in SNR ranging from 6% to 33% (P ≤ 0.05) were observed for brain MRS data combined with OpTIMUS compared with the three other combination algorithms. The assumption that a rank-1 SVD maximizes SNR was tested empirically, and a higher rank-R decomposition, combined with spectral windowing prior to SVD, resulted in increased SNR.
Collapse
Affiliation(s)
- Dongsuk Sung
- Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University School of MedicineAtlantaGeorgia
| | - Benjamin B. Risk
- Department of Biostatistics and BioinformaticsEmory UniversityAtlantaGeorgia
| | - Maame Owusu‐Ansah
- Department of Radiology and Imaging SciencesEmory University School of MedicineAtlantaGeorgia
| | - Xiaodong Zhong
- MR R&D Collaborations, Siemens HealthcareLos AngelesCalifornia
| | - Hui Mao
- Department of Radiology and Imaging SciencesEmory University School of MedicineAtlantaGeorgia
| | - Candace C. Fleischer
- Department of Biomedical EngineeringGeorgia Institute of Technology and Emory University School of MedicineAtlantaGeorgia
- Department of Radiology and Imaging SciencesEmory University School of MedicineAtlantaGeorgia
| |
Collapse
|