201
|
Qvist P, Rajkumar AP, Redrobe JP, Nyegaard M, Christensen JH, Mors O, Wegener G, Didriksen M, Børglum AD. Mice heterozygous for an inactivated allele of the schizophrenia associated Brd1 gene display selective cognitive deficits with translational relevance to schizophrenia. Neurobiol Learn Mem 2017; 141:44-52. [PMID: 28341151 DOI: 10.1016/j.nlm.2017.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
Schizophrenia is a debilitating brain disorder characterized by disturbances of emotion, perception and cognition. Cognitive impairments predict functional outcome in schizophrenia and are detectable even in the prodromal stage of the disorder. However, our understanding of the underlying neurobiology is limited and procognitive treatments remain elusive. We recently demonstrated that mice heterozygous for an inactivated allele of the schizophrenia-associated Brd1 gene (Brd1+/- mice) display behaviors reminiscent of schizophrenia, including impaired social cognition and long-term memory. Here, we further characterize performance of these mice by following the preclinical guidelines recommended by the 'Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS)' and 'Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS)' initiatives to maximize translational value. Brd1+/- mice exhibit relational encoding deficits, compromised working and long term memory, as well as impaired executive cognitive functioning with cognitive behaviors relying on medial prefrontal cortex being particularly affected. Akin to patients with schizophrenia, the cognitive deficits displayed by Brd1+/- mice are not global, but selective. Our results underline the value of Brd1+/- mice as a promising tool for studying the neurobiology of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Per Qvist
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark; H. Lundbeck A/S, Synaptic Transmission, Valby, Denmark
| | - Anto P Rajkumar
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | | | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark
| | - Jane H Christensen
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark; Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark.
| |
Collapse
|
202
|
Magdalon J, Sánchez-Sánchez SM, Griesi-Oliveira K, Sertié AL. Dysfunctional mTORC1 Signaling: A Convergent Mechanism between Syndromic and Nonsyndromic Forms of Autism Spectrum Disorder? Int J Mol Sci 2017; 18:ijms18030659. [PMID: 28335463 PMCID: PMC5372671 DOI: 10.3390/ijms18030659] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Whereas autism spectrum disorder (ASD) exhibits striking heterogeneity in genetics and clinical presentation, dysfunction of mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has been identified as a molecular feature common to several well-characterized syndromes with high prevalence of ASD. Additionally, recent findings have also implicated mTORC1 signaling abnormalities in a subset of nonsyndromic ASD, suggesting that defective mTORC1 pathway may be a potential converging mechanism in ASD pathology across different etiologies. However, the mechanistic evidence for a causal link between aberrant mTORC1 pathway activity and ASD neurobehavioral features varies depending on the ASD form involved. In this review, we first discuss six monogenic ASD-related syndromes, including both classical and potentially novel mTORopathies, highlighting their contribution to our understanding of the neurobiological mechanisms underlying ASD, and then we discuss existing evidence suggesting that aberrant mTORC1 signaling may also play a role in nonsyndromic ASD.
Collapse
Affiliation(s)
- Juliana Magdalon
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Sandra M Sánchez-Sánchez
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil.
| | - Karina Griesi-Oliveira
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Andréa L Sertié
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| |
Collapse
|
203
|
Robert C, Pasquier L, Cohen D, Fradin M, Canitano R, Damaj L, Odent S, Tordjman S. Role of Genetics in the Etiology of Autistic Spectrum Disorder: Towards a Hierarchical Diagnostic Strategy. Int J Mol Sci 2017; 18:E618. [PMID: 28287497 PMCID: PMC5372633 DOI: 10.3390/ijms18030618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/27/2022] Open
Abstract
Progress in epidemiological, molecular and clinical genetics with the development of new techniques has improved knowledge on genetic syndromes associated with autism spectrum disorder (ASD). The objective of this article is to show the diversity of genetic disorders associated with ASD (based on an extensive review of single-gene disorders, copy number variants, and other chromosomal disorders), and consequently to propose a hierarchical diagnostic strategy with a stepwise evaluation, helping general practitioners/pediatricians and child psychiatrists to collaborate with geneticists and neuropediatricians, in order to search for genetic disorders associated with ASD. The first step is a clinical investigation involving: (i) a child psychiatric and psychological evaluation confirming autism diagnosis from different observational sources and assessing autism severity; (ii) a neuropediatric evaluation examining neurological symptoms and developmental milestones; and (iii) a genetic evaluation searching for dysmorphic features and malformations. The second step involves laboratory and if necessary neuroimaging and EEG studies oriented by clinical results based on clinical genetic and neuropediatric examinations. The identification of genetic disorders associated with ASD has practical implications for diagnostic strategies, early detection or prevention of co-morbidity, specific treatment and follow up, and genetic counseling.
Collapse
Affiliation(s)
- Cyrille Robert
- Pôle Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent (PHUPEA), University of Rennes 1 and Centre Hospitalier Guillaume Régnier, 35200 Rennes, France.
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Laurent Pasquier
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - David Cohen
- Hospital-University Department of Child and Adolescent Psychiatry, Pitié-Salpétrière Hospital, Paris 6 University, 75013 Paris, France.
| | - Mélanie Fradin
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Roberto Canitano
- Division of Child and Adolescent Neuropsychiatry, University Hospital of Siena, 53100 Siena, Italy.
| | - Léna Damaj
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Sylvie Odent
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Sylvie Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent (PHUPEA), University of Rennes 1 and Centre Hospitalier Guillaume Régnier, 35200 Rennes, France.
- Laboratory of Psychology of Perception, University Paris Descartes, 75270 Paris, France.
| |
Collapse
|
204
|
SHANK proteins limit integrin activation by directly interacting with Rap1 and R-Ras. Nat Cell Biol 2017; 19:292-305. [PMID: 28263956 PMCID: PMC5386136 DOI: 10.1038/ncb3487] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 02/06/2017] [Indexed: 12/17/2022]
Abstract
SHANK3, a synaptic scaffold protein and actin regulator, is widely
expressed outside of the central nervous system with predominantly unknown
function. Solving the structure of the SHANK3 N-terminal region revealed that
the SPN-domain is an unexpected Ras-association domain with high affinity for
GTP-bound Ras and Rap G-proteins. The role of Rap1 in integrin activation is
well established but the mechanisms to antagonize it remain largely unknown.
Here, we show that SHANK1 and SHANK3 act as integrin activation inhibitors by
sequestering active Rap1 and R-Ras via the SPN-domain and thus limiting their
bioavailability at the plasma membrane. Consistently, SHANK3
silencing triggers increased plasma membrane Rap1 activity, cell spreading,
migration and invasion. Autism-related mutations within the SHANK3 SPN-domain
(R12C and L68P) disrupt G-protein interaction and fail to counteract integrin
activation along the Rap1/RIAM/talin axis in cancer cells and neurons.
Altogether, we establish SHANKs as critical regulators of G-protein signalling
and integrin-dependent processes.
Collapse
|
205
|
|
206
|
Abstract
Phelan-McDermid syndrome is a rare neurodevelopmental syndrome associated with severe intellectual disability, motor delay, and autistic traits. This article reviews a case of a complicated presentation of Phelan-McDermid syndrome and addresses etiology, diagnosis, and management.
Collapse
|
207
|
Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders. Neural Plast 2017; 2017:8081758. [PMID: 28331639 PMCID: PMC5346360 DOI: 10.1155/2017/8081758] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
Synapses are complex structures that allow communication between neurons in the central nervous system. Studies conducted in vertebrate and invertebrate models have contributed to the knowledge of the function of synaptic proteins. The functional synapse requires numerous protein complexes with specialized functions that are regulated in space and time to allow synaptic plasticity. However, their interplay during neuronal development, learning, and memory is poorly understood. Accumulating evidence links synapse proteins to neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. In this review, we describe the way in which several proteins that participate in cell adhesion, scaffolding, exocytosis, and neurotransmitter reception from presynaptic and postsynaptic compartments, mainly from excitatory synapses, have been associated with several synaptopathies, and we relate their functions to the disease phenotype.
Collapse
|
208
|
Abstract
Several large-scale genomic studies have supported an association between cases of autism spectrum disorder and mutations in the genes SH3 and multiple ankyrin repeat domains protein 1 (SHANK1), SHANK2 and SHANK3, which encode a family of postsynaptic scaffolding proteins that are present at glutamatergic synapses in the CNS. An evaluation of human genetic data, as well as of in vitro and in vivo animal model data, may allow us to understand how disruption of SHANK scaffolding proteins affects the structure and function of neural circuits and alters behaviour.
Collapse
|
209
|
Beltrão-Braga PCB, Muotri AR. Modeling autism spectrum disorders with human neurons. Brain Res 2017; 1656:49-54. [PMID: 26854137 PMCID: PMC4975680 DOI: 10.1016/j.brainres.2016.01.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by impaired social communication and interactions and by restricted and repetitive behaviors. Although ASD is suspected to have a heritable or sporadic genetic basis, its underlying etiology and pathogenesis are not well understood. Therefore, viable human neurons and glial cells produced using induced pluripotent stem cells (iPSC) to reprogram cells from individuals affected with ASD provide an unprecedented opportunity to elucidate the pathophysiology of these disorders, providing novel insights regarding ASD and a potential platform to develop and test therapeutic compounds. Herein, we discuss the state of art with regards to ASD modeling, including limitations of this technology, as well as potential future directions. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
Affiliation(s)
- Patricia C B Beltrão-Braga
- Center for Cellular and Molecular Therapy (NETCEM), School of Medicine, University of São Paulo, São Paulo, Brazil; Department of Pediatrics/Rady Children׳s Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA, USA; Stem Cell Laboratory, Department of Surgery, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil; Department of Obstetrics School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil.
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children׳s Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
210
|
Kim YM, Choi IH, Kim JS, Kim JH, Cho JH, Lee BH, Kim GH, Choi JH, Seo EJ, Yoo HW. Phelan-McDermid syndrome presenting with developmental delays and facial dysmorphisms. KOREAN JOURNAL OF PEDIATRICS 2016; 59:S25-S28. [PMID: 28018439 PMCID: PMC5177705 DOI: 10.3345/kjp.2016.59.11.s25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/11/2014] [Accepted: 10/20/2014] [Indexed: 02/04/2023]
Abstract
Phelan-McDermid syndrome is a rare genetic disorder caused by the terminal or interstitial deletion of the chromosome 22q13.3. Patients with this syndrome usually have global developmental delay, hypotonia, and speech delays. Several putative genes such as the SHANK3, RAB, RABL2B, and IB2 are responsible for the neurological features. This study describes the clinical features and outcomes of Korean patients with Phelan-McDermid syndrome. Two patients showing global developmental delay, hypotonia, and speech delay were diagnosed with Phelan-McDermid syndrome via chromosome analysis, fluorescent in situ hybridization, and multiplex ligation-dependent probe amplification analysis. Brain magnetic resonance imaging of Patients 1 and 2 showed delayed myelination and severe communicating hydrocephalus, respectively. Electroencephalography in patient 2 showed high amplitude spike discharges from the left frontotemporoparietal area, but neither patient developed seizures. Kidney ultrasonography of both the patients revealed multicystic kidney disease and pelviectasis, respectively. Patient 2 experienced recurrent respiratory infections, and chest computed tomography findings demonstrated laryngotracheomalacia and bronchial narrowing. He subsequently died because of heart failure after a ventriculoperitoneal shunt operation at 5 months of age. Patient 1, who is currently 20 months old, has been undergoing rehabilitation therapy. However, global developmental delay was noted, as determines using the Korean Infant and Child Development test, the Denver developmental test, and the Bayley developmental test. This report describes the clinical features, outcomes, and molecular genetic characteristics of two Korean patients with Phelan-McDermid syndrome.
Collapse
Affiliation(s)
- Yoon-Myung Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Hee Choi
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Jun Suk Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Ja Hye Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Ja Hyang Cho
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul-Ju Seo
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea.; Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
211
|
Davenport MH, Schaefer TL, Friedmann KJ, Fitzpatrick SE, Erickson CA. Pharmacotherapy for Fragile X Syndrome: Progress to Date. Drugs 2016; 76:431-45. [PMID: 26858239 DOI: 10.1007/s40265-016-0542-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To date, no drug is approved for the treatment of Fragile X Syndrome (FXS) although many drugs are used to manage challenging behaviors from a symptomatic perspective in this population. While our understanding of FXS pathophysiology is expanding, efforts to devise targeted FXS-specific treatments have had limited success in placebo-controlled trials. Compounds aimed at rectifying excessive glutamate and deficient gamma-aminobutyric acid (GABA) neurotransmission, as well as other signaling pathways known to be affected by Fragile X Mental Retardation Protein (FMRP) are under various phases of development in FXS. With the failure of several metabotropic glutamate receptor subtype 5 (mGlur5) selective antagonists under clinical investigation, no clear single treatment appears to be greatly effective. These recent challenges call into question various aspects of clinical study design in FXS. More objective outcome measures are under development and validation. Future trials will likely be aimed at correcting multiple pathways known to be disrupted by the loss of FMRP. This review offers a brief summary of the prevalence, phenotypic characteristics, genetic causes and molecular functions of FMRP in the brain (as these have been extensively reviewed elsewhere), discusses the most recent finding in FXS drug development, and summarizes FXS trials utilizing symptomatic treatment.
Collapse
Affiliation(s)
- Matthew H Davenport
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Tori L Schaefer
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
| | - Katherine J Friedmann
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
| | | | - Craig A Erickson
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA.
| |
Collapse
|
212
|
Lei D, Li S, Banerjee S, Zhang H, Li C, Hou S, Chen D, Yan H, Li H, Peng HH, Liu S, Zhang X, Peng Z, Wang J, Yang H, Huang H, Wu J. Clinical and genomic evaluation of a Chinese patient with a novel deletion associated with Phelan-McDermid syndrome. Oncotarget 2016; 7:80327-80335. [PMID: 27741506 PMCID: PMC5348323 DOI: 10.18632/oncotarget.12552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/28/2016] [Indexed: 12/03/2022] Open
Abstract
Phelan–McDermid syndrome is a neurodevelopmental disorder caused by the terminal deletion of chromosome 22 (22q13) followed by the loss of function of the SHANK3 gene. Various terminal deletions of chromosome 22q13 are associated with Phelan–McDermid with a spectrum of phenotypic severity. Here, we have done a clinical molecular study of a Chinese proband with Phelan–McDermid syndrome. Both the proband and her younger brother are associated with this syndrome while their parents are phenotypically normal. We used a karyotype in order to detect the genotype of the proband and her younger brother. We have also used whole genome low-coverage paired-end next generation sequencing to determine whether the parent is the carrier of translocation with terminal 22q13 deletions. We found that both proband and her younger brother are comprises of a novel deletion of 22q13.31q13.33, harboring genes were associated with several clinical phenotype such as severity of speech delay, neonatal hypotonia, delayed in age of walking, male genital anomalies, dysplastic toenails, large and fleshy hands, macrocephaly, short stature, facial asymmetry, and atypical reflexes. Probands and her younger brother inherited this translocation from their mother whereas their father is genotypically normal. In conclusion, our present study expands the deletion spectrum and report a novel deletion associated with Phelan–McDermid syndrome.
Collapse
Affiliation(s)
- Dongzhu Lei
- Chenzhou No.1 People's Hospital, Chenzhou, China
| | | | | | | | - Caiyun Li
- Chenzhou No.1 People's Hospital, Chenzhou, China
| | - Shuai Hou
- Chenzhou No.1 People's Hospital, Chenzhou, China
| | - Danjing Chen
- Chenzhou No.1 People's Hospital, Chenzhou, China
| | - Haiying Yan
- Chenzhou No.1 People's Hospital, Chenzhou, China
| | - Hanmei Li
- Changsha Maternal and Child Health Hospital, Hunan, China
| | | | | | - Xinxin Zhang
- BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | | | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | | | - Jing Wu
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
213
|
Zwanenburg RJ, Bocca G, Ruiter SAJ, Dillingh JH, Flapper BCT, van den Heuvel ER, van Ravenswaaij-Arts CMA. Is there an effect of intranasal insulin on development and behaviour in Phelan-McDermid syndrome? A randomized, double-blind, placebo-controlled trial. Eur J Hum Genet 2016; 24:1696-1701. [PMID: 27577546 PMCID: PMC5117914 DOI: 10.1038/ejhg.2016.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/08/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022] Open
Abstract
Phelan-McDermid syndrome (PMS) or 22q13.3 deletion syndrome is a rare neurodevelopmental disorder with at least 60 children and 35 adults diagnosed in the Netherlands. Clinical features are moderate to severe intellectual disability and behavioural problems in the autism spectrum. Other researchers had observed a beneficial effect of intranasal insulin on development and behaviour in a pilot study in six children with PMS. To validate this effect, we conducted a randomized, double-blind, placebo-controlled clinical trial using a stepped-wedge design. From March 2013 to June 2015, 25 children aged 1-16 years with a molecularly confirmed 22q13.3 deletion including the SHANK3 gene participated in the clinical trial for a period of 18 months. Starting 6 months before the trial, children were systematically assessed for cognitive, language and motor development and for adaptive, social and emotional behaviour every 6 months. The second, third and fourth assessments were followed by daily nose sprays containing either intranasal insulin or intranasal placebo for a 6-month period. A fifth assessment was done directly after the end of the trial. Intranasal insulin did not cause serious adverse events. It increased the level of developmental functioning by 0.4-1.4 months per 6-month period, but the effect was not statistically significant in this small group. We found a stronger effect of intranasal insulin, being significant for cognition and social skills, for children older than 3 years, who usually show a decrease of developmental growth. However, clinical trials in larger study populations are required to prove the therapeutic effect of intranasal insulin in PMS.
Collapse
Affiliation(s)
- Renée J Zwanenburg
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | - Gianni Bocca
- University of Groningen, University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatrics, Groningen, The Netherlands
| | - Selma A J Ruiter
- De Kinderacademie Groningen, Centre of Expertise for Child Development Care and Research, Groningen, The Netherlands
| | - Jan H Dillingh
- University of Groningen, University Medical Centre Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Boudien C T Flapper
- University of Groningen, University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatrics, Groningen, The Netherlands
| | - Edwin R van den Heuvel
- Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | |
Collapse
|
214
|
Görker I, Gürkan H, Demir Ulusal S, Atlı E, Ikbal Atlı E. A 9-year-old-girl with Phelan McDermid Syndrome, who had been diagnosed with an autism spectrum disorder. Balkan J Med Genet 2016; 19:85-90. [PMID: 28289594 PMCID: PMC5343336 DOI: 10.1515/bjmg-2016-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Phelan McDermid Syndrome (PHMDS) (OMIM #606232), is a contiguous gene disorder resulting from deletion of the distal long arm of chromosome 22. The 22q13.3 deletions and mutations that lead to a loss of a functional copy of SHANK3 (OMIM *606230) cause the syndrome, characterized by moderate to profound intellectual disability, severely delayed or absent speech, hypotonia, and autism spectrum disorder (ASD) or ASD traits. In this study, we present the case of a 9-year-old girl who had earlier been diagnosed with an ASD. Our findings were a clinically mild intellectual disability, rounded face, pointed chin but no autistic findings. We learned that her neuromotor development was delayed and she had neonatal hypotonia in her history. A heterozygous deletion of MLC1, SBF1, MAPK8IP2, ARSA, SHANK3 and ACR genes, located on 22q13.33, was defined by multiplex ligation-dependent probe amplification (MLPA). Deletion of 22q13.3 (ARSA) region was confirmed by a fluorescent in situ hybridization (FISH) technique. The 22q13.3 deletion was found to be de novo in our patient, and she was diagnosed with PHMDS. We confirmed the 22q13.3 deletion and also determined a gain of 8p23.3-23.2 by array comparative genomic hybridization (aCGH). Fluorescent in situ hybridization was performed to determine whether the deletion was of parental origin and to identify regions of chromosomes where the extra 8p may have been located. The parents were found to be normal. The extra copy of 8p was observed on 22q in the patient. She is the first case reported in association with the 22q deletion of 8p duplications in the literature.
Collapse
Affiliation(s)
- I Görker
- Child and Adolescent Psychiatry Department, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - H Gürkan
- Medical Genetics Department, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - S Demir Ulusal
- Medical Genetics Department, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - E Atlı
- Medical Genetics Department, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - E Ikbal Atlı
- Medical Genetics Department, Trakya University, Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
215
|
Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies. Neural Plast 2016; 2016:8051861. [PMID: 27795858 PMCID: PMC5067329 DOI: 10.1155/2016/8051861] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022] Open
Abstract
Shank proteins (Shank1, Shank2, and Shank3) act as scaffolding molecules in the postsynaptic density of many excitatory neurons. Mutations in SHANK genes, in particular SHANK2 and SHANK3, lead to autism spectrum disorders (ASD) in both human and mouse models. Shank3 proteins are made of several domains-the Shank/ProSAP N-terminal (SPN) domain, ankyrin repeats, SH3 domain, PDZ domain, a proline-rich region, and the sterile alpha motif (SAM) domain. Via various binding partners of these domains, Shank3 is able to bind and interact with a wide range of proteins including modulators of small GTPases such as RICH2, a RhoGAP protein, and βPIX, a RhoGEF protein for Rac1 and Cdc42, actin binding proteins and actin modulators. Dysregulation of all isoforms of Shank proteins, but especially Shank3, leads to alterations in spine morphogenesis, shape, and activity of the synapse via altering actin dynamics. Therefore, here, we highlight the role of Shank proteins as modulators of small GTPases and, ultimately, actin dynamics, as found in multiple in vitro and in vivo models. The failure to mediate this regulatory role might present a shared mechanism in the pathophysiology of autism-associated mutations, which leads to dysregulation of spine morphogenesis and synaptic signaling.
Collapse
|
216
|
Vahdatpour C, Dyer AH, Tropea D. Insulin-Like Growth Factor 1 and Related Compounds in the Treatment of Childhood-Onset Neurodevelopmental Disorders. Front Neurosci 2016; 10:450. [PMID: 27746717 PMCID: PMC5043261 DOI: 10.3389/fnins.2016.00450] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022] Open
Abstract
Insulin-Like Growth Factor 1 (IGF-1) is a neurotrophic polypeptide with crucial roles to play in Central Nervous System (CNS) growth, development and maturation. Following interrogation of the neurobiology underlying several neurodevelopmental disorders and Autism Spectrum Disorders (ASD), both recombinant IGF-1 (mecasermin) and related derivatives, such as (1-3)IGF-1, have emerged as potential therapeutic approaches. Clinical pilot studies and early reports have supported the safety/preliminary efficacy of IGF-1 and related compounds in the treatment of Rett Syndrome, with evidence mounting for its use in Phelan McDermid Syndrome and Fragile X Syndrome. In ASD, clinical trials are ongoing. Here, we review the role of IGF-1 in the molecular etiologies of these conditions in addition to the accumulating evidence from early clinical studies highlighting the possibility of IGF-1 and related compounds as potential treatments for these childhood-onset neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Adam H. Dyer
- School of Medicine, Trinity College DublinDublin, Ireland
| | - Daniela Tropea
- Department of Psychiatry, Trinity College DublinDublin, Ireland
| |
Collapse
|
217
|
Peterson JF, Bick DP, Geddes GC, McCarrier J, Grignon JW, Chirempes B, Broeckel U, Abidi F, Rogers RC, Boccuto L, DuPont B, vanTuinen P. Concomitant 11p15.4-p15.5 duplication and terminal 22q13.33 deletion in a patient with features of Beckwith-Wiedemann syndrome. Am J Med Genet A 2016; 170:3348-3351. [DOI: 10.1002/ajmg.a.37939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/10/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jess F. Peterson
- Department of Pathology; Medical College of Wisconsin; Milwaukee
- Wisconsin Diagnostic Laboratories; Milwaukee
| | - David P. Bick
- Department of Pediatrics; Section of Genetics; Medical College of Wisconsin; Milwaukee
- Advanced Genomics Laboratory; Children's Hospital of Wisconsin; Milwaukee
| | - Gabrielle C. Geddes
- Department of Pediatrics; Section of Genetics; Medical College of Wisconsin; Milwaukee
| | - Julie McCarrier
- Department of Pediatrics; Section of Genetics; Medical College of Wisconsin; Milwaukee
| | | | - Brett Chirempes
- Advanced Genomics Laboratory; Children's Hospital of Wisconsin; Milwaukee
| | - Ulrich Broeckel
- Department of Pediatrics; Section of Genetics; Medical College of Wisconsin; Milwaukee
- Department of Pediatrics; Section of Genomic Pediatrics; Medical College of Wisconsin; Milwaukee
| | | | | | | | | | - Peter vanTuinen
- Department of Pathology; Medical College of Wisconsin; Milwaukee
- Wisconsin Diagnostic Laboratories; Milwaukee
| |
Collapse
|
218
|
Naoufal R, Legendre M, Couet D, Gilbert-Dussardier B, Kitzis A, Bilan F, Harbuz R. Association of structural and numerical anomalies of chromosome 22 in a patient with syndromic intellectual disability. Eur J Med Genet 2016; 59:483-7. [PMID: 27452446 DOI: 10.1016/j.ejmg.2016.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/02/2016] [Accepted: 07/17/2016] [Indexed: 12/28/2022]
Abstract
Array comparative genomic hybridization (aCGH) is now widely adopted as a first-tier clinical diagnostic test for patients with developmental delay (DD)/intellectual disability (ID), autism spectrum disorders, and multiple congenital anomalies. Nevertheless, classic karyotyping still has its impact in diagnosing genetic diseases, particularly mosaic cases. We report on a 30 year old patient with syndromic intellectual disability, a 22q13.2 microdeletion and mosaic trisomy 22. The patient had the following clinical features: intrauterine growth retardation at birth, hypotonia, cryptorchidism, facial asymmetry, enophthalmus, mild prognathism, bifid uvula, hypoplastic upper limb phalanges, DD including speech delay, and ID. Whole genome aCGH showed a de novo 1 Mb interstitial heterozygous deletion in 22q13.2, confirmed by fluorescence in situ hybridization in all cells examined. Moreover, 18% cells had an extra chromosome 22 suggesting a trisomy 22 mosaicism. Almost all 22q13 deletions published so far have been terminal deletions with variable sizes (100 kb to over 9 Mb). Very few cases of interstitial 22q13.2 deletions were reported. In its mosaic form, trisomy 22 is compatible with life, and there are about 20 reports in the literature. It has a variable clinical presentation: growth restriction, dysmorphic features, cardiovascular abnormalities, hemihyperplasia, genitourinary tract anomalies and ID. Neurodevelopmental outcome ranges from normal to severe DD. The patient presents clinical features that are common to both the interstitial 22q13 deletion and the mosaic trisomy 22; characteristics related to the interstitial deletion alone and others explained solely by the mosaic trisomy. Our case points out the role of conventional cytogenetic tools in mosaic cases that could be missed by microarray technology. We therefore suggest the combination of both conventional and molecular karyotyping in the investigation of certain genetic diseases.
Collapse
Affiliation(s)
- Rania Naoufal
- Service de Génétique, Centre de Référence Anomalies du Développement Ouest, CHU de Poitiers, France.
| | - Marine Legendre
- Service de Génétique, Centre de Référence Anomalies du Développement Ouest, CHU de Poitiers, France; EA 3808, Université de Poitiers, France
| | - Dominique Couet
- Service de Génétique, Centre de Référence Anomalies du Développement Ouest, CHU de Poitiers, France; EA 3808, Université de Poitiers, France
| | - Brigitte Gilbert-Dussardier
- Service de Génétique, Centre de Référence Anomalies du Développement Ouest, CHU de Poitiers, France; EA 3808, Université de Poitiers, France
| | - Alain Kitzis
- Service de Génétique, Centre de Référence Anomalies du Développement Ouest, CHU de Poitiers, France; EA 3808, Université de Poitiers, France
| | - Frederic Bilan
- Service de Génétique, Centre de Référence Anomalies du Développement Ouest, CHU de Poitiers, France; EA 3808, Université de Poitiers, France
| | - Radu Harbuz
- Service de Génétique, Centre de Référence Anomalies du Développement Ouest, CHU de Poitiers, France; EA 3808, Université de Poitiers, France
| |
Collapse
|
219
|
Priest MF, Kozorovitskiy Y. PAM helps solve VTA's SHANKless problem. Nat Neurosci 2016; 19:864-6. [DOI: 10.1038/nn.4336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
220
|
Bariselli S, Tzanoulinou S, Glangetas C, Prévost-Solié C, Pucci L, Viguié J, Bezzi P, O'Connor EC, Georges F, Lüscher C, Bellone C. SHANK3 controls maturation of social reward circuits in the VTA. Nat Neurosci 2016; 19:926-934. [PMID: 27273769 PMCID: PMC4948673 DOI: 10.1038/nn.4319] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022]
Abstract
Haploinsufficiency of SHANK3, encoding the synapse scaffolding protein SHANK3, leads to a highly penetrant form of Autism Spectrum Disorder (ASD). How SHANK3 insufficiency affects specific neural circuits and this is related to specific ASD symptoms remains elusive. Here we used shRNA to model Shank3 insufficiency in the Ventral Tegmental Area (VTA) of mice. We identified dopamine (DA) and GABA cell-type specific changes in excitatory synapse transmission that converge to reduce DA neuron activity and generate behavioral deficits, including impaired social preference. Administration of a positive allosteric modulator of the type 1 metabotropic glutamate receptors (mGluR1) during the first postnatal week restored DA neuron excitatory synapse transmission and rescued the social preference defects, while optogenetic DA neuron stimulation was sufficient to enhance social preference. Collectively, these data reveal the contribution of impaired VTA function to social behaviors and identify mGluR1 modulation during postnatal development as a potential treatment strategy.
Collapse
Affiliation(s)
- Sebastiano Bariselli
- Dept. of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland
| | - Stamatina Tzanoulinou
- Dept. of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland
| | - Christelle Glangetas
- Dept. of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland.,Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Clément Prévost-Solié
- Dept. of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland
| | - Luca Pucci
- Dept. of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland
| | - Joanna Viguié
- Dept. of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Paola Bezzi
- Dept. of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland
| | - Eoin C O'Connor
- Dept. of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - François Georges
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Université de Bordeaux, Bordeaux, France.,Centre National de la Recherche Scientifique, Neurodegeneratives diseases Institute, UMR 5293, Bordeaux, France
| | - Christian Lüscher
- Dept. of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland.,Clinic of Neurology, Geneva University Hospital, CH-1211 Geneva, Switzerland
| | - Camilla Bellone
- Dept. of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland
| |
Collapse
|
221
|
Copping NA, Berg EL, Foley GM, Schaffler MD, Onaga BL, Buscher N, Silverman JL, Yang M. Touchscreen learning deficits and normal social approach behavior in the Shank3B model of Phelan-McDermid Syndrome and autism. Neuroscience 2016; 345:155-165. [PMID: 27189882 DOI: 10.1016/j.neuroscience.2016.05.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 11/24/2022]
Abstract
SHANK3 is a synaptic scaffolding protein localized in the postsynaptic density and has a crucial role in synaptogenesis and neural physiology. Deletions and point mutations in SHANK3 cause Phelan-McDermid Syndrome (PMS), and have also been implicated in autism spectrum disorder (ASD) and intellectual disabilities, leading to the hypothesis that reduced SHANK3 expression impairs basic brain functions that are important for social communication and cognition. Several mouse models of Shank3 deletions have been generated, varying in the specific domain deleted. Here we report impairments in cognitive function in mice heterozygous for exon 13-16 (coding for the PDZ domain) deletion. The touchscreen pairwise discrimination task was chosen by virtue of its: (a) conceptual and technical similarities to the Cambridge Neuropsychological Test Automated Battery (CANTAB) and NIH Toolbox Cognition Battery used for testing cognitive functions in humans, (b) minimal demand on motor abilities, and (c) capability to measure many aspects of learning and memory and complex cognitive functions, including cognitive flexibility. The similarity between our mouse tasks and human cognitive assays means a high translational validity in future intervention studies using preclinical models. Our study revealed that Shank3B heterozygous mice (+/-) were slower to reach criterion in the pairwise visual discrimination task, and exhibited trends toward making more errors (first trial errors) and more correction errors than wildtype mice (+/+). Open field activity was normal in +/-, ruling out hypo- or hyperactivity as potential confounds in the touchscreen test. Sociability in the three chamber test was also normal in both +/+ and +/-. These results indicate a deficit in discrimination learning in the Shank3B model of PMS and ASD, suggesting that this mouse model is a useful preclinical tool for studying neurobiological mechanisms behind cognitive impairments in PMS and ASD. The current findings are the starting point for our future research in which we will investigate multiple domains of cognition and explore pharmacological interventions.
Collapse
Affiliation(s)
- Nycole A Copping
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, United States
| | - Elizabeth L Berg
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, United States
| | - Gillian M Foley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, United States
| | - Melanie D Schaffler
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, United States
| | - Beth L Onaga
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, United States
| | - Nathalie Buscher
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, United States
| | - Jill L Silverman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, United States
| | - Mu Yang
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817, United States.
| |
Collapse
|
222
|
Zwanenburg RJ, Ruiter SA, van den Heuvel ER, Flapper BC, Van Ravenswaaij-Arts CM. Developmental phenotype in Phelan-McDermid (22q13.3 deletion) syndrome: a systematic and prospective study in 34 children. J Neurodev Disord 2016; 8:16. [PMID: 27118998 PMCID: PMC4845478 DOI: 10.1186/s11689-016-9150-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/08/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) or 22q13.3 deletion syndrome is characterized by global developmental delay, cognitive deficits, and behaviour in the autism spectrum. Knowledge about developmental and behavioural characteristics of this rare chromosomal disorder is still limited despite a rapid growing number of diagnoses. Our aim was to study a new and relatively large cohort to further characterize the developmental phenotype of children with PMS. METHODS We performed a descriptive study of children with a 22q13.3 deletion including SHANK3, aged 8 to 178 months, who were systematically (n = 34) and longitudinally (n = 29) assessed with standardized instruments: Bayley Scales of Infant and Toddler Development, third edition; Wechsler Preschool and Primary Scale of Intelligence, third edition; and Vineland Screener for Social and Adaptive Behavior. RESULTS Maximal developmental functioning ranged from 34 to 52 months depending on the developmental domain. In general, children performed poorest in the domain of language and best on the domain of motor (young children) or cognitive development (older children). At the individual level, 25 % scored better for receptive and 18 % for expressive language, whereas 22 % scored better for fine and 33 % for gross motor function. Developmental quotients were higher in younger children and decreased with age for all developmental domains, with 38 % of the children showing no improvement of cognitive developmental functioning. Almost all children (33/34) had significant deficits in adaptive behaviour. Children with very small deletions, covering only the SHANK3, ACR, and RABL2B genes, had a more favourable developmental phenotype. CONCLUSIONS Cognitive, motor, and especially language development were significantly impaired in all children with PMS but also highly variable and unpredictable. In addition, deficits in adaptive behaviour further hampered their cognitive development. Therefore, cognitive and behavioural characteristics should be evaluated and followed in each child with PMS to adapt supportive and therapeutic strategies to individual needs. Further research evaluating the relationship between deletion characteristics and the developmental phenotype is warranted to improve counselling of parents.
Collapse
Affiliation(s)
- Renée J. Zwanenburg
- />University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Selma A.J. Ruiter
- />De Kinderacademie Groningen, Centre of Expertise for Child Development Care and Research, Herestraat 106, 9711 GH Groningen, The Netherlands
| | - Edwin R. van den Heuvel
- />Eindhoven University of Technology, Department of Mathematics and Computer Science, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Boudien C.T. Flapper
- />University of Groningen, University Medical Center Groningen, Department of Pediatrics, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Conny M.A. Van Ravenswaaij-Arts
- />University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
223
|
Liu HY, Huang J, Li T, Wu D, Wang HD, Wang Y, Wang T, Guo LJ, Guo QN, Huang FF, Wang RL, Wang YT. Clinical and molecular cytogenetic analyses of four patients with imbalanced translocations. Mol Cytogenet 2016; 9:31. [PMID: 27099631 PMCID: PMC4837590 DOI: 10.1186/s13039-016-0244-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/12/2016] [Indexed: 01/24/2023] Open
Abstract
Background Chromosomal abnormalities that result in genomic imbalances are main causes of congenital and developmental anomalies including intellectual disability and multiple congenital malformations. In this report we describe four patients from three families with imbalanced translocations. Only a small percentage of imbalanced translocation individuals can be born to live, most of them were aborted in embryonic period. It is of great significances to precisely analysis the chromosome variation to study the relationship between genotype and phenotype. Results Four patients showed common clinical manifestations including delayed growth, intellectual disability, language barrier and facial dysmorphisms. In addition to the above features, lower limbs dysplasia and both foot eversion were found in patient 1, brachydactylic hand, cerebellar ataxia and congenital heart defects were also found in patient 4. Conventional karyotype analysis revealed abnormal karyotypes 46, XX, der (6) t (6: 10) (p23; q24), 46, XX, der (20) t (3; 20) (p23; p13) and 46, XX, der (22) t (3; 22) (q27; q13.3) in the four patients, respectively. Array-CGH analyses confirmed 23.6 Mb duplication on 10q25.1-q26.3 and 0.9 Mb deletions on 6p25.3, 19.9 Mb duplication on 3p24.3-p26.3 and 0.25 Mb deletion on 20p13 and 12.5 Mb duplication on 3q27.2-q29 and 1.9 Mb deletions on 22q13.2-q13.33 in the four patients, respectively. Conclusion Parents with balanced translocation are passed the imbalanced chromosome to patient, and the partial monosomy and partial trisomy lead to multiple congenital malformations of four patients. Electronic supplementary material The online version of this article (doi:10.1186/s13039-016-0244-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Yan Liu
- Department of Medical Genetics Institute, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, 450003 Henan China
| | - Jia Huang
- Department of Medical Genetics Institute, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, 450003 Henan China
| | - Tao Li
- Department of Medical Genetics Institute, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, 450003 Henan China
| | - Dong Wu
- Department of Medical Genetics Institute, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, 450003 Henan China
| | - Hong Dan Wang
- Department of Medical Genetics Institute, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, 450003 Henan China
| | - Yue Wang
- Department of Gynaecology and Obstetrics, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, 450003 Henan China
| | - Tao Wang
- Department of Medical Genetics Institute, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, 450003 Henan China
| | - Liang Jie Guo
- Department of Medical Genetics Institute, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, 450003 Henan China
| | - Qian Nan Guo
- Department of Medical Genetics Institute, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, 450003 Henan China
| | - Fei Fei Huang
- Department of Medical Genetics Institute, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, 450003 Henan China
| | - Rui Li Wang
- Department of Ultrasonography, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, 450003 Henan China
| | - Ying Tai Wang
- Department of Medical Genetics Institute, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, 450003 Henan China
| |
Collapse
|
224
|
Wang AT, Lim T, Jamison J, Bush L, Soorya LV, Tavassoli T, Siper PM, Buxbaum JD, Kolevzon A. Neural selectivity for communicative auditory signals in Phelan-McDermid syndrome. J Neurodev Disord 2016; 8:5. [PMID: 26909118 PMCID: PMC4763436 DOI: 10.1186/s11689-016-9138-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/03/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS), a neurodevelopmental disorder caused by deletion or mutation in the SHANK3 gene, is one of the more common single-locus causes of autism spectrum disorder (ASD). PMS is characterized by global developmental delay, hypotonia, delayed or absent speech, increased risk of seizures, and minor dysmorphic features. Impairments in language and communication are one of the most consistent characteristics of PMS. Although there is considerable overlap in the social communicative deficits associated with PMS and ASD, there is a dearth of data on underlying abnormalities at the level of neural systems in PMS. No controlled neuroimaging studies of PMS have been reported to date. The goal of this study was to examine the neural circuitry supporting the perception of auditory communicative signals in children with PMS as compared to idiopathic ASD (iASD). METHODS Eleven children with PMS and nine comparison children with iASD were scanned using functional magnetic resonance imaging (fMRI) under light sedation. The fMRI paradigm was a previously validated passive auditory task, which presented communicative (e.g., speech, sounds of agreement, disgust) and non-communicative vocalizations (e.g., sneezing, coughing, yawning). RESULTS Previous research has shown that the superior temporal gyrus (STG) responds selectively to communicative vocal signals in typically developing children and adults. Here, selective activity for communicative relative to non-communicative vocalizations was detected in the right STG in the PMS group, but not in the iASD group. The PMS group also showed preferential activity for communicative vocalizations in a range of other brain regions associated with social cognition, such as the medial prefrontal cortex (MPFC), insula, and inferior frontal gyrus. Interestingly, better orienting toward social sounds was positively correlated with selective activity in the STG and other "social brain" regions, including the MPFC, in the PMS group. Finally, selective MPFC activity for communicative sounds was associated with receptive language level in the PMS group and expressive language in the iASD group. CONCLUSIONS Despite shared behavioral features, children with PMS differed from children with iASD in their neural response to communicative vocal sounds and showed relative strengths in this area. Furthermore, the relationship between clinical characteristics and neural selectivity also differed between the two groups, suggesting that shared ASD features may partially reflect different neurofunctional abnormalities due to differing etiologies.
Collapse
Affiliation(s)
- A Ting Wang
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY 10029 USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Teresa Lim
- Department of Psychiatry, Rouge Valley Health System, Toronto, Canada
| | - Jesslyn Jamison
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY 10029 USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Lauren Bush
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL USA
| | | | - Teresa Tavassoli
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY 10029 USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Paige M Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY 10029 USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY 10029 USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA ; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY 10029 USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
225
|
Bidinosti M, Botta P, Krüttner S, Proenca CC, Stoehr N, Bernhard M, Fruh I, Mueller M, Bonenfant D, Voshol H, Carbone W, Neal SJ, McTighe SM, Roma G, Dolmetsch RE, Porter JA, Caroni P, Bouwmeester T, Lüthi A, Galimberti I. CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science 2016; 351:1199-203. [PMID: 26847545 DOI: 10.1126/science.aad5487] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/22/2016] [Indexed: 12/17/2022]
Abstract
SH3 and multiple ankyrin repeat domains 3 (SHANK3) haploinsufficiency is causative for the neurological features of Phelan-McDermid syndrome (PMDS), including a high risk of autism spectrum disorder (ASD). We used unbiased, quantitative proteomics to identify changes in the phosphoproteome of Shank3-deficient neurons. Down-regulation of protein kinase B (PKB/Akt)-mammalian target of rapamycin complex 1 (mTORC1) signaling resulted from enhanced phosphorylation and activation of serine/threonine protein phosphatase 2A (PP2A) regulatory subunit, B56β, due to increased steady-state levels of its kinase, Cdc2-like kinase 2 (CLK2). Pharmacological and genetic activation of Akt or inhibition of CLK2 relieved synaptic deficits in Shank3-deficient and PMDS patient-derived neurons. CLK2 inhibition also restored normal sociability in a Shank3-deficient mouse model. Our study thereby provides a novel mechanistic and potentially therapeutic understanding of deregulated signaling downstream of Shank3 deficiency.
Collapse
Affiliation(s)
- Michael Bidinosti
- Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Paolo Botta
- Friedrich Miescher Institute, Basel, Switzerland
| | | | - Catia C Proenca
- Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Natacha Stoehr
- Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Mario Bernhard
- Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Isabelle Fruh
- Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Matthias Mueller
- Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Debora Bonenfant
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Hans Voshol
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Walter Carbone
- Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sarah J Neal
- Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, USA
| | | | - Guglielmo Roma
- Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Jeffrey A Porter
- Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Pico Caroni
- Friedrich Miescher Institute, Basel, Switzerland
| | - Tewis Bouwmeester
- Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Ivan Galimberti
- Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
226
|
Frye RE, Cox D, Slattery J, Tippett M, Kahler S, Granpeesheh D, Damle S, Legido A, Goldenthal MJ. Mitochondrial Dysfunction may explain symptom variation in Phelan-McDermid Syndrome. Sci Rep 2016; 6:19544. [PMID: 26822410 PMCID: PMC4731780 DOI: 10.1038/srep19544] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/09/2015] [Indexed: 12/02/2022] Open
Abstract
Phelan-McDermid Syndrome (PMS), which is defined by a deletion within 22q13, demonstrates significant phenotypic variation. Given that six mitochondrial genes are located within 22q13, including complex I and IV genes, we hypothesize that mitochondrial complex activity abnormalities may explain phenotypic variation in PMS symptoms. Complex I, II, II + III and IV activity was measured in 51 PMS participants. Caretakers completed questionnaires and provided genetic information through the PMS foundation registry. Complex activity was abnormal in 59% of PMS participants. Abnormalities were found in complex I and IV but not complex II + III and II activity, consistent with disruption of genes within the 22q13 region. However, complex activity abnormalities were not related to specific gene deletions suggesting a "neighboring effect" of regional deletions on adjacent gene expression. A specific combination of symptoms (autism spectrum disorder, developmental regression, failure-to-thrive, exercise intolerance/fatigue) was associated with complex activity abnormalities. 64% of 106 individuals in the PMS foundation registry who did not have complex activity measured also endorsed this pattern of symptoms. These data suggest that mitochondrial abnormalities, specifically abnormalities in complex I and IV activity, may explain some phenotypic variation in PMS individuals. These results point to novel pathophysiology mechanisms and treatment targets for PMS patients.
Collapse
Affiliation(s)
- Richard E. Frye
- University of Arkansas for Medical Sciences, Department of Pediatrics, Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, AR 72202, USA
| | - Devin Cox
- Kansas University Medical Center, Kansas City, Kansas, KS, USA
| | - John Slattery
- University of Arkansas for Medical Sciences, Department of Pediatrics, Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, AR 72202, USA
| | - Marie Tippett
- University of Arkansas for Medical Sciences, Department of Pediatrics, Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, AR 72202, USA
| | - Stephen Kahler
- University of Arkansas for Medical Sciences, Department of Pediatrics, Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, AR 72202, USA
| | - Doreen Granpeesheh
- Center for Autism and Related Disorders, Inc., Woodland Hills, California, CA, USA
| | - Shirish Damle
- Drexel University College of Medicine, Department of Pediatrics, Neurology Section, St. Christopher’s Hospital for Children, Philadelphia, PA 19134, USA
| | - Agustin Legido
- Drexel University College of Medicine, Department of Pediatrics, Neurology Section, St. Christopher’s Hospital for Children, Philadelphia, PA 19134, USA
| | - Michael J. Goldenthal
- Drexel University College of Medicine, Department of Pediatrics, Neurology Section, St. Christopher’s Hospital for Children, Philadelphia, PA 19134, USA
| |
Collapse
|
227
|
Luk HM. Angelman-Like Syndrome: A Genetic Approach to Diagnosis with Illustrative Cases. Case Rep Genet 2016; 2016:9790169. [PMID: 26942024 PMCID: PMC4749774 DOI: 10.1155/2016/9790169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 11/23/2022] Open
Abstract
Epigenetic abnormalities in 15q11-13 imprinted region and UBE3A mutation are the two major mechanisms for molecularly confirmed Angelman Syndrome. However, there is 10% of clinically diagnosed Angelman Syndrome remaining test negative. With the advancement of genomic technology like array comparative genomic hybridization and next generation sequencing methods, it is found that some patients of these test negative Angelman-like Syndromes actually have alternative diagnoses. Accurate molecular diagnosis is paramount for genetic counseling and subsequent management. Despite overlapping phenotypes between Angelman and Angelman-like Syndrome, there are some subtle but distinct features which could differentiate them clinically. It would provide important clue during the diagnostic process for clinicians.
Collapse
Affiliation(s)
- Ho-Ming Luk
- Clinical Genetic Service, Department of Health, Kowloon, Hong Kong
| |
Collapse
|
228
|
Kim S, Kim MK, Oh D, Lee SH, Kim B. Induced Pluripotent Stem Cells as a Novel Tool in Psychiatric Research. Psychiatry Investig 2016; 13:8-17. [PMID: 26766942 PMCID: PMC4701689 DOI: 10.4306/pi.2016.13.1.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/11/2015] [Accepted: 06/26/2015] [Indexed: 12/19/2022] Open
Abstract
Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) provides a valuable opportunity to study neurodevelopmental and neurodegenerative psychiatric diseases by offering an unlimited source for patient-specific neuronal and glial cells. The present review focuses on the recent advancements in modeling psychiatric disorders such as Phelan-McDermid syndrome, Timothy syndrome, Rett syndrome, schizophrenia, bipolar disorder, and dementia. The treatment effects identified in studies on iPSCs using known therapeutic compounds are also summarized in this review. Here we discuss validation of cellular models and explore iPSCs as a novel drug screening tool. Although there are several limitations associated with the current methods used to study mental disorders, using iPSCs as a model system provides the advantage of rewinding and reviewing the development and degeneration of human neural cells.
Collapse
Affiliation(s)
- Sewoong Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Min-Kyoung Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Daeyoung Oh
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Borah Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
229
|
Kazdoba TM, Leach PT, Crawley JN. Behavioral phenotypes of genetic mouse models of autism. GENES, BRAIN, AND BEHAVIOR 2016; 15:7-26. [PMID: 26403076 PMCID: PMC4775274 DOI: 10.1111/gbb.12256] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/27/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism.
Collapse
Affiliation(s)
- T. M. Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - P. T. Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - J. N. Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
230
|
Harony-Nicolas H, De Rubeis S, Kolevzon A, Buxbaum JD. Phelan McDermid Syndrome: From Genetic Discoveries to Animal Models and Treatment. J Child Neurol 2015; 30:1861-70. [PMID: 26350728 PMCID: PMC5321557 DOI: 10.1177/0883073815600872] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 01/16/2023]
Abstract
Phelan-McDermid syndrome or 22q13.3 deletion syndrome is a rare neurodevelopmental disorder characterized by generalized developmental delay, intellectual disability, absent or delayed speech, seizures, autism spectrum disorder, neonatal hypotonia, physical dysmorphic features, and recurrent medical comorbidities. Individuals with Phelan-McDermid syndrome have terminal deletions of the chromosomal region 22q13.3 encompassing SHANK3, a gene encoding a structural component of excitatory synapses indispensable for proper synaptogenesis and neuronal physiology, or point mutations within the gene. Here, we review the clinical aspects of the syndrome and the genetic findings shedding light onto the underlying etiology. We also provide an overview on the evidence from genetic studies and mouse models that supports SHANK3 haploinsufficiency as a major contributor of the neurobehavioral manifestations of Phelan-McDermid syndrome. Finally, we discuss how all these discoveries are uncovering the pathophysiology of Phelan-McDermid syndrome and are being translated into clinical trials for novel therapeutics ameliorating the core symptoms of the disorder.
Collapse
Affiliation(s)
- Hala Harony-Nicolas
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
231
|
Yoo H. Genetics of Autism Spectrum Disorder: Current Status and Possible Clinical Applications. Exp Neurobiol 2015; 24:257-72. [PMID: 26713075 PMCID: PMC4688327 DOI: 10.5607/en.2015.24.4.257] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is one of the most complex behavioral disorders with a strong genetic influence. The objectives of this article are to review the current status of genetic research in ASD, and to provide information regarding the potential candidate genes, mutations, and genetic loci possibly related to pathogenesis in ASD. Investigations on monogenic causes of ASD, candidate genes among common variants, rare de novo mutations, and copy number variations are reviewed. The current possible clinical applications of the genetic knowledge and their future possibilities are highlighted.
Collapse
Affiliation(s)
- Heejeong Yoo
- Department of Psychiatry, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea
| |
Collapse
|
232
|
Microdeletions in 9q33.3-q34.11 in five patients with intellectual disability, microcephaly, and seizures of incomplete penetrance: is STXBP1 not the only causative gene? Mol Cytogenet 2015; 8:72. [PMID: 26421060 PMCID: PMC4587785 DOI: 10.1186/s13039-015-0178-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/22/2015] [Indexed: 11/18/2022] Open
Abstract
Background Most microdeletions involving chromosome sub-bands 9q33.3-9q34.11 to this point have been detected by analyses focused on STXBP1, a gene known to cause early infantile epileptic encephalopathy 4 and other seizure phenotypes. Loss-of-function mutations of STXBP1 have also been identified in some patients with intellectual disability without epilepsy. Consequently, STXBP1 is widely assumed to be the gene causing both seizures and intellectual disability in patients with 9q33.3-q34.11 microdeletions. Results We report five patients with overlapping microdeletions of chromosome 9q33.3-q34.11, four of them previously unreported. Their common clinical features include intellectual disability, psychomotor developmental delay with delayed or absent speech, muscular hypotonia, and strabismus. Microcephaly and short stature are each present in four of the patients. Two of the patients had seizures. De novo deletions range from 1.23 to 4.13 Mb, whereas the smallest deletion of 432 kb in patient 3 was inherited from her mother who is reported to have mild intellectual disability. The smallest region of overlap (SRO) of these deletions in 9q33.3 does not encompass STXBP1, but includes two genes that have not been previously associated with disease, RALGPS1 and GARNL3. Sequencing of the two SRO genes RALGPS1 and GARNL3 in at least 156 unrelated patients with mild to severe idiopathic intellectual disability detected no causative mutations. Gene expression analyses in our patients demonstrated significantly reduced expression levels of GARNL3, RALGPS1 and STXBP1 only in patients with deletions of the corresponding genes. Thus, reduced expression of STXBP1 was ruled out as a cause for seizures in our patient whose deletion did not encompass STXBP1. Conclusions We suggest that microdeletions of this region on chromosome 9q cause a clinical spectrum including intellectual disability, developmental delay especially concerning speech, microcephaly, short stature, mild dysmorphisms, strabismus, and seizures of incomplete penetrance, and may constitute a new contiguous gene deletion syndrome which cannot completely be explained by deletion of STXBP1. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0178-8) contains supplementary material, which is available to authorized users.
Collapse
|
233
|
Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes Impaired Synaptic Transmission and Behavioral Deficits. J Neurosci 2015; 35:9648-65. [PMID: 26134648 DOI: 10.1523/jneurosci.3125-14.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SHANK3 (also known as PROSAP2) is a postsynaptic scaffolding protein at excitatory synapses in which mutations and deletions have been implicated in patients with idiopathic autism, Phelan-McDermid (aka 22q13 microdeletion) syndrome, and other neuropsychiatric disorders. In this study, we have created a novel mouse model of human autism caused by the insertion of a single guanine nucleotide into exon 21 (Shank3(G)). The resulting frameshift causes a premature STOP codon and loss of major higher molecular weight Shank3 isoforms at the synapse. Shank3(G/G) mice exhibit deficits in hippocampus-dependent spatial learning, impaired motor coordination, altered response to novelty, and sensory processing deficits. At the cellular level, Shank3(G/G) mice also exhibit impaired hippocampal excitatory transmission and plasticity as well as changes in baseline NMDA receptor-mediated synaptic responses. This work identifies clear alterations in synaptic function and behavior in a novel, genetically accurate mouse model of autism mimicking an autism-associated insertion mutation. Furthermore, these findings lay the foundation for future studies aimed to validate and study region-selective and temporally selective genetic reversal studies in the Shank3(G/G) mouse that was engineered with such future experiments in mind.
Collapse
|
234
|
Mosconi MW, Wang Z, Schmitt LM, Tsai P, Sweeney JA. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front Neurosci 2015; 9:296. [PMID: 26388713 PMCID: PMC4555040 DOI: 10.3389/fnins.2015.00296] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023] Open
Abstract
The cerebellum has been repeatedly implicated in gene expression, rodent model and post-mortem studies of autism spectrum disorder (ASD). How cellular and molecular anomalies of the cerebellum relate to clinical manifestations of ASD remains unclear. Separate circuits of the cerebellum control different sensorimotor behaviors, such as maintaining balance, walking, making eye movements, reaching, and grasping. Each of these behaviors has been found to be impaired in ASD, suggesting that multiple distinct circuits of the cerebellum may be involved in the pathogenesis of patients' sensorimotor impairments. We will review evidence that the development of these circuits is disrupted in individuals with ASD and that their study may help elucidate the pathophysiology of sensorimotor deficits and core symptoms of the disorder. Preclinical studies of monogenetic conditions associated with ASD also have identified selective defects of the cerebellum and documented behavioral rescues when the cerebellum is targeted. Based on these findings, we propose that cerebellar circuits may prove to be promising targets for therapeutic development aimed at rescuing sensorimotor and other clinical symptoms of different forms of ASD.
Collapse
Affiliation(s)
- Matthew W Mosconi
- Clinical Child Psychology Program and Schiefelbusch Institute for Life Span Studies, University of Kansas Lawrence, KS, USA ; Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA ; Department of Pediatrics, University of Texas Southwestern Dallas, TX, USA
| | - Zheng Wang
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA
| | - Lauren M Schmitt
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA
| | - Peter Tsai
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA ; Department of Pediatrics, University of Texas Southwestern Dallas, TX, USA ; Department of Neurology and Neurotherapeutics, University of Texas Southwestern Dallas, TX, USA ; Department of Neuroscience, University of Texas Southwestern Dallas, TX, USA
| | - John A Sweeney
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA ; Department of Pediatrics, University of Texas Southwestern Dallas, TX, USA
| |
Collapse
|
235
|
Oberman LM, Boccuto L, Cascio L, Sarasua S, Kaufmann WE. Autism spectrum disorder in Phelan-McDermid syndrome: initial characterization and genotype-phenotype correlations. Orphanet J Rare Dis 2015; 10:105. [PMID: 26306707 PMCID: PMC4549933 DOI: 10.1186/s13023-015-0323-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder associated with a terminal deletion affecting chromosome 22 (22q13) that results in the loss of function of the SHANK3 gene. SHANK3 has also been identified in gene-linkage studies to be associated with autism spectrum disorder (ASD). Diagnosis of ASD in individuals with PMS is complicated by the presence of moderate to profound global developmental delay/intellectual disability as well as other co-morbid systemic and neurological symptoms. METHODS The current study aimed to characterize the symptoms of ASD in patients with PMS and to do a preliminary exploration of genotype-ASD phenotype correlations. We conducted a standardized interview with 40 parents/guardians of children with PMS. Further, we conducted analyses on the relationship between disruption of SHANK3 and adjacent genes on specific characteristic symptoms of ASD in PMS in small subset of the sample. RESULTS The majority of PMS participants in our sample displayed persistent deficits in Social communication, but only half met diagnostic criteria under the restricted, repetitive patterns of behavior, interests, or activities domain. Furthermore, logistic regressions indicated that general developmental delay significantly contributed to the ASD diagnosis. The analyses relating the PMS genotype to the behavioral phenotype revealed additional complex relationships with contributions of genes in both deleted and preserved SHANK3 regions to the ASD phenotype and other neurobehavioral impairments. CONCLUSIONS There appears to be a unique behavioral phenotype associated with ASD in individuals with PMS. There also appears to be contributions of genes in both deleted and preserved SHANK3 regions to the ASD phenotype and other neurobehavioral impairments. Better characterization of the behavioral phenotype using additional standardized assessments and further analyses exploring the relationship between the PMS genotype and behavioral phenotype in a larger sample are warranted.
Collapse
Affiliation(s)
- Lindsay M Oberman
- Department of Neurology, Boston Children's Hospital, and Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Neuroplasticity and Autism Spectrum Disorder Program, E.P. Bradley Hospital and Warren Alpert Medical School of Brown University, 1011 Veterans Memorial Parkway, East Providence, RI, 02915, USA.
| | - Luigi Boccuto
- JC Self Research Institute, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| | - Lauren Cascio
- JC Self Research Institute, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| | - Sara Sarasua
- JC Self Research Institute, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| | - Walter E Kaufmann
- Department of Neurology, Boston Children's Hospital, and Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
236
|
Acab A, Muotri AR. The Use of Induced Pluripotent Stem Cell Technology to Advance Autism Research and Treatment. Neurotherapeutics 2015; 12:534-45. [PMID: 25851569 PMCID: PMC4489954 DOI: 10.1007/s13311-015-0354-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders sharing a core set of symptoms, including impaired social interaction, language deficits, and repetitive behaviors. While ASDs are highly heritable and demonstrate a clear genetic component, the cellular and molecular mechanisms driving ASD etiology remain undefined. The unavailability of live patient-specific neurons has contributed to the difficulty in studying ASD pathophysiology. The recent advent of induced pluripotent stem cells (iPSCs) has provided the ability to generate patient-specific human neurons from somatic cells. The iPSC field has quickly grown, as researchers have demonstrated the utility of this technology to model several diseases, especially neurologic disorders. Here, we review the current literature around using iPSCs to model ASDs, and discuss the notable findings, and the promise and limitations of this technology. The recent report of a nonsyndromic ASD iPSC model and several previous ASD models demonstrating similar results points to the ability of iPSC to reveal potential novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Allan Acab
- School of Medicine, Department of Pediatrics/Rady Children’s Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, MC 0695, La Jolla, CA 92093 USA
| | - Alysson Renato Muotri
- School of Medicine, Department of Pediatrics/Rady Children’s Hospital San Diego, Department of Cellular and Molecular Medicine, Stem Cell Program, University of California San Diego, MC 0695, La Jolla, CA 92093 USA
| |
Collapse
|
237
|
Abstract
Phelan-McDermid syndrome (PMS), also called 22q13.3 deletion syndrome, is a neurodevelopmental disorder characterized by global developmental delay, intellectual disability, severe speech delays, poor motor tone and function, and autism spectrum disorder (ASD). Although the overall prevalence of PMS is unknown, there have been at least 1200 cases reported worldwide, according to the Phelan-McDermid Syndrome Foundation. PMS is now considered to be a relatively common cause of ASD and intellectual disability, accounting for between 0.5% and 2.0% of cases. The cause of PMS has been isolated to loss of function of one copy of SHANK3, which codes for a master scaffolding protein found in the postsynaptic density of excitatory synapses. Reduced expression of SH3 and multiple ankyrin repeat domains 3 (SHANK3) leads to reduced numbers of dendrites, and impaired synaptic transmission and plasticity. Recent mouse and human neuronal models of PMS have led to important opportunities to develop novel therapeutics, and at least 2 clinical trials are underway, one in the USA, and one in the Netherlands. The SHANK3 pathway may also be relevant to other forms of ASD, and many of the single-gene causes of ASD identified to date appear to converge on several common molecular pathways that underlie synaptic neurotransmission. As a result, treatments developed for PMS may also affect other forms of ASD.
Collapse
Affiliation(s)
- Jesse L. Costales
- />Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alexander Kolevzon
- />Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA
- />Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY USA
- />Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY USA
- />Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- />Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
238
|
Gamsiz ED, Sciarra LN, Maguire AM, Pescosolido MF, van Dyck LI, Morrow EM. Discovery of Rare Mutations in Autism: Elucidating Neurodevelopmental Mechanisms. Neurotherapeutics 2015; 12:553-71. [PMID: 26105128 PMCID: PMC4489950 DOI: 10.1007/s13311-015-0363-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of highly genetic neurodevelopmental disorders characterized by language, social, cognitive, and behavioral abnormalities. ASD is a complex disorder with a heterogeneous etiology. The genetic architecture of autism is such that a variety of different rare mutations have been discovered, including rare monogenic conditions that involve autistic symptoms. Also, de novo copy number variants and single nucleotide variants contribute to disease susceptibility. Finally, autosomal recessive loci are contributing to our understanding of inherited factors. We will review the progress that the field has made in the discovery of these rare genetic variants in autism. We argue that mutation discovery of this sort offers an important opportunity to identify neurodevelopmental mechanisms in disease. The hope is that these mechanisms will show some degree of convergence that may be amenable to treatment intervention.
Collapse
Affiliation(s)
- Ece D. Gamsiz
- />Department of Molecular Biology, Cell Biology and Biochemistry (MCB), and Institute for Brain Science, Brown University, Providence, RI USA
- />Developmental Disorders Genetics Research Program, Emma Pendleton Bradley Hospital and Department of Psychiatry and Human Behavior, Brown University Medical School, Providence, RI USA
| | - Laura N. Sciarra
- />Department of Molecular Biology, Cell Biology and Biochemistry (MCB), and Institute for Brain Science, Brown University, Providence, RI USA
- />Neuroscience Graduate Program (NSGP), Brown University, Providence, RI USA
| | - Abbie M. Maguire
- />Department of Molecular Biology, Cell Biology and Biochemistry (MCB), and Institute for Brain Science, Brown University, Providence, RI USA
- />Molecular Biology, Cell Biology and Biochemistry (MCB) Graduate Training Program, Brown University, Providence, RI USA
| | - Matthew F. Pescosolido
- />Department of Molecular Biology, Cell Biology and Biochemistry (MCB), and Institute for Brain Science, Brown University, Providence, RI USA
- />Neuroscience Graduate Program (NSGP), Brown University, Providence, RI USA
| | - Laura I. van Dyck
- />Department of Molecular Biology, Cell Biology and Biochemistry (MCB), and Institute for Brain Science, Brown University, Providence, RI USA
| | - Eric M. Morrow
- />Department of Molecular Biology, Cell Biology and Biochemistry (MCB), and Institute for Brain Science, Brown University, Providence, RI USA
- />Developmental Disorders Genetics Research Program, Emma Pendleton Bradley Hospital and Department of Psychiatry and Human Behavior, Brown University Medical School, Providence, RI USA
| |
Collapse
|
239
|
Serret S, Thümmler S, Dor E, Vesperini S, Santos A, Askenazy F. Lithium as a rescue therapy for regression and catatonia features in two SHANK3 patients with autism spectrum disorder: case reports. BMC Psychiatry 2015; 15:107. [PMID: 25947967 PMCID: PMC4428105 DOI: 10.1186/s12888-015-0490-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phelan-Mc Dermid syndrome is a contiguous disorder resulting from 22q13.3 deletion implicating the SHANK3 gene. The typical phenotype includes neonatal hypotonia, moderate to severe intellectual disability, absent or delayed speech, minor dysmorphic features and autism or autistic-like behaviour. Recently, point mutations or micro-deletions of the SHANK3 gene have been identified, accompanied by a phenotype different from the initial clinically description in Phelan McDermid syndrome. CASE PRESENTATION Here we present two case studies with similar psychiatric and genetic diagnosis as well as similar clinical history and evolution. The two patients were diagnosed with autism spectrum disorders in childhood and presented regression with catatonia features and behavioural disorders after a stressful event during adolescence. Interestingly, both patients presented mutation/microdeletion of the SHANK3 gene, inducing a premature stop codon in exon 21. Different pharmacological treatments (antipsychotics, benzodiazepines, mood stabilizer drugs, antidepressants, and methylphenidate) failed to improve clinical symptoms and lead to multiple adverse events. In contrast, lithium therapy reversed clinical regression, stabilized behavioural symptoms and allowed patients to recover their pre-catatonia level of functioning, without significant side effects. CONCLUSION These cases support the hypothesis of a specific SHANK3 phenotype. This phenotype might be linked to catatonia-like deterioration for which lithium use could be an efficient treatment. Therefore, these cases provide an important contribution to the field of autism research, clinical genetics and possible pharmacological answers.
Collapse
Affiliation(s)
- Sylvie Serret
- Autism Resources Center, University Child and Adolescent Psychiatry Department, Children's Hospitals of Nice CHU-Lenval, CoBTek EA7276 University of Nice Sophia Antipolis, Nice, France.
| | - Susanne Thümmler
- Autism Resources Center, University Child and Adolescent Psychiatry Department, Children's Hospitals of Nice CHU-Lenval, CoBTek EA7276 University of Nice Sophia Antipolis, Nice, France.
| | - Emmanuelle Dor
- Autism Resources Center, University Child and Adolescent Psychiatry Department, Children's Hospitals of Nice CHU-Lenval, CoBTek EA7276 University of Nice Sophia Antipolis, Nice, France.
| | - Stephanie Vesperini
- Autism Resources Center, University Child and Adolescent Psychiatry Department, Children's Hospitals of Nice CHU-Lenval, CoBTek EA7276 University of Nice Sophia Antipolis, Nice, France.
| | - Andreia Santos
- Autism Resources Center, University Child and Adolescent Psychiatry Department, Children's Hospitals of Nice CHU-Lenval, CoBTek EA7276 University of Nice Sophia Antipolis, Nice, France.
| | - Florence Askenazy
- Autism Resources Center, University Child and Adolescent Psychiatry Department, Children's Hospitals of Nice CHU-Lenval, CoBTek EA7276 University of Nice Sophia Antipolis, Nice, France.
| |
Collapse
|
240
|
Kozol RA, Cukier HN, Zou B, Mayo V, De Rubeis S, Cai G, Griswold AJ, Whitehead PL, Haines JL, Gilbert JR, Cuccaro ML, Martin ER, Baker JD, Buxbaum JD, Pericak-Vance MA, Dallman JE. Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis. Hum Mol Genet 2015; 24:4006-23. [PMID: 25882707 DOI: 10.1093/hmg/ddv138] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/13/2015] [Indexed: 01/09/2023] Open
Abstract
Despite significant progress in the genetics of autism spectrum disorder (ASD), how genetic mutations translate to the behavioral changes characteristic of ASD remains largely unknown. ASD affects 1-2% of children and adults, and is characterized by deficits in verbal and non-verbal communication, and social interactions, as well as the presence of repetitive behaviors and/or stereotyped interests. ASD is clinically and etiologically heterogeneous, with a strong genetic component. Here, we present functional data from syngap1 and shank3 zebrafish loss-of-function models of ASD. SYNGAP1, a synaptic Ras GTPase activating protein, and SHANK3, a synaptic scaffolding protein, were chosen because of mounting evidence that haploinsufficiency in these genes is highly penetrant for ASD and intellectual disability (ID). Orthologs of both SYNGAP1 and SHANK3 are duplicated in the zebrafish genome and we find that all four transcripts (syngap1a, syngap1b, shank3a and shank3b) are expressed at the earliest stages of nervous system development with pronounced expression in the larval brain. Consistent with early expression of these genes, knockdown of syngap1b or shank3a cause common embryonic phenotypes including delayed mid- and hindbrain development, disruptions in motor behaviors that manifest as unproductive swim attempts, and spontaneous, seizure-like behaviors. Our findings indicate that both syngap1b and shank3a play novel roles in morphogenesis resulting in common brain and behavioral phenotypes.
Collapse
Affiliation(s)
- Robert A Kozol
- Department of Biology, University of Miami, Coral Gables, FL, USA,
| | - Holly N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bing Zou
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | - Vera Mayo
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Friedman Brain Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA and
| | - Guiqing Cai
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Friedman Brain Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA and
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Patrice L Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan L Haines
- Department of Epidemiology and Biostatistics, Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - John R Gilbert
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James D Baker
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Friedman Brain Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA and
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Julia E Dallman
- Department of Biology, University of Miami, Coral Gables, FL, USA,
| |
Collapse
|
241
|
Poot M. SHANK Mutations May Disorder Brain Development. Mol Syndromol 2015; 6:1-3. [PMID: 25852441 DOI: 10.1159/000368949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
242
|
Exome sequencing unravels unexpected differential diagnoses in individuals with the tentative diagnosis of Coffin-Siris and Nicolaides-Baraitser syndromes. Hum Genet 2015; 134:553-68. [PMID: 25724810 DOI: 10.1007/s00439-015-1535-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022]
Abstract
Coffin-Siris syndrome (CSS) and Nicolaides-Baraitser syndrome (NCBRS) are rare intellectual disability/congenital malformation syndromes that represent distinct entities but show considerable clinical overlap. They are caused by mutations in genes encoding members of the BRG1- and BRM-associated factor (BAF) complex. However, there are a number of patients with the clinical diagnosis of CSS or NCBRS in whom the causative mutation has not been identified. In this study, we performed trio-based whole-exome sequencing (WES) in ten previously described but unsolved individuals with the tentative diagnosis of CSS or NCBRS and found causative mutations in nine out of ten individuals. Interestingly, our WES analysis disclosed overlapping differential diagnoses including Wiedemann-Steiner, Kabuki, and Adams-Oliver syndromes. In addition, most likely causative de novo mutations were identified in GRIN2A and SHANK3. Moreover, trio-based WES detected SMARCA2 and SMARCA4 deletions, which had not been annotated in a previous Haloplex target enrichment and next-generation sequencing of known CSS/NCBRS genes emphasizing the advantages of WES as a diagnostic tool. In summary, we discuss the phenotypic and diagnostic challenges in clinical genetics, establish important differential diagnoses, and emphasize the cardinal features and the broad clinical spectrum of BAF complex disorders and other disorders caused by mutations in epigenetic landscapers.
Collapse
|
243
|
Disease-in-a-dish: the contribution of patient-specific induced pluripotent stem cell technology to regenerative rehabilitation. Am J Phys Med Rehabil 2014; 93:S155-68. [PMID: 25122102 DOI: 10.1097/phm.0000000000000141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in regenerative medicine technologies will lead to dramatic changes in how patients in rehabilitation medicine clinics are treated in the upcoming decades. The multidisciplinary field of regenerative medicine is developing new tools for disease modeling and drug discovery based on induced pluripotent stem cells. This approach capitalizes on the idea of personalized medicine by using the patient's own cells to discover new drugs, increasing the likelihood of a favorable outcome. The search for compounds that can correct disease defects in the culture dish is a conceptual departure from how drug screens were done in the past. This system proposes a closed loop from sample collection from the diseased patient, to in vitro disease model, to drug discovery and Food and Drug Administration approval, to delivering that drug back to the same patient. Here, recent progress in patient-specific induced pluripotent stem cell derivation, directed differentiation toward diseased cell types, and how those cells can be used for high-throughput drug screens are reviewed. Given that restoration of normal function is a driving force in rehabilitation medicine, the authors believe that this drug discovery platform focusing on phenotypic rescue will become a key contributor to therapeutic compounds in regenerative rehabilitation.
Collapse
|
244
|
Kolevzon A, Angarita B, Bush L, Wang AT, Frank Y, Yang A, Rapaport R, Saland J, Srivastava S, Farrell C, Edelmann LJ, Buxbaum JD. Phelan-McDermid syndrome: a review of the literature and practice parameters for medical assessment and monitoring. J Neurodev Disord 2014; 6:39. [PMID: 25784960 PMCID: PMC4362650 DOI: 10.1186/1866-1955-6-39] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/13/2014] [Indexed: 01/25/2023] Open
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) can be caused by mutations in a large number of genes. One example is SHANK3 on the terminal end of chromosome 22q. Loss of one functional copy of SHANK3 results in 22q13 deletion syndrome or Phelan-McDermid syndrome (PMS) and causes a monogenic form of ASD and/or ID with a frequency of 0.5% to 2% of cases. SHANK3 is the critical gene in this syndrome, and its loss results in disruption of synaptic function. With chromosomal microarray analyses now a standard of care in the assessment of ASD and developmental delay, and with the emergence of whole exome and whole genome sequencing in this context, identification of PMS in routine clinical settings will increase significantly. However, PMS remains a rare disorder, and the majority of physicians have never seen a case. While there is agreement about core deficits of PMS, there have been no established parameters to guide evaluation and medical monitoring of the syndrome. Evaluations must include a thorough history and physical and dysmorphology examination. Neurological deficits, including the presence of seizures and structural brain abnormalities should be assessed as well as motor deficits. Endocrine, renal, cardiac, and gastrointestinal problems all require assessment and monitoring in addition to the risk of recurring infections, dental and vision problems, and lymphedema. Finally, all patients should have cognitive, behavioral, and ASD evaluations. The objective of this paper is to address this gap in the literature and establish recommendations to assess the medical, genetic, and neurological features of PMS.
Collapse
Affiliation(s)
- Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Benjamin Angarita
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Lauren Bush
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - A Ting Wang
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Yitzchak Frank
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Amy Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Robert Rapaport
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Division of Endocrinology and Diabetes, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Jeffrey Saland
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Shubhika Srivastava
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Cristina Farrell
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Division of Behavioral Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Lisa J Edelmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| |
Collapse
|
245
|
Moreira DP, Griesi-Oliveira K, Bossolani-Martins AL, Lourenço NCV, Takahashi VNO, da Rocha KM, Moreira ES, Vadasz E, Meira JGC, Bertola D, Halloran EO, Magalhães TR, Fett-Conte AC, Passos-Bueno MR. Investigation of 15q11-q13, 16p11.2 and 22q13 CNVs in autism spectrum disorder Brazilian individuals with and without epilepsy. PLoS One 2014; 9:e107705. [PMID: 25255310 PMCID: PMC4177849 DOI: 10.1371/journal.pone.0107705] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022] Open
Abstract
Copy number variations (CNVs) are an important cause of ASD and those located at 15q11-q13, 16p11.2 and 22q13 have been reported as the most frequent. These CNVs exhibit variable clinical expressivity and those at 15q11-q13 and 16p11.2 also show incomplete penetrance. In the present work, through multiplex ligation-dependent probe amplification (MLPA) analysis of 531 ethnically admixed ASD-affected Brazilian individuals, we found that the combined prevalence of the 15q11-q13, 16p11.2 and 22q13 CNVs is 2.1% (11/531). Parental origin could be determined in 8 of the affected individuals, and revealed that 4 of the CNVs represent de novo events. Based on CNV prediction analysis from genome-wide SNP arrays, the size of those CNVs ranged from 206 kb to 2.27 Mb and those at 15q11-q13 were limited to the 15q13.3 region. In addition, this analysis also revealed 6 additional CNVs in 5 out of 11 affected individuals. Finally, we observed that the combined prevalence of CNVs at 15q13.3 and 22q13 in ASD-affected individuals with epilepsy (6.4%) was higher than that in ASD-affected individuals without epilepsy (1.3%; p<0.014). Therefore, our data show that the prevalence of CNVs at 15q13.3, 16p11.2 and 22q13 in Brazilian ASD-affected individuals is comparable to that estimated for ASD-affected individuals of pure or predominant European ancestry. Also, it suggests that the likelihood of a greater number of positive MLPA results might be found for the 15q13.3 and 22q13 regions by prioritizing ASD-affected individuals with epilepsy.
Collapse
MESH Headings
- Adolescent
- Base Sequence
- Brazil
- Child
- Child Development Disorders, Pervasive/complications
- Child Development Disorders, Pervasive/genetics
- Chromosomes, Human/genetics
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 22/genetics
- DNA Copy Number Variations
- Epilepsy/complications
- Female
- Genomics
- Humans
- Male
- Pedigree
- Polymorphism, Single Nucleotide
Collapse
Affiliation(s)
- Danielle P. Moreira
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Karina Griesi-Oliveira
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Ana L. Bossolani-Martins
- Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brasil
| | - Naila C. V. Lourenço
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Vanessa N. O. Takahashi
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Kátia M. da Rocha
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Eloisa S. Moreira
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Estevão Vadasz
- Instituto de Psiquiatria do Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Joanna Goes Castro Meira
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Debora Bertola
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
- Instituto da Criança da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Eoghan O’ Halloran
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Tiago R. Magalhães
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
| | - Agnes C. Fett-Conte
- Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brasil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
246
|
Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, Giuliano F, Stordeur C, Depienne C, Mouzat K, Pinto D, Howe J, Lemière N, Durand CM, Guibert J, Ey E, Toro R, Peyre H, Mathieu A, Amsellem F, Rastam M, Gillberg IC, Rappold GA, Holt R, Monaco AP, Maestrini E, Galan P, Heron D, Jacquette A, Afenjar A, Rastetter A, Brice A, Devillard F, Assouline B, Laffargue F, Lespinasse J, Chiesa J, Rivier F, Bonneau D, Regnault B, Zelenika D, Delepine M, Lathrop M, Sanlaville D, Schluth-Bolard C, Edery P, Perrin L, Tabet AC, Schmeisser MJ, Boeckers TM, Coleman M, Sato D, Szatmari P, Scherer SW, Rouleau GA, Betancur C, Leboyer M, Gillberg C, Delorme R, Bourgeron T. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: a gradient of severity in cognitive impairments. PLoS Genet 2014; 10:e1004580. [PMID: 25188300 PMCID: PMC4154644 DOI: 10.1371/journal.pgen.1004580] [Citation(s) in RCA: 429] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 07/08/2014] [Indexed: 11/18/2022] Open
Abstract
SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability—more than 1 in 50—warrant its consideration for mutation screening in clinical practice. Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders. Mutations altering genes involved in the junction between brain cells have been repeatedly associated in ASD. For example, SHANK1, SHANK2 and SHANK3 emerged as one family of genes that are associated with ASD. However, little was known about the number of patients carrying these mutations and the clinical outcome. Here, we performed a new genetic screen of SHANK mutations and these results were analyzed in combination with those of the literature. In summary, SHANK mutations account for ∼1% of patients with ASD and were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. Given the high frequency and impact of SHANK3 mutations in individuals with ASD and intellectual disability—more than 1 in 50—this gene should be screened for mutations in clinical practice.
Collapse
Affiliation(s)
- Claire S. Leblond
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - Caroline Nava
- INSERM U975 - CRICM, Institut du cerveau et de la moelle épinière (ICM), CNRS 7225 - CRICM, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- UMR_S 975, Paris, France
| | - Anne Polge
- Laboratoire de Biochimie, CHU Nîmes, Nîmes, France
| | - Julie Gauthier
- Molecular Diagnostic Laboratory and Division of Medical Genetics, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Guillaume Huguet
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | | | - Fabienne Giuliano
- Department of Medical Genetics, Nice Teaching Hospital, Nice, France
| | - Coline Stordeur
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Department of Child and Adolescent Psychiatry, Paris, France
| | - Christel Depienne
- INSERM U975 - CRICM, Institut du cerveau et de la moelle épinière (ICM), CNRS 7225 - CRICM, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- UMR_S 975, Paris, France
| | - Kevin Mouzat
- Laboratoire de Biochimie, CHU Nîmes, Nîmes, France
| | - Dalila Pinto
- Departments of Psychiatry, Genetics and Genomic Sciences, Seaver Autism Center, The Mindich Child Health & Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jennifer Howe
- The Centre for Applied Genomics, The Hospital for Sick Children and the University of Toronto McLaughlin Centre, Toronto, Canada
| | - Nathalie Lemière
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - Christelle M. Durand
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - Jessica Guibert
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - Elodie Ey
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - Roberto Toro
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - Hugo Peyre
- Laboratoire de Sciences Cognitives et Psycholinguistique, École Normale Supérieure, CNRS, EHESS, Paris, France
| | - Alexandre Mathieu
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - Frédérique Amsellem
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Department of Child and Adolescent Psychiatry, Paris, France
- FondaMental Foundation, Créteil, France
| | - Maria Rastam
- Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - I. Carina Gillberg
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
| | - Gudrun A. Rappold
- Department of Molecular Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Richard Holt
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Anthony P. Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Pilar Galan
- Nutritional Epidemiology Research Unit, INSERM U557, INRA U1125, CNAM, University of Paris 13, CRNH IdF, Bobigny, France
| | - Delphine Heron
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique et de Cytogénétique, Unité fonctionnelle de génétique clinique, Paris, France
- Centre de Référence “Déficiences intellectuelles de causes rares”, Paris, France and Groupe de Recherche Clinique “Déficience intellectuelle et autisme”, UPMC, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Service de Neuropédiatrie, Paris, France
| | - Aurélia Jacquette
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique et de Cytogénétique, Unité fonctionnelle de génétique clinique, Paris, France
- Centre de Référence “Déficiences intellectuelles de causes rares”, Paris, France and Groupe de Recherche Clinique “Déficience intellectuelle et autisme”, UPMC, Paris, France
| | - Alexandra Afenjar
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique et de Cytogénétique, Unité fonctionnelle de génétique clinique, Paris, France
- Centre de Référence “Déficiences intellectuelles de causes rares”, Paris, France and Groupe de Recherche Clinique “Déficience intellectuelle et autisme”, UPMC, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Service de Neuropédiatrie, Paris, France
| | - Agnès Rastetter
- INSERM U975 - CRICM, Institut du cerveau et de la moelle épinière (ICM), CNRS 7225 - CRICM, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- UMR_S 975, Paris, France
| | - Alexis Brice
- INSERM U975 - CRICM, Institut du cerveau et de la moelle épinière (ICM), CNRS 7225 - CRICM, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- UMR_S 975, Paris, France
| | - Françoise Devillard
- Département de génétique et procréation, Hôpital Couple-Enfant, Grenoble, France
| | | | - Fanny Laffargue
- Service de Génétique Médicale, Centre Hospitalier Universitaire Estaing, Clermont-Ferrand, France
| | - James Lespinasse
- UF de Génétique Chromosomique, Centre Hospitalier de Chambéry – Hôtel-dieu, Chambéry, France
| | - Jean Chiesa
- UF de Cytogénétique et Génétique Médicale, Hôpital Caremeau, Nîmes, France
| | - François Rivier
- CHRU Montpellier, Neuropédiatrie CR Maladies Neuromusculaires, Montpellier, France
- U1046, INSERM, Université Montpellier 1 et 2, Montpellier, France
| | - Dominique Bonneau
- LUNAM Université, INSERM U1083 et CNRS UMR 6214, Angers, France
- Centre Hospitalier Universitaire, Département de Biochimie et Génétique, Angers, France
| | - Beatrice Regnault
- Eukaryote Genotyping Platform, Genopole, Institut Pasteur, Paris, France
| | | | | | | | - Damien Sanlaville
- Hospices Civils de Lyon, CHU de Lyon, Départment de Génétique, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Claude Bernard Lyon I University, Bron, France
| | - Caroline Schluth-Bolard
- Hospices Civils de Lyon, CHU de Lyon, Départment de Génétique, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Claude Bernard Lyon I University, Bron, France
| | - Patrick Edery
- Hospices Civils de Lyon, CHU de Lyon, Départment de Génétique, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Claude Bernard Lyon I University, Bron, France
| | - Laurence Perrin
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Genetic department, Cytogenetic Unit, Paris, France
| | - Anne Claude Tabet
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Genetic department, Cytogenetic Unit, Paris, France
| | | | | | - Mary Coleman
- Foundation for Autism Research, Sarasota, Florida, United States of America
| | - Daisuke Sato
- The Centre for Applied Genomics, The Hospital for Sick Children and the University of Toronto McLaughlin Centre, Toronto, Canada
| | - Peter Szatmari
- The Centre for Applied Genomics, The Hospital for Sick Children and the University of Toronto McLaughlin Centre, Toronto, Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children and the University of Toronto McLaughlin Centre, Toronto, Canada
| | - Guy A. Rouleau
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Catalina Betancur
- Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- INSERM U1130, Paris, France
- CNRS UMR 8246, Paris, France
| | - Marion Leboyer
- FondaMental Foundation, Créteil, France
- INSERM U955, Psychiatrie Génétique, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- Assistance Publique-Hôpitaux de Paris, DHU PePSY, Pôle de Psychiatrie et d'Addictologie des Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
- Institute of Child Health, University College London, London, United Kingdom
| | - Richard Delorme
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Department of Child and Adolescent Psychiatry, Paris, France
- FondaMental Foundation, Créteil, France
| | - Thomas Bourgeron
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
- FondaMental Foundation, Créteil, France
- * E-mail:
| |
Collapse
|
247
|
Tordjman S, Somogyi E, Coulon N, Kermarrec S, Cohen D, Bronsard G, Bonnot O, Weismann-Arcache C, Botbol M, Lauth B, Ginchat V, Roubertoux P, Barburoth M, Kovess V, Geoffray MM, Xavier J. Gene × Environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psychiatry 2014; 5:53. [PMID: 25136320 PMCID: PMC4120683 DOI: 10.3389/fpsyt.2014.00053] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 05/02/2014] [Indexed: 01/03/2023] Open
Abstract
Several studies support currently the hypothesis that autism etiology is based on a polygenic and epistatic model. However, despite advances in epidemiological, molecular and clinical genetics, the genetic risk factors remain difficult to identify, with the exception of a few chromosomal disorders and several single gene disorders associated with an increased risk for autism. Furthermore, several studies suggest a role of environmental factors in autism spectrum disorders (ASD). First, arguments for a genetic contribution to autism, based on updated family and twin studies, are examined. Second, a review of possible prenatal, perinatal, and postnatal environmental risk factors for ASD are presented. Then, the hypotheses are discussed concerning the underlying mechanisms related to a role of environmental factors in the development of ASD in association with genetic factors. In particular, epigenetics as a candidate biological mechanism for gene × environment interactions is considered and the possible role of epigenetic mechanisms reported in genetic disorders associated with ASD is discussed. Furthermore, the example of in utero exposure to valproate provides a good illustration of epigenetic mechanisms involved in ASD and innovative therapeutic strategies. Epigenetic remodeling by environmental factors opens new perspectives for a better understanding, prevention, and early therapeutic intervention of ASD.
Collapse
Affiliation(s)
- Sylvie Tordjman
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Université de Rennes 1, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - Eszter Somogyi
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Nathalie Coulon
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Solenn Kermarrec
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Université de Rennes 1, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - David Cohen
- Department of Child and Adolescent Psychiatry, AP-HP, GH Pitié-Salpétrière, CNRS FRE 2987, University Pierre and Marie Curie, Paris, France
| | - Guillaume Bronsard
- Laboratoire de Santé Publique (EA3279), School of Medicine of La Timone, Marseille, France
| | - Olivier Bonnot
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Catherine Weismann-Arcache
- Laboratoire Psychologie et Neurosciences de la Cognition et de l’Affectivité, Université de Rouen, Mont Saint Aignan, France
| | - Michel Botbol
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
- Service Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Université de Bretagne Occidentale, CHU de Brest, Brest, France
| | - Bertrand Lauth
- Department of Child and Adolescent Psychiatry, Landspitali University Hospital, University of Iceland, Reykjavik, Iceland
| | - Vincent Ginchat
- Department of Child and Adolescent Psychiatry, AP-HP, GH Pitié-Salpétrière, CNRS FRE 2987, University Pierre and Marie Curie, Paris, France
| | - Pierre Roubertoux
- Laboratoire de Génétique Médicale, Génomique Fonctionnelle, INSERM U 910, Université d’Aix-Marseille 2, Marseille, France
| | - Marianne Barburoth
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Viviane Kovess
- Department of Epidemiology and Biostatistics, EHESP School for Public Health, EA 4057 University Paris Descartes, Paris, France
| | - Marie-Maude Geoffray
- Service Universitaire de Psychiatrie de l’Enfant et de l’Adolescent Hospitalier Le Vinatier, Bron, France
| | - Jean Xavier
- Department of Child and Adolescent Psychiatry, AP-HP, GH Pitié-Salpétrière, CNRS FRE 2987, University Pierre and Marie Curie, Paris, France
| |
Collapse
|
248
|
Rojas DC. The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment. J Neural Transm (Vienna) 2014; 121:891-905. [PMID: 24752754 PMCID: PMC4134390 DOI: 10.1007/s00702-014-1216-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 04/06/2014] [Indexed: 12/11/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain and may be a key neurotransmitter involved in autism. Literature pertaining to glutamate and autism or related disorders (e.g., Fragile X syndrome) is reviewed in this article. Interest in glutamatergic dysfunction in autism is high due to increasing convergent evidence implicating the system in the disorder from peripheral biomarkers, neuroimaging, protein expression, genetics and animal models. Currently, there are no pharmaceutical interventions approved for autism that address glutamate deficits in the disorder. New treatments related to glutamatergic neurotransmission, however, are emerging. In addition, older glutamate-modulating medications with approved indications for use in other disorders are being investigated for re-tasking as treatments for autism. This review presents evidence in support of glutamate abnormalities in autism and the potential for translation into new treatments for the disorder.
Collapse
Affiliation(s)
- Donald C Rojas
- Department of Psychology, Campus Delivery 1876, Colorado State University, Fort Collins, CO, 80523, USA,
| |
Collapse
|
249
|
Cho EH, Park JB, Kim JK. Atypical teratoid rhabdoid brain tumor in an infant with ring chromosome 22. KOREAN JOURNAL OF PEDIATRICS 2014; 57:333-6. [PMID: 25114695 PMCID: PMC4127397 DOI: 10.3345/kjp.2014.57.7.333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/04/2014] [Accepted: 05/08/2014] [Indexed: 11/27/2022]
Abstract
Reports of constitutional ring chromosome 22, r(22) are rare. Individuals with r(22) present similar features as those with the 22q13 deletion syndrome. The instability in the ring chromosome contributes to the development of variable phenotypes. Central nervous system (CNS) atypical teratoid rhabdoid tumors (ATRTs) are rare, highly malignant tumors, primarily occurring in young children below 3 years of age. The majority of ATRT cases display genetic alterations of SMARCB1 (INI1/hSNF5), a tumor suppressor gene located on 22q11.2. The coexistence of a CNS ATRT in a child with a r(22) is rare. We present a case of a 4-month-old boy with 46,XY,r(22)(p13q13.3), generalized hypotonia and delayed development. High-resolution microarray analysis revealed a 3.5-Mb deletion at 22q13.31q13.33. At 11 months, the patient had an ATRT (5.6 cm×5.0 cm×7.6 cm) in the cerebellar vermis, which was detected in the brain via magnetic resonance imaging.
Collapse
Affiliation(s)
| | - Jae Bok Park
- Department of Pathology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Jin Kyung Kim
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
250
|
Kim DS, Ross PJ, Zaslavsky K, Ellis J. Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Front Cell Neurosci 2014; 8:109. [PMID: 24782713 PMCID: PMC3990101 DOI: 10.3389/fncel.2014.00109] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 03/25/2014] [Indexed: 01/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is an early-onset neurodevelopmental disorder characterized by deficits in social communication, and restricted and repetitive patterns of behavior. Despite its high prevalence, discovery of pathophysiological mechanisms underlying ASD has lagged due to a lack of appropriate model systems. Recent advances in induced pluripotent stem cell (iPSC) technology and neural differentiation techniques allow for detailed functional analyses of neurons generated from living individuals with ASD. Refinement of cortical neuron differentiation methods from iPSCs will enable mechanistic studies of specific neuronal subpopulations that may be preferentially impaired in ASD. In this review, we summarize recent accomplishments in differentiation of cortical neurons from human pluripotent stems cells and efforts to establish in vitro model systems to study ASD using personalized neurons.
Collapse
Affiliation(s)
- Dae-Sung Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Toronto, ON, Canada
| | - P Joel Ross
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Toronto, ON, Canada
| | - Kirill Zaslavsky
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Toronto, ON, Canada ; Department of Molecular Genetics, University of Toronto Toronto, ON, Canada
| | - James Ellis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Toronto, ON, Canada ; Department of Molecular Genetics, University of Toronto Toronto, ON, Canada
| |
Collapse
|